Sample records for nanotube polymer composites

  1. Polymer composites containing nanotubes

    NASA Technical Reports Server (NTRS)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  2. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas [Denver, CO; Raffaelle, Ryne P [Honeoye Falls, NY; Landi, Brian J [Rochester, NY; Heben, Michael J [Denver, CO

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  3. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.

  4. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2004-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  5. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2001-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  6. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube shapes, sizes, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/LaRC-SI (with a PmPV interface) composite systems, one with aligned SWNTs and the other with three-dimensionally randomly oriented SWNTs. The Young's modulus and shear modulus have been calculated for the two systems for various nanotube lengths and volume fractions.

  7. Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.

    2002-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT) with various orientations with respect to the bulk material coordinates. A nanotube, the local polymer adjacent to the nanotube, and the nanotube/polymer interface have been modeled as an equivalent-continuum fiber by using an equivalent-continuum modeling method. The equivalent-continuum fiber accounts for the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composite. As an example, the proposed approach is used for the constitutive modeling of a SWNT/LaRC-SI (with a PmPV interface) composite system, with aligned nanotubes, three-dimensionally randomly oriented nanotubes, and nanotubes oriented with varying degrees of axisymmetry. It is shown that the Young s modulus is highly dependent on the SWNT orientation distribution.

  8. Polymer Composite Containing Carbon Nanotubes and their Applications.

    PubMed

    Park, Sung-Hoon; Bae, Joonwon

    2017-07-10

    Carbon nanotubes (CNTs) are attractive nanostructures in this regard, primarily due to their high aspect ratio coupled with high thermal and electrical conductivities. Consequently, CNT polymer composites have been extensively investigated for various applications, owing to their light weight and processibility. However, there have been several issues affecting the utilization of CNTs, such as aggregation (bundling) which leads to a non-uniform dispersion and poor interfacial bonding of the CNTs with the polymer, resulting in variation in composite performance, along with the additional issue of high cost of CNTs. In this article, recent research and patents for polymer composites containing carbon nanomaterial are presented and summarized. In addition, a rationale for optimally designed carbon nanotube polymer composites and their applications are suggested. Above the electrical percolation threshold, a transition from insulator to conductor occurs. The percolation threshold values of CNT composite are dependent on filler shape, intrinsic properties of filler, type of polymer, CNT dispersion condition and so on. Different values of percolation threshold CNT polymer composites have been summarized. The difference in percolation threshold and conductivity of CNT composites could be explained by the degree of effective interactions between nanotubes and polymer matrix. The reaction between surface functional groups of CNTs and polymer could contribute to better dispersion of CNTs in polymer matrix. Consequently, it increased the number of electrical networks of CNTs in polymer, resulting in an enhancement of composite conductivity. In addition, to exfoliate nanotubes from heavy bundles, ultrasonication with proper solvent and three roll milling processes were used. Potential reactions of covalent bonding between functionalized CNTs and polymer were suggested based on the above rationale. Through the use of CNT functionalization, high aspect ratio CNTs, and proper

  9. Developing polymer composite materials: carbon nanotubes or graphene?

    PubMed

    Sun, Xuemei; Sun, Hao; Li, Houpu; Peng, Huisheng

    2013-10-04

    The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.

  11. Process for making polymers comprising derivatized carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The present invention incorporates new processes for blending derivatized carbon nanotubes into polymer matrices to create new polymer/composite materials. When modified with suitable chemical groups using diazonium chemistry, the nanotubes can be made chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as mechanical strength) to the properties of the composite material as a whole. To achieve this, the derivatized (modified) carbon nanotubes are physically blended with the polymeric material, and/or, if desired, allowed to react at ambient or elevated temperature. These methods can be utilized to append functionalities to the nanotubes that will further covalently bond to the host polymer matrix, or directly between two tubes themselves. Furthermore, the nanotubes can be used as a generator of polymer growth, wherein the nanotubes are derivatized with a functional group that is an active part of a polymerization process, which would also result in a composite material in which the carbon nanotubes are chemically involved.

  12. The Stress-strain Behavior of Polymer-Nanotube Composites from Molecular Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Harik, V. M.; Odegard, G. M.; Brenner, D. W.; Gates, T. S.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Stress-strain curves of polymer-carbon nanotube composites are derived from molecular dynamics simulations of a single-walled carbon nanotube embedded in polyethylene. A comparison is made between the response to mechanical loading of a composite with a long, continuous nanotube (replicated via periodic boundary conditions) and the response of a composite with a short, discontinuous nanotube. Both composites are mechanically loaded in the direction of and transverse to the NT axis. The long-nanotube composite shows an increase in the stiffness relative to the polymer and behaves anisotropically under the different loading conditions. The short-nanotube composite shows no enhancement relative to the polymer, most probably because of its low aspect ratio. The stress-strain curves are compared with rule-of-mixtures predictions.

  13. Dispersion and Mechanical Properties of Carbon Nanotube/Polymer Composites via Melt Compounding

    NASA Astrophysics Data System (ADS)

    Gorga, Russell; Cohen, Robert

    2003-03-01

    This work is focused on the fabrication of carbon nanotube/ polymer composites via melt compounding. The main objective of this work is to realize the outstanding properties of carbon nanotubes (high modulus, high thermal and electrical conductivity, elastic buckling) at the macroscopic level by blending carbon nanotubes into a polymer matrix. The challenge lies in dispersing these one dimensional nanoparticles in the polymer matrix. Dispersion of the nanotubes in the composites is analyzed via transmission and scanning electron microscopy. Mechanical properties as well as electrical and thermal conductivity are measured as a function of nanotube loading, orientation, and extrusion conditions. Multi-wall nanotube loadings in the range of 1 and 10 wtconcave-downward departures from the linear stress-strain behavior of the unmodified polymer below 5observations are discussed in the context of possible deformation mechanisms for the nanotube composites.

  14. Mechanics of Carbon Nanotubes and their Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, K. J.; Srivastava, Deepak; Tang, Harry (Technical Monitor)

    2002-01-01

    Contents include the folloving: carbon nanotube (CNT): structures, application of carbon nanotubes, simulation method, Elastic properties of carbon nanotubes, yield strain of CNT, yielding under tensile stress, yielding: strain-rate and temperature dependence, yield strain under tension, yielding at realistic conditions, nano fibers, polymer CNT composite, force field, density dependency on temperature, diffusion coefficients, young modulus, and conclusions.

  15. Method of Making an Electroactive Sensing/Actuating Material for Carbon Nanotube Polymer Composite

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a, third component of micro -sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.

  16. Molecular dynamics simulation of diffusion of gases in a carbon-nanotube-polymer composite

    NASA Astrophysics Data System (ADS)

    Lim, Seong Y.; Sahimi, Muhammad; Tsotsis, Theodore T.; Kim, Nayong

    2007-07-01

    Extensive molecular dynamics (MD) simulations were carried out to compute the solubilities and self-diffusivities of CO2 and CH4 in amorphous polyetherimide (PEI) and mixed-matrix PEI generated by inserting single-walled carbon nanotubes into the polymer. Atomistic models of PEI and its composites were generated using energy minimizations, MD simulations, and the polymer-consistent force field. Two types of polymer composite were generated by inserting (7,0) and (12,0) zigzag carbon nanotubes into the PEI structure. The morphologies of PEI and its composites were characterized by their densities, radial distribution functions, and the accessible free volumes, which were computed with probe molecules of different sizes. The distributions of the cavity volumes were computed using the Voronoi tessellation method. The computed self-diffusivities of the gases in the polymer composites are much larger than those in pure PEI. We find, however, that the increase is not due to diffusion of the gases through the nanotubes which have smooth energy surfaces and, therefore, provide fast transport paths. Instead, the MD simulations indicate a squeezing effect of the nanotubes on the polymer matrix that changes the composite polymers’ free-volume distributions and makes them more sharply peaked. The presence of nanotubes also creates several cavities with large volumes that give rise to larger diffusivities in the polymer composites. This effect is due to the repulsive interactions between the polymer and the nanotubes. The solubilities of the gases in the polymer composites are also larger than those in pure PEI, hence indicating larger gas permeabilities for mixed-matrix PEI than PEI itself.

  17. Metallized Nanotube Polymer Composite (MNPC) and Methods for Making Same

    NASA Technical Reports Server (NTRS)

    Harrison, Joycelyn S. (Inventor); Lowther, Sharon E. (Inventor); Lillehei, Peter T. (Inventor); Park, Cheol (Inventor); Taylor, Larry (Inventor); Kang, Jin Ho (Inventor); Nazem, Negin (Inventor); Kim, Jae-Woo (Inventor); Sauti, Godfrey (Inventor)

    2017-01-01

    A novel method to develop highly conductive functional materials which can effectively shield various electromagnetic effects (EMEs) and harmful radiations. Metallized nanotube polymer composites (MNPC) are composed of a lightweight polymer matrix, superstrong nanotubes (NT), and functional nanoparticle inclusions. MNPC is prepared by supercritical fluid infusion of various metal precursors (Au, Pt, Fe, and Ni salts), incorporated simultaneously or sequentially, into a solid NT-polymer composite followed by thermal reduction. The infused metal precursor tends to diffuse toward the nanotube surface preferentially as well as the surfaces of the NT-polymer matrix, and is reduced to form nanometer-scale metal particles or metal coatings. The conductivity of the MNPC increases with the metallization, which provides better shielding capabilities against various EMEs and radiations by reflecting and absorbing EM waves more efficiently. Furthermore, the supercritical fluid infusion process aids to improve the toughness of the composite films significantly regardless of the existence of metal.

  18. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  19. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2017-10-17

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  20. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  1. Sensing/actuating materials made from carbon nanotube polymer composites and methods for making same

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2008-01-01

    An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a third component of micro-sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.

  2. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  3. Release characteristics of selected carbon nanotube polymer composites

    EPA Science Inventory

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  4. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  5. A carbon nanotube-polymer composite for T-cell therapy

    NASA Astrophysics Data System (ADS)

    Fadel, Tarek R.; Sharp, Fiona A.; Vudattu, Nalini; Ragheb, Ragy; Garyu, Justin; Kim, Dongin; Hong, Enping; Li, Nan; Haller, Gary L.; Pfefferle, Lisa D.; Justesen, Sune; Harold, Kevin C.; Fahmy, Tarek M.

