Sample records for nanotube interactions activation

  1. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells

    PubMed Central

    Chauveau, Anne; Aucher, Anne; Eissmann, Philipp; Vivier, Eric; Davis, Daniel M.

    2010-01-01

    Membrane nanotubes are membranous tethers that physically link cell bodies over long distances. Here, we present evidence that nanotubes allow human natural killer (NK) cells to interact functionally with target cells over long distances. Nanotubes were formed when NK cells contacted target cells and moved apart. The frequency of nanotube formation was dependent on the number of receptor/ligand interactions and increased on NK cell activation. Most importantly, NK cell nanotubes contained a submicron scale junction where proteins accumulated, including DAP10, the signaling adaptor that associates with the activating receptor NKG2D, and MHC class I chain-related protein A (MICA), a cognate ligand for NKG2D, as occurs at close intercellular synapses between NK cells and target cells. Quantitative live-cell fluorescence imaging suggested that MICA accumulated at small nanotube synapses in sufficient numbers to trigger cell activation. In addition, tyrosine-phosphorylated proteins and Vav-1 accumulated at such junctions. Functionally, nanotubes could aid the lysis of distant target cells either directly or by moving target cells along the nanotube path into close contact for lysis via a conventional immune synapse. Target cells moving along the nanotube path were commonly polarized such that their uropods faced the direction of movement. This is the opposite polarization than for normal cell migration, implying that nanotubes can specifically drive target cell movement. Finally, target cells that remained connected to an NK cell by a nanotube were frequently lysed, whereas removing the nanotube using a micromanipulator reduced lysis of these target cells. PMID:20212116

  2. Single functional group interactions with individual carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Friddle, Raymond W.; Lemieux, Melburne C.; Cicero, Giancarlo; Artyukhin, Alexander B.; Tsukruk, Vladimir V.; Grossman, Jeffrey C.; Galli, Giulia; Noy, Aleksandr

    2007-11-01

    Carbon nanotubes display a consummate blend of materials properties that affect applications ranging from nanoelectronic circuits and biosensors to field emitters and membranes. These applications use the non-covalent interactions between the nanotubes and chemical functionalities, often involving a few molecules at a time. Despite their wide use, we still lack a fundamental understanding and molecular-level control of these interactions. We have used chemical force microscopy to measure the strength of the interactions of single chemical functional groups with the sidewalls of vapour-grown individual single-walled carbon nanotubes. Surprisingly, the interaction strength does not follow conventional trends of increasing polarity or hydrophobicity, and instead reflects the complex electronic interactions between the nanotube and the functional group. Ab initio calculations confirm the observed trends and predict binding force distributions for a single molecular contact that match the experimental results. Our analysis also reveals the important role of molecular linkage dynamics in determining interaction strength at the single functional group level.

  3. Functionalized Carbon Nanotube-Polymer Composites and Interactions with Radiation

    NASA Technical Reports Server (NTRS)

    Shofner, Meisha (Inventor); Pulikkathara, Merlyn X. (Inventor); Wilkins, Richard (Inventor); Barrera, Enrique V. (Inventor); Vaidyanathan, Ranjii (Inventor)

    2014-01-01

    The present invention involves the interaction of radiation with functionalized carbon nanotubes that have been incorporated into various host materials, particularly polymeric ones. The present invention is directed to chemistries, methods, and apparatuses which exploit this type of radiation interaction, and to the materials which result from such interactions. The present invention is also directed toward the time dependent behavior of functionalized carbon nanotubes in such composite systems.

  4. Functionalized carbon nanotube-polymer composites and interactions with radiation

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V. (Inventor); Wilkins, Richard (Inventor); Shofner, Meisha (Inventor); Pulikkathara, Merlyn X. (Inventor); Vaidyanathan, Ranjii (Inventor)

    2008-01-01

    The present invention involves the interaction of radiation with functionalized carbon nanotubes that have been incorporated into various host materials, particularly polymeric ones. The present invention is directed to chemistries, methods, and apparatuses which exploit this type of radiation interaction, and to the materials which result from such interactions. The present invention is also directed toward the time dependent behavior of functionalized carbon nanotubes in such composite systems.

  5. Wetting behavior of nonpolar nanotubes in simple dipolar liquids for varying nanotube diameter and solute-solvent interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Malay Kumar; Chandra, Amalendu, E-mail: amalen@iitk.ac.in

    2015-01-21

    Atomistic simulations of model nonpolar nanotubes in a Stockmayer liquid are carried out for varying nanotube diameter and nanotube-solvent interactions to investigate solvophobic interactions in generic dipolar solvents. We have considered model armchair type single-walled nonpolar nanotubes with increasing radii from (5,5) to (12,12). The interactions between solute and solvent molecules are modeled by the well-known Lennard-Jones and repulsive Weeks-Chandler-Andersen potentials. We have investigated the density profiles and microscopic arrangement of Stockmayer molecules, orientational profiles of their dipole vectors, time dependence of their occupation, and also the translational and rotational motion of solvent molecules in confined environments of the cylindricalmore » nanopores and also in their external peripheral regions. The present results of structural and dynamical properties of Stockmayer molecules inside and near atomistically rough nonpolar surfaces including their wetting and dewetting behavior for varying interactions provide a more generic picture of solvophobic effects experienced by simple dipolar liquids without any specific interactions such as hydrogen bonds.« less

  6. Investigations on the antiretroviral activity of carbon nanotubes using computational molecular approach.

    PubMed

    Krishnaraj, R Navanietha; Chandran, Saravanan; Pal, Parimal; Berchmans, Sheela

    2014-01-01

    Carbon nanotubes are the interesting class of materials with wide range of applications. They have excellent physical, chemical and electrical properties. Numerous reports were made on the antiviral activities of carbon nanotubes. However the mechanism of antiviral action is still in infancy. Herein we report, our recent novel findings on the molecular interactions of carbon nanotubes with the three key target proteins of HIV using computational chemistry approach. Armchair, chiral and zigzag CNTs were modeled and used as ligands for the interaction studies. The structure of the key proteins involved in HIV mediated infection namely HIV- Vpr, Nef and Gag proteins were collected from the PDB database. The docking studies were performed to quantify the interaction of the CNT with the three different disease targets. Results showed that the carbon nanotubes had high binding affinity to these proteins which confirms the antagonistic molecular interaction of carbon nanotubes to the disease targets. The modeled armchair carbon nanotubes had the binding affinities of -12.4 Kcal/mole, -20 Kcal/mole and -11.7 Kcal/mole with the Vpr, Nef and Gag proteins of HIV. Chiral CNTs also had the maximum affinity of -16.4 Kcal/mole to Nef. The binding affinity of chiral CNTs to Vpr and Gag was found to be -10.9 Kcal/mole and -10.3 Kcal/mole respectively. The zigzag CNTs had the binding affinity of -11.1 Kcal/mole with Vpr, -18.3 Kcal/mole with Nef and -10.9 with Gag respectively. The strong molecular interactions suggest the efficacy of CNTs for targeting the HIV mediated retroviral infections.

  7. Interaction of single-walled carbon nanotubes with poly(propyl ether imine) dendrimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayamurugan, G.; Rajesh, Y. B. R. D.; Jayaraman, N.

    2011-03-14

    We study the complexation of nontoxic, native poly(propyl ether imine) dendrimers with single-walled carbon nanotubes (SWNTs). The interaction was monitored by measuring the quenching of inherent fluorescence of the dendrimer. The dendrimer-nanotube binding also resulted in the increased electrical resistance of the hole doped SWNT, due to charge-transfer interaction between dendrimer and nanotube. This charge-transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. We also report the effect of acidic and neutral pH conditions on the binding affinities. Experimental studies were supplemented by all atom molecular dynamics simulations to provide amore » microscopic picture of the dendrimer-nanotube complex. The complexation was achieved through charge transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen, and n-propyl moieties of the dendrimer.« less

  8. Sorption interactions between ethylene glycol and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Butyrskaya, E. V.; Belyakova, N. V.; Nechaeva, L. S.; Shaposhnik, V. A.; Selemenev, V. F.

    2017-03-01

    The adsorption of ethylene glycol by carbon nanoparticles is studied. Carbon nanoparticles with the highest affinity to ethylene glycol are identified, and an adsorption isotherm is constructed. Based on quantum chemical calculations of the energies of interaction between the sorbate and nanotubes with (4,4) and (6,6) chirality, a change in mechanism is revealed upon the monomolecular adsorption of ethylene glycol on carbon nanotubes, and the adsorption isotherm is thus interpreted.

  9. Quantitative Collection and Enzymatic Activity of Glucose Oxidase Nanotubes Fabricated by Templated Layer-by-Layer Assembly.

    PubMed

    Zhang, Shouwei; Demoustier-Champagne, Sophie; Jonas, Alain M

    2015-08-10

    We report on the fabrication of enzyme nanotubes in nanoporous polycarbonate membranes via the layer-by-layer (LbL) alternate assembly of polyethylenimine (PEI) and glucose oxidase (GOX), followed by dissolution of the sacrificial template in CH2Cl2, collection, and final dispersion in water. An adjuvant-assisted filtration methodology is exploited to extract quantitatively the nanotubes without loss of activity and morphology. Different water-soluble CH2Cl2-insoluble adjuvants are tested for maximal enzyme activity and nanotube stability; whereas NaCl disrupts the tubes by screening electrostatic interactions, the high osmotic pressure created by fructose also contributes to loosening the nanotubular structures. These issues are solved when using neutral, high molar mass dextran. The enzymatic activity of intact free nanotubes in water is then quantitatively compared to membrane-embedded nanotubes, showing that the liberated nanotubes have a higher catalytic activity in proportion to their larger exposed surface. Our study thus discloses a robust and general methodology for the fabrication and quantitative collection of enzymatic nanotubes and shows that LbL assembly provides access to efficient enzyme carriers for use as catalytic swarming agents.

  10. Chirality dependent interaction of ammonia with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2018-04-01

    For the specific structure and extraordinary properties, carbon nanotubes (CNTs) have many applications in diversified fields. The interaction of CNTs with ammonia is a very interesting matter to study as it is related to the application of CNTs as ammonia sensor. Here the interaction of single walled zigzag, armchair and chiral carbon nanotubes is studied in respect of the change in energies before and after binding with ammonia by molecular dynamics simulation. Their deformation after simulation is modeled. The change of thermal conductivity of the CNTs is also found by simulation. The potential energy before and after absorption of ammonia gives useful information of the system. Thermal conductivities of the ammonia bound CNTs are changed considerably. It is observed that the potential energy and thermal conductivity both are changing for the interaction with ammonia and hence they are sensitive to ammonia binding.

  11. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    PubMed

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  12. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  13. Halloysite clay nanotubes for controlled delivery of chemically active agents

    NASA Astrophysics Data System (ADS)

    Abdullayev, Elshard

    In this work we explored the capabilities of halloysite nanotubes as capsules for encapsulation and controlled delivery of the chemically and biologically active substances. Halloysite is a two-layered aluminosilicate which has a predominantly hollow tubular structure in the submicron range and is chemically similar to kaolinite [1, 2]. In the first section of this work, we analyzed the structure of the halloysite nanotubes as well as its capability to encapsulate and deliver biologically and chemically active agents, similarities and differences between release characteristics of different agents and how these differences relate with their chemical structure. Models were used to describe the release characteristics of the active agents. Study of the interaction between loaded agents and halloysite nanotubes provides better understanding of the release characteristics of the loaded agents and how halloysite can be implemented for technological and medical applications. The second part of the work deals with self-healing coatings produced on the basis of halloysite nanotubes loaded with corrosion inhibitors. Self-healing coatings are one of the effective methods to protect metals from corrosion and deterioration. The difference between self-healing coatings and the usual coatings is the ability of the first to recover after the formation of the damages due to external or internal stresses. High efficiency of the self- healing coatings produced by halloysite nanotubes were demonstrated on 110 Copper alloys and 2024 aluminum alloys. Controlled delivery of the corrosion inhibitors with additional encapsulation of the halloysite nanotubes by synthesizing stoppers at tube endings was also demonstrated. Additional encapsulation of the halloysite nanotubes may be necessary when slow release of the loaded agents is required or rapid convection of the liquid in the surrounding environment takes place (since this may cause rapid release of the loaded agents without additional

  14. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  15. Continuous approximation for interaction energy of adamantane encapsulated inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Baowan, Duangkamon; Hill, James M.; Bacsa, Wolfgang

    2018-02-01

    The interaction energy for two adjacent adamantane molecules and that of adamantane molecules encapsulated inside carbon nanotubes are investigated considering only dipole-dipole induced interaction. The Lennard-Jones potential and the continuous approximation are utilised to derive analytical expressions for these interaction energies. The equilibrium distance 3.281 Å between two adamantane molecules is determined. The smallest carbon nanotube radius b0 that can encapsulate the adamantane molecule and the radius of the tube bmax that gives the maximum suction energy, linearly depend on the adamantane radius, are calculated. For larger diameter tubes, the off axis position has been calculated, and equilibrium distance between molecule and tube wall is found to be close to the interlayer spacing in graphene.

  16. Carbon Nanotube Conditioning: Ab Initio Simulations of the Effect of Interwall Interaction, Defects And Doping on the Electronic Properties of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Castillo, Matias Soto

    Using carbon nanotubes for electrical conduction applications at the macroscale has been shown to be a difficult task for some time now, mainly, due to defects and impurities present, and lack of uniform electronic properties in synthesized carbon nanotube bundles. Some researchers have suggested that growing only metallic armchair nanotubes and arranging them with an ideal contact length could lead to the ultimate electrical conductivity; however, such recipe presents too high of a cost to pay. A different route is to learn to manage the defects, impurities, and the electronic properties of carbon nanotubes present in bundles grown by current state-of-the-art reactors, so that the electrical conduction of a bundle or even wire may be enhanced. In our work, we have used first-principles density functional theory calculations to study the effect of interwall interaction, defects and doping on the electronic structure of metallic, semi-metal and semiconducting single- and double-walled carbon nanotubes in order to gain a clear picture of their properties. The electronic band gap for a range of zigzag single-walled carbon nanotubes with chiral indices (5,0) - (30,0) was obtained. Their properties were used as a stepping stone in the study of the interwall interaction in double-walled carbon nanotubes, from which it was found that the electronic band gap depends on the type of inner and outer tubes, average diameter, and interwall distance. The effect of vacancy defects was also studied for a range of single-walled carbon nanotubes. It was found that the electronic band gap is reduced for the entire range of zigzag carbon nanotubes, even at vacancy defects concentrations of less than 1%. Finally, interaction potentials obtained via first-principles calculations were generalized by developing mathematical models for the purpose of running simulations at a larger length scale using molecular dynamics of the adsorption doping of diatomic iodine. An ideal adsorption site

  17. Universal interaction-driven gap in metallic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Senger, Mitchell J.; McCulley, Daniel R.; Lotfizadeh, Neda; Deshpande, Vikram V.; Minot, Ethan D.

    2018-02-01

    Suspended metallic carbon nanotubes (m-CNTs) exhibit a remarkably large transport gap that can exceed 100 meV. Both experiment and theory suggest that strong electron-electron interactions play a crucial role in generating this electronic structure. To further understand this strongly interacting system, we have performed electronic measurements of suspended m-CNTs with known diameter and chiral angle. Spectrally resolved photocurrent microscopy was used to determine m-CNT structure. The room-temperature electrical characteristics of 18 individually contacted m-CNTs were compared to their respective diameter and chiral angle. At the charge neutrality point, we observe a peak in m-CNT resistance that scales exponentially with inverse diameter. Using a thermally activated transport model, we estimate that the transport gap is (450 meV nm)/D , where D is CNT diameter. We find no correlation between the gap and the CNT chiral angle. Our results add important constraints to theories attempting to describe the electronic structure of m-CNTs.

  18. Spin-curvature interaction from curved Dirac equation: Application to single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhang, Erhu; Chen, Huawei; Zhang, Shengli

    2017-06-01

    The spin-curvature interaction (SCI) and its effects are investigated based on curved Dirac equation. Through the low-energy approximation of curved Dirac equation, the Hamiltonian of SCI is obtained and depends on the geometry and spinor structure of manifold. We find that the curvature can be considered as field strength and couples with spin through Zeeman-like term. Then, we use dimension reduction to derive the local Hamiltonian of SCI for cylinder surface, which implies that the effective Hamiltonian of single-wall carbon nanotubes results from the geometry and spinor structure of lattice and includes two types of interactions: one does not break any symmetries of the lattice and only shifts the Dirac points for all nanotubes, while the other one does and opens the gaps except for armchair nanotubes. At last, analytical expressions of the band gaps and the shifts of their positions induced by curvature are given for metallic nanotubes. These results agree well with experiments and can be verified experimentally.

  19. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  20. Application of liquid-liquid interactions with single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Randy Kai-Wei

    This study covers three important research topics related to the application of liquid-liquid interaction with single-walled carbon nanotubes (SWNTs). The first topic describes the removal of SWNT bundles from liquid suspensions of nanotubes. The key to this work includes the use of liquid-liquid interfaces to trap the SWNT bundles due to the free energy change of the system during the process. SWNTs pack into crystalline ropes that form bundles due to strong van der Waals attraction. Bundling diminishes mechanical and electronic properties because it could interrupt the electronic structure of the nanotubes. Also, the electronic devices based on as-grown nanotubes, which contains a mixture of individual nanotubes and nanotube bundles, make the electrical response unpredictable. We developed a new simple process to remove bundles by liquid-liquid interaction. SWNTs bundles are trapped at the interface because bundles stabilize the emulsions. Eliminating the use of ultracentrifugation to remove SWNT bundles enables large-scale production with reduced production costs and time savings. The second topic presented the swelling effect of the surfactant layer surrounding SWNTs with nonpolar solvents. Solvatochromic shifts in the absorbance and fluorescence spectra are observed when surfactant-stabilized aqueous SWNT suspensions are mixed with immiscible organic solvents. When aqueous surfactant-suspended SWNTs are mixed with certain solvents, the spectra closely match the peaks for SWNTs dispersed in only that solvent. These spectral changes suggest the hydrophobic region of the micelle surrounding SWNTs swells with the organic solvent when mixed. The solvatochromic shifts of the aqueous SWNT suspensions are reversible once the solvent evaporates. However, some surfactant-solvent systems show permanent changes to the fluorescence emission intensity after exposure to the organic solvent. The intensity of some large diameter SWNT (n, m) types increase by more than 175

  1. Investigation of formaldehyde interaction with carbon nanotubes and quartz sand

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Maria P.; Chrysikopoulos, Constantinos V.

    2017-04-01

    Assessment of the potential impact of synthetic carbon nanotubes on the fate and transport of common chemical contaminants (pesticides, pharmaceuticals, etc.) in groundwater systems is considered to be an increasingly important aspect of environmental research. This study investigates the interaction of formaldehyde with multi-walled carbon nanotubes (MWCNTs) and quartz sand under static and dynamic conditions. Due to polarity, formaldehyde, is expected to develop strong adsorptive interactions with carbon nanotubes. Several batch adsorption experiments were conducted in test tubes, under controlled conditions. Various initial formaldehyde solution concentration (2, 5, 8 ppm), contact times, and temperatures (8, 18, 25 °C) were considered. Supernatant liquid samples were collected at regular intervals, and centrifuged. Subsequently, the formaldehyde concentration in the supernatant was quantified indirectly, by derivatization with Nash reagent and subsequent measurement of the resulting complex using spectrophotometry in the visible spectral range. Experimental results suggested that formaldehyde has a low affinity for quartz sand, but an enhanced potential for adsorption onto carbon nanotubes. Formaldehyde adsorption onto both absorbents (quartz sand and MWCNTs) was more pronounced under dynamic than static conditions, probably, because agitation improves the mixing of the absorbent within the solution. Also, it was shown that the adsorption data were adequately described by the pseudo-second order kinetic model, suggesting that the primary adsorption mechanism was chemisorption, where two or more (sequential or parallel) processes (e.g. surface chemisorption, intraparticle diffusion) were taking place. Therefore, MWCNTs could be promising adsorbent materials for groundwater remediation.

  2. Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system.

    PubMed

    Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa

    2015-07-01

    Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity.

  3. Telescopic nanotube device for hot nanolithography

    DOEpatents

    Popescu, Adrian; Woods, Lilia M

    2014-12-30

    A device for maintaining a constant tip-surface distance for producing nanolithography patterns on a surface using a telescopic nanotube for hot nanolithography. An outer nanotube is attached to an AFM cantilever opposite a support end. An inner nanotube is telescopically disposed within the outer nanotube. The tip of the inner nanotube is heated to a sufficiently high temperature and brought in the vicinity of the surface. Heat is transmitted to the surface for thermal imprinting. Because the inner tube moves telescopically along the outer nanotube axis, a tip-surface distance is maintained constant due to the vdW force interaction, which in turn eliminates the need of an active feedback loop.

  4. The in Silico Insight into Carbon Nanotube and Nucleic Acid Bases Interaction.

    PubMed

    Karimi, Ali Asghar; Ghalandari, Behafarid; Tabatabaie, Seyed Saleh; Farhadi, Mohammad

    2016-05-01

    To explore practical applications of carbon nanotubes (CNTs) in biomedical fields the properties of their interaction with biomolecules must be revealed. Recent years, the interaction of CNTs with biomolecules is a subject of research interest for practical applications so that previous research explored that CNTs have complementary structure properties with single strand DNA (ssDNA). Hence, the quantum mechanics (QM) method based on ab initio was used for this purpose. Therefore values of binding energy, charge distribution, electronic energy and other physical properties of interaction were studied for interaction of nucleic acid bases and SCNT. In this study, the interaction between nucleic acid bases and a (4, 4) single-walled carbon nanotube (SCNT) were investigated through calculations within quantum mechanics (QM) method at theoretical level of Hartree-Fock (HF) method using 6-31G basis set. Hence, the physical properties such as electronic energy, total dipole moment, charge distributions and binding energy of nucleic acid bases interaction with SCNT were investigated based on HF method. It has been found that the guanine base adsorption is bound stronger to the outer surface of nanotube in comparison to the other bases, consistent with the recent theoretical studies. In the other words, the results explored that guanine interaction with SCNT has optimum level of electronic energy so that their interaction is stable. Also, the calculations illustrated that SCNT interact to nucleic acid bases by noncovalent interaction because of charge distribution an electrostatic area is created in place of interaction. Consequently, small diameter SCNT interaction with nucleic acid bases is noncovalent. Also, the results revealed that small diameter SCNT interaction especially SCNT (4, 4) with nucleic acid bases can be useful in practical application area of biomedical fields such detection and drug delivery.

  5. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts.

    PubMed

    Cellot, Giada; Cilia, Emanuele; Cipollone, Sara; Rancic, Vladimir; Sucapane, Antonella; Giordani, Silvia; Gambazzi, Luca; Markram, Henry; Grandolfo, Micaela; Scaini, Denis; Gelain, Fabrizio; Casalis, Loredana; Prato, Maurizio; Giugliano, Michele; Ballerini, Laura

    2009-02-01

    Carbon nanotubes have been applied in several areas of nerve tissue engineering to probe and augment cell behaviour, to label and track subcellular components, and to study the growth and organization of neural networks. Recent reports show that nanotubes can sustain and promote neuronal electrical activity in networks of cultured cells, but the ways in which they affect cellular function are still poorly understood. Here, we show, using single-cell electrophysiology techniques, electron microscopy analysis and theoretical modelling, that nanotubes improve the responsiveness of neurons by forming tight contacts with the cell membranes that might favour electrical shortcuts between the proximal and distal compartments of the neuron. We propose the 'electrotonic hypothesis' to explain the physical interactions between the cell and nanotube, and the mechanisms of how carbon nanotubes might affect the collective electrical activity of cultured neuronal networks. These considerations offer a perspective that would allow us to predict or engineer interactions between neurons and carbon nanotubes.

  6. Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes.

    PubMed

    Stepanian, Stepan G; Karachevtsev, Maksym V; Glamazda, Alexander Yu; Karachevtsev, Victor A; Adamowicz, L

    2009-04-16

    In this work, we have used Raman spectroscopy and quantum chemical methods (MP2 and DFT) to study the interactions between nucleic acid bases (NABs) and single-walled carbon nanotubes (SWCNT). We found that the appearance of the interaction between the nanotubes and the NABs is accompanied by a spectral shift of the high-frequency component of the SWCNT G band in the Raman spectrum to a lower frequency region. The value of this shift varies from 0.7 to 1.3 cm(-1) for the metallic nanotubes and from 2.1 to 3.2 cm(-1) for the semiconducting nanotubes. Calculations of the interaction energies between the NABs and a fragment of the zigzag(10,0) carbon nanotube performed at the MP2/6-31++G(d,p)[NABs atoms]|6-31G(d)[nanotube atoms] level of theory while accounting for the basis set superposition error during geometry optimization allowed us to order the NABs according to the increasing interaction energy value. The order is: guanine (-67.1 kJ mol(-1)) > adenine (-59.0 kJ mol(-1)) > cytosine (-50.3 kJ mol(-1)) approximately = thymine (-50.2 kJ mol(-1)) > uracil (-44.2 kJ mol(-1)). The MP2 equilibrium structures and the interaction energies were used as reference points in the evaluation of the ability of various functionals in the DFT method to predict those structures and energies. We showed that the M05, MPWB1K, and MPW1B95 density functionals are capable of correctly predicting the SWCNT-NAB geometries but not the interaction energies, while the M05-2X functional is capable of correctly predicting both the geometries and the interaction energies.

  7. High enzymatic activity preservation with carbon nanotubes incorporated in urease-lipid hybrid Langmuir-Blodgett films.

    PubMed

    Caseli, Luciano; Siqueira, José Roberto

    2012-03-27

    The search for optimized architectures, such as thin films, for the production of biosensors has been challenged in recent decades, and thus, the understanding of molecular interactions that occur at interfaces is essential to improve the construction of nanostructured devices. In this study, we investigated the possibility of using carbon nanotubes in hybrid Langmuir-Blodgett (LB) films of lipids and urease to improve the catalytic performance of the immobilized enzyme. The molecular interactions were first investigated at the air-water interface with the enzyme adsorbed from the aqueous subphase onto Langmuir monolayers of dimyristoylphosphatidic acid (DMPA). The transfer to solid supports as LB films and the subsequent incorporation of carbon nanotubes in the hybrid film permitted us to evaluate how these nanomaterials changed the physical properties of the ultrathin film. Colorimetric measurments indicated that the presence of nanotubes preserved and enhanced the enzyme activity of the film, even after 1 month. These results show that the use of such hybrid films is promising for the development of biosensors with an optimized performance. © 2012 American Chemical Society

  8. Imaging active topological defects in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Suenaga, Kazu; Wakabayashi, Hideaki; Koshino, Masanori; Sato, Yuta; Urita, Koki; Iijima, Sumio

    2007-06-01

    A single-walled carbon nanotube (SWNT) is a wrapped single graphene layer, and its plastic deformation should require active topological defects-non-hexagonal carbon rings that can migrate along the nanotube wall. Although in situ transmission electron microscopy (TEM) has been used to examine the deformation of SWNTs, these studies deal only with diameter changes and no atomistic mechanism has been elucidated experimentally. Theory predicts that some topological defects can form through the Stone-Wales transformation in SWNTs under tension at 2,000 K, and could act as a dislocation core. We demonstrate here, by means of high-resolution (HR)-TEM with atomic sensitivity, the first direct imaging of pentagon-heptagon pair defects found in an SWNT that was heated at 2,273 K. Moreover, our in situ HR-TEM observation reveals an accumulation of topological defects near the kink of a deformed nanotube. This result suggests that dislocation motions or active topological defects are indeed responsible for the plastic deformation of SWNTs.

  9. Modeling the interaction Between Ethylene Diamine and Water Films on the Surface of a Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.; Walther, Jens H.; Zimmerli, Urs; Koumoutsakos, Petros

    2004-01-01

    It has been observed that a carbon nanotube (CNT) AFM tip coated with ethylene diamine (EDA) penetrates the liquid water-air interface more easily than an uncoated nanotube tip. The EDA coating remains intact through repeated cycles of dipping and removal. In order to understand the physical basis for this observation, we use ab initio quantum chemistry calculations to study the EDA-CNT-water interaction and to parameterize a force field describing this system. Molecular dynamics (MD) simulations are carried out for EDA-water mixtures and an EDA-coated carbon nanotube immmed in water. These simulations are similar to our earlier MD study that characterized the CNT-water interface. The attractive CNT-EDA and CNT-water interactions arise primarily from van der Waals forces, and the EDA-EDA, EDA-water and water-water interactions are mainly due to hydrogen bond formation. The binding energ of single EDA molecule to the nanotube is nearly three times larger than the corresponding value found for water (4.3 versus 1.5 kcal mol, respectively). The EDA molecules readily stick to and diffuse along the CNT surface. As a resulf mixing of the EDA and water films does not occur on the timescale of the MD simulations. The EDA film reduces the hydrophobicity of the nanotube surface and acts like a prototypical surfactant in stabilizing the suspension of carbon nanotubes in water. For this presentation, we use the MD simulations to determine how the presence of the carbon nanotube surface perturbs the properties of EDA-water mixtures.

  10. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.

    2007-01-01

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  11. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers.

    PubMed

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y

    2007-01-15

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  12. Magnetic nanotubes for drug delivery

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Kumar, Prashanth S.; Varadan, Vijay K.

    2017-04-01

    Magnetic nanotubes hold the potential for neuroscience applications because of their capability to deliver chemicals or biomolecules and the feasibility of controlling the orientation or movement of these magnetic nanotubes by an external magnetic field thus facilitating directed growth of neurites. Therefore, we sought to investigate the effects of laminin treated magnetic nanotubes and external alternating magnetic fields on the growth of dorsal root ganglion (DRG) neurons in cell culture. Magnetic nanotubes were synthesized by a hydrothermal method and characterized to confirm their hollow structure, the hematite and maghemite phases, and the magnetic properties. DRG neurons were cultured in the presence of magnetic nanotubes under alternating magnetic fields. Electron microscopy showed a close interaction between magnetic nanotubes and the growing neurites Phase contrast microscopy revealed live growing neurons suggesting that the combination of the presence of magnetic nanotubes and the alternating magnetic field were tolerated by DRG neurons. The synergistic effect, from both laminin treated magnetic nanotubes and the applied magnetic fields on survival, growth and electrical activity of the DRG neurons are currently being investigated.

  13. Protein interactions with layers of TiO2 nanotube and nanopore arrays: Morphology and surface charge influence.

    PubMed

    Kulkarni, Mukta; Mazare, Anca; Park, Jung; Gongadze, Ekaterina; Killian, Manuela Sonja; Kralj, Slavko; von der Mark, Klaus; Iglič, Aleš; Schmuki, Patrik

    2016-11-01

    nanostructures' total surface area. We use a quantitative surface charge model to describe charge interactions and obtain an increased magnitude of the surface charge density at the top edges of the nanotubes. In addition, we track the proteins presence on and inside the nanostructures. We believe that these aspects are crucial for applications where the incorporation of active molecules such as proteins, drugs, growth factors, etc., into nanotubes is desired. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bu, Xiaohai; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Zhang, Tao

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found tomore » exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity.« less

  15. Non-covalent biofunctionalization of single-walled carbon nanotubes via biotin attachment by π-stacking interactions and pyrrole polymerization.

    PubMed

    Haddad, R; Cosnier, S; Maaref, A; Holzinger, M

    2009-12-01

    Single-walled carbon nanotubes were functionalized with biotin using either electropolymerization or formation of pi-stacking interactions for the construction of biosensors. Thanks to the high affinity of the avidin-biotin interactions, a biotinylated glucose oxidase (B-GOX) as a biomolecule model was immobilized on the biotinylated nanotubes. The influence of the biosensor configuration on their amperometric performances was investigated by changing the amount of nanotubes and the numbers of avidin/B-GOX layers. By increasing the amount of nanotube and avidin/B-GOX layers, both sensor setups show a perfect linear increase of immobilized enzymes reflecting a high reproducibility of our systems. The highest sensitivities (up to 5.2 mA M(-1) cm(-2)) and maximum current densities (up to 55 microA cm(-2)) were obtained using nanotube deposits modified by electrochemical coatings. In contrast, non-covalently functionalized biotin-nanotubes show a better permeability for the enzymatically generated hydrogen peroxide.

  16. Nanotube Activities at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2004-01-01

    Nanotube activities at NASA-Johnson Space Center include production, purification, characterization as well as applications of single wall carbon nanotubes (SWCNTs). A parametric study of the pulsed laser ablation process is recently completed to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Enhancement of production is achieved by rastering the graphite target and by increasing the target surface temperature with a cw laser. In-situ diagnostics during production included time resolved passive emission and laser induced fluorescence from the plume. The improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymer/nanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large Surface area as well as high electrical and thermal conductivity exhibited by SWCNTs. Comparison with existing technologies and possible future improvements in the SWCNT materials sill be presented.

  17. Both Enhanced Biocompatibility and Antibacterial Activity in Ag-Decorated TiO2 Nanotubes

    PubMed Central

    Lan, Ming-Ying; Liu, Chia-Pei; Huang, Her-Hsiung; Lee, Sheng-Wei

    2013-01-01

    In this study, Ag is electron-beam evaporated to modify the topography of anodic TiO2 nanotubes of different diameters to obtain an implant with enhanced antibacterial activity and biocompatibility. We found that highly hydrophilic as-grown TiO2 nanotubes became poorly hydrophilic with Ag incorporation; however they could effectively recover their wettability to some extent under ultraviolet light irradiation. The results obtained from antibacterial tests suggested that the Ag-decorated TiO2 nanotubes could greatly inhibit the growth of Staphylococcus aureus. In vitro biocompatibility evaluation indicated that fibroblast cells exhibited an obvious diameter-dependent behavior on both as-grown and Ag-decorated TiO2 nanotubes. Most importantly, of all samples, the smallest diameter (25-nm-diameter) Ag-decorated nanotubes exhibited the most obvious biological activity in promoting adhesion and proliferation of human fibroblasts, and this activity could be attributed to the highly irregular topography on a nanometric scale of the Ag-decorated nanotube surface. These experimental results demonstrate that by properly controlling the structural parameters of Ag-decorated TiO2 nanotubes, an implant surface can be produced that enhances biocompatibility and simultaneously boosts antibacterial activity. PMID:24124484

  18. Dispersion of single-wall carbon nanotubes with supramolecular Congo red - properties of the complexes and mechanism of the interaction.

    PubMed

    Jagusiak, Anna; Piekarska, Barbara; Pańczyk, Tomasz; Jemioła-Rzemińska, Małgorzata; Bielańska, Elżbieta; Stopa, Barbara; Zemanek, Grzegorz; Rybarska, Janina; Roterman, Irena; Konieczny, Leszek

    2017-01-01

    A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT-CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system - containing SWNTs covered with CR - offers a wide range of biomedical applications.

  19. Theoretical prediction of mutual influence between phospholipid and nanotube during their interaction

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Slepchenkov, M. M.

    2016-03-01

    Using hybrid quantum mechanics/molecular mechanics (QM/MM) model we carried out investigation of interaction between phospholipid and carbon nanotube during indentation of high density lipoprotein (HDL). The object of investigation is armchair carbon nanotube with various diameters range from 0.5 to 1 nm. In a coarse of molecular dynamics study it is found that phospholipid partially penetrate into the cavity of nanotube with the chirality (7,7) and diameter of 0.9 nm. However, the entire molecule does not fit into nanospace of tube (7,7), so part of the head and the second phospholipid tail remain outside the carbon nanostructures. Using semi-empirical PM6 method it is established that during the indentation process the charged structured molecule fragments forming the high-density lipoprotein create local electric field near carbon nanotube (CNT) and continuously change electronic structure of CNT. However, the tube is not destroyed because the fields do not exceed the critical values of strength. The redistribution of the electron density on atom is observed in each time point.

  20. Comprehensive studies on the nature of interaction between carboxylated multi-walled carbon nanotubes and bovine serum albumin.

    PubMed

    Lou, Kai; Zhu, Zhaohua; Zhang, Hongmei; Wang, Yanqing; Wang, Xiaojiong; Cao, Jian

    2016-01-05

    Herein, the interaction between carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) and bovine serum albumin has been investigated by using circular dichroism, UV-vis, and fluorescence spectroscopic methods and molecular modeling in order to better understand the basic behavior of carbon nanotubes in biological systems. The spectral results showed that MWCNTs-COOH bound to BSA and induced the relatively large changes in secondary structure of protein by mainly hydrophobic forces and π-π stacking interactions. Thermal denaturation of BSA in the presence of MWCNTs-COOH indicated that carbon nanotubes acted as a structure destabilizer for BSA. In addition, the putative binding site of MWCNTs-COOH on BSA was near to domain II. With regard to human health, the present study could provide a better understanding of the biological properties, cytotocicity of surface modified carbon nanotubes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando

    2012-07-13

    The structure, stability, and catalytic activity of a number of single- and double-wall platinum (n,m) nanotubes ranging in diameter from 0.3 to 2.0 nm were studied using plane-wave based density functional theory in the gas phase and water environment. The change in the catalytic activity toward the oxygen reduction reaction (ORR) with the size and chirality of the nanotube was studied by calculating equilibrium adsorption potentials for ORR intermediates and by constructing free energy diagrams in the ORR dissociative mechanism network. In addition, the stability of the platinum nanotubes is investigated in terms of electrochemical dissolution potentials and by determiningmore » the most stable state of the material as a function of pH and potential, as represented in Pourbaix diagrams. Our results show that the catalytic activity and the stability toward electrochemical dissolution depend greatly on the diameter and chirality of the nanotube. On the basis of the estimated overpotentials for ORR, we conclude that smaller, approximately 0.5 nm in diameter single-wall platinum nanotubes consistently show a huge, up to 400 mV larger overpotential than platinum, indicating very poor catalytic activity toward ORR. This is the result of substantial structural changes induced by the adsorption of any chemical species on these tubes. Single-wall n = m platinum nanotubes with a diameter larger than 1 nm have smaller ORR overpotentials than bulk platinum for up to 180 mV and thus show improved catalytic activity relative to bulk. We also predict that these nanotubes can endure the highest cell potentials but dissolution potentials are still for 110 mV lower than for the bulk, indicating a possible corrosion problem.« less

  2. Nanotubes mediate niche-stem cell signaling in the Drosophila testis

    PubMed Central

    Inaba, Mayu; Buszczak, Michael; Yamashita, Yukiko M.

    2015-01-01

    Stem cell niches provide resident stem cells with signals that specify their identity. Niche signals act over a short-range such that only stem cells but not their differentiating progeny receive the self-renewing signals1. However, the cellular mechanisms that limit niche signaling to stem cells remain poorly understood. Here we show that the Drosophila male germline stem cells (GSCs) form previously unrecognized structures, microtubule-based (MT)-nanotubes, which extend into the hub, a major niche component. MT-nanotubes are observed specifically within GSC populations, and require IFT (intraflagellar transport) proteins for their formation. The BMP receptor Tkv localizes to MT-nanotubes. Perturbation of MT-nanotubes compromises activation of Dpp signaling within GSCs, leading to GSC loss. Moreover, Dpp ligand and Tkv receptor interaction is necessary and sufficient for MT-nanotube formation. We propose that MT-nanotubes provide a novel mechanism for selective receptor-ligand interaction, contributing to the short-range nature of niche-stem cell signaling. PMID:26131929

  3. Comparison of noncovalent interactions of zigzag and armchair carbon nanotubes with heterocyclic and aromatic compounds: Imidazole and benzene, imidazophenazines, and tetracene

    NASA Astrophysics Data System (ADS)

    Zarudnev, Eugene S.; Stepanian, Stepan G.; Adamowicz, Ludwik; Leontiev, Victor S.; Karachevtsev, Victor A.

    2017-02-01

    We study non-covalent functionalization of SWCNT by linear heterocyclic compounds such as imidazophenazine (F1) and its derivatives (F2-F4). MP2 and DFT/M05-2X quantum-chemical methods are used to determine the structures and the interaction energies of complexes formed by F1-F4 with the zigzag(10,10) and armchair(6,6) nanotubes. The calculations show that for small diameter nanotubes the binding energies with zigzag nanotubes are stronger than with armchair nanotubes. But above the diameter of 1.4 nm the interaction energies for the armchair nanotubes become larger than for the zigzag nanotubes. Experimental measurements demonstrates that the ratio of the integral intensity of the resonance Raman bands assigned to the RBM modes of semiconducting nanotubes to the integral intensity of the metallic nanotubes increases for supernatant of SWCNT:F4 (1,2,3-triazole-[4,5-d]-phenazine) hybrids solved in 1-Methyl-2-pyrrolidone as compared to this ratio in sediment samples. It demonstrates that the linear heterocyclic compounds can be used for separating SWCNTs with different electron-conduction types.

  4. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.

    PubMed

    Singh, Ravi; Pantarotto, Davide; McCarthy, David; Chaloin, Olivier; Hoebeke, Johan; Partidos, Charalambos D; Briand, Jean-Paul; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas

    2005-03-30

    Carbon nanotubes (CNTs) constitute a class of nanomaterials that possess characteristics suitable for a variety of possible applications. Their compatibility with aqueous environments has been made possible by the chemical functionalization of their surface, allowing for exploration of their interactions with biological components including mammalian cells. Functionalized CNTs (f-CNTs) are being intensively explored in advanced biotechnological applications ranging from molecular biosensors to cellular growth substrates. We have been exploring the potential of f-CNTs as delivery vehicles of biologically active molecules in view of possible biomedical applications, including vaccination and gene delivery. Recently we reported the capability of ammonium-functionalized single-walled CNTs to penetrate human and murine cells and facilitate the delivery of plasmid DNA leading to expression of marker genes. To optimize f-CNTs as gene delivery vehicles, it is essential to characterize their interactions with DNA. In the present report, we study the interactions of three types of f-CNTs, ammonium-functionalized single-walled and multiwalled carbon nanotubes (SWNT-NH3+; MWNT-NH3+), and lysine-functionalized single-walled carbon nanotubes (SWNT-Lys-NH3+), with plasmid DNA. Nanotube-DNA complexes were analyzed by scanning electron microscopy, surface plasmon resonance, PicoGreen dye exclusion, and agarose gel shift assay. The results indicate that all three types of cationic carbon nanotubes are able to condense DNA to varying degrees, indicating that both nanotube surface area and charge density are critical parameters that determine the interaction and electrostatic complex formation between f-CNTs with DNA. All three different f-CNT types in this study exhibited upregulation of marker gene expression over naked DNA using a mammalian (human) cell line. Differences in the levels of gene expression were correlated with the structural and biophysical data obtained for the f

  5. Titania nanotube arrays as interfaces for blood-contacting implantable devices: a study evaluating the nanotopography-associated activation and expression of blood plasma components.

    PubMed

    Smith, Barbara S; Popat, Ketul C

    2012-08-01

    The constant exposure of implantable biomaterials such as titanium and titanium alloys to blood-introducesserious and ongoing concerns regarding poor blood-material interactions. To date, all blood-contacting materials have been shown to initiate immunological events in the form of inflammation, thrombosis, fibrosis and infection; potentially leading to complete implant failure. Material surfaces that provide biomimetic cues such as nanoscale architectures have been shown to elicit improved cellular interaction; and thus, may provide possible solutions for enhancing blood-compatibility. However, limited information exists about the thrombogenicityof nanoscalesurface architectures. In this study, we have evaluated the efficacy of titania nanotube arrays as interfaces for blood contacting devices by investigating the thrombogenic effects using whole blood plasma. Thus, platelet/leukocyte adhesion, activation and interaction, morphology, complement activation, contact activation, platelet release reaction, fibrinogen expression and material cytotoxicity were evaluated to determine the in vitro thrombogenicity. The results presented here indicate a decrease in thrombogenic effects of titania nanotube arrays as compared to biomedical grade titanium after 2 hours of contact with whole blood plasma. This work shows the improved blood-compatibility of titania nanotube arrays, identifying this specific nanoarchitecture as a potentially optimal interface for promoting the long-term success of blood contacting biomaterials.

  6. Effect of UV irradiation on the dynamics of oxygen and water interaction with carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Anthony J; Ivanov, Ilia N

    2016-01-01

    Carbon nanotube (CNT) films composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O2 and H2O vapor in the dark and under UV irradiation. Changes in the film conductivity and mass were measured in situ. We find that UV irradiation increases the resistive response of CNT films to O2 and H2O by more than an order of magnitude. In m-SWNT and MWNT films, UV irradiation changes the sign of the resistive response to O2 and H2O by generating free charge carriers. S-SWNTs show the largest UV-induced resistive response and exhibitmore » weakening of van der Waals interactions with the QCM crystal when exposed to gas/vapor.« less

  7. Nanotube Interactions with Nanoparticles and Peptides

    DTIC Science & Technology

    2008-01-01

    combinatorial phage display technique. We find a tryptophan rich binding motif to nanotubes on solid silicon substrates. The motif resembles an alpha helix...CHAPTER 2. DIELECTROPHORESIS AND PHAGE DISPLAY 2.1. Dielectrophoresis (DEP) 12 2.2. Phage display 14 References...104 5.3. Conclusions 105 5.4. Experimental Section 105 5.4.1. Nanotube synthesis 105 5.4.2. Phage display

  8. Platinum and Palladium Overlayers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation

    DOE PAGES

    St. John, Samuel; Atkinson, Robert W.; Unocic, Kinga A.; ...

    2015-10-18

    Templated vapor synthesis and thermal annealing were used to synthesize unsupported metallic Ru nanotubes with Pt or Pd overlayers. By controlling the elemental composition and thickness of these overlayers, we obtain nanostructures with very high alkaline hydrogen oxidation activity. For nanotubes with a nominal atomic composition of Ru 0.90Pt 0.10 display a surface-specific activity (2.4 mA/cm 2) that is 35 times greater than that of pure Ru nanotubes at a 50 mV overpotential and 2.5 times greater than that of pure Pt nanotubes (0.98 mA/cm 2). The surface-segregated structure also confers dramatically increased Pt utilization efficiency. We find a platinum-mass-specificmore » activity of 1240 A/gPt for the optimized nanotube versus 280 A/gPt for carbon-supported Pt nanoparticles and 109 A/gPt for monometallic Pt nanotubes. Here, we attribute the enhancement of both area- and platinum-mass-specific activity to the atomic-scale homeomorphism of the nanotube form factor with adlayer-modified polycrystals. Subsurface ligand and bifunctional effects previously observed on segregated, adlayer-modified polycrystals are translated to nanoscale catalysts.« less

  9. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  10. Interface interactions in benzophenone doped by multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lebovka, N. I.; Goncharuk, A.; Melnyk, V. I.; Puchkovska, G. A.

    2009-08-01

    The interface interactions were studied by methods of conductometry, low-temperature phosphorescence and differential scanning calorimetry (DSC) in multiwalled carbon nanotubes (MWCNT) and benzophenone (BP) composite. The concentration of MWCNTs was varied within 0-1 wt%. A percolative threshold was found at MWCNT concentrations exceeding 0.1 wt%. The integration of MWCNTs caused melting temperature increase (≈3 K for 1 wt% of MWCNTs). The effect of positive thermal resistively coefficient, as well as substantial hysteretic behaviour of electrical conductivity σ in a heating-cooling cycle, was observed near the melting point of BP ( T m=321.5 K). The activation-type temperature behaviour of electrical conductivity was observed in the temperature range of supercooled BP. The activation energy was decreasing with increase of MWCNT concentration. The observed nonlinear dependencies of electrical conductivity σ vs. applied voltage U reflect the transport mechanism of the charge carriers through amorphous interface films formed near the surface of the MWCNTs. The thermal shifts of phosphorescence spectra measured within the temperature range 5-200 K evidence existence of such interface films of amorphous BP with width of the order of 0.1 μm.

  11. Molecular interactions between carbon nanotubes and ammonium ionic liquids and their catalysis properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attri, Pankaj, E-mail: chem.pankaj@gmail.com; Bhatia, Rohit; Arora, Bharti

    2014-10-15

    Highlights: • We report interactions between multi-walled carbon nanotubes and ionic liquids. • Triethylammonium hydrogen phosphate ionic liquids are studied. • Raman spectroscopy is used to study interactions. • Morphological studies were carried out using scanning electron microscopy. • Bucky gel was used as catalyst for Michael reactions. - Abstract: A new catalytic method has been developed for the synthesis of aza/thia-Michael addition reactions of amines/thiols, which provide higher product yields. This catalyst is a combination of multi-walled carbon nanotubes (MWCNT) with triethylammonium hydrogen phosphate (TEAP) ionic liquid (IL), commonly referred to as bucky gel. In order to gain insightmore » into the interactions involved between IL and MWCNT, we utilised Raman spectroscopy for our analysis. The interactions between MWCNT with TEAP were clearly evidenced by the increasing intensity ratios and spectral shift in the wavelength for the Raman D and G bands of MWCNT. The morphological studies of the resulting composite materials of TEAP and MWCNT (bucky gel) were carried out using scanning electron microscopy (SEM). The key advantage of using bucky gel as a catalyst is that higher product yield is obtained in reduced reaction time for Michael reactions.« less

  12. All-electrical production of spin-polarized currents in carbon nanotubes: Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Santos, Hernán; Latgé, A.; Alvarellos, J. E.; Chico, Leonor

    2016-04-01

    We study the effect of the Rashba spin-orbit interaction in the quantum transport of carbon nanotubes with arbitrary chiralities. For certain spin directions, we find a strong spin-polarized electrical current that depends on the diameter of the tube, the length of the Rashba region, and on the tube chirality. Predictions for the spin-dependent conductances are presented for different families of achiral and chiral tubes. We have found that different symmetries acting on spatial and spin variables have to be considered in order to explain the relations between spin-resolved conductances in carbon nanotubes. These symmetries are more general than those employed in planar graphene systems. Our results indicate the possibility of having stable spin-polarized electrical currents in absence of external magnetic fields or magnetic impurities in carbon nanotubes.

  13. Carbon Nanotube Activities at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2006-01-01

    Research activities on carbon nanotubes at NASA-Johnson Space Center include production, purification, characterization and their applications for human space flight. In-situ diagnostics during nanotube production by laser oven process include collection of spatial and temporal data of passive emission and laser induced fluorescence from C2, C3 and Nickel atoms in the plume. Details of the results from the "parametric study" of the pulsed laser ablation process indicate the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymednanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high electrical and thermal conductivity exhibited by SWCNTs.

  14. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays.

    PubMed

    Zhang, Jialu; Fu, Yue; Wang, Chuan; Chen, Po-Chiang; Liu, Zhiwei; Wei, Wei; Wu, Chao; Thompson, Mark E; Zhou, Chongwu

    2011-11-09

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Preseparated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components, such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics.

  15. Separated Carbon Nanotube Macroelectronics for Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Fu, Yue; Zhang, Jialu; Wang, Chuan; Chen, Pochiang; Zhou, Chongwu

    2012-02-01

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Pre-separated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics.

  16. Activity inhibition on municipal activated sludge by single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Parise, Alex; Thakor, Harshrajsinh; Zhang, Xiaoqi

    2014-01-01

    The objective of this study was to evaluate the respiratory activity inhibition of activated sludge used in a typical wastewater treatment plant by single-walled carbon nanotubes (SWCNTs) with different length and functionality. Four types of SWCNTs were evaluated: short, functionalized short, long, and functionalized long. Based on the effective concentration (EC50) values obtained, we determined that functionalized SWCNTs resulted in a higher microbial respiratory inhibition than non-functionalized nanotubes, and long SWCNTs gave a higher microbial respiratory inhibition than their short counterparts. Among the four types of SWCNTs studied, functionalized long exhibited the highest respiration inhibition. Scanning electron microscopy imaging indicates that the long SWCNTs dispersed more favorably after sonication than the short variety. The findings demonstrated that the toxicity of CNTs (exhibited by respiratory inhibition) is related to their physical properties; the length and functionality of SWCNTs affected the toxicity of SWCNTs in a mixed-cultured biologic system.

  17. Chemical reactions confined within carbon nanotubes.

    PubMed

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  18. Coulomb versus spin-orbit interaction in few-electron carbon-nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Secchi, Andrea; Rontani, Massimo

    2009-07-01

    Few-electron states in carbon-nanotube quantum dots are studied by means of the configuration-interaction method. The peculiar noninteracting feature of the tunneling spectrum for two electrons, recently measured by F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen [Nature (London) 452, 448 (2008)], is explained by the splitting of a low-lying isospin multiplet due to spin-orbit interaction. Nevertheless, the strongly interacting ground state forms a “Wigner molecule” made of electrons localized in space. Signatures of the electron molecule may be seen in tunneling spectra by varying the tunable dot confinement potential.

  19. Optically active single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Peng, Xiaobin; Komatsu, Naoki; Bhattacharya, Sumanta; Shimawaki, Takanori; Aonuma, Shuji; Kimura, Takahide; Osuka, Atsuhiro

    2007-06-01

    The optical, electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) are largely determined by their structures, and bulk availability of uniform materials is vital for extending their technological applications. Since they were first prepared, much effort has been directed toward selective synthesis and separation of SWNTs with specific structures. As-prepared samples of chiral SWNTs contain equal amounts of left- and right-handed helical structures, but little attention has been paid to the separation of these non-superimposable mirror image forms, known as optical isomers. Here, we show that optically active SWNT samples can be obtained by preferentially extracting either right- or left-handed SWNTs from a commercial sample. Chiral `gable-type' diporphyrin molecules bind with different affinities to the left- and right-handed helical nanotube isomers to form complexes with unequal stabilities that can be readily separated. Significantly, the diporphyrins can be liberated from the complexes afterwards, to provide optically enriched SWNTs.

  20. Carbon nanotube active-matrix backplanes for conformal electronics and sensors.

    PubMed

    Takahashi, Toshitake; Takei, Kuniharu; Gillies, Andrew G; Fearing, Ronald S; Javey, Ali

    2011-12-14

    In this paper, we report a promising approach for fabricating large-scale flexible and stretchable electronics using a semiconductor-enriched carbon nanotube solution. Uniform semiconducting nanotube networks with superb electrical properties (mobility of ∼20 cm2 V(-1) s(-1) and ION/IOFF of ∼10(4)) are obtained on polyimide substrates. The substrate is made stretchable by laser cutting a honeycomb mesh structure, which combined with nanotube-network transistors enables highly robust conformal electronic devices with minimal device-to-device stochastic variations. The utility of this device concept is demonstrated by fabricating an active-matrix backplane (12×8 pixels, physical size of 6×4 cm2) for pressure mapping using a pressure sensitive rubber as the sensor element.

  1. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com; Vakhrusheva, Tatyana V.; Sokolov, Alexey V.

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acidmore » (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  2. Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Lili; Lin, Rui; He, Hua; Jiang, Li; Gao, Mengmeng

    2013-03-01

    Carboxylated single-walled carbon nanotubes (c-SWNTs) were synthesized prosperously in order to improve dispersion of raw carbon nanotubes. Then, bovine serum albumin (BSA) was used as the template protein to study the biocompatibility of c-SWNTs by UV-Vis, fluorescence and circular dichroism (CD) spectroscopic methods at the molecular level. Results from fluorescence spectrum showed obvious decreases in fluorescence intensity of BSA induced by c-SWNTs, indicating the occurrence of interaction between BSA and c-SWNTs. Static quenching effect of c-SWNTs was verified by linear Stern-Volmer plots and KSV values. Thermodynamic parameters at different temperatures demonstrated that the interaction between c-SWNTs and BSA was mainly favored by hydrophobic force. In addition, Na+ interfered with the quenching effect of c-SWNTs, which revealed that electrostatic force played a role in binding roles of BSA to c-SWNTs simultaneously. The results of UV and synchronous fluorescence spectrum validated that hydrophobicity of amino acid residues expressly increased with the addition of c-SWNTs. The content of α-helix structure in BSA decreased by 14.06% with c-SWNTs viewed from CD spectrum. Effect of SWNTs on the conformation of BSA could be controlled by the surface chemistry of SWNTs.

  3. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies.

    PubMed

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-06-24

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they

  4. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies

    NASA Astrophysics Data System (ADS)

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-06-01

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they

  5. High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass.

    PubMed

    Jin, Lixia; Son, Yowhan; Yoon, Tae Kyung; Kang, Yu Jin; Kim, Woong; Chung, Haegeun

    2013-02-01

    Nanomaterials such as single-walled carbon nanotubes (SWCNTs) may enter the soil environment with unknown consequences resulting from the development of nanotechnology for a variety of applications. We determined the effects of SWCNTs on soil enzyme activity and microbial biomass through a 3-week incubation of urban soils treated with different concentrations of SWCNTs ranging from 0 to 1000 μg g(-1) soil. The activities of cellobiohydrolase, β-1,4-glucosidase, β-1,4-xylosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase, and acid phosphatase and microbial biomass were measured in soils treated with powder and suspended forms of SWCNTs. SWCNTs of concentrations at 300-1000 μg g(-1) soil significantly lowered activities of most enzymes and microbial biomass. It is noteworthy that the SWCNTs showed similar effects to that of multi-walled carbon nanotubes (MWCNTs), but at a concentration approximately 5 times lower; we suggest that this is mainly due to the higher surface area of SWCNTs than that of MWCNTs. Indeed, our results show that surface area of CNTs has significant negative relationship with relative enzyme activity and biomass, which suggests that greater microorganism-CNT interactions could increase the negative effect of CNTs on microorganisms. Current work may contribute to the preparation of a regulatory guideline for the release of CNTs to the soil environment. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Light-activated nanotube-porphyrin conjugates as effective antiviral agents

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; Douaisi, Marc P.; Mondal, Dhananjoy; Kane, Ravi S.

    2012-03-01

    Porphyrins have been used for photodynamic therapy (PDT) against a wide range of targets like bacteria, viruses and tumor cells. In this work, we report porphyrin-conjugated multi-walled carbon nanotubes (NT-P) as potent antiviral agents. Specifically, we used Protoporphyrin IX (PPIX), which we attached to acid-functionalized multi-walled carbon nanotubes (MWNTs). We decided to use carbon nanotubes as scaffolds because of their ease of recovery from a solution through filtration. In the presence of visible light, NT-P was found to significantly reduce the ability of Influenza A virus to infect mammalian cells. NT-P may be used effectively against influenza viruses with little or no chance of them developing resistance to the treatment. Furthermore, NT-P can be easily recovered through filtration which offers a facile strategy to reuse the active porphyrin moiety to its fullest extent. Thus NT-P conjugates represent a new approach for preparing ex vivo reusable antiviral agents.

  7. Nanocomposites from Stable Dispersions of Carbon Nanotubes in Polymeric Matrices Using Dispersion Interaction

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2016-01-01

    Stable dispersions of carbon nanotubes (CNTs) in polymeric matrices include CNTs dispersed in a host polymer or copolymer whose monomers have delocalized electron orbitals, so that a dispersion interaction results between the host polymer or copolymer and the CNTs dispersed therein. Nanocomposite products, which are presented in bulk, or when fabricated as a film, fiber, foam, coating, adhesive, paste, or molding, are prepared by standard means from the present stable dispersions of CNTs in polymeric matrices, employing dispersion interactions, as presented hereinabove.

  8. Intervalley scattering induced by Coulomb interaction and disorder in carbon-nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Secchi, Andrea; Rontani, Massimo

    2013-09-01

    We develop a theory of intervalley Coulomb scattering in semiconducting carbon-nanotube quantum dots, taking into account the effects of curvature and chirality. Starting from the effective mass description of single-particle states, we study the two-electron system by fully including Coulomb interaction, spin-orbit coupling, and short-range disorder. We find that the energy level splittings associated with intervalley scattering are nearly independent of the chiral angle and, while smaller than those due to spin-orbit interaction, large enough to be measurable.

  9. Understanding the interactions of human follicle stimulating hormone with single-walled carbon nanotubes by molecular dynamics simulation and free energy analysis.

    PubMed

    Mahmoodi, Yasaman; Mehrnejad, Faramarz; Khalifeh, Khosrow

    2018-01-01

    Interactions of carbon nanotubes (CNTs) and blood proteins are of interest for nanotoxicology and nanomedicine. It is believed that the interactions of blood proteins and glycoproteins with CNTs may have important biological effects. In spite of many experimental studies of single-walled carbon nanotubes (SWCNT) and glycoproteins with different methods, little is known about the atomistic details of their association process or of structural alterations occurring in adsorbed glycoproteins. In this study, we have applied molecular dynamics simulation to investigate the interaction of follicle stimulating hormone (hFSH) with SWCNT. The aim of this work is to investigate possible mechanisms of nanotoxicity at a molecular level. We present details of the molecular dynamics, structure, and free energy of binding of hFSH on the surface of SWCNT. We find that hFSH in aqueous solution strongly adsorbs onto SWCNT via their concave surface as evidenced by high binding free energies for residues in both protein subunits. It was found that hydrophobic, π-cation, and π-π stacking interactions are the main driving forces for the adsorption of the protein at the nanotube surface.

  10. Interaction of microwaves with carbon nanotubes to facilitate modification

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Dyke, Christopher A. (Inventor); Stephenson, Jason J. (Inventor); Yakobson, Boris I. (Inventor)

    2011-01-01

    The present invention is directed toward methods of crosslinking carbon nanotubes to each other using microwave radiation, articles of manufacture produced by such methods, compositions produced by such methods, and applications for such compositions and articles of manufacture. The present invention is also directed toward methods of radiatively modifying composites and/or blends comprising carbon nanotubes with microwaves, and to the compositions produced by such methods. In some embodiments, the modification comprises a crosslinking process, wherein the carbon nanotubes serve as a conduit for thermally and photolytically crosslinking the host matrix with microwave radiation.

  11. Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation.

    PubMed

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Samantha J; He, Jibao; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2014-11-18

    Naturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages. For application in the treatment of marine oil spills, halloysite nanotubes were successfully loaded with surfactants and utilized as an interfacially-active vehicle for the delivery of surfactant cargo. The adsorption of surfactant molecules at the interface serves to lower the interfacial tension while the adsorption of particles provides a steric barrier to drop coalescence. Pendant drop tensiometry was used to characterize the dynamic reduction in interfacial tension resulting from the release of dioctyl sulfosuccinate sodium salt (DOSS) from halloysite nanotubes. At appropriate surfactant compositions and loadings in halloysite nanotubes, the crude oil-saline water interfacial tension is effectively lowered to levels appropriate for the dispersion of oil. This work indicates a novel concept of integrating particle stabilization of emulsions together with the release of chemical surfactants from the particles for the development of an alternative, cheaper, and environmentally-benign technology for oil spill remediation.

  12. Computational study of the shift of the G band of double-walled carbon nanotubes due to interlayer interactions

    NASA Astrophysics Data System (ADS)

    Popov, Valentin N.; Levshov, Dmitry I.; Sauvajol, Jean-Louis; Paillet, Matthieu

    2018-04-01

    The interactions between the layers of double-walled carbon nanotubes induce a measurable shift of the G bands relative to the isolated layers. While experimental data on this shift in freestanding double-walled carbon nanotubes has been reported in the past several years, a comprehensive theoretical description of the observed shift is still lacking. The prediction of this shift is important for supporting the assignment of the measured double-walled nanotubes to particular nanotube types. Here, we report a computational study of the G-band shift as a function of the semiconducting inner layer radius and interlayer separation. We find that with increasing interlayer separation, the G band shift decreases, passes through zero and becomes negative, and further increases in absolute value for the wide range of considered inner layer radii. The theoretical predictions are shown to agree with the available experimental data within the experimental uncertainty.

  13. Interaction of carbohydrate modified boron nitride nanotubes with living cells.

    PubMed

    Emanet, Melis; Şen, Özlem; Çobandede, Zehra; Çulha, Mustafa

    2015-10-01

    Boron nitride nanotubes (BNNTs) are composed of boron and nitrogen atoms and they show significantly different properties from their carbon analogues (carbon nanotubes, CNTs). Due to their unique properties including low electrical conductivity, and imaging contrast and neutron capture properties; they can be used in biomedical applications. When their use in biological fields is considered, the route of their toxic effect should be clarified. Therefore, the study of interactions between BNNTs and living systems is important in envisaging biological applications at both cellular and sub-cellular levels to fully gain insights of their potential adverse effects. In this study, BNNTs were modified with lactose, glucose and starch and tested for their cytotoxicity. First, the interactions and the behavior of BNNTs with bovine serum albumin (BSA), Dulbecco's Modified Eagle's Medium (DMEM) and DMEM/Nutrient Mixture F-12Ham were investigated. Thereafter, their cellular uptake and the cyto- and genotoxicity on human dermal fibroblasts (HDFs) and adenocarcinoma human alveolar basal epithelial cells (A549) were evaluated. HDFs and A549 cells internalized the modified and unmodified BNNTs, and BNNTs were found to not cause significant viability change and DNA damage. A higher uptake rate of BNNTs by A549 cells compared to HDFs was observed. Moreover, a concentration-dependent cytotoxicity was observed on A549 cells while they were safer for HDFs in the same concentration range. Based on these findings, it can be concluded that BNNTs and their derivatives made with biomacromolecules might be good candidates for several applications in medicine and biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.

    2015-09-01

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  15. Carbon nanotubes enhanced the lead toxicity on the freshwater fish

    NASA Astrophysics Data System (ADS)

    Martinez, D. S. T.; Alves, O. L.; Barbieri, E.

    2013-04-01

    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO3-MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO3-treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO3-MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO3-MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.

  16. Supported lipid bilayer/carbon nanotube hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose M.; Craighead, Harold G.; McEuen, Paul L.

    2007-03-01

    Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecules can diffuse freely across the nanotube, a membrane-bound protein (tetanus toxin) sees the nanotube as a barrier. Moreover, the size of the barrier depends on the diameter of the nanotube-with larger nanotubes presenting bigger obstacles to diffusion. We then demonstrate detection of protein binding (streptavidin) to the supported lipid bilayer using the nanotube transistor as a charge sensor. This system can be used as a platform to examine the interactions of single molecules with carbon nanotubes and has many potential applications for the study of molecular recognition and other biological processes occurring at cell membranes.

  17. High pressure Raman spectroscopy of single-walled carbon nanotubes: Effect of chemical environment on individual nanotubes and the nanotube bundle

    NASA Astrophysics Data System (ADS)

    Proctor, John E.; Halsall, Matthew P.; Ghandour, Ahmad; Dunstan, David J.

    2006-12-01

    The pressure-induced tangential mode Raman peak shifts for single-walled carbon nanotubes (SWNTs) have been studied using a variety of different solvents as hydrostatic pressure-transmitting media. The variation in the nanotube response to hydrostatic pressure with different pressure transmitting media is evidence that the common solvents used are able to penetrate the interstitial spaces in the nanotube bundle. With hexane, we find the surprising result that the individual nanotubes appear unaffected by hydrostatic pressures (i.e. a flat Raman response) up to 0.7 GPa. Qualitatively similar results have been obtained with butanol. Following the approach of Amer et al. [J. Chem. Phys. 121 (2004) 2752], we speculate that this is due to the inability of SWNTs to adsorb some solvents onto their surface at lower pressures. We also find that the role of cohesive energy density in the solvent nanotube interaction is more complex than previously thought.

  18. The Toxicology of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Donaldson, Ken; Poland, Craig; Duffin, Rodger; Bonner, James

    2012-06-01

    1. Carbon nanotube structure, synthesis and applications C. Singh and W. Song; 2. The aerodynamic behaviour and pulmonary deposition of carbon nanotubes A. Buckley, R. Smith and R Maynard; 3. Utilising the concept of the biologically effective dose to define the particle and fibre hazards of carbon nanotubes K. Donaldson, R. Duffin, F. Murphy and C. Poland; 4. CNT, biopersistence and the fibre paradigm D. Warheit and M. DeLorme; 5. Length-dependent retention of fibres in the pleural space C. Poland, F. Murphy and K. Donaldson; 6. Experimental carcinogenicity of carbon nanotubes in the context of other fibres K. Unfried; 7. Fate and effects of carbon nanotubes following inhalation J. Ryman-Rasmussen, M. Andersen and J. Bonner; 8. Responses to pulmonary exposure to carbon nanotubes V. Castranova and R. Mercer; 9. Genotoxicity of carbon nanotubes R. Schins, C. Albrecht, K. Gerloff and D. van Berlo; 10. Carbon nanotube-cellular interactions; macrophages, epithelial and mesothelial cells V. Stone, M. Boyles, A. Kermanizadeh, J. Varet and H. Johnston; 11. Systemic health effects of carbon nanotubes following inhalation J. McDonald; 12. Dosimetry and metrology of carbon nanotubes L. Tran, L. MacCalman and R. Aitken; Index.

  19. Conductance Oscillations in Squashed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Mehrez, H.; Anantram, M. P.; Svizhenko, A.

    2003-01-01

    A combination of molecular dynamics and electrical conductance calculations are used to probe the electromechanical properties of squashed metallic carbon nanotubes. We find that the conductance and bandgap of armchair nanotubes show oscillations upon squashing. The physical origin of these oscillations is attributed to interaction of carbon atoms with a fourth neighbor. Squashing of armchair and zigzag nanotubes ultimately leads to metallic behavior.

  20. Composite Reinforcement using Boron Nitride Nanotubes

    DTIC Science & Technology

    2014-05-09

    while retaining the nanotube structure. This project involves the use of computational quantum chemistry to study interactions of aluminium (Al...small clusters of 1–4 metal atoms. The effect of varying the radius of the nanotubes and the size of aluminium and titanium clusters was considered...15. SUBJECT TERMS Boron Nitride Nanotubes, composite materials, Aluminum Alloys , Titanium Alloy , Theoretical Chemistry 16. SECURITY

  1. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    NASA Astrophysics Data System (ADS)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  2. Effects of serum albumin on the degradation and cytotoxicity of single-walled carbon nanotubes.

    PubMed

    Ding, Yun; Tian, Rong; Yang, Zhen; Chen, Jianfa; Lu, Naihao

    2017-03-01

    Neutrophil myeloperoxidase (MPO) and peroxynitrite (ONOO - ) can oxidatively biodegrade carboxylated single-walled carbon nanotubes (SWCNTs). The protein-SWCNTs interactions will play an important role in the degradation and cytotoxicity of nanotubes. Here, we investigated the binding of bovine serum albumin (BSA, a common and well-characterized model blood serum protein) to SWCNTs, and found that the hydrophobic and electrostatic interactions might be crucial factors in stabilizing the binding of SWCNTs with BSA. The binding of BSA could impair SWCNTs biodegradation in vitro through the competitive adsorption to nanotube. Both SWCNTs and BSA-SWCNTs were significantly degraded in zymosan-stimulated macrophages, and the degradation degree was more for BSA-SWCNTs. The mechanism for SWCNTs degradation in activated macrophages was further investigated to demonstrate the dominant participation of MPO and ONOO - -driven pathways. Moreover, binding of BSA to SWCNTs reduced cytotoxicity and degraded nanotubes induced less cytotoxicity than non-degraded nanotubes. The binding of BSA may be an important determinant for the biodegradation and cytotoxicity of SWCNTs in inflammatory cells, and therefore, provide a new route to mitigate the potential toxicity of nanotubes in future biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Synthesis of molecular imprinted polymer modified TiO{sub 2} nanotube array electrode and their photoelectrocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Na; Chen Shuo; Wang Hongtao

    2008-10-15

    A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less

  4. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGES

    Islam, A. E.; Zakharov, D.; Stach, E. A.; ...

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  5. Membrane-targeted self-assembling cyclic peptide nanotubes.

    PubMed

    Rodríguez-Vázquez, Nuria; Ozores, H Lionel; Guerra, Arcadio; González-Freire, Eva; Fuertes, Alberto; Panciera, Michele; Priegue, Juan M; Outeiral, Juan; Montenegro, Javier; Garcia-Fandino, Rebeca; Amorin, Manuel; Granja, Juan R

    2014-01-01

    Peptide nanotubes are novel supramolecular nanobiomaterials that have a tubular structure. The stacking of cyclic components is one of the most promising strategies amongst the methods described in recent years for the preparation of nanotubes. This strategy allows precise control of the nanotube surface properties and the dimensions of the tube diameter. In addition, the incorporation of 3- aminocycloalkanecarboxylic acid residues in the nanotube-forming peptides allows control of the internal properties of the supramolecular tube. The research aimed at the application of membrane-interacting self-assembled cyclic peptide nanotubes (SCPNs) is summarized in this review. The cyclic peptides are designed to interact with phospholipid bilayers to induce nanotube formation. The properties and orientation of the nanotube can be tuned by tailoring the peptide sequence. Hydrophobic peptides form transmembrane pores with a hydrophilic orifice, the nature of which has been exploited to transport ions and small molecules efficiently. These synthetic ion channels are selective for alkali metal ions (Na(+), K(+) or Cs(+)) over divalent cations (Ca(2+)) or anions (Cl(-)). Unfortunately, selectivity was not achieved within the series of alkali metal ions, for which ion transport rates followed the diffusion rates in water. Amphipathic peptides form nanotubes that lie parallel to the membrane. Interestingly, nanotube formation takes place preferentially on the surface of bacterial membranes, thus making these materials suitable for the development of new antimicrobial agents.

  6. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  7. Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis

    NASA Astrophysics Data System (ADS)

    Sokolov, A. V.; Aseychev, A. V.; Kostevich, V. A.; Gusev, A. A.; Gusev, S. A.; Vlasova, I. I.

    2011-04-01

    Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.

  8. Thermodynamics on Soluble Carbon Nanotubes: How Do DNA Molecules Replace Surfactants on Carbon Nanotubes?

    PubMed Central

    Kato, Yuichi; Inoue, Ayaka; Niidome, Yasuro; Nakashima, Naotoshi

    2012-01-01

    Here we represent thermodynamics on soluble carbon nanotubes that enables deep understanding the interactions between single-walled carbon nanotubes (SWNTs) and molecules. We selected sodium cholate and single-stranded cytosine oligo-DNAs (dCn (n = 4, 5, 6, 7, 8, 10, 15, and 20)), both of which are typical SWNT solubilizers, and successfully determined thermodynamic properties (ΔG, ΔH and ΔS values) for the exchange reactions of sodium cholate on four different chiralities of SWNTs ((n,m) = (6,5), (7,5), (10,2), and (8,6)) for the DNAs. Typical results contain i) the dC5 exhibited an exothermic exchange, whereas the dC6, 8, 10, 15, and 20 materials exhibited endothermic exchanges, and ii) the energetics of the dC4 and dC7 exchanges depended on the associated chiral indices and could be endothermic or exothermic. The presented method is general and is applicable to any molecule that interacts with nanotubes. The study opens a way for science of carbon nanotube thermodynamics. PMID:23066502

  9. On the Interfacial Properties of Polymers/Functionalized Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Ajori, S.

    2016-06-01

    Molecular dynamics (MD) simulations is used to study the adsorption of polyethylene (PE) and poly(ethylene oxide) (PEO) on the functionalized single-walled carbon nanotubes (SWCNTs). The effects of functionalization factor weight percent on the interaction energies of polymer chains with nanotubes are studied. Besides, the influences of different functionalization factors on the SWCNT/polymer interactions are investigated. It is shown that for both types of polymer chains, the largest interaction energies associates with the random O functionalized nanotubes. Besides, increasing temperature results in increasing the nanotube/polymer interaction energy. Considering the final shapes of adsorbed polymer chains on the SWCNTs, it is observed that the adsorbed conformations of PE chains are more contracted than those of PEO chains.

  10. Electron-Phonon and Electron-Electron Interactions in Individual Suspended Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Cronin, Stephen

    2010-03-01

    The fabrication of pristine, nearly defect-free, suspended carbon nanotubes (CNTs) enables the observation of several phenomena not seen before in carbon nanotubes, including breakdown of the Born-Oppenheimer approximation^1, mode selective electron-phonon coupling^2, and a Mott insulator transition^3. Raman spectroscopy of these nanotubes under applied gate and bias potentials reveals exceptionally strong electron-phonon coupling, arising from Kohn anomalies, which result in mode selective electron-phonon coupling, negative differential conductance (NDC), and non-equilibrium phonon populations^2,4. Due to the extremely long electron lifetimes, we observe a breakdown of the Born-Oppenheimer approximation, as deduced from the gate voltage-induced changes in the vibrational energies of suspended carbon nanotubes^1. We also report strikingly large variations in the Raman intensity of pristine metallic CNTs in response to gate voltages, which are attributed to a Mott insulating state of the strongly correlated electrons^3. As will be shown, preparing clean, defect-free devices is an essential prerequisite for studying the rich low-dimensional physics of CNTs. (1.) Bushmaker, A.W., Deshpande, V.V., Hsieh, S., Bockrath, M.W., and Cronin, S.B., ``Direct Observation of Born-Oppenheimer Approximation Breakdown in Carbon Nanotubes.'' Nano Letters, 9, 607 (2009). (2.) Bushmaker, A.W., Deshpande, V.V., Bockrath, M.W., and Cronin, S.B., ``Direct Observation of Mode Selective Electron-Phonon Coupling in Suspended Carbon Nanotubes.'' Nano Letters, 7, 3618 (2007) (3.) Bushmaker, A.W., Deshpande, V.V., Hsieh, S., Bockrath, M.W., and Cronin, S.B., ``Large Modulations in the Intensity of Raman-Scattered Light from Pristine Carbon Nanotubes.'' Physical Review Letters, 103, 067401 (2009). (4.) Bushmaker, A.W., Deshpande, V.V., Hsieh, S., Bockrath, M.W., and Cronin, S.B., ``Gate Voltage Controlled Non-Equilibrium and Non-Ohmic Behavior in Suspended Carbon Nanotubes.'' Nano Letters, 9

  11. Synthesis and characterization of carbon nanotube from coconut shells activated carbon

    NASA Astrophysics Data System (ADS)

    Melati, A.; Hidayati, E.

    2016-03-01

    Carbon nanotubes (CNTs) have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, photodynamic therapy, and gene therapy. They are considered as one of the most promising nanomaterial with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to the cells. CNTs have unique physical and chemical properties such as high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, and high thermal conductivity. Coconut Shell was researched as active carbon source on 500 - 600°C. These activated carbon was synthesized becomes carbon nanotube and have been proposed as a promising tool for detecting the expression of indicative biological molecules at early stage of cancer. Clinically, biomarkers cancer can be detected by CNT Biosensor. We are using pyrolysis methods combined with CVD process or Wet Chemical Process on 600°C. Our team has successfully obtained high purity, and aligned MWCNT (Multi Wall Nanotube) bundles on synthesis CNT based on coconut shells raw materials. CNTs can be used to cross the mammalian cell membrane by endocytosis or other mechanisms. SEM characterization of these materials have 179 nm bundles on phase 83° and their materials compound known by using FTIR characterization.

  12. Functional materials based on carbon nanotubes: Carbon nanotube actuators and noncovalent carbon nanotube modification

    NASA Astrophysics Data System (ADS)

    Fifield, Leonard S.

    Carbon nanotubes have attractive inherent properties that encourage the development of new functional materials and devices based on them. The use of single wall carbon nanotubes as electromechanical actuators takes advantage of the high mechanical strength, surface area and electrical conductivity intrinsic to these molecules. The work presented here investigates the mechanisms that have been discovered for actuation of carbon nanotube paper: electrostatic, quantum chemical charge injection, pneumatic and viscoelastic. A home-built apparatus for the measurement of actuation strain is developed and utilized in the investigation. An optical fiber switch, the first demonstrated macro-scale device based on the actuation of carbon nanotubes, is described and its performance evaluated. Also presented here is a new general process designed to modify the surface of carbon nanotubes in a non-covalent, non-destructive way. This method can be used to impart new functionalities to carbon nanotube samples for a variety of applications including sensing, solar energy conversion and chemical separation. The process described involves the achievement of large degrees of graphitic surface coverage with polycyclic aromatic hydrocarbons through the use of supercritical fluids. These molecules are bifunctional agents that anchor a desired chemical group to the aromatic surface of the carbon nanotubes without adversely disrupting the conjugated backbone that gives rise the attractive electronic and physical properties of the nanotubes. Both the nanotube functionalization work and the actuator work presented here emphasize how an understanding and control of nanoscale structure and phenomena can be of vital importance in achieving desired performance for active materials. Opportunities for new devices with improved function over current state-of-the-art can be envisioned and anticipated based on this understanding and control.

  13. Relevance of the Interaction between the M-Phthalocyanines and Carbon Nanotubes in the Electroactivity toward ORR.

    PubMed

    González-Gaitán, Carolina; Ruiz-Rosas, Ramiro; Morallón, Emilia; Cazorla-Amorós, Diego

    2017-10-31

    In this work, the influence of the interaction between the iron and cobalt-phthalocyanines (FePc and CoPc) and carbon nanotubes (CNTs) used as support in the electroactivity toward oxygen reduction reaction (ORR) in alkaline media has been investigated. A series of thermal treatments were performed on these materials in order to modify the interaction between the CNTs and the phthalocyanines. The FePc-based catalysts showed the highest activity, with comparable performance to the state-of-the-art Pt-Vulcan catalyst. A heat treatment at 400 °C improved the activity of FePc-based catalysts, while the use of higher temperatures or oxidative atmosphere rendered the decomposition of the macrocyclic compound and consequently the loss of the electrochemical activity of the complex. CoPc-based catalysts performance was negatively affected for all of the tested treatments. Thermogravimetric analyses demonstrated that the FePc was stabilized when loaded onto CNTs, while CoPc did not show such a feature, pointing to a better interaction of the FePc instead of the CoPc. Interestingly, electrochemical measurements demonstrated an improvement of the electron transfer rate in thermally treated FePc-based catalysts. They also allowed us to assess that only 15% of the iron in the catalyst was available for direct electron transfer. This is the same iron amount that remains on the catalyst after a strong acid washing with concentrated HCl (ca. 0.3 wt %), which is enough to deliver a comparable ORR activity. Durability tests confirmed that the catalysts deactivation occurs at a slower rate in those catalysts where FePc is strongly attached to the CNT surface. Thus, the highest ORR activity seems to be provided by those FePc molecules that are strongly attached to the CNT surface, pointing out the relevance of the interaction between the support and the FePc in these catalysts.

  14. Investigation of carboxylation of carbon nanotube in the adsorption of anti-cancer drug: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Hesabi, Maryam; Behjatmanesh-Ardakani, Reza

    2018-01-01

    Nowadays, an important process applied in the design of novel composite materials and drug delivery fields is the carboxylation of carbon nanotubes. In this work, we study the interaction of the anti-cancer drug hydroxyurea with carboxyl-functionalized zigzag carbon nanotubes (CNTs) by employing the method of the density functional theory (DFT) at B3LYP and CAM-B3LYP levels in gas and solvent phases. The results show that all complexes are energetically favorable, especially in the aqueous phase. The enthalpy energy values are negative in all cases, which indicate their exothermic adsorption nature. The presence of sbnd COOH groups would create enough free space on the nanotube surface for the adsorption between interacting atoms. Thus, these can increase the activity of CNTs. Data indicates that adsorption is dependent on the carboxyl sites of the nanotube as well as on the sites of the drug. Furthermore, the hydrogen-bonding interactions between drug and sbnd COOH-CNTs play an important role for the different kinds of adsorption observed.

  15. Interaction between Carbon Nanotubes and Aromatic Hydrocarbon-degrading Microbes and its Effect on Carbon Nanotubes Transformation

    NASA Astrophysics Data System (ADS)

    You, Y.; Wang, L.; Poulson, S.; Wang, X.; Xing, B.; Yang, Y.

    2015-12-01

    Due to their unique electrical, optical and mechanical properties, carbon nanotubes (CNTs) have been substantially produced and widely applied during the past decades, leading to their increased probability of entering the environment. Some estimation suggests that CNTs are accumulated in agricultural systems with their soil concentration increasing by 0.4-157 ng/kg/year. This has raised concerns about environmental impacts of these emerging contaminants including their ecotoxicity. Meanwhile, transformation of CNTs in the environment can significantly affect their transport, bioavailability and thereby ecotoxicity. So far, environmental biodegradation of CNTs remains obscure. Given the high diversity of soil microorganisms and their metabolic potentials, it is important to investigate microbial biodegradation of CNTs under various environmental conditions. This study focuses on an aromatic hydrocarbon-degrading bacterium, Mycobacterium vanbaalenii PYR-1, as a model microorganism capable of ring cleavage. We hypothesize that bacterial activities could transform CNTs to more hydrophilic forms, increasing their aqueous stability and environmental reactivity. We incubated M. vanbaalenii PYR-1 with 13C-labeded multiwall carbon nanotubes (MWCNTs) for 30 days, monitored δ13C in the system, characterized MWCNTs before and after the reaction, and compared the results with culture-negative controls. To investigate effects of various environmental conditions, including the presence of extracellular oxidative enzymes from white-rot fungi, additional experiments will be conducted and results compared will be compared among different setups. Moreover, we will measure adverse impacts of CNTs on the metabolic activities of M. vanbaalenii PYR-1, particularly its biodegradation of polycyclic aromatic hydrocarbons.

  16. Electrochemical oxidation of 4-chlorophenol for wastewater treatment using highly active UV treated TiO2 nanotubes.

    PubMed

    Tian, Min; Thind, Sapanbir S; Dondapati, Jesse S; Li, Xinyong; Chen, Aicheng

    2018-06-07

    In the present work, we report on a facile UV treatment approach for enhancing the electrocatalytic activity of TiO 2 nanotubes. The TiO 2 nanotubes were prepared using an anodization oxidation method by applying a voltage of 40 V for 8 h in a DMSO + 2% HF solution, and further treated under UV light irradiation. Compared with Pt and untreated TiO 2 nanotubes, the UV treated electrode exhibited a superior electrocatalytic activity toward the oxidation of 4-chlorophenol (4-ClPh). The effects of current density and temperature on the electrochemical oxidation of the 4-ClPh were also systematically investigated. The high electrocatalytic activity of the UV treated TiO 2 nanotubes was further confirmed by the electrochemical oxidation of other persistent organic pollutants including phenol, 2-, 3-, 4-nitrophenol, and 4-aminophenol. The total organic carbon (TOC) analysis revealed that over 90% 4-ClPh was removed when the UV treated TiO 2 electrode was employed and the rate constant was 16 times faster than that of the untreated TiO 2 electrode; whereas only 60% 4-ClPh was eliminated at the Pt electrode under the same conditions. This dramatically improved electrocatalytic activity might be attributed to the enhanced donor density, conductivity, and high overpotential for oxygen evolution. Our results demonstrated that the application of the UV treatment to the TiO 2 nanotubes enhanced their electrochemical activity and energy consumption efficiency significantly, which is highly desirable for the abatement of persistent organic pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar-lectin biospecific interaction.

    PubMed

    Chen, Huan; Xi, Fengna; Gao, Xia; Chen, Zhichun; Lin, Xianfu

    2010-08-01

    Bienzyme bionanomultilayer electrode for glucose biosensing was constructed based on functional carbon nanotubes and sugar-lectin biospecific interaction through layer-by-layer (LBL) assembly. After being functionalized by wrapping with polyelectrolyte, multiwalled carbon nanotubes (MCNTs) were water soluble and positively charged. MCNT-bienzyme bionanomultilayer electrode was then fabricated by LBL assembly of horseradish peroxidase (HRP) and glucose oxidase (GOD) on functional MCNT modified electrode. The attachment of the MCNT-bienzyme bionanomultilayer with the underlying electrode and each layer in the bionanomultilayer was based on reliably electrostatic or sugar-lectin biospecific interaction. The developed bienzyme biosensor exhibited fast amperometric response for the determination of glucose. The linear response of the developed biosensor for the determination of glucose ranged from 2.0 x 10(-6) to 1.7 x 10(-4) M with a detection limit of 2.5 x 10(-7) M. The biosensor can be used directly to determine glucose in serum. The construction of the bienzyme biosensor showed potential for the preparation of MCNT-enzyme nanocomposite with controllability and high performance. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.

    PubMed

    Jiang, Tao; Hong, Hao; Liu, Can; Liu, Wei-Tao; Liu, Kaihui; Wu, Shiwei

    2018-04-11

    Interactions between elementary excitations, such as carriers, phonons, and plasmons, are critical for understanding the optical and electronic properties of materials. The significance of these interactions is more prominent in low-dimensional materials and can dominate their physical properties due to the enhanced interactions between these excitations. One-dimensional single-walled carbon nanotubes provide an ideal system for studying such interactions due to their perfect physical structures and rich electronic properties. Here we investigated G-mode phonon dynamics in individual suspended chirality-resolved single-walled carbon nanotubes by time-resolved anti-Stokes Raman spectroscopy. The improved technique allowed us to probe the intrinsic phonon information on a single-tube level and exclude the influences of tube-tube and tube-substrate interactions. We found that the G-mode phonon lifetime ranges from 0.75-2.25 ps and critically depends on whether the tube is metallic or semiconducting. In comparison with the phonon lifetimes in graphene and graphite, we revealed structure-dependent carrier-phonon and phonon-phonon interactions in nanotubes. Our results provide new information for optimizing the design of nanotube electronic/optoelectronic devices by better understanding and utilizing their phonon decay channels.

  19. Potentiating toxicological interaction of single-walled carbon nanotubes with dissolved metals.

    PubMed

    Al-Shaeri, Majed; Ahmed, Dina; McCluskey, Fiona; Turner, Gavin; Paterson, Lynn; Dyrynda, Elisabeth A; Hartl, Mark G J

    2013-12-01

    The present study explored the ecotoxicology of single-walled carbon nanotubes (SWCNTs) and their likely interaction with dissolved metals, with a focus on the effect of in vivo exposure in marine mussels. Any nano-scale effects were negated by the tendency of uncoated SWCNTs to agglomerate in water, particularly with high ionic strength as is the case in estuarine and full-strength seawater. However, SWCNTs, in combination with natural organic matter, remained suspended in seawater for long enough to become available to filter-feeding mussels, leading to their concentration on and increased contact with gill epithelia during exposure. For the first time, the authors describe a potentiating toxicological effect, expressed as DNA strand breaks obtained using the comet assay, on divalent metals afforded by negatively charged SWCNT agglomerates in seawater at concentrations as low as 5 µg L⁻¹. This is supported by the observation that SWCNTs alone were only toxic at concentrations ≥100 µg L⁻¹ and that the SWCNT-induced DNA damage was correlated with oxidative stress only in the absence of metals. If these laboratory experiments are confirmed in the natural environment, the present results will have implications for the understanding of the role of carbon nanotubes in environmental metal dynamics, toxicology, and consequently, regulatory requirements. © 2013 SETAC.

  20. Microscopic model of superconductivity in carbon nanotubes.

    PubMed

    González, J

    2002-02-18

    We propose the model of a manifold of one-dimensional interacting electron systems to account for the superconductivity observed in ropes of nanotubes. We rely on the strong suppression of single-particle hopping between neighboring nanotubes in a disordered rope and conclude that the tunneling takes place in pairs of electrons, which are formed within each nanotube due to the existence of large superconducting correlations. Our estimate of the transition temperature is consistent with the values that have been measured experimentally in ropes with about 100 metallic nanotubes.

  1. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    PubMed

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Anisotropy of the water-carbon interaction: molecular simulations of water in low-diameter carbon nanotubes.

    PubMed

    Pérez-Hernández, Guillermo; Schmidt, Burkhard

    2013-04-14

    Effective Lennard-Jones models for the water-carbon interaction are derived from existing high-level ab initio calculations of water adsorbed on graphene models. The resulting potential energy well (εCO + 2εCH ≈ 1 kJ mol(-1)) is deeper than most of the previously used values in the literature on water in carbon nanotubes (CNTs). Moreover, a substantial anisotropy of the water-carbon interaction (εCO ≈ 2εCH) is obtained, which is neglected in most of the literature. We systematically investigate the effect of this anisotropy on structure and dynamics of TIP5P water confined in narrow, single-walled CNTs by means of molecular dynamics simulations for T = 300 K. While for isotropic models water usually forms one-dimensional, ordered chains inside (6,6) CNTs, we find frequent chain ruptures in simulations with medium to strongly anisotropic potentials. Here, the water molecules tend to form denser clusters displaying a liquid-like behaviour, allowing for self-diffusion along the CNT axis, in contrast to all previous simulations employing spherical (εCH = 0) interaction models. For (7,7) CNTs we observe structures close to trigonal, helical ice nanotubes which exhibit a non-monotonous dependence on the anisotropy of the water-carbon interaction. Both for vanishing and for large values of εCH we find increased fluctuations leading to a more liquid-like behaviour, with enhanced axial diffusion. In contrast, structure and dynamics of water inside (8,8) CNTs are found to be almost independent of the anisotropy of the underlying potential, which is attributed to the higher stability of the non-helical fivefold water prisms. We predict this situation to also prevail for larger CNTs, as the influence of the water-water interaction dominates over that of the water-carbon interaction.

  3. Enhanced photoelectrocatalytic performance of heterostructured TiO2-based nanoparticles decorated nanotubes

    NASA Astrophysics Data System (ADS)

    Wu, Liangpeng; Yang, Xu; Huang, Yanqin; Li, Xinjun

    2017-06-01

    Titanium oxide nanotubes were prepared by hydrothermal treatment of TiO2 powder in NaOH aqueous solution and subsequently calcined. Titanium oxide nanotubes were further decorated by TiO2 nanoparticles through in situ hydrolysis of titanium isopropoxide containing alcohol and ammonia in an aqueous medium to form the composite catalyst (TNP/TiO2NTs). The morphology and structure of TNP/TiO2NTs were characterized by scanning and transmission electron microscopy, X-ray diffraction, UV-Vis, and Raman spectra. The separation efficiency of photo-excited carriers was investigated by photoluminescence technique and photoelectrochemical behavior. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange. Due to the synergy effect caused by the interaction of titanium oxide nanotubes and TiO2 nanoparticles, the TNP/TiO2NTs composite shows efficient photogenerated carriers' separation and the increased light absorption. The photocatalytic activity was enhanced.

  4. Cellular interactions of a water-soluble supramolecular polymer complex of carbon nanotubes with human epithelial colorectal adenocarcinoma cells.

    PubMed

    Lee, Yeonju; Geckeler, Kurt E

    2012-08-01

    Water-soluble, PAX-loaded carbon nanotubes are fabricated by employing a synthetic polyampholyte, PDM. To investigate the suitability of the polyampholyte and the nanotubes as drug carriers, different cellular interactions such as the human epithelial Caco-2 cells viability, their effect on the cell growth, and the change in the transepithelial electrical resistance in Caco-2 cells are studied. The resulting complex is found to exhibit an effective anti-cancer effect against colon cancer cells and an increased the reduction of the electrical resistance in the Caco-2 cells when compared to the precursor PAX. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Yang, Man; Jia, Fumin; Kong, Hua; Zhang, Weiqi; Wang, Chaoying; Xing, Jianmin; Xie, Sishen; Xu, Haiyan

    2010-04-01

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  6. Mesoscale mechanics of twisting carbon nanotube yarns.

    PubMed

    Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J

    2015-03-12

    Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle.

  7. Nanotube-assisted protein deactivation

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Punyani, Supriya; Bale, Shyam Sundhar; Yang, Hoichang; Borca-Tasciuc, Theodorian; Kane, Ravi S.

    2008-01-01

    Conjugating proteins onto carbon nanotubes has numerous applications in biosensing, imaging and cellular delivery. However, remotely controlling the activity of proteins in these conjugates has never been demonstrated. Here we show that upon near-infrared irradiation, carbon nanotubes mediate the selective deactivation of proteins in situ by photochemical effects. We designed nanotube-peptide conjugates to selectively destroy the anthrax toxin, and also optically transparent coatings that can self-clean following either visible or near-infrared irradiation. Nanotube-assisted protein deactivation may be broadly applicable to the selective destruction of pathogens and cells, and will have applications ranging from antifouling coatings to functional proteomics.

  8. Anodically Grown Titania Nanotube Induced Cytotoxicity has Genotoxic Origins

    NASA Astrophysics Data System (ADS)

    Mohamed, M. Sheikh; Torabi, Aida; Paulose, Maggie; Kumar, D. Sakthi; Varghese, Oomman K.

    2017-02-01

    Nanoarchitectures of titania (TiO2) have been widely investigated for a number of medical applications including implants and drug delivery. Although titania is extensively used in the food, drug and cosmetic industries, biocompatibility of nanoscale titania is still under careful scrutiny due to the conflicting reports on its interaction with cellular matter. For an accurate insight, we performed in vitro studies on the response of human dermal fibroblast cells toward pristine titania nanotubes fabricated by anodic oxidation. The nanotubes at low concentrations were seen to induce toxicity to the cells, whereas at higher concentrations the cell vitality remained on par with controls. Further investigations revealed an increase in the G0 phase cell population depicting that majority of cells were in the resting rather than active phase. Though the mitochondrial set-up did not exhibit any signs of stress, significantly enhanced reactive oxygen species production in the nuclear compartment was noted. The TiO2 nanotubes were believed to have gained access to the nuclear machinery and caused increased stress leading to genotoxicity. This interesting property of the nanotubes could be utilized to kill cancer cells, especially if the nanotubes are functionalized for a specific target, thus eliminating the need for any chemotherapeutic agents.

  9. Homogenization Models for Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Muc, A.; Jamróz, M.

    2004-03-01

    Two homogenization models for evaluating Young's modulus of nanocomposites reinforced with single-walled and multi-walled carbon nanotubes are presented. The first model is based on a physical description taking into account the interatomic interaction and nanotube geometry. The elementary cell, here a nanotube with a surrounding resin layer, is treated as a homogeneous body — a material continuum. The second model, similar to a phenomenological engineering one, is obtained by combining the law of mixture with the Cox mechanical model. This model describes the stress distribution along stretched short fibers surrounded by a resin matrix. The similarities between composite materials reinforced with short fibers and nanotubes are elucidated. The results obtained are compared with those for classical microcomposites to demonstrate the advantages and disadvantages of both the composite materials.

  10. Study of TiO{sub 2} nanotubes as an implant application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazan, Roshasnorlyza, E-mail: roshasnorlyza@nm.gov.my; Sreekantan, Srimala; Mydin, Rabiatul Basria S. M. N.

    Vertically aligned TiO{sub 2} nanotubes have become the primary candidates for implant materials that can provide direct control of cell behaviors. In this work, 65 nm inner diameters of TiO{sub 2} nanotubes were successfully prepared by anodization method. The interaction of bone marrow stromal cells (BMSC) in term of cell adhesion and cell morphology on bare titanium and TiO{sub 2} nanotubes is reported. Field emission scanning electron microscopy (FESEM) analysis proved interaction of BMSC on TiO{sub 2} nanotubes structure was better than flat titanium (Ti) surface. Also, significant cell adhesion on TiO{sub 2} nanotubes surface during in vitro study revealed thatmore » BMSC prone to attach on TiO{sub 2} nanotubes. From the result, it can be conclude that TiO{sub 2} nanotubes are biocompatible to biological environment and become a new generation for advanced implant materials.« less

  11. Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity

    NASA Astrophysics Data System (ADS)

    Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib

    2018-01-01

    In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.

  12. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.

  13. Exploring possible mechanisms of action for the nanotoxicity and protein binding of decorated nanotubes: interpretation of physicochemical properties from optimal QSAR models.

    PubMed

    Esposito, Emilio Xavier; Hopfinger, Anton J; Shao, Chi-Yu; Su, Bo-Han; Chen, Sing-Zuo; Tseng, Yufeng Jane

    2015-10-01

    Carbon nanotubes have become widely used in a variety of applications including biosensors and drug carriers. Therefore, the issue of carbon nanotube toxicity is increasingly an area of focus and concern. While previous studies have focused on the gross mechanisms of action relating to nanomaterials interacting with biological entities, this study proposes detailed mechanisms of action, relating to nanotoxicity, for a series of decorated (functionalized) carbon nanotube complexes based on previously reported QSAR models. Possible mechanisms of nanotoxicity for six endpoints (bovine serum albumin, carbonic anhydrase, chymotrypsin, hemoglobin along with cell viability and nitrogen oxide production) have been extracted from the corresponding optimized QSAR models. The molecular features relevant to each of the endpoint respective mechanism of action for the decorated nanotubes are also discussed. Based on the molecular information contained within the optimal QSAR models for each nanotoxicity endpoint, either the decorator attached to the nanotube is directly responsible for the expression of a particular activity, irrespective of the decorator's 3D-geometry and independent of the nanotube, or those decorators having structures that place the functional groups of the decorators as far as possible from the nanotube surface most strongly influence the biological activity. These molecular descriptors are further used to hypothesize specific interactions involved in the expression of each of the six biological endpoints. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Spectroscopic study of proflavine adsorption on the carbon nanotube surface.

    PubMed

    Buchelnikov, Anatoly S; Dovbeshko, Galina I; Voronin, Dmitry P; Trachevsky, Vladimir V; Kostjukov, Viktor V; Evstigneev, Maxim P

    2014-01-01

    Despite the fact that non-covalent interactions between various aromatic compounds and carbon nanotubes are being extensively investigated now, there is still a lack of understanding about the nature of such interactions. The present paper sheds light on one of the possible mechanisms of interaction between the typical aromatic dye proflavine and the carbon nanotube surface, namely, π-stacking between aromatic rings of these compounds. To investigate such a complexation, a qualitative analysis was performed by means of ultraviolet visible, infrared, and nuclear magnetic resonance spectroscopy. The data obtained suggest that π-stacking brings the major contribution to the stabilization of the complex between proflavine and the carbon nanotube.

  15. Interaction of cholesterol with carbon nanotubes: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Ciani, Anthony J.; Gupta, Bikash C.; Batra, Inder P.

    2008-07-01

    Carbon nanotubes (CNT) are being presented as medical devices at an increasing rate. To date, they have been suggested as targets for the thermal ablation of cancers, as delivery systems for pharmaceuticals, and as bio-sensors. A common thread amongst these applications is that CNTs are used as a delivery vector for some pharmaceutical into the body. We consider here the possibility that CNTs might be used as a device to trap and remove chemicals, particularly cholesterol, from a living organism. We have performed ab-initio calculations to determine how cholesterol might interact with CNTs placed inside the body. We have found that cholesterol exhibits no particular affinity for or effect on a bare CNT; however, its binding energy can be increased by functionalizing the CNT with a Ca adatom. We found that a Ca adatom on the wall of a CNT increases the binding energy of cholesterol to a CNT by around 1.5 eV, regardless of the nanotube's diameter. The presence of the cholesterol does not affect the band structure of the CNT, but the Ca atom does have an effect near the Fermi level. This indicates that a CNT based detector could function by detecting the alteration to the electronic structure caused by the induced adsorption of an adatom in the trinary system of CNT + cholesterol + adatom.

  16. Interaction of solid organic acids with carbon nanotube field effect transistors

    NASA Astrophysics Data System (ADS)

    Klinke, Christian; Afzali, Ali; Avouris, Phaedon

    2006-10-01

    A series of solid organic acids were used to p-dope carbon nanotubes. The extent of doping is shown to be dependent on the pKa value of the acids. Highly fluorinated carboxylic acids and sulfonic acids are very effective in shifting the threshold voltage and making carbon nanotube field effect transistors to be more p-type devices. Weaker acids like phosphonic or hydroxamic acids had less effect. The doping of the devices was accompanied by a reduction of the hysteresis in the transfer characteristics. In-solution doping survives standard fabrication processes and renders p-doped carbon nanotube field effect transistors with good transport characteristics.

  17. Equivalent Circuit Modeling for Carbon Nanotube Schottky Barrier Modulation in Polarized Gases

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2005-01-01

    We study the carbon nanotube Schottky barrier at the metallic electrode interface in polarized gases using an equivalent circuit model. The gas-nanotube interaction is often weak and very little charge transfer is expected [l]. This is the case with'oxygen, but the gas-electrode interaction is appreciable and makes the oxygen molecules negatively charged. In the closed circuit condition, screening positive charges appear in the nanotube as well as in the electrode, and the Schottky barrier is modulated due to the resultant electrostatic effects [2]. In the case of ammonia, both the gas-nanotube and gas-electrode interactions are weak, but the Schottky barrier can still be modulated since the molecules are polarized and align in the preferred orientation within the gap between the electrode and nanotube in the open circuit condition (dipole layer formation). In the closed circuit condition, an electric field appears in the gap and strengthens or weakens the preferred dipole alignment reflecting the nanotube Fermi level. The modulation is visible when the nanotube depletion mode is involved, and the required dipole density is as low as 2 x 10(exp 13) dipoles/sq cm, which is quite feasible experimentally,

  18. Intrinsic phonon properties of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Levshov, D. I.; Nguyen, V. C.; Paillet, M.; Arenal, R.; Than, X. T.; Zahab, A. A.; Yuzyuk, Y. I.; Phan, N. M.; Sauvajol, J.-L.; Michel, T.

    2017-03-01

    Double-walled carbon nanotubes (DWNT) are made of two concentric and weakly van der Waals coupled single-walled carbon nanotubes (SWNT). DWNTs are the simplest systems for studying the mechanical and electronic interactions between concentric carbon layers. In this paper we review recent results concerning the intrinsic features of phonons of DWNTs obtained from Raman experiments performed on index-identified DWNTs. The effect of the interlayer distance on the strength of the mechanical and electronic coupling between the layers, and thus on the frequencies of the Raman-active modes, namely the radial breathing-like modes (RBLMs) and G-modes, are evidenced and discussed. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  19. Carbon nanotube macroelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to

  20. Catalysis with Gold Complexes Immobilised on Carbon Nanotubes by π-π Stacking Interactions: Heterogeneous Catalysis versus the Boomerang Effect.

    PubMed

    Vriamont, Charles; Devillers, Michel; Riant, Olivier; Hermans, Sophie

    2013-09-02

    A new pyrene-tagged gold(I) complex has been synthesised and tested as a homogeneous catalyst. First, a simple 1,6-enyne was chosen as a model substrate for cyclisation by using different solvents to optimise the reaction conditions. The non-covalent immobilisation of our pyrene-tagged gold complex onto multi-walled carbon nanotubes through π-π stacking interactions was then explored to obtain a supported homogeneous catalyst. The heterogenised catalyst and its homogeneous counterpart exhibited similar activity in a range of enyne cyclisation reactions. Bearing in mind that π-π interactions are affected by temperature and solvent polarity, the reuse and robustness of the supported homogeneous catalyst was tested to explore the scope and limitations of the recyclability of this catalyst. Under the optimised conditions, recyclability was observed by using the concept of the boomerang effect. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sorptive Activity and Hydrophobic Behavior of Aerogels Based on Reduced Graphene Oxide and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Sultanov, F.; Bakbolat, B.; Daulbaev, Ch.; Urazgalieva, A.; Azizov, Z.; Mansurov, Z.; Tulepov, M.; Pei, S. S.

    2017-07-01

    A study has been made of the possibility of obtaining three-dimensional porous aerogel structures based on reduced graphene oxide and carbon nanotubes. Carbon nanotubes in the structure of the finished aerogel based on reduced graphene oxide were grown by thermal decomposition of ferrocene into cyclopentadienyl and iron ions which served as the source of carbon and a catalyst respectively. The obtained composite aerogels exhibit high sorptive activity for organic liquids of different densities.

  2. Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays

    NASA Astrophysics Data System (ADS)

    Proenca, M. P.; Sousa, C. T.; Escrig, J.; Ventura, J.; Vazquez, M.; Araujo, J. P.

    2013-03-01

    Ordered hexagonal arrays of Co nanowires (NWs) and nanotubes (NTs), with diameters between 40 and 65 nm, were prepared by potentiostatic electrodeposition into suitably modified nanoporous alumina templates. The geometrical parameters of the NW/NT arrays were tuned by the pore etching process and deposition conditions. The magnetic interactions between NWs/NTs with different diameters were studied using first-order reversal curves (FORCs). From a quantitative analysis of the FORC measurements, we are able to obtain the profiles of the magnetic interactions and the coercive field distributions. In both NW and NT arrays, the magnetic interactions were found to increase with the diameter of the NWs/NTs, exhibiting higher values for NW arrays. A comparative study of the magnetization reversal processes was also performed by analyzing the angular dependence of the coercivity and correlating the experimental data with theoretical calculations based on a simple analytical model. The magnetization in the NW arrays is found to reverse by the nucleation and propagation of a transverse-like domain wall; on the other hand, for the NT arrays a non-monotonic behavior occurs above a diameter of ˜50 nm, revealing a transition between the vortex and transverse reversal modes.

  3. Efficient silver modification of TiO2 nanotubes with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Ding, Lei; Xi, Yaoning; Shi, Liang; Su, Ge; Gao, Rongjie; Wang, Wei; Dong, Bohua; Cao, Lixin

    2018-06-01

    In this paper, Ag(CH3NH2)2+, Ag(NH3)2+ and Ag+ with different radii have been used as silver sources to find out the distribution of Ag ions on the H-TNT surface, which is critical to the final performance. The influence of this distribution on visible photocatalytic activity is further studied. The results indicate that, when Ag+ used as silver source with low concentration, these small sized silver ions mainly distribute on interlayer spacing of H-TNT. After heat-treatment and photo-reduction, the generated silver nanoparticles uniformly embed in the anatase TiO2 nanotube walls, and bring large interfacial area between Ag particles and TiO2 nanotubes. The separation effect of photogenerated electron-hole pair in TiO2 is enhanced by Ag particles, and achieves the best at 0.15 g/L, much higher than P25, TiO2/0, Ag-N@TiO2 and Ag-C-N@TiO2. This paper provides new ideas for the modification of TiO2 nanotubes.

  4. Triazine-Carbon Nanotubes: New Platforms for the Design of Flavin Receptors.

    PubMed

    Lucío, María Isabel; Pichler, Federica; Ramírez, José Ramón; de la Hoz, Antonio; Sánchez-Migallón, Ana; Hadad, Caroline; Quintana, Mildred; Giulani, Angela; Bracamonte, Maria Victoria; Fierro, Jose L G; Tavagnacco, Claudio; Herrero, María Antonia; Prato, Maurizio; Vázquez, Ester

    2016-06-20

    The synthesis of functionalised carbon nanotubes as receptors for riboflavin (RBF) is reported. Carbon nanotubes, both single-walled and multi-walled, have been functionalised with 1,3,5-triazines and p-tolyl chains by aryl radical addition under microwave irradiation and the derivatives have been fully characterised by using a range of techniques. The interactions between riboflavin and the hybrids were analysed by using fluorescence and UV/Vis spectroscopic techniques. The results show that the attached functional groups minimise the π-π stacking interactions between riboflavin and the nanotube walls. Comparison of p-tolyl groups with the triazine groups shows that the latter have stronger interactions with riboflavin because of the presence of hydrogen bonds. Moreover, the triazine derivatives follow the Stern-Volmer relationship and show a high association constant with riboflavin. In this way, artificial receptors in catalytic processes could be designed through specific control of the interaction between functionalised carbon nanotubes and riboflavin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The synthesis of silica nanotubes through chlorosilanization of single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Wu; Shen, Hsin-Hui

    2010-09-01

    We demonstrate that single wall carbon nanotubes (SWCNTs) can be coated by a layer of silica through the reaction between chlorosilane and acid-treated SWCNTs. The presence of carboxylic acid groups in the SWCNTs provides the active sites where chlorosilane can be anchored to form the silica coating. Silica nanotubes with diameters ranging from 5 to 23 nm were synthesized after the calcination of silica coated SWCNTs at 900 °C in air. It was found that the presence of SWCNT templates and carboxylic acid groups on the SWCNTs' surface is essential to the formation of silica nanotubes. Furthermore, the dependence of the inner diameters of the silica nanotubes on the diameters of bundled or isolated SWCNTs was observed. This novel technique can be applied to the synthesis of other oxide nanotubes if a precursor such as TiCl4 or ZrCl4 is used.

  6. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography

    PubMed Central

    Liu, Huaping; Nishide, Daisuke; Tanaka, Takeshi; Kataura, Hiromichi

    2011-01-01

    Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientific research and electronic and biomedical applications; however, the bulk separation of SWCNTs into populations of single-chirality nanotubes remains challenging. Here we report a simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns. This method is based on the structure-dependent interaction strength of SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column results in the adsorption sites of the column becoming fully occupied by the nanotubes that exhibit the strongest interaction with the gel. The unbound nanotubes flow through to the next column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this stage. In this manner, 13 different (n, m) species were separated. Metallic SWCNTs were finally collected as unbound nanotubes because they exhibited the lowest interaction with the gel. PMID:21556063

  7. Fabrication of enzyme-immobilized halloysite nanotubes for affinity enrichment of lipase inhibitors from complex mixtures.

    PubMed

    Wang, Haibo; Zhao, Xiaoping; Wang, Shufang; Tao, Shan; Ai, Ni; Wang, Yi

    2015-05-01

    Lipase is the key enzyme for catalyzing triglyceride hydrolysis in vivo, and lipase inhibitors have been used in the management of obesity. We present the first report on the use of lipase-adsorbed halloysite nanotubes as an efficient medium for the selective enrichment of lipase inhibitors from natural products. A simple and rapid approach was proposed to fabricate lipase-adsorbed nanotubes through electrostatic interaction. Results showed that more than 85% lipase was adsorbed into nanotubes in 90 min, and approximately 80% of the catalytic activity was maintained compared with free lipase. The specificity and reproducibility of the proposed approach were validated by screening a known lipase inhibitor (i.e., orlistat) from a mixture that contains active and inactive compounds. Moreover, we applied this approach with high performance liquid chromatography-mass spectrometry technique to screen lipase inhibitors from the Magnoliae cortex extract, a medicinal plant used for treating obesity. Two novel biphenyl-type natural lipase inhibitors magnotriol A and magnaldehyde B were identified, and their IC50 values were determined as 213.03 and 96.96 μM, respectively. The ligand-enzyme interactions of magnaldehyde B were further investigated by molecular docking. Our findings proved that enzyme-adsorbed nanotube could be used as a feasible and selective affinity medium for the rapid screening of enzyme inhibitors from complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Imaging carbon nanotube interactions, diffusion, and stability in nanopores.

    PubMed

    Eichmann, Shannon L; Smith, Billy; Meric, Gulsum; Fairbrother, D Howard; Bevan, Michael A

    2011-07-26

    We report optical microscopy measurements of three-dimensional trajectories of individual multiwalled carbon nanotubes (MWCNTs) in nanoscale silica slit pores. Trajectories are analyzed to nonintrusively measure MWCNT interactions, diffusion, and stability as a function of pH and ionic strength. Evanescent wave scattering is used to track MWCNT positions normal to pore walls with nanometer-scale resolution, and video microscopy is used to track lateral positions with spatial resolution comparable to the diffraction limit. Analysis of MWCNT excursions normal to pore walls yields particle-wall potentials that agree with theoretical electrostatic and van der Waals potentials assuming a rotationally averaged potential of mean force. MWCNT lateral mean square displacements are used to quantify translational diffusivities, which are comparable to predictions based on the best available theories. Finally, measured MWCNT pH and ionic strength dependent stabilities are in excellent agreement with predictions. Our findings demonstrate novel measurement and modeling tools to understand the behavior of confined MWCNTs relevant to a broad range of applications.