    2014-08-01

    Clinical translation of cell therapies requires strategies that can manufacture cells efficiently and economically. One promising way to reproducibly expand T cells for cancer therapy is by attaching the stimuli for T cells onto artificial substrates with high surface area. Here, we show that a carbon nanotube-polymer composite can act as an artificial antigen-presenting cell to efficiently expand the number of T cells isolated from mice. We attach antigens onto bundled carbon nanotubes and combined this complex with polymer nanoparticles containing magnetite and the T-cell growth factor interleukin-2 (IL-2). The number of T cells obtained was comparable to clinical standards using a thousand-fold less soluble IL-2. T cells obtained from this expansion were able to delay tumour growth in a murine model for melanoma. Our results show that this composite is a useful platform for generating large numbers of cytotoxic T cells for cancer immunotherapy.

  6. Single-walled carbon nanotubes/polymer composite electrodes patterned directly from solution.

    PubMed

    Chang, Jingbo; Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Kim, Jae-Ho

    2011-06-07

    This work describes a simple technique for direct patterning of single-walled carbon nanotube (SWNT)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) composite electrodes in a large area on a substrate based on the solution transfer process by microcontact printing using poly(dimethylsiloxane) (PDMS) stamps. Various shapes of SWNT/PEDOT-PSS composite patterns, such as line, circle, and square, can be easily fabricated with high pattern fidelity and structural integrity. The single parallel line pattern device exhibits high electrical conductivity (0.75 × 10(5) S/m) and electronic stability because of alignment of nanotubes and big-size SWNT bundles (∼5 nm). The electromechanical study reveals that the composite patterns show ∼1% resistance change along SWNT alignment direction and ∼5% resistance change along vertical alignment direction after 200 bend cycles. Our approach provides a facile, low-cost method to pattern transparent conductive SWNT/polymer composite electrodes and demonstrates a novel platform for future integration of conducting SWNT/polymer composite patterns for optoelectronic applications.

  7. New generation fiber reinforced polymer composites incorporating carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soliman, Eslam

    The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.

  8. Wrinkling and folding of nanotube-polymer bilayers

    NASA Astrophysics Data System (ADS)

    Semler, Matthew R.; Harris, John M.; Hobbie, Erik K.

    2014-07-01

    The influence of a polymer capping layer on the deformation of purified single-wall carbon nanotube (SWCNT) networks is analyzed through the wrinkling of compressed SWCNT-polymer bilayers on polydimethylsiloxane. The films exhibit both wrinkling and folding under compression and we extract the elastoplastic response using conventional two-plate buckling schemes. The formation of a diffuse interpenetrating nanotube-polymer interface has a dramatic effect on the nanotube layer modulus for both metallic and semiconducting species. In contrast to the usual percolation exhibited by the pure SWCNT films, the capped films show a crossover from "composite" behavior (the modulus of the SWCNT film is enhanced by the polymer) to "plasticized" behavior (the modulus of the SWCNT film is reduced by the polymer) as the SWCNT film thickness increases. For almost all thicknesses, however, the polymer enhances the yield strain of the nanotube network. Conductivity measurements on identical films suggest that the polymer has a modest effect on charge transport, which we interpret as a strain-induced polymer penetration of interfacial nanotube contacts. We use scaling, Flory-Huggins theory, and independently determined nanotube-nanotube and nanotube-polymer Hamaker constants to model the response.

  9. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.

    PubMed

    Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo

    2012-09-26

    Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites.

  10. Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Ashrafi, Behnam; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Rahmat, Meysam; Djokic, Drazen; Laqua, Kurtis; Park, Daesun; Kim, Keun-Su; Simard, Benoit; Yousefpour, Ali

    2017-12-01

    Recent progress in nanotechnology has made several nano-based materials available with the potential to address limitations of conventional fiber reinforced polymer composites, particularly in reference to multifunctional structures. Carbon nanotubes (CNTs) are the most prevalent case and offer amazing properties at the individual nanotube level. There are already a few high-profile examples of the use of CNTs in space structures to provide added electrical conductivity for static dissipation and electromagnetic shielding. Boron nitride nanotubes (BNNTs), which are structurally analogous to CNTs, also present a range of attractive properties. Like the more widely explored CNTs, individual BNNTs display remarkable mechanical properties and high thermal conductivity but with contrasting functional attributes including substantially higher thermal stability, high electrical insulation, polarizability, high neutron absorption and transparency to visible light. This presents the potential of employing either or both BNNTs and CNTs to achieve a range of lightweight, functional composites for space structures. Here we present the case for application of BNNTs, in addition to CNTs, in space structures and describe recent advances in BNNT production at the National Research Council Canada (NRC) that have, for the first time, provided sufficiently large quantities to enable commercialization of high-quality BNNTs and accelerate development of chemistry, composites and applications based on BNNTs. Early demonstrations showing the fabrication and limited structural testing of polymer matrix composites, including glass fiber-reinforced composite panels containing BNNTs will be discussed.

  11. Characterization of electrosynthesized conjugated polymer-carbon nanotube composite: optical nonlinearity and electrical property.

    PubMed

    Bahrami, Afarin; Talib, Zainal Abidin; Shahriari, Esmaeil; Yunus, Wan Mahmood Mat; Kasim, Anuar; Behzad, Kasra

    2012-01-01

    The effects of multi-walled carbon nanotube (MWNT) concentration on the structural, optical and electrical properties of conjugated polymer-carbon nanotube composite are discussed. Multi-walled carbon nanotube-polypyrrole nanocomposites were synthesized by electrochemical polymerization of monomers in the presence of different amounts of MWNTs using sodium dodecylbenzensulfonate (SDBS) as surfactant at room temperature and normal pressure. Field emission scanning electron microscopy (FESEM) indicates that the polymer is wrapped around the nanotubes. Measurement of the nonlinear refractive indices (n(2)) and the nonlinear absorption (β) of the samples with different MWNT concentrations measurements were performed by a single Z-scan method using continuous wave (CW) laser beam excitation wavelength of λ = 532 nm. The results show that both nonlinear optical parameters increased with increasing the concentration of MWNTs. The third order nonlinear susceptibilities were also calculated and found to follow the same trend as n(2) and β. In addition, the conductivity of the composite film was found to increase rapidly with the increase in the MWNT concentration.

  12. Carbon nanotube-graphene composite for ionic polymer actuators

    NASA Astrophysics Data System (ADS)

    Yang, Woosung; Choi, Hyonkwang; Choi, Suho; Jeon, Minhyon; Lee, Seung-Yop

    2012-05-01

    In this paper, we develop a new ionic polymer-metal composite (IPMC) by replacing a typical platinum or gold electrode with a multi-walled carbon nanotube (MWNT)-graphene based electrode. A solvent of MWNT and graphene is formed on both sides of the ionic polymer membranes as electrodes by means of spray coating and baking. Then, the ionic liquid process is performed for actuating in air. The four kinds of IPMC samples with different MWNT-graphene ratios are fabricated with the same solid Nafion film. Experimental results show that the IPMC with a pure MWNT based electrode exhibits higher displacement compared to the conventional IPMC with a platinum electrode. Also, the increment of the ratio of graphene to the MWNT-graphene electrode decreases the resultant displacement but increases the fundamental natural frequency of the polymer actuator.

  13. Mapping Viscoelastic and Plastic Properties of Polymers and Polymer-Nanotube Composites using Instrumented Indentation

    PubMed Central

    Gayle, Andrew J.; Cook, Robert F.

    2016-01-01

    An instrumented indentation method is developed for generating maps of time-dependent viscoelastic and time-independent plastic properties of polymeric materials. The method is based on a pyramidal indentation model consisting of two quadratic viscoelastic Kelvin-like elements and a quadratic plastic element in series. Closed-form solutions for indentation displacement under constant load and constant loading-rate are developed and used to determine and validate material properties. Model parameters are determined by point measurements on common monolithic polymers. Mapping is demonstrated on an epoxy-ceramic interface and on two composite materials consisting of epoxy matrices containing multi-wall carbon nanotubes. A fast viscoelastic deformation process in the epoxy was unaffected by the inclusion of the nanotubes, whereas a slow viscoelastic process was significantly impeded, as was the plastic deformation. Mapping revealed considerable spatial heterogeneity in the slow viscoelastic and plastic responses in the composites, particularly in the material with a greater fraction of nanotubes. PMID:27563168

  14. Properties of Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Kang, Jin Ho; Grimsley, Brian W.; Ratcliffe, James G.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strength- and stiffness-to-weight ratios, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Carbon nanotubes (CNT) offer the potential to enhance the multi-functionality of composites with improved thermal and electrical conductivity. In this study, hybrid CNT/carbon fiber (CF) polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing. Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated.

  15. High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber

    PubMed Central

    Chernysheva, Maria; Mou, Chengbo; Arif, Raz; AlAraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey

    2016-01-01

    We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a ‘Yin-Yang’ all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser. PMID:27063511

  16. Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing–Structure–Performance Relationship

    PubMed Central

    Song, Kenan; Zhang, Yiying; Meng, Jiangsha; Green, Emily C.; Tajaddod, Navid; Li, Heng; Minus, Marilyn L.

    2013-01-01

    Among the many potential applications of carbon nanotubes (CNT), its usage to strengthen polymers has been paid considerable attention due to the exceptional stiffness, excellent strength, and the low density of CNT. This has provided numerous opportunities for the invention of new material systems for applications requiring high strength and high modulus. Precise control over processing factors, including preserving intact CNT structure, uniform dispersion of CNT within the polymer matrix, effective filler–matrix interfacial interactions, and alignment/orientation of polymer chains/CNT, contribute to the composite fibers’ superior properties. For this reason, fabrication methods play an important role in determining the composite fibers’ microstructure and ultimate mechanical behavior. The current state-of-the-art polymer/CNT high-performance composite fibers, especially in regards to processing–structure–performance, are reviewed in this contribution. Future needs for material by design approaches for processing these nano-composite systems are also discussed. PMID:28809290

  17. Newton Output Blocking Force under Low-Voltage Stimulation for Carbon Nanotube-Electroactive Polymer Composite Artificial Muscles.

    PubMed

    Chen, I-Wen Peter; Yang, Ming-Chia; Yang, Chia-Hui; Zhong, Dai-Xuan; Hsu, Ming-Chun; Chen, YiWen

    2017-02-15

    This is a study on the development of carbon nanotube-based composite actuators using a new ionic liquid-doped electroactive ionic polymer. For scalable production purposes, a simple hot-pressing method was used. Carbon nanotube/ionic liquid-Nafion/carbon nanotube composite films were fabricated that exhibited a large output blocking force and a stable cycling life with low alternating voltage stimuli in air. Of particular interest and importance, a blocking force of 1.5 N was achieved at an applied voltage of 6 V. Operational durability was confirmed by testing in air for over 30 000 cycles (or 43 h). The superior actuation performance of the carbon nanotube/ionic liquid-Nafion/carbon nanotube composite, coupled with easy manufacturability, low driving voltage, and reliable operation, promises great potential for artificial muscle and biomimetic applications.

  18. Electrostatically Induced Carbon Nanotube Alignment for Polymer Composite Applications

    NASA Astrophysics Data System (ADS)

    Chapkin, Wesley Aaron

    We have developed a non-invasive technique utilizing polarized Raman spectroscopy to measure changes in carbon nanotube (CNT) alignment in situ and in real time in a polymer matrix. With this technique, we have confirmed the prediction of faster alignment for CNTs in higher electric fields. Real-time polarized Raman spectroscopy also allows us to demonstrate the loss of CNT alignment that occurs after the electric field is removed, which reveals the need for fast polymerization steps or the continued application of the aligning force during polymerization to lock in CNT alignment. Through a study on the effect of polymer viscosity on the rate of CNT alignment, we have determined that shear viscosity serves as the controlling mechanism for CNT rotation. This finding matches literature modeling of rigid rod mobility in a polymer melt and demonstrates that the rotational mobility of CNTs can be explained by a continuum model even though the diameters of single-walled CNTs are 1-2 nm. The viscosity dependence indicates that the manipulation of temperature (and indirectly viscosity) will have a direct effect on the rate of CNT alignment, which could prove useful in expediting the manufacturing of CNT-reinforced composites cured at elevated temperatures. Using real-time polarized Raman spectroscopy, we also demonstrate that electric fields of various strengths lead not only to different speeds of CNT rotation but also to different degrees of alignment. We hypothesize that this difference in achievable alignment results from discrete populations of nanotubes based on their length. The results are then explained by balancing the alignment energy for a given electric field strength with the randomizing thermal energy of the system. By studying the alignment dynamics of different CNT length distributions, we show that different degrees of alignment achieved as a function of the applied electric field strength are directly related to the square of the nanotube length. This

  19. Automated Dispersion and Orientation Analysis for Carbon Nanotube Reinforced Polymer Composites

    PubMed Central

    Gao, Yi; Li, Zhuo; Lin, Ziyin; Zhu, Liangjia; Tannenbaum, Allen; Bouix, Sylvain; Wong, C.P.

    2012-01-01

    The properties of carbon nanotube (CNT)/polymer composites are strongly dependent on the dispersion and orientation of CNTs in the host matrix. Quantification of the dispersion and orientation of CNTs by microstructure observation and image analysis has been demonstrated as a useful way to understand the structure-property relationship of CNT/polymer composites. However, due to the various morphologies and large amount of CNTs in one image, automatic and accurate identification of CNTs has become the bottleneck for dispersion/orientation analysis. To solve this problem, shape identification is performed for each pixel in the filler identification step, so that individual CNT can be exacted from images automatically. The improved filler identification enables more accurate analysis of CNT dispersion and orientation. The obtained dispersion index and orientation index of both synthetic and real images from model compounds correspond well with the observations. Moreover, these indices help to explain the electrical properties of CNT/Silicone composite, which is used as a model compound. This method can also be extended to other polymer composites with high aspect ratio fillers. PMID:23060008

  20. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    PubMed

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies.

  1. Carbon nanotube polymer composition and devices

    DOEpatents

    Liu, Gao [Oakland, CA; Johnson, Stephen [Richmond, CA; Kerr, John B [Oakland, CA; Minor, Andrew M [El Cerrito, CA; Mao, Samuel S [Castro Valley, CA

    2011-06-14

    A thin film device and compound having an anode, a cathode, and at least one light emitting layer between the anode and cathode, the at least one light emitting layer having at least one carbon nanotube and a conductive polymer.

  2. Dispersion of carbon nanotubes in vinyl ester polymer composites

    NASA Astrophysics Data System (ADS)

    Pena-Paras, Laura

    This work focused on a parametric study of dispersions of different types of carbon nanotubes in a polymer resin. Single-walled (SWNTs), double-walled (DWNTs), multi-walled (MWNTs) and XD-grade carbon nanotubes (XD-CNTs) were dispersed in vinyl ester (VE) using an ultra-sonic probe at a fixed frequency. The power, amplitude, and mixing time parameters of sonication were correlated to the electrical and mechanical properties of the composite materials in order to optimize dispersion. The quality of dispersion was quantified by Raman spectroscopy and verified through optical and scanning electron microscopy. By Raman, the CNT distribution, unroping, and damage was monitored and correlated with the composite properties for dispersion optimization. Increasing the ultrasonication energy was found to improve the distribution of all CNT materials and to decrease the size of nanotube ropes, enhancing the electrical conductivity and storage modulus. However, excessive amounts of energy were found to damage CNTs, which negatively affected the properties of the composite. Based on these results the optimum dispersion energy inputs were determined for the different composite materials. The electrical resistivity was lowered by as much as 14, 13, 13, and 11 orders of magnitude for SWNT/VE, DWNT/VE, MWNT/VE, and XD-CNT/VE respectively, compared to the neat resin. The storage modulus was also increased compared to the neat resin by 77%, 82%, 45%, 40% and 85% in SWNT, SAP-f-SWNT, DWNT, MWNT and XD-CNT/VE composites, respectively. This study provides a detailed understanding of how the properties of, nanocomposites are determined by the composite mixing parameters and the distribution, concentration, shape and size of the CNTs. Importantly, it indicates the importance of the need for dispersion metrics to correlate and understand these properties.

  3. Analytical and numerical techniques for predicting the interfacial stresses of wavy carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Yazdchi, K.; Salehi, M.; Shokrieh, M. M.

    2009-03-01

    By introducing a new simplified 3D representative volume element for wavy carbon nanotubes, an analytical model is developed to study the stress transfer in single-walled carbon nanotube-reinforced polymer composites. Based on the pull-out modeling technique, the effects of waviness, aspect ratio, and Poisson ratio on the axial and interfacial shear stresses are analyzed in detail. The results of the present analytical model are in a good agreement with corresponding results for straight nanotubes.

  4. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites.

    PubMed

    Hsiao, An-En; Tsai, Shu-Ya; Hsu, Mei-Wen; Chang, Shinn-Jen

    2012-05-06

    We dispersed the non-covalent functionalization of multi-walled carbon nanotubes (CNTs) with a polymer dispersant and obtained a powder of polymer-wrapped CNTs. The UV-vis absorption spectrum was used to investigate the optimal weight ratio of the CNTs and polymer dispersant. The powder of polymer-wrapped CNTs had improved the drawbacks of CNTs of being lightweight and difficult to process, and it can re-disperse in a solvent. Then, we blended the polymer-wrapped CNTs and polyethylene (PE) by melt-mixing and produced a conductive masterbatch and CNT/PE composites. The polymer-wrapped CNTs showed lower surface resistivity in composites than the raw CNTs. The scanning electron microscopy images also showed that the polymer-wrapped CNTs can disperse well in composites than the raw CNTs.

  5. Computational Nanomechanics of Carbon Nanotubes and Composites

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.

  6. Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells

    PubMed Central

    Ltaief, Adnen; Bouazizi, Abdelaziz; Davenas, Joel

    2009-01-01

    We investigate the dark and illuminated current density-voltage (J/V) characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV)/single-walled carbon nanotubes (SWNTs) composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC) conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1) composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.

  7. Grafting of Conductive Polymers onto the Functionalized Carbon Nanotubes

    DTIC Science & Technology

    2010-08-23

    2,5- benzimidazole )/carbon nanotube composite film” Journal of Polymer Science, Part A: Polymer Chemistry 2010, 48, 1067. 3. Han, S.-W.; Oh, S.-J...34Synthesis and Characterization of poly(2,5- benzimidazole ) (ABPBI) Grafted CArbon Nanotubes." MRS. 2009 fall meeting, Prepr. Boston, MA, November 30

  8. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites

    PubMed Central

    2012-01-01

    We dispersed the non-covalent functionalization of multi-walled carbon nanotubes (CNTs) with a polymer dispersant and obtained a powder of polymer-wrapped CNTs. The UV–vis absorption spectrum was used to investigate the optimal weight ratio of the CNTs and polymer dispersant. The powder of polymer-wrapped CNTs had improved the drawbacks of CNTs of being lightweight and difficult to process, and it can re-disperse in a solvent. Then, we blended the polymer-wrapped CNTs and polyethylene (PE) by melt-mixing and produced a conductive masterbatch and CNT/PE composites. The polymer-wrapped CNTs showed lower surface resistivity in composites than the raw CNTs. The scanning electron microscopy images also showed that the polymer-wrapped CNTs can disperse well in composites than the raw CNTs. PMID:22559082

  9. Working Toward Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pavel; Gorelik, Olga; Hadjiev, Victor G.; Scott, Carl D.; Files, Bradley S.