  9. Microfluidic sieve using intertwined, free-standing carbon nanotube mesh as active medium

    DOEpatents

    Bakajin, Olgica; Noy, Aleksandr

    2007-11-06

    A microfluidic sieve having a substrate with a microfluidic channel, and a carbon nanotube mesh. The carbon nanotube mesh is formed from a plurality of intertwined free-standing carbon nanotubes which are fixedly attached within the channel for separating, concentrating, and/or filtering molecules flowed through the channel. In one embodiment, the microfluidic sieve is fabricated by providing a substrate having a microfluidic channel, and growing the intertwined free-standing carbon nanotubes from within the channel to produce the carbon nanotube mesh attached within the channel.

  10. Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity.

    PubMed

    Faraji, Masoud; Mohaghegh, Neda; Abedini, Amir

    2018-01-01

    A series of g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plates were fabricated via simple dipping of TiO 2 nanotubes/Ti in a solution containing SnCl 2 and g-C 3 N 4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C 3 N 4 -SnO 2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO 2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis illuminations. Detailed characterization and results of photocatalytic and antibacterial activity tests revealed that semiconductor coupling significantly affected the photocatalyst properties synthesized and hence their photocatalytic and antibacterial activities. Modification of TiO 2 nanotubes/Ti plates with g-C 3 N 4 -SnO 2 deposits resulted in enhanced photocatalytic activities in both chemical and microbial systems. The g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate exhibited the highest photocatalytic and antibacterial activity, probably due to the heterojunction between g-C 3 N 4 -SnO 2 and TiO 2 nanotubes/Ti in the ternary composite plate and thus lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antibacterial mechanism for the degradation of E. coli bacteria and chemical pollutants over g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate were proposed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Chemically interconnected light-weight 3D-carbon nanotube solid network

    DOE PAGES

    Ozden, Sehmus; Tsafack, Thierry; Owuor, Peter S.; ...

    2017-03-31

    Owing to the weak physical interactions such as van der Waals and π-π interactions, which hold nanotubes together in carbon nanotube (CNT) bulk structures, the tubes can easily slide on each other. In creating covalent interconnection between individual carbon nanotube (CNT) structures we saw remarkable improvements in the properties of their three-dimensional (3D) bulk structures. The creation of such nanoengineered 3D solid structures with improved properties and low-density remains one of the fundamental challenges in real-world applications. We also report the scalable synthesis of low-density 3D macroscopic structure made of covalently interconnected nanotubes using free-radical polymerization method after functionalized CNTsmore » with allylamine monomers. The resulted interconnected highly porous solid structure exhibits higher mechanical properties, larger surface area and greater porosity than non-crosslinked nanotube structures. To gain further insights into the deformation mechanisms of nanotubes, fully atomistic reactive molecular dynamics simulations are used. Here we demonstrate one such utility in CO 2 uptake, whose interconnected solid structure performed better than non-interconnected structures.« less

  12. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube shapes, sizes, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/LaRC-SI (with a PmPV interface) composite systems, one with aligned SWNTs and the other with three-dimensionally randomly oriented SWNTs. The Young's modulus and shear modulus have been calculated for the two systems for various nanotube lengths and volume fractions.

  13. Carbon Nanotubes: On the Origin of Helicity

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Avetik

    2015-03-01

    The mechanism of helicity formation of carbon nanotubes still remains elusive that hinders their applications. Current explanations mainly rely on the planar interrelationship between the structure of nanotube and corresponding facet of catalyst in 2D geometry that could amend the structure of grown carbon layer, specifically due to the epitaxial interaction. Yet, the structure of carbon nanotube and circumference of the rims assume involvement of more than one facet i.e. it is 3D problem. By aiming this problem we find that the nanotube nucleation is initiated by cap formation via evolving of graphene embryo across the adjacent facets of catalyst particle. As a result the graphene embryos incorporate in their hexagonic network various polygons to accommodate the curved 3D geometry that initiates cap formation following by elongation of the circumferential rims. Based on these results, also on the census of nanotube caps and the fact that given cap fit only one nanotube wall, we consider carbon cap responsible for the helicity of carbon nanotube. This understanding could provide new avenues towards engineering particles to explicitly accommodate certain helicities via exploitation of the angular distribution of catalyst adjacent facets. Our recent progresses in production of carbon nanotubes, nanotube reinforced composites and their potential applications also will be presented.

  14. Electrochemical activity evaluation of chemically damaged carbon nanotube with palladium nanoparticles for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammad Shamsuddin; Jeon, Seungwon

    2015-05-01

    The carbon nanotube (CNT) has unique electrical and structural properties due to it's sp2 π-conjugative structure that leads to the higher electrocatalysis. The π-conjugative structure, that allows the CNT interact with various compounds and metal nanoparticles (NPs) through π-π electronic interaction. However, the damage of π-conjugative sidewall of CNT that can be hinder the electrocatalytic activity has found. For this study, the CNT, as base material, has been prepared through a conventional acid treatment method up to 15 h; the higher degree of sidewall damage has been observed in last 5 h during treatment period. The short and long term acid treated (denoted as CNT and CNT-COOH, respectively) CNTs have been subsequently fabricated with palladium NPs (denoted as CNT/Pd and CNT-Pd, respectively) and employed as ethanol oxidation reaction (EOR) catalysts. The CNT-Pd displays a poor electrocatalytic performance towards EOR than that of CNT/Pd due to the damage of π-conjugative sidewall. The kinetic parameters including poisoning tolerance have also been hampered by the surface damage. The CNT/Pd (∼3.3 folds) and CNT-Pd (∼1.5 folds) are express higher electrocatalytic activity and poisoning tolerance than that of Pd/C while Pd mass loading remains in the same amount.

  15. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.

    PubMed

    Kazachkin, Dmitry; Nishimura, Yoshifumi; Irle, Stephan; Morokuma, Keiji; Vidic, Radisav D; Borguet, Eric

    2008-08-05

    The interaction of acetone with single wall carbon nanotubes (SWCNTs) at low temperatures was studied by a combination of temperature programmed desorption (TPD) and dispersion-augmented density-functional-based tight binding (DFTB-D) theoretical simulations. On the basis of the results of the TPD study and theoretical simulations, the desorption peaks of acetone can be assigned to the following adsorption sites: (i) sites with energy of approximately 75 kJ mol (-1) ( T des approximately 300 K)endohedral sites of small diameter nanotubes ( approximately 7.7 A); (ii) sites with energy 40-68 kJ mol (-1) ( T des approximately 240 K)acetone adsorption on accessible interstitial, groove sites, and endohedral sites of larger nanotubes ( approximately 14 A); (iii) sites with energy 25-42 kJ mol (-1) ( T des approximately 140 K)acetone adsorption on external walls of SWCNTs and multilayer adsorption. Oxidatively purified SWCNTs have limited access to endohedral sites due to the presence of oxygen functionalities. Oxygen functionalities can be removed by annealing to elevated temperature (900 K) opening access to endohedral sites of nanotubes. Nonpurified, as-received SWCNTs are characterized by limited access for acetone to endohedral sites even after annealing to elevated temperatures (900 K). Annealing of both purified and as-produced SWCNTs to high temperatures (1400 K) leads to reduction of access for acetone molecules to endohedral sites of small nanotubes, probably due to defect self-healing and cap formation at the ends of SWCNTs. No chemical interaction between acetone and SWCNTs was detected for low temperature adsorption experiments. Theoretical simulations of acetone adsorption on finite pristine SWCNTs of different diameters suggest a clear relationship of the adsorption energy with tube sidewall curvature. Adsorption of acetone is due to dispersion forces, with its C-O bond either parallel to the surface or O pointing away from it. No significant charge

  16. Graphene wrapped Copper Phthalocyanine nanotube: Enhanced photocatalytic activity for industrial waste water treatment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Moumita; Ghorai, Uttam Kumar; Samanta, Madhupriya; Santra, Angshuman; Das, Gour P.; Chattopadhyay, Kalyan K.

    2017-10-01

    To improve the photocatalytic performance of metal phthalocyanine based catalyst, Copper Phthalocyanine (CuPc) functionalized reduced graphene oxide (RGO) nanocomposite has been synthesized through a simple chemical approach. The obtained product was characterized by X-ray diffraction technique (XRD), Fourier transform infrared (FTIR) spectroscopy, Ultraviolet-visible spectroscopy (UV-vis) and High resolution transmission electron microscopy (HRTEM). The photocatalytic activity of the RGO/CuPc nanocomposite was performed by the degradation of Rhodamine B (RhB) under visible light irradiation. The photocatalytic studies revealed that the RGO/CuPc nanocomposite exhibits much stronger catalytic behavior than the pristine CuPc nanotube. A plausible mechanism for the photodegradation of Rhodamine B (RhB) was suggested. The RGO wrapped CuPc nanotube composite materials offer great potential as active photocatalysts for degradation of organic pollutions in industrial waste water.

  17. Spectroscopic properties and STM images of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rubio, A.

    We present a theoretical study of the role of the local environment in the electronic properties of carbon nanotubes: isolated single- and multi-wall nanotubes, nanotube ropes, tubes supported on gold and cut to finite length. Interaction with the substrate or with other tubes does not alter the scanning tunneling microscopy patterns (STM) observed for isolated tubes. A finite-length nanotube shows standing-wave patterns that can be completely characterized by a set of four different three-dimensional shapes. These patterns are understood in terms of a simple π-electron tight-binding (TB) model. STM-topographic images of topological defects ani (pentagon/heptagon pair) and tube caps have also been studied. In both cases the image obtained depends on the sign of the applied voltage and can be described in terms of the previous catalog of STM images (interference between electronic waves scattered by the defect). We have also computed the electronic density of states for isolated tubes with different chiralities and radii, confirming a correlation between the peak structure in the DOS and nanotube diameter. However, the metallic plateau in the DOS also depends on the nanotube chirality. Furthermore the conduction an valence band structures are not fully symmetrical to one another. This anisotropy shows up in the DOS and indicates the limitations of the π-TB model in describing spectroscopic data. In contrast to STM images, here the interaction with the substrate does modify the energy levels of the nanotube. We observe opening of small pseudogaps around the Fermi level and broadening of the sharp van Hove singularities of the isolated single-walled nanotubes that can be used to extract useful information about the tube structure and bonding. The combination of STM and spectroscopic studies provides a new way to address the electronic and structural properties of carbon and composite nanotubes.

  18. The porous TiO2 nanotubes/Ag3PO4 heterojunction for enhancing sunlight photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chi, Chunyan; Pan, Jiaqi; You, Mingzhu; Dong, Zongjun; Zhao, Weijie; Song, Changsheng; Zheng, Yingying; Li, Chaorong

    2018-03-01

    The porous TiO2 nanotubes/Ag3PO4 heterojunction are synthesized via simple electrospining and chemical co-deposition method. The results of SEM, XRD, TEM and XPS imply that the Ag3PO4 nanoparticles have been introduced on to the surface of TiO2 nanotubes successfully. Compared with the unmodified samples, the photocatalytic activity of the as-prepared porous TiO2 nanotubes/Ag3PO4 heterojunction exhibit a remarkable enhancement by the degradation of methylene blue (MB) under the sunlight. Further, the Z-Scheme structure of the samples and the porous-tubular structure of the TiO2 are considered as the main reasons for the enhancement.

  19. Interaction of a Ni(II) tetraazaannulene complex with elongated fullerenes as simple models for carbon nanotubes.

    PubMed

    Henao-Holguín, Laura Verónica; Basiuk, Vladimir A

    2015-06-01

    Nickel(II) complex of 5,14-dihydro-6,8,15,17-tetramethyldibenzo[b,i][1,4,8,11] tetraazacyclotetradecine (NiTMTAA), which can be employed for noncovalent functionalization of carbon nanotubes (CNTs), represents a more complex and interesting case in terms of structure of the resulting nanohybrids, as compared to the related materials functionalized with porphyrins and phthalocyanines. Due to its saddle shape, the NiTMTAA molecule adsorbed can adopt different, energetically non-equivalent orientations with respect to CNT, depending on whether CH3 or C6H4 groups contact the latter. The main goal of the present work was to provide information on the interactions of NiTMTAA with simple single-walled CNT (SWNT) models accessible for dispersion-corrected DFT calculations. For reasons of comparison, we employed three such functionals: M06-2X and LC-BLYP as implemented in Gaussian 09 package, and PBE-G as implemented in Materials Studio 6.0. In order to roughly estimate the effect of nanotube chirality on the interaction strenght, we considered two short closed-end SWNT models (also referred to as 'elongated fullerenes'), one armchair and one zigzag, derived from C60 and C80 hemispheres. In addition, we calculated similar complexes with C60, as well as I h and D 5h isomers of C80. The results were analyzed in terms of optimized geometries, formation energies, HOMO-LUMO gap energies, and intermolecular separations. Graphical Abstract Interaction of Ni(II) tetraazaannulene complex with elongated fullerenes.

  20. Fabrication and mechanical properties of aluminum composite reinforced with functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alavijeh, Elham Zamani; Kokhaei, Saeed; Dehghani, Kamran

    2018-01-01

    Composite aluminum alloy (5000 series) and multi-walled carbon nanotubes (MWCNTs) were made using mechanical alloying, cold press and sintering. The quality of interactions between Al powders and CNTs in the metal matrix composite has a significant effect on mechanical properties. Motivated from the properties of functionalized CNTs, the current study use this material rather than the raw type, because of its reactivity. Besides, a poly-vinyl-alcohol pre-mixing is done, the aim of which is to enhance mixing process. The functionalized carbon nanotubes ware made by chemically method through refluxing with nitric acid. By this method functional groups have been created on CNTs surfaces. 1% and 3% functionalized carbon nanotubes were manufactured using the aforementioned method. To provide unbiased comparisons, 1% and 3% with raw CNTs and pure aluminum is produced with same manner. The numerical experiments affirm the superiority of the functionalized carbon nano-tubes in terms of the relative density and hardness of nanocomposites. As a final activity, the Fourier transformation infrared spectroscopy and field emission scanning electron microscopy techniques were used to characterize the carbon nanotubes and the powders.

  1. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2004-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  2. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2001-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  3. Loss of Proliferation and Antigen Presentation Activity following Internalization of Polydispersed Carbon Nanotubes by Primary Lung Epithelial Cells

    PubMed Central

    Kumari, Mandavi; Sachar, Sumedha; Saxena, Rajiv K.

    2012-01-01

    Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs) and primary lung epithelial (PLE) cells were studied. Peritoneal macrophages (PMs, known phagocytic cells) were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells. PMID:22384094

  4. Competitive interactions and controlled release of a natural antioxidant from halloysite nanotubes.

    PubMed

    Hári, József; Gyürki, Ádám; Sárközi, Márk; Földes, Enikő; Pukánszky, Béla

    2016-01-15

    Halloysite nanotubes used as potential carrier material for a controlled release stabilizer in polyethylene were thoroughly characterized with several techniques including the measurement of specific surface area, pore volume and surface energy. The high surface energy of the halloysite results in the strong bonding of the additive to the surface. Dissolution experiments carried out with eight different solvents for the determination of the effect of solvent characteristics on the amount of irreversibly bonded quercetin proved that adsorption and dissolution depend on competitive interactions prevailing in the system. Solvents with low polarity dissolve only surplus quercetin adsorbed in multilayers. Polyethylene is a very apolar polymer forming weak interactions with every substance; quercetin dissolves into it from the halloysite surface only above a critical surface coverage. Stabilization experiments confirmed that strong adhesion prevents dissolution and results in limited stabilization efficiency. At larger adsorbed amounts better stability and extended effect were measured indicating dissolution and controlled release. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes.

    PubMed

    Liu, Kai; Zhu, Feng; Liu, Liang; Sun, Yinghui; Fan, Shoushan; Jiang, Kaili

    2012-06-07

    Defects of carbon nanotubes, weak tube-tube interactions, and weak carbon nanotube joints are bottlenecks for obtaining high-strength carbon nanotube yarns. Some solution processes are usually required to overcome these drawbacks. Here we fabricate ultra-long and densely packed pure carbon nanotube yarns by a two-rotator twisting setup with the aid of some tensioning rods. The densely packed structure enhances the tube-tube interactions, thus making high tensile strengths of carbon nanotube yarns up to 1.6 GPa. We further use a sweeping laser to thermally treat as-produced yarns for recovering defects of carbon nanotubes and possibly welding carbon nanotube joints, which improves their Young's modulus by up to ∼70%. The spinning and laser sweeping processes are solution-free and capable of being assembled together to produce high-strength yarns continuously as desired.

  6. Sensitive spectrofluorometry of cellular prion protein based on the on-off interaction between fluorescent dye-labelled aptamers and multi-walled carbon nanotubes.

    PubMed

    Zhan, Lei; Peng, Li; Yu, Yan; Zhen, Shu Jun; Huang, Cheng Zhi

    2012-11-07

    The very simple and general spectrofluorometry of cellular prion protein (PrP(C)) is reported in this contribution based on the on-off noncovalent interaction of fluorescent dye-labelled PrP(C) DNA aptamers with multi-walled carbon nanotubes (MWCNTs). Due to the π-π stacking interaction between the DNA bases of the aptamer and the carbon nanotubes, the fluorescent dye and the MWCNTs are brought into close proximity, which leads to fluorescence quenching with a ratio of up to 87%. However, further addition of PrP(C), which disturbs the π-π interaction owing to the strong and specific binding of the aptamer to PrP(C), driving the aptamer away from the surface of the MWCNTs, restored the quenched fluorescence. This recovered fluorescence intensity was found to be in linear proportion to the PrP(C) concentration in the range of 8.2 to 81.7 nM, which builds the basis of the spectrofluorometry of the cellular prion protein.

  7. Resonance Raman signature of intertube excitons in compositionally-defined carbon nanotube bundles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Jeffrey R.; Roslyak, Oleksiy; Duque, Juan G.

    Electronic interactions in low-dimensional nanomaterial heterostructures can lead to novel optical responses arising from exciton delocalization over the constituent materials. Similar phenomena have been suggested to arise between closely interacting semiconducting carbon nanotubes of identical structure. Such behavior in carbon nanotubes has potential to generate new exciton physics, impact exciton transport mechanisms in nanotube networks, and place nanotubes as one-dimensional models for such behaviors in systems of higher dimensionality. Here we use resonance Raman spectroscopy to probe intertube interactions in (6,5) chirality-enriched bundles. Raman excitation profiles for the radial breathing mode and G-mode display a previously unobserved sharp resonance feature.more » We show the feature is evidence for creation of intertube excitons and is identified as a Fano resonance arising from the interaction between intratube and intertube excitons. The universality of the model suggests that similar Raman excitation profile features may be observed for interlayer exciton resonances in 2D multilayered systems.« less

  8. Resonance Raman signature of intertube excitons in compositionally-defined carbon nanotube bundles

    DOE PAGES

    Simpson, Jeffrey R.; Roslyak, Oleksiy; Duque, Juan G.; ...

    2018-02-12

    Electronic interactions in low-dimensional nanomaterial heterostructures can lead to novel optical responses arising from exciton delocalization over the constituent materials. Similar phenomena have been suggested to arise between closely interacting semiconducting carbon nanotubes of identical structure. Such behavior in carbon nanotubes has potential to generate new exciton physics, impact exciton transport mechanisms in nanotube networks, and place nanotubes as one-dimensional models for such behaviors in systems of higher dimensionality. Here we use resonance Raman spectroscopy to probe intertube interactions in (6,5) chirality-enriched bundles. Raman excitation profiles for the radial breathing mode and G-mode display a previously unobserved sharp resonance feature.more » We show the feature is evidence for creation of intertube excitons and is identified as a Fano resonance arising from the interaction between intratube and intertube excitons. The universality of the model suggests that similar Raman excitation profile features may be observed for interlayer exciton resonances in 2D multilayered systems.« less

  9. Resonance Raman signature of intertube excitons in compositionally-defined carbon nanotube bundles.

    PubMed

    Simpson, Jeffrey R; Roslyak, Oleksiy; Duque, Juan G; Hároz, Erik H; Crochet, Jared J; Telg, Hagen; Piryatinski, Andrei; Walker, Angela R Hight; Doorn, Stephen K

    2018-02-12

    Electronic interactions in low-dimensional nanomaterial heterostructures can lead to novel optical responses arising from exciton delocalization over the constituent materials. Similar phenomena have been suggested to arise between closely interacting semiconducting carbon nanotubes of identical structure. Such behavior in carbon nanotubes has potential to generate new exciton physics, impact exciton transport mechanisms in nanotube networks, and place nanotubes as one-dimensional models for such behaviors in systems of higher dimensionality. Here we use resonance Raman spectroscopy to probe intertube interactions in (6,5) chirality-enriched bundles. Raman excitation profiles for the radial breathing mode and G-mode display a previously unobserved sharp resonance feature. We show the feature is evidence for creation of intertube excitons and is identified as a Fano resonance arising from the interaction between intratube and intertube excitons. The universality of the model suggests that similar Raman excitation profile features may be observed for interlayer exciton resonances in 2D multilayered systems.

  10. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation

    NASA Astrophysics Data System (ADS)

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Dok Kim, Young

    2018-04-01

    NiO/NiCo2O4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (˜20 m2 g-1) than expected for a flat-surface structure (<15 m2 g-1). Herein, we present a study of the catalytic activity of our novel NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo2O4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo2O4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo2O4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  11. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation.

    PubMed

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Kim, Young Dok

    2018-04-27

    NiO/NiCo 2 O 4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N 2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (∼20 m 2 g -1 ) than expected for a flat-surface structure (<15 m 2 g -1 ). Herein, we present a study of the catalytic activity of our novel NiO/NiCo 2 O 4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo 2 O 4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo 2 O 4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo 2 O 4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  12. Superhydrogels of nanotubes capable of capturing heavy-metal ions.

    PubMed

    Song, Shasha; Wang, Haiqiao; Song, Aixin; Hao, Jingcheng

    2014-01-01

    Self-assembly regulated by hydrogen bonds was successfully achieved in the system of lithocholic acid (LCA) mixed with three organic amines, ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA), in aqueous solutions. The mixtures of DEA/LCA exhibit supergelation capability and the hydrogels consist of plenty of network nanotubes with uniform diameters of about 60 nm determined by cryogenic TEM. Interestingly, the sample with the same concentration in a system of EA and LCA is a birefringent solution, in which spherical vesicles and can be transformed into nanotubes as the amount of LCA increases. The formation of hydrogels could be driven by the delicate balance of diverse noncovalent interactions, including electrostatic interactions, hydrophobic interactions, steric effects, van der Waals forces, and mainly hydrogen bonds. The mechanism of self-assembly from spherical bilayer vesicles into nanotubes was proposed. The dried hydrogels with nanotubes were explored to exhibit the excellent capability for capturing heavy-metal ions, for example, Cu(2+), Co(2+), Ni(2+), Pb(2+), and Hg(2+). The superhydrogels of nanotubes from the self-assembly of low-molecular-weight gelators mainly regulated by hydrogen bonds used for the removal of heavy-metal ions is simple, green, and high efficiency, and provide a strategic approach to removing heavy-metal ions from industrial sewage. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Interaction of carbon nanotubes coatings with titanium substrate

    NASA Astrophysics Data System (ADS)

    Fraczek-Szczypta, Aneta; Wedel-Grzenda, Alicja; Benko, Aleksandra; Grzonka, Justyna; Mizera, Jaroslaw

    2017-02-01

    The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) after chemical surface functionalization on the interaction with a titanium surface. Two kinds of MWCNTs differing in terms of concentration of functional groups were deposited on the Ti surface using the electrophoretic deposition method (EPD). The study has shown the detailed analysis of the physicochemical properties of this form of carbon nanomaterial and received on their base coatings using various techniques, such as scanning electron microscopy (SEM), confocal microscopy, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The adhesion of the MWCNTs coatings to the Ti surface was determined using the shear test method, according to standard ASTM F-1044-05. These results indicated that one type of MWCNTs characterized by a higher concentration of functional groups has better adhesion to the metal surface than the second type. Analysis of the MWCNT-metal interface using Raman spectroscopy and SEM and STEM indicates the presence of phase built of MWCNT and TiO2. This phase could be a type of nanocomposite that affects the improvement of the adhesion of MWCNT to the Ti surface.

  14. All-fiber mode-locked laser via short single-wall carbon nanotubes interacting with evanescent wave in photonic crystal fiber.

    PubMed

    Li, Yujia; Gao, Lei; Huang, Wei; Gao, Cong; Liu, Min; Zhu, Tao

    2016-10-03

    We report an all-fiber passively mode-locked laser based on a saturable absorber fabricated by filling short single-wall carbon nanotubes into cladding holes of grapefruit-type photonic crystal fiber. The single-wall carbon nanotube is insensitive to polarization of light for its one-dimensional structure, which suppresses the polarization dependence loss. Carbon nanotubes interact with photonic crystal fiber with ultra-weak evanescent field, which enhances the damage threshold of the saturable absorber and improves the operating stability. In our experiment, conventional soliton with a pulse duration of 1.003 ps and center wavelength of 1566.36 nm under a pump power of 240 mW is generated in a compact erbium-doped fiber laser cavity with net anomalous dispersion of -0.4102 ps2. The signal to noise ratio of the fundamental frequency component is ~80 dB. The maximum average output power of the mode-locked laser reaches 9.56 mW under a pump power of 360 mW. The output power can be further improved by a higher pump power.

  15. Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors.

    PubMed

    Cao, Xuan; Lau, Christian; Liu, Yihang; Wu, Fanqi; Gui, Hui; Liu, Qingzhou; Ma, Yuqiang; Wan, Haochuan; Amer, Moh R; Zhou, Chongwu

    2016-11-22

    Semiconducting single-wall carbon nanotubes are ideal semiconductors for printed electronics due to their advantageous electrical and mechanical properties, intrinsic printability in solution, and desirable stability in air. However, fully printed, large-area, high-performance, and flexible carbon nanotube active-matrix backplanes are still difficult to realize for future displays and sensing applications. Here, we report fully screen-printed active-matrix electrochromic displays employing carbon nanotube thin-film transistors. Our fully printed backplane shows high electrical performance with mobility of 3.92 ± 1.08 cm 2 V -1 s -1 , on-off current ratio I on /I off ∼ 10 4 , and good uniformity. The printed backplane was then monolithically integrated with an array of printed electrochromic pixels, resulting in an entirely screen-printed active-matrix electrochromic display (AMECD) with good switching characteristics, facile manufacturing, and long-term stability. Overall, our fully screen-printed AMECD is promising for the mass production of large-area and low-cost flexible displays for applications such as disposable tags, medical electronics, and smart home appliances.

  16. Theoretical studies of urea adsorption on single wall boron-nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Chermahini, Alireza Najafi; Teimouri, Abbas; Farrokhpour, Hossein

    2014-11-01

    Surface modification of a boron nitride nanotube (BNNT) with urea molecule was investigated in terms of its energetic, geometric, and electronic properties using B3LYP and PW91 density functionals. In this investigation, various armchair (n,n) nanotubes, where n = 5, 6, 7 have been used. Two different interaction modes, including interaction with outer layer and inner layer of tube were studied. The results indicated that the adsorption of single urea molecule in all of its configurations is observed to be exothermic and physical in nature. Interestingly, the adsorption energy for the most stable configuration of urea was observed when the molecule located inside of the nanotube. Besides, the adsorption of urea on BNNTs changes the conductivity of nanotube.

  17. Nanoscale adhesion interactions in carbon nanotube based systems and experimental study of the mechanical properties of carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Zheng, Meng

    Part I: Carbon nanotubes (CNTs) are a type of 1D nanostructures, which possess extraordinary mechanical, electrical, thermal, and chemical properties and are promising for a number of applications. For many of their applications, CNTs will be assembled into micro or macro-scale structures (e.g. thin-films and yarns), or integrated with other bulk materials to form heterogeneous material systems and devices (e.g. nanocomposites and solid-state electronics). The interfaces formed among CNTs themselves and between the CNT and other material surfaces play crucial roles in the functioning and performance of CNT-based material systems and devices. Therefore, characterization of the interfacial interaction in CNT-based systems is a critical step to understand the nanoscale interface and tune the system and device design and manufacturing for optimal functioning and performance. In this part of dissertation, a combination of both mechanical and theoretical methods was employed to study the adhesion interactions in CNT-based systems. Part II: Both CNTs and boron nitride nanotubes (BNNTs) possess superb mechanical properties and are promising for a great many applications. They can be used in similar applications, such as reinforcing fibers in polymer composites based on their similar mechanical and thermal properties. CNTs are promising for electronics and sensors while BNNTs can be used as electrical insulators due to the tremendous differences of the electrical property. Furthermore, BNNTs can survive in high temperature and hazardous environments because of their resistant to oxidation and harsh chemicals. In order to optimize their applications, their mechanical properties should be fully understood. In this part of the dissertation research, first, the radial elasticity of single-walled CNTs and BNNTs was investigated by means of atomic force microscopy (AFM); secondly, the engineering radial deformations in single walled CNTs and BNNTs covered by monolayer grapheme

  18. Exploring possible mechanisms of action for the nanotoxicity and protein binding of decorated nanotubes: interpretation of physicochemical properties from optimal QSAR models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, Emilio Xavier, E-mail: emilio@exeResearch.com; The Chem21 Group, Inc., 1780 Wilson Drive, Lake Forest, IL 60045; Hopfinger, Anton J., E-mail: hopfingr@gmail.com

    2015-10-01

    Carbon nanotubes have become widely used in a variety of applications including biosensors and drug carriers. Therefore, the issue of carbon nanotube toxicity is increasingly an area of focus and concern. While previous studies have focused on the gross mechanisms of action relating to nanomaterials interacting with biological entities, this study proposes detailed mechanisms of action, relating to nanotoxicity, for a series of decorated (functionalized) carbon nanotube complexes based on previously reported QSAR models. Possible mechanisms of nanotoxicity for six endpoints (bovine serum albumin, carbonic anhydrase, chymotrypsin, hemoglobin along with cell viability and nitrogen oxide production) have been extracted frommore » the corresponding optimized QSAR models. The molecular features relevant to each of the endpoint respective mechanism of action for the decorated nanotubes are also discussed. Based on the molecular information contained within the optimal QSAR models for each nanotoxicity endpoint, either the decorator attached to the nanotube is directly responsible for the expression of a particular activity, irrespective of the decorator's 3D-geometry and independent of the nanotube, or those decorators having structures that place the functional groups of the decorators as far as possible from the nanotube surface most strongly influence the biological activity. These molecular descriptors are further used to hypothesize specific interactions involved in the expression of each of the six biological endpoints. - Highlights: • Proposed toxicity mechanism of action for decorated nanotubes complexes • Discussion of the key molecular features for each endpoint's mechanism of action • Unique mechanisms of action for each of the six biological systems • Hypothesized mechanisms of action based on QSAR/QNAR predictive models.« less

  19. Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: nanotubes enhance pesticide ecotoxicity.

    PubMed

    Campos-Garcia, Janaína; Martinez, Diego Stéfani T; Alves, Oswaldo L; Leonardo, Antônio Fernando Gervásio; Barbieri, Edison

    2015-01-01

    The interactions of carbon nanotubes with pesticides, such as carbofuran, classical contaminants (e.g., pesticides, polyaromatic hydrocarbons, heavy metals, and dyes) and emerging contaminants, including endocrine disruptors, are critical components of the environmental risks of this important class of carbon-based nanomaterials. In this work, we studied the modulation of acute carbofuran toxicity to the freshwater fish Nile tilapia (Oreochromis niloticus) by nitric acid treated multiwalled carbon nanotubes, termed HNO3-MWCNT. Nitric acid oxidation is a common chemical method employed for the purification, functionalisation and aqueous dispersion of carbon nanotubes. HNO3-MWCNT were not toxic to Nile tilapia at concentrations ranging from 0.1 to 3.0 mg/L for exposure times of up to 96 h. After 24, 48, 72 and 96 h, the LC50 values of carbofuran were 4.0, 3.2, 3.0 and 2.4 mg/mL, respectively. To evaluate the influence of carbofuran-nanotube interactions on ecotoxicity, we exposed the Nile tilapia to different concentrations of carbofuran mixed together with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, and 96 h of exposure, the LC50 values of carbofuran plus nanotubes were 3.7, 1.6, 0.7 and 0.5 mg/L, respectively. These results demonstrate that HNO3-MWCNT potentiate the acute toxicity of carbofuran, leading to a more than five-fold increase in the LC50 values. Furthermore, the exposure of Nile tilapia to carbofuran plus nanotubes led to decreases in both oxygen consumption and swimming capacity compared to the control. These findings indicate that carbon nanotubes could act as pesticide carriers affecting fish survival, metabolism and behaviour. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Magnetic nanotubes

    DOEpatents

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  1. Interactions between plasma-treated carbon nanotubes and electrically neutral materials

    NASA Astrophysics Data System (ADS)

    Ogawa, Daisuke; Nakamura, Keiji

    2014-10-01

    A plasma treatment can create dangling bonds on the surface of carbon nanotubes (CNTs). The dangling bonds are so reactive that the bonds possibly interact with other neutral species even out of the plasma if the lifetime of the bonds is effectively long. In order to have good understandings with the interactions, we placed multi-wall CNTs (MWCNTs) in atmospheric dielectric barrier discharge that was created in a closed environment with the voltage at 5 kV. We set 50 W for the operating power and 15 minutes for the process time for this plasma treatment. Our preliminary results showed that the reaction between dangling bonds and neutrals likely occurred in the situation when CNTs were treated with argon plasma, and then exposed in a nitrogen-rich dry box. We did Fourier transform infrared (FTIR) spectroscopy after the treatments. The measurement showed that the spectrum with plasma-treated CNTs was different from pristine CNTs. This is an indication that the plasma-treated CNTs have reactive cites on the surface even after the discharge (~ minutes), and then the CNTs likely reacted with the neutral species that causes the different spectrum. In this poster, we will show more details from our results and further progresses from this research.

  2. Lipid-based nanotubes as functional architectures with embedded fluorescence and recognition capabilities.

    PubMed

    John, George; Mason, Megan; Ajayan, Pulickel M; Dordick, Jonathan S

    2004-11-24

    A limited combinatorial strategy was used to synthesize a small library of soft lipid-based materials ranging from structurally unordered fibers to highly uniform nanotubes. The latter nanotubes are comprised of a bilayer structure with interdigitated alkyl chains associated through hydrophobic interactions. These tubes contain accessible 2,6-diaminopyridine linkers that can interact with thymidine and related nucleosides through multipoint hydrogen bonding, thereby quenching the intrinsic fluorescence of the aromatic linker. These results are the first example of a systematic strategy to design functional lipid nanotubes with precise structural and functional features.

  3. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  4. Preparation and characterization of biocompatible magnetic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shan, Yan; Chen, Kezheng; Yu, Xuegang; Gao, Lian

    2010-11-01

    Magnetic carbon nanotubes consisting of multi-wall carbon nanotubes (MWNTs) core and Fe3O4 shell were successfully prepared by in situ thermal decomposition of Fe(acac)3 or FeCl3 or Fe(CO)5 in 2-pyrrolidone containing acid treated MWNTs at 240 °C with the protection of nitrogen gas. The samples were characterized by TEM, XRD, SEAD, XPS and superconducting quantum interference device. Also, their biocompatibility was compared with naked carbon nanotubes. The results showed that after coated with Fe3O4 nanoparticles, the obtained magnetic carbon nanotubes show superparamagnetic characteristic at room temperature, and their blocking temperature is about 80 K. The magnetic properties of the nanotubes are relevant to the content of magnetic particles, increasing content of magnetic nanoparticles leads to higher blocking temperature and saturation magnetization. The results of antimicrobial activities to bacterial cells (Escherichia coli) showed that the MWNTs have antimicrobial activity, while the magnetic nanotubes are biocompatible even with a higher concentration than that of MWNTs.

  5. In Situ Formation of Carbon Nanotubes Encapsulated within Boron Nitride Nanotubes via Electron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenal, Raul; Lopez-Bezanilla, Alejandro

    2014-07-25

    We report experimental evidence of the formation by in situ electron-irradiation of single-walled carbon nanotubes (C NT) confined within boron nitride nanotubes (BN-NT). The electron radiation stemming from the microscope supplies the energy required by the amorphous carbonaceous structures to crystallize in a tubular form in a catalyst free procedure, at room temperature and high vacuum. The structural defects resulting from the interaction of the shapeless carbon with the BN nanotube are corrected in a self-healing process throughout the crystallinization. Structural changes developed during the irradiation process such as defects formation and evolution, shrinkage, and shortness of the BN-NT weremore » in situ monitored. The outer BN wall provides a protective and insulating shell against environmental Perturbations to the inner C-NT without affecting their electronic properties, as demonstrated by first principles calculations.« less

  6. A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities

    PubMed Central

    2012-01-01

    We report a simple chemical conversion and cation exchange technique to realize the synthesis of Sb2S3 nanotubes at a low temperature of 90°C. The successful chemical conversion from ZnS nanotubes to Sb2S3 ones benefits from the large difference in solubility between ZnS and Sb2S3. The as-grown Sb2S3 nanotubes have been transformed from a weak crystallization to a polycrystalline structure via successive annealing. In addition to the detailed structural, morphological, and optical investigation of the yielded Sb2S3 nanotubes before and after annealing, we have shown high photocatalytic activities of Sb2S3 nanotubes for methyl orange degradation under visible light irradiation. This approach offers an effective control of the composition and structure of Sb2S3 nanomaterials, facilitates the production at a relatively low reaction temperature without the need of organics, templates, or crystal seeds, and can be extended to the synthesis of hollow structures with various compositions and shapes for unique properties. PMID:22448960

  7. Strongly Coupled Nanotube Electromechanical Resonators.

    PubMed

    Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-09-14

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.

  8. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  9. A review on protein functionalized carbon nanotubes.

    PubMed

    Nagaraju, Kathyayini; Reddy, Roopa; Reddy, Narendra

    2015-12-18

    Carbon nanotubes (CNTs) have been widely recognized and used for controlled drug delivery and in various other fields due to their unique properties and distinct advantages. Both single-walled carbon nanotubes (SWCNTs) and multiwalled (MWCNTs) carbon nanotubes are used and/or studied for potential applications in medical, energy, textile, composite, and other areas. Since CNTs are chemically inert and are insoluble in water or other organic solvents, they are functionalized or modified to carry payloads or interact with biological molecules. CNTs have been preferably functionalized with proteins because CNTs are predominantly used for medical applications such as delivery of drugs, DNA and genes, and also for biosensing. Extensive studies have been conducted to understand the interactions, cytotoxicity, and potential applications of protein functionalized CNTs but contradicting results have been published on the cytotoxicity of the functionalized CNTs. This paper provides a brief review of CNTs functionalized with proteins, methods used to functionalize the CNTs, and their potential applications.

  10. Characteristics of activated carbon and carbon nanotubes as adsorbents to remove annatto (norbixin) in cheese whey.

    PubMed

    Zhang, Yue; Pan, Kang; Zhong, Qixin

    2013-09-25

    Removing annatto from cheese whey without bleaching has potential to improve whey protein quality. In this work, the potential of two activated carbon products and multiwalled carbon nanotubes (CNT) was studied for extracting annatto (norbixin) in aqueous solutions. Batch adsorption experiments were studied for the effects of solution pH, adsorbent mass, contact duration, and ionic strength. The equilibrium adsorption data were observed to fit both Langmuir and Freundlich isotherm models. The thermodynamic parameters estimated from adsorption isotherms demonstrated that the adsorption of norbixin on three adsorbents is exothermic, and the entropic contribution differs with adsorbent structure. The adsorption kinetics, with CNT showing a higher rate than activated carbon, followed the pseudo first order and second order rate expressions and demonstrated the significance of intraparticle diffusion. Electrostatic interactions were observed to be significant in the adsorption. The established adsorption parameters may be used in the dairy industry to decolorize cheese whey without applying bleaching agents.

  11. Investigation of growth dynamics of carbon nanotubes

    PubMed Central

    2017-01-01

    The synthesis of single-walled carbon nanotubes (SWCNTs) with defined properties is required for both fundamental investigations and practical applications. The revealing and thorough understanding of the growth mechanism of SWCNTs is the key to the synthesis of nanotubes with required properties. This paper reviews the current status of the research on the investigation of growth dynamics of carbon nanotubes. The review starts with the consideration of the peculiarities of the growth mechanism of carbon nanotubes. The physical and chemical states of the catalyst during the nanotube growth are discussed. The chirality selective growth of nanotubes is described. The main part of the review is dedicated to the analysis and systematization of the reported results on the investigation of growth dynamics of nanotubes. The studies on the revealing of the dependence of the growth rate of nanotubes on the synthesis parameters are reviewed. The correlation between the lifetime of catalyst and growth rate of nanotubes is discussed. The reports on the calculation of the activation energy of the nanotube growth are summarized. Finally, the growth properties of inner tubes inside SWCNTs are considered. PMID:28503394

  12. Theory of a Carbon-Nanotube Polarization Switch

    NASA Astrophysics Data System (ADS)

    Sasaki, Ken-ichi; Tokura, Yasuhiro

    2018-03-01

    Recently, it was suggested that the polarization dependence of light absorption to a single-walled carbon nanotube is altered by carrier doping. We specify theoretically the doping level at which the polarization anisotropy is reversed by plasmon excitation. The plasmon energy is mainly determined by the diameter of a nanotube because pseudospin makes the energy independent of the details of the band structure. We find that the effect of doping on the Coulomb interaction appears through the screened exchange energy, which can be observed as changes in the absorption peak positions. Our results strongly suggest the possibility that oriented nanotubes function as a polarization switch.

  13. Concentration-dependent effects of carbon nanotubes on growth and biphenyl degradation of Dyella ginsengisoli LA-4.

    PubMed

    Qu, Yuanyuan; Wang, Jingwei; Zhou, Hao; Ma, Qiao; Zhang, Zhaojing; Li, Duanxing; Shen, Wenli; Zhou, Jiti

    2016-02-01

    To enrich the understanding on interactions between carbon nanotubes (CNTs) and microbes, the responses of a biphenyl-degrading bacterium to single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and carboxyl single-walled carbon nanotubes (SWCNT-COOHs) were investigated. Electron microscopy, viability test, cellular membrane integrity, and oxidative stress analyses indicated that CNT toxicity was mainly caused by physical piercing. Apart from antibacterial activities, the experimental results showed that CNTs enhanced cell growth and biphenyl degradation at certain concentrations (1.0-1.5 mg/L). The CNTs aggregated and adsorbed cells and biphenyl to form a CNTs-cells-biphenyl coexisting system, thus it created a suitable microenvironment for cell attachment and proliferation where the cells could utilize biphenyl easier for their growth. To the best of our knowledge, this is the first report about CNTs' impact on biodegradation efficacy and growth of aromatic-degrading bacterium.

  14. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E.

    2014-07-14

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size andmore » state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.« less

  15. Thermogravimetric analysis of the interaction of ferromagnetic metal atom and multiwalled carbon nanotubes.

    PubMed

    Rawat, Naveen; Gudyaka, Russel; Kumar, Mohit; Joshi, Bharat; Santhanam, Kalathur S V

    2008-04-01

    This paper describes the thermal oxidative behavior of atomized iron or atomized cobalt in the presence of multiwalled carbon nanotubes (MWCNT). The thermogravimetric analysis shows the atomized iron thermal oxidation starts at about 500 degrees C that is absent when the atomized iron is sintered with multiwalled carbon naonotubes. The thermal oxidation of iron in the sintered samples requires the collapse of the multiwalled carbon nanotubes. A similar behavior is observed with atomized cobalt when its oxidation requires the collapse of the nanotubes. This thermal oxidative shift is interpreted as due to the atomized iron or atomized cobalt atom experiencing extensive overlap and confinement effect with multiwalled carbon nanotubes causing a spin transfer. This confinement effect is suggested to produce a transformation of iron from the outermost electronic distribution of 3d64s2 to an effective configuration of 3d84s0 and for cobalt 3d74s2 to 3d94s0 producing spintronics effect.

  16. The environmental effect on the radial breathing mode of carbon nanotubes in water

    NASA Astrophysics Data System (ADS)

    Longhurst, M. J.; Quirke, N.

    2006-06-01

    We investigate, using molecular dynamics, the effect on the radial breathing mode (RBM) frequency of immersion in water for a range of single-walled carbon nanotubes. We find that nanotube-water interactions are responsible for an upshift in the RBM frequency of the order of 4-10 wave numbers. The upshift is comprised of two components: increased hydrostatic pressure on the nanotube due to curvature effects, and the dynamic coupling of the RBM with its solvation shell. In contrast to much of the current literature, we find that the latter of the two effects is dominant. This could serve as an innovative tool for determining the interaction potential between nanotubes/graphitic surfaces and fluids.

  17. Functionalization of vertically aligned carbon nanotubes.

    PubMed

    Van Hooijdonk, Eloise; Bittencourt, Carla; Snyders, Rony; Colomer, Jean-François

    2013-01-01

    This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  18. Functionalization of vertically aligned carbon nanotubes

    PubMed Central

    Snyders, Rony; Colomer, Jean-François

    2013-01-01

    Summary This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs. PMID:23504581

  19. Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.

  20. Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes.

    PubMed

    Sureshbabu, Adukamparai Rajukrishnan; Kurapati, Rajendra; Russier, Julie; Ménard-Moyon, Cécilia; Bartolini, Isacco; Meneghetti, Moreno; Kostarelos, Kostas; Bianco, Alberto

    2015-12-01

    Biodegradation of carbon-based nanomaterials has been pursued intensively in the last few years, as one of the most crucial issues for the design of safe, clinically relevant conjugates for biomedical applications. In this paper it is demonstrated that specific functional molecules can enhance the catalytic activity of horseradish peroxidase (HRP) and xanthine oxidase (XO) for the degradation of carbon nanotubes. Two different azido coumarins and one cathecol derivative are linked to multi-walled carbon nanotubes (MWCNTs). These molecules are good reducing substrates and strong redox mediators to enhance the catalytic activity of HRP. XO, known to metabolize various molecules mainly in the mammalian liver, including human, was instead used to test the biodegradability of MWCNTs modified with an azido purine. The products of the biodegradation process are characterized by transmission electron microscopy and Raman spectroscopy. The results indicate that coumarin and catechol moieties have enhanced the biodegradation of MWCNTs compared to oxidized nanotubes, likely due to the capacity of these substrates to better interact with and activate HRP. Although azido purine-MWCNTs are degraded less effectively by XO than oxidized nanotubes, the data uncover the importance of XO in the biodegradation of carbon-nanomaterials leading to their better surface engineering for biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering

    PubMed Central

    Tonelli, Fernanda MP; Santos, Anderson K; Gomes, Katia N; Lorençon, Eudes; Guatimosim, Silvia; Ladeira, Luiz O; Resende, Rodrigo R

    2012-01-01

    In recent years, significant progress has been made in organ transplantation, surgical reconstruction, and the use of artificial prostheses to treat the loss or failure of an organ or bone tissue. In recent years, considerable attention has been given to carbon nanotubes and collagen composite materials and their applications in the field of tissue engineering due to their minimal foreign-body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth, proliferation, and differentiation. Recently, grafted collagen and some other natural and synthetic polymers with carbon nanotubes have been incorporated to increase the mechanical strength of these composites. Carbon nanotube composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. PMID:22923989

  2. Carbon Nanotubes Influence the Enzyme Activity of Biogeochemical Cycles of Carbon, Nitrogen, Phosphorus and the Pathogenesis of Plants in Annual Agroecosystems

    NASA Astrophysics Data System (ADS)

    Vaishlya, O. B.; Osipov, N. N.; Guseva, N. V.

    2015-09-01

    We conducted pre-sowing seed treatment of spring wheat carbon nanotubes modified with thionyl chloride, ethylene diamine, azobenzole, and dodecylamine. CNTs did not disrupt the structure of the crop, but the activity of extracellular enzymes in the rhizosphere of plants in the flowering stage changed: laccase works more poorly in the variant of the CNTs with the amino groups exochitinase and phosphatase activity increased in the case of chlorinated CNTs, OH and COOH groups on the surface of the nanotubes twice accelerate work β-glucosidase. The changes observed in the biogeochemical cycles in the rhizosphere are a possible cause of the effect of nanotubes on the development of epidemic diseases of wheat.

  3. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells.

    PubMed

    Burblies, Niklas; Schulze, Jennifer; Schwarz, Hans-Christoph; Kranz, Katharina; Motz, Damian; Vogt, Carla; Lenarz, Thomas; Warnecke, Athanasia; Behrens, Peter

    2016-01-01

    Cochlear and deep brain implants are prominent examples for neuronal prostheses with clinical relevance. Current research focuses on the improvement of the long-term functionality and the size reduction of neural interface electrodes. A promising approach is the application of carbon nanotubes (CNTs), either as pure electrodes but especially as coating material for electrodes. The interaction of CNTs with neuronal cells has shown promising results in various studies, but these appear to depend on the specific type of neurons as well as on the kind of nanotubes. To evaluate a potential application of carbon nanotube coatings for cochlear electrodes, it is necessary to investigate the cytocompatibility of carbon nanotube coatings on platinum for the specific type of neuron in the inner ear, namely spiral ganglion neurons. In this study we have combined the chemical processing of as-delivered CNTs, the fabrication of coatings on platinum, and the characterization of the electrical properties of the coatings as well as a general cytocompatibility testing and the first cell culture investigations of CNTs with spiral ganglion neurons. By applying a modification process to three different as-received CNTs via a reflux treatment with nitric acid, long-term stable aqueous CNT dispersions free of dispersing agents were obtained. These were used to coat platinum substrates by an automated spray-coating process. These coatings enhance the electrical properties of platinum electrodes, decreasing the impedance values and raising the capacitances. Cell culture investigations of the different CNT coatings on platinum with NIH3T3 fibroblasts attest an overall good cytocompatibility of these coatings. For spiral ganglion neurons, this can also be observed but a desired positive effect of the CNTs on the neurons is absent. Furthermore, we found that the well-established DAPI staining assay does not function on the coatings prepared from single-wall nanotubes.

  4. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells

    PubMed Central

    Schwarz, Hans-Christoph; Kranz, Katharina; Motz, Damian; Vogt, Carla; Lenarz, Thomas; Warnecke, Athanasia; Behrens, Peter

    2016-01-01

    Cochlear and deep brain implants are prominent examples for neuronal prostheses with clinical relevance. Current research focuses on the improvement of the long-term functionality and the size reduction of neural interface electrodes. A promising approach is the application of carbon nanotubes (CNTs), either as pure electrodes but especially as coating material for electrodes. The interaction of CNTs with neuronal cells has shown promising results in various studies, but these appear to depend on the specific type of neurons as well as on the kind of nanotubes. To evaluate a potential application of carbon nanotube coatings for cochlear electrodes, it is necessary to investigate the cytocompatibility of carbon nanotube coatings on platinum for the specific type of neuron in the inner ear, namely spiral ganglion neurons. In this study we have combined the chemical processing of as-delivered CNTs, the fabrication of coatings on platinum, and the characterization of the electrical properties of the coatings as well as a general cytocompatibility testing and the first cell culture investigations of CNTs with spiral ganglion neurons. By applying a modification process to three different as-received CNTs via a reflux treatment with nitric acid, long-term stable aqueous CNT dispersions free of dispersing agents were obtained. These were used to coat platinum substrates by an automated spray-coating process. These coatings enhance the electrical properties of platinum electrodes, decreasing the impedance values and raising the capacitances. Cell culture investigations of the different CNT coatings on platinum with NIH3T3 fibroblasts attest an overall good cytocompatibility of these coatings. For spiral ganglion neurons, this can also be observed but a desired positive effect of the CNTs on the neurons is absent. Furthermore, we found that the well-established DAPI staining assay does not function on the coatings prepared from single-wall nanotubes. PMID:27385031

  5. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity.

    PubMed

    Hajjaji, A; Elabidi, M; Trabelsi, K; Assadi, A A; Bessais, B; Rtimi, S

    2018-06-05

    This study investigates the effect of the diameter of TiO 2 nanotubes and silver decorated nanotubes on optical properties and photocatalytic inactivation of Escherichia coli under visible light. The TiO 2 nanotubes (TiO 2 -NTs) were prepared using the electrochemical method varying the anodization potential starting from 20 V until 70 V. The Ag nanoparticles were carried out using the photoreduction process under the same experimental conditions. The diameter size was determined using the scanning electronic microscopy (SEM). TiO 2 -NTs diameter reached ∼100 nm at 70 V. Transmission electronic microscopy (TEM) imaging confirmed the TiO 2 -NTs surface decoration by silver nanoparticles. The Ag-NPs average size was found to be equal to 8 nm. The X-Ray diffraction (XRD) analysis confirm that all TiO 2 -NTs crystallize in the anatase phases regardless the used anodization potential. The decrease of the photoluminescence (PL) intensity of Ag NPs decorated TiO 2 -NTs indicates the decrease of the specific area when the nanotubes diameter increases. The UV-vis absorbance show that the absorption edges was bleu shifted with the increasing of nanotubes diameter, which can be explained by the increase of the crystallites average size. The bacterial adhesion and inactivation tests were carried in the dark and under light. Bacteria were seen to adhere on TiO 2 -NTs in the dark; however, under light the bacteria were killed before they establish a strong contact with the TiO 2 -NTs and Ag/TiO 2 -NTs surfaces. Bacterial inactivation kinetics were faster when the anodizing potential of the NTs-preparation increases. A total bacterial inactivation was obtained on ∼100 nm nanotubes diameter within 90 min. This result was attributed to the enhancement of the TNTs crystallinity leading to reduced surface defects. Redox catalysis was seen to occur under light on the TiO 2 -NTs and Ag/TiO 2 -NTs. the photo-induced antibacterial activity on the AgO/Ag 2 O decorated Ti

  6. Carbon nanotube materials for hydrogen storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption onmore » planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.« less

  7. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method.

    PubMed

    Zardini, Hadi Zare; Amiri, Ahmad; Shanbedi, Mehdi; Maghrebi, Morteza; Baniadam, Majid

    2012-04-01

    Multi-walled carbon nanotubes (MWCNTs) were first functionalized by arginine and lysine under microwave radiation. Surface functionalization was confirmed by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and transmission electron microscopy (TEM). After the MWCNTs were functionalized by arginine and lysine, the antibacterial activity of all treated samples was increased significantly against all bacteria that were tested. Based on the observed minimum inhibitory concentration and radial diffusion assay, the sequence of antibacterial activity was MWCNTs-arginine>MWCNTs-lysine>pristine MWCNTs. The functionalized MWCNTs were especially effective against gram-negative bacteria (e.g., Escherichia coli and Salmonella typhimurium). Interestingly, the MWCNT samples were effective against the resistant strain Staphylococcos aureus. The enhanced antibacterial activity was attributed to electrostatic adsorption of bacteria membrane due to positive charges of the functional groups on MWCNTs surface. Since MWCNTs have lower cytotoxicity than single-walled carbon nanotubes, their functionalization with cationic amino acids could be a beneficial approach in the disinfection industry. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Immobilization of natural anti-oxidants on carbon nanotubes and aging behavior of ultra-high molecular weight polyethylene-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Dintcheva, Nadka Tzankova; Arrigo, Rossella; Gambarotti, Cristian; Guenzi, Monica; Carroccio, Sabrina; Cicogna, Francesca; Filippone, Giovanni

    2014-05-01

    The use of natural antioxidants is an attractive way to formulate nanocomposites with extended durability and with potential applications in bio-medical field. In this work, Vitamin E (VE) in the form of α-tocopherol and Quercetin (Q) are physically immobilized on the outer surface of multi-walled carbon nanotubes (CNTs). Afterward, the CNTs-VE and CNTs-Q are used to formulate thermally stable ultra high molecular weight polyethylene based nanocomposites. The obtained results in the study of the thermo-oxidation behavior suggest a beneficial effect of the natural anti-oxidant carbon nanotubes systems. The unexpected excellent thermo-resistance of the nanocomposites seems to be due to a synergistic effect of the natural anti-oxidant and carbon nanotubes, i.e. strong interaction between CNT surface and anti-oxidant molecules. Particularly, these interactions cause the formation of structural defects onto outer CNT surfaces, which, in turn, increase the CNT radical scavenging activity.

  9. Molecular discriminators using single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr; Ranjan Ray, Nihar; Sarkar, Sabyasachi

    2012-09-01

    The interaction between single wall carbon nanotubes (SWNTs) and amphiphilic molecules has been studied in a solid phase. SWNTs are allowed to interact with different amphiphilic probes (e.g. lipids) in a narrow capillary interface. Contact between strong hydrophobic and amphiphilic interfaces leads to a molecular restructuring of the lipids at the interface. The geometry of the diffusion front and the rate and the extent of diffusion of the interface are dependent on the structure of the lipid at the interface. Lecithin having a linear tail showed greater mobility of the interface as compared to a branched tail lipid like dipalmitoyl phosphatidylcholine, indicating the hydrophobic interaction between single wall carbon nanotube core and the hydrophobic tail of the lipid. Solid phase interactions between SWNT and lipids can thus become a very simple but efficient means of discriminating amphiphilic molecules in general and lipids in particular.