    2001-01-01

    One of the most attractive applications of single-wall carbon nanotubes (SWNT) is found in the area of structural materials. Nanotubes have a unique combination of high strength, modulus, and elongation to failure, and therefore have potential to significantly enhance the mechanical properties of today's composites. This is especially attractive for the aerospace industry looking for any chance to save weight. This is why NASA has chosen to tackle this difficult application of SWNT. Nanotube properties differ significantly from that of conventional carbon fibers, and a whole new set of problems, including adhesion and dispersion in the adhesive polymer matrix, must be resolved in order to engineer superior composite materials. From recent work on a variety of applications it is obvious that the wide range of research in nanotubes will lead to advances in physics, chemistry, and engineering. However, the possibility of ultralightweight structures is what causes dreamers to really get excited. One of the important issues in composite engineering is aspect ratio of the fibers, since it affects load transfer in composites. Nanotube length was a gray area for years, since they are formed in bundles, making it impossible to monitor individual nanotube length. Even though bundles are observed to be tens and hundreds of microns long, they can be built of relatively short tubes weakly bound by Van der Waals forces. Nanotube length can be affected by subsequent purification and ultrasound processing, which has been necessary in order to disperse nanotubes and introduce them into a polymer matrix. Some calculations show that nanotubes with 10(exp 5) aspect ratio may be necessary to achieve good load transfer. We show here that nanotubes produced in our laser system are as much as tens of microns long and get cut into lengths of hundreds of nanometers during ultrasound processing. Nanotube length was measured by AFM on pristine nanotube specimens as well, as after sonication

  10. Aligned Single Wall Carbon Nanotube Polymer Composites Using an Electric Field

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Wiklinson, John; Banda, Sumanth; Ounaies, Zoubeida; Wise, Kristopher E.; Sauti, Godfrey; Lillehei, Peter T.; Harrison, Joycelyn S.

    2005-01-01

    While high shear alignment has been shown to improve the mechanical properties of single wall carbon nanotubes (SWNT)-polymer composites, it is difficult to control and often results in degradation of the electrical and dielectric properties of the composite. Here, we report a novel method to actively align SWNTs in a polymer matrix, which allows for control over the degree of alignment of SWNTs without the side effects of shear alignment. In this process, SWNTs are aligned via field-induced dipolar interactions among the nanotubes under an AC electric field in a liquid matrix followed by immobilization by photopolymerization while maintaining the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy and the morphology of the aligned nanocomposites was investigated by high resolution scanning electron microscopy. The structure of the field induced aligned SWNTs is intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties in addition to improving the mechanical properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field conditions.

  11. Self-grafting carbon nanotubes on polymers for stretchable electronics

    NASA Astrophysics Data System (ADS)

    Morales, Piero; Moyanova, Slavianka; Pavone, Luigi; Fazi, Laura; Mirabile Gattia, Daniele; Rapone, Bruno; Gaglione, Anderson; Senesi, Roberto

    2018-06-01

    Elementary bidimensional circuitry made of single-wall carbon-nanotube-based conductors, self-grafted on different polymer films, is accomplished in an attempt to develop a simple technology for flexible and stretchable electronic devices. Unlike in other studies of polymer-carbon nanotube composites, no chemical functionalization of single-wall carbon nanotubes is necessary for stable grafting onto several polymeric surfaces, suggesting viable and cheap fabrication technologies for stretchable microdevices. Electrical characterization of both unstretched and strongly stretched conductors is provided, while an insight on the mechanisms of strong adhesion to the polymer is obtained by scanning electron microscopy of the surface composite. As a first example of technological application, the electrical functionality of a carbon-nanotube-based 6-sensor (electrode) grid was demonstrated by recording of subdural electrocorticograms in freely moving rats over approximately three months. The results are very promising and may serve as a basis for future work targeting clinical applications.

  12. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    NASA Technical Reports Server (NTRS)

    Bahr, Jeffrey L. (Inventor); Tour, James M. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  13. Polymer/Carbon Nanotube Networks for Smart, Self-Repairing and Light-Weighted Nanocomposites

    DTIC Science & Technology

    2012-11-05

    was develop smart, strong, and light-weight polymer/carbon nanotube (CNT) composites which will sense tribologically induced damages and self-heal by...light-weight polymer/carbon nanotube (CNT) composites which will sense tribologically induced damages and self-heal by inhibiting such degradation...one of support references for EPSRC instrument grant application for Micro Materials NanoTest Vantage Testing Suite with NTX4Controller. The grant

  14. Molecular Simulation Study of Gas Solubility and Diffusion in a Polymer-Boron Nitride Nanotube Composite.

    PubMed

    Wang, Congyue; Jagirdar, Preeti; Naserifar, Saber; Sahimi, Muhammad

    2016-02-25

    We study the possibility of using polymer composites made of a polymer and boron nitride nanotubes (BNNTs) as a new type of membranes for gas separation. The polymer used is amorphous poly(ether imide) (PEI), and zigzag BNNTs are used to generate the composites with the PEI. The solubilities and self-diffusivities of CO2 and CH4 in the PEI and its composites with the BNNTs are calculated by molecular dynamics (MD) simulations. The molecular models of the PEI and its composites with the BNNTs are generated using energy minimization and MD simulation, and the Universal Force Field is used to represent the interactions between all the atoms. The morhology of the composites are characterized and are compared with that of PEI. The accuracy of the computations is tested by calculating the gases' solubilities and self-diffsivities in the pure PEI and comparing them with the experimental data. Good agreement is obtained with the data. The computed diffusivities and solubilities in the polymer-BNNTs composites are much larger than those in the pure polymer, which are attributed to the changes that the BNNTs induce in the polymer composite's free-volume distribution. As the mechanical properties of the polymer-BNNTs composites are superior over those of the pure PEI, their use as a membrane for gas separation offers distinct advantages over the pure polymer. We also demonstrate that, calculating the diffusion coefficients with MD simulations in the NPT ensemble, as opposed to the common practice of utilizing the NVT ensemble, leads to much more accurate results.

  15. Aspects of the Fracture Toughness of Carbon Nanotube Modified Epoxy Polymer Composites

    NASA Astrophysics Data System (ADS)

    Mirjalili, Vahid

    Epoxy resins used in fibre reinforced composites exhibit a brittle fracture behaviour, because they show no sign of damage prior to a catastrophic failure. Rubbery materials and micro-particles have been added to epoxy resins to improve their fracture toughness, which reduces strength and elastic properties. In this research, carbon nanotubes (CNTs) are investigated as a potential toughening agent for epoxy resins and carbon fibre reinforced composites, which can also enhance strength and elastic properties. More specifically, the toughening mechanisms of CNTs are investigated theoretically and experimentally. The effect of aligned and randomly oriented carbon nanotubes (CNTs) on the fracture toughness of polymers was modelled using Elastic Plastic Fracture Mechanics. Toughening from CNT pull-out and rupture were considered, depending on the CNTs critical length. The model was used to identify the effect of CNTs geometrical and mechanical properties on the fracture toughness of CNT-modified epoxies. The modelling results showed that a uniform dispersion and alignment of a high volume fraction of CNTs normal to the crack growth plane would lead to the maximum fracture toughness enhancement. To achieve a uniform dispersion, the effect of processing on the dispersion of single walled and multi walled CNTs in epoxy resins was investigated. An instrumented optical microscope with a hot stage was used to quantify the evolution of the CNT dispersion during cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. The dispersion quality was then directly correlated to the fracture toughness of the modified resin. It was shown that the fine tuning of the ratio of epoxy resin, curing agent and CNT content was paramount to the improvement of the base resin fracture toughness. For the epoxy resin (MY0510 from Hexcel), an improvement of 38% was achieved with 0.3 wt

  16. Selective Template Wetting Routes to Hierarchical Polymer Films: Polymer Nanotubes from Phase-Separated Films via Solvent Annealing.

    PubMed

    Ko, Hao-Wen; Cheng, Ming-Hsiang; Chi, Mu-Huan; Chang, Chun-Wei; Chen, Jiun-Tai

    2016-03-01

    We demonstrate a novel wetting method to prepare hierarchical polymer films with polymer nanotubes on selective regions. This strategy is based on the selective wetting abilities of polymer chains, annealed in different solvent vapors, into the nanopores of porous templates. Phase-separated films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), two commonly used polymers, are prepared as a model system. After anodic aluminum oxide (AAO) templates are placed on the films, the samples are annealed in vapors of acetic acid, in which the PMMA chains are swollen and wet the nanopores of the AAO templates selectively. As a result, hierarchical polymer films containing PMMA nanotubes can be obtained after the AAO templates are removed. The distribution of the PMMA nanotubes of the hierarchical polymer films can also be controlled by changing the compositions of the polymer blends. This work not only presents a novel method to fabricate hierarchical polymer films with polymer nanotubes on selective regions, but also gives a deeper understanding in the selective wetting ability of polymer chains in solvent vapors.

  17. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    NASA Astrophysics Data System (ADS)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  18. Hierarchical multifunctional composites by conformally coating aligned carbon nanotube arrays with conducting polymer.

    PubMed

    Vaddiraju, Sreeram; Cebeci, Hülya; Gleason, Karen K; Wardle, Brian L

    2009-11-01

    A novel method for the fabrication of carbon nanotube (CNT)-conducting polymer composites is demonstrated by conformally coating extremely high aspect ratio vertically aligned-CNT (A-CNT) arrays with conducting polymer via oxidative chemical vapor deposition (oCVD). A mechanical densification technique is employed that allows the spacing of the A-CNTs to be controlled, yielding a range of inter-CNT distances between 20 and 70 nm. Using this morphology control, oCVD is shown to conformally coat 8-nm-diameter CNTs having array heights up to 1 mm (an aspect ratio of 10(5)) at all inter-CNT spacings. Three phase CNT-conducting polymer nanocomposites are then fabricated by introducing an insulating epoxy via capillary-driven wetting. CNT morphology is maintained during processing, allowing quantification of direction-dependent (nonisotropic) composite properties. Electrical conductivity occurs primarily along the CNT axial direction, such that the conformal conducting polymer has little effect on the activation energy required for charge conduction. In contrast, the conducting polymer coating enhanced the conductivity in the radial direction by lowering the activation energy required for the creation of mobile charge carriers, in agreement with variable-range-hopping models. The fabrication strategy introduced here can be used to create many multifunctional materials and devices (e.g., direction-tailorable hydrophobic and highly conducting materials), including a new four-phase advanced fiber composite architecture.

  19. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites

    NASA Astrophysics Data System (ADS)

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-01

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm-1 under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot ``hand'' were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to

  20. Multilayer Electroactive Polymer Composite Material

    NASA Technical Reports Server (NTRS)

    Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Park, Cheol (Inventor); Draughon, Gregory K. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  1. Polymer-Single Wall Carbon Nanotube Composites for Potential Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Park, C.; Ounaies, Z.; Watson, K. A.; Pawlowski, K.; Lowther, S. E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; St.Clair, T. L.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Polymer-single wall carbon nanotube (SWNT) composite films were prepared and characterized as part of an effort to develop polymeric materials with improved combinations of properties for potential use on future spacecraft. Next generation spacecraft will require ultra-lightweight materials that possess specific and unique combinations of properties such as radiation and atomic oxygen resistance, low solar absorptivity, high thermal emissitivity, electrical conductivity, tear resistance, ability to be folded and seamed, and good mechanical properties. The objective of this work is to incorporate sufficient electrical conductivity into space durable polyimides to mitigate static charge build-up. The challenge is to obtain this level of conductivity (10(exp -8) S/cm) without degrading other properties of importance, particularly optical transparency. Several different approaches were attempted to fully disperse the SWNTs into the polymer matrix. These included high shear mixing, sonication, and synthesizing the polymers in the presence of pre-dispersed SWNTs. Acceptable levels of conductivity were obtained at loading levels less than one tenth weight percent SWNT without significantly sacrificing optical properties. Characterization of the nanocomposite films and the effect of SWNT concentration and dispersion on the conductivity, solar absorptivity, thermal emissivity, mechanical and thermal properties were discussed. Fibers and non-woven porous mats of SWNT reinforced polymer nanocomposite were produced using electrospinning.

  2. Non-Conventional Carbon Nanotube Skeleton Reinforced Composites for Space Applications

    NASA Astrophysics Data System (ADS)

    Hepp, Felicitas; Pfeiffer, E. K.; Pereira, C.; Martins, M.; Liedtke, V.; Macho, C.; Aschenbrenner, O.; Forero, S.; Linke, S.; Masouras, A.; Vavouliotis, A.; Kostopoulos, V.; Wulz, H.-G.; Pambaguian, L.

    2014-06-01

    Carbon Nanotubes (CNT) embedded in composite materials like CFRP, polymers or ceramics, can improve specific performance characteristics such as e.g. electrical conductivity, mechanical fatigue and crack propagation, mechanical properties, alpha/epsilon values, PIM-reduction, EMC shielding, etc.CNT skeletons, also called Bucky papers and Bucky discs, are macroscopic aggregates of Carbon Nanotubes. These skeletons are used in composites with different matrices, namely metal, ceramic or polymer or directly used in CFRP composites.The aim is to increase the performance of composite space structures by increasing the material characteristics or provide composites with additional sensing abilities like structural health monitoring.

  3. MODELING FUNCTIONALLY GRADED INTERPHASE REGIONS IN CARBON NANOTUBE REINFORCED COMPOSITES

    NASA Technical Reports Server (NTRS)

    Seidel, G. D.; Lagoudas, D. C.; Frankland, S. J. V.; Gates, T. S.

    2006-01-01

    A combination of micromechanics methods and molecular dynamics simulations are used to obtain the effective properties of the carbon nanotube reinforced composites with functionally graded interphase regions. The multilayer composite cylinders method accounts for the effects of non-perfect load transfer in carbon nanotube reinforced polymer matrix composites using a piecewise functionally graded interphase. The functional form of the properties in the interphase region, as well as the interphase thickness, is derived from molecular dynamics simulations of carbon nanotubes in a polymer matrix. Results indicate that the functional form of the interphase can have a significant effect on all the effective elastic constants except for the effective axial modulus for which no noticeable effects are evident.

  4. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    PubMed

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  5. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring.

    PubMed

    He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao

    2018-04-26

    A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa −1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments.

  6. Stretchable and flexible thermoelectric polymer composites

    NASA Astrophysics Data System (ADS)

    Slobodian, P.; Riha, P.; Matyas, J.; Olejnik, R.

    2018-03-01

    Polymer composites were manufactured from pristine and oxidized multi-walled carbon nanotubes and ethylene-octene copolymer. The composites had thermoelectric properties and exhibit thermoelectric effect, that is, the conversion of temperature differences into electricity. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy of the multi-walled carbon nanotubes in ethylene-octene copolymer matrix showed that the oxidation with HNO3 or KMnO4 enhanced its p-type electrical conductivity and that the thermoelectric power increase was proportional to the formation of new oxygen-containing functional groups on the surface of carbon nanotubes.

  7. The Effect of Chemical Functionalization on Mechanical Properties of Nanotube/Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Frankland, S. J. V.; Gates, T. S.

    2003-01-01

    The effects of the chemical functionalization of a carbon nanotube embedded in a nanotube/polyethylene composite on the bulk elastic properties are presented. Constitutive equations are established for both functionalized and non-functionalized nanotube composites systems by using an equivalent-continuum modeling technique. The elastic properties of both composites systems are predicted for various nanotube lengths, volume fractions, and orientations. The results indicate that for the specific composite material considered in this study, most of the elastic stiffness constants of the functionalized composite are either less than or equal to those of the non-functionalized composite.

  8. Carbon nanotube/polymer composite coated tapered fiber for four wave mixing based wavelength conversion.

    PubMed

    Xu, Bo; Omura, Mika; Takiguchi, Masato; Martinez, Amos; Ishigure, Takaaki; Yamashita, Shinji; Kuga, Takahiro

    2013-02-11

    In this paper, we demonstrate a nonlinear optical device based on a fiber taper coated with a carbon nanotube (CNT)/polymer composite. Using this device, four wave mixing (FWM) based wavelength conversion of 10 Gb/s Non-return-to-zero signal is achieved. In addition, we investigate wavelength tuning, two photon absorption and estimate the effective nonlinear coefficient of the CNTs embedded in the tapered fiber to be 1816.8 W(-1)km(-1).

  9. Carbon nanotube polymer composites for photonic devices

    NASA Astrophysics Data System (ADS)

    Scardaci, V.; Rozhin, A. G.; Hennrich, F.; Milne, W. I.; Ferrari, A. C.

    2007-03-01

    We report the fabrication of high optical quality single wall carbon nanotube polyvinyl alcohol composites and their application in nanotube based photonic devices. These show a broad absorption of semiconductor tubes centred at ∼1.55 μm, the spectral range of interest for optical communications. The films are used as mode-lockers in an erbium doped fibre laser, achieving ∼700 fs mode-locked pulses. Raman spectroscopy shows no damage after a long time continuous laser operation.

  10. Method of making carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  11. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-28

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm(-1) under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot "hand" were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.

  12. New Insights on Subsurface Imaging of Carbon Nanotubes in Polymer Composites via Scanning Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.; hide

    2015-01-01

    Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.

  13. Characterizing SWCNT Dispersion in Polymer Composites

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Kim, Jae-Woo; Gibbons, Luke; Park, Cheol

    2007-01-01

    The new wave of single wall carbon nanotube (SWCNT) infused composites will yield structurally sound multifunctional nanomaterials. The SWCNT network requires thorough dispersion within the polymer matrix in order to maximize the benefits of the nanomaterial. However, before any nanomaterials can be used in aerospace applications a means of quality assurance and quality control must be certified. Quality control certification requires a means of quantification, however, the measurement protocol mandates a method of seeing the dispersion first. We describe here the new tools that we have developed and implemented to first be able to see carbon nanotubes in polymers and second to measure or quantify the dispersion of the nanotubes.

  14. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring

    PubMed Central

    He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao

    2018-01-01

    A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa−1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments. PMID:29701643

  15. Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites.

    PubMed

    Liao, Quanwen; Liu, Zhichun; Liu, Wei; Deng, Chengcheng; Yang, Nuo

    2015-11-10

    The ultra-low thermal conductivity of bulk polymers may be enhanced by combining them with high thermal conductivity materials such as carbon nanotubes. Different from random doping, we find that the aligned carbon nanotube-polyethylene composites has a high thermal conductivity by non-equilibrium molecular dynamics simulations. The analyses indicate that the aligned composite not only take advantage of the high thermal conduction of carbon nanotubes, but enhance thermal conduction of polyethylene chains.

  16. Buckling of Carbon Nanotube-Reinforced Polymer Laminated Composite Materials Subjected to Axial Compression and Shear Loadings

    NASA Technical Reports Server (NTRS)

    Riddick, J. C.; Gates, T. S.; Frankland, S.-J. V.

    2005-01-01

    A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linking of intrinsic, nanoscale-material definitions to finite scale-structural properties is achieved via a hierarchical approach in which the elastic properties of the reinforced layers are predicted by an equivalent continuum modeling technique. Solutions for infinitely long symmetrically laminated nanotube-reinforced laminates with simply-supported or clamped edges subjected to axial compression and shear loadings are presented. The study focuses on the influence of nanotube volume fraction, length, orientation, and functionalization on finite-scale laminate response. Results indicate that for the selected laminate configurations considered in this study, angle-ply laminates composed of aligned, non-functionalized carbon nanotube-reinforced lamina exhibit the greatest buckling resistance with 1% nanotube volume fraction of 450 nm uniformly-distributed carbon nanotubes. In addition, hybrid laminates were considered by varying either the volume fraction or nanotube length through-the-thickness of a quasi-isotropic laminate. The ratio of buckling load-to-nanotube weight percent for the hybrid laminates considered indicate the potential for increasing the buckling efficiency of nanotube-reinforced laminates by optimizing nanotube size and proportion with respect to laminate configuration.

  17. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Smith, Jr., Joseph G. (Inventor); Connell, John W. (Inventor); Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  18. Sequestration of Single-Walled Carbon Nanotubes in a Polymer

    NASA Technical Reports Server (NTRS)

    Bley, Richard A.