  10. On the vibrational characteristics of single- and double-walled carbon nanotubes containing ice nanotube in aqueous environment

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.; Ameri, A.

    2015-10-01

    The properties and behavior of carbon nanotubes (CNTs) in aqueous environment due to their considerable potential applications in nanobiotechnology and designing nanobiosensors have attracted the attention of researchers. In this study, molecular dynamics simulations are carried out to investigate the vibrational characteristics of single- and double-walled CNTs containing ice nanotubes (a new phase of ice) in vacuum and aqueous environments. The results demonstrate that formation of ice nanotubes inside the CNTs reduces the natural frequency of pure CNTs. Moreover, it is demonstrated that increasing the number of walls considerably reduces the sensitivity of frequency to the presence of ice nanotube inside CNT. Additionally, it is shown that increasing the length decreases the effect of ice nanotube on reducing the frequency. The calculation of natural frequency of CNTs in aqueous media demonstrates that the interaction of CNTs with water molecules considerably reduces the natural frequency up to 50 %. Finally, it is demonstrated that in the case of CNTs with one free end in aqueous environment, the CNT does not vibrate in its first mode, and its frequency is between the frequencies of first and second modes of vibration.

  11. Single-walled carbon nanotubes-ciprofloxacin nanoantibiotic: strategy to improve ciprofloxacin antibacterial activity.

    PubMed

    Assali, Mohyeddin; Zaid, Abdel Naser; Abdallah, Farah; Almasri, Motasem; Khayyat, Rasha

    2017-01-01

    As infectious diseases continue to be one of the greatest health challenges worldwide, the demand toward alternative agents is continuously increasing. Recent advancement in nanotechnology has expanded our ability to design and construct nanomaterials to treat bacterial infections. Carbon nanotubes are one among these nanomaterials. Herein, we describe the covalent functionalization of the single-walled carbon nanotubes (SWCNTs) with multiple molecules of ciprofloxacin. The prepared nanoantibiotics were characterized using different techniques, including transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The characterization of the nanoantibiotics confirmed the successful covalent functionalization of the SWCNTs with 55% of functionalization as has been observed by thermogravimetric analysis. The release profile revealed that 90% of the loaded ciprofloxacin was released within 2.5 h at pH 7.4 showing a first-order release profile with R 2 >0.99. Interestingly, the results of the antibacterial activity indicated that the functionalized SWCNTs have significant increase in the antibacterial activity against the three strains of bacteria - by 16-fold for Staphylococcus aureus and Pseudomonas aeruginosa and by 8-fold for Escherichia coli - in comparison to the ciprofloxacin free drug. Moreover, the synthesized nanoantibiotic showed high hemocompatibility and cytocompatibility over a wide concentration range.

  12. Carbon Nanotubes for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Files, Brad; Yowell, Leonard

    2003-01-01

    Single-wall carbon nanotubes offer the promise of a new class of revolutionary materials for space applications. The Carbon Nanotube Project at NASA Johnson Space Center has been actively researching this new technology by investigating nanotube production methods (arc, laser, and HiPCO) and gaining a comprehensive understanding of raw and purified material using a wide range of characterization techniques. After production and purification, single wall carbon nanotubes are processed into composites for the enhancement of mechanical, electrical, and thermal properties. This "cradle-to-grave" approach to nanotube composites has given our team unique insights into the impact of post-production processing and dispersion on the resulting material properties. We are applying our experience and lessons-learned to developing new approaches toward nanotube material characterization, structural composite fabrication, and are also making advances in developing thermal management materials and electrically conductive materials in various polymer-nanotube systems. Some initial work has also been conducted with the goal of using carbon nanotubes in the creation of new ceramic materials for high temperature applications in thermal protection systems. Human space flight applications such as advanced life support and fuel cell technologies are also being investigated. This discussion will focus on the variety of applications under investigation.

  13. Phonon spectra, electronic, and thermodynamic properties of WS2 nanotubes.

    PubMed

    Evarestov, Robert A; Bandura, Andrei V; Porsev, Vitaly V; Kovalenko, Alexey V

    2017-11-15

    Hybrid density functional theory calculations are performed for the first time on the phonon dispersion and thermodynamic properties of WS 2 -based single-wall nanotubes. Symmetry analysis is presented for phonon modes in nanotubes using the standard (crystallographic) factorization for line groups. Symmetry and the number of infra-red and Raman active modes in achiral WS 2 nanotubes are given for armchair and zigzag chiralities. It is demonstrated that a number of infrared and Raman active modes is independent on the nanotube diameter. The zone-folding approach is applied to find out an impact of curvature on electron and phonon band structure of nanotubes rolled up from the monolayer. Phonon frequencies obtained both for layers and nanotubes are used to compute the thermal contributions to their thermodynamic functions. The temperature dependences of energy, entropy, and heat capacity of nanotubes are estimated with respect to those of the monolayer. The role of phonons in the stability estimation of nanotubes is discussed based on Helmholtz free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Adsorption of Estrogen Contaminants by Graphene Nanomaterials under Natural Organic Matter Preloading: Comparison to Carbon Nanotube, Biochar, and Activated Carbon.

    PubMed

    Jiang, Luhua; Liu, Yunguo; Liu, Shaobo; Zeng, Guangming; Hu, Xinjiang; Hu, Xi; Guo, Zhi; Tan, Xiaofei; Wang, Lele; Wu, Zhibin

    2017-06-06

    Adsorption of two estrogen contaminants (17β-estradiol and 17α-ethynyl estradiol) by graphene nanomaterials was investigated and compared to those of a multi-walled carbon nanotube (MWCNT), a single-walled carbon nanotube (SWCNT), two biochars, a powdered activated carbon (PAC), and a granular activate carbon (GAC) in ultrapure water and in the competition of natural organic matter (NOM). Graphene nanomaterials showed comparable or better adsorption ability than carbon nanotubes (CNTs), biochars (BCs), and activated carbon (ACs) under NOM preloading. The competition of NOM decreased the estrogen adsorption by all adsorbents. However, the impact of NOM on the estrogen adsorption was smaller on graphenes than CNTs, BCs, and ACs. Moreover, the hydrophobicity of estrogens also affected the uptake of estrogens. These results suggested that graphene nanomaterials could be used to removal estrogen contaminants from water as an alternative adsorbent. Nevertheless, if transferred to the environment, they would also adsorb estrogen contaminants, leading to great environmental hazards.

  15. Diameter-dependent wetting of tungsten disulfide nanotubes

    PubMed Central

    Goldbart, Ohad; Cohen, Sidney R.; Kaplan-Ashiri, Ifat; Glazyrina, Polina; Wagner, H. Daniel; Enyashin, Andrey; Tenne, Reshef

    2016-01-01

    The simple process of a liquid wetting a solid surface is controlled by a plethora of factors—surface texture, liquid droplet size and shape, energetics of both liquid and solid surfaces, as well as their interface. Studying these events at the nanoscale provides insights into the molecular basis of wetting. Nanotube wetting studies are particularly challenging due to their unique shape and small size. Nonetheless, the success of nanotubes, particularly inorganic ones, as fillers in composite materials makes it essential to understand how common liquids wet them. Here, we present a comprehensive wetting study of individual tungsten disulfide nanotubes by water. We reveal the nature of interaction at the inert outer wall and show that remarkably high wetting forces are attained on small, open-ended nanotubes due to capillary aspiration into the hollow core. This study provides a theoretical and experimental paradigm for this intricate problem. PMID:27856759

  16. Correlated Electrons in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Odintsov, Arkadi A.; Yoshioka, Hideo

    Single-wall carbon nanotubes are almost ideal systems for the investigation of exotic many-body effects due to non-Fermi liquid behavior of interacting electrons in one dimension. Recent theoretical and experimental results are reviewed with a focus on electron correlations. Starting from a microscopic lattice model we derive an effective phase Hamiltonian for conducting single-wall nanotubes with arbitrary chirality. The parameters of the Hamiltonian show very weak dependence on the chiral angle, which makes the low-energy physics of conducting nanotubes universal. The temperature-dependent resistivity and frequency-dependent optical conductivity of nanotubes with impurities are evaluated within the Luttinger-like model. Localization effects are studied. In particular, we found that intra-valley and inter-valley electron scattering can not coexist at low energies. Low-energy properties of clean nanotubes are studied beyond the Luttinger liquid approximation. The strongest Mott-like electron instability occurs at half filling. In the Mott insulating phase electrons at different atomic sublattices form characteristic bound states. The energy gaps occur in all modes of elementary excitations and estimate at 0.01-0.1 eV. We finally discuss observability of the Mott insulating phase in transport experiments. The accent is made on the charge transfer from external electrodes which results in a deviation of the electron density from half-filling.

  17. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes.

    PubMed

    Ma, Jie; Yu, Fei; Zhou, Lu; Jin, Lu; Yang, Mingxuan; Luan, Jingshuai; Tang, Yuhang; Fan, Haibo; Yuan, Zhiwen; Chen, Junhong

    2012-11-01

    An alkali-acitvated method was explored to synthesize activated carbon nanotubes (CNTs-A) with a high specific surface area (SSA), and a large number of mesopores. The resulting CNTs-A were used as an adsorbent material for removal of anionic and cationic dyes in aqueous solutions. Experimental results indicated that CNTs-A have excellent adsorption capacity for methyl orange (149 mg/g) and methylene blue (399 mg/g). Alkali-activation treatment of CNTs increased the SSA and pore volume (PV), and introduced oxygen-containing functional groups on the surface of CNTs-A, which would be beneficial to improving the adsorption affinity of CNTs-A for removal of dyes. Kinetic regression results shown that the adsorption kinetic was more accurately represented by a pseudo second-order model. The overall adsorption process was jointly controlled by external mass transfer and intra-particle diffusion, and intra-particle diffusion played a dominant role. Freundlich isotherm model showed a better fit with adsorption data than Langmuir isotherm model. Adsorption interactions of dyes onto CNTs-A from aqueous solutions were investigated using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) method. The remarkable adsorption capacity of dye onto CNTs-A can be attributed to the multiple adsorption interaction mechanisms (hydrogen bonding, π-π electron-donor-acceptor interactions, electrostatic interactions, mesopore filling) on the CNTs-A. Results of this work are of great significance for environmental applications of activated CNTs as a promising adsorbent nanomaterial for organic pollutants from aqueous solutions.

  18. The conformation of Pluronic block copolymers adsorbed on carbon nanotubes and their interaction with water studied by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Cohen, Yachin; Granite, Meirav; Pyckhout-Hintzen, Wim; Radulescu, Aurel

    2010-03-01

    Amphiphilic block copolymers are particularly useful in dispersing single-walled carbon nanotubes (SWCNT) in water. Small-angle neutron scattering measurements conducted at different D2O/H2O content of the dispersing medium provide quantitative information on the adsorption density and conformation of the polymer interacting with the nanotube surface. Data is presented on Pluronic F108 - (EO)132(PO)50(EO)132 and F127 (EO)100(PO)65(EO)100, where EO-ethylene oxide and PO-propylene oxide, well below the critical micellization temperature of the polymer. A dense coating of the PPO blocks on the nanotube surface is determined with the PEO chains extended from the cylindrical core-shell structure. The data from the two Pluronic systems show minimal scattering at about 70% D2O in the dispersing water, which exhibit a q -1 power law of the scattering vector (q ). This indicates near matching of the polymer chains at a surprisingly high scattering length density. The model fit required considerations of tight association of water molecules around PEO chains and slight isotopic selectivity.

  19. Particle emissions from laboratory activities involving carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lo, Li-Ming; Tsai, Candace S.-J.; Heitbrink, William A.; Dunn, Kevin H.; Topmiller, Jennifer; Ellenbecker, Michael

    2017-08-01

    This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20-30-nm-diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time, and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high-aspect-ratio particles were identified as being released from some activities. The EC concentration (0.87 μg/m3) at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating, and cutting. Various sampling methods all indicated different levels of CNTs from the activities; however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.

  20. Polypyrrole/titanium oxide nanotube arrays composites as an active material for supercapacitors.

    PubMed

    Kim, Min Seok; Park, Jong Hyeok

    2011-05-01

    The authors present the first reported use of vertically oriented titanium oxide nanotube/polypyrrole (PPy) nanocomposites to increase the specific capacitance of TiO2 based energy storage devices. To increase their electrical storage capacity, titanium oxide nanotubes were coated with PPy and their morphologies were characterized. The incorporation of PPy increased the specific capacitance of the titanium oxide nanotube based supercapacitor system, due to their increased surface area and additional pseudo-capacitance.

  1. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Hata, Kenji; Futaba, Don N.; Mizuno, Kohei; Namai, Tatsunori; Yumura, Motoo; Iijima, Sumio

    2004-11-01

    We demonstrate the efficient chemical vapor deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water. Water-stimulated enhanced catalytic activity results in massive growth of superdense and vertically aligned nanotube forests with heights up to 2.5 millimeters that can be easily separated from the catalysts, providing nanotube material with carbon purity above 99.98%. Moreover, patterned, highly organized intrinsic nanotube structures were successfully fabricated. The water-assisted synthesis method addresses many critical problems that currently plague carbon nanotube synthesis.

  2. Interaction Between New Anti-cancer Drug Syndros and CNT(6,6-6) Nanotube for Medical Applications: Geometry Optimization, Molecular Structure, Spectroscopic (NMR, UV/Vis, Excited state), FMO, MEP and HOMO-LUMO Investigation

    NASA Astrophysics Data System (ADS)

    Sheikhi, Masoome; Shahab, Siyamak; Khaleghian, Mehrnoosh; Kumar, Rakesh

    2018-03-01

    In the present work, Density Functional Theory (DFT) was first time employed to investigate the interaction between new drug (6aR,10aR)-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol (Syndros) and the CNT(6,6-6) Nanotube in the gaseous phase. The interaction effects of compounds Syndros and CNT (6,6-6) nanotube on the electronic properties, chemical shift tensors and natural charge was also determined and discussed. The electronic spectra of the Syndros and the complex CNT(6,6-6)/Syndros in the gas phase were calculated by Time Dependent Density Functional Theory (TD-DFT) for the formation of adsorption effect on maximum wavelength of the Syndros. Nucleus-Independent Chemical Shifts (NICS) calculations have also been carried out for the compound Syndors and the complex CNT(6,6-6)/Syndros and the aromaticity of the compound Syndors before and after interaction with the CNT(6,6-6) Nanotube was investigated.

  3. A versatile chemical conversion synthesis of Cu2S nanotubes and the photovoltaic activities for dye-sensitized solar cell

    PubMed Central

    2014-01-01

    A versatile, low-temperature, and low-cost chemical conversion synthesis has been developed to prepare copper sulfide (Cu2S) nanotubes. The successful chemical conversion from ZnS nanotubes to Cu2S ones profits by the large difference in solubility between ZnS and Cu2S. The morphology, structure, and composition of the yielded products have been examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction measurements. We have further successfully employed the obtained Cu2S nanotubes as counter electrodes in dye-sensitized solar cells. The light-to-electricity conversion results show that the Cu2S nanostructures exhibit high photovoltaic conversion efficiency due to the increased surface area and the good electrocatalytical activity of Cu2S. The present chemical route provides a simple way to synthesize Cu2S nanotubes with a high surface area for nanodevice applications. PMID:25246878

  4. Regulating Ion Transport in Peptide Nanotubes by Tailoring the Nanotube Lumen Chemistry.

    PubMed

    Ruiz, Luis; Benjamin, Ari; Sullivan, Matthew; Keten, Sinan

    2015-05-07

    We use atomistic nonequilibrium molecular dynamics simulations to demonstrate how specific ionic flux in peptide nanotubes can be regulated by tailoring the lumen chemistry through single amino acid substitutions. By varying the size and polarity of the functional group inserted into the nanotube interior, we are able to adjust the Na(+) flux by over an order of magnitude. Cl(-) is consistently denied passage. Bulky, nonpolar groups encourage interactions between the Na(+) and the peptide backbone carbonyl groups, disrupting the Na(+) solvation shell and slowing the transport of Na(+). Small groups have the opposite effect and accelerate flow. These results suggest that relative ion flux and selectivity can be precisely regulated in subnanometer pores by molecularly defining the lumen according to biological principles.

  5. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.

    PubMed

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions.

    PubMed

    Khare, Ketan S; Khare, Rajesh

    2013-06-20

    We have used atomistic molecular simulations to study the effect of nanofiller dispersion on the glass transition behavior of cross-linked epoxy-carbon nanotube (CNT) nanocomposites. Specific chemical interactions at the interface of CNTs and cross-linked epoxy create an interphase region, whose impact on the properties of their nanocomposites increases with an increasing extent of dispersion. To investigate this aspect, we have compared the volumetric, structural, and dynamical properties of three systems: neat cross-linked epoxy, cross-linked epoxy nanocomposite containing dispersed CNTs, and cross-linked epoxy nanocomposite containing aggregated CNTs. We find that the nanocomposite containing dispersed CNTs shows a depression in the glass transition temperature (Tg) by ~66 K as compared to the neat cross-linked epoxy, whereas such a large depression is absent in the nanocomposite containing aggregated CNTs. Our results suggest that the poor interfacial interactions between the CNTs and the cross-linked epoxy matrix lead to a more compressible interphase region between the CNTs and the bulk matrix. An analysis of the resulting dynamic heterogeneity shows that the probability of percolation of immobile domains becomes unity near the Tg calculated from volumetric properties. Our observations also lend support to the conceptual analogy between polymer nanocomposites and the nanoconfinement of polymer thin films.

  7. The adsorption of biogenic amines on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sidorenko, I. G.; Markitan, O. V.; Vlasova, N. N.; Zagorovskii, G. M.; Lobanov, V. V.

    2009-06-01

    The adsorption of phenylethylamine, tryptamine, and tyramine on carbon nanotubes from aqueous solutions (pH 7.4) was studied depending on time and sorbate concentration. The suggestion was made that their interaction with electrodes was determined by electrostatic attraction between protonated amino groups and oxygen-containing functional groups of the surface of carbon. An increase in the adsorption of biological amines was caused by the interaction of the π systems of their aromatic rings with carbon surface hexagons. The adsorption of biogenic amines on carbon nanotubes was necessary for their possible electrooxidation and analytic determination by electrochemical methods with the use of carbon electrodes.

  8. Inorganic nanotubes.

    PubMed

    Tenne, Reshef; Rao, C N R

    2004-10-15

    Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS(2), will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.

  9. Porcine Reproductive and Respiratory Syndrome Virus Utilizes Nanotubes for Intercellular Spread

    PubMed Central

    Guo, Rui; Katz, Benjamin B.; Tomich, John M.; Gallagher, Tom

    2016-01-01

    ABSTRACT Intercellular nanotube connections have been identified as an alternative pathway for cellular spreading of certain viruses. In cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), nanotubes were observed connecting two distant cells with contiguous membranes, with the core infectious viral machinery (viral RNA, certain replicases, and certain structural proteins) present in/on the intercellular nanotubes. Live-cell movies tracked the intercellular transport of a recombinant PRRSV that expressed green fluorescent protein (GFP)-tagged nsp2. In MARC-145 cells expressing PRRSV receptors, GFP-nsp2 moved from one cell to another through nanotubes in the presence of virus-neutralizing antibodies. Intercellular transport of viral proteins did not require the PRRSV receptor as it was observed in receptor-negative HEK-293T cells after transfection with an infectious clone of GFP-PRRSV. In addition, GFP-nsp2 was detected in HEK-293T cells cocultured with recombinant PRRSV-infected MARC-145 cells. The intercellular nanotubes contained filamentous actin (F-actin) with myosin-associated motor proteins. The F-actin and myosin IIA were identified as coprecipitates with PRRSV nsp1β, nsp2, nsp2TF, nsp4, nsp7-nsp8, GP5, and N proteins. Drugs inhibiting actin polymerization or myosin IIA activation prevented nanotube formation and viral clusters in virus-infected cells. These data lead us to propose that PRRSV utilizes the host cell cytoskeletal machinery inside nanotubes for efficient cell-to-cell spread. This form of virus transport represents an alternative pathway for virus spread, which is resistant to the host humoral immune response. IMPORTANCE Extracellular virus particles transmit infection between organisms, but within infected hosts intercellular infection can be spread by additional mechanisms. In this study, we describe an alternative pathway for intercellular transmission of PRRSV in which the virus uses nanotube connections to

  10. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Zhiming; Chemistry and Chemical Engineering College, Ocean University of China, Qingdao 266003; Wei Zhixiang

    2005-03-01

    Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with {alpha}-naphthalene sulfonic acid ({alpha}-NSA), {beta}-naphthalene sulfonic acid ({beta}-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO{sub 3}H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act inmore » a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including {pi}-{pi} interactions, hydrogen and ionic bonds.« less

  11. Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering.

    PubMed

    Newman, Peter; Minett, Andrew; Ellis-Behnke, Rutledge; Zreiqat, Hala

    2013-11-01

    The extracellular environment which supports cell life is composed of a hierarchy of maintenance, force and regulatory systems which integrate from the nano- through to macroscale. For this reason, strategies to recreate cell supporting environments have been investigating the use of nanocomposite biomaterials. Here, we review the use of carbon nanotubes as part of a bottom-up approach for use in bone tissue engineering. We evaluate the properties of carbon nanotubes in the context of synthetic tissue substrates and contrast them with the nanoscale features of the extracellular environment. Key studies are evaluated with an emphasis on understanding the mechanisms through which carbon nanotubes interact with biological systems. This includes an examination of how the different properties of carbon nanotubes affect tissue growth, how these properties and variation to them might be leveraged in regenerative tissue therapies and how impurities or contaminates affect their toxicity and biological interaction. In this comprehensive review, the authors describe the status and potential applications of carbon nanotubes in bone tissue engineering. © 2013.

  12. Atomic Layer Deposition of Pd Nanoparticles on TiO₂ Nanotubes for Ethanol Electrooxidation: Synthesis and Electrochemical Properties.

    PubMed

    Assaud, Loïc; Brazeau, Nicolas; Barr, Maïssa K S; Hanbücken, Margrit; Ntais, Spyridon; Baranova, Elena A; Santinacci, Lionel

    2015-11-11

    Palladium nanoparticles are grown on TiO2 nanotubes by atomic layer deposition (ALD), and the resulting three-dimensional nanostructured catalysts are studied for ethanol electrooxidation in alkaline media. The morphology, the crystal structure, and the chemical composition of the Pd particles are fully characterized using scanning and transmission electron microscopies, X-ray diffraction, and X-ray photoelectron spectroscopy. The characterization revealed that the deposition proceeds onto the entire surface of the TiO2 nanotubes leading to the formation of well-defined and highly dispersed Pd nanoparticles. The electrooxidation of ethanol on Pd clusters deposited on TiO2 nanotubes shows not only a direct correlation between the catalytic activity and the particle size but also a steep increase of the response due to the enhancement of the metal-support interaction when the crystal structure of the TiO2 nanotubes is modified by annealing at 450 °C in air.

  13. Influence of the Surface Functional Group Density on the Carbon-Nanotube-Induced α-Chymotrypsin Structure and Activity Alterations.

    PubMed

    Zhao, Xingchen; Hao, Fang; Lu, Dawei; Liu, Wei; Zhou, Qunfang; Jiang, Guibin

    2015-08-26

    Because of the special properties of carbon nanotubes (CNTs), their applications have been introduced to many fields. The biosafety of these emerging materials is of high concern concomitantly. Because CNTs may initially bind with proteins in biofluids before they exert biological effects, it is of great importance to understand how the target proteins interact with these exogenous nanomaterials. Here we investigated the interaction between α-chymotrypsin (α-ChT) and carboxylized multiwalled CNTs in a simulated biophysical environment utilizing the techniques of fluorescence, UV-vis, circular dichroism spectroscopy, ζ potential, atomic force microscopy, and bicinchoninic acid analysis. It was demonstrated that CNTs interacted with α-ChT through electrostatic forces, causing a decrement in the α-helix and an increment in the β-sheet content of the protein. The protein fluorescence was quenched in a static mode. The increase in the surface modification density of CNTs enhanced the protein absorption and decreased the enzymatic activity correspondingly. α-ChT activity inhibition induced by CNTs with low surface modification density exhibited noncompetitive characteristics; however, a competitive feature was observed when CNTs with high surface modification density interacted with the protein. An increase of the ionic strength in the reaction buffer may help to reduce the interaction between CNTs and α-ChT because the high ionic strength may favor the release of the protein from binding on a CNT surface modified with functional groups. Accordingly, the functionalization density on the CNT surface plays an important role in the regulation of their biological effects and is worthy of concern when new modified CNTs are developed.

  14. On the Wrapping of Polyglycolide, Poly(Ethylene Oxide), and Polyketone Polymer Chains Around Single-Walled Carbon Nanotubes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.

    2015-02-01

    By using molecular dynamics simulations, the interaction between a single-walled carbon nanotube and three different polymers has been studied in this work. The effects of various parameters such as the nanotube geometry and temperature on the interaction energy and radius of gyration of polymers have been explored. By studying the snapshots of polymers along the single-walled carbon nanotube, it has been shown that 50 ps can be considered as a suitable time after which the shape of polymer chains around the nanotube remains almost unchanged. It is revealed that the effect of temperature on the interaction energy and radius of gyration of polymers in the range of 250 to 500 K is not significant Also, it is shown that the interaction energy depends on the nanotube diameter.

  15. Green's function calculations for semi-infinite carbon nanotubes

    NASA Astrophysics Data System (ADS)

    John, D. L.; Pulfrey, D. L.

    2006-02-01

    In the modeling of nanoscale electronic devices, the non-equilibrium Green's function technique is gaining increasing popularity. One complication in this method is the need for computation of the self-energy functions that account for the interactions between the active portion of a device and its leads. In the one-dimensional case, these functions may be computed analytically. In higher dimensions, a numerical approach is required. In this work, we generalize earlier methods that were developed for tight-binding Hamiltonians, and present results for the case of a carbon nanotube.

  16. Copper Decoration of Carbon Nanotubes and High Resolution Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Probst, Camille

    A new process of decorating carbon nanotubes with copper was developed for the fabrication of nanocomposite aluminum-nanotubes. The process consists of three stages: oxidation, activation and electroless copper plating on the nanotubes. The oxidation step was required to create chemical function on the nanotubes, essential for the activation step. Then, catalytic nanoparticles of tin-palladium were deposited on the tubes. Finally, during the electroless copper plating, copper particles with a size between 20 and 60 nm were uniformly deposited on the nanotubes surface. The reproducibility of the process was shown by using another type of carbon nanotube. The fabrication of nanocomposites aluminum-nanotubes was tested by aluminum vacuum infiltration. Although the infiltration of carbon nanotubes did not produce the expected results, an interesting electron microscopy sample was discovered during the process development: the activated carbon nanotubes. Secondly, scanning transmitted electron microscopy (STEM) imaging in SEM was analysed. The images were obtained with a new detector on the field emission scanning electron microscope (Hitachi S-4700). Various parameters were analysed with the use of two different samples: the activated carbon nanotubes (previously obtained) and gold-palladium nanodeposits. Influences of working distance, accelerating voltage or sample used on the spatial resolution of images obtained with SMART (Scanning Microscope Assessment and Resolution Testing) were analysed. An optimum working distance for the best spatial resolution related to the sample analysed was found for the imaging in STEM mode. Finally, relation between probe size and spatial resolution of backscattered electrons (BSE) images was studied. An image synthesis method was developed to generate the BSE images from backscattered electrons coefficients obtained with CASINO software. Spatial resolution of images was determined using SMART. The analysis shown that using a probe

  17. Single-walled carbon nanotubes-ciprofloxacin nanoantibiotic: strategy to improve ciprofloxacin antibacterial activity

    PubMed Central

    Assali, Mohyeddin; Zaid, Abdel Naser; Abdallah, Farah; Almasri, Motasem; Khayyat, Rasha

    2017-01-01

    As infectious diseases continue to be one of the greatest health challenges worldwide, the demand toward alternative agents is continuously increasing. Recent advancement in nanotechnology has expanded our ability to design and construct nanomaterials to treat bacterial infections. Carbon nanotubes are one among these nanomaterials. Herein, we describe the covalent functionalization of the single-walled carbon nanotubes (SWCNTs) with multiple molecules of ciprofloxacin. The prepared nanoantibiotics were characterized using different techniques, including transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The characterization of the nanoantibiotics confirmed the successful covalent functionalization of the SWCNTs with 55% of functionalization as has been observed by thermogravimetric analysis. The release profile revealed that 90% of the loaded ciprofloxacin was released within 2.5 h at pH 7.4 showing a first-order release profile with R2>0.99. Interestingly, the results of the antibacterial activity indicated that the functionalized SWCNTs have significant increase in the antibacterial activity against the three strains of bacteria – by 16-fold for Staphylococcus aureus and Pseudomonas aeruginosa and by 8-fold for Escherichia coli – in comparison to the ciprofloxacin free drug. Moreover, the synthesized nanoantibiotic showed high hemocompatibility and cytocompatibility over a wide concentration range. PMID:28924348

  18. Friction on a single MoS2 nanotube

    PubMed Central

    2012-01-01

    Friction was measured on a single molybdenum disulfide (MoS2) nanotube and on a single MoS2 nano-onion for the first time. We used atomic force microscopy (AFM) operating in ultra-high vacuum at room temperature. The average coefficient of friction between the AFM tip and MoS2 nanotubes was found considerably below the corresponding values obtained from an air-cleaved MoS2 single crystal or graphite. We revealed a nontrivial dependency of friction on interaction strength between the nanotube and the underlying substrate. Friction on detached or weakly supported nanotubes by the substrate was several times smaller (0.023 ± 0.005) than that on well-supported nanotubes (0.08 ± 0.02). We propose an explanation of a quarter of a century old phenomena of higher friction found for intracrystalline (0.06) than for intercrystalline slip (0.025) in MoS2. Friction test on a single MoS2 nano-onion revealed a combined gliding-rolling process. PACS, 62.20, 61.46.Fg, 68.37 Ps PMID:22490562

  19. Multimodal probing of oxygen and water interaction with metallic and semiconducting carbon nanotube networks under ultraviolet irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Anthony J.; Ivanov, Ilia N.; Muckley, Eric S.

    In this study, carbon nanotube (CNT) networks composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O 2 and H 2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O 2 and H 2O, whereas resistance of s-SWNT networks decreases. We find that UV irradiation increases the sensitivity of CNT networks to O 2 and H 2O by more than an order of magnitude. Under UV irradiation,more » the resistance of metallic nanotube networks decreases in the presence of O 2 and H 2O likely through the generation of free charge carriers. UV irradiation increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. Networks of s-SWNTs show evidence of delamination from the gold-plated QCM crystal, possibly due to preferential adsorption of O 2 and H 2O on gold.« less

  20. Multimodal probing of oxygen and water interaction with metallic and semiconducting carbon nanotube networks under ultraviolet irradiation

    DOE PAGES

    Nelson, Anthony J.; Ivanov, Ilia N.; Muckley, Eric S.; ...

    2016-06-01

    In this study, carbon nanotube (CNT) networks composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O 2 and H 2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O 2 and H 2O, whereas resistance of s-SWNT networks decreases. We find that UV irradiation increases the sensitivity of CNT networks to O 2 and H 2O by more than an order of magnitude. Under UV irradiation,more » the resistance of metallic nanotube networks decreases in the presence of O 2 and H 2O likely through the generation of free charge carriers. UV irradiation increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. Networks of s-SWNTs show evidence of delamination from the gold-plated QCM crystal, possibly due to preferential adsorption of O 2 and H 2O on gold.« less

  1. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  2. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  3. Computational Nanomechanics of Carbon Nanotubes and Composites

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.

  4. Molecular dynamics studies on the interaction and encapsulation processes of the nucleotide and peptide chains inside of a carbon nanotube matrix with inclusion of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kholmurodov, Kholmirzo; Dushanov, Eric; Khusenov, Mirzoaziz; Rahmonov, Khaiyom; Zelenyak, Tatyana; Doroshkevich, Alexander; Majumder, Subrata

    2017-05-01

    Studying of molecular systems as single nucleotides, nucleotide and peptide chains, RNA and DNA interacting with metallic nanoparticles within a carbon nanotube matrix represents a great interest in modern research. In this respect it is worth mentioning the development of the electronics diagnostic apparatus, the biochemical and biotechnological application tools (nanorobotic design, facilities of drug delivery in a living cell), so on. In the present work using molecular dynamics (MD) simulation method the interaction process of small nucleotide chains (NCs) and elongated peptide chains with different sets of metallic nanoparticles (NPs) on a matrix from carbon nanotube (CNT) were simulated to study their mechanisms of encapsulation and folding processes. We have performed a series of the MD calculations with different NC,peptides-NP-CNT models that were aimed on the investigation of the peculiarities of NC,peptide-NP interactions, the formation of bonds and structures in the system, as well as the dynamical behavior in an environment confined by the CNT matrix.

  5. Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems--A review.

    PubMed

    Boncel, Sławomir; Kyzioł-Komosińska, Joanna; Krzyżewska, Iwona; Czupioł, Justyna

    2015-10-01

    Due to their unique molecular architecture translating into numerous every-day applications, carbon nanotubes (CNTs) will be ultimately an increasingly significant environmental contaminant. This work reviews qualitative/quantitative analyses of interactions of various types of CNTs and their chemically modified analogues with aqueous/aquatic media containing organic and inorganic contaminants and selected organisms of aquatic ecosystems. A special emphasis was placed on physicochemical interactions between CNTs as adsorbents of heavy metal cations and aromatic compounds (dyes) with its environmental consequences. The studies revealed CNTs as more powerful adsorbents of aromatic compounds (an order of magnitude higher adsorption capacity) than metal cations. Depending on the presence of natural organic matter (NOM) and/or co-contaminants, CNTs may act as Trojan horse while passing through biological membranes (in the absence of NOM coordinating metal ions). Nanotubes, depending on flow conditions and their morphology/surface chemistry, may travel with natural waters or sediment with immobilized PAHs or metals and/or increase cyto- and ecotoxicity of PAHs/metal ions by their release via competitive complexation, or cause synergic ecotoxicity while adsorbing nutrients. Additionally, toxicity of CNTs against exemplary aquatic microorganisms was reviewed. It was found for Daphnia magna that longer exposures to CNTs led to higher ecotoxicity with a prolonged CNTs excretion. SWCNTs were more toxic than MWCNTs, while hydrophilization of CNTs via oxidation or anchoring thereto polar/positively charged polymer chains enhanced stability of nanotubes dispersion in aqueous media. On the other hand, bioavailability of functionalized CNTs was improved leading to more complex both mechanisms of uptake and cytotoxic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Modeling of a carbon nanotube ultracapacitor.

    PubMed

    Orphanou, Antonis; Yamada, Toshishige; Yang, Cary Y

    2012-03-09

    The modeling of carbon nanotube ultracapacitor (CNU) performance based on the simulation of electrolyte ion motion between the cathode and the anode is described. Using a molecular dynamics (MD) approach, the equilibrium positions of the electrode charges interacting through the Coulomb potential are determined, which in turn yield the equipotential surface and electric field associated with the capacitor. With an applied ac voltage, the current is computed based on the nanotube and electrolyte particle distribution and interaction, resulting in the frequency-dependent impedance Z(ω). From the current and impedance profiles, the Nyquist and cyclic voltammetry (CV) plots are then extracted. The results of these calculations compare well with existing experimental data. A lumped-element equivalent circuit for the CNU is proposed and the impedance computed from this circuit correlates well with the simulated and measured impedances.

  7. Preparation of Pd-loaded La-doped TiO2 nanotubes and investigation of their photocatalytic activity under visible light

    NASA Astrophysics Data System (ADS)

    Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Wang, Xiaodong; Yang, Jianjun

    2013-11-01

    Orthorhombic titanic acid nanotubes (TAN) have large BET surface area and small-diameter one-dimensional nanotubular morphology, so they can work as a good supporter and a precursor of TiO2. However, in our former research, we found that calcination of TAN to anatase TiO2 would destroy the nanotubular structure and decrease the BET surface area sharply. In this work, we utilized the pillar effect of the foreign nanoparticles (La2O3) to keep the nanotubular morphology of TiO2, and obtained the anatase TiO2 nanotubes with large BET surface area. For improving the photocatalytic activity, Pd nanoparticles were loaded as the electron traps on the surface of La-doped TiO2 by photo-deposition method. The photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, diffuse reflectance spectra, and N2 adsorption-desorption isotherms measurement. Their photocatalytic activities were evaluated by the removal of propylene under visible light irradiation ( λ ≥ 420 nm). The results showed that the photocatalytic activity of Pd-loaded La-doped TiO2 nanotubes improved effectively compared with that of La-doped TiO2 and pure TiO2.

  8. Comprehensive spectroscopic studies on the interaction of biomolecules with surfactant detached multi-walled carbon nanotubes.

    PubMed

    Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-04-01

    This paper investigates the interaction of ten diverse biomolecules with surfactant detached Multi-Walled Carbon Nanotubes (MWCNTs) using multiple spectroscopic methods. Declining fluorescence intensity of biomolecules in combination with the hyperchromic effect in UV-Visible spectra confirmed the existence of the ground state complex formation. Quenching mechanism remains static and non-fluorescent. 3D spectral data of biomolecules suggested the possibilities of disturbances to the aromatic microenvironment of tryptophan and tyrosine residues arising out of CNTs interaction. Amide band Shifts corresponding to the secondary structure of biomolecules were observed in the of FTIR and FT-Raman spectra. In addition, there exists an increased Raman intensity of tryptophan residues of biomolecules upon interaction with CNTs. Hence, the binding of the aromatic structures of CNTs with the aromatic amino acid residues, in a particular, tryptophan was evidenced. Far UV Circular spectra have showed the loss of alpha-helical contents in biomolecules upon interaction with CNTs. Near UV CD spectra confirmed the alterations in the tryptophan positions of the peptide backbone. Hence, our results have demonstrated that the interaction of biomolecules with OH-MWCNTs would involve binding cum structural changes and alteration to their aromatic micro-environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Segmentation and additive approach: A reliable technique to study noncovalent interactions of large molecules at the surface of single-wall carbon nanotubes.

    PubMed

    Torres, Ana M; Scheiner, Steve; Roy, Ajit K; Garay-Tapia, Andrés M; Bustamante, John; Kar, Tapas

    2016-08-05

    This investigation explores a new protocol, named Segmentation and Additive approach (SAA), to study exohedral noncovalent functionalization of single-walled carbon nanotubes with large molecules, such as polymers and biomolecules, by segmenting the entire system into smaller units to reduce computational cost. A key criterion of the segmentation process is the preservation of the molecular structure responsible for stabilization of the entire system in smaller segments. Noncovalent interaction of linoleic acid (LA, C18 H32 O2 ), a fatty acid, at the surface of a (10,0) zigzag nanotube is considered for test purposes. Three smaller segmented models have been created from the full (10,0)-LA system and interaction energies were calculated for these models and compared with the full system at different levels of theory, namely ωB97XD, LDA. The success of this SAA is confirmed as the sum of the interaction energies is in very good agreement with the total interaction energy. Besides reducing computational cost, another merit of SAA is an estimation of the contributions from different sections of the large system to the total interaction energy which can be studied in-depth using a higher level of theory to estimate several properties of each segment. On the negative side, bulk properties, such as HOMO-LUMO (highest occupied molecular orbital - lowest occupied molecular orbital) gap, of the entire system cannot be estimated by adding results from segment models. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes.

    PubMed

    Albetran, Hani; Vega, Victor; Prida, Victor M; Low, It-Meng

    2018-02-23

    The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated.

  11. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes

    PubMed Central

    Albetran, Hani; Vega, Victor

    2018-01-01

    The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated. PMID:29473854

  12. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: Synthesis of nanotubes, surface characterization, and bond strength.

    PubMed

    Dos Santos, Angélica Feltrin; Sandes de Lucena, Fernanda; Sanches Borges, Ana Flávia; Lisboa-Filho, Paulo Noronha; Furuse, Adilson Yoshio

    2018-04-05

    Despite numerous advantages such as high strength, the bond of yttria-stabilized zirconia polycrystal (Y-TZP) to tooth structure requires improvement. The purpose of this in vitro study was to evaluate the incorporation of TiO 2 nanotubes into zirconia surfaces and the bond strength of resin cement to the modified ceramic. TiO 2 nanotubes were produced by alkaline synthesis, mixed with isopropyl alcohol (50 wt%) and applied on presintered zirconia disks. The ceramics were sintered, and the surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS) analysis. For bond strength, the following 6 groups (n=16) were evaluated: without TiO 2 and Single Bond Universal; with TiO 2 nanotubes and Single Bond Universal; without TiO 2 nanotubes and Z-prime; with TiO 2 nanotubes and Z-prime; without TiO 2 and Signum Zirconia Bond; with TiO 2 and Signum Zirconia Bond. After sintering, resin cement cylinders, diameter of 1.40 mm and 1 mm in height, were prepared and polymerized for 20 seconds. Specimens were stored in water at 37°C for 30 days and submitted to a shear test. Data were analyzed by 2-way ANOVA and Tukey honest significant difference (α=.05) tests. EDS analysis confirmed that nanoagglomerates were composed of TiO 2 . The shear bond strength showed statistically significant differences among bonding agents (P<.001). No significant differences were found with the application of nanotubes, regardless of the group analyzed (P=.682). The interaction among the bonding agent factors and addition of nanotubes was significant (P=.025). Nanotubes can be incorporated into zirconia surfaces. However, this incorporation did not improve bond strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Carbon Nanotube Material Quality Assessment

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard; Arepalli, Sivaram; Sosa, Edward; Niolaev, Pavel; Gorelik, Olga

    2006-01-01

    The nanomaterial activities at NASA Johnson Space Center focus on carbon nanotube production, characterization and their applications for aerospace systems. Single wall carbon nanotubes are produced by arc and laser methods. Characterization of the nanotube material is performed using the NASA JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. A possible addition of other techniques such as XPS, and ICP to the existing protocol will be discussed. Changes in the quality of the material collected in different regions of the arc and laser production chambers is assessed using the original JSC protocol. The observed variations indicate different growth conditions in different regions of the production chambers.

  14. Nanotube Sensors

    NASA Technical Reports Server (NTRS)

    McEuen, Paul L.

    2002-01-01

    Under this project, we explored the feasibility of utilizing carbon nanotubes in sensing applications. The grant primarily supported a graduate student, who worked on a number of aspects of the electrical properties of carbon nanotubes in collaboration with other researchers in my group. The two major research accomplishments are described below. The first accomplishment is the demonstration that solution carbon nanotube transistors functioned well in an electrolyte environment. This was important for two reasons. First, it allowed us to explore the ultimate limits of nanotube electronic performance by using the electrolyte as a highly effective gate, with a dielectric constant of approximately 80 and an effective insulator thickness of approximately 1 nm. Second, it showed that nanotubes function well under biologically relevant conditions (salty water) and therefore offer great promise as biological sensors. The second accomplishment was the demonstration that a voltage pulse applied to an AFM tip could be used to electrically cut carbon nanotubes. We also showed that a carefully applied pulse could also 'nick' a nanotube, creating a tunnel barrier without completely breaking the tube. Nicking was employed to make, for example, a quantum dot within a nanotube.

  15. Covalent enzyme immobilization onto carbon nanotubes using a membrane reactor

    NASA Astrophysics Data System (ADS)

    Voicu, Stefan Ioan; Nechifor, Aurelia Cristina; Gales, Ovidiu; Nechifor, Gheorghe

    2011-05-01

    Composite porous polysulfone-carbon nanotubes membranes were prepared by dispersing carbon nanotubes into a polysulfone solution followed by the membrane formation by phase inversion-immersion precipitation technique. The carbon nanotubes with amino groups on surface were functionalized with different enzymes (carbonic anhydrase, invertase, diastase) using cyanuric chloride as linker between enzyme and carbon nanotube. The composite membrane was used as a membrane reactor for a better dispersion of carbon nanotubes and access to reaction centers. The membrane also facilitates the transport of enzymes to active carbon nanotubes centers for functionalization (amino groups). The functionalized carbon nanotubes are isolated by dissolving the membranes after the end of reaction. Carbon nanotubes with covalent immobilized enzymes are used for biosensors fabrications. The obtained membranes were characterized by Scanning Electron Microscopy, Thermal analysis, FT-IR Spectroscopy, Nuclear Magnetic Resonance, and functionalized carbon nanotubes were characterized by FT-IR spectroscopy.

  16. Deposition of platinum nanoparticles on carbon nanotubes by supercritical fluid method.

    PubMed

    Yen, Clive H; Cui, Xiaoli; Pan, Horng-Bin; Wang, Shaofen; Lin, Yuehe; Wai, Chien M

    2005-11-01

    Carbon nanotube-supported platinum nanoparticles with a 5-15 nm diameter size range can be synthesized by hydrogen reduction of platinum(ll) acetylacetonate in methanol modified supercritical carbon dioxide. X-ray photoelectron spectroscopy and X-ray diffraction spectra indicate that the carbon nanotubes contain zero-valent platinum metal and high-resolution transmission electron microscopy images show that the visible lattice fringes of platinum nanoparticles are crystallites. Carbon nanotubes synthesized with 25% by weight of platinum nanoparticles exhibit a higher activity for hydrogenation of benzene compared with a commercial carbon black platinum catalyst. The carbon nanotube-supported platinum nanocatalyst can be reused at least six times for the hydrogenation reaction without losing activity. The carbon nanotube-supported platinum nanoparticles are also highly active for electrochemical oxidation of methanol and for reduction of oxygen suggesting their potential use as a new electrocatalyst for proton exchange membrane fuel cell applications.

  17. Synthesis of hierarchical Co3O4@NiO core-shell nanotubes with a synergistic catalytic activity for peroxidase mimicking and colorimetric detection of dopamine.

    PubMed

    Zhu, Yun; Yang, Zezhou; Chi, Maoqiang; Li, Meixuan; Wang, Ce; Lu, Xiaofeng

    2018-05-01

    Fabrication of core-shell nanostructured catalyst is a promising way for tuning its catalytic performance due to the highly active interface and rich redox properties. In this work, hierarchical Co 3 O 4 @NiO core-shell nanotubes are fabricated by the deposition of NiO shells via a chemical bath treatment using electrospun Co-C composite nanofibers as templates, followed by a calcination process in air. The as-prepared Co 3 O 4 @NiO core-shell nanotubes exhibit a uniform and novel hollow structure with Co 3 O 4 nanoparticles attached to the inner wall of NiO nanotubes and excellent catalytic activity toward the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H 2 O 2 . Due to the synergistic effect, the peroxidase-like activity of the Co 3 O 4 @NiO core-shell nanotubes is much higher than that of individual Co 3 O 4 and NiO components. Owing to the superior peroxidase-like activity, a simple and rapid colorimetric approach for the detection of dopamine with a detection limit of 1.21µM and excellent selectivity has been developed. It is anticipated that the prepared Co 3 O 4 @NiO core-shell nanotubes are promising materials applied for biomedical analysis and environmental monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Nanohelices from planar polymer self-assembled in carbon nanotubes

    PubMed Central

    Fu, Hongjin; Xu, Shuqiong; Li, Yunfang

    2016-01-01

    The polymer possessing with planar structure can be activated and guided to encapsulate the inner space of SWNT and form a helix through van der Waals interaction and the π-π stacking effect between the polymer and the inner surface of SWNT. The SWNT size, the nanostructure and flexibility of polymer chain are all determine the final structures. The basic interaction between the polymer and the nanotubes is investigated, and the condition and mechanism of the helix-forming are explained particularly. Hybrid polymers improve the ability of the helix formation. This study provides scientific basis for fabricating helical polymers encapsulated in SWNTs and eventually on their applications in various areas. PMID:27440493

  19. Diameter-Sensitive Breakdown of Single-Walled Carbon Nanotubes upon KOH Activation.

    PubMed

    Ye, Jianglin; Wu, Shuilin; Ni, Kun; Tan, Ziqi; Xu, Jin; Tao, Zhuchen; Zhu, Yanwu

    2017-07-19

    While potassium hydroxide (KOH) activation has been used to create pores in carbon nanotubes (CNTs) for improved energy-storage performance, the KOH activation mechanism of CNTs has been rarely investigated. In this work, the reaction between single-walled CNTs (SWCNTs) and KOH is studied in situ by thermogravimetric analysis coupled to infrared (IR) spectroscopy and gas chromatography/mass spectrometry (MS). The IR and MS results clearly demonstrate the sequential evolution of CO, hydrocarbons, CO 2 , and H 2 O in the activation process. By using the radial breathing mode of Raman spectroscopy, a diameter-sensitive selectivity is observed in the reaction between SWCNTs and KOH, leading to a preferential distribution of SWCNTs with diameters larger than 1 nm after activation at 900 °C and a preferential removal of SWCNTs with diameters below 1 nm upon activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reinforcement of single-walled carbon nanotube bundles by intertube bridging

    NASA Astrophysics Data System (ADS)

    Kis, A.; Csányi, G.; Salvetat, J.-P.; Lee, Thien-Nga; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forró, L.

    2004-03-01

    During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.

  1. Impact of cation-π interactions on the cell voltage of carbon nanotube-based Li batteries.

    PubMed

    Gao, Shaohua; Shi, Guosheng; Fang, Haiping

    2016-01-21

    Carbon nanotube (CNT)-based Li batteries have attracted wide attention because of their high capacity, high cyclability and high energy density and are believed to be one of the most promising electrochemical energy storage systems. In CNT-based Li batteries, the main interaction between the Li(+) ions and the CNT is the cation-π interaction. However, up to now, it is still not clear how this interaction affects the storage characteristics of CNT-based Li batteries. Here, using density functional theory (DFT) calculations, we report a highly favorable impact of cation-π interactions on the cell voltage of CNT-based Li batteries. Considering both Li(+)-π interaction and Li-π interaction, we show that cell voltage enhances with the increase of the CNT diameter. In addition, when the Li(+) ion adsorbs on the external wall, the cell voltage is larger than that when it adsorbs on the internal wall. This suggests that CNTs with a large diameter and a low array density are more advantageous to enhance storage performance of CNT-based Li batteries. Compared with Li(+) ions on the (4,4) CNT internal wall, the cell voltage of Li(+) on the (10,10) CNT external wall is 0.55 V higher, which indicates an improvement of about 38%. These results will be helpful for the design of more efficient CNT-based Li batteries.

  2. TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study.

    PubMed

    Bandura, Andrei V; Evarestov, Robert A

    2014-02-15

    Hybrid density functional theory has been applied for investigations of the electronic and atomic structure of bulk phases, nanolayers, and nanotubes based on titanium and zirconium disulfides. Calculations have been performed on the basis of the localized atomic functions by means of the CRYSTAL-2009 computer code. The full optimization of all atomic positions in the regarded systems has been made to study the atomic relaxation and to determine the most favorable structures. The different layered and isotropic bulk phases have been considered as the possible precursors of the nanotubes. Calculations on single-walled TiS2 and ZrS2 nanotubes confirmed that the nanotubes obtained by rolling up the hexagonal crystalline layers with octahedral 1T morphology are the most stable. The strain energy of TiS2 and ZrS2 nanotubes is small, does not depend on the tube chirality, and approximately obeys to D(-2) law (D is nanotube diameter) of the classical elasticity theory. It is greater than the strain energy of the similar TiO2 and ZrO2 nanotubes; however, the formation energy of the disulfide nanotubes is considerably less than the formation energy of the dioxide nanotubes. The distance and interaction energy between the single-wall components of the double-wall nanotubes is proved to be close to the distance and interaction energy between layers in the layered crystals. Analysis of the relaxed nanotube shape using radial coordinate of the metal atoms demonstrates a small but noticeable deviation from completely cylindrical cross-section of the external walls in the armchair-like double-wall nanotubes. Copyright © 2013 Wiley Periodicals, Inc.

  3. Active anatase (0 0 1)-like surface of hydrothermally synthesized titania nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Mogilevsky, Gregory; Wagner, George W.; Forstater, Jacob; Kleinhammes, Alfred; Wu, Yue

    2009-11-01

    Using 31P and 13C NMR with DFT calculations we demonstrate the exposed surface of titania nanotubes (TiNTs) is a stable, unterminated anatase (0 0 1)-like surface and is catalytically active under ambient conditions. We find that methanol dissociatively adsorbs on the surface of TiNTs agreeing with the predicted activity of surface dissociation of organic molecules on the crystalline (0 0 1)-anatase surface. We further examined the catalytic activity of anatase power, TiNT, and nanosheets in catalytic hydrolysis of S-[2-(diisopropylamino)ethyl]- O-ethyl methylphosphonothioate (VX) via 31P NMR and demonstrate that titanate-like nanosheets are inactive in the reaction owing to their hydroxylated (0 0 1) surface.

  4. Carbon nanotube conditioning: ab initio simulations of the effect of defects and doping on the electronic properties of carbon nanotube systems.

    NASA Astrophysics Data System (ADS)

    Soto, Matias; Barrera, Enrique

    Using carbon nanotubes for electrical conduction applications at the macroscale has proven to be a difficult task, mainly, due to defects and impurities present, and lack of uniform electronic properties in synthesized carbon nanotube bundles. Some researchers have suggested that growing only metallic armchair nanotubes and arranging them with an ideal contact length could lead to the ultimate electrical conductivity; however, such recipe presents too high of a cost to pay. A different route and the topic of this work is to learn to manage the defects, impurities, and the electronic properties of carbon nanotubes present, so that the electrical conduction of a bundle or even wire may be enhanced. We used density functional theory calculations to study the effect of defects and doping on the electronic structure of metallic, semi-metal and semiconducting carbon nanotubes in order to gain a clear picture of their properties. Additionally, using dopants to increase the conductance across a junction between two carbon nanotubes was studied for different configurations. Finally, interaction potentials obtained via first-principles calculations were generalized by developing mathematical models for the purpose of running simulations at a larger length scale using molecular dynamics. Partial funding was received from CONACyT Scholarship 314419.

  5. Additive-free carbon nanotube dispersions, pastes, gels, and doughs in cresols.

    PubMed

    Chiou, Kevin; Byun, Segi; Kim, Jaemyung; Huang, Jiaxing

    2018-05-29

    Cresols are a group of naturally occurring and massively produced methylphenols with broad use in the chemical industry. Here, we report that m -cresol and its liquid mixtures with other isomers are surprisingly good solvents for processing carbon nanotubes. They can disperse carbon nanotubes of various types at unprecedentedly high concentrations of tens of weight percent, without the need for any dispersing agent or additive. Cresols interact with carbon nanotubes by charge transfer through the phenolic hydroxyl proton and can be removed after processing by evaporation or washing, without altering the surface of carbon nanotubes. Cresol solvents render carbon nanotubes polymer-like rheological and viscoelastic properties and processability. As the concentration of nanotubes increases, a continuous transition of four states can be observed, including dilute dispersion, thick paste, free-standing gel, and eventually a kneadable, playdough-like material. As demonstrated with a few proofs of concept, cresols make powders of agglomerated carbon nanotubes immediately usable by a broad array of material-processing techniques to create desirable structures and form factors and make their polymer composites.

  6. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.

    PubMed

    Dong, Lifeng

    2009-11-18

    A series of electron microscopy characterizations demonstrate that single-stranded deoxyribonucleic acid (ssDNA) can bind to nanotube surfaces and disperse bundled single-walled carbon nanotubes (SWCNTs) into individual tubes. The ssDNA molecules on the nanotube surfaces demonstrate various morphologies, such as aggregated clusters and spiral wrapping around a nanotube with different pitches and spaces, indicating that the morphology of the SWCNT/DNA hybrids is not related solely to the base sequence of the ssDNA or the chirality or the diameter of the nanotubes. In addition to serving as a non-covalent dispersion agent, the ssDNA molecules bonded to the nanotube surface can provide addresses for localizing Pt(II) complexes along the nanotubes. The Pt nanoparticles obtained by a reduction of the Pt2+-DNA adducts are crystals with a size of < or =1-2 nm. These results expand our understanding of the interactions between ssDNA and SWCNTs and provide an efficient approach for positioning Pt and other metal particles, with uniform sizes and without aggregations, along the nanotube surfaces for applications in direct ethanol/methanol fuel cells and nanoscale electronics.

  7. Molecular dynamics simulation of water in and around carbon nanotubes: A coarse-grained description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantawane, Sanwardhini; Choudhury, Niharendu, E-mail: nihcho@barc.gov.in

    2016-05-23

    In the present study, we intend to investigate behaviour of water in and around hydrophobic open ended carbon nanotubes (CNTs) using a coarse-grained, core-softened model potential for water. The model potential considered here for water has recently been shown to successfully reproduce dynamic, thermodynamic and structural anomalies of water. The epitome of the study is to understand the incarceration of this coarse-grained water in a single-file carbon nanotube. In order to examine the effect of fluid-water van der Waals interaction on the structure of fluid in and around the nanotube, we have simulated three different CNT-water systems with varying degreemore » of solute-water dispersion interaction. The analyses of the radial one-particle density profiles reveal varying degree of permeation and wetting of the CNT interior depending on the degree of fluid-solute attractive van der Waals interaction. A peak in the radial density profile slightly off the nanotube axis signifies a zigzag chain of water molecule around the CNT axis. The average numbers of water molecules inside the CNT have been shown to increase with the increase in fluid-water attractive dispersion interaction.« less

  8. Modelling of adsorption and intercalation of hydrogen on/into tungsten disulphide multilayers and multiwall nanotubes.

    PubMed

    Martínez, José I; Laikhtman, Alex; Moon, Hoi Ri; Zak, Alla; Alonso, Julio A

    2018-05-07

    Understanding the interaction of hydrogen with layered materials is crucial in the fields of sensors, catalysis, fuel cells and hydrogen storage, among others. Density functional theory, improved by the introduction of van der Waals dispersion forces, provides an efficient and practical workbench to investigate the interaction of molecular and atomic hydrogen with WS 2 multilayers and nanotubes. We find that H 2 physisorbs on the surface of those materials on top of W atoms, while atomic H chemisorbs on top of S atoms. In the case of nanotubes, the chemisorption strength is sensitive to the nanotube diameter. Diffusion of H 2 on the surface of WS 2 encounters quite small activation barriers whose magnitude helps to explain previous and new experimental results for the observed dependence of the hydrogen concentration with temperature. Intercalation of H 2 between adjacent planar WS 2 layers reveals an endothermic character. Intercalating H atoms is energetically favorable, but the intercalation energy does not compensate for the cost of dissociating the molecules. When H 2 molecules are intercalated between the walls of a double wall nanotube, the rigid confinement induces the dissociation of the confined molecules. A remarkable result is that the presence of a full H 2 monolayer adsorbed on top of the first WS 2 layer of a WS 2 multilayer system strongly facilitates the intercalation of H 2 between WS 2 layers underneath. This opens up an additional gate to intercalation processes.

  9. Local gate control in carbon nanotube quantum devices

    NASA Astrophysics Data System (ADS)

    Biercuk, Michael Jordan

    This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single

  10. Production of single-walled carbon nanotube grids

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

    2013-12-03

    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  11. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Haiyan; Song, Huaihe; Chen, Xiaohong; Zhang, Su; Zhou, Jisheng; Ma, Zhaokun

    2015-07-01

    A kind of nitrogen- and oxygen-containing activated carbon nanotubes (ACNTs) has been prepared by carbonization and activation of polyaniline nanotubes obtained by rapidly mixed reaction. The ACNTs show oxygen content of 15.7% and nitrogen content of 2.97% (atomic ratio). The ACNTs perform high capacitance and good rate capability (327 F g-1 at the current density of 10 A g-1) when used as the electrode materials for supercapacitors. Hydrogen reduction has been further used to investigate the effects of surface functional groups on the electrochemical performance. The changes for both structural component and electrochemical performance reveal that the quinone oxygen, pyridinic nitrogen, and pyrrolic nitrogen of carbon have the most obvious influence on the capacitive property because of their pseudocapacitive contributions.

  12. EDITORIAL: Focus on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau, P Umek, K Hernadi, P Marcoux, B Lukic, Cs Mikó, M Milas, R Gaál and L Forró Transitional behaviour in the transformation from active end

  13. Interface architecture determined electrocatalytic activity of Pt on vertically oriented TiO(2) nanotubes.

    PubMed

    Rettew, Robert E; Allam, Nageh K; Alamgir, Faisal M

    2011-02-01

    The surface atomic structure and chemical state of Pt is consequential in a variety of surface-intensive devices. Herein we present the direct interrelationship between the growth scheme of Pt films, the resulting atomic and electronic structure of Pt species, and the consequent activity for methanol electro-oxidation in Pt/TiO(2) nanotube hybrid electrodes. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements were performed to relate the observed electrocatalytic activity to the oxidation state and the atomic structure of the deposited Pt species. The atomic structure as well as the oxidation state of the deposited Pt was found to depend on the pretreatment of the TiO(2) nanotube surfaces with electrodeposited Cu. Pt growth through Cu replacement increases Pt dispersion, and a separation of surface Pt atoms beyond a threshold distance from the TiO(2) substrate renders them metallic, rather than cationic. The increased dispersion and the metallic character of Pt results in strongly enhanced electrocatalytic activity toward methanol oxidation. This study points to a general phenomenon whereby the growth scheme and the substrate-to-surface-Pt distance dictates the chemical state of the surface Pt atoms, and thereby, the performance of Pt-based surface-intensive devices.

  14. Peptide nanotube-modified electrodes for enzyme-biosensor applications.

    PubMed

    Yemini, Miri; Reches, Meital; Gazit, Ehud; Rishpon, Judith

    2005-08-15

    The fabrication and notably improved performance of composite electrodes based on modified self-assembled diphenylalanine peptide nanotubes is described. Peptide nanotubes were attached to gold electrodes, and we studied the resulting electrochemical behavior using cyclic voltammetry and chronoamperometry. The peptide nanotube-based electrodes demonstrated a direct and unmediated response to hydrogen peroxide and NADH at a potential of +0.4 V (vs SCE). This biosensor enables a sensitive determination of glucose by monitoring the hydrogen peroxide produced by an enzymatic reaction between the glucose oxidase attached to the peptide nanotubes and glucose. In addition, the marked electrocatalytic activity toward NADH enabled a sensitive detection of ethanol using ethanol dehydrogenase and NAD+. The peptide nanotube-based amperometric biosensor provides a potential new tool for sensitive biosensors and biomolecular diagnostics.

  15. Effective permittivity of single-walled carbon nanotube composites: Two-fluid model

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin; Zangeneh, Hamid Reza; Moghadam, Firoozeh Karimi

    2015-12-01

    We develop an effective medium theory to obtain effective permittivity of a composite of two-dimensional (2D) aligned single-walled carbon nanotubes. Electronic excitations on each nanotube surface are modeled by an infinitesimally thin layer of a 2D electron gas represented by two interacting fluids, which takes into account different nature of the σ and π electrons. Calculations of both real and imaginary parts of the effective dielectric function of the system are presented, for different values of the filling factor and radius of carbon nanotubes.

  16. Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water.

    PubMed

    Pang, Yean Ling; Abdullah, Ahmad Zuhairi

    2012-10-15

    Fe-doped titanium dioxide (TiO(2)) nanotubes were prepared using sol-gel followed by hydrothermal methods and characterized using various methods. The sonocatalytic activity was evaluated based on oxidation of Rhodamine B under ultrasonic irradiation. Iron ions (Fe(3+)) might incorporate into the lattice and intercalated in the interlayer spaces of TiO(2) nanotubes. The catalysts showed narrower band gap energies, higher specific surface areas, more active surface oxygen vacancies and significantly improved sonocatalytic activity. The optimum Fe doping at Fe:Ti=0.005 showed the highest sonocatalytic activity and exceeded that of un-doped TiO(2) nanotubes by a factor of 2.3 times. It was believed that Fe(3+) doping induced the formation of new states close to the valence band and conduction bands and accelerated the separation of charge carriers. Leached Fe(3+) could catalyze Fenton-like reaction and led to an increase in the hydroxyl radical (OH) generation. Fe-doped TiO(2) nanotubes could retain high degradation efficiency even after being reused for 4 cycles with minimal loss of Fe from the surface of the catalyst. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Interaction of single-walled carbon nanotubes and saxitoxin: Ab initio simulations and biological responses in hippocampal cell line HT-22.

    PubMed

    Ramos, Patrícia; Schmitz, Marcos; Filgueira, Daza; Votto, Ana Paula; Durruthy, Michael; Gelesky, Marcos; Ruas, Caroline; Yunes, João; Tonel, Mariana; Fagan, Solange; Monserrat, José

    2017-07-01

    Saxitoxins (STXs) are potent neurotoxins that also induce cytotoxicity through the generation of reactive oxygen species. Carbon nanotubes (CNTs) are nanomaterials that can promote a Trojan horse effect, facilitating the entry of toxic molecules to cells when adsorbed to nanomaterials. The interaction of pristine single-walled (SW)CNTs and carboxylated (SWCNT-COOH) nanotubes with STX was evaluated by ab initio simulation and bioassays using the cell line HT-22. Cells (5 × 10 4  cells/mL) were exposed to SWCNT and SWCNT-COOH (5 μg mL -1 ), STX (200 μg L -1 ), SWCNT+STX, and SWCNT-COOH+STX for 30 min or 24 h. Results of ab initio simulation showed that the interaction between SWCNT and SWCNT-COOH with STX occurs in a physisorption. The interaction of SWCNT+STX induced a decrease in cell viability. Cell proliferation was not affected in any treatment after 30 min or 24 h of exposure (p > 0.05). Treatment with SWCNT-COOH induced high reactive oxygen species levels, an effect attenuated in SWCNT-COOH+STX treatment. In terms of cellular oxygen consumption, both CNTs when coexposed with STX antagonize the toxin effect. Based on these results, it can be concluded that the results obtained in vitro corroborate the semiempirical evidence found using density functional theory ab initio simulation. Environ Toxicol Chem 2017;36:1728-1737. © 2016 SETAC. © 2016 SETAC.

  18. Measurement Challenges for Carbon Nanotube Material

    NASA Technical Reports Server (NTRS)

    Sosa, Edward; Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Yowell, Leonard

    2006-01-01

    The advances in large scale applications of carbon nanotubes demand a reliable supply of raw and processed materials. It is imperative to have a consistent quality control of these nanomaterials to distinguish material inconsistency from the modifications induced by processing of nanotubes for any application. NASA Johnson Space Center realized this need five years back and started a program to standardize the characterization methods. The JSC team conducted two workshops (2003 and 2005) in collaboration with NIST focusing on purity and dispersion measurement issues of carbon nanotubes [1]. In 2004, the NASA-JSC protocol was developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA [2]. This protocol is routinely used by several researchers across the world as a first step in characterizing raw and purified carbon nanotubes. A suggested practice guide consisting of detailed chapters on TGA, Raman, electron microscopy and NIR absorption is in the final stages and is undergoing revisions with input from the nanotube community [3]. The possible addition of other techniques such as XPS, and ICP to the existing protocol will be presented. Recent activities at ANSI and ISO towards implementing these protocols as nanotube characterization standards will be discussed.

  19. Novel polyelectrolyte complex based carbon nanotube composite architectures

    NASA Astrophysics Data System (ADS)

    Razdan, Sandeep

    This study focuses on creating novel architectures of carbon nanotubes using polyelectrolytes. Polyelectrolytes are unique polymers possessing resident charges on the macromolecular chains. This property, along with their biocompatibility (true for most polymers used in this study) makes them ideal candidates for a variety of applications such as membranes, drug delivery systems, scaffold materials etc. Carbon nanotubes are also unique one-dimensional nanoscale materials that possess excellent electrical, mechanical and thermal properties owing to their small size, high aspect ratio, graphitic structure and strength arising from purely covalent bonds in the molecular structure. The present study tries to investigate the synthesis processes and material properties of carbon nanotube composites comprising of polyelectrolyte complexes. Carbon nanotubes are dispersed in a polyelectrolyte and are induced into taking part in a complexation process with two oppositely charged polyelectrolytes. The resulting stoichiometric precipitate is then drawn into fiber form and dried as such. The material properties of the carbon nanotube fibers were characterized and related to synthesis parameters and material interactions. Also, an effort was made to understand and predict fiber morphology resulting from the complexation and drawing process. The study helps to delineate the synthesis and properties of the said polyelectrolyte complex-carbon nanotube architectures and highlights useful properties, such as electrical conductivity and mechanical strength, which could make these structures promising candidates for a variety of applications.

  20. Interaction Potency of Single-Walled Carbon Nanotubes with DNAs: A Novel Assay for Assessment of Hazard Risk

    PubMed Central

    Yao, Chunhe; Carlisi, Cristina; Li, Yuning; Chen, Da; Ding, Jianfu; Feng, Yong-Lai

    2016-01-01

    Increasing use of single-walled carbon nanotubes (SWCNTs) necessitates a novel method for hazard risk assessment. In this work, we investigated the interaction of several types of commercial SWCNTs with single-stranded (ss) and double-stranded (ds) DNA oligonucleotides (20-mer and 20 bp). Based on the results achieved, we proposed a novel assay that employed the DNA interaction potency to assess the hazard risk of SWCNTs. It was found that SWCNTs in different sizes or different batches of the same product number of SWCNTs showed dramatically different potency of interaction with DNAs. In addition, the same SWCNTs also exerted strikingly different interaction potency with ss- versus ds- DNAs. The interaction rates of SWCNTs with DNAs were investigated, which could be utilized as the indicator of potential hazard for acute exposure. Compared to solid SWCNTs, the SWCNTs dispersed in liquid medium (2% sodium cholate solution) exhibited dramatically different interaction potency with DNAs. This indicates that the exposure medium may greatly influence the subsequent toxicity and hazard risk produced by SWCNTs. Based on the findings of dose-dependences and time-dependences from the interactions between SWCNTs and DNAs, a new chemistry based assay for hazard risk assessment of nanomaterials including SWCNTs has been presented. PMID:27936089

  1. Interaction Potency of Single-Walled Carbon Nanotubes with DNAs: A Novel Assay for Assessment of Hazard Risk.

    PubMed

    Yao, Chunhe; Carlisi, Cristina; Li, Yuning; Chen, Da; Ding, Jianfu; Feng, Yong-Lai

    2016-01-01

    Increasing use of single-walled carbon nanotubes (SWCNTs) necessitates a novel method for hazard risk assessment. In this work, we investigated the interaction of several types of commercial SWCNTs with single-stranded (ss) and double-stranded (ds) DNA oligonucleotides (20-mer and 20 bp). Based on the results achieved, we proposed a novel assay that employed the DNA interaction potency to assess the hazard risk of SWCNTs. It was found that SWCNTs in different sizes or different batches of the same product number of SWCNTs showed dramatically different potency of interaction with DNAs. In addition, the same SWCNTs also exerted strikingly different interaction potency with ss- versus ds- DNAs. The interaction rates of SWCNTs with DNAs were investigated, which could be utilized as the indicator of potential hazard for acute exposure. Compared to solid SWCNTs, the SWCNTs dispersed in liquid medium (2% sodium cholate solution) exhibited dramatically different interaction potency with DNAs. This indicates that the exposure medium may greatly influence the subsequent toxicity and hazard risk produced by SWCNTs. Based on the findings of dose-dependences and time-dependences from the interactions between SWCNTs and DNAs, a new chemistry based assay for hazard risk assessment of nanomaterials including SWCNTs has been presented.

  2. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes.

    PubMed

    López-Oyama, A B; Silva-Molina, R A; Ruíz-García, J; Gámez-Corrales, R; Guirado-López, R A

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH-MWCNT). Our MWCNTs have average diameters of ~2 nm, lengths of approximately 100-300 nm, and a hydroxyl surface coverage θ~0.1. When deposited on the air/water interface the OH-MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO-LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH-MWCNTs might have promising applications.

  3. Innate immune humoral factors, C1q and factor H, with differential pattern recognition properties, alter macrophage response to carbon nanotubes.

    PubMed

    Pondman, Kirsten M; Pednekar, Lina; Paudyal, Basudev; Tsolaki, Anthony G; Kouser, Lubna; Khan, Haseeb A; Shamji, Mohamed H; Ten Haken, Bennie; Stenbeck, Gudrun; Sim, Robert B; Kishore, Uday

    2015-11-01

    Interaction between the complement system and carbon nanotubes (CNTs) can modify their intended biomedical applications. Pristine and derivatised CNTs can activate complement primarily via the classical pathway which enhances uptake of CNTs and suppresses pro-inflammatory response by immune cells. Here, we report that the interaction of C1q, the classical pathway recognition molecule, with CNTs involves charge pattern and classical pathway activation that is partly inhibited by factor H, a complement regulator. C1q and its globular modules, but not factor H, enhanced uptake of CNTs by macrophages and modulated the pro-inflammatory immune response. Thus, soluble complement factors can interact differentially with CNTs and alter the immune response even without complement activation. Coating CNTs with recombinant C1q globular heads offers a novel way of controlling classical pathway activation in nanotherapeutics. Surprisingly, the globular heads also enhance clearance by phagocytes and down-regulate inflammation, suggesting unexpected complexity in receptor interaction. Carbon nanotubes (CNTs) maybe useful in the clinical setting as targeting drug carriers. However, it is also well known that they can interact and activate the complement system, which may have a negative impact on the applicability of CNTs. In this study, the authors functionalized multi-walled CNT (MWNT), and investigated the interaction with the complement pathway. These studies are important so as to gain further understanding of the underlying mechanism in preparation for future use of CNTs in the clinical setting. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.

    2002-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT) with various orientations with respect to the bulk material coordinates. A nanotube, the local polymer adjacent to the nanotube, and the nanotube/polymer interface have been modeled as an equivalent-continuum fiber by using an equivalent-continuum modeling method. The equivalent-continuum fiber accounts for the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composite. As an example, the proposed approach is used for the constitutive modeling of a SWNT/LaRC-SI (with a PmPV interface) composite system, with aligned nanotubes, three-dimensionally randomly oriented nanotubes, and nanotubes oriented with varying degrees of axisymmetry. It is shown that the Young s modulus is highly dependent on the SWNT orientation distribution.

  5. Fabrication of titanium dioxide nanotube arrays using organic electrolytes

    NASA Astrophysics Data System (ADS)

    Yoriya, Sorachon

    This dissertation focuses on fabrication and improvement of morphological features of TiO2 nanotube arrays in the selected organic electrolytes including dimethyl sulfoxide (DMSO; see Chapter 4) and diethylene glycol (DEG; see Chapter 5). Using a polar dimethyl sulfoxide containing hydrofluoric acid, the vertically oriented TiO2 nanotube arrays with well controlled morphologies, i.e. tube lengths ranging from few microns up to 101 microm, pore diameters from 100 nm to 150 nm, and wall thicknesses from 15 nm to 50 nm were achieved. Various anodization variables including fluoride ion concentration, voltage, anodization time, water content, and reuse of the anodized electrolyte could be manipulated under proper conditions to control the nanotube array morphology. Anodization current behaviors associated with evolution of nanotube length were analyzed in order to clarify and better understand the formation mechanism of nanotubes grown in the organic electrolytes. Typically observed for DMSO electrolyte, the behavior that anodization current density gradually decreases with time is a reflection of a constant growth rate of nanotube arrays. Large fluctuation of anodization current was significantly observed probably due to the large change in electrolyte properties during anodization, when anodizing in high conductivity electrolytes such as using high HF concentration and reusing the anodized electrolyte as a second time. It is believed that the electrolyte properties such as conductivity and polarity play important role in affecting ion solvation and interactions in the solution consequently determining the formation of oxide film. Fabrication of the TiO2 nanotube array films was extended to study in the more viscous diethylene glycol (DEG) electrolyte. The arrayed nanotubes achieved from DEG electrolytes containing either HF or NH4 F are fully separated, freely self-standing structure with open pores and a wide variation of tube-to-tube spacing ranging from < 100 nm

  6. Investigation of the adsorption of polymer chains on amine-functionalized double-walled carbon nanotubes.

    PubMed

    Ansari, R; Ajori, S; Rouhi, S

    2015-12-01

    Molecular dynamics (MD) simulations were used to study the adsorption of different polymer chains on functionalized double-walled carbon nanotubes (DWCNTs). The nanotubes were functionalized with two different amines: NH2 (a small amine) and CH2-NH2 (a large amine). Considering three different polymer chains, all with the same number of atoms, the effect of polymer type on the polymer-nanotube interaction was studied. In general, it was found that covalent functionalization considerably improved the polymer-DWCNT interaction. By comparing the results obtained with different polymer chains, it was observed that, unlike polyethylene and polyketone, poly(styrene sulfonate) only weakly interacts with the functionalized DWCNTs. Accordingly, the smallest radius of gyration was obtained with adsorbed poly(styrene sulfonate). It was also observed that the DWCNTs functionalized with the large amine presented more stable interactions with polyketone and poly(styrene sulfonate) than with polyethylene, whereas the DWCNTs functionalized with the small amine showed better interfacial noncovalent bonding with polyethylene.

  7. Adsorptive fractionation of dissolved organic matter (DOM) by carbon nanotubes.

    PubMed

    Engel, Maya; Chefetz, Benny

    2015-02-01

    Dissolved organic matter (DOM) and carbon nanotubes are introduced into aquatic environments. Thus, it is important to elucidate whether their interaction affects DOM amount and composition. In this study, the composition of DOM, before and after interactions with single-walled carbon nanotubes (SWCNTs), was measured and the adsorption affinity of the individual structural fractions of DOM to SWCNTs was investigated. Adsorption of DOM to SWCNTs was dominated by the hydrophobic acid fraction, resulting in relative enhancement of the hydrophilic character of non-adsorbed DOM. The preferential adsorption of the HoA fraction was concentration-dependent, increasing with increasing concentration. Adsorption affinities of bulk DOM calculated as the normalized sum of affinities of the individual structural fractions were similar to the measured affinities, suggesting that the structural fractions of DOM act as independent adsorbates. The altered DOM composition may affect the nature and reactivity of DOM in aquatic environments polluted with carbon nanotubes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles.

    PubMed

    Yang, Tingting; Qian, Shi; Qiao, Yuqing; Liu, Xuanyong

    2016-09-01

    TiO2 nanotubes prepared by electrochemical anodization have received considerable attention in the biomedical field. In this work, different amounts of gold nanoparticles were immobilized onto TiO2 nanotubes using 3-aminopropyltrimethoxysilane as coupling agent. Field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to investigate the surface morphology and composition. Photoluminescence spectra and surface zeta potential were also measured. The obtained results indicate that the surface modified gold nanoparticles can significantly enhance the electron storage capability and reduce the surface zeta potential compared to pristine TiO2 nanotubes. Moreover, the surface modified gold nanoparticles can stimulate initial adhesion and spreading of rat bone mesenchymal stem cells as well as proliferation, while the osteogenous performance of TiO2 nanotubes will not be reduced. The gold-modified surface presents moderate antibacterial effect on both Staphylococcus aureus and Escherichia coli. It should be noted that the surface modified fewer gold nanoparticles has better antibacterial effect compared to the surface of substantial modification of gold nanoparticles. Our study illustrates a composite surface with favorable cytocompatibility and antibacterial effect and provides a promising candidate for orthopedic and dental implant. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes-``Super-Growth''

    NASA Astrophysics Data System (ADS)

    Hata, Kenji

    2005-03-01

    We demonstrate an extremely efficient chemical vapour deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water [1]. Water-stimulated enhanced catalytic activity results in massive growth of super-dense and vertically-aligned nanotube forests with heights up to 2.5 millimeters that can be easily separated from the catalysts, providing nanotube material with carbon purity above 99.98%. Moreover, patterned highly organized intrinsic nanotube structures were successfully fabricated. The water-assisted synthesis method addresses many critical problems that currently plague carbon nanotube synthesis. [1] K. Hata, et al., Science, 306, 1362 (2004).

  10. Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting.

    PubMed

    Lohrman, Jessica; Zhang, Chenxi; Zhang, Wei; Ren, Shenqiang

    2012-08-28

    We demonstrate noncovalent electrostatic and π-π interactions to assemble semiconducting single wall carbon nanotube (SWCNT)-C(60)@COP nanohybrids. The C(60)@COP light harvesting complexes bind strongly to SWCNTs due to significant π-π-stacking between C(60), the aromatic dicarbazolylacetylene moieties and the nanotube surfaces.

  11. Direct electron transfer of glucose oxidase on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Guiseppi-Elie, Anthony; Lei, Chenghong; Baughman, Ray H.

    2002-10-01

    In this report, exploitation of the unique properties of single-walled carbon nanotubes (SWNT) leads to the achievement of direct electron transfer with the redox active centres of adsorbed oxidoreductase enzymes. Flavin adenine dinucleotide (FAD), the redox active prosthetic group of flavoenzymes that catalyses important biological redox reactions and the flavoenzyme glucose oxidase (GOx), were both found to spontaneously adsorb onto carbon nanotube bundles. Both FAD and GOx were found to spontaneously adsorb to unannealed carbon nanotubes that were cast onto glassy carbon electrodes and to display quasi-reversible one-electron transfer. Similarly, GOx was found to spontaneously adsorb to annealed, single-walled carbon nanotube paper and to display quasi-reversible one-electron transfer. In particular, GOx immobilized in this way was shown, in the presence of glucose, to maintain its substrate-specific enzyme activity. It is believed that the tubular fibrils become positioned within tunnelling distance of the cofactors with little consequence to denaturation. The combination of SWNT with redox active enzymes would appear to offer an excellent and convenient platform for a fundamental understanding of biological redox reactions as well as the development of reagentless biosensors and nanobiosensors.

  12. Nanocomposite film of TiO{sub 2} nanotube and polyoxometalate towards photocatalytic degradation of nitrobenzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Zhixia; Zhao, Mingliang; Li, Fengyan, E-mail: lify525@nenu.edu.cn

    2014-12-15

    Highlights: • The film of POMs and TiO{sub 2} nanotubes was prepared by electrodeposition. • The photocatalytic activity of the composite film for nitrobenzene was investigated. • The composite film showed higher photocatalytic activity than pure TiO{sub 2} nanotubes. • The introduction of POMs into TiO{sub 2} could retard electron–hole recombination. - Abstract: The composite film based on polyoxometalates (POMs)-modified TiO{sub 2} nanotubes was prepared by electrodeposition method for the photocatalytic degradation of nitrobenzene. The composite film was characterized by field-emission scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, which indicated that the POMs weremore » well introduced into the TiO{sub 2} nanotubes. Furthermore, the photocatalytic properties of the TiO{sub 2} nanotubes and POMs-modified TiO{sub 2} nanotubes were evaluated by the decomposition of nitrobenzene. POMs-modified TiO{sub 2} nanotubes showed much higher photocatalytic activity than pure TiO{sub 2} nanotubes. These results provide a promising route to effectively photocatalytic degradation of nitrobenzene by POMs-modified TiO{sub 2} nanotubes.« less

  13. Photoinduced Spontaneous Free-Carrier Generation in Semiconducting Single-Walled Carbon Nanotubes

    DOE PAGES

    Park, Jaehong; Reid, Obadiah G.; Blackburn, Jeffrey L.; ...

    2015-11-04

    The strong quantum confinement and low dielectric screening impart single-walled carbon nanotubes with exciton-binding energies substantially exceeding kBT at room temperature. Despite these large binding energies, reported photoluminescence quantum yields are typically low and some studies suggest that photoexcitation of carbon nanotube excitonic transitions can produce free charge carriers. Here we report the direct measurement of long-lived free-carrier generation in chirality-pure, single-walled carbon nanotubes in a low dielectric solvent. Time-resolved microwave conductivity enables contactless and quantitative measurement of the real and imaginary photoconductance of individually suspended nanotubes. We found that the conditions of the microwave conductivity measurement allow us tomore » avoid the complications of most previous measurements of nanotube free-carrier generation, including tube–tube/tube–electrode contact, dielectric screening by nearby excitons and many-body interactions. At low photon fluence (approximately 0.05 excitons per μm length of tubes), we directly observe free carriers on excitation of the first and second carbon nanotube exciton transitions.« less

  14. Synthesis and characterization of titanate nanotube/single-walled carbon nanotube (TNT/SWCNT) porous nanocomposite and its photocatalytic activity on 4-chlorophenol degradation under UV and solar irradiation

    NASA Astrophysics Data System (ADS)

    Payan, A.; Fattahi, M.; Jorfi, S.; Roozbehani, B.; Payan, S.

    2018-03-01

    The titanate nanotube/single-wall carbon nanotube (TNT/SWCNT) nanocomposites from different titania precursors were prepared by a two-step hydrothermal process. These nanocomposites were characterized by XRD, BET, Raman, FESEM, TEM, EDX, EDS, EIS, UV-vis DRS and FTIR techniques. The FESEM and TEM images showed the high porous nanocomposites with two types of tubular structure relating to TNTs and SWCNTs which were interwoven together uniformly. The XRD and Raman analysis further corroborated the chemical interaction between the SWCNT and the TNT in the nanocomposites. The photocatalytic performance of the as-synthesized composites were examined by the photodegradation of 4-CP under solar and UV illumination. The results revealed an impressive enhancement in photocatalytic activity of the nanocomposites under both irradiation conditions comparison to bare TNPs and TNTs. Amongst the TNT/SWCNT nanocomposites, 10% loading of SWCNT under UV irradiation and 5% loading of SWCNT under solar irradiation exhibited the maximum photocatalytic performance while the photocatalytic degradation efficiency of nanocomposites were not affected considerably by the type of precursor. Moreover, the mechanism and role of SWCNT were investigated and the plausible degradation pathways of 4-CP was suggested. TOC analyses was performed for determination of 4-CP mineralization rate and results showed complete mineralization after 240 and 390 min under UV and solar irradiation, respectively. The trapping experiments corroborated the O2- and OH radicals as the main reactive species in 4-CP degradation process. Langmuir-Hinshelwood kinetic model was fittingly matched with the experimental data (R2: 0.9218 and 0.9703 for UV and solar irradiation). Additionally, the stability of the nanocomposites were investigated and revealed 8% decrease in degradation efficiency after four cycles.

  15. Doxycycline-encapsulated nanotube-modified dentin adhesives.

    PubMed

    Feitosa, S A; Palasuk, J; Kamocki, K; Geraldeli, S; Gregory, R L; Platt, J A; Windsor, L J; Bottino, M C

    2014-12-01

    This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives-but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels-we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP

  16. Doxycycline-Encapsulated Nanotube-Modified Dentin Adhesives

    PubMed Central

    Feitosa, S.A.; Palasuk, J.; Kamocki, K.; Geraldeli, S.; Gregory, R.L.; Platt, J.A.; Windsor, L.J.; Bottino, M.C.

    2014-01-01

    This article presents details of fabrication, biological activity (i.e., anti–matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)–encapsulated halloysite nanotube (HNT)–modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives—but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels—we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of

  17. Electrodeposition synthesis of MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites and their visible light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xuyao; Zhou, Xiaosong, E-mail: zxs801213@163.com; Li, Xiaoyu, E-mail: lixiaoyu@iga.ac.cn

    2014-11-15

    Highlights: • MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites are prepared by electrodeposition. • MnO{sub 2}/TiO{sub 2} exhibits high visible light photocatalytic activity. • The results of XRD show the depositions are attributed to α-MnO{sub 2}. • A photocatalytic mechanism is discussed under visible light irradiation. - Abstract: MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposite photocatalysts have been synthesized through an electrodeposition method. X-ray powder diffraction analysis and X-ray photoelectron spectroscopy measurements reveal that the products of electrodeposition method are MnO{sub 2}. Scanning electron microscopy measurements suggest that the depositions are deposited on the surface or internal of the nanotube. UV–vis lightmore » absorbance spectra demonstrate the excellent adsorption properties of MnO{sub 2}/TiO{sub 2} over the whole region of visible light, which enables this novel photocatalytic material to possess remarkable activity in the photocatalytic degradation of acid Orange II under visible light radiation. Moreover, a possible photocatalytic mechanism is discussed.« less

  18. Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites.

    PubMed

    Tan, Wei; Twomey, John; Guo, Dongjie; Madhavan, Krishna; Li, Min

    2010-06-01

    Collagen I is an essential structural and mechanical building block of various tissues, and it is often used as tissue-engineering scaffolds. However, collagen-based constructs reconstituted in vitro often lacks robust fiber structure, mechanical stability, and molecule binding capability. To enhance these performances, the present study developed 3-D collagen-nanotube composite constructs with two types of functionalized carbon nanotubes, carboxylated nanotubes and covalently functionalized nanotubes (CFNTs). The influences of nanotube functionalization and loading concentration on the collagen fiber structure, mechanical property, biocompatibility, and molecule binding were examined. Results revealed that surface modification and loading concentration of nanotubes determined the interactions between nanotubes and collagen fibrils, thus altering the structure and property of nanotube-collagen composites. Scanning electron microscopy and confocal microscopy revealed that the incorporation of CFNT in collagen-based constructs was an effective means of restructuring collagen fibrils because CFNT strongly bound to collagen molecules inducing the formation of larger fibril bundles. However, increased nanotube loading concentration caused the formation of denser fibril network and larger aggregates. Static stress-strain tests under compression showed that the addition of nanotube into collagen-based constructs did not significantly increase static compressive moduli. Creep/recovery testing under compression revealed that CFNT-collagen constructs showed improved mechanical stability under continuous loading. Testing with endothelial cells showed that biocompatibility was highly dependent on nanotube loading concentration. At a low loading level, CFNT-collagen showed higher endothelial coverage than the other tested constructs or materials. Additionally, CFNT-collagen showed capability of binding to other biomolecules to enhance the construct functionality. In conclusion

  19. Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity.

    PubMed

    Cai, Kai; Lv, Zhicheng; Chen, Kun; Huang, Liang; Wang, Jing; Shao, Feng; Wang, Yanjun; Han, Heyou

    2013-07-11

    Platinum nanotubes (PtNTs) exhibiting high porosity were constructed by sacrificing the exterior of tellurium nanowires (TeNWs) and disintegrating the inner part spontaneously in aqueous solution at room temperature, in which the Kirkendall effect may play an important role. The present PtNTs exhibited intrinsic peroxidase-like activity in the presence of H2O2.

  20. Self-assembly of protein-based biomaterials initiated by titania nanotubes.

    PubMed

    Forstater, Jacob H; Kleinhammes, Alfred; Wu, Yue

    2013-12-03

    Protein-based biomaterials are a promising strategy for creating robust highly selective biocatalysts. The assembled biomaterials must sufficiently retain the near-native structure of proteins and provide molecular access to catalytically active sites. These requirements often exclude the use of conventional assembly techniques, which rely on covalent cross-linking of proteins or entrapment within a scaffold. Here we demonstrate that titania nanotubes can initiate and template the self-assembly of enzymes, such as ribonuclease A, while maintaining their catalytic activity. Initially, the enzymes form multilayer thick ellipsoidal aggregates centered on the nanotube surface; subsequently, these nanosized entities assemble into a micrometer-sized enzyme material that has enhanced enzymatic activity and contains as little as 0.1 wt % TiO2 nanotubes. This phenomenon is uniquely associated with the active anatase (001)-like surface of titania nanotubes and does not occur on other anatase nanomaterials, which contain significantly fewer undercoordinated Ti surface sites. These findings present a nanotechnology-enabled mechanism of biomaterial growth and open a new route for creating stable protein-based biomaterials and biocatalysts without the need for chemical modification.

  1. Temperature Dependence of the Thermal Conductivity of Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, Mohamed A.; Srivastava, Deepak

    2000-01-01

    The thermal conductivity of several single wall carbon nanotubes (CNT) has been calculated over a temperature range of 100-500 K using molecular dynamics simulations with Tersoff-Brenner potential for C-C interactions. In all cases, starting from similar values at 100K, thermal conductivities show a peaking behavior before falling off at higher temperatures. The peak position shifts to higher temperatures for nanotubes of larger diameter, and no significant dependence on the tube chirality is observed. It is shown that this phenomenon is due to onset of Umklapp scattering, which shifts to higher temperatures for nanotubes of larger diameter.

  2. Ab initio density functional theory investigation of structural and electronic properties of silicon carbide nanotube bundles

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-10-01

    By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius.

  3. Heteroporphyrin nanotubes and composites

    DOEpatents

    Shelnutt, John A.; Medforth, Craig J.; Wang, Zhongchun

    2006-11-07

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  4. Heteroporphyrin nanotubes and composites

    DOEpatents

    Shelnutt, John A [Tijeras, NM; Medforth, Craig J [Winters, CA; Wang, Zhongchun [Albuquerque, NM

    2007-05-29

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  5. Modifying the electronic and optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kinder, Jesse M.

    The intrinsic electronic and optical properties of carbon nanotubes make them promising candidates for circuit elements and LEDs in nanoscale devices. However, applied fields and interactions with the environment can modify these intrinsic properties. This dissertation is a theoretical study of perturbations to an ideal carbon nanotube. It illustrates how transport and optical properties of carbon nanotubes can be adversely affected or intentionally modified by the local environment. The dissertation is divided into three parts. Part I analyzes the effect of a transverse electric field on the single-electron energy spectrum of semiconducting carbon nanotubes. Part II analyzes the effect of the local environment on selection rules and decay pathways relevant to dark excitons. Part III is a series of 26 appendices. Two different models for a transverse electric field are introduced in Part I. The first is a uniform field perpendicular to the nanotube axis. This model suggests the field has little effect on the band gap until it exceeds a critical value that can be tuned with strain or a magnetic field. The second model is a transverse field localized to a small region along the nanotube axis. The field creates a pair of exponentially localized bound states but has no effect on the band gap for particle transport. Part II explores the physics of dark excitons in carbon nanotubes. Two model calculations illustrate the effect of the local environment on allowed optical transitions and nonradiative recombination pathways. The first model illustrates the role of inversion symmetry in the optical spectrum. Broken inversion symmetry may explain low-lying peaks in the exciton spectrum of boron nitride nanotubes and localized photoemission around impurities and interfaces in carbon nanotubes. The second model in Part II suggests that free charge carriers can mediate an efficient nonradiative decay process for dark excitons in carbon nanotubes. The appendices in Part III

  6. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azam, M.A., E-mail: asyadi@utem.edu.my; Jantan, N.H.; Dorah, N.

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, amongmore » others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.« less

  7. Carbon Nanotubes for Space Photovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Efstathiadis, Harry; Haldar, Pradeep; Landi, Brian J.; Denno, Patrick L.; DiLeo, Roberta A.; VanDerveer, William; Raffaelle, Ryne P.

    2007-01-01

    Carbon nanotubes (CNTs) can be envisioned as an individual graphene sheet rolled into a seamless cylinder (single-walled, SWNT), or concentric sheets as in the case of a multi-walled carbon nanotube (MWNT) (1). The role-up vector will determine the hexagonal arrangement and "chirality" of the graphene sheet, which will establish the nanotube to be metallic or semiconducting. The optoelectronic properties will depend directly on this chiral angle and the diameter of the SWNT, with semiconductor types exhibiting a band gap energy (2). Characteristic of MWNTs are the concentric graphene layers spaced 0.34 nm apart, with diameters from 10-200 nm and lengths up to hundreds of microns (2). In the case of SWNTs, the diameters range from 0.4 - 2 nm and lengths have been reported up to 1.5 cm (3). SWNTs have the distinguishable property of "bundling" together due to van der Waal's attractions to form "ropes." A comparison of these different structural types is shown in Figure 1. The use of SWNTS in space photovoltaic (PV) applications is attractive for a variety of reasons. Carbon nanotubes as a class of materials exhibit unprecedented optical, electrical, mechanical properties, with the added benefit of being nanoscale in size which fosters ideal interaction in nanomaterial-based devices like polymeric solar cells. The optical bandgap of semiconducting SWNTs can be varied from approx. 0.4 - 1.5 eV, with this property being inversely proportional to the nanotube diameter. Recent work at GE Global Research has shown where a single nanotube device can behave as an "ideal" pn diode (5). The SWNT was bridged over a SiO2 channel between Mo contacts and exhibited an ideality factor of 1, based on a fit of the current-voltage data using the diode equation. The measured PV efficiency under a 0.8 eV monochromatic illumination showed a power conversion efficiency of 0.2 %. However, the projected efficiency of these junctions is estimated to be > 5 %, especially when one considers the

  8. Integrated carboxylic carbon nanotube pathways with membranes for voltage-activated humidity detection and microclimate regulation.

    PubMed

    Pingitore, V; Miriello, D; Drioli, E; Gugliuzza, A

    2015-06-14

    This work describes some single walled carboxylic carbon nanotubes with outstanding transport properties when assembled in a 3D microarray working like a humidity membrane-sensor and an adjustable moisture regulator. Combined nano-assembly approaches are used to build up a better quality pathway through which assisted-charge and mass transport synchronically takes place. The structure-electrical response relationship is found, while controllable and tunable donor-acceptor interactions established at material interfaces are regarded as key factors for the accomplishment of charge transportation, enhanced electrical responses and adjustable moisture exchange. Raman and infrared spectroscopy provides indications about the fine structural and chemical features of the hybrid-composite membranes, resulting in perfect agreement with related morphology and electrical properties. Enhanced and modular electrical response to changes in the surrounding atmosphere is concerned with doping events, while assisted moisture regulation is discussed in relation to swelling and hopping actions. The electro-activated hybrid-composite membrane proposed in this work can be regarded as an attractive 'sense-to-act' precursor for smart long-distance monitoring systems with capability to adapt itself and provide local comfortable microenvironments.

  9. Synthesis of 1D-glyconanomaterials by a hybrid noncovalent-covalent functionalization of single wall carbon nanotubes: a study of their selective interactions with lectins and with live cells

    NASA Astrophysics Data System (ADS)

    Pernía Leal, M.; Assali, M.; Cid, J. J.; Valdivia, V.; Franco, J. M.; Fernández, I.; Pozo, D.; Khiar, N.

    2015-11-01

    To take full advantage of the remarkable applications of carbon nanotubes in different fields, there is a need to develop effective methods to improve their water dispersion and biocompatibility while maintaining their physical properties. In this sense, current approaches suffer from serious drawbacks such as loss of electronic structure together with low surface coverage in the case of covalent functionalizations, or instability of the dynamic hybrids obtained by non-covalent functionalizations. In the present work, we examined the molecular basis of an original strategy that combines the advantages of both functionalizations without their main drawbacks. The hierarchical self-assembly of diacetylenic-based neoglycolipids into highly organized and compacted rings around the nanotubes, followed by photopolymerization leads to the formation of nanotubes covered with glyconanorings with a shish kebab-type topology exposing the carbohydrate ligands to the water phase in a multivalent fashion. The glyconanotubes obtained are fully functional, and able to establish specific interactions with their cognate receptors. In fact, by taking advantage of this selective binding, an easy method to sense lectins as a working model of toxin detection was developed based on a simple analysis of TEM images. Remarkably, different experimental settings to assess cell membrane integrity, cell growth kinetics and cell cycle demonstrated the cellular biocompatibility of the sugar-coated carbon nanotubes compared to pristine single-walled carbon nanotubes.To take full advantage of the remarkable applications of carbon nanotubes in different fields, there is a need to develop effective methods to improve their water dispersion and biocompatibility while maintaining their physical properties. In this sense, current approaches suffer from serious drawbacks such as loss of electronic structure together with low surface coverage in the case of covalent functionalizations, or instability of

  10. Nanohashtag structures based on carbon nanotubes and molecular linkers

    NASA Astrophysics Data System (ADS)

    Frye, Connor W.; Rybolt, Thomas R.

    2018-03-01

    Molecular mechanics was used to study the noncovalent interactions between single-walled carbon nanotubes and molecular linkers. Groups of nanotubes have the tendency to form tight, parallel bundles (||||). Molecular linkers were introduced into our models to stabilize nanostructures with carbon nanotubes held in perpendicular orientations. Molecular mechanics makes it possible to estimate the strength of noncovalent interactions holding these structures together and to calculate the overall binding energy of the structures. A set of linkers were designed and built around a 1,3,5,7-cyclooctatetraene tether with two corannulene containing pincers that extend in opposite directions from the central cyclooctatetraene portion. Each pincer consists of a pairs of "arms." These molecular linkers were modified so that the "hand" portions of each pair of "arms" could close together to grab and hold two carbon nanotubes in a perpendicular arrangement. To illustrate the possibility of more complicated and open perpendicular CNTs structures, our primary goal was to create a model of a nanohashtag (#) CNT conformation that is more stable than any parallel CNT arrangements with bound linker molecules forming clumps of CNTs and linkers in non-hashtag arrangements. This goal was achieved using a molecular linker (C280H96) that utilizes van der Waals interactions to two perpendicular oriented CNTs. Hydrogen bonding was then added between linker molecules to augment the stability of the hashtag structure. In the hashtag structure with hydrogen bonding, four (5,5) CNTs of length 4.46 nm (18 rings) and four linkers (C276H92N8O8) stabilized the hashtag so that the average binding energy per pincer was 118 kcal/mol.

  11. Molecular dynamics investigation of the physisorption and interfacial characteristics of NBR chains on carbon nanotubes with different characteristics

    NASA Astrophysics Data System (ADS)

    Li, Kun; Gu, Boqin

    2017-07-01

    The present study investigates the physisorption and interfacial interactions between multiwalled carbon nanotubes (MWNTs) with different characteristics, including different numbers of walls and different functional groups, and acrylonitrile-butadiene rubber (NBR) polymer chains based on molecular dynamics simulations performed using modeled MWNT/NBR compound systems. The effects of the initial orientation of NBR chains and their relative distances to nanotubes, number of nanotube layers, and the surface functional groups of nanotubes on nanotube/polymer interactions are examined. Analysis is conducted according to the final configuration obtained in conjunction with the binding energy (Eb), radius of gyration (Rg) and end-to-end distance (h). The results show that the final conformations of NBR chains adsorbed on MWNT surfaces is associated with the initial relative angle of the NBR chains and their distance from the nanotubes. For non-functionalized MWNTs, Eb is almost directly proportional to Rg under equivalent parameters. Moreover, it is observed that functional groups hinder the wrapping of NBR chains on the MWNT surfaces. This indicates that functional groups do not always benefit the macro-mechanical properties of the composites. Moreover, the type of the major interaction force has been dramatically changed into electrostatic force from vdW force because of functionalization.

  12. Nanotube phonon waveguide

    DOEpatents

    Chang, Chih-Wei; Zettl, Alexander K.

    2013-10-29

    Disclosed are methods and devices in which certain types of nanotubes (e.g., carbon nanotubes and boron nitride nanotubes conduct heat with high efficiency and are therefore useful in electronic-type devices.

  13. Production and Characterization of Carbon Nanotubes and Nanotube-Based Composites

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel; Arepalli, Sivaram; Holmes, William; Gorelik, Olga; Files, Brad; Scott, Carl; Santos, Beatrice; Mayeaux, Brian; Victor, Joe

    1999-01-01

    The Nobel Prize winning discovery of the Buckuball (C60) in 1985 at Rice University by a group including Dr. Richard Smalley led to the whole new class of carbon allotropes including fullerenes and nanotubes. Especially interesting from many viewpoints are single-walled carbon nanotubes, which structurally are like a single graphitic sheet wrapped around a cylinder and capped at the ends. This cylinders have diameter as small as 0.5 - 2 nm (1/100,000th the diameter of a human hair) and are as long as 0.1 - 1 mm. Nanotubes are really individual molecules and believed to be defect-free, leading to high tensile strength despite their low density. Additionally, these fibers exhibit electrical conductivity as high as copper, thermal conductivity as high as diamond, strength 100 times higher than steel at one-sixth the weight, and high strain to failure. Thus it is believed that developments in the field of nanotechnology will lead to stronger and lighter composite materials for next generation spacecraft. Lack of a bulk method of production is the primary reason nanotubes are not used widely today. Toward this goal JSC nanotube team is exploring three distinct production techniques: laser ablation, arc discharge and chemical vapor deposition (CVD, in collaboration with Rice University). In laser ablation technique high-power laser impinges on the piece of carbon containing small amount of catalyst, and nanotubes self-assemble from the resulting carbon vapor. In arc generator similar vapor is created in arc discharge between carbon electrodes with catalyst. In CVD method nanotubes grow at much lower temperature on small catalyst particles from carbon-containing feedstock gas (methane or carbon monoxide). As of now, laser ablation produces cleanest material, but mass yield is rather small. Arc discharge produces grams of material, but purity is low. CVD technique is still in baby steps, but preliminary results look promising, as well as perspective of scaling the process

  14. Supercritical fluid attachment of palladium nanoparticles on aligned carbon nanotubes.

    PubMed

    Ye, Xiang-Rong; Lin, Yuehe; Wai, Chien M; Talbot, Jan B; Jin, Sungho

    2005-06-01

    Nanocomposite materials consisting of Pd nanoparticles deposited on aligned multi-walled carbon nanotubes have been fabricated through hydrogen reduction of palladium-beta-diketone precursor in supercritical carbon dioxide. The supercritical fluid processing allowed deposition of high-density Pd nanoparticles (approximately 5-10 nm) on both as-grown (unfunctionalized) and functionalized (using HNO3 oxidation) nanotubes. However, the wet processing for functionalization results in pre-agglomerated, bundle-shaped nanotubes, thus significantly reducing the effective surface area for Pd particle deposition, although the bundling provides more secure, lock-in-place positioning of nanotubes and Pd catalyst particles. The nanotube bundling is substantially mitigated by Pd nanoparticle deposition on the unfunctionalized and geometrically separated nanotubes, which provides much higher catalyst surface area. Such nanocomposite materials utilizing geometrically secured and aligned nanotubes can be useful for providing much enhanced catalytic activities to chemical and electrochemical reactions (e.g., fuel cell reactions), and eliminate the need for tedious catalyst recovery process after the reaction is completed.

  15. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  16. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images showmore » that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.« less

  17. Modeling the Effects of Interfacial Characteristics on Gas Permeation Behavior of Nanotube-Mixed Matrix Membranes.

    PubMed

    Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad

    2017-10-25

    Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.

  18. Multifunctional Nanotube Polymer Nanocomposites for Aerospace Applications: Adhesion between SWCNT and Polymer Matrix

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Wise, Kristopher E.; Kang, Jin Ho; Kim, Jae-Woo; Sauti, Godfrey; Lowther, Sharon E.; Lillehei, Peter T.; Smith, Michael W.; Siochi, Emilie J.; Harrison, Joycelyn S.; hide

    2008-01-01

    Multifunctional structural materials can enable a novel design space for advanced aerospace structures. A promising route to multifunctionality is the use of nanotubes possessing the desired combination of properties to enhance the characteristics of structural polymers. Recent nanotube-polymer nanocomposite studies have revealed that these materials have the potential to provide structural integrity as well as sensing and/or actuation capabilities. Judicious selection or modification of the polymer matrix to promote donor acceptor and/or dispersion interactions can improve adhesion at the interface between the nanotubes and the polymer matrix significantly. The effect of nanotube incorporation on the modulus and toughness of the polymer matrix will be presented. Very small loadings of single wall nanotubes in a polyimide matrix yield an effective sensor material that responds to strain, stress, pressure, and temperature. These materials also exhibit significant actuation in response to applied electric fields. The objective of this work is to demonstrate that physical properties of multifunctional material systems can be tailored for specific applications by controlling nanotube treatment (different types of nanotubes), concentration, and degree of alignment.

  19. Process for making polymers comprising derivatized carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The present invention incorporates new processes for blending derivatized carbon nanotubes into polymer matrices to create new polymer/composite materials. When modified with suitable chemical groups using diazonium chemistry, the nanotubes can be made chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as mechanical strength) to the properties of the composite material as a whole. To achieve this, the derivatized (modified) carbon nanotubes are physically blended with the polymeric material, and/or, if desired, allowed to react at ambient or elevated temperature. These methods can be utilized to append functionalities to the nanotubes that will further covalently bond to the host polymer matrix, or directly between two tubes themselves. Furthermore, the nanotubes can be used as a generator of polymer growth, wherein the nanotubes are derivatized with a functional group that is an active part of a polymerization process, which would also result in a composite material in which the carbon nanotubes are chemically involved.

  20. Inelastic X-ray Scattering Studies of Plasmons in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Upton, M. H.; Klie, R. F.; Hill, J. P.; Gog, T.; Casa, D.; Ku, W.; Zhu, Y.; Sfeir, M. Y.; Misewich, J.; Eres, G.; Lowndes, D.

    2007-03-01

    We investigate the physical parameters controlling the low energy screening in carbon nanotubes via electron energy loss spectroscopy and inelastic x-ray scattering. Two plasmon-like features are observed, one near 9 eV (the so- called π plasmon) and one near 20 eV (the so-called π+σ plasmon). At large nanotube diameters, the π+σ plasmon energies depend exclusively on the number of walls and not on the radius or chiral vector. This shift indicates a change of strength of screening and the effective interaction at inter-atomic distance, and thus suggests an alternative mechanism of tuning the properties of the nanotube in addition to the well-known control provided by chirality and tube diameter.

  1. Carbon nanotube-ceramic nanocomposites: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Clark, Michael David

    Ceramic materials are widely used in modern society for a variety of applications including fuel cell electrolytes, bio-medical implants, and jet turbines. However, ceramics are inherently brittle making them excellent candidates for mechanical reinforcement. In this work, the feasibility of dispersing multi-walled carbon nanotubes into a silicon carbide matrix for mechanical property enhancement is explored. Prior to dispersing, nanotubes were purified using an optimized, three step methodology that incorporates oxidative treatment, acid sonication, and thermal annealing rendering near-superhydrophobic behavior in synthesized thin films. Alkyl functionalized nanotube dispersability was characterized in various solvents. Dispersability was contingent on fostering polar interactions between the functionalized nanotubes and solvent despite the purely dispersive nature of the aliphatic chains. Interpretation of these results yielded values of 45.6 +/- 1.2, 0.78 +/- 0.04, and 2 4 +/- 0.9 mJ/m2 for the Lifshitz-van der Waals, electron acceptor and electron donor surface energy components respectively. Aqueous nanotube dispersions were prepared using a number of surfactants to examine surfactant concentration and pH effects on nanotube dispersability. Increasing surfactant concentrations resulted in a solubility plateau, which was independent of the surfactant's critical micelle concentration. Deviations from neutral pH demonstrated negligible influence on non-ionic surfactant adsorption while, ionic surfactants showed substantial pH dependent behavior. These results were explained in the context of nanotube surface ionization and Debye length variation. Successful MWNT dispersion into a silicon carbide based matrix is reported by in-situ ceramic formation using two routes; sol-gel chemistry and pre-ceramic polymeric precursor workup. For the former, nanotube dispersion was assisted by PluronicRTM surfactants. Pyrolytic treatment and consolidation of formed powders

  2. Nanoscale Etching and Indentation of Silicon Surfaces with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fedor N.; Srivastava, Deepak; Saini, Subhash

    1998-01-01

    The possibility of nanolithography of silicon and germanium surfaces with bare carbon nanotube tips of scanning probe microscopy devices is considered with large scale classical molecular dynamics (MD) simulations employing Tersoff's reactive many-body potential for heteroatomic C/Si/Ge system. Lithography plays a key role in semiconductor manufacturing, and it is expected that future molecular and quantum electronic devices will be fabricated with nanolithographic and nanodeposition techniques. Carbon nanotubes, rolled up sheets of graphene made of carbon, are excellent candidates for use in nanolithography because they are extremely strong along axial direction and yet extremely elastic along radial direction. In the simulations, the interaction of a carbon nanotube tip with silicon surfaces is explored in two regimes. In the first scenario, the nanotubes barely touch the surface, while in the second they are pushed into the surface to make "nano holes". The first - gentle scenario mimics the nanotube-surface chemical reaction induced by the vertical mechanical manipulation of the nanotube. The second -digging - scenario intends to study the indentation profiles. The following results are reported in the two cases. In the first regime, depending on the surface impact site, two major outcomes outcomes are the selective removal of either a single surface atom or a surface dimer off the silicon surface. In the second regime, the indentation of a silicon substrate by the nanotube is observed. Upon the nanotube withdrawal, several surface silicon atoms are adsorbed at the tip of the nanotube causing significant rearrangements of atoms comprising the surface layer of the silicon substrate. The results are explained in terms of relative strength of C-C, C-Si, and Si-Si bonds. The proposed method is very robust and does not require applied voltage between the nanotube tips and the surface. The implications of the reported controllable etching and hole-creating for

  3. Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating

    PubMed Central

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2016-01-01

    The primary objective of this research was to evaluate the extent of mechanical degradation on TiO2 nanotubes on Ti with and without nano-particulate silver coating using two different lengths of TiO2 nanotubes- 300nm and ~ 1µm, which were fabricated on commercially pure Titanium (cp-Ti) rods using anodization method using two different electrolytic mediums - (1) deionized (DI) water with 1% HF, and (2) ethylene glycol with 1% HF, 0.5 wt%. NH4F and 10% DI water. Nanotubes fabricated rods were implanted into equine cadaver bone to evaluate mechanical damage at the surface. Silver was electrochemically deposited on these nanotubes and using a release study, silver ion concentrations were measured before and after implantation, followed by surface characterization using a Field Emission Scanning Electron Microscope (FESEM). In vitro cell-material interaction study was performed using human fetal osteoblast cells (hFOB) to understand the effect of silver coating using an MTT assay for proliferation and to determine any cytotoxic effect on the cells and to study its biocompatibility. No significant damage due to implantation was observed for nanotubes up to ~1 µm length under current experimental conditions. Cell-materials interaction showed no cytotoxic effects on the cells due to silver coating and anodization of samples. PMID:27017285

  4. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage

    PubMed Central

    Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin

    2015-01-01

    Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices. PMID:25650133

  5. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage.

    PubMed

    Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin

    2015-02-04

    Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices.

  6. Fabrication of Titania Nanotubes for Gas Sensing Applications

    NASA Astrophysics Data System (ADS)

    Dzilal, A. A.; Muti, M. N.; John, O. D.

    2010-03-01

    Detection of hydrogen is needed for industrial process control and medical applications where presence of hydrogen indicates different type of health problems. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to fabricate good quality titania nanotubes suitable for hydrogen sensing applications. The fabrication method used is anodizing method. The anodizing parameters namely the voltage, time duration, concentration of hydrofluoric acid in water, separation between the electrodes and the ambient temperature are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes. The highly ordered porous titania nanotubes produced by this method are in tabular shape and have good uniformity and alignment over large areas. From the investigation done, certain set of anodizing parameters have been found to produce good quality titania nanotubes with diameter ranges from 47 nm to 94 nm.