    2007-01-01

    Sequestration of single-walled carbon nanotubes (SWCNs) in a suitably chosen polymer is under investigation as a means of promoting the dissolution of the nanotubes into epoxies. The purpose of this investigation is to make it possible to utilize SWCNs as the reinforcing fibers in strong, lightweight epoxy-matrix/carbon-fiber composite materials. SWCNs are especially attractive for use as reinforcing fibers because of their stiffness and strength-to-weight ratio: Their Young s modulus has been calculated to be 1.2 TPa, their strength has been calculated to be as much as 100 times that of steel, and their mass density is only one-sixth that of steel. Bare SWCNs cannot be incorporated directly into composite materials of the types envisioned because they are not soluble in epoxies. Heretofore, SWCNS have been rendered soluble by chemically attaching various molecular chains to them, but such chemical attachments compromise their structural integrity. In the method now under investigation, carbon nanotubes are sequestered in molecules of poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) [PmPV]. The strength of the carbon nanotubes is preserved because they are not chemically bonded to the PmPV. This method exploits the tendency of PmPV molecules to wrap themselves around carbon nanotubes: the wrapping occurs partly because there exists a favorable interface between the conjugated face of a nanotube and the conjugated backbone of the polymer and partly because of the helical molecular structure of PmPV. The constituents attached to the polymer backbones (the side chains) render the PmPV-wrapped carbon nanotubes PmPV soluble in organic materials that, in turn, could be used to suspend the carbon nanotubes in epoxy precursors. At present, this method is being optimized: The side chains on the currently available form of PmPV are very nonpolar and unable to react with the epoxy resins and/or hardeners; as a consequence, SWCN/PmPV composites have been

  19. The Enhancement of Composite Scarf Joint Interface Strength Through Carbon Nanotube Reinforcement

    DTIC Science & Technology

    2007-06-01

    includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT ) with varying length, purity, and concentration levels along the...OF PAGES 106 14. SUBJECT TERMS Carbon Nanotubes, CNT, SWCNT, MWCNT , Bamboo, Polymer Composite, Joint Strength Enhancement, Reinforcement 16...variables concerning the carbon nanotube application. The testing includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT

  20. Molecular dynamics simulation aiming at interfacial characteristics of polymer chains on nanotubes with different layers

    NASA Astrophysics Data System (ADS)

    Li, Kun; Gu, Boqin; Zhu, Wanfu

    2017-03-01

    A molecular dynamics (MD) simulations study is performed on multiwalled carbon nanotubes (MWNTs)/acrylonitrile-butadiene rubber (NBR) composites. The physisorption and interfacial characteristics between the various MWNTs and polymer macromolecular chains are identified. The effects of nanotube layers on the nanotubes/polymer interactions are examined. Each of the situation result and surface features is characterized by binding energy (Eb). It is shown that the binding energy (Eb) increase with the number of layers.

  1. Self-healing in single and multiple fiber(s) reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Woldesenbet, E.

    2010-06-01

    You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  2. Computational Investigation of Graphene-Carbon Nanotube-Polymer Composite

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv; Roth, Michael; Todde, Guido; Subramanian, Gopinath; Shukla, Manoj; Univ of Southern Mississippi Collaboration; US Army Engineer Research; Development Center 3909 Halls Ferry Road Vicksburg, MS 39180, USA Collaboration

    Graphene is a single atom thick two dimensional carbon sheet where sp2 -hybridized carbon atoms are arranged in a honeycomb structure. The functionalization of graphene and carbon nanotubes (CNTs) with polymer is a route for developing high performance nanocomposite materials. We study the interfacial interactions among graphene, CNT, and Nylon 6 polymer using computational methods based on density functional theory (DFT) and empirical force-field. Our DFT calculations are carried out using Quantum-ESPRESSO electronic structure code with van der Waals functional (vdW-DF2), whereas the empirical calculations are performed using LAMMPS with the COMPASS force-field. Our results demonstrated that the interactions between (8,8) CNT and graphene, and between CNT/graphene and Nylon 6 consist mostly of van der Waals type. The computed Young's moduli indicated that the mechanical properties of carbon nanostructures are enhanced by their interactions with polymer. The presence of Stone-Wales (SW) defects lowered the Young's moduli of carbon nanostructures.

  3. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Park, Cheol (Inventor); Bryant, Robert George (Inventor); Lowther, Sharon E. (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  4. Direct observation of hole transfer from semiconducting polymer to carbon nanotubes.

    PubMed

    Lan, Fei; Li, Guangyong

    2013-05-08

    Carbon nanotubes have been proven to play significant roles in polymer-based solar cells. However, there is intensive debate on whether carbon nanotube behaves as a donor or acceptor in the semiconducting polymer:carbon nanotube composite. In this paper, we report a direct observation via Kelvin probe force microscopy (KPFM) that single walled carbon nanotubes (SWNTs) behave as hole transporting channels in poly(3-hexylthiophene-2,5-diyl) (P3HT)/SWNT heterojunctions. By comparing the surface potential (SP) change of SWNT in dark and under illumination, we observed that electrons are blocked from SWNT while holes are transferred to SWNT. This observation can be well-explained by our proposed band alignment model of P3HT/SWNT heterojunction. The finding is further verified by hole mobility measurement using the space charge limited current (SCLC) method. SCLC results indicate that the existence of small amount of SWNT (wt 0.5%) promotes device hole mobility to around 15-fold, indicating SWNT act as hole transfer channel. Our finding of hole transporting behavior of SWNT in P3HT/SWNT blend will provide a useful guidance for enhancing the performance of polymer solar cells by carbon nanotubes.

  5. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  6. Multifunctional Nanotube Polymer Nanocomposites for Aerospace Applications: Adhesion between SWCNT and Polymer Matrix

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Wise, Kristopher E.; Kang, Jin Ho; Kim, Jae-Woo; Sauti, Godfrey; Lowther, Sharon E.; Lillehei, Peter T.; Smith, Michael W.; Siochi, Emilie J.; Harrison, Joycelyn S.; hide

    2008-01-01

    Multifunctional structural materials can enable a novel design space for advanced aerospace structures. A promising route to multifunctionality is the use of nanotubes possessing the desired combination of properties to enhance the characteristics of structural polymers. Recent nanotube-polymer nanocomposite studies have revealed that these materials have the potential to provide structural integrity as well as sensing and/or actuation capabilities. Judicious selection or modification of the polymer matrix to promote donor acceptor and/or dispersion interactions can improve adhesion at the interface between the nanotubes and the polymer matrix significantly. The effect of nanotube incorporation on the modulus and toughness of the polymer matrix will be presented. Very small loadings of single wall nanotubes in a polyimide matrix yield an effective sensor material that responds to strain, stress, pressure, and temperature. These materials also exhibit significant actuation in response to applied electric fields. The objective of this work is to demonstrate that physical properties of multifunctional material systems can be tailored for specific applications by controlling nanotube treatment (different types of nanotubes), concentration, and degree of alignment.

  7. Polymer functionalized single-walled carbon nanotube composites and semi-fluorinated quaternary ammonium polymer colloids and coatings

    NASA Astrophysics Data System (ADS)

    Paul, Abhijit

    Scope and Method of Study: Current study focused on understanding of "wetting" and "dewetting" phenomena between surfaces of single-walled carbon nanotubes (SWCNT) which are lightly grafted with polymer chains by reversible-deactivation radical polymerization, when they are mixed with matrix chains of the same architecture as grafts. Effects of grafts to matrix chain lengths on SWCNT dispersion in matrix polymers were studied by measuring electrical conductivity, glass transition temperature, and storage and loss moduli of nanocomposites. Another area of work was to design semi-fluorinated copolymers with core-shell morphology by emulsion polymerization, study their catalytic activities for hydrolyses of Paraoxon, a toxic insecticide, in the forms of both colloidal dispersions and films, and to characterize the surfaces of the films by atomic force microscopy and by dynamic contact angle measurements. Findings and Conclusions: The glass transition temperature ( Tg) of polystyrene (PS) filled with SWCNT grafted with PS of different lengths increased from 99 to 109 °C at 6 wt% of SWCNT followed by a plateau. The heat capacity (DeltaCp ) at Tg continued to decrease only for the smallest chain length grafted PS nanocomposites. SWCNT/PS nanocomposites had low electrical conductivity and showed no percolation threshold due to the thick polymer coatings. A key finding was that the SWCNT surface can accommodate only a fixed numbers of styrene units. Similar results on change in Tg were obtained for SWCNT/PMMA nanocomposites when molecular weight of matrix (Mmatrix) ≥ molecular weight of grafts (Mgraft). No change in DeltaCp was observed for SWCNT/PMMA nanocomposites. "Wetting" to "dewetting" occurred Mmatrix/ Mgraft ≈ 1. For Mmatrix > Mgraft, electrical conductivity of nanocomposites reached the value of 10-9 S cm-1 at 1.0 wt% nanotube loading and had percolation threshold of electrical conductivity at ˜0.25 wt% SWCNT. Raman and UV-vis-NIR data confirmed that

  8. CNF Re-Inforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Lake, Max L.; Tibbetts, Gary G.; Glasgow, D. Gerald

    2004-09-01

    In properties of physical size, performance improvement, and production cost, carbon nanofiber (CNF) lies in a spectrum of materials bounded by carbon black, fullerenes, and single wall to multi-wall carbon nanotubes on one end and continuous carbon fiber on the other. Results show promise for use of CNF for modified electrical conductivity of polymer composites. Current compounding efforts focus on techniques for nanofiber dispersion designed to retain nanofiber length, including de-bulking methods and low shear melt processing. Heat treatment of CNF as a postproduction process has also been evaluated for its influence on electrical properties of CNF-reinforced polymer composites.

  9. Functionalized Carbon Nanotube-Polymer Composites and Interactions with Radiation

    NASA Technical Reports Server (NTRS)

    Shofner, Meisha (Inventor); Pulikkathara, Merlyn X. (Inventor); Wilkins, Richard (Inventor); Barrera, Enrique V. (Inventor); Vaidyanathan, Ranjii (Inventor)

    2014-01-01

    The present invention involves the interaction of radiation with functionalized carbon nanotubes that have been incorporated into various host materials, particularly polymeric ones. The present invention is directed to chemistries, methods, and apparatuses which exploit this type of radiation interaction, and to the materials which result from such interactions. The present invention is also directed toward the time dependent behavior of functionalized carbon nanotubes in such composite systems.

  10. Functionalized carbon nanotube-polymer composites and interactions with radiation

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V. (Inventor); Wilkins, Richard (Inventor); Shofner, Meisha (Inventor); Pulikkathara, Merlyn X. (Inventor); Vaidyanathan, Ranjii (Inventor)

    2008-01-01

    The present invention involves the interaction of radiation with functionalized carbon nanotubes that have been incorporated into various host materials, particularly polymeric ones. The present invention is directed to chemistries, methods, and apparatuses which exploit this type of radiation interaction, and to the materials which result from such interactions. The present invention is also directed toward the time dependent behavior of functionalized carbon nanotubes in such composite systems.

  11. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    PubMed Central

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo. PMID:24707488

  12. Carbon nanotubes reinforced composites for biomedical applications.

    PubMed

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  13. Characterization and modeling of viscoelastic behavior of carbon nanotube reinforced polymers: The influence of interphase and nanotube morphology

    NASA Astrophysics Data System (ADS)

    Liu, Hua

    The addition of nanoparticles into polymer materials has been observed to dramatically change the mechanical, thermal, electrical, and diffusion properties of the host polymers, promising a novel class of polymer matrix composite materials with superior properties and added functionalities that are ideal candidates in many applications, including aerospace, automobile, medical devices, and sporting goods. Understanding the behavior and underlying mechanisms of these polymer nanocomposites is critical. The research work presented in this dissertation represents one of the initial efforts in the long journey pursuing the ultimate understanding of nanoparticle reinforced polymer systems. Particular focal points are experimental evaluation and the development of appropriate modeling methods to capture the influence of the interphase on the overall viscoelastic behavior of carbon nanotube reinforced polymer nanocomposites. The first portion of this dissertation study investigates the viscoelastic behavior of MWCNT based PMMA nanocomposites, which complements our previous study of SWCNT/PMMA systems to confirm functionalization of nanotubes as an effective way to manipulate the interaction between nanotube and polymers and control the properties of the interphase region forming around the nanotubes and consequently change the overall performance of nanotube based polymer nanocomposites. In the second portion of this dissertation, we present a novel hybrid numerical-analytical modeling method that is capable of predicting viscoelastic behavior of multiphase polymer nanocomposites, in which the nanoscopic fillers can assume complex configurations. By combining the finite element technique and a micromechanical approach (particularly, the Mori-Tanaka method) with local phase properties, this method operates at low computational cost and effectively accounts for the influence of the interphase as well as in situ nanoparticle morphology. This modeling method is implemented

  14. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R.

    2008-10-23

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube vanmore » der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-{pi}' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-{pi}' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.« less

  15. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R.

    2008-10-01

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of `double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through `cation-π' interactions during melt-mixing leading to percolative `network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of `network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides `cation-π' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.

  16. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.

    PubMed

    Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin; Tagliaferro, Alberto; Balandin, Alexander A

    2013-06-25

    Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.

  17. Thermal Properties of Hybrid Carbon Nanotube/Carbon Fiber Polymer

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Cano, Roberto J.; Luong, Hoa; Ratcliffe, James G.; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    Carbon fiber reinforced polymer (CFRP) composites possess many advantages for aircraft structures over conventional aluminum alloys: light weight, higher strength- and stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low thermal and electrical conductivities of CFRP composites are deficient in providing structural safety under certain operational conditions such as lightning strikes. One possible solution to these issues is to interleave carbon nanotube (CNT) sheets between conventional carbon fiber (CF) composite layers. However, the thermal and electrical properties of the orthotropic hybrid CNT/CF composites have not been fully understood. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel (Registered Trademark) IM7/8852 prepreg. The CNT sheets were infused with a 5% solution of a compatible epoxy resin prior to composite fabrication. Orthotropic thermal and electrical conductivities of the hybrid polymer composites were evaluated. The interleaved CNT sheets improved the in-plane thermal conductivity of the hybrid composite laminates by about 400% and the electrical conductivity by about 3 orders of magnitude.

  18. Dispersions of Carbon nanotubes in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  19. Cycling performance of lithium metal polymer cells assembled with ionic liquid and poly(3-methyl thiophene)/carbon nanotube composite cathode

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Won; Sivakkumar, S. R.; MacFarlane, Douglas R.; Forsyth, Maria; Sun, Yang-Kook

    A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF 4) and LiBF 4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF 4. A porous poly(vinylidene fluoride- co-hexafluoropropylene) (P(VdF- co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage-power sources with enhanced safety.

  20. A High-Performance Nanocomposite Material Based on Functionalized Carbon Nanotube and Polymer for Gas Sensing Applications

    NASA Astrophysics Data System (ADS)

    Wang, L. C.; Tang, K. T.; Kuo, C. T.; Yang, S. R.; Sung, Yuh; Hsu, H. L.; Jehng, J. M.

    2009-05-01

    The aim of this study is to develop a novel chemical gas sensing nanocomposite material. The traditional use for carbon nanotube in gas sensing polymer is to increase the composite's conductivity. However, we added functionalized carbon nanotube to fill the free volume of the sensing polymer films and enhance the gas absorption/desorption response time of these nanocomposites. These sensing materials were prepared by mixing functionalized multiwalled carbon nanotubes (MWNTs) and Poly (n, n dimethylamino propylsilsequioxane) SXNR polymer. These new materials were coated on the Surface Acoustic Wave (SAW) device, which is expected to increase its sensitivity in analyzing specific classes of vapors. The proposed materials showed an enhanced sensitivity upon exposure to ethanol and dimethyl methylphosphonate (Dmmp) vapors. Additionally, the performances of our nanocomposite film are much higher than those polymers without functionalized carbon nanotubes.

  1. Imaging latex–carbon nanotube composites by subsurface electrostatic force microscopy

    DOE PAGES

    Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee; ...

    2016-09-08

    Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface.more » Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.« less

  2. Deformation and Failure of a Multi-Wall Carbon Nanotube Yarn Composite

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.

    2008-01-01

    Forests of multi-walled carbon nanotubes can be twisted and manipulated into continuous fibers or yarns that exhibit many of the characteristics of traditional textiles. Macro-scale analysis and test may provide strength and stiffness predictions for a composite composed of a polymer matrix and low-volume fraction yarns. However, due to the nano-scale of the carbon nanotubes, it is desirable to use atomistic calculations to consider tube-tube interactions and the influence of simulated twist on the effective friction coefficient. This paper reports laboratory test data on the mechanical response of a multi-walled, carbon nanotube yarn/polymer composite from both dynamic and quasi-static tensile tests. Macroscale and nano-scale analysis methods are explored and used to define some of the key structure-property relationships. The measured influence of hot-wet aging on the tensile properties is also reported.

  3. Low temperature hall effect investigation of conducting polymer-carbon nanotubes composite network.

    PubMed

    Bahrami, Afarin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat; Behzad, Kasra; M Abdi, Mahnaz; Din, Fasih Ud

    2012-11-14

    Polypyrrole (PPy) and polypyrrole-carboxylic functionalized multi wall carbon nanotube composites (PPy/f-MWCNT) were synthesized by in situ chemical oxidative polymerization of pyrrole on the carbon nanotubes (CNTs). The structure of the resulting complex nanotubes was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The effects of f-MWCNT concentration on the electrical properties of the resulting composites were studied at temperatures between 100 K and 300 K. The Hall mobility and Hall coefficient of PPy and PPy/f-MWCNT composite samples with different concentrations of f-MWCNT were measured using the van der Pauw technique. The mobility decreased slightly with increasing temperature, while the conductivity was dominated by the gradually increasing carrier density.

  4. Hypervelocity Impact Studies of Carbon Nanotubes and Fiber-Reinforced Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Khatiwada, Suman

    This dissertation studies the hypervelocity impact characteristics of carbon nanotubes (CNTs), and investigates the use of CNTs as reinforcements in ultra-high molecular weight polyethylene (UHMWPE) fiber composites for hypervelocity impact shielding applications. The first part of this dissertation is aimed at developing an understanding of the hypervelocity impact response of CNTs--at the nanotube level. Impact experiments are designed with CNTs as projectiles to impact and crater aluminum plates. The results show that carbon nanotubes are resistant to the high-energy shock pressures and the ultra-high strain loading during hypervelocity impacts. Under our experimental conditions, single-walled carbon nanotubes survive impacts up to 4.07 km/s, but transform to graphitic ribbons and nanodiamonds at higher impact velocities. The nanodiamonds are metastable and transform to onion-like nanocarbon over time. Double-walled carbon nanotubes retain their form and structure even at impacts over 7 km/s. Higher hypervelocity impact resistance of DWCNTs could be attributed to the absorption of additional energy due to relative motion between the layers in the transverse direction of these coaxial nanotubes. The second part of this dissertation researches the effect of reinforcement of carbon nanotubes and their buckypapers on the hypervelocity impact shielding properties of UHMWPE-fiber composites arranged in a Whipple Shield configuration (a shield design used for the protection of the international space station from hypervelocity impacts by orbital debris). Composite laminates were prepared via compression molding and nanotube buckypapers via vacuum filtration. Dispersed nanotubes were introduced to the composite laminates via direct spraying onto the fabric prior to composite processing. The experimental results show that nanotubes dispersed in polymer matrix do not affect the hypervelocity impact resistance of the composite system. Nanotube buckypapers, however, improve

  5. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  6. Heteroporphyrin nanotubes and composites

    DOEpatents

    Shelnutt, John A.; Medforth, Craig J.; Wang, Zhongchun

    2006-11-07

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  7. Heteroporphyrin nanotubes and composites

    DOEpatents

    Shelnutt, John A [Tijeras, NM; Medforth, Craig J [Winters, CA; Wang, Zhongchun [Albuquerque, NM

    2007-05-29

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  8. Conducting nanotubes or nanostructures based composites, method of making them and applications

    NASA Technical Reports Server (NTRS)

    Gupta, Mool C. (Inventor); Yang, Yonglai (Inventor); Dudley, Kenneth L. (Inventor); Lawrence, Roland W. (Inventor)

    2013-01-01

    An electromagnetic interference (EMI) shielding material includes a matrix of a dielectric or partially conducting polymer, such as foamed polystyrene, with carbon nanotubes or other nanostructures dispersed therein in sufficient concentration to make the material electrically conducting. The composite is formed by dispersing the nanotube material in a solvent in which the dielectric or partially conducting polymer is soluble and mixing the resulting suspension with the dielectric or partially conducting polymer. A foaming agent can be added to produce a lightweight foamed material. An organometallic compound can be added to enhance the conductivity further by decomposition into a metal phase.