  7. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    PubMed

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Extinction properties of single-walled carbon nanotubes: Two-fluid model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir

    The extinction spectra of a single-walled carbon nanotube are investigated, within the framework of the vector wave function method in conjunction with the hydrodynamic model. Both polarizations of the incident plane wave (TE and TM with respect to the x-z plane) are treated. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of a two-dimensional electron gas represented by two interacting fluids, which takes into account the different nature of the σ and π electrons. Numerical results show that strong interaction between the fluids gives rise to the splitting of the extinction spectra into two peaksmore » in quantitative agreement with the π and σ + π plasmon energies.« less

  9. Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines

    NASA Astrophysics Data System (ADS)

    Muzi, Laura; Tardani, Franco; La Mesa, Camillo; Bonincontro, Adalberto; Bianco, Alberto; Risuleo, Gianfranco

    2016-04-01

    Functionalized carbon nanotubes (CNTs) have shown great promise in several biomedical contexts, spanning from drug delivery to tissue regeneration. Thanks to their unique size-related properties, single-walled CNTs (SWCNTs) are particularly interesting in these fields. However, their use in nanomedicine requires a clear demonstration of their safety in terms of tissue damage, toxicity and pro-inflammatory response. Thus, a better understanding of the cytotoxicity mechanisms, the cellular interactions and the effects that these materials have on cell survival and on biological membranes is an important first step for an appropriate assessment of their biocompatibility. In this study we show how bovine serum albumin (BSA) is able to generate homogeneous and stable dispersions of SWCNTs (BSA-CNTs), suggesting their possible use in the biomedical field. On the other hand, this study wishes to shed more light on the impact and the interactions of protein-stabilized SWCNTs with two different cell types exploiting multidisciplinary techniques. We show that BSA-CNTs are efficiently taken up by cells. We also attempt to describe the effect that the interaction with cells has on the dielectric characteristics of the plasma membrane and ion flux using electrorotation. We then focus on the BSA-CNTs’ acute toxicity using different cellular models. The novel aspect of this work is the evaluation of the membrane alterations that have been poorly investigated to date.

  10. Microstructure and antibacterial property of in situ TiO(2) nanotube layers/titanium biocomposites.

    PubMed

    Cui, C X; Gao, X; Qi, Y M; Liu, S J; Sun, J B

    2012-04-01

    The TiO(2) nanotube layer was in situ synthesized on the surface of pure titanium by the electrochemical anodic oxidation. The diameter of nano- TiO(2) nanotubes was about 70~100 nm. The surface morphology and phase compositions of TiO(2) nanotube layers were observed and analyzed using the scanning electron microscope (SEM). The important processing parameters, including anodizing voltage, reaction time, concentration of electrolyte, were optimized in more detail. The photocatalytic activity of the nano- TiO(2) nanotube layers prepared with optimal conditions was evaluated via the photodegradation of methylthionine in aqueous solution. The antibacterial property of TiO(2) nanotube layers prepared with optimal conditions was evaluated by inoculating Streptococcus mutans on the TiO(2) nanotube layers in vitro. The results showed that TiO(2) nanotube layers/Ti biocomposites had very good antibacterial activity to resist Streptococcus mutans. As a dental implant biomaterial, in situ TiO(2) nanotube layer/Ti biocomposite has better and wider application prospects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Single wall carbon nanotube supports for portable direct methanol fuel cells.

    PubMed

    Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V

    2006-01-12

    Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.

  12. Quantum primary rainbows in transmission of positrons through very short carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ćosić, M.; Petrović, S.; Nešković, N.

    2016-04-01

    This paper is devoted to a quantum mechanical consideration of the transmission of positrons of a kinetic energy of 1 MeV through very short (11, 9) single-wall chiral carbon nanotubes. The nanotube lengths are between 50 and 320 nm. The transmission process is determined by the rainbow effects. The interaction potential of a positron and the nanotube is deduced from the Molire's interaction potential of the positron and a nanotube atom using the continuum approximation. We solve numerically the time-dependent Schrödinger equation, and calculate the spatial and angular distributions of transmitted positrons. The initial positron beam is assumed to be an ensemble of non-interacting Gaussian wave packets. We generate the spatial and angular distributions using the computer simulation method. The examination is focused on the spatial and angular primary rainbows. It begins with an analysis of the corresponding classical rainbows, and continues with a detailed investigation of the amplitudes and phases of the wave functions of transmitted positrons. These analyses enable one to identify the principal and supernumerary primary rainbows appearing in the spatial and angular distributions. They also result in a detailed explanation of the way of their generation, which includes the effects of wrinkling of each wave packet during its deflection from the nanotube wall, and of its concentration just before a virtual barrier lying close to the corresponding classical rainbow. The wrinkling of the wave packets occurs due to their internal focusing. In addition, the wave packets wrinkle in a mutually coordinated way. This explanation may induce new theoretical and experimental investigations of quantum rainbows occurring in various atomic collision processes.

  13. Molecular dynamics simulation aiming at interfacial characteristics of polymer chains on nanotubes with different layers

    NASA Astrophysics Data System (ADS)

    Li, Kun; Gu, Boqin; Zhu, Wanfu

    2017-03-01

    A molecular dynamics (MD) simulations study is performed on multiwalled carbon nanotubes (MWNTs)/acrylonitrile-butadiene rubber (NBR) composites. The physisorption and interfacial characteristics between the various MWNTs and polymer macromolecular chains are identified. The effects of nanotube layers on the nanotubes/polymer interactions are examined. Each of the situation result and surface features is characterized by binding energy (Eb). It is shown that the binding energy (Eb) increase with the number of layers.

  14. EDITORIAL: Focus on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents <;A article="1367-2630/5/1/117">Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau

  15. Synthesis of 1D-glyconanomaterials by a hybrid noncovalent-covalent functionalization of single wall carbon nanotubes: a study of their selective interactions with lectins and with live cells.

    PubMed

    Pernía Leal, M; Assali, M; Cid, J J; Valdivia, V; Franco, J M; Fernández, I; Pozo, D; Khiar, N

    2015-12-07

    To take full advantage of the remarkable applications of carbon nanotubes in different fields, there is a need to develop effective methods to improve their water dispersion and biocompatibility while maintaining their physical properties. In this sense, current approaches suffer from serious drawbacks such as loss of electronic structure together with low surface coverage in the case of covalent functionalizations, or instability of the dynamic hybrids obtained by non-covalent functionalizations. In the present work, we examined the molecular basis of an original strategy that combines the advantages of both functionalizations without their main drawbacks. The hierarchical self-assembly of diacetylenic-based neoglycolipids into highly organized and compacted rings around the nanotubes, followed by photopolymerization leads to the formation of nanotubes covered with glyconanorings with a shish kebab-type topology exposing the carbohydrate ligands to the water phase in a multivalent fashion. The glyconanotubes obtained are fully functional, and able to establish specific interactions with their cognate receptors. In fact, by taking advantage of this selective binding, an easy method to sense lectins as a working model of toxin detection was developed based on a simple analysis of TEM images. Remarkably, different experimental settings to assess cell membrane integrity, cell growth kinetics and cell cycle demonstrated the cellular biocompatibility of the sugar-coated carbon nanotubes compared to pristine single-walled carbon nanotubes.

  16. HR-TEM and FT-Raman dataset of the caffeine interacted Phe-Phe peptide nanotube for possible sensing applications.

    PubMed

    Narayanan, A Lakshmi; Dhamodaran, M; Solomon, J Samu; Karthikeyan, B; Govindhan, R

    2018-02-01

    Sensing ability of caffeine interaction with Phe-Phe annotates (PNTs), is presented (Govindhan et al., 2017; Karthikeyan et al., 2014; Tavagnacco et al., 2013; Kennedy et al., 2011; Wang et al., 2017) [1-5] in this data set. Investigation of synthesized caffeine carrying peptide nanotubes are carried out by FT-Raman spectral analysis and high resolution transmission electron microscopy (HR-TEM). Particle size of the caffeine loaded PNTs is < 40 nm. The FT-Raman spectrum signals are enhanced in the region of 400-1700 cm -1 . These data are ideal tool for the applications like biosensing and drug delivery research (DDS).

  17. Working Toward Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pavel; Gorelik, Olga; Hadjiev, Victor G.; Scott, Carl D.; Files, Bradley S.

    2001-01-01

    One of the most attractive applications of single-wall carbon nanotubes (SWNT) is found in the area of structural materials. Nanotubes have a unique combination of high strength, modulus, and elongation to failure, and therefore have potential to significantly enhance the mechanical properties of today's composites. This is especially attractive for the aerospace industry looking for any chance to save weight. This is why NASA has chosen to tackle this difficult application of SWNT. Nanotube properties differ significantly from that of conventional carbon fibers, and a whole new set of problems, including adhesion and dispersion in the adhesive polymer matrix, must be resolved in order to engineer superior composite materials. From recent work on a variety of applications it is obvious that the wide range of research in nanotubes will lead to advances in physics, chemistry, and engineering. However, the possibility of ultralightweight structures is what causes dreamers to really get excited. One of the important issues in composite engineering is aspect ratio of the fibers, since it affects load transfer in composites. Nanotube length was a gray area for years, since they are formed in bundles, making it impossible to monitor individual nanotube length. Even though bundles are observed to be tens and hundreds of microns long, they can be built of relatively short tubes weakly bound by Van der Waals forces. Nanotube length can be affected by subsequent purification and ultrasound processing, which has been necessary in order to disperse nanotubes and introduce them into a polymer matrix. Some calculations show that nanotubes with 10(exp 5) aspect ratio may be necessary to achieve good load transfer. We show here that nanotubes produced in our laser system are as much as tens of microns long and get cut into lengths of hundreds of nanometers during ultrasound processing. Nanotube length was measured by AFM on pristine nanotube specimens as well, as after sonication

  18. A dioxaborine cyanine dye as a photoluminescence probe for sensing carbon nanotubes.

    PubMed

    Al Araimi, Mohammed; Lutsyk, Petro; Verbitsky, Anatoly; Piryatinski, Yuri; Shandura, Mykola; Rozhin, Aleksey

    2016-01-01

    The unique properties of carbon nanotubes have made them the material of choice for many current and future industrial applications. As a consequence of the increasing development of nanotechnology, carbon nanotubes show potential threat to health and environment. Therefore, development of efficient method for detection of carbon nanotubes is required. In this work, we have studied the interaction of indopentamethinedioxaborine dye (DOB-719) and single-walled carbon nanotubes (SWNTs) using absorption and photoluminescence (PL) spectroscopy. In the mixture of the dye and the SWNTs we have revealed new optical features in the spectral range of the intrinsic excitation of the dye due to resonance energy transfer from DOB-719 to SWNTs. Specifically, we have observed an emergence of new PL peaks at the excitation wavelength of 735 nm and a redshift of the intrinsic PL peaks of SWNT emission (up to 40 nm) in the near-infrared range. The possible mechanism of the interaction between DOB-719 and SWNTs has been proposed. Thus, it can be concluded that DOB-719 dye has promising applications for designing efficient and tailorable optical probes for the detection of SWNTs.

  19. Pressure Dependence of the Radial Breathing Mode of Carbon Nanotubes: The Effect of Fluid Adsorption

    NASA Astrophysics Data System (ADS)

    Longhurst, M. J.; Quirke, N.

    2007-04-01

    The pressure dependence of shifts in the vibrational modes of individual carbon nanotubes is strongly affected by the nature of the pressure transmitting medium as a result of adsorption at the nanotube surface. The adsorbate is treated as an elastic shell which couples with the radial breathing mode (RBM) of the nanotube via van der Waal interactions. Using analytical methods as well as molecular simulation, we observe a low frequency breathing mode for the adsorbed fluid at ˜50cm-1, as well as diameter dependent upshifts in the RBM frequency with pressure, suggesting metallic nanotubes may wet more than semiconducting ones.

  20. Graphene and carbon nanotubes: synthesis, characterization and applications for beyond silicon electronics

    NASA Astrophysics Data System (ADS)

    Gomez de Arco, Lewis Mortimer

    discussion on the structure and properties of graphene and carbon nanotubes. Chapter 2, presents the development of a chemical vapor deposition method for scalable graphene synthesis and the evaluation of its electrical properties as the active channel in field effect transistor and as a transparent conductor. Chapter 3 presents further work on graphene synthesis on single crystal nickel and the influence of the substrate atomic arrangement on the synthesized graphene. Chapter 4 presents the implementation of the highly scalable graphene synthesized by CVD as the transparent electrode in flexible organic photovoltaic cells. Chapter 5 evaluates the influence of substrate/nanotube interactions during align nanotube growth on the Raman signature of the resulting aligned nanotubes, nanotube structure and metal to semiconductor ratio. Chapter 6 presents our findings on a scalable method that can be used at wafer scale to achieve metal to semiconductor conversion of carbon nanotubes by light irradiation and its application to achieve semiconducting CNTFETs. Finally, in chapter 7, future research directions in related areas of science and technology are proposed.

  1. Systematic determination of absolute absorption cross-section of individual carbon nanotubes

    PubMed Central

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B.; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G.; Wang, Enge; Wang, Feng

    2014-01-01

    Optical absorption is the most fundamental optical property characterizing light–matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  2. Systematic determination of absolute absorption cross-section of individual carbon nanotubes.

    PubMed

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G; Wang, Enge; Wang, Feng

    2014-05-27

    Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  3. Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes.

    PubMed

    Patiño, Yolanda; Díaz, Eva; Ordóñez, Salvador; Gallegos-Suarez, Esteban; Guerrero-Ruiz, Antonio; Rodríguez-Ramos, Inmaculada

    2015-10-01

    Adsorption of three representative emerging pollutants - 1,8-dichlorooctane, nalidixic acid and 2-(4-methylphenoxy)ethanol- on different carbon nanotubes was studied in order to determine the influence of the morphological and chemical properties of the materials on their adsorption properties. As adsorbents, multiwall carbon nanotubes (MWCNTs) without functionalization and with oxygen or nitrogen surface groups, as well as carbon nanotubes doped with nitrogen were used. The adsorption was studied in aqueous phase using batch adsorption experiments, results being fitted to both Langmuir and Freundlich models. The adsorption capacity is strongly dependent on both the hydrophobicity of the adsorbates and the morphology of the adsorbents. Thermodynamic parameters were determined observing strong interactions between the aromatic rings of the emerging pollutant and the nitrogen modified adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [Biochemical effects of chronic peroral administration of carbon nanotubes and activated charcoal in drinking water in rats].

    PubMed

    Khripach, L V; Rakhmanin, Iu A; Mikhajlova, R I; Knyazeva, T D; Koganova, Z I; Zhelezniak, E V; Savostikova, O N; Alekseeva, A V; Kameneckaya, D V; Ryzhova, I N; Kruglova, E V; Revazova, T L

    2014-01-01

    Chronic 6-month experiment was carried out in rats, which received drinking water with multi-walled carbon nanotubes (MWCNTs), diameter of 15-40 nm, length ≥ 2 mkm) or activated charcoal (AC, diameter of 10-100 mkm), blood samples of the animals were used for assessment of biochemical markers. Both coal compounds induced the appearance of signs of oxidative stress 2 weeks after the beginning of the experiment and alteration of serum markers of liver and renal damage, as well as changes of cortisol and protein serum concentrations later Thus, despite of known high (asbest-like) inhalation toxicity of carbon nanotubes in comparison with other carbon allotrops (fullerenes and black carbon), we have found similar effects of MWCNTs and carbon microparticles in orally treated rats.

  5. Carbon nanotube nanoelectrode arrays

    DOEpatents

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  6. Ethanol-assisted gel chromatography for single-chirality separation of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zeng, Xiang; Hu, Jinwen; Zhang, Xiao; Zhou, Naigen; Zhou, Weiya; Liu, Huaping; Xie, Sishen

    2015-10-01

    Surfactants or polymers are usually used for the liquid processing of carbon nanotubes for their structure separation. However, they are difficult to remove after separation, affecting the intrinsic properties and applications of the separated species. Here, we report an ethanol-assisted gel chromatography for the chirality separation of single-walled carbon nanotubes (SWCNTs), in which ethanol is employed to finely tune the density/coverage of sodium dodecyl sulfate (SDS) on nanotubes, and thus the interactions between SWCNTs and an allyl dextran-based gel. Incrementally increasing the ethanol content in a low-concentration SDS eluent leads to successive desorption of the different structure SWCNTs adsorbed on the gel, and to achieve multiple distinct (n, m) single-chirality species. The use of ethanol enables the working concentration of SDS to be reduced dramatically and also avoids the introduction of other surfactants or chemical reagents. More importantly, ethanol can be easily removed after separation. The ability of ethanol to tune the interactions between SWCNTs and the gel also gives a deeper insight into the separation mechanism of SWCNTs using gel chromatography.Surfactants or polymers are usually used for the liquid processing of carbon nanotubes for their structure separation. However, they are difficult to remove after separation, affecting the intrinsic properties and applications of the separated species. Here, we report an ethanol-assisted gel chromatography for the chirality separation of single-walled carbon nanotubes (SWCNTs), in which ethanol is employed to finely tune the density/coverage of sodium dodecyl sulfate (SDS) on nanotubes, and thus the interactions between SWCNTs and an allyl dextran-based gel. Incrementally increasing the ethanol content in a low-concentration SDS eluent leads to successive desorption of the different structure SWCNTs adsorbed on the gel, and to achieve multiple distinct (n, m) single-chirality species. The use of

  7. Adsorption of selected volatile organic vapors on multiwall carbon nanotubes.

    PubMed

    Shih, Yang-hsin; Li, Mei-syue

    2008-06-15

    Carbon nanotubes are expected to play an important role in sensing, pollution treatment and separation techniques. This study examines the adsorption behaviors of volatile organic compounds (VOCs), n-hexane, benzene, trichloroethylene and acetone on two multiwall carbon nanotubes (MWCNTs), CNT1 and CNT2. Among these VOCs, acetone exhibits the highest adsorption capacity. The highest adsorption enthalpies and desorption energies of acetone were also observed. The strong chemical interactions between acetone and both MWCNTs may be the result from chemisorption on the topological defects. The adsorption heats of trichloroethylene, benzene, and n-hexane are indicative of physisorption on the surfaces of both MWCNTs. CNT2 presents a higher adsorption capacity than CNT1 due to the existence of an exterior amorphous carbon layer on CNT2. The amorphous carbon enhances the adsorption capacity of organic chemicals on carbon nanotubes. The morphological and structure order of carbon nanotubes are the primary affects on the adsorption process of organic chemicals.

  8. Synergistic effect of non-covalent interaction in colloidal nematic liquid crystal doped with magnetic functionalized single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dalir, Nima; Javadian, Soheila

    2018-03-01

    Single-walled carbon nanotubes (SWCNTs), CNT@Fe3O4, and Fe3O4 nanocomposites were doped to eutectic uniaxial nematic liquid crystal (NLC's) (E5CN7) to improve physiochemical properties such as phase transition temperature, activation energy (Ea), dielectric anisotropy, and electro-optical properties. The thermal study of nematic phase shows a decrease in the nematic to isotropic phase transition temperature as CNT is doped. However, higher doping concentration of CNTs leads to the further increase in transition temperature. The anchoring effect or π-π interaction plays a key role in N-I phase transition. The functionalization of SWCNTs with Fe3O4 diminishes the CNT aggregation while the magnetic susceptibility is increased. The functionalized CNT doping to NLC's decrease significantly the phase transition temperature compared to doping of non-functionalized CNTs. Attractive interaction between guest and host molecules by magnetic and geometry effect increased the enthalpy and entropy of phase transition in the SWCNT@Fe3O4 sample compared to non-functionalized CNT doped system. Also, the Ea values are decreased as SWCNT@Fe3O4 is doped to pure E5CN7. The difference of N-I phase transition temperature was observed in Fe3O4 and CNT@Fe3O4 compared to SWCNT doped systems. Finally, dielectric anisotropy was increased in the doped system compared to pure NLC.

  9. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  10. Study of the growth of CeO2 nanoparticles onto titanate nanotubes

    NASA Astrophysics Data System (ADS)

    Marques, Thalles M. F.; Ferreira, Odair P.; da Costa, Jose A. P.; Fujisawa, Kazunori; Terrones, Mauricio; Viana, Bartolomeu C.

    2015-12-01

    We report the study of the growth of CeO2 nanoparticles on the external walls and Ce4+ intercalation within the titanate nanotubes. The materials were fully characterized by multiple techniques, such as: Raman spectroscopy, infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The ion exchange processes in the titanate nanotubes were carried out using different concentrations of Ce4+ in aqueous solution. Our results indicate that the growth of CeO2 nanoparticles grown mediated by the hydrolysis in the colloidal species of Ce and the attachment onto the titanate nanotubes happened and get it strongly anchored to the titanate nanotube surface by a simple electrostatic interaction between the nanoparticles and titanate nanotubes, which can explain the small size and even distribution of nanoparticles on titanate supports. It was demonstrated that it is possible to control the amount and size of CeO2 nanoparticles onto the nanotube surface, the species of the Ce ions intercalated between the layers of titanate nanotubes, and the materials could be tuned for using in specific catalysis in according with the amount of CeO2 nanoparticles, their oxygen vacancies/defects and the types of Ce species (Ce4+ or Ce3+) present into the nanotubes.

  11. Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges.

    PubMed

    Ma, Xingmao; Agarwal, Sarang

    2016-05-12

    The superior adsorption capacity of carbon nanotubes has been well recognized and there is a wealth of information in the literature concerning the adsorption of unionized organic pollutants on carbon nanotubes. Recently, the adsorption of emerging environmental pollutants, most of which are ionizable, has attracted increasing attention due to the heightened concerns about the accumulation of these emerging contaminants in the environment. These recent studies suggest that the adsorption of emerging ionizable contaminants on carbon nanotubes exhibit different characteristics than unionized ones. For example, a new charge-assisted intermolecular force has been proposed for ionizable compounds because some adsorption phenomenon cannot be easily explained by the conventional force theory. The adsorption of ionizable compounds also displayed much stronger dependence on solution pH and ionic strength than unionized compounds. This article aims to present a brief review on the current understanding of the adsorption of emerging ionizable contaminants to carbon nanotubes and discuss further research needs required to advance the mechanistic understanding of the interactions between ionizable contaminants and carbon nanotubes.

  12. Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir-Blodgett biomimetic membranes.

    PubMed

    Matyszewska, Dorota; Napora, Ewelina; Żelechowska, Kamila; Biernat, Jan F; Bilewicz, Renata

    2018-01-01

    The synthesis, characterization, and the influence of single-walled carbon nanotubes (SWCNTs) modified with an anticancer drug doxorubicin (DOx) on the properties of model biological membrane as well as the comparison of the two modes of modification has been presented. The drug was covalently attached to the nanotubes either preferentially on the sides or at the ends of the nanotubes by the formation of hydrazone bond. The efficiency of the modification was proved by the results of FTIR, Raman, and thermogravimetric analysis. In order to characterize the influence of SWCNT-DOx conjugates on model biological membranes, Langmuir technique has been employed. The mixed monolayers composed of 1,2-dipalmitoyl- sn -glycero-3-phosphothioethanol (DPPTE) and SWCNT-DOx with different weight ratio have been prepared. It has been shown that changes in the isotherm characteristics depend on the SWCNTs content. While smaller amounts of SWCNTs do not exert significant differences, the introduction of the prevailing content of the nanotubes increases area per molecule and decreases the maximum value of compression modulus, leading to more fluid monolayer. However, upon increasing the surface pressure, the aggregation of carbon nanotubes within the thiolipid matrix has been observed. Mixed layers of DPPTE/SWCNT-DOx were also transferred onto gold electrodes by means of LB method. Cyclic voltammetry showed that SWCNT-DOx conjugates remain adsorbed at the electrode surface and are stable in time. Additionally, higher values of peak current and DOx surface concentration obtained for side modification prove that side modification allows for more efficient conjugation of the drug to carbon nanotubes. Graphical abstractᅟ.

  13. Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir-Blodgett biomimetic membranes

    NASA Astrophysics Data System (ADS)

    Matyszewska, Dorota; Napora, Ewelina; Żelechowska, Kamila; Biernat, Jan F.; Bilewicz, Renata

    2018-05-01

    The synthesis, characterization, and the influence of single-walled carbon nanotubes (SWCNTs) modified with an anticancer drug doxorubicin (DOx) on the properties of model biological membrane as well as the comparison of the two modes of modification has been presented. The drug was covalently attached to the nanotubes either preferentially on the sides or at the ends of the nanotubes by the formation of hydrazone bond. The efficiency of the modification was proved by the results of FTIR, Raman, and thermogravimetric analysis. In order to characterize the influence of SWCNT-DOx conjugates on model biological membranes, Langmuir technique has been employed. The mixed monolayers composed of 1,2-dipalmitoyl- sn-glycero-3-phosphothioethanol (DPPTE) and SWCNT-DOx with different weight ratio have been prepared. It has been shown that changes in the isotherm characteristics depend on the SWCNTs content. While smaller amounts of SWCNTs do not exert significant differences, the introduction of the prevailing content of the nanotubes increases area per molecule and decreases the maximum value of compression modulus, leading to more fluid monolayer. However, upon increasing the surface pressure, the aggregation of carbon nanotubes within the thiolipid matrix has been observed. Mixed layers of DPPTE/SWCNT-DOx were also transferred onto gold electrodes by means of LB method. Cyclic voltammetry showed that SWCNT-DOx conjugates remain adsorbed at the electrode surface and are stable in time. Additionally, higher values of peak current and DOx surface concentration obtained for side modification prove that side modification allows for more efficient conjugation of the drug to carbon nanotubes. [Figure not available: see fulltext.

  14. Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Morimune, Keiyo; Set, Sze Y.; Yamashita, Shinji

    2007-01-01

    The authors demonstrate a nonblocked all-fiber mode locker operated by the interaction of carbon nanotubes with the evanescent field of propagating light in a tapered fiber. Symmetric cross section of the device with the randomly oriented nanotubes guarantees the polarization insensitive operation of the pulse formation. In order to minimize the scattering, the carbon nanotubes are deposited within a designed area around the tapered waist. The demonstrated passively pulsed laser has the repetition rate of 7.3MHz and the pulse width of 829fs.

  15. A Generic Self-Assembly Process in Microcompartments and Synthetic Protein Nanotubes.

    PubMed

    Uddin, Ismail; Frank, Stefanie; Warren, Martin J; Pickersgill, Richard W

    2018-05-01

    Bacterial microcompartments enclose a biochemical pathway and reactive intermediate within a protein envelope formed by the shell proteins. Herein, the orientation of the propanediol-utilization (Pdu) microcompartment shell protein PduA in bacterial microcompartments and in synthetic nanotubes, and the orientation of PduB in synthetic nanotubes are revealed. When produced individually, PduA hexamers and PduB trimers, tessellate to form flat sheets in the crystal, or they can self-assemble to form synthetic protein nanotubes in solution. Modelling the orientation of PduA in the 20 nm nanotube so as to preserve the shape complementarity and key interactions seen in the crystal structure suggests that the concave surface of the PduA hexamer faces out. This orientation is confirmed experimentally in synthetic nanotubes and in the bacterial microcompartment produced in vivo. The PduB nanotubes described here have a larger diameter, 63 nm, with the concave surface of the trimer again facing out. The conserved concave surface out characteristic of these nano-structures reveals a generic assembly process that causes the interface between adjacent subunits to bend in a common direction that optimizes shape complementarity and minimizes steric clashes. This understanding underpins engineering strategies for the biotechnological application of protein nanotubes. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fermentation based carbon nanotube multifunctional bionic composites

    NASA Astrophysics Data System (ADS)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  17. Fermentation based carbon nanotube multifunctional bionic composites

    PubMed Central

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal. PMID:27279425

  18. Interactions of anions and cations in carbon nanotubes.

    PubMed

    Mohammadzadeh, L; Quaino, P; Schmickler, W

    2016-12-12

    We consider the insertion of alkali-halide ion pairs into a narrow (5,5) carbon nanotube. In all cases considered, the insertion of a dimer is only slightly exothermic. While the image charge induced on the surface of the tube favors insertion, it simultaneously weakens the Coulomb attraction between the two ions. In addition, the anion experiences a sizable Pauli repulsion. For a one dimensional chain of NaCl embedded in the tube the most favorable position for the anion is at the center, and for the cation near the wall. The phonon spectrum of such chains shows both an acoustic and an optical branch.

  19. On the continuum mechanics approach for the analysis of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chaudhry, M. S.; Czekanski, A.

    2016-04-01

    Today carbon nanotubes have found various applications in structural, thermal and almost every field of engineering. Carbon nanotubes provide great strength, stiffness resilience properties. Evaluating the structural behavior of nanoscale materials is an important task. In order to understand the materialistic behavior of nanotubes, atomistic models provide a basis for continuum mechanics modelling. Although the properties of bulk materials are consistent with the size and depends mainly on the material but the properties when we are in Nano-range, continuously change with the size. Such models start from the modelling of interatomic interaction. Modelling and simulation has advantage of cost saving when compared with the experiments. So in this project our aim is to use a continuum mechanics model of carbon nanotubes from atomistic perspective and analyses some structural behaviors of nanotubes. It is generally recognized that mechanical properties of nanotubes are dependent upon their structural details. The properties of nanotubes vary with the varying with the interatomic distance, angular orientation, radius of the tube and many such parameters. Based on such models one can analyses the variation of young's modulus, strength, deformation behavior, vibration behavior and thermal behavior. In this study some of the structural behaviors of the nanotubes are analyzed with the help of continuum mechanics models. Using the properties derived from the molecular mechanics model a Finite Element Analysis of carbon nanotubes is performed and results are verified. This study provides the insight on continuum mechanics modelling of nanotubes and hence the scope to study the effect of various parameters on some structural behavior of nanotubes.

  20. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  1. A new methodology for the determination of enzyme activity based on carbon nanotubes and glucose oxidase.

    PubMed

    Yeşiller, Gülden; Sezgintürk, Mustafa Kemal

    2015-11-10

    In this research, a novel enzyme activity analysis methodology is introduced as a new perspective for this area. The activity of elastase enzyme, which is a digestive enzyme mostly of found in the digestive system of vertebrates, was determined by an electrochemical device composed of carbon nanotubes and a second enzyme, glucose oxidase, which was used as a signal generator enzyme. In this novel methodology, a complex bioactive layer was constructed by using carbon nanotubes, glucose oxidase and a supporting protein, gelatin on a solid, conductive substrate. The activity of elastase was determined by monitoring the hydrolysis rate of elastase enzyme in the bioactive layer. As a result of this hydrolysis of elastase, glucose oxidase was dissociated from the bioactive layer, and following this the electrochemical signal due to glucose oxidase was decreased. The progressive elastase-catalyzed digestion of the bioactive layer containing glucose oxidase decreased the layer's enzymatic efficiency, resulting in a decrease of the glucose oxidation current as a function of the enzyme activity. The ratio of the decrease was correlated to elastase activity level. In this study, optimization experiments of bioactive components and characterization of the resulting new electrochemical device were carried out. A linear calibration range from 0.0303U/mL to 0.0729U/mL of elastase was reported. Real sample analyses were also carried out by the new electrochemical device. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Martinez, Amos; Al Araimi, Mohammed; Dmitriev, Artemiy; Lutsyk, Petro; Li, Shen; Mou, Chengbo; Rozhin, Alexey; Sumetsky, Misha; Turitsyn, Sergei

    2017-12-01

    The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors) and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50%) and poor saturable to non-saturable absorption ratios (typically above 1:5). In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%), and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.

  3. Spectroscopic studies of porphyrin functionalized multiwalled carbon nanotubes and their interaction with TiO2 nanoparticles surface

    NASA Astrophysics Data System (ADS)

    Zannotti, Marco; Giovannetti, Rita; D'Amato, Chiara Anna; Rommozzi, Elena

    2016-01-01

    UV-vis and fluorescence investigations about the non-covalent interaction, in ethanolic solutions, of multi-wall carbon nanotube (MWCNT) with Coproporphyrin-I, and its Cu(II) and Zn(II) complexes (MCPIs) have been reported. Evidence of binding between MWCNTs and porphyrins was discovered from spectral adsorption decrease with respect to free porphyrins and by the exhibition of photoluminescence quenching with respect to free porphyrins demonstrating that MWCNT@MCPIs are potential donor-acceptor complexes. Equilibrium and kinetic aspects in the interactions with monolayer transparent TiO2 thin films with the obtained MWCNT@MCPIs are clarified showing their effective adsorption by porphyrin links on the TiO2 monolayer support, with respect to not only MWCNTs, according to the Langmuir model and with pseudo-first-order kinetics. Morphological description of the adsorption of MWCNT@MCPIs on TiO2 with scanning electron microscopy has been reported. The obtained experimental evidences describe therefore MWCNT@MCPIs as potential sensitizers in the DSSC (Dye-Sensitized Solar Cell) applications.

  4. Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects.

    PubMed

    Harik, Vasyl Michael

    2017-05-05

    A review of in vivo and in vitro toxicological studies of the potential toxic effects of carbon nanotubes is presented along with the analysis of experimental data and a hypothesis about the nanotube-asbestos similarity. Developments of the structure-activity paradigm have been reviewed along with the size effects and the classification of carbon nanotubes into eleven distinct classes (e.g., the high aspect ratio nanotubes, thick multi-wall nanotubes and short nanotubes). Scaling analysis of similarities between different classes of carbon nanotubes and asbestos fibers in the context of their potential toxicity and the efficiency of phagocytosis has been reviewed. The potential toxic effects of carbon nanotubes have been characterized by their normalized length, their aspect ratio and other parameters related to their inhalability, engulfment by macrophages and the effectiveness of phagocytosis. Geometric scaling parameters and the classification of carbon nanotubes are used to develop an updated parametric map for the extrapolation of the potential toxic effects resulting from the inhalation of long and short carbon nanotubes. An updated parametric map has been applied to the evaluation of the efficiency of phagocytosis involving distinct classes of carbon nanotubes. A critical value of an important nondimensional parameter characterizing the efficiency of phagocytosis for different nanotubes is presented along with its macrophage-based normalization. The present evaluation of the potential toxicological effects of the high aspect ratio carbon nanotubes is found to be in the agreement with other available studies and earlier scaling analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Carbon nanotubes for thermal interface materials in microelectronic packaging

    NASA Astrophysics Data System (ADS)

    Lin, Wei

    , an in situ functionalization process has for the first time been demonstrated. The in situ functionalization renders the vertically aligned carbon nanotubes a proper chemical reactivity for forming chemical bonding with other substrate materials such as gold and silicon. 2. An ultrafast microwave annealing process has been developed to reduce the defect density in vertically aligned carbon nanotubes. Raman and thermogravimetric analyses have shown a distinct defect reduction in the CNTs annealed in microwave for 3 min. Fibers spun from the as-annealed CNTs, in comparison with those from the pristine CNTs, show increases of ˜35% and ˜65%, respectively, in tensile strength (˜0.8 GPa) and modulus (˜90 GPa) during tensile testing; an ˜20% improvement in electrical conductivity (˜80000 S m-1) was also reported. The mechanism of the microwave response of CNTs was discussed. Such a microwave annealing process has been extended to the preparation of reduced graphene oxide. 3. Based on the fundamental understanding of interfacial thermal transport and surface chemistry of metals and carbon nanotubes, two major transfer/assembling processes have been developed: molecular bonding and metal bonding. Effective improvement of the interfacial thermal transport has been achieved by the interfacial bonding. 4. The thermal diffusivity of vertically aligned carbon nanotube (VACNT, multi-walled) films was measured by a laser flash technique, and shown to be ˜30 mm2 s-1 along the tube-alignment direction. The calculated thermal conductivities of the VACNT film and the individual CNTs are ˜27 and ˜540 W m-1 K-1, respectively. The technique was verified to be reliable although a proper sampling procedure is critical. A systematic parametric study of the effects of defects, buckling, tip-to-tip contacts, packing density, and tube-tube interaction on the thermal diffusivity was carried out. Defects and buckling decreased the thermal diffusivity dramatically. An increased packing

  6. Computational modelling of the flow of viscous fluids in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Khosravian, N.; Rafii-Tabar, H.

    2007-11-01

    Carbon nanotubes will have extensive application in all areas of nano-technology, and in particular in the field of nano-fluidics, wherein they can be used for molecular separation, nano-scale filtering and as nano-pipes for conveying fluids. In the field of nano-medicine, nanotubes can be functionalized with various types of receptors to act as bio-sensors for the detection and elimination of cancer cells, or be used as bypasses and even neural connections. Modelling fluid flow inside nanotubes is a very challenging problem, since there is a complex interplay between the motion of the fluid and the stability of the walls. A critical issue in the design of nano-fluidic devices is the induced vibration of the walls, due to the fluid flow, which can promote structural instability. It has been established that the resonant frequencies depend on the flow velocity. We have studied, for the first time, the flow of viscous fluids through multi-walled carbon nanotubes, using the Euler-Bernoulli classical beam theory to model the nanotube as a continuum structure. Our aim has been to compute the effect of the fluid flow on the structural stability of the nanotubes, without having to consider the details of the fluid-walls interaction. The variations of the resonant frequencies with the flow velocity are obtained for both unembedded nanotubes, and when they are embedded in an elastic medium. It is found that a nanotube conveying a viscous fluid is more stable against vibration-induced buckling than a nanotube conveying a non-viscous fluid, and that the aspect ratio plays the same role in both cases.

  7. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  8. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes

    NASA Astrophysics Data System (ADS)

    Bigeon, J.; Huby, N.; Amela-Cortes, M.; Molard, Y.; Garreau, A.; Cordier, S.; Bêche, B.; Duvail, J.-L.

    2016-06-01

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  9. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes.

    PubMed

    Bigeon, J; Huby, N; Amela-Cortes, M; Molard, Y; Garreau, A; Cordier, S; Bêche, B; Duvail, J-L

    2016-06-24

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  10. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  11. Carbon nanotubes as anti-bacterial agents.

    PubMed

    Mocan, Teodora; Matea, Cristian T; Pop, Teodora; Mosteanu, Ofelia; Buzoianu, Anca Dana; Suciu, Soimita; Puia, Cosmin; Zdrehus, Claudiu; Iancu, Cornel; Mocan, Lucian

    2017-10-01

    Multidrug-resistant bacterial infections that have evolved via natural selection have increased alarmingly at a global level. Thus, there is a strong need for the development of novel antibiotics for the treatment of these infections. Functionalized carbon nanotubes through their unique properties hold great promise in the fight against multidrug-resistant bacterial infections. This new family of nanovectors for therapeutic delivery proved to be innovative and efficient for the transport and cellular translocation of therapeutic molecules. The current review examines the latest progress in the antibacterial activity of carbon nanotubes and their composites.

  12. Coupled study by TEM/EELS and STM/STS of electronic properties of C- and CN-nanotubes

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Lagoute, Jérôme; Repain, Vincent; Chacon, Cyril; Girard, Yann; Lauret, Jean-Sébastien; Arenal, Raul; Ducastelle, François; Rousset, Sylvie; Loiseau, Annick

    2011-12-01

    Carbon nanotubes are the focus of considerable research efforts due to their fascinating physical properties. They provide an excellent model system for the study of one-dimensional materials and molecular electronics. The chirality of nanotubes can lead to very different electronic behaviour, either metallic or semiconducting. Their electronic spectrum consists of a series of Van Hove singularities defining a bandgap for semiconducting tubes and molecular orbitals at the corresponding energies. A promising way to tune the nanotubes electronic properties for future applications is to use doping by heteroatoms. Here we report on the experimental investigation of the role of many-body interactions in nanotube bandgaps, the visualization in direct space of the molecular orbitals of nanotubes and the properties of nitrogen doped nanotubes using scanning tunneling microscopy and transmission electron microscopy as well as electron energy loss spectroscopy.

  13. High frequency nanotube oscillator

    DOEpatents

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  14. Entropy of single-file water in (6,6) carbon nanotubes.

    PubMed

    Waghe, Aparna; Rasaiah, Jayendran C; Hummer, Gerhard

    2012-07-28

    We used molecular dynamics simulations to investigate the thermodynamics of filling of a (6,6) open carbon nanotube (diameter D = 0.806 nm) solvated in TIP3P water over a temperature range from 280 K to 320 K at atmospheric pressure. In simulations of tubes with slightly weakened carbon-water attractive interactions, we observed multiple filling and emptying events. From the water occupancy statistics, we directly obtained the free energy of filling, and from its temperature dependence the entropy of filling. We found a negative entropy of about -1.3 k(B) per molecule for filling the nanotube with a hydrogen-bonded single-file chain of water molecules. The entropy of filling is nearly independent of the strength of the attractive carbon-water interactions over the range studied. In contrast, the energy of transfer depends strongly on the carbon-water attraction strength. These results are in good agreement with entropies of about -0.5 k(B) per water molecule obtained from grand-canonical Monte Carlo calculations of water in quasi-infinite tubes in vacuum under periodic boundary conditions. Overall, for realistic carbon-water interactions we expect that at ambient conditions filling of a (6,6) carbon nanotube open to a water reservoir is driven by a favorable decrease in energy, and opposed by a small loss of water entropy.

  15. Ethanol-assisted gel chromatography for single-chirality separation of carbon nanotubes.

    PubMed

    Zeng, Xiang; Hu, Jinwen; Zhang, Xiao; Zhou, Naigen; Zhou, Weiya; Liu, Huaping; Xie, Sishen

    2015-10-21

    Surfactants or polymers are usually used for the liquid processing of carbon nanotubes for their structure separation. However, they are difficult to remove after separation, affecting the intrinsic properties and applications of the separated species. Here, we report an ethanol-assisted gel chromatography for the chirality separation of single-walled carbon nanotubes (SWCNTs), in which ethanol is employed to finely tune the density/coverage of sodium dodecyl sulfate (SDS) on nanotubes, and thus the interactions between SWCNTs and an allyl dextran-based gel. Incrementally increasing the ethanol content in a low-concentration SDS eluent leads to successive desorption of the different structure SWCNTs adsorbed on the gel, and to achieve multiple distinct (n, m) single-chirality species. The use of ethanol enables the working concentration of SDS to be reduced dramatically and also avoids the introduction of other surfactants or chemical reagents. More importantly, ethanol can be easily removed after separation. The ability of ethanol to tune the interactions between SWCNTs and the gel also gives a deeper insight into the separation mechanism of SWCNTs using gel chromatography.

  16. Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Verma, Sunita; Delzeit, Lance; Meyyappan, M.; Han, Jie

    2000-01-01

    Libraries of liquid-phase catalyst precursor solutions were printed onto iridium-coated silicon substrates and evaluated for their effectiveness in catalyzing the growth of multi-walled carbon nanotubes (MWNTs) by chemical vapor deposition (CVD). The catalyst precursor solutions were composed of inorganic salts and a removable tri-block copolymer (EO)20(PO)70(EO)20 (EO = ethylene oxide, PO = propylene oxide) structure-directing agent (SDA), dissolved in ethanol/methanol mixtures. Sample libraries were quickly assayed using scanning electron microscopy after CVD growth to identify active catalysts and CVD conditions. Composition libraries and focus libraries were then constructed around the active spots identified in the discovery libraries to understand how catalyst precursor composition affects the yield, density, and quality of the nanotubes. Successful implementation of combinatorial optimization methods in the development of highly active, carbon nanotube catalysts is demonstrated, as well as the identification of catalyst formulations that lead to varying densities and shapes of aligned nanotube towers.

  17. Developing polymer composite materials: carbon nanotubes or graphene?

    PubMed

    Sun, Xuemei; Sun, Hao; Li, Houpu; Peng, Huisheng

    2013-10-04

    The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Scaffolds based on hyaluronan and carbon nanotubes gels.

    PubMed

    Arnal-Pastor, M; Tallà Ferrer, C; Herrero Herrero, M; Martínez-Gómez Aldaraví, A; Monleón Pradas, M; Vallés-Lluch, A

    2016-10-01

    Physico-chemical and mechanical properties of hyaluronic acid/carbon nanotubes nanohybrids have been correlated with the proportion of inorganic nanophase and the preparation procedure. The mass fraction of -COOH functionalized carbon nanotubes was varied from 0 to 0.05. Hyaluronic acid was crosslinked with divinyl sulfone to improve its stability in aqueous media and allow its handling as a hydrogel. A series of samples was dried by lyophilization to obtain porous scaffolds whereas another was room-dried allowing the collapse of the hybrid structures. The porosity of the former, together with the tighter packing of hyaluronic acid chains, results in a lower water absorption and lower mechanical properties in the swollen state, because of the easier water diffusion. The presence of even a small amount of carbon nanotubes (mass fraction of 0.05) limits even more the swelling of the matrix, owing probably to hybrid interactions. These nanohybrids do not seem to degrade significantly during 14 days in water or enzymatic medium. © The Author(s) 2016.

  19. Enhanced performance of starter lighting ignition type lead-acid batteries with carbon nanotubes as an additive to the active mass

    NASA Astrophysics Data System (ADS)

    Marom, Rotem; Ziv, Baruch; Banerjee, Anjan; Cahana, Beni; Luski, Shalom; Aurbach, Doron

    2015-11-01

    Addition of various carbon materials into lead-acid battery electrodes was studied and examined in order to enhance the power density, improve cycle life and stability of both negative and positive electrodes in lead acid batteries. High electrical-conductivity, high-aspect ratio, good mechanical properties and chemical stability of multi-wall carbon nanotubes (MWCNT, unmodified and mofified with carboxylic groups) position them as viable additives to enhance the electrodes' electrical conductivity, to mitigate the well-known sulfation failure mechanism and improve the physical integration of the electrodes. In this study, we investigated the incorporation-effect of carbon nanotubes (CNT) to the positive and the negative active materials in lead-acid battery prototypes in a configuration of flooded cells, as well as gelled cells. The cells were tested at 25% and 30% depth-of-discharge (DOD). The positive effect of the carbon nanotubes (CNT) utilization as additives to both positive and negative electrodes of lead-acid batteries was clearly demonstrated and is explained herein based on microscopic studies.

  20. A Comparison of Single-Wall Carbon Nanotube Electrochemical Capacitor Electrode Fabrication Methods

    DTIC Science & Technology

    2012-01-24

    REPORT A comparison of single-wall carbon nanotube electrochemical capacitor electrode fabrication methods 14. ABSTRACT 16. SECURITY CLASSIFICATION OF... Carbon nanotubes (CNTs) are being widely investigated as a replacement for activated carbon in super- capacitors. A wide range of CNT specific...ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Carbon nanotube

  1. Reinforced Carbon Nanotubes.

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  2. Carbon Nanotube Devices for GHz to THz Applications

    NASA Astrophysics Data System (ADS)

    Burke, Peter

    2005-03-01

    In this talk I will present an overview of the high-frequency applications of carbon nanotubes, one realization of nano-electronic devices, and where the challenges and opportunities lie in this new field. Specifically, I will first discuss the passive RF circuit models of one-dimensional nanostructures as interconnects[1]. Next, I will discuss circuit models of the ac performance of active 1d transistor structures, leading to the prediction that THz cutoff frequencies should be possible[2]. We recently demonstrated the operation of nanotube transistors at 2.6 GHz[3]. Third, I discuss the radiation properties of 1d wires, which could form antennas linking the nanoworld to the macroworld[4]. This could completely remove the requirements for lithographically defined contacts to nanotube and nanowire devices, one of the greatest unsolved problems in nanotechnology. [1] P.J. Burke "An RF Circuit Model for Carbon Nanotubes" IEEE Transactions on Nanotechnology 2(1), 55-58 (2003). [2] P.J. Burke, ``AC Performance of Nanoelectronics: Towards a Ballistic THz Nanotube Transistor'' Solid State Electronics, 48(10), 1981-1986 (2004). [3] Shengdong Li, Zhen Yu, Sheng-Fen Yeng, W.C. Tang, Peter J. Burke, ``Carbon Nanotube Transistor Operation at 2.6 GHz'' Nano Letters, 4(4), 753-756 (2004). [4] Peter J. Burke, Shengdong Li, Zhen Yu ''Quantitative theory of nanowire and nanotube antenna performance,'' http://xxx.lanl.gov/abs/cond-mat/0408418cond-mat/0408418 (2004).

  3. Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films

    NASA Astrophysics Data System (ADS)

    Kono, Junichiro

    One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.

  4. Specific features of low-frequency vibrational dynamics and low-temperature heat capacity of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Avramenko, M. V.; Roshal, S. B.

    2016-05-01

    A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.

  5. Enhanced photocatalytic activity of hydrogenated and vanadium doped TiO2 nanotube arrays grown by anodization of sputtered Ti layers

    NASA Astrophysics Data System (ADS)

    Motola, Martin; Satrapinskyy, Leonid; Čaplovicová, Mária; Roch, Tomáš; Gregor, Maroš; Grančič, Branislav; Greguš, Ján; Čaplovič, Ľubomír; Plesch, Gustav

    2018-03-01

    TiO2 nanotube (TiNT) arrays were grown on silicon substrate via electrochemical anodization of titanium films sputtered by magnetron. To improve the photocatalytic activity of arrays annealed in air (o-TiNT), doping of o-TiNT with vanadium was performed (o-V/TiNT). These non-doped and doped TiNT arrays were also hydrogenated in H2/Ar atmosphere to r-TiNT and r-V/TiNT samples, respectively. Investigation of composition and morphology by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and X-ray photoelectron spectroscopy (XPS) showed the presence of well-ordered arrays of anatase nanotubes with average diameter and length of 100 nm and 1.3 μm, respectively. In both oxidized and reduced V-doped samples, vanadium is partly dissolved in the structure of anatase and partly deposited in form of oxide on the nanotube surface. Vanadium-doped and reduced samples exhibited higher rates in the photodegradation of organic dyes (compared to non-modified o-TiNT sample) and this is caused by limitation of electron-hole recombination rates and by shift of the energy gap into visible region. The photocatalytic activity was measured under UV, sunlight and visible irradiation, and the corresponding efficiency increased in the order (o-TiNT) < (r-TiNT) < (o-V/TiNT) < (r-V/TiNT). Under visible light, only r-TiNT and r-V/TiNT showed significant photocatalytic activity.

  6. Exploring doxorubicin localization in eluting TiO2 nanotube arrays through fluorescence correlation spectroscopy analysis.

    PubMed

    De Santo, Ilaria; Sanguigno, Luigi; Causa, Filippo; Monetta, Tullio; Netti, Paolo A

    2012-11-07

    Drug elution properties of TiO(2) nanotube arrays have been largely investigated by means of solely macroscopic observations. Controversial elution performances have been reported so far and a clear comprehension of these phenomena is still missing as a consequence of a lack of molecular investigation methods. Here we propose a way to discern drug elution properties of nanotubes through the evaluation of drug localization by Fluorescence Correlation Spectroscopy (FCS) analysis. We verified this method upon doxorubicin elution from differently loaded TiO(2) nanotubes. Diverse elution profiles were obtained from nanotubes filled by soaking and wet vacuum impregnation methods. Impregnated nanotubes controlled drug diffusion up to thirty days, while soaked samples completed elution in seven days. FCS analysis of doxorubicin motion in loaded nanotubes clarified that more than 90% of drugs dwell preferentially in inter-nanotube spaces in soaked samples due to decorrelation in a 2D fashion, while a 97% fraction of molecules showed 1D mobility ascribable to displacements along the nanotube vertical axis of wet vacuum impregnated nanotubes. The diverse drug localizations inferred from FCS measurements, together with distinct drug-surface interaction strengths resulting from diverse drug filling techniques, could explain the variability in elution kinetics.

  7. Terahertz Spectroscopy of Individual Single-Walled Carbon Nanotubes as a Probe of Luttinger Liquid Physics.

    PubMed

    Chudow, Joel D; Santavicca, Daniel F; Prober, Daniel E

    2016-08-10

    Luttinger liquid theory predicts that collective electron excitations due to strong electron-electron interactions in a one-dimensional (1D) system will result in a modification of the collective charge-propagation velocity. By utilizing a circuit model for an individual metallic single-walled carbon nanotube as a nanotransmission line, it has been shown that the frequency-dependent terahertz impedance of a carbon nanotube can probe this expected 1D Luttinger liquid behavior. We excite terahertz standing-wave resonances on individual antenna-coupled metallic single-walled carbon nanotubes. The terahertz signal is rectified using the nanotube contact nonlinearity, allowing for a low-frequency readout of the coupled terahertz current. The charge velocity on the nanotube is determined from the terahertz spectral response. Our measurements show that a carbon nanotube can behave as a Luttinger liquid system with charge-propagation velocities that are faster than the Fermi velocity. Understanding what determines the charge velocity in low-dimensional conductors is important for the development of next generation nanodevices.

  8. Sorption of carbamazepine by commercial graphene oxides: a comparative study with granular activated carbon and multiwalled carbon nanotubes.

    PubMed

    Cai, Nan; Larese-Casanova, Philip

    2014-07-15

    Graphene nanosheet materials represent a potentially new high surface area sorbent for the treatment of endocrine disrupting compounds (EDCs) in water. However, sorption behavior has been reported only for laboratory graphene prepared by a laborious and hazardous graphite exfoliation process. A careful examination of commercially available, clean, high-volume produced graphene materials should reveal whether they are appropriate for sorbent technologies and which physicochemical properties most influence sorption performance. In this study, three commercially available graphene oxide powders of various particle sizes, specific surface areas, and surface chemistries were evaluated for their sorption performance using carbamazepine and nine other EDCs and were compared to that of conventional granular activated carbon (GAC) and multi-walled carbon nanotubes (MWCNTs). Sorption kinetics of carbamazepine on graphene oxide powders was rapid and reversible with alcohol washing, consistent with π-π interactions. The various sorption extents as described by Freundlich isotherms were best explained by available surface area, and only the highest surface area graphene oxide (771 m(2)/g) out-performed GAC and MWCNTs. Increasing pH caused more negative surface charge, a twofold decrease in sorption of anionic ibuprofen, a onefold increase in sorption of cationic atenolol, and no change for neutral carbamazepine, highlighting the role of electrostatic interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria.

    PubMed

    Onfelt, Björn; Nedvetzki, Shlomo; Benninger, Richard K P; Purbhoo, Marco A; Sowinski, Stefanie; Hume, Alistair N; Seabra, Miguel C; Neil, Mark A A; French, Paul M W; Davis, Daniel M

    2006-12-15

    We report that two classes of membrane nanotubes between human monocyte-derived macrophages can be distinguished by their cytoskeletal structure and their functional properties. Thin membrane nanotubes contained only F-actin, whereas thicker nanotubes, i.e., those > approximately 0.7 microm in diameter, contained both F-actin and microtubules. Bacteria could be trapped and surf along thin, but not thick, membrane nanotubes toward connected macrophage cell bodies. Once at the cell body, bacteria could then be phagocytosed. The movement of bacteria is aided by a constitutive flow of the nanotube surface because streptavidin-coated beads were similarly able to traffic along nanotubes between surface-biotinylated macrophages. Mitochondria and intracellular vesicles, including late endosomes and lysosomes, could be detected within thick, but not thin, membrane nanotubes. Analysis from kymographs demonstrated that vesicles moved in a stepwise, bidirectional manner at approximately 1 microm/s, consistent with their traffic being mediated by the microtubules found only in thick nanotubes. Vesicular traffic in thick nanotubes and surfing of beads along thin nanotubes were both stopped upon the addition of azide, demonstrating that both processes require ATP. However, microtubule destabilizing agents colchicine or nocodazole abrogated vesicular transport but not the flow of the nanotube surface, confirming that distinct cytoskeletal structures of nanotubes give rise to different functional properties. Thus, membrane nanotubes between macrophages are more complex than unvarying ubiquitous membrane tethers and facilitate several means for distal interactions between immune cells.

  10. Investigation of phase diagrams for cylindrical Ising nanotube using cellular automata

    NASA Astrophysics Data System (ADS)

    Astaraki, M.; Ghaemi, M.; Afzali, K.

    2018-05-01

    Recent developments in the field of applied nanoscience and nanotechnology have heightened the need for categorizing various characteristics of nanostructures. In this regard, this paper establishes a novel method to investigate magnetic properties (phase diagram and spontaneous magnetization) of a cylindrical Ising nanotube. Using a two-layer Ising model and the core-shell concept, the interactions within nanotube has been modelled. In the model, both ferromagnetic and antiferromagnetic cases have been considered. Furthermore, the effect of nanotube's length on the critical temperature is investigated. The model has been simulated using cellular automata approach and phase diagrams were constructed for different values of inter- and intra-layer couplings. For the antiferromagnetic case, the possibility of existence of compensation point is observed.

  11. Nanotube antibody biosensor arrays for the detection of circulating breast cancer cells

    NASA Astrophysics Data System (ADS)

    Shao, Ning; Wickstrom, Eric; Panchapakesan, Balaji

    2008-11-01

    Recent reports have shown that nanoscale electronic devices can be used to detect a change in electrical properties when receptor proteins bind to their corresponding antibodies functionalized on the surface of the device, in extracts from as few as ten lysed tumor cells. We hypothesized that nanotube-antibody devices could sensitively and specifically detect entire live cancer cells. We report for the first time a single nanotube field effect transistor array, functionalized with IGF1R-specific and Her2-specific antibodies, which exhibits highly sensitive and selective sensing of live, intact MCF7 and BT474 human breast cancer cells in human blood. Those two cell lines both overexpress IGF1R and Her2, at different levels. Single or small bundle of nanotube devices that were functionalized with IGF1R-specific or Her2-specific antibodies showed 60% decreases in conductivity upon interaction with BT474 or MCF7 breast cancer cells in two µl drops of blood. Control experiments with non-specific antibodies or with MCF10A control breast cells produced a less than 5% decrease in electrical conductivity, illustrating the high sensitivity for whole cell binding by these single nanotube-antibody devices. We postulate that the free energy change due to multiple simultaneous cell-antibody binding events exerted stress along the nanotube surface, decreasing its electrical conductivity due to an increase in band gap. Because the free energy change upon cell-antibody binding, the stress exerted on the nanotube, and the change in conductivity are specific to a specific antigen-antibody interaction; these properties might be used as a fingerprint for the molecular sensing of circulating cancer cells. From optical microscopy observations during sensing, it appears that the binding of a single cell to a single nanotube field effect transistor produced the change in electrical conductivity. Thus we report a nanoscale oncometer with single cell sensitivity with a diameter 1000 times

  12. Polarized excitons and optical activity in single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Wen; Jin, Bih-Yaw

    2018-05-01

    The polarized excitons and optical activity of single-wall carbon nanotubes (SWNTs) are studied theoretically by π -electron Hamiltonian and helical-rotational symmetry. By taking advantage of the symmetrization, the single-particle energy and properties of a SWNT are characterized with the corresponding helical band structure. The dipole-moment matrix elements, magnetic-moment matrix elements, and the selection rules can also be derived. Based on different selection rules, the optical transitions can be assigned as the parallel-polarized, left-handed circularly-polarized, and right-handed circularly-polarized transitions, where the combination of the last two gives the cross-polarized transition. The absorption and circular dichroism (CD) spectra are simulated by exciton calculation. The calculated results are well comparable with the reported measurements. Built on the foundation, magnetic-field effects on the polarized excitons and optical activity of SWNTs are studied. Dark-bright exciton splitting and interband Faraday effect in the CD spectrum of SWNTs under an axial magnetic field are predicted. The Faraday rotation dispersion can be analyzed according to the selection rules of circular polarizations and the helical band structure.

  13. Carbon nanotube filters

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  14. Carbon nanotube filters.

    PubMed

    Srivastava, A; Srivastava, O N; Talapatra, S; Vajtai, R; Ajayan, P M

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus ( approximately 25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  15. Printed Carbon Nanotube Electronics and Sensor Systems.

    PubMed

    Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali

    2016-06-01

    Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Non-carbon titanium cobalt nitride nanotubes supported platinum catalyst with high activity and durability for methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoxiang; Li, Wuyi; Pan, Zhanchang; Xu, Yanbin; Liu, Gen; Hu, Guanghui; Wu, Shoukun; Li, Jinghong; Chen, Chun; Lin, Yingsheng

    2018-05-01

    Titanium cobalt nitride nanotubes (Ti0.95Co0.05N NTs) hybrid support, a novel robust non-carbon support material prepared by solvothermal and post-nitriding processes, is further decorated with Pt nanoparticles for the electrooxidation of methanol. The catalyst is characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The morphology, structure and composition of the synthesized Ti0.95Co0.05N NTs suggest that the nanotube wall is porous and consists of homogeneous cohesively attached nitrides nanocube particles. Notable, Ti0.95Co0.05N NTs supported Pt catalyst exhibits significantly improved catalytic activity and durability for methanol electrooxidation compared with the conventional JM Pt/C catalyst. The experimental data indicate that enhanced catalytic activity and stability of Pt/Ti0.95Co0.05N NTs towards methanol electrooxidation might be mainly attributed to the tubular nanostructures and synergistic effect introduced by the Co doping. Both of them are playing an important role in improving the activity and durability of the Ti0.95Co0.05N NTs catalyst.

  17. Influence of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobile, Maria Rossella, E-mail: mrnobile@unisa.it; Somma, Elvira; Valentino, Olga

    Rheological and electrical properties of nanocomposites based on multi-walled carbon nanotubes (MWNTs) and high density polyethylene (HDPE), prepared by melt mixing in a micro-twin screw extruder, have been investigated. The effect of MWNT concentration (0.5 and 2.5 wt %) and nanotube surface treatment (oxidative treatment in a tubular furnace at 500°C for 1 hr in a 95% nitrogen, 5% oxygen atmosphere) has been analyzed. It has been found that the sample conductivity with oxidation of the nanotubes decreases more than 2 orders of magnitude. Scanning electron microscopy showed good adhesion and dispersion of nanotubes in the matrix, independently of themore » surface treatment. Electrical and rheological measurements revealed that the oxidative treatment, causing some reduction of the MWNT quality, decreases the efficiency of the nanotube matrix interaction.« less

  18. [Sorption mechanism of ofloxacin by carbon nanotubes].

    PubMed

    Zhao, Xing-Xing; Yu, Shui-Li; Wang, Zhe

    2014-02-01

    Sorption of ofloxacin (OFL) by carbon nanotubes is an effective method to control its fate in aquatic environment. The sorption process of OFL by mixed acid-treated and non-treated multi-walled carbon nanotubes was discussed. Sorption kinetics, sorption isotherm, desorption, sorption thermodynamics and effect of pH were investigated. The results indicated that the sorption kinetics followed the pseudo-second order kinetics model. The equilibrium sorption capacity of OFL on MWCNTs-O was higher. The sorption isotherm could be fitted by both the Langmuir and Freundlich models. The equilibrium sorption capacity dropped when the pH of aqueous solution was in the range of 6.0 to 10.0. Obvious desorption hysteresis was observed during the desorption experiments, especially on MWCNTs-O. Sorption thermodynamics analysis showed that the interactions between the OFL and sorbents were mainly between molecules. More oxygen-containing functional groups introduced on MWCNTs provided OFL molecules with more sorptive sites, which facilitated the generation of hydrogen bonds, a relatively strong interaction. The hydrogen bonds dominated the sorption process of OFL by MWCNTs/MWCNTs-O, explaining the experimental phenomena.

  19. Developing Xenopus Embryos Recover by Compacting and Expelling Single-Wall Carbon Nanotubes

    PubMed Central

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2015-01-01

    Single-wall carbon nanotubes are high aspect ratio nanomaterials that are being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties, and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single-wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 μm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one-to-two cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call “boluses”. Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061

  20. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.

    PubMed

    Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F

    2016-04-01

    Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Theoretical studies on lattice-oriented growth of single-walled carbon nanotubes on sapphire

    NASA Astrophysics Data System (ADS)

    Li, Zhengwei; Meng, Xianhong; Xiao, Jianliang

    2017-09-01

    Due to their excellent mechanical and electrical properties, single-walled carbon nanotubes (SWNTs) can find broad applications in many areas, such as field-effect transistors, logic circuits, sensors and flexible electronics. High-density, horizontally aligned arrays of SWNTs are essential for high performance electronics. Many experimental studies have demonstrated that chemical vapor deposition growth of nanotubes on crystalline substrates such as sapphire offers a promising route to achieve such dense, perfectly aligned arrays. In this work, a theoretical study is performed to quantitatively understand the van der Waals interactions between SWNTs and sapphire substrates. The energetically preferred alignment directions of SWNTs on A-, R- and M-planes and the random alignment on the C-plane predicted by this study are all in good agreement with experiments. It is also shown that smaller SWNTs have better alignment than larger SWNTs due to their stronger interaction with sapphire substrate. The strong vdW interactions along preferred alignment directions can be intuitively explained by the nanoscale ‘grooves’ formed by atomic lattice structures on the surface of sapphire. This study provides important insights to the controlled growth of nanotubes and potentially other nanomaterials.

  2. Exploring aligned-carbon-nanotubes@polyaniline arrays on household Al as supercapacitors.

    PubMed

    Huang, Fan; Lou, Fengliu; Chen, De

    2012-05-01

    Herein, we demonstrate a new approach towards the construction of supercapacitors consisting of carbon nanotubes (CNTs) and conducting polymers (ECPs) with high specific power, high specific energy, and stable cycling performance through a 3D design of a thin film of polyaniline (PANI) on an aligned small carbon nanotube (ACNT) array on household Al foils. The thin-film strategy is used to fully exploit the specific capacitance of PANI, and obtain regular pores, strong interaction between PANI and CNTs, and reduced electrical resistance for the electrodes. A facile process is developed to fabricate a highly flexible supercapacitor using this binder-free composite on household Al foil as the current collector. It exhibits high specific energy of 18.9 Wh kg(-1) , high maximum specific power of 11.3 kW kg(-1) of the active material in an aqueous electrolyte at 1.0 A g(-1) , and excellent rate performance and cycling stability. A high specific energy of 72.4 Wh kg(-1) , a high maximum specific power of 24.9 kW kg(-1) , and a good cycling performance of the active material are obtained in an organic electrolyte. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Noncovalent functionalization of carbon nanotubes with porphyrins: meso-tetraphenylporphine and its transition metal complexes.

    PubMed

    Basiuk, Elena V; Basiuk, Vladimir A; Santiago, Patricia; Puente-Lee, Iván

    2007-01-01

    Noncovalent functionalization of carbon nanotubes with meso-tetraphenylporphine (H2TPP) and its metal(II) complexes NiTPP and CoTPP was studied by means of different experimental techniques and theoretical calculations. As follows from the experimental adsorption curves, free H2TPP ligand exhibits the strongest adsorption of three porphyrins tested, followed by CoTPP and NiTPP. At the highest porphyrin concentrations studied, the adsorption at multi-walled carbon nanotubes was about 2% (by weight) for H2TPP, 1% for CoTPP, and 0.5% for NiTPP. Transmission electron microscopy observations revealed carbon nanotubes with a variable degree of surface coverage with porphyrin molecules. According to scanning electron microscopy, the nanotubes glue together rather than debundle; apparently, a large porphyrin excess resulting in polymolecular adsorption is essential for exfoliation/debundling of the nanotube ropes. The nanotube/porphyrins hybrids were studied by infrared and Raman spectroscopy, as well as by scanning tunneling microscopy. Electronic structure calculations were performed at the B3LYP/LANL2MB theoretical level with the unsubstituted porphine (H2P) and its Co(II) complex, on one hand, and open-end armchair (5,5) (ANT) and zigzag (8,0) (ZNT) SWNT models, on the other hand. The interaction of H2P with ANT was found to be by 3.9 kcal mol(-1) stronger than that of CoP. At the same time, CoP+ZNT complex is more stable by 42.7 kcal mol(-1) as compared to H2P+ZNT According to these calculated results, the free porphyrins interact less selectively with zigzag and armchair (i.e., semiconducting and metallic) nanotubes, whereas the difference becomes very large for the metal porphyrins. HOMO-LUMO structure, electrostatic potential and spin density distribution for the paramagnetic cobalt(II) complexes were analyzed.

  4. Anti-tumor response with immunologically modified carbon nanotubes and phototherapy

    NASA Astrophysics Data System (ADS)

    Acquaviva, Joseph T.; Zhou, Feifan; Boarman, Ellen; Chen, Wei R.

    2013-02-01

    While successes of different cancer therapies have been achieved in various degrees a systemic immune response is needed to effectively treat late-stage, metastatic cancers, and to establish long-term tumor resistance in the patients. A novel method for combating metastatic cancers has been developed using immunologically modified carbon nanotubes in conjunction with phototherapy. Glycated chitosan (GC) is a potent immunological adjuvant capable of increasing host immune responses, including antigen presentation by activation of dendritic cells (DCs) and causing T cell proliferation. GC is also an effective surfactant for nanomaterials. By combining single-walled carbon nanotubes (SWNTs) and GC, immunologically modified carbon nanotubes (SWNT-GC) were constructed. The SWNT-GC suspension retains the enhanced light absorption properties in the near infrared (NIR) region and the ability to enter cells, which are characteristic of SWNTs. The SWNT-GC also retains the immunological properties of GC. Cellular SWNT-GC treatments increased macrophage activity, DC activation and T cell proliferation. When cellular SWNT-GC was irradiated with a laser of an appropriate wavelength, these immune activities could be enhanced. The combination of laser irradiation and SWNT-GC induced cellular toxicity in targeted tumor cells, leading to a systemic antitumor response. Immunologically modified carbon nanotubes in conjunction with phototherapy is a novel and promising method to produce a systemic immune response for the treatment of metastatic cancers.

  5. Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays

    NASA Technical Reports Server (NTRS)

    Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.

    2004-01-01

    We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.

  6. A bioscaffolding strategy for hierarchical zeolites with a nanotube-trimodal network.

    PubMed

    Li, Guannan; Huang, Haibo; Yu, Bowen; Wang, Yun; Tao, Jiawei; Wei, Yingxu; Li, Shougui; Liu, Zhongmin; Xu, Yan; Xu, Ruren

    2016-02-01

    Hierarchical zeolite monoliths with multimodal porosity are of paramount importance as they open up new horizons for advanced applications. So far, hierarchical zeolites based on nanotube scaffolds have never been reported. Inspired by the organization of biominerals, we have developed a novel precursor scaffolding-solid phase crystallization strategy for hierarchical zeolites with a unique nanotube scaffolding architecture and nanotube-trimodal network, where biomolecular self-assembly (BSA) provides a scaffolding blueprint. By vapor-treating Sil-1 seeded precursor scaffolds, zeolite MFI nanotube scaffolds are self-generated, during which evolution phenomena such as segmented voids and solid bridges are observed, in agreement with the Kirkendall effect in a solid-phase crystallization system. The nanotube walls are made of intergrown single crystals rendering good mechanical stability. The inner diameter of the nanotube is tunable between 30 and 90 nm by varying the thickness of the precursor layers. Macropores enclosed by cross-linked nanotubes can be modulated by the choice of BSA. Narrow mesopores are formed by intergrown nanocrystals. Hierarchical ZSM-5 monoliths with nanotube (90 nm), micropore (0.55 nm), mesopore (2 nm) and macropore (700 nm) exhibit superior catalytic performance in the methanol-to-hydrocarbon (MTH) conversion compared to conventional ZSM-5. BSA remains intact after crystallization, allowing a higher level of organization and functionalization of the zeolite nanotube scaffolds. The current work may afford a versatile strategy for hierarchical zeolite monoliths with nanotube scaffolding architectures and a nanotube-multimodal network leading to self-supporting and active zeolite catalysts, and for applications beyond.

  7. Single-handed helical carbonaceous nanotubes prepared using a pair of cationic low molecular weight gelators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Huayan; Wang, Qing; Guo, Yongmin

    Highlights: • 3-aminophenol-formaldeyde resins were prepared through a templating method. • A pair of cationic gelators have been used as the templates. • Single-handed helical carbonaceous nanotubes were obtained after carbonization. • The carbonaceous nanotubes showed optical activity. - Abstract: We design a facile route to obtain enantiopure carbonaceous nanostructures, which have potential application as chiral sensors, electromagnetic wave absorbers, and asymmetric catalysts. A pair of cationic low molecular weight gelators was synthesized, which were able to self-assemble into twisted nanoribbons in ethanol at a concentration of 20 g L{sup −1} at 25 °C. Single-handed helical 3-aminophenol-formaldehyde resin nanotubes withmore » optical activity were prepared using the self-assembly of the low molecular weight gelators as templates. After carbonization, single-handed helical carbonaceous nanotubes were obtained and characterized using circular dichroism, wide-angle X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The results indicate that the walls of the nanotubes are amorphous carbon. Moreover, the left- and right-handed helical nanotubes exhibit opposite optical activity.« less

  8. Advances in NO2 sensing with individual single-walled carbon nanotube transistors

    PubMed Central

    Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer

    2014-01-01

    Summary The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors. PMID:25551046

  9. Advances in NO2 sensing with individual single-walled carbon nanotube transistors.

    PubMed

    Chikkadi, Kiran; Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer

    2014-01-01

    The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors.

  10. Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films.

    PubMed

    Hatton, Ross A; Blanchard, Nicholas P; Stolojan, Vlad; Miller, Anthony J; Silva, S Ravi P

    2007-05-22

    We report a detailed study of the interaction between surface-oxidized multiwall carbon nanotubes (o-MWCNTs) and the molecular semiconductor tetrasulfonate copper phthalocyanine (TS-CuPc). Concentrated dispersions of o-MWCNT in aqueous solutions of TS-CuPc are stable toward nanotube flocculation and exhibit spontaneous nanostructuring upon rapid drying. In addition to hydrogen-bonding interactions, the compatibility between the two components is shown to result from a ground-state charge-transfer interaction with partial charge transfer from o-MWCNT to TS-CuPc molecules orientated such that the plane of the macrocycle is parallel to the nanotube surface. The electronegativity of TS-CuPc as compared to unsubsubtituted copper phthalocyanine is shown to result from the electron-withdrawing character of the sulfonate substituents, which increase the molecular ionization potential and promote cofacial molecular aggregation upon drying. Upon spin casting to form uniform thin films, the experimental evidence is consistent with an o-MWCNT scaffold decorated with phthalocyanine molecules self-assembled into extended aggregates reminiscent of 1-D linearly stacked phthalocyanine polymers. Remarkably, this self-organization occurs in a fraction of a second during the spin-coating process. To demonstrate the potential utility of this hybrid material, it is successfully incorporated into a model organic photovoltaic cell at the interface between a poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester bulk heterojunction layer and an indium-tin oxide-coated glass electrode to increase the light-harvesting capability of the device and facilitate hole extraction. The resulting enhancement in power conversion efficiency is rationalized in terms of the electronic, optical, and morphological properties of the nanostructured thin film.

  11. Synthesis of hematite and maghemite nanotubes and study of their applications in neuroscience and drug delivery

    NASA Astrophysics Data System (ADS)

    Chen, Linfeng; Xie, Jining; Aatre, Kiran R.; Yancey, Justin; Chetan, Sahitya; Srivatsan, Malathi; Varadan, Vijay K.

    2011-04-01

    This report discusses our work on synthesis of hematite and maghemite nanotubes, analysis of their biocompatibility with pheochromocytoma cells (PC12 cells), and study of their applications in the culture of dorsal root ganglion (DRG) neurons and the delivery of ibuprofen sodium salt (ISS) drug model. Two methods, template-assisted thermal decomposition method and hydrothermal method, were used for synthesizing hematite nanotubes, and maghemite nanotubes were obtained from the synthesized hematite nanotubes by thermal treatment. The crystalline, morphology and magnetic properties of the hematite and maghemite nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM), respectively. The biocompatibility of the synthesized hematite nanotubes was confirmed by the survival and differentiation of PC12 cells in the presence of the hematite nanotubes coupled to nerve growth factor (NGF). To study the combined effects of the presence of magnetic nanotubes and external magnetic fields on neurite growth, laminin was coupled to hematite and maghemite nanotubes, and DRG neurons were cultured in the presence of the treated nanotubes with the application of external magnetic fields. It was found that neurons can better tolerate external magnetic fields when magnetic nanotubes were present. Close contacts between nanotubes and filopodia that were observed under SEM showed that the nanotubes and the growing neurites interacted readily. The drug loading and release capabilities of hematite nanotubes synthesized by hydrothermal method were tested by using ibuprofen sodium salt (ISS) as a drug model. Our experimental results indicate that hematite and maghemite nanotubes have good biocompatibility with neurons, could be used in regulating neurite growth, and are promising vehicles for drug delivery.

  12. Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Farajpour, A.; Rastgoo, A.

    Carbon nanotubes are a new class of microtubule-stabilizing agents since they interact with protein microtubules in living cells, interfering with cell division and inducing apoptosis. In the present work, a modified beam model is developed to investigate the effect of carbon nanotubes on the buckling of microtubule bundles in living cell. A realistic interaction model is employed using recent experimental data on the carbon nanotube-stabilized microtubules. Small scale and surface effects are taken into account applying the nonlocal strain gradient theory and surface elasticity theory. Pasternak model is used to describe the normal and shearing effects of enclosing filament matrix on the buckling behavior of the system. An exact solution is obtained for the buckling growth rates of the mixed bundle in viscoelastic surrounding cytoplasm. The present results are compared with those reported in the open literature for single microtubules and an excellent agreement is found. Finally, the effects of different parameters such as the size, chirality, position and surface energy of carbon nanotubes on the buckling growth rates of microtubule bundles are studied. It is found that the buckling growth rate may increase or decrease by adding carbon nanotubes, depending on the diameter and chirality of carbon nanotubes.

  13. Advanced carbon nanotubes functionalization

    NASA Astrophysics Data System (ADS)

    Setaro, A.

    2017-10-01

    Similar to graphene, carbon nanotubes are materials made of pure carbon in its sp2 form. Their extended conjugated π-network provides them with remarkable quantum optoelectronic properties. Frustratingly, it also brings drawbacks. The π-π stacking interaction makes as-produced tubes bundle together, blurring all their quantum properties. Functionalization aims at modifying and protecting the tubes while hindering π-π stacking. Several functionalization strategies have been developed to circumvent this limitation in order for nanotubes applications to thrive. In this review, we summarize the different approaches established so far, emphasizing the balance between functionalization efficacy and the preservation of the tubes’ properties. Much attention will be given to a functionalization strategy overcoming the covalent-noncovalent dichotomy and to the implementation of two advanced functionalization schemes: (a) conjugation with molecular switches, to yield hybrid nanosystems with chemo-physical properties that can be tuned in a controlled and reversible way, and; (b) plasmonic nanosystems, whose ability to concentrate and enhance the electromagnetic fields can be taken advantage of to enhance the optical response of the tubes.

  14. Purification of carbon nanotubes via selective heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A.; Wilson, William L.; Jin, Sung Hun

    The present invention provides methods for purifying a layer of carbon nanotubes comprising providing a precursor layer of substantially aligned carbon nanotubes supported by a substrate, wherein the precursor layer comprises a mixture of first carbon nanotubes and second carbon nanotubes; selectively heating the first carbon nanotubes; and separating the first carbon nanotubes from the second carbon nanotubes, thereby generating a purified layer of carbon nanotubes. Devices benefiting from enhanced electrical properties enabled by the purified layer of carbon nanotubes are also described.

  15. Directing Stem Cell Differentiation via Electrochemical Reversible Switching between Nanotubes and Nanotips of Polypyrrole Array.

    PubMed

    Wei, Yan; Mo, Xiaoju; Zhang, Pengchao; Li, Yingying; Liao, Jingwen; Li, Yongjun; Zhang, Jinxing; Ning, Chengyun; Wang, Shutao; Deng, Xuliang; Jiang, Lei

    2017-06-27

    Control of stem cell behaviors at solid biointerfaces is critical for stem-cell-based regeneration and generally achieved by engineering chemical composition, topography, and stiffness. However, the influence of dynamic stimuli at the nanoscale from solid biointerfaces on stem cell fate remains unclear. Herein, we show that electrochemical switching of a polypyrrole (Ppy) array between nanotubes and nanotips can alter surface adhesion, which can strongly influence mechanotransduction activation and guide differentiation of mesenchymal stem cells (MSCs). The Ppy array, prepared via template-free electrochemical polymerization, can be reversibly switched between highly adhesive hydrophobic nanotubes and poorly adhesive hydrophilic nanotips through an electrochemical oxidation/reduction process, resulting in dynamic attachment and detachment to MSCs at the nanoscale. Multicyclic attachment/detachment of the Ppy array to MSCs can activate intracellular mechanotransduction and osteogenic differentiation independent of surface stiffness and chemical induction. This smart surface, permitting transduction of nanoscaled dynamic physical inputs into biological outputs, provides an alternative to classical cell culture substrates for regulating stem cell fate commitment. This study represents a general strategy to explore nanoscaled interactions between stem cells and stimuli-responsive surfaces.

  16. Inkjet Printing of Carbon Nanotubes

    PubMed Central

    Tortorich, Ryan P.; Choi, Jin-Woo

    2013-01-01

    In an attempt to give a brief introduction to carbon nanotube inkjet printing, this review paper discusses the issues that come along with preparing and printing carbon nanotube ink. Carbon nanotube inkjet printing is relatively new, but it has great potential for broad applications in flexible and printable electronics, transparent electrodes, electronic sensors, and so on due to its low cost and the extraordinary properties of carbon nanotubes. In addition to the formulation of carbon nanotube ink and its printing technologies, recent progress and achievements of carbon nanotube inkjet printing are reviewed in detail with brief discussion on the future outlook of the technology. PMID:28348344

  17. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Blancon, Jean-Christophe; Paillet, Matthieu; Tran, Huy Nam; Than, Xuan Tinh; Guebrou, Samuel Aberra; Ayari, Anthony; Miguel, Alfonso San; Phan, Ngoc-Minh; Zahab, Ahmed-Azmi; Sauvajol, Jean-Louis; Fatti, Natalia Del; Vallée, Fabrice

    2013-09-01

    The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.

  18. Direct Synthesis of Polymer Nanotubes by Aqueous Dispersion Polymerization of a Cyclodextrin/Styrene Complex.

    PubMed

    Chen, Xi; Liu, Lei; Huo, Meng; Zeng, Min; Peng, Liao; Feng, Anchao; Wang, Xiaosong; Yuan, Jinying

    2017-12-22

    A one-step synthesis of nanotubes by RAFT dispersion polymerization of cyclodextrin/styrene (CD/St) complexes directly in water is presented. The resulted amphiphilic PEG-b-PS diblock copolymers self-assemble in situ into nanoparticles with various morphologies. Spheres, worms, lamellae, and nanotubes were controllably obtained. Because of the complexation, the swelling degree of polystyrene (PS) blocks by free St is limited, resulting in limited mobility of PS chains. Consequently, kinetically trapped lamellae and nanotubes were obtained instead of spherical vesicles. During the formation of nanotubes, small vesicles first formed at the ends of the tape-like lamellae, then grew and fused into nanotubes with a limited chain rearrangement. The introduction of a host-guest interaction based on CDs enables the aqueous dispersion polymerization of water-immiscible monomers, and produces kinetically trapped nanostructures, which could be a powerful technique for nanomaterials synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Titania carbon nanotube composites for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Pyrgiotakis, Georgios

    Photocatalytic composites have been used for the past few decades in a wide range of applications. The most common application is the purification of air and water by removing toxic compounds. There is limited use however towards biocidal applications. Despite their high efficiency, photocatalytic materials are not comparable to the effectiveness of conventional biocidal compounds such as chlorine and alcoholic disinfectants. On the other hand, nearly a decade ago with the discovery of the carbon nanotubes a new vibrant scientific field emerged. Nanotubes are unique structures of carbon that posse amazing electrical, mechanical and thermal properties. In this research carbon nanotubes are used as photocatalytic enhancers. They were coated with anatase titania to form a composite material. Two different types of nanotubes (metallic versus non-metallic) were used and the photocatalytic activity was measured. The metallic tubes demonstrated exceptional photocatalytic properties, while non-metallic tubes had low photocatalytic efficiency. The reason for that difference was investigated and was the major focus of this research. The research concluded that the reasons for the high efficiency of the carbon nanotubes were (i) the metallic nature of the tubes and (ii) the possible bond between the titania coating and the underlying graphite layers (C-O-Ti). Since both composites had the same indications regarding the C-O-Ti bond, the metallic nature of the carbon nanotubes is believed to be the most dominant factor contributing to the enhancement of the photocatalysis. The composite material may have other potential applications such as for sensing and photovoltaic uses.

  20. Gallium nitride nanotube lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; ...

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  1. Carbon Nanotube Thin Films for Active Noise Cancellation, Solar Energy Harvesting, and Energy Storage in Building Windows

    NASA Astrophysics Data System (ADS)

    Hu, Shan

    This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of

  2. Vibrational Spectroscopic Studies on the Formation of Ion-exchangeable Titania Nanotubes

    NASA Astrophysics Data System (ADS)

    Hodos, Mária; Haspel, Henrik; Horváth, Endre; Kukovecz, Ákos; Kónya, Zoltán; Kiricsi, Imre

    2005-09-01

    Ion-exchangeable titanium-oxide nanotubes have commanded considerable interest from the materials science community in the past five years. Synthesized under hydrothermal conditions from TiO2, typical nanotubes are 150-200 nm long and 8-20 nm wide. High resolution TEM images revealed that unlike multiwall carbon nanotubes which are made of coaxial single-wall nanotubes, the titania tubes possess a spiral cross-section. An interesting feature of the titania tubes is their considerable ion-exchange capacity which could be utilized e.g. for enhancing their photocatalytic activity by doping the titania tubes with CdS nanoparticles. In this contribution we present a comprehensive TEM, FT-Raman and FT-farIR characterization study of the formation process.

  3. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes.

    PubMed

    Cruz-Silva, Eduardo; Cullen, David A; Gu, Lin; Romo-Herrera, Jose Manuel; Muñoz-Sandoval, Emilio; López-Urías, Florentino; Sumpter, Bobby G; Meunier, Vincent; Charlier, Jean-Christophe; Smith, David J; Terrones, Humberto; Terrones, Mauricio

    2008-03-01

    Arrays of multiwalled carbon nanotubes doped with phosphorus (P) and nitrogen (N) are synthesized using a solution of ferrocene, triphenyl-phosphine, and benzylamine in conjunction with spray pyrolysis. We demonstrate that iron phosphide (Fe(3)P) nanoparticles act as catalysts during nanotube growth, leading to the formation of novel PN-doped multiwalled carbon nanotubes. The samples were examined by high resolution electron microscopy and microanalysis techniques, and their chemical stability was explored by means of thermogravimetric analysis in the presence of oxygen. The PN-doped structures reveal important morphology and chemical changes when compared to N-doped nanotubes. These types of heterodoped nanotubes are predicted to offer many new opportunities in the fabrication of fast-response chemical sensors.

  4. Interactions of oxidized multiwalled carbon nanotube with cadmium on zebrafish cell line: The influence of two co-exposure protocols on in vitro toxicity tests.

    PubMed

    Morozesk, Mariana; Franqui, Lidiane S; Mansano, Adrislaine S; Martinez, Diego Stéfani T; Fernandes, Marisa N

    2018-05-05

    The widespread production and application of carbon nanotubes (CNT) have raising concerns about their release into the environment and, the joint toxicity of CNT with pre-existing contaminants needs to be assessed. This is the first study that investigated the co-exposure of oxidized multiwalled carbon nanotubes (ox-MWCNT) and cadmium (Cd) using a zebrafish liver cell line (ZFL). Two in vitro co-exposure protocols differing by the order of ox-MWCNT interaction with Cd and fetal bovine serum (FBS) proteins were evaluated. Ox-MWCNT was physical and chemical characterized and its adsorption capacity and colloidal stability in cell culture medium was determined in both protocols. Cytotoxicity was investigated by MTT, neutral red, trypan blue, lactate dehydrogenase assays and the necrosis and apoptosis events were determined using flow cytometer. The Cd presence in medium did not interfere in the protein corona composition of MWCNT but the order of interaction of FBS and Cd interfered in its colloidal stability and metal adsorption rate. The ox-MWCNT increased Cd toxicity at low concentration probably by a "Trojan horse" and/or synergistic effect, and induced apoptosis and necrosis in ZFL cells. Although it was not observed differences of toxicity between protocols, the interaction of ox-MWCNT first with Cd led to its precipitation in cell culture medium and, as a consequence, to a possible false viability result by neutral red assay. Taken together, it was evident that the order of compounds interactions disturbs the colloidal stability and affects the in vitro toxicological assays. Considering that Protocol A showed more ox-MWCNT stability after interaction with Cd, this protocol is recommended to be adopted in future studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Quantum Molecular Dynamics Simulations of Nanotube Tip Assisted Reactions

    NASA Technical Reports Server (NTRS)

    Menon, Madhu

    1998-01-01

    In this report we detail the development and application of an efficient quantum molecular dynamics computational algorithm and its application to the nanotube-tip assisted reactions on silicon and diamond surfaces. The calculations shed interesting insights into the microscopic picture of tip surface interactions.

  6. TiO 2 nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure

    DOE PAGES

    Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; ...

    2014-11-19

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samplesmore » partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti 3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure

  7. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas [Denver, CO; Raffaelle, Ryne P [Honeoye Falls, NY; Landi, Brian J [Rochester, NY; Heben, Michael J [Denver, CO

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  8. Mechanical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Salvetat, J.-P.; Bonard, J.-M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L.

    A variety of outstanding experimental results on the elucidation of the elastic properties of carbon nanotubes are fast appearing. These are based mainly on the techniques of high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) to determine the Young's moduli of single-wall nanotube bundles and multi-walled nanotubes, prepared by a number of methods. These results are confirming the theoretical predictions that carbon nanotubes have high strength plus extraordinary flexibility and resilience. As well as summarising the most notable achievements of theory and experiment in the last few years, this paper explains the properties of nanotubes in the wider context of materials science and highlights the contribution of our research group in this rapidly expanding field. A deeper understanding of the relationship between the structural order of the nanotubes and their mechanical properties will be necessary for the development of carbon-nanotube-based composites. Our research to date illustrates a qualitative relationship between the Young's modulus of a nanotube and the amount of disorder in the atomic structure of the walls. Other exciting results indicate that composites will benefit from the exceptional mechanical properties of carbon nanotubes, but that the major outstanding problem of load transfer efficiency must be overcome before suitable engineering materials can be produced.

  9. Assessment of the adsorption mechanism of Flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: An alternative theoretical approach based on DFT and MD

    NASA Astrophysics Data System (ADS)

    Kamel, Maedeh; Raissi, Heidar; Morsali, Ali; Shahabi, Mahnaz

    2018-03-01

    In the present work, we have studied the drug delivery performance of the functionalized (5, 5) single-walled carbon nanotube with a carboxylic acid group for Flutamide anticancer drug in the gas phase as well as water solution by means of density functional theory calculations. The obtained results confirmed the energetic stability of the optimized geometries and revealed that the nature of drug adsorption on the functionalized carbon nanotube is physical. Our computations showed that the hydrogen bonding between active sites of Flutamide molecule and the carboxyl functional group of the nanotube plays a vital role in the stabilization of the considered configurations. The natural bond orbital analysis suggested that the functionalized nanotube plays the role of an electron donor and Flutamide molecule acts as an electron acceptor at the investigated complexes. In addition, molecular dynamics simulation is also utilized to investigate the effect of functionalized carbon nanotube chirality on the dynamic process of drug molecule adsorption on the nanotube surface. Simulation results demonstrated that drug molecules are strongly adsorbed on the functionalized nanotube surface with (10,5) chirality, as reflected by the most negative van der Waals interaction energy and a high number of hydrogen bonds between the functionalized nanotube and drug molecules.

  10. Vapor Synthesis and Thermal Modification of Supportless Platinum–Ruthenium Nanotubes and Application as Methanol Electrooxidation Catalysts

    DOE PAGES

    Atkinson III, Robert W.; Unocic, Raymond R.; Unocic, Kinga A.; ...

    2015-04-23

    Metallic, mixed-phase, and alloyed bimetallic Pt-Ru nanotubes were synthesized by a novel route based on the sublimation of metal acetylacetonate precursors and their subsequent vapor deposition within anodic alumina templates. Nanotube architectures were tuned by thermal annealing treatments. As-synthesized nanotubes are composed of nanoparticulate, metallic platinum and hydrous ruthenium oxide whose respective thicknesses depend on the sample chemical composition. The Pt-decorated, hydrous Ru oxide nanotubes may be thermally annealed to promote a series of chemical and physical changes to the nanotube structures including alloy formation, crystallite growth and morphological evolution. Annealed Pt-Ru alloy nanotubes and their as-synthesized analogs demonstrate relativelymore » high specific activities for the oxidation of methanol. As-synthesized, mixed-phase Pt-Ru nanotubes (0.39 mA/cm2) and metallic alloyed Pt64Ru36NTs (0.33 mA/cm2) have considerably higher area-normalized activities than PtRu black (0.22 mA/cm2) at 0.65 V vs. RHE.« less

  11. Strategies for specifically directing metal functionalization of protein nanotubes: constructing protein coated silver nanowires

    NASA Astrophysics Data System (ADS)

    Carreño-Fuentes, Liliana; Ascencio, Jorge A.; Medina, Ariosto; Aguila, Sergio; Palomares, Laura A.; Ramírez, Octavio T.

    2013-06-01

    Biological molecules that self-assemble in the nanoscale range are useful multifunctional materials. Rotavirus VP6 protein self-assembles into tubular structures in the absence of other rotavirus proteins. Here, we present strategies for selectively directing metal functionalization to the lumen of VP6 nanotubes. The specific in situ metal reduction in the inner surface of nanotube walls was achieved by the simple modification of a method previously reported to functionalize the nanotube outer surface. Silver nanorods and nanowires as long as 1.5 μm were formed inside the nanotubes by coalescence of nanoparticles. Such one-dimensional structures were longer than others previously obtained using bioscaffolds. The interactions between silver ions and the nanotube were simulated to understand the conditions that allowed nanowire formation. Molecular docking showed that a naturally occurring arrangement of aspartate residues enabled the stabilization of silver ions on the internal surface of the VP6 nanotubes. This is the first time that such a spatial arrangement has been proposed for the nucleation of silver nanoparticles, opening the possibility of using such an array to direct functionalization of other biomolecules. These results demonstrate the natural capabilities of VP6 nanotubes to function as a versatile biotemplate for nanomaterials.

  12. Chemical Strategies for Enhancing Activity and Charge Transfer in Ultrathin Pt Nanowires Immobilized onto Nanotube Supports for the Oxygen Reduction Reaction

    DOE PAGES

    Li, Luyao; Liu, Haiqing; Wang, Lei; ...

    2016-12-12

    Multiwalled carbon nanotubes (MWNTs) represent a promising support medium for electrocatalysts, especially Pt nanoparticles (NPs). The advantages of using MWNTs include their large surface area, high conductivity, as well as long-term stability. Surface functionalization of MWNTs with various terminal groups, such as -COOH, -SH, and -NH 2, allows for rational electronic tuning of catalyst–support interactions. But, several issues still need to be addressed for such systems. Over the course of an electrochemical run, catalyst durability can decrease, due in part to metal NP dissolution, a process facilitated by the inherently high surface defect concentration within the support. Second, the covalentmore » functionalization treatment of MWNTs adopted by most groups tends to lead to a loss of structural integrity of the nanotubes (NTs). In order to mitigate for all of these issues, we have utilized two different attachment approaches (i.e., covalent versus noncovalent) to functionalize the outer walls of pristine MWNTs and compared the catalytic performance of as-deposited ultrathin (<2 nm) 1D Pt nanowires with that of conventional Pt NPs toward the oxygen reduction reaction (ORR). Our results demonstrated that the electrochemical activity of Pt nanostructures immobilized onto functionalized carbon nanotube (CNT) supports could be dramatically improved by using ultrathin Pt nanowires (instead of NPs) with noncovalently (as opposed to covalently) functionalized CNT supports. Spectroscopic evidence corroborated the definitive presence of charge transfer between the metal catalysts and the underlying NT support, whose direction and magnitude are a direct function of (i) the terminal chemistry as well as (ii) the attachment methodology, both of which simultaneously impact upon the observed electrocatalytic performance. Specifically, the use of a noncovalent π–π stacking method coupled with a -COOH terminal moiety yielded the highest performance results, reported

  13. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Yoo, Seung Hwa; Ali, Ghafar; Cho, Sung Oh

    2010-03-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV-visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  14. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    PubMed Central

    2010-01-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV–visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2. PMID:20671780

  15. Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes.

    PubMed

    Malek, Kourosh; Sahimi, Muhammad

    2010-01-07

    Silicon carbide nanotubes (SiCNTs) are new materials with excellent properties, such as high thermal stability and mechanical strength, which are much improved over those of their carboneous counterparts, namely, carbon nanotubes (CNTs). Gas separation processes at high temperatures and pressures may be improved by developing mixed-matrix membranes that contain SiCNTs. Such nanotubes are also of interest in other important processes, such as hydrogen production and its storage, as well as separation by supercritical adsorption. The structural parameters of the nanotubes, i.e., their diameter, curvature, and chirality, as well as the interaction strength between the gases and the nanotubes' walls, play a fundamental role in efficient use of the SiCNTs in such processes. We employ molecular dynamics simulations in order to examine the adsorption and diffusion of N(2), H(2), CO(2), CH(4), and n-C(4)H(10) in the SiCNTs, as a function of the pressure and the type of the nanotubes, namely, the zigzag, armchair, and chiral tubes. The simulations indicate the strong effect of the nanotubes' chirality and curvature on the pressure dependence of the adsorption isotherms and the self-diffusivities. Detailed comparison is made between the results and those for the CNTs. In particular, we find that the adsorption capacity of the SiCNTs for hydrogen is higher than the CNTs' under the conditions that we have studied.

  16. Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Malek, Kourosh; Sahimi, Muhammad

    2010-01-01

    Silicon carbide nanotubes (SiCNTs) are new materials with excellent properties, such as high thermal stability and mechanical strength, which are much improved over those of their carboneous counterparts, namely, carbon nanotubes (CNTs). Gas separation processes at high temperatures and pressures may be improved by developing mixed-matrix membranes that contain SiCNTs. Such nanotubes are also of interest in other important processes, such as hydrogen production and its storage, as well as separation by supercritical adsorption. The structural parameters of the nanotubes, i.e., their diameter, curvature, and chirality, as well as the interaction strength between the gases and the nanotubes' walls, play a fundamental role in efficient use of the SiCNTs in such processes. We employ molecular dynamics simulations in order to examine the adsorption and diffusion of N2, H2, CO2, CH4, and n-C4H10 in the SiCNTs, as a function of the pressure and the type of the nanotubes, namely, the zigzag, armchair, and chiral tubes. The simulations indicate the strong effect of the nanotubes' chirality and curvature on the pressure dependence of the adsorption isotherms and the self-diffusivities. Detailed comparison is made between the results and those for the CNTs. In particular, we find that the adsorption capacity of the SiCNTs for hydrogen is higher than the CNTs' under the conditions that we have studied.

  17. Surface-charge-governed electrolyte transport in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xue, Jian-Ming; Guo, Peng; Sheng, Qian

    2015-08-01

    The transport behavior of pressure-driven aqueous electrolyte solution through charged carbon nanotubes (CNTs) is studied by using molecular dynamics simulations. The results reveal that the presence of charges around the nanotube can remarkably reduce the flow velocity as well as the slip length of the aqueous solution, and the decreasing of magnitude depends on the number of surface charges and distribution. With 1-M KCl solution inside the carbon nanotube, the slip length decreases from 110 nm to only 14 nm when the number of surface charges increases from 0 to 12 e. This phenomenon is attributed to the increase of the solid-liquid friction force due to the electrostatic interaction between the charges and the electrolyte particles, which can impede the transports of water molecules and electrolyte ions. With the simulation results, we estimate the energy conversion efficiency of nanofluidic battery based on CNTs, and find that the highest efficiency is only around 30% but not 60% as expected in previous work. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375031 and 11335003).

  18. Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes.

    PubMed

    Yuan, Quanzi; Zhao, Ya-Pu

    2009-05-13

    A DFT/MD mutual iterative method was employed to give insights into the mechanism of voltage generation based on water-filled single-walled carbon nanotubes (SWCNTs). Our calculations showed that a constant voltage difference of several mV would generate between the two ends of a carbon nanotube, due to interactions between the water dipole chains and charge carriers in the tube. Our work validates this structure of a water-filled SWCNT as a promising candidate for a synthetic nanoscale power cell, as well as a practical nanopower harvesting device at the atomic level.

  19. Carbon Nanotube Composites from Modified Plant Oils

    NASA Astrophysics Data System (ADS)

    McAninch, Ian; Wool, Richard

    2006-03-01

    Carbon nanotubes (CNTs) with their impressive mechanical properties are ideal reinforcement material. Acrylated epoxidized soy oil (AESO) has been previously shown to have favorable interactions with carbon nanotubes. CNTs mixed into AESO, both with and without styrene as a co-monomer, using mechanical shear mixing showed dispersion only on the micron level, resulting in modest mechanical property improvements. Greater improvements were seen, especially in the rubbery modulus, when the resin's viscosity was kept high, either through a reduction of the styrene content, or by curing at a lower temperature. CNTs were also dispersed via sonication in methyl methacrylate. The resulting dispersion was then mixed with AESO. The resulting composites showed better CNT dispersion, with no micron-sized aggregates, as verified using SEM and optical microscopy. The mechanical properties also showed greater improvement.

  20. Carbon Nanotube Purification and Functionalization

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Mintz, Eric; Smalley, Richard E.; Meador, Michael A.

    2003-01-01

    Carbon nanotubes have the potential to significantly enhance the mechanical, thermal, and electrical properties of polymers. However, dispersion of carbon nanotubes in a polymer matrix is hindered by the electrostatic forces that cause them to agglomerate. Chemical modification of the nanotubes is necessary to minimize these electrostatic forces and promote adhesion between the nanotubes and the polymer matrix. In a collaborative research program between Clark Atlanta University, Rice University, and NASA Glenn Research Center several approaches are being explored to chemically modify carbon nanotubes. The results of this research will be presented.

  1. Intra- and inter-shell Kondo effects in carbon nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Krychowski, Damian; Lipiński, Stanisław

    2018-01-01

    The linear response transport properties of carbon nanotube quantum dot in the strongly correlated regime are discussed. The finite-U mean field slave boson approach is used to study many-body effects. Magnetic field can rebuilt Kondo correlations, which are destroyed by the effect of spin-orbit interaction or valley mixing. Apart from the field induced revivals of SU(2) Kondo effects of different types: spin, valley or spin-valley, also more exotic phenomena appear, such as SU(3) Kondo effect. Threefold degeneracy occurs due to the effective intervalley exchange induced by short-range part of Coulomb interaction or due to the intershell mixing. In narrow gap nanotubes the full spin-orbital degeneracy might be recovered in the absence of magnetic field opening the condition for a formation of SU(4) Kondo resonance.

  2. A study on carbon nanotube bridge as a electromechanical memory device

    NASA Astrophysics Data System (ADS)

    Kang, Jeong Won; Ha Lee, Jun; Joo Lee, Hoong; Hwang, Ho Jung

    2005-04-01

    A nanoelectromechanical (NEM) nanotube random access memory (NRAM) device based on carbon nanotube (CNT) was investigated using atomistic simulations. For the CNT-based NEM memory, the mechanical properties of the CNT-bridge and van der Waals interactions between the CNT-bridge and substrate were very important. The critical amplitude of the CNT-bridge was 16% of the length of the CNT-bridge. As molecular dynamics time increased, the CNT-bridge went to the steady state under the electrostatic force with the damping of the potential and the kinetic energies of the CNT-bridge. The interatomic interaction between the CNT-bridge and substrate, value of the CNT-bridge slack, and damping rate of the CNT-bridge were very important for the operation of the NEM memory device as a nonvolatile memory.

  3. Thermal effect on the dynamic infiltration of water into single-walled carbon nanotubes.

    PubMed

    Zhao, Jianbing; Liu, Ling; Culligan, Patricia J; Chen, Xi

    2009-12-01

    Thermally induced variation in wetting ability in a confined nanoenvironment, indicated by the change in infiltration pressure as water molecules enter a model single-walled carbon nanotube submerged in aqueous environment, is investigated using molecular dynamics simulations. The temperature-dependent infiltration behavior is impacted in part by the thermally excited radial oscillation of the carbon nanotube, and in part by the variations of fundamental physical properties at the molecular level, including the hydrogen bonding interaction. The thermal effect is also closely coupled with the nanotube size effect and loading rate effect. Manipulation of the thermally responsive infiltration properties could facilitate the development of a next-generation thermal energy converter based on nanoporous materials.

  4. Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid.

    PubMed

    Soheilmoghaddam, Mohammad; Wahit, Mat Uzir

    2013-07-01

    In this study, novel nanocomposite films based on regenerated cellulose/halloysite nanotube (RC/HNT) have been prepared using an environmentally friendly ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) through a simple green method. The structural, morphological, thermal and mechanical properties of the RC/HNT nanocomposites were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), thermal analysis and tensile strength measurements. The results obtained revealed interactions between the halloysite nanotubes and regenerated cellulose matrix. The thermal stability and mechanical properties of the nanocomposite films, compared with pure regenerated cellulose film, were significantly improved When the halloysite nanotube (HNT) loading was only 2 wt.%, the 20% weight loss temperature (T20) increased 20°C. The Young's modulus increased from 1.8 to 4.1 GPa, while tensile strength increased from 35.30 to 60.50 MPa when 8 wt.% halloysite nanotube (HNT) was incorporated, interestingly without loss of ductility. The nanocomposite films exhibited improved oxygen barrier properties and water absorption resistance compared to regenerated cellulose. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,

  6. Fabrication of Au nanoparticles supported on CoFe2O4 nanotubes by polyaniline assisted self-assembly strategy and their magnetically recoverable catalytic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Jiang, Yanzhou; Chi, Maoqiang; Yang, Zezhou; Nie, Guangdi; Lu, Xiaofeng; Wang, Ce

    2016-02-01

    This article reports the fabrication of magnetically responsive Au nanoparticles supported on CoFe2O4 nanotubes through polyaniline (PANI) assisted self-assembly strategy which can be used as an efficient magnetically recoverable nanocatalyst. The central magnetic CoFe2O4 nanotubes possess a strong magnetic response under an externally magnetic field, enabling an easy and efficient separation from the reaction system for reuse. The thorn-like PANI layer on the surface of CoFe2O4 nanotubes provides large surface area for supporting Au nanocatalysts due to the electrostatic interactions. The as-prepared CoFe2O4/PANI/Au nanotube assemblies exhibit a high catalytic activity for the hydrogenation of 4-nitrophenol by sodium borohydride (NaBH4) at room temperature, with an apparent kinetic rate constant (Kapp) of about 7.8 × 10-3 s-1. Furthermore, the composite nanocatalyst shows a good recoverable property during the catalytic process. This work affords a reliable way in developing multifunctional nanocomposite for catalysis and other potential applications in many fields.

  7. Carbon Nanotube Web with Carboxylated Polythiophene "Assist" for High-Performance Battery Electrodes.

    PubMed

    Kwon, Yo Han; Park, Jung Jin; Housel, Lisa M; Minnici, Krysten; Zhang, Guoyan; Lee, Sujin R; Lee, Seung Woo; Chen, Zhongming; Noda, Suguru; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C; Reichmanis, Elsa

    2018-04-24

    A carbon nanotube (CNT) web electrode comprising magnetite spheres and few-walled carbon nanotubes (FWNTs) linked by the carboxylated conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was designed to demonstrate benefits derived from the rational consideration of electron/ion transport coupled with the surface chemistry of the electrode materials components. To maximize transport properties, the approach introduces monodispersed spherical Fe 3 O 4 (sFe 3 O 4 ) for uniform Li + diffusion and a FWNT web electrode frame that affords characteristics of long-ranged electronic pathways and porous networks. The sFe 3 O 4 particles were used as a model high-capacity energy active material, owing to their well-defined chemistry with surface hydroxyl (-OH) functionalities that provide for facile detection of molecular interactions. PPBT, having a π-conjugated backbone and alkyl side chains substituted with carboxylate moieties, interacted with the FWNT π-electron-rich and hydroxylated sFe 3 O 4 surfaces, which enabled the formation of effective electrical bridges between the respective components, contributing to efficient electron transport and electrode stability. To further induce interactions between PPBT and the metal hydroxide surface, polyethylene glycol was coated onto the sFe 3 O 4 particles, allowing for facile materials dispersion and connectivity. Additionally, the introduction of carbon particles into the web electrode minimized sFe 3 O 4 aggregation and afforded more porous FWNT networks. As a consequence, the design of composite electrodes with rigorous consideration of specific molecular interactions induced by the surface chemistries favorably influenced electrochemical kinetics and electrode resistance, which afforded high-performance electrodes for battery applications.

  8. Characterization and modeling of viscoelastic behavior of carbon nanotube reinforced polymers: The influence of interphase and nanotube morphology

    NASA Astrophysics Data System (ADS)

    Liu, Hua

    The addition of nanoparticles into polymer materials has been observed to dramatically change the mechanical, thermal, electrical, and diffusion properties of the host polymers, promising a novel class of polymer matrix composite materials with superior properties and added functionalities that are ideal candidates in many applications, including aerospace, automobile, medical devices, and sporting goods. Understanding the behavior and underlying mechanisms of these polymer nanocomposites is critical. The research work presented in this dissertation represents one of the initial efforts in the long journey pursuing the ultimate understanding of nanoparticle reinforced polymer systems. Particular focal points are experimental evaluation and the development of appropriate modeling methods to capture the influence of the interphase on the overall viscoelastic behavior of carbon nanotube reinforced polymer nanocomposites. The first portion of this dissertation study investigates the viscoelastic behavior of MWCNT based PMMA nanocomposites, which complements our previous study of SWCNT/PMMA systems to confirm functionalization of nanotubes as an effective way to manipulate the interaction between nanotube and polymers and control the properties of the interphase region forming around the nanotubes and consequently change the overall performance of nanotube based polymer nanocomposites. In the second portion of this dissertation, we present a novel hybrid numerical-analytical modeling method that is capable of predicting viscoelastic behavior of multiphase polymer nanocomposites, in which the nanoscopic fillers can assume complex configurations. By combining the finite element technique and a micromechanical approach (particularly, the Mori-Tanaka method) with local phase properties, this method operates at low computational cost and effectively accounts for the influence of the interphase as well as in situ nanoparticle morphology. This modeling method is implemented

  9. Supercapacitance from Cellulose and Carbon Nanotube Nanocomposite Fibers

    PubMed Central

    2013-01-01

    Multiwalled carbon nanotube (MWNT)/cellulose composite nanofibers have been prepared by electrospinning a MWNT/cellulose acetate blend solution followed by deacetylation. These composite nanofibers were then used as precursors for carbon nanofibers (CNFs). The effect of nanotubes on the stabilization of the precursor and microstructure of the resultant CNFs were investigated using thermogravimetric analysis, transmission electron microscopy and Raman spectroscopy. It is demonstrated that the incorporated MWNTs reduce the activation energy of the oxidative stabilization of cellulose nanofibers from ∼230 to ∼180 kJ mol–1. They also increase the crystallite size, structural order, and electrical conductivity of the activated CNFs (ACNFs). The surface area of the ACNFs increased upon addition of nanotubes which protrude from the fiber leading to a rougher surface. The ACNFs were used as the electrodes of a supercapacitor. The electrochemical capacitance of the ACNF derived from pure cellulose nanofibers is demonstrated to be 105 F g–1 at a current density of 10 A g–1, which increases to 145 F g–1 upon the addition of 6% of MWNTs. PMID:24070254

  10. Carbon Nanotube Flexible and Stretchable Electronics.

    PubMed

    Cai, Le; Wang, Chuan

    2015-12-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  11. Carbon Nanotube Flexible and Stretchable Electronics

    NASA Astrophysics Data System (ADS)

    Cai, Le; Wang, Chuan

    2015-08-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  12. Enrichment Mechanism of Semiconducting Single-walled Carbon Nanotubes by Surfactant Amines

    PubMed Central

    Ju, Sang-Yong; Utz, Marcel; Papadimitrakopoulos, Fotios

    2009-01-01

    Utilization of single-walled carbon nanotubes (SWNTs) in high-end applications hinges on separating metallic (met-) from semiconducting (sem-) SWNTs. Surfactant amines, like octadecylamine (ODA) have proven instrumental for the selective extraction of sem-SWNTs from tetrahydrofuran (THF) nanotube suspensions. The chemical shift differences along the tail of an asymmetric, diacetylenic surfactant amine were used to probe the molecular dynamics in the presence and absence of nanotubes via NMR. The results suggest that the surfactant amine head is firmly immobilized onto the nanotube surface together with acidic water, while the aliphatic tail progressively gains larger mobility as it gets farther from the SWNT. X-ray and high-resolution TEM studies indicate that the sem-enriched sample is populated mainly by small nanotube bundles containing ca. three SWNTs. Molecular simulations in conjunction with previously determined HNO3/H2SO4 oxidation depths for met- and sem-SWNTs indicate that the strong pinning of the amine surfactants on the sem-enriched SWNTs bundles is a result of a well-ordered arrangement of nitrate/amine salts separated with a monomolecular layer of H2O. Such continuous 2D arrangement of nitrate/amine salts shields the local environment adjacent to sem-enriched SWNTs bundles and maintains an acidic pH that preserves nanotube oxidation (i.e. SWNTn+). This, in turn, results in strong interactions with charge-balancing NO3- counter ions that through their association with neutralized surfactant amines provide effective THF dispersion and consequent sem-enrichment. PMID:19397291

  13. Fast diffusion of silver in TiO2 nanotube arrays

    PubMed Central

    Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui

    2016-01-01

    Summary Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10−18 m2/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag. PMID:27547630

  14. Electron beam detection of a Nanotube Scanning Force Microscope.

    PubMed

    Siria, Alessandro; Niguès, Antoine

    2017-09-14

    Atomic Force Microscopy (AFM) allows to probe matter at atomic scale by measuring the perturbation of a nanomechanical oscillator induced by near-field interaction forces. The quest to improve sensitivity and resolution of AFM forced the introduction of a new class of resonators with dimensions at the nanometer scale. In this context, nanotubes are the ultimate mechanical oscillators because of their one dimensional nature, small mass and almost perfect crystallinity. Coupled to the possibility of functionalisation, these properties make them the perfect candidates as ultra sensitive, on-demand force sensors. However their dimensions make the measurement of the mechanical properties a challenging task in particular when working in cavity free geometry at ambient temperature. By using a focused electron beam, we show that the mechanical response of nanotubes can be quantitatively measured while approaching to a surface sample. By coupling electron beam detection of individual nanotubes with a custom AFM we image the surface topography of a sample by continuously measuring the mechanical properties of the nanoresonators. The combination of very small size and mass together with the high resolution of the electron beam detection method offers unprecedented opportunities for the development of a new class of nanotube-based scanning force microscopy.

  15. Templated Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  16. Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections.

    PubMed

    Wang, Huan; Li, Penghui; Yu, Dongqin; Zhang, Yan; Wang, Zhenzhen; Liu, Chaoqun; Qiu, Hao; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang

    2018-05-17

    Carbon nanotubes (CNTs) and their derivatives have emerged as a series of efficient biocatalysts to mimic the function of natural enzymes in recent years. However, the unsatisfiable enzymatic efficiency usually limits their practical usage ranging from materials science to biotechnology. Here, for the first time, we present the synthesis of several oxygenated-group-enriched carbon nanotubes (o-CNTs) via a facile but green approach, as well as their usage as high-performance peroxidase mimics for biocatalytic reaction. Exhaustive characterizations of the enzymatic activity of o-CNTs have been provided by exploring the accurate effect of various oxygenated groups on their surface including carbonyl, carboxyl, and hydroxyl groups. Because of the "competitive inhibition" effect among all of these oxygenated groups, the catalytic efficiency of o-CNTs is significantly enhanced by weakening the presence of noncatalytic sites. Furthermore, the admirable enzymatic activity of these o-CNTs has been successfully applied in the treatment of bacterial infections, and the results of both in vitro and in vivo nanozyme-mediated bacterial clearance clearly demonstrate the feasibility of o-CNTs as robust peroxidase mimics to effectively decrease the bacterial viability under physiological conditions. We believe that the present study will not only facilitate the construction of novel efficient nanozymes by rationally adjusting the degree of the "competitive inhibition" effect, but also broaden the biological usage of o-CNT-based nanomaterials via their satisfactory enzymatic activity.

  17. Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anoop Krishnan, N. M., E-mail: anoopnm@civil.iisc.ernet.in; Ghosh, Debraj

    2014-07-28

    The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation ofmore » failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure.« less

  18. Electrostatics-mediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes.

    PubMed

    Zhao, Daohui; Zhou, Jian

    2017-01-04

    The α-chymotrypsin (α-ChT) enzyme is extensively used for studying nanomaterial-induced enzymatic activity inhibition. A recent experimental study reported that carboxylized carbon nanotubes (CNTs) played an important role in regulating the α-ChT activity. In this study, parallel tempering Monte Carlo and molecular dynamics simulations were combined to elucidate the interactions between α-ChT and CNTs in relation to the CNT functional group density. The simulation results indicate that the adsorption and the driving force of α-ChT on different CNTs are contingent on the carboxyl density. Meanwhile, minor secondary structural changes are observed in adsorption processes. It is revealed that α-ChT interacts with pristine CNTs through hydrophobic forces and exhibits a non-competitive characteristic with the active site facing towards the solution; while it binds to carboxylized CNTs with the active pocket through a dominant electrostatic association, which causes enzymatic activity inhibition in a competitive-like mode. These findings are in line with experimental results, and well interpret the activity inhibition of α-ChT at the molecular level. Moreover, this study would shed light on the detailed mechanism of specific recognition and regulation of α-ChT by other functionalized nanomaterials.

  19. Effects of hydrogenated TiO2 nanotube arrays on protein adsorption and compatibility with osteoblast-like cells.

    PubMed

    Lu, Ran; Wang, Caiyun; Wang, Xin; Wang, Yuji; Wang, Na; Chou, Joshua; Li, Tao; Zhang, Zhenting; Ling, Yunhan; Chen, Su

    2018-01-01

    Modified titanium (Ti) substrates with titanium dioxide (TiO 2 ) nanotubes have broad usage as implant surface treatments and as drug delivery systems. To improve drug-loading capacity and accelerate bone integration with titanium, in this study, we hydrogenated anodized titanium dioxide nanotubes (TNTs) by a thermal treatment. Three groups were examined, namely: hydrogenated TNTs (H 2 -TNTs, test), unmodified TNTs (air-TNTs, control), and Ti substrates (Ti, control). Our results showed that oxygen vacancies were present in all the nanotubes. The quantity of -OH groups greatly increased after hydrogenation. Furthermore, the protein adsorption and loading capacity of the H 2 -TNTs were considerably enhanced as compared with the properties of the air-TNTs ( P <0.05). Additionally, time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to investigate the interactions of TNTs with proteins. During the protein-loading process, the H 2 -TNTs not only enabled rapid protein adsorption, but also decreased the rate of protein elution compared with that of the air-TNTs. We found that the H 2 -TNTs exhibited better biocompatibility than the air-TNT and Ti groups. Both cell adhesion activity and alkaline phosphatase activity were significantly improved toward MG-63 human osteoblast-like cells as compared with the control groups ( P <0.05). We conclude that hydrogenated TNTs could greatly improve the loading capacity of bioactive molecules and MG-63 cell proliferation.

  20. Synthesis and immobilization of silver nanoparticles on aluminosilicate nanotubes and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Ipek Yucelen, G.; Connell, Rachel E.; Terbush, Jessica R.; Westenberg, David J.; Dogan, Fatih

    2016-04-01

    A novel colloidal method is presented to synthesize silver nanoparticles on aluminosilicate nanotubes. The technique involves decomposition of AgNO3 solution to Ag nanoparticles in the presence of aluminosilicate nanotubes at room temperature without utilizing of reducing agents or any organic additives. Aluminosilicate nanotubes are shown to be capable of providing a unique chemical environment, not only for in situ conversion of Ag+ into Ag0, but also for stabilization and immobilization of Ag nanoparticles. The synthesis strategy described here could be implemented to obtain self-assembled nanoparticles on other single-walled metal oxide nanotubes for unique applications. Finally, we demonstrated that nanotube/nanoparticle hybrid show strong antibacterial activity toward Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli.

  1. Carbon-Nanotube-Based Electrodes for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, M.

    2008-01-01

    A nanotube array based on vertically aligned nanotubes or carbon nanofibers has been invented for use in localized electrical stimulation and recording of electrical responses in selected regions of an animal body, especially including the brain. There are numerous established, emerging, and potential applications for localized electrical stimulation and/or recording, including treatment of Parkinson s disease, Tourette s syndrome, and chronic pain, and research on electrochemical effects involved in neurotransmission. Carbon-nanotube-based electrodes offer potential advantages over metal macroelectrodes (having diameters of the order of a millimeter) and microelectrodes (having various diameters ranging down to tens of microns) heretofore used in such applications. These advantages include the following: a) Stimuli and responses could be localized at finer scales of spatial and temporal resolution, which is at subcellular level, with fewer disturbances to, and less interference from, adjacent regions. b) There would be less risk of hemorrhage on implantation because nano-electrode-based probe tips could be configured to be less traumatic. c) Being more biocompatible than are metal electrodes, carbon-nanotube-based electrodes and arrays would be more suitable for long-term or permanent implantation. d) Unlike macro- and microelectrodes, a nano-electrode could penetrate a cell membrane with minimal disruption. Thus, for example, a nanoelectrode could be used to generate an action potential inside a neuron or in proximity of an active neuron zone. Such stimulation may be much more effective than is extra- or intracellular stimulation via a macro- or microelectrode. e) The large surface area of an array at a micron-scale footprint of non-insulated nanoelectrodes coated with a suitable electrochemically active material containing redox ingredients would make it possible to obtain a pseudocapacitance large enough to dissipate a relatively large amount of electric charge

  2. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Simon, Anne; Maletz, Sibylle X.; Hollert, Henner; Schäffer, Andreas; Maes, Hanna M.

    2014-08-01

    To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban.

  3. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, John, E.

    2009-07-24

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in commonmore » with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms

  4. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  5. Probing Interaction Between Platinum Group Metal (PGM) and Non-PGM Support Through Surface Characterization and Device Performance

    NASA Astrophysics Data System (ADS)

    Saha, Shibely

    High cost and limited abundance of Platinum (Pt) have hindered effective commercialization of Proton Exchange Membrane Fuel Cell and Electrolyzer. Efforts have been undertaken to reduce precious group metal (PGM) requirement for these devices without compromising the activity of the catalyst by using transition metal carbides (TMC) as non-PGM support thanks to their similar electronic and geometric structures as Pt. In this work Mo2C was selected as non-PGM support and Pt was used as the PGM of interest. We hypothesize that the hollow nanotube morphology of Mo2C support combined with Pt nano particles deposited on it via atomic layer deposition (ALD) technique would allow increased interaction between them which may increase the activity of Pt and Mo2C as well as maximize the Pt active surface area. Specifically, a rotary ALD equipment was used to grow Pt particles from atomic level to 2--3 nanometers by simply adjusting number of ALD cycles in order to probe the interaction between the deposited Pt nanoparticles and Mo2C nanotube support. Interaction between the Pt and Mo2 C was analyzed via surface characterization and electrochemical characterization. Interaction between Pt and Mo2C arises due to the lattice mismatch between Pt and Mo2C as well as electron migration between them. Lattice spacing analysis using high resolution transmission electron microscopy (HRTEM) images, combined with Pt binding energy shift in XPS results, clearly showed strong bonding between Pt nanoparticles and the Mo2C nanotube support in all the resultant Pt/Mo2C samples. We postulate that this strong interaction is responsible for the significantly enhanced durability observed in our constant potential electrolysis (CPE) and accelerated degradation testing (ADT). Of the three samples from different ALD cycles (15, 50 and 100), Mo2C nanotubes modified by 50 (1.07 wt% Pt loading) and 100 cycles (4.4 wt% Pt) of Pt deposition, showed higher HER and HOR activity per Pt mass than commercial

  6. Investigating the Effect of Carbon Nanotube Diameter and Wall Number in Carbon Nanotube/Silicon Heterojunction Solar Cells

    PubMed Central

    Grace, Tom; Yu, LePing; Gibson, Christopher; Tune, Daniel; Alturaif, Huda; Al Othman, Zeid; Shapter, Joseph

    2016-01-01

    Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in this study yielded cells with higher open circuit voltages. It was also determined that post fabrication treatments applied to the nanotube films have a lesser effect on multi-walled nanotubes than on the other two types. PMID:28344309

  7. Deformation and Failure of a Multi-Wall Carbon Nanotube Yarn Composite

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.

    2008-01-01

    Forests of multi-walled carbon nanotubes can be twisted and manipulated into continuous fibers or yarns that exhibit many of the characteristics of traditional textiles. Macro-scale analysis and test may provide strength and stiffness predictions for a composite composed of a polymer matrix and low-volume fraction yarns. However, due to the nano-scale of the carbon nanotubes, it is desirable to use atomistic calculations to consider tube-tube interactions and the influence of simulated twist on the effective friction coefficient. This paper reports laboratory test data on the mechanical response of a multi-walled, carbon nanotube yarn/polymer composite from both dynamic and quasi-static tensile tests. Macroscale and nano-scale analysis methods are explored and used to define some of the key structure-property relationships. The measured influence of hot-wet aging on the tensile properties is also reported.

  8. Thermoelectric unipolar spin battery in a suspended carbon nanotube.

    PubMed

    Cao, Zhan; Fang, Tie-Feng; He, Wan-Xiu; Luo, Hong-Gang

    2017-04-26

    A quantum dot formed in a suspended carbon nanotube exposed to an external magnetic field is predicted to act as a thermoelectric unipolar spin battery which generates pure spin current. The built-in spin flip mechanism is a consequence of the spin-vibration interaction resulting from the interplay between the intrinsic spin-orbit coupling and the vibrational modes of the suspended carbon nanotube. On the other hand, utilizing thermoelectric effect, the temperature difference between the electron and the thermal bath to which the vibrational modes are coupled provides the driving force. We find that both magnitude and direction of the generated pure spin current are dependent on the strength of spin-vibration interaction, the sublevel configuration in dot, the temperatures of electron and thermal bath, and the tunneling rate between the dot and the pole. Moreover, in the linear response regime, the kinetic coefficient is non-monotonic in the temperature T and it reaches its maximum when [Formula: see text] is about one phonon energy. The existence of a strong intradot Coulomb interaction is irrelevant for our spin battery, provided that high-order cotunneling processes are suppressed.

  9. Effects of functionalization of carbon nanotubes on their dispersion in an ethylene glycol-water binary mixture--a molecular dynamics and ONIOM investigation.

    PubMed

    Balamurugan, Kanagasabai; Baskar, Prathab; Kumar, Ravva Mahesh; Das, Sumitesh; Subramanian, Venkatesan

    2014-11-28

    The present work utilizes classical molecular dynamics simulations to investigate the covalent functionalization of carbon nanotubes (CNTs) and their interaction with ethylene glycol (EG) and water molecules. The MD simulation reveals the dispersion of functionalized carbon nanotubes and the prevention of aggregation in aqueous medium. Further, residue-wise radial distribution function (RRDF) and atomic radial distribution function (ARDF) calculations illustrate the extent of interaction of -OH and -COOH functionalized CNTs with water molecules and the non-functionalized CNT surface with EG. As the presence of the number of functionalized nanotubes increases, enhancement in the propensity for the interaction with water molecules can be observed. However, the same trend decreases for the interaction of EG molecules. In addition, the ONIOM (M06-2X/6-31+G**:AM1) calculations have also been carried out on model systems to quantitatively determine the interaction energy (IE). It is found from these calculations that the relative enhancement in the interaction of water molecules with functionalized CNTs is highly favorable when compared to the interaction of EG.

  10. Cobalt-Bridged Ionic Liquid Polymer on a Carbon Nanotube for Enhanced Oxygen Evolution Reaction Activity.

    PubMed

    Ding, Yuxiao; Klyushin, Alexander; Huang, Xing; Jones, Travis; Teschner, Detre; Girgsdies, Frank; Rodenas, Tania; Schlögl, Robert; Heumann, Saskia

    2018-03-19

    By taking inspiration from the catalytic properties of single-site catalysts and the enhancement of performance through ionic liquids on metal catalysts, we exploited a scalable way to place single cobalt ions on a carbon-nanotube surface bridged by polymerized ionic liquid. Single dispersed cobalt ions coordinated by ionic liquid are used as heterogeneous catalysts for the oxygen evolution reaction (OER). Performance data reveals high activity and stable operation without chemical instability. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.

    PubMed

    Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping

    2015-09-07

    Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Adhesion to Carbon Nanotube Conductive Scaffolds Forces Action-Potential Appearance in Immature Rat Spinal Neurons

    PubMed Central

    Toma, Francesca Maria; Calura, Enrica; Rizzetto, Lisa; Carrieri, Claudia; Roncaglia, Paola; Martinelli, Valentina; Scaini, Denis; Masten, Lara; Turco, Antonio; Gustincich, Stefano; Prato, Maurizio; Ballerini, Laura

    2013-01-01

    In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies. PMID:23951361

  13. Fabrication of SrTiO3 nanotubes via an isomorphic conversion strategy

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Zou, Xiaoyan; Tong, Zhenwei; Nan, Yanhu; Ding, Fei; Jiang, Zhongyi

    2018-02-01

    One-dimensional nanotubes have attracted enormous attention due to their specific structure and excellent performance since the carbon nanotube was prepared. In this study, the open-ended SrTiO3 nanotubes (STNTs) have been fabricated for the first time via an isomorphic conversion strategy using the protonated titanate nanotubes (HTNTs) as the precursor and template under the hydrothermal treatment. The as-prepared STNTs consist of uniform and continuous multilayers, having inner and outer diameters about 8.0 and 13 nm. The STNT formation involves the exchange of Sr2+ ions with H+ ions in HTNTs and then in situ growth of cubic SrTiO3 crystals by the templating of HTNT frameworks. It is found that the diffusion process of Sr2+ ions plays a critical role in controlling the nanotube morphology of SrTiO3 crystals. In addition, the SrTiO3 nanotubes exhibit high photocatalytic activity for the Cr(VI) reduction, which can reduce nearly 100% Cr(VI) within 6 h under simulated sunlight irradiation. The current strategy may be broadly applicable for fabricating the nanotubes from raw materials without 2D layered nanostructure. [Figure not available: see fulltext.

  14. Nanoscale TiO2 nanotubes govern the biological behavior of human glioma and osteosarcoma cells

    PubMed Central

    Tian, Ang; Qin, Xiaofei; Wu, Anhua; Zhang, Hangzhou; Xu, Quan; Xing, Deguang; Yang, He; Qiu, Bo; Xue, Xiangxin; Zhang, Dongyong; Dong, Chenbo

    2015-01-01

    Cells respond to their surroundings through an interactive adhesion process that has direct effects on cell proliferation and migration. This research was designed to investigate the effects of TiO2 nanotubes with different topographies and structures on the biological behavior of cultured cells. The results demonstrated that the nanotube diameter, rather than the crystalline structure of the coatings, was a major factor for the biological behavior of the cultured cells. The optimal diameter of the nanotubes was 20 nm for cell adhesion, migration, and proliferation in both glioma and osteosarcoma cells. The expression levels of vitronectin and phosphor-focal adhesion kinase were affected by the nanotube diameter; therefore, it is proposed that the responses of vitronectin and phosphor-focal adhesion kinase to the nanotube could modulate cell fate. In addition, the geometry and size of the nanotube coating could regulate the degree of expression of acetylated α-tubulin, thus indirectly modulating cell migration behavior. Moreover, the expression levels of apoptosis-associated proteins were influenced by the topography. In conclusion, a nanotube diameter of 20 nm was the critical threshold that upregulated the expression level of Bcl-2 and obviously decreased the expression levels of Bax and caspase-3. This information will be useful for future biomedical and clinical applications. PMID:25848261

  15. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  16. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA

    2010-06-29

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  17. Development and in vitro evaluation of potential electromodulated transdermal drug delivery systems based on carbon nanotube buckypapers.

    PubMed

    Schwengber, Alex; Prado, Héctor J; Bonelli, Pablo R; Cukierman, Ana L

    2017-07-01

    Buckypapers based on different types of carbon nanotubes with and without the addition of four model drugs, two of basic nature (clonidine hydrochloride, selegiline hydrochloride) and the others of acidic character (flurbiprofen, ketorolac tromethamine) were prepared and characterized. The influence of the conditions employed in the preparation of the buckypapers (dispersion time and solvents used in the preparation, as well as the type of carbon nanotubes used and the characteristics of the drug involved) on their conductivity was especially examined. The in vitro performance of the drug loaded buckypapers as passive and active transdermal drug release systems, the latter being modulated by means of the application of electric voltages, was studied. Passive drug loaded buckypapers presented characteristic release profiles, also depending on the drug used, which indicate differences in the drug-carbon nanotubes non-covalent interactions. Application of electrical biases of appropriate polarities enabled the modulation of the drug release profiles in any desired direction. Different mathematical models were fitted to passive and electromodulated experimental release data for the four model drugs. Among these models, the most appropriate for data description was a two-compartment pseudo-second-order one. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Photodetection and Photoswitch Based On Polarized Optical Response of Macroscopically Aligned Carbon Nanotubes.

    PubMed

    Zhang, Ling; Wu, Yang; Deng, Lei; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-10-12

    Light polarization is extensively applied in optical detection, industry processing and telecommunication. Although aligned carbon nanotube naturally suppresses the transmittance of light polarized parallel to its axial direction, there is little application regarding the photodetection of carbon nanotube based on this anisotropic interaction with linearly polarized light. Here, we report a photodetection device realized by aligned carbon nanotube. Because of the different absorption behavior of polarized light with respect to polarization angles, such device delivers an explicit response to specific light wavelength regardless of its intensity. Furthermore, combining both experimental and mathematical analysis, we found that the light absorption of different wavelength causes characteristic thermoelectric voltage generation, which makes aligned carbon nanotube promising in optical detection. This work can also be utilized directly in developing new types of photoswitch that features a broad spectrum application from near-ultraviolet to intermediate infrared with easy integration into practical electric devices, for instance, a "wavelength lock".

  19. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sarpkaya, Ibrahim; Zhang, Zhengyi; Walden-Newman, William; Wang, Xuesi; Hone, James; Wong, Chee W.; Strauf, Stefan

    2013-07-01

    The bright exciton emission of carbon nanotubes is appealing for optoelectronic devices and fundamental studies of light-matter interaction in one-dimensional nanostructures. However, to date, the photophysics of excitons in carbon nanotubes is largely affected by extrinsic effects. Here we perform time-resolved photoluminescence measurements over 14 orders of magnitude for ultra-clean carbon nanotubes bridging an air gap over pillar posts. Our measurements demonstrate a new regime of intrinsic exciton photophysics with prolonged spontaneous emission times up to T1=18 ns, about two orders of magnitude better than prior measurements and in agreement with values hypothesized by theorists about a decade ago. Furthermore, we establish for the first time exciton decoherence times of individual nanotubes in the time domain and find fourfold prolonged values up to T2=2.1 ps compared with ensemble measurements. These first observations motivate new discussions about the magnitude of the intrinsic dephasing mechanism while the prolonged exciton dynamics is promising for applications.

  20. Nanotube resonator devices

    DOEpatents

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  1. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong [Berkeley, CA; He, Rongrui [El Cerrito, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yiying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA

    2008-04-08

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  2. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yiying; Li, Deyu; Majumdar, Arun

    2010-01-10

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  3. Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Yuechao; Yang Dong; Qin Feng

    The nanocomposites of multi-walled carbon nanotubes (MWNTs) decorated with nickel nanoparticles were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). Due to the strong interaction between Ni{sup 2+} and -COOH, PAA-g-MWNTs became an excellent supporting material for Ni nanoparticles. The morphology and distribution of Ni nanoparticles on the surface of MWNTs were greatly influenced by the reduction temperatures, the experimental results also showed that the distribution of Ni nanoparticles was greatly improved while the MWNTs were modified by poly(acrylic acid) (PAA). The hydrogenation activity and selectivity of MWNTs decorated withmore » Ni nanoparticles (Ni-MWNTs) for alpha, beta-unsaturated aldehyde (citral) were also studied, and the experimental results showed that the citronellal, an important raw material for flavoring and perfumery industries, is the favorable product with a percentage as high as 86.9%, which is 7 times higher than that of catalyst by Ni-supported active carbon (Ni-AC). - Abstract: Nickel nanoparticles decorated multi-walled carbon nanotubes (Ni-MWNTs) nanocomposites were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). These nanocomposites possessed excellent catalytic activity and selectivity for hydrogenation of citral.« less

  4. Constitutive Modeling of Crosslinked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Frankland, S. J. V.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2004-01-01

    A non-linear, continuum-based constitutive model is developed for carbon nanotube materials in which bundles of aligned carbon nanotubes have varying amounts of crosslinks between the nanotubes. The model accounts for the non-linear elastic constitutive behavior of the material in terms of strain, and is developed using a thermodynamic energy approach. The model is used to examine the effect of the crosslinking on the overall mechanical properties of variations of the crosslinked carbon nanotube material with varying degrees of crosslinking. It is shown that the presence of the crosslinks has significant effects on the mechanical properties of the carbon nanotube materials. An increase in the transverse shear properties is observed when the nanotubes are crosslinked. However, this increase is accompanied by a decrease in axial mechanical properties of the nanotube material upon crosslinking.

  5. Polymer composites containing nanotubes

    NASA Technical Reports Server (NTRS)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  6. Molecular insight into the enhancement of benzene-carbon nanotube interactions by surface modification for drug delivery systems (DDS)

    NASA Astrophysics Data System (ADS)

    Zhao, Jianghao; Liu, Xiaoshan; Zhu, Zhu; Wang, Ning; Sun, Wenjing; Chen, Congmei; He, Zhiwei

    2017-09-01

    Anthracyclines are effective anticancer drugs but have drawbacks including systemic toxicity and drug resistance. Delivering them directly to the tumor may improve therapeutic efficacy and reduce adverse effects. Carbon nanotubes (CNTs) can act as excellent drug delivery systems (DDS), but pristine CNTs have inert surfaces, which contributes poor drug loading capacity and limits dispersion. In this study, we designed a series of functionalized CNTs (f-CNTs) with anchored hydrophilic groups (OH, COOH, and NH2) by substitutional doping of the CNT lattice (DNT) using N or B atoms or the combination of both. The aromatic compound benzene (Ben) was selected as a model for anthracycline drugs. The effect of CNT curvature, chemical groups (CGs), and doping on the Ben-CNTs interactions was studied using quantum chemistry calculations. Our results show that π-π interactions between Ben and CNTs are influenced by CNT curvature. When the CNTs were functionalized only with CGs and not doped, the system was unstable, resulting in weak Ben-CNT interactions. However, anchoring CGs on DNTs greatly enhanced the Ben-CNT interactions. CNTs with good affinity for drug molecules, improved solubility, and lower tendency to aggregate have potential as DDS for enhancing the efficacy of medicines. We believe that these studies have general applicability and anticipate that our findings will motivate additional theoretical and experimental studies on the biology and chemistry of CNTs as DDS.

  7. Fabrication of Pd and Pt Nanotubes and Their Catalytic Study on p-Nitrophenol Reduction

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Wang, Jiankang; Chen, JingYi

    2018-03-01

    Pd and Pt nanotubes were fabricated using self-assembled DC8,9PC lipid tubules under mild conditions at room temperature. Scan electron microscope (SEM) show the hollow and open-ended structures of prepared Pd and Pt nanotubes. The Pd and Pt nanotubes demonstrate both high catalytic activity toward p-nitrophenol reduction and excellent stability. This work has indicated the application potentials of lipid tubules in fabricating hollow metal nanomaterials.

  8. Gold nanotube encapsulation enhanced magnetic properties of transition metal monoatomic chains: An ab initio study.

    PubMed

    Zhu, Liyan; Wang, Jinlan; Ding, Feng

    2009-02-14

    The magnetic properties of gold nanotubes encapsulated transition metal (TM, TM=Co and Mn) and monoatomic chains (TM@Au) are studied using first-principles density functional calculations. The TM chains are significantly stabilized by the gold nanotube coating. TM-TM distance-dependent ferromagnetic-antiferromagnetic phase transition in TM@Au is observed and can be understood by Ruderman-Kittel-Kasuya-Yosida (RKKY) model. The magnetocrystalline anisotropy energies of the TM@Au tubes are dramatically enhanced by one order of magnitude compared to those of free TM chains. Furthermore, the stronger interaction between Mn chain and gold nanotube even switches the easy magnetization axis along the tube.

  9. Gold nanotube encapsulation enhanced magnetic properties of transition metal monoatomic chains: An ab initio study

    NASA Astrophysics Data System (ADS)

    Zhu, Liyan; Wang, Jinlan; Ding, Feng

    2009-02-01

    The magnetic properties of gold nanotubes encapsulated transition metal (TM, TM=Co and Mn) and monoatomic chains (TM@Au) are studied using first-principles density functional calculations. The TM chains are significantly stabilized by the gold nanotube coating. TM-TM distance-dependent ferromagnetic-antiferromagnetic phase transition in TM@Au is observed and can be understood by Ruderman-Kittel-Kasuya-Yosida (RKKY) model. The magnetocrystalline anisotropy energies of the TM@Au tubes are dramatically enhanced by one order of magnitude compared to those of free TM chains. Furthermore, the stronger interaction between Mn chain and gold nanotube even switches the easy magnetization axis along the tube.

  10. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  11. Efficient FEM simulation of static and free vibration behavior of single walled boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Giannopoulos, Georgios I.; Kontoni, Denise-Penelope N.; Georgantzinos, Stylianos K.

    2016-08-01

    This paper describes the static and free vibration behavior of single walled boron nitride nanotubes using a structural mechanics based finite element method. First, depending on the type of nanotube under investigation, its three dimensional nanostructure is developed according to the well-known corresponding positions of boron and nitride atoms as well as boron nitride bonds. Then, appropriate point masses are assigned to the atomic positions of the developed space frame. Next, these point masses are suitably interconnected with two-noded, linear, spring-like, finite elements. In order to simulate effectively the interactions observed between boron and nitride atoms within the nanotube, appropriate potential energy functions are introduced for these finite elements. In this manner, various atomistic models for both armchair and zigzag nanotubes with different aspect ratios are numerically analyzed and their effective elastic modulus as well as their natural frequencies and corresponding mode shapes are obtained. Regarding the free vibration analysis, the computed results reveal bending, breathing and axial modes of vibration depending on the nanotube size and chirality as well as the applied boundary support conditions. The longitudinal stiffness of the boron nitride nanotubes is found also sensitive to their geometric characteristics.

  12. Preparation of N-doped ZnO-loaded halloysite nanotubes catalysts with high solar-light photocatalytic activity.

    PubMed

    Cheng, Zhi-Lin; Sun, Wei

    2015-01-01

    N-doped ZnO nanoparticles were successfully assembled into hollow halloysite nanotubes (HNTs) by using the impregnation method. The catalysts based on N-doped ZnO-loaded HNTs nanocomposites (N-doped ZnO/HNTs) were characterized by X-ray diffraction (XRD), transmission electron microscopy-energy dispersive X-ray (TEM-EDX), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), UV-vis and Fourier transform infrared spectroscopy (FT-IR) techniques. The XRD pattern showed ZnO nanoparticles with hexagonal structure loaded on HNTs. The TEM-EDX analysis indicated ZnO particles with the crystal size of ca.10 nm scattered in hollow structure of HNTs, and furthermore the concentration of N atom in nanocomposites was up to 2.31%. The SEM-EDX verified most of N-ZnO nanoparticles existing in hollow nanotubes of HNTs. Besides containing an obvious ultraviolet absorbance band, the UV-vis spectra of the N-doped ZnO/HNTs catalysts showed an available visible absorbance band by comparing to HNTs and non-doped ZnO/HNTs. The photocatalytic activity of the N-doped ZnO/HNTs catalysts was evaluated by the degradation of methyl orange (MO) solution with the concentration of 20 mg/L under the simulated solar-light irradiation. The result showed that the N-doped ZnO/HNTs catalyst exhibited a desirable solar-light photocatalytic activity.

  13. Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.

    PubMed

    Cao, Xuan; Cao, Yu; Zhou, Chongwu

    2016-01-26

    Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors with the smallest bending radius down to 1 mm. In this paper, we have realized the full potential of carbon nanotubes by making ultraflexible and imperceptible p-type transistors and circuits with a bending radius down to 40 μm. In addition, the resulted transistors show mobility up to 12.04 cm(2) V(-1) S(-1), high on-off ratio (∼10(6)), ultralight weight (<3 g/m(2)), and good mechanical robustness (accommodating severe crumpling and 67% compressive strain). Furthermore, the nanotube circuits can operate properly with 33% compressive strain. On the basis of the aforementioned features, our ultraflexible p-type nanotube transistors and circuits have great potential to work as indispensable components for ultraflexible complementary electronics.

  14. Enhanced Electronic Communication and Electrochemical Sensitivity Benefiting from the Cooperation of Quadruple Hydrogen Bonding and π-π Interactions in Graphene/Multi-Walled Carbon Nanotube Hybrids.

    PubMed

    Wang, Qiguan; Wang, Sumin; Shang, Jiayin; Qiu, Shenbao; Zhang, Wenzhi; Wu, Xinming; Li, Jinhua; Chen, Weixing; Wang, Xinhai

    2017-02-22

    By designing a molecule labeled as UPPY with both ureidopyrimidinone (UP) and pyrene (PY) units, the supramolecular self-assembly of multiwalled carbon nanotube (MWNT) and reduced graphene oxide (rGO) was driven by the UP quadruple hydrogen-bonding and PY-based π-π interactions to form a novel hybrid of rGO-UPPY-MWNT in which the morphology of rGO-wrapped MWNT was found. Bridged by the two kinds of noncovalent bonding, enhanced electronic communication occurred in rGO-UPPY-MWNT. Also, under the cooperation of UP quadruple hydrogen-bonding and PY-based π-π interactions, higher electrical conductivity and better charge transfer were observed for rGO-UPPY-MWNT, compared with the rGO-MWNT composite without such noncovalent bonds, and that with just single PY-based π-π interaction (rGO-PY-MWNT) or UP quadruple hydrogen bond (rGO-UP-MWNT). Specifically, the electrical conductivity of rGO-PY-MWNT hybrids was increased approximately sevenfold, and the interfacial charge transfer resistance was nearly decreased by 1 order of magnitude compared with rGO-MWNT, rGO-UP-MWNT, and rGO-PY-MWNT. Resulting from its excellent electrical conductivity and charge transfer properties, the rGO-UPPY-MWNT modified electrode exhibited enhanced electrochemical activity toward dopamine with detection limit as low as 20 nM.

  15. Preparation and UV-Vis photodegradation of gaseous benzene by TiO2 nanotube arrays supporting V2O5 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Chunxia; Song, Yanbao; Yang, Yunxia; Chen, Wen; Li, Xiaoyu; Wang, Zongsheng

    2015-07-01

    TiO2-based catalysts effective in visible radiation for eliminating organic pollutants have attracted intense research activity as a future generation photocatalytic material. However, recombination of electron-hole pairs through trapping/de-trapping as well as the disadvantages of recycling and separation/filtration of powders lead to the limitation of powder TiO2 materials. TiO2 nanotube array films supporting vanadium pentoxide nanoparticles (VTNTs) were synthesized by electrophoresis deposition method with the prepared TiO2 nanotube arrays as the cathode and V2O5 sol as the electrolyte. The results indicate that the formation of Ti-O-V bonds and intimate interaction between host-guest interfaces help to enhance the hybrids’ photodegradation activity of gaseous benzene. Importantly, hybrid film catalysts prepared with 0.05 mol/L V2O5 sol for 10 min electrophoresis deposition perform a 98% conversion rate of benzene and 1028.8 mg/m3CO2 production in 80 min under UV-Vis irradiation.

  16. Physicochemical characterisation and investigation of the bonding mechanisms of API-titanate nanotube composites as new drug carrier systems.

    PubMed

    Sipos, Barbara; Pintye-Hódi, Klára; Kónya, Zoltán; Kelemen, András; Regdon, Géza; Sovány, Tamás

    2017-02-25

    Titanate nanotube (TNT) has recently been explored as a new carrier material for active pharmaceutical ingredients (API). The aim of the present work was to reveal the physicochemical properties of API-TNT composites, focusing on the interactions between the TNTs and the incorporated APIs. Drugs belonging to different Biopharmaceutical Classification System (BCS) classes were loaded into TNTs: diltiazem hydrochloride (BCS I.), diclofenac sodium (BCS II.), atenolol (BCS III.) and hydrochlorothiazide (BCS IV.). Experimental results demonstrated that it is feasible for spiral cross-sectioned titanate nanotubes to carry drugs and maintain their bioactivity. The structural properties of the composites were characterized by a range of analytical techniques, including FT-IR, DSC, TG-MS, etc. The interactions between APIs and TNTs were identified as electrostatic attractions, mainly dominated by hydrogen bonds. Based on the results, it can be stated that the strength of the association depends on the hydrogen donor strength of the API. The drug release of incorporated APIs was evaluated from compressed tablets and compared to that of pure APIs. Differences noticed in the dissolution profiles due to incorporation showed a correlation with the strength of interactions between the APIs and the TNTs observed in the above analytical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Method for nano-pumping using carbon nanotubes

    DOEpatents

    Insepov, Zeke [Darien, IL; Hassanein, Ahmed [Bolingbrook, IL

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  18. New tools for nanotechnology and measurement of the mechanical properties of individual carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Min-Feng

    A new tool capable of three-dimensional manipulation and measurement of the mechanics of nanometer-sized materials inside a scanning electron microscopy is developed and demonstrated. The design and function of this home-built SEM nanomanipulator is explained. The first free-space manipulation of carbon nanotubes is presented. The tensile strength and the breaking mechanism of individual multi-walled carbon nanotubes (MWCNT) and single wall carbon nanotube (SWCNT) ropes are measured using the nanomanipulator, and from the data set the stress-strain relationship is determined. The results indicate that carbon nanotubes have remarkably high tensile strength values, about 50 GPa. The shear strength measurement of sliding nested shells in individual MWCNTs is also achieved for the first time. The experiment provides a new way to directly study the nano-scale interaction involved in the motion of a nanobearing. In a separate work, atomic force microscopy is used to study the lateral deformability of individual MWCNTs. The average force provided by the tapping tip in tapping mode AFM is investigated by both simulation and experiment. An imaging procedure for controlling the average tapping force is developed and is used to study the deformability of carbon nanotubes. The stability of different structures of carbon nanotube is also experimentally studied.

  19. Single-crystal gallium nitride nanotubes.

    PubMed

    Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng; Lee, Sangkwon; Yan, Haoquan; Choi, Heon-Jin; Yang, Peidong

    2003-04-10

    Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an 'epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200 nm and wall thicknesses of 5-50 nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

  20. Hypergolic fuel detection using individual single walled carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Desai, S. C.; Willitsford, A. H.; Sumanasekera, G. U.; Yu, M.; Tian, W. Q.; Jayanthi, C. S.; Wu, S. Y.

    2010-06-01

    Accurate and reliable detection of hypergolic fuels such as hydrazine (N2H4) and its derivatives is vital to missile defense, aviation, homeland security, and the chemical industry. More importantly these sensors need to be capable of operation at low temperatures (below room temperature) as most of the widely used chemical sensors operate at high temperatures (above 300 °C). In this research a simple and highly sensitive single walled carbon nanotube (SWNT) network sensor was developed for real time monitoring of hydrazine leaks to concentrations at parts per million levels. Upon exposure to hydrazine vapor, the resistance of the air exposed nanotubes (p-type) is observed to increase rapidly while that of the vacuum-degassed nanotubes (n-type) is observed to decrease. It was found that the resistance of the sample can be recovered through vacuum pumping and exposure to ultraviolet light. The experimental results support the electrochemical charge transfer mechanism between the oxygen redox couple of the ambient and the Fermi level of the SWNT. Theoretical results of the hydrazine-SWNT interaction are compared with the experimental observations. It was found that a monolayer of water molecules on the SWNT is necessary to induce strong interactions between hydrazine and the SWNT by way of introducing new occupied states near the bottom of the conduction band of the SWNT.

  1. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.

    PubMed

    Gabor, Nathaniel M

    2013-06-18

    In semiconductor photovoltaics, photoconversion efficiency is governed by a simple competition: the incident photon energy is either transferred to the crystal lattice (heat) or transferred to electrons. In conventional materials, energy loss to the lattice is more efficient than energy transferred to electrons, thus limiting the power conversion efficiency. Quantum electronic systems, such as quantum dots, nanowires, and two-dimensional electronic membranes, promise to tip the balance in this competition by simultaneously limiting energy transfer to the lattice and enhancing energy transfer to electrons. By exploring the optical, thermal, and electronic properties of quantum materials, we may perhaps find an ideal optoelectronic material that provides low cost fabrication, facile systems integration, and a means to surpass the standard limit for photoconversion efficiency. Nanoscale carbon materials, such as graphene and carbon nanotubes, provide ideal experimental quantum systems in which to explore optoelectronic behavior for applications in solar energy harvesting. Within essentially the same material, researchers can achieve a broad spectrum of energetic configurations, from a gapless semimetal to a large band-gap semiconducting nanowire. Owing to their nanoscale dimensions, graphene and carbon nanotubes exhibit electronic and optical properties that reflect strong electron-electron interactions. Such strong interactions may lead to exotic low-energy electron transport behavior and high-energy electron scattering processes such as impact excitation and the inverse process of Auger recombination. High-energy processes, which become very important under photoexcitation, may be particularly efficient in nanoscale carbon materials due to the relativistic-like, charged particle band structure and sensitivity to the dielectric environment. In addition, due to the covalently bonded carbon framework that makes up these materials, electron-phonon coupling is very weak

  2. Transport diffusion in deformed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Jiamei; Chen, Peirong; Zheng, Dongqin; Zhong, Weirong

    2018-03-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the transport diffusion of gas in deformed carbon nanotubes. Perfect carbon nanotube and various deformed carbon nanotubes are modeled as transport channels. It is found that the transport diffusion coefficient of gas does not change in twisted carbon nanotubes, but changes in XY-distortion, Z-distortion and local defect carbon nanotubes comparing with that of the perfect carbon nanotube. Furthermore, the change of transport diffusion coefficient is found to be associated with the deformation factor. The relationship between transport diffusion coefficient and temperature is also discussed in this paper. Our results may contribute to understanding the mechanism of molecular transport in nano-channel.

  3. Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid

    NASA Astrophysics Data System (ADS)

    Oveissi, Soheil; Toghraie, Davood; Eftekhari, Seyyed Ali

    2016-09-01

    Nowadays, carbon nanotubes (CNT) play an important role in practical applications in fluidic devices. To this end, researchers have studied various aspects of vibration analysis of a behavior of CNT conveying fluid. In this paper, based on nonlocal elasticity theory, single-walled carbon nanotube (SWCNT) is simulated. To investigate and analyze the effect of internal fluid flow on the longitudinal vibration and stability of SWCNT, the equation of motion for longitudinal vibration is obtained by using Navier-Stokes equations. In the governing equation of motion, the interaction of fluid-structure, dynamic and fluid flow velocity along the axial coordinate of the nanotube and the nano-scale effect of the structure are considered. To solve the nonlocal longitudinal vibration equation, the approximate Galerkin method is employed and appropriate simply supported boundary conditions are applied. The results show that the axial vibrations of the nanotubesstrongly depend on the small-size effect. In addition, the fluid flowing in nanotube causes a decrease in the natural frequency of the system. It is obvious that the system natural frequencies reach zero at lower critical flow velocities as the wave number increases. Moreover, the critical flow velocity decreases as the nonlocal parameter increases.

  4. Biomolecular Doping of Single-Walled Carbon Nanotubes by Thyroid Hormone

    NASA Astrophysics Data System (ADS)

    Rojas, Enrique; Paulson, Scott; Stern, Mike; Staii, Cristian; Dratman, Mary; Johnson, Alan

    2004-03-01

    Electron doping of semiconducting single-walled carbon nanotubes (SWNTs) by the thyroid hormone triiodothyronine (T3) is observed. T3 is applied locally, in solution, to SWNT field effect transistors (FETs) and binds along the length of the nanotube. T3 acts as an electron donor, shifting the I-V gate characteristics towards negative values of gate voltage. Shifts in the characteristics are measured as a function of the concentration of the solution. The effect is nearly reversible by rinsing the FETs with the solvent. Several days after application of T3, with no solvent rinsing, the gate characteristics are also nearly reversed. Experiments with a similar molecule for which the phenol ring is brominated as well as experiments with the de-iodinated molecule (T0) are performed to inform the effect of the iodine. The interaction of T3 with SWNTs may suggest a electronic interaction of T3 with other one-dimensional systems such as DNA.

  5. Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene.

    PubMed

    Xu, Xiaoji G; Jiang, Jian-Hua; Gilburd, Leonid; Rensing, Rachel G; Burch, Kenneth S; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C

    2014-11-25

    Boron nitride (BN) is considered to be a promising substrate for graphene-based devices in part because its large band gap can serve to insulate graphene in layered heterostructures. At mid-infrared frequencies, graphene supports surface plasmon polaritons (SPPs), whereas hexagonal-BN (h-BN) is found to support surface phonon polaritons (SPhPs). We report on the observation of infrared polaritonic coupling between graphene SPPs and boron nitride nanotube (BNNT) SPhPs. Infrared scattering type scanning near-field optical microscopy is used to obtain spatial distribution of the two types of polaritons at the nanoscale. The observation suggests that those polaritons interact at the nanoscale in a one-dimensional/two-dimensional (1D/2D) geometry, exchanging energy in a nonplanar configuration at the nanoscale. Control of the polaritonic interaction is achieved by adjustment of the graphene Fermi level through voltage gating. Our observation suggests that boron nitride nanotubes and graphene can interact at mid-infrared frequencies and coherently exchange their energies at the nanoscale through the overlap of mutual electric near field of surface phonon polaritons and surface plasmon polaritons. Such interaction enables the design of nano-optical devices based on BNNT-graphene polaritonics in the mid-infrared range.

  6. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes.

    PubMed

    Lipomi, Darren J; Vosgueritchian, Michael; Tee, Benjamin C-K; Hellstrom, Sondra L; Lee, Jennifer A; Fox, Courtney H; Bao, Zhenan

    2011-10-23

    Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics, implantable medical devices and robotic systems with human-like sensing capabilities. The availability of conducting thin films with these properties could lead to the development of skin-like sensors that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays and solar cells, and also wrap around non-planar and biological surfaces such as skin and organs, without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm(-1) in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors.

  7. Evaluation of multiwalled carbon nanotubes toxicity in two fish species.

    PubMed

    Cimbaluk, Giovani Valentin; Ramsdorf, Wanessa Algarte; Perussolo, Maiara Carolina; Santos, Hayanna Karla Felipe; Da Silva De Assis, Helena Cristina; Schnitzler, Mariane Cristina; Schnitzler, Danielle Caroline; Carneiro, Pedro Gontijo; Cestari, Marta Margarete

    2018-04-15

    Carbon Nanotubes are among the most promising materials for the technology industry. Their unique physical and chemical proprieties may reduce the production costs and improve the efficiency of a large range of products. However, the same characteristics that have made nanomaterials interesting for industry may be responsible for inducing toxic effects on the aquatic organisms. Since the carbon nanotubes toxicity is still a controversial issue, we performed tests of acute and subchronic exposure to a commercial sample of multiwalled carbon nanotubes in two fish species, an exotic model (Danio rerio) and a native one (Astyanax altiparanae). Using the alkaline version of the comet assay on erythrocytes and the piscine micronucleous, also performed on erythrocytes, it was verified that the tested carbon nanotubes sample did not generate apparent genotoxicity by means of single/double DNA strand break or clastogenic/aneugenic effects over any of the species, independently of the exposure period. Although, our findings indicate the possibility of the occurrence of CNTs-DNA crosslinks. Apparently, the sample tested induces oxidative stress after subchronic exposure as shown by activity of superoxide dismutase and catalase. The data obtained by the activity levels of acetylcholinesterase suggests acute neurotoxicity in Astyanax altiparanae and subchronic neurotoxicity in Danio rerio. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Molecular imprinting at walls of silica nanotubes for TNT recognition.

    PubMed

    Xie, Chenggen; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Guan, Guijian; Zhang, Zhongping

    2008-01-15

    This paper reports the molecular imprinting at the walls of highly uniform silica nanotubes for the recognition of 2,4,6-trinitrotoluene (TNT). It has been demonstrated that TNT templates were efficiently imprinted into the matrix of silica through the strong acid-base pairing interaction between TNT and 3-aminopropyltriethoxysilane (APTS). TNT-imprinted silica nanotubes were synthesized by the gelation reaction between APTS and tetraethylorthosilicate (TEOS), selectively occurring at the porous walls of APTS-modified alumina membranes. The removal of the original TNT templates leaves the imprinted cavities with covalently anchored amine groups at the cavity walls. A high density of recognition sites with molecular selectivity to the TNT analyte was created at the wall of silica nanotubes. Furthermore, most of these recognition sites are situated at the inside and outside surfaces of tubular walls and in the proximity of the two surfaces due to the ultrathin wall thickness of only 15 nm, providing a better site accessibility and lower mass-transfer resistance. Therefore, greater capacity and faster kinetics of uptaking target species were achieved. The silica nanotube reported herein is an ideal form of material for imprinting various organic or biological molecules toward applications in chemical/biological sensors and bioassay.

  9. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.

  10. Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes.

    PubMed

    Sadowska, K; Stolarczyk, K; Biernat, J F; Roberts, K P; Rogalski, J; Bilewicz, R

    2010-11-01

    Single-walled carbon nanotubes (SWCNTs) were covalently modified with a redox mediator derived from 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and implemented in the construction of electrodes for biocatalytic oxygen reduction. The procedure is based on: covalent bonding of mediator to nanotubes, placing the nanotubes directly on the carbon electrode surface and covering the nanostructured electrode with a Nafion film containing laccase as the biocatalyst. The modified electrode is stable and the problem of mediator (ABTS) leaking from the film is eliminated by binding it covalently to the nanotubes. Three different synthetic approaches were used to obtain ABTS-modified carbon nanotubes. Nanotubes were modified at ends/defect sites or on the nanotube sidewalls and characterized by Raman spectroscopy, TGA and electrochemistry. The accessibility of differently located ABTS units by the laccase active center and mediation of electron transfer were studied by cyclic voltammetry. The surface concentrations of ABTS groups electrically connected with the electrode were compared for each of the electrodes based on the charges of the voltammetric peaks recorded in the deaerated solution. The nanotube modification procedure giving the best parameters of the catalytic process was selected. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Carbon nanotubes buckypaper radiation studies for medical physics applications.

    PubMed

    Alanazi, Abdulaziz; Alkhorayef, Mohammed; Alzimami, Khalid; Jurewicz, Izabela; Abuhadi, Nouf; Dalton, Alan; Bradley, D A

    2016-11-01

    Graphite ion chambers and semiconductor diode detectors have been used to make measurements in phantoms but these active devices represent a clear disadvantage when considered for in vivo dosimetry. In such circumstance, dosimeters with atomic number similar to human tissue are needed. Carbon nanotubes have properties that potentially meet the demand, requiring low voltage in active devices and an atomic number similar to adipose tissue. In this study, single-wall carbon nanotubes (SWCNTs) buckypaper has been used to measure the beta particle dose deposited from a strontium-90 source, the medium displaying thermoluminescence at potentially useful sensitivity. As an example, the samples show a clear response for a dose of 2Gy. This finding suggests that carbon nanotubes can be used as a passive dosimeter specifically for the high levels of radiation exposures used in radiation therapy. Furthermore, the finding points towards further potential applications such as for space radiation measurements, not least because the medium satisfies a demand for light but strong materials of minimal capacitance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces.

    PubMed

    Su, E P; Justin, D F; Pratt, C R; Sarin, V K; Nguyen, V S; Oh, S; Jin, S

    2018-01-01

    The development and pre-clinical evaluation of nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated with titanium dioxide (TiO 2 ) nanotube arrays is reviewed. In vitro and in vivo evaluations show that TiO 2 nanotubes on Ti surfaces positively affect the osseointegration, cell differentiation, mineralisation, and anti-microbial properties. This surface treatment can be superimposed onto existing macro and micro porous Ti implants creating a surface texture that also interacts with cells at the nano level. Histology and mechanical pull-out testing of specimens in rabbits indicate that TiO 2 nanotubes improves bone bonding nine-fold (p = 0.008). The rate of mineralisation associated with TiO 2 nanotube surfaces is about three times that of non-treated Ti surfaces. In addition to improved osseointegration properties, TiO 2 nanotubes reduce the initial adhesion and colonisation of Staphylococcus epidermidis Collectively, the properties of Ti implant surfaces enhanced with TiO 2 nanotubes show great promise. Cite this article: Bone Joint J 2018;100-B(1 Supple A):9-16. ©2018 The British Editorial Society of Bone & Joint Surgery.

  13. Nanostructured Composites: Effective Mechanical Property Determination of Nanotube Bundles

    NASA Technical Reports Server (NTRS)

    Saether, E.; Pipes, R. B.; Frankland, S. J. V.

    2002-01-01

    Carbon nanotubes naturally tend to form crystals in the form of hexagonally packed bundles or ropes that should exhibit a transversely isotropic constitutive behavior. Although the intratube axial stiffness is on the order of 1 TPa due to a strong network of delocalized bonds, the intertube cohesive strength is orders of magnitude less controlled by weak, nonbonding van der Waals interactions. An accurate determination of the effective mechanical properties of nanotube bundles is important to assess potential structural applications such as reinforcement in future composite material systems. A direct method for calculating effective material constants is developed in the present study. The Lennard-Jones potential is used to model the nonbonding cohesive forces. A complete set of transverse moduli are obtained and compared with existing data.

  14. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Karanfil, Tanju

    2011-01-01

    Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Improved Process for Fabricating Carbon Nanotube Probes

    NASA Technical Reports Server (NTRS)

    Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; Han, Jie

    2003-01-01

    An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure.

  16. Progress toward Making Epoxy/Carbon-Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Tiano, Thomas; Roylance, Margaret; Gassner, John; Kyle, William

    2008-01-01

    A modicum of progress has been made in an effort to exploit single-walled carbon nanotubes as fibers in epoxy-matrix/fiber composite materials. Two main obstacles to such use of carbon nanotubes are the following: (1) bare nanotubes are not soluble in epoxy resins and so they tend to agglomerate instead of becoming dispersed as desired; and (2) because of lack of affinity between nanotubes and epoxy matrices, there is insufficient transfer of mechanical loads between the nanotubes and the matrices. Part of the effort reported here was oriented toward (1) functionalization of single-walled carbon nanotubes with methyl methacrylate (MMA) to increase their dispersability in epoxy resins and increase transfer of mechanical loads and (2) ultrasonic dispersion of the functionalized nanotubes in tetrahydrofuran, which was used as an auxiliary solvent to aid in dispersing the functionalized nanotubes into a epoxy resin. In another part of this effort, poly(styrene sulfonic acid) was used as the dispersant and water as the auxiliary solvent. In one experiment, the strength of composite of epoxy with MMA-functionalized-nanotubes was found to be 29 percent greater than that of a similar composite of epoxy with the same proportion of untreated nanotubes.

  17. Electronic and optoelectronic nano-devices based on carbon nanotubes.

    PubMed

    Scarselli, M; Castrucci, P; De Crescenzi, M

    2012-08-08

    The discovery and understanding of nanoscale phenomena and the assembly of nanostructures into different devices are among the most promising fields of material science research. In this scenario, carbon nanostructures have a special role since, in having only one chemical element, they allow physical properties to be calculated with high precision for comparison with experiment. Carbon nanostructures, and carbon nanotubes (CNTs) in particular, have such remarkable electronic and structural properties that they are used as active building blocks for a large variety of nanoscale devices. We review here the latest advances in research involving carbon nanotubes as active components in electronic and optoelectronic nano-devices. Opportunities for future research are also identified.

  18. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles

    PubMed Central

    Seo, Youngmin; Hwang, Jangsun; Kim, Jieun; Jeong, Yoon; Hwang, Mintai P; Choi, Jonghoon

    2014-01-01

    Recently, various nanoscale materials, including silver (Ag) nanoparticles, have been actively studied for their capacity to effectively prevent bacterial growth. A critical challenge is to enhance the antibacterial properties of nanomaterials while maintaining their biocompatibility. The conjugation of multiple nanomaterials with different dimensions, such as spherical nanoparticles and high-aspect-ratio nanotubes, may increase the target-specific antibacterial capacity of the consequent nanostructure while retaining an optimal biocompatibility. In this study, multi-walled carbon nanotubes (MWCNTs) were treated with a mixture of acids and decorated with Ag nanoparticles via a chemical reduction of Ag cations by ethanol solution. The synthesized Ag-MWCNT complexes were characterized by transmission electron microscopy, X-ray diffractometry, and energy-dispersive X-ray spectroscopy. The antibacterial function of Ag-MWCNTs was evaluated against Methylobacterium spp. and Sphingomonas spp. In addition, the biocompatibility of Ag-MWCNTs was evaluated using both mouse liver hepatocytes (AML 12) and human peripheral blood mononuclear cells. Finally, we determined the minimum amount of Ag-MWCNTs required for a biocompatible yet effective antibacterial treatment modality. We report that 30 μg/mL of Ag-MWCNTs confers antibacterial functionality while maintaining minimal cytotoxicity toward both human and animal cells. The results reported herein would be beneficial for researchers interested in the efficient preparation of hybrid nanostructures and in determining the minimum amount of Ag-MWCNTs necessary to effectively hinder the growth of bacteria. PMID:25336943

  19. Mechanical deformation of carbon nanotube nano-rings on flat substrate

    NASA Astrophysics Data System (ADS)

    Zheng, Meng; Ke, Changhong

    2011-04-01

    We present a numerical analysis of the mechanical deformation of carbon nanotube (CNT) nano-rings on flat graphite substrates, which is motivated by our recent experimental findings on the elastic deformation of CNT nano-rings. Our analysis considers a perfectly circular CNT ring formed by bending a straight individual or bundled single-walled nanotube to connect its two ends. The seamless CNT ring is placed vertically on a flat graphite substrate and its respective deformation curvatures under zero external force, compressive, and tensile forces are determined using a continuum model based on nonlinear elastica theory. Our results show that the van der Waals interaction between the CNT ring and the substrate has profound effects on the deformation of the CNT ring, and that the interfacial binding interaction between the CNT ring and the substrate is strongly modulated by the ring deformation. Our results demonstrate that the CNT ring in force-free conditions has a flat ring segment in contact with the substrate if the ring radius R ≥√EI/2Wvdw , in which EI is the flexural rigidity of the nanotube and Wvdw is the per-unit-length van der Waals energy between the flat ring segment and the substrate. Our results reveal that the load-deformation profiles of the CNT ring under tensile loadings exhibit bifurcation behavior, which is ascribed to its van der Waals interaction with the substrate and is dependent on its relaxed conformation on the substrate. Our work suggests that CNT nano-rings are promising for a number of applications, such as ultrasensitive force sensors and stretchable and flexible structural components in nanoscale mechanical and electromechanical systems.

  20. Advanced Composite Armor: In Situ Sensing with Carbon Nanotube Networks for Improved Damage Tolerance

    DTIC Science & Technology

    2013-08-19

    aerogel -spun carbon nanotube fibres under tensile loading, Journal of Materials Chemistry, (02 2012): 0. doi: 10.1039/c2jm15869h 08/10/2012 6.00 Amanda... aerogel state and held together by entanglements and van der Waals interactions. The electrical and mechanical behavior of these fibers is provided in...5.1 ± 1.7 (104) Resistance, R [Ω] 67.5 ± 23.6 Table 1. Material properties of the aerogel -spun carbon nanotube fibers. 9    The fibers