  9. Purification of boron nitride nanotubes via polymer wrapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jin-Hyuk; Kim, Jaewoo; WCI Quantum Beam based Radiation Research Center, Korea Atomic Energy Research Institute, 1045 Daedukdaero, Daejeon 305-353

    2013-03-15

    Highlights: ► Surface modification of boron nitride nanotubes using polymeric materials. ► Surface-modified BNNT was purified with a simple dilution-centrifugation step. ► Surface-modified BNNT can be directly used for polymer composite fabrication ► Degree of purification was analyzed by Raman spectroscopy. - Abstract: Boron nitride nanotubes (BNNT) synthesized by a ball milling-annealing were surface-modified using three different types of polymeric materials. Those materials were chosen depending on future applications especially in polymer nanocomposite fabrications. We found that the surface-modified BNNT can be purified with a simple dilution-centrifugation step, which would be suitable for large-scale purification. Degree of purification was monitoredmore » by means of the center peak position and FWHM of E{sub 2g} mode of BNNT in Raman spectra. As the purification of BNNT develops, the peak position was up-shifted while FWHM of the peak was narrowed.« less

  10. Flexible Strain Sensors Fabricated by Meniscus-Guided Printing of Carbon Nanotube-Polymer Composites.

    PubMed

    Wajahat, Muhammad; Lee, Sanghyeon; Kim, Jung Hyun; Chang, Won Suk; Pyo, Jaeyeon; Cho, Sung Ho; Seol, Seung Kwon

    2018-06-13

    Printed strain sensors have promising potential as a human-machine interface (HMI) for health-monitoring systems, human-friendly wearable interactive systems, and smart robotics. Herein, flexible strain sensors based on carbon nanotube (CNT)-polymer composites were fabricated by meniscus-guided printing using a CNT ink formulated from multiwall nanotubes (MWNTs) and polyvinylpyrrolidone (PVP); the ink was suitable for micropatterning on nonflat (or curved) substrates and even three-dimensional structures. The printed strain sensors exhibit a reproducible response to applied tensile and compressive strains, having gauge factors of 13.07 under tensile strain and 12.87 under compressive strain; they also exhibit high stability during ∼1500 bending cycles. Applied strains induce a contact rearrangement of the MWNTs and a change in the tunneling distance between them, resulting in a change in the resistance (Δ R/ R 0 ) of the sensor. Printed MWNT-PVP sensors were used in gloves for finger movement detection; these can be applied to human motion detection and remote control of robotic equipment. Our results demonstrate that meniscus-guided printing using CNT inks can produce highly flexible, sensitive, and inexpensive HMI devices.

  11. Novel polyelectrolyte complex based carbon nanotube composite architectures

    NASA Astrophysics Data System (ADS)

    Razdan, Sandeep

    This study focuses on creating novel architectures of carbon nanotubes using polyelectrolytes. Polyelectrolytes are unique polymers possessing resident charges on the macromolecular chains. This property, along with their biocompatibility (true for most polymers used in this study) makes them ideal candidates for a variety of applications such as membranes, drug delivery systems, scaffold materials etc. Carbon nanotubes are also unique one-dimensional nanoscale materials that possess excellent electrical, mechanical and thermal properties owing to their small size, high aspect ratio, graphitic structure and strength arising from purely covalent bonds in the molecular structure. The present study tries to investigate the synthesis processes and material properties of carbon nanotube composites comprising of polyelectrolyte complexes. Carbon nanotubes are dispersed in a polyelectrolyte and are induced into taking part in a complexation process with two oppositely charged polyelectrolytes. The resulting stoichiometric precipitate is then drawn into fiber form and dried as such. The material properties of the carbon nanotube fibers were characterized and related to synthesis parameters and material interactions. Also, an effort was made to understand and predict fiber morphology resulting from the complexation and drawing process. The study helps to delineate the synthesis and properties of the said polyelectrolyte complex-carbon nanotube architectures and highlights useful properties, such as electrical conductivity and mechanical strength, which could make these structures promising candidates for a variety of applications.

  12. Synthesis and applications of titania nanotubes: Drug delivery and ionomer composites

    NASA Astrophysics Data System (ADS)

    Kulkarni, Harsha Prabhakar

    , nanotube-polymer conjugates with nanotubes as reinforcing structures in a polymer matrix with improved mechanical properties are equally promising for structural applications. Nanotubes are used as reinforcing structures in Surlyn, a polyethylene-co-methacrylic acid polymer containing ions. When cooled from the melt, Surlyn shows strong aging effects on mechanical properties over periods of several days to months. Structures in the matrix of the polymer which form with time are responsible for these aging effects on mechanical properties. Aging at short times after cooling from the melt reveal subtle contributions from these structures not fully formed and mechanical properties not fully recovered. Nanotubes are used as reinforcing structures to improve the mechanical properties at short aging times, a property desired for high temperature applications demanding a quick recovery of mechanical properties. A unique Atomic Force Microscope (AFM) based Local Thermal Analysis (LTA) probe is used to study the mechanical properties of Surlyn and Nanotube-Surlyn composite. Nanotube-Surlyn composites show superior mechanical properties at both short and long aging times after cooling from the melt, as the structures in the matrix continue to form at long aging times.

  13. Effects of vacancy defects on the interfacial shear strength of carbon nanotube reinforced polymer composite.

    PubMed

    Chowdhury, Sanjib Chandra; Okabe, Tomonaga; Nishikawa, Masaaki

    2010-02-01

    We investigate the effects of the vacancy defects (i.e., missing atoms) in carbon nanotubes (CNTs) on the interfacial shear strength (ISS) of the CNT-polyethylene composite with the molecular dynamics simulation. In the simulation, the crystalline polyethylene matrix is set up in a hexagonal array with the polymer chains parallel to the CNT axis. Vacancy defects in the CNT are introduced by removing the corresponding atoms from the pristine CNT (i.e., CNT without any defect). Three patterns of vacancy defects with three different sizes are considered. Two types of interfaces, with and without cross-links between the CNT and the matrix are also considered here. Polyethylene chains are used as cross-links between the CNT and the matrix. The Brenner potential is used for the carbon-carbon interaction in the CNT, while the polymer is modeled by a united-atom potential. The nonbonded van der Waals interaction between the CNT and the polymer matrix and within the polymer matrix itself is modeled with the Lennard-Jones potential. To determine the ISS, we conduct the CNT pull-out from the polymer matrix and the ISS has been estimated with the change of total potential energy of the CNT-polymer system. The simulation results reveal that the vacancy defects significantly influence the ISS. Moreover, the simulation clarifies that CNT breakage occurs during the pull-out process for large size vacancy defect which ultimately reduces the reinforcement.

  14. On the Interfacial Properties of Polymers/Functionalized Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Ajori, S.

    2016-06-01

    Molecular dynamics (MD) simulations is used to study the adsorption of polyethylene (PE) and poly(ethylene oxide) (PEO) on the functionalized single-walled carbon nanotubes (SWCNTs). The effects of functionalization factor weight percent on the interaction energies of polymer chains with nanotubes are studied. Besides, the influences of different functionalization factors on the SWCNT/polymer interactions are investigated. It is shown that for both types of polymer chains, the largest interaction energies associates with the random O functionalized nanotubes. Besides, increasing temperature results in increasing the nanotube/polymer interaction energy. Considering the final shapes of adsorbed polymer chains on the SWCNTs, it is observed that the adsorbed conformations of PE chains are more contracted than those of PEO chains.

  15. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    DOE PAGES

    Han, Catherine Y.; Xiao, Zhi-Li; Wang, H. Hau; ...

    2009-01-01

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbonmore » nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.« less

  16. Nanotube/Quantum Dot-Polymer Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Raffaelle, Ryne P.; Landi, Brian J.; Castro, Stephanie L.

    2005-01-01

    Single wall carbon nanotubes used or this study were synthesized using the pulse laser vaporization technique. The as-produced SWNTs were collected from the condensed region on the quartz tube outside the furnace and purified by modification of the previously reported procedure. Preparation of the SWNT-P3OT composite solutions was performed using a series of mixing and sonication steps as previously demonstrated for other SWNT-polymer systems. Device fabrication involved the use of commercially-obtained, high quality (i.e., less than 10 W/sq.) ITO-coated polyethylene terapthalate (PET) substrates. Initially, an intrinsic layer of pristine P3OT is spray deposited (approx. 1-2 mL of the 15 mg/mL solution) onto the masked, 1 sq in. active area of the substrate. This is followed with spray deposition of the SWNT-P3OT composite solutions at similar volumes. As seen completion of the solar cell occurs when aluminum contacts (typical thicknesses of l000A) are applied to the IT0 and SWNT-P3OT composite film layers. The homogeneous distribution of SWNTs in a polymer matrix is dependent upon the ability of the polymer chain to associate with the SWNT superstructure. Stable composite dispersions of 0.1 % and 1.0% w/w SWNTs in P3OT were produced and analyzed in this study. Optical spectroscopy was conducted to observe the SWNT doping level effects on the absorption properties and infer potential electronic interactions between dopant and polymer. Shown is an overlay of these spectra where the pristine P3OT shows strong optical absorption at energies less than 2 eV. As expected, variation in absorption properties for the SWNT-P3OT composites is observed as the doping level increases. Through modification of the SWNT doping level in the polymer, it is possible to alter the absorption pattern of these composite materials. In fact, at these relatively low doping levels, the P3OT shows a significant enhancement in absorption through the near-IR and visible regions. The gray curve

  17. Piezoelectric Nanoparticle-Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  18. Production and Characterization of Carbon Nanotubes and Nanotube-Based Composites

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel; Arepalli, Sivaram; Holmes, William; Gorelik, Olga; Files, Brad; Scott, Carl; Santos, Beatrice; Mayeaux, Brian; Victor, Joe

    1999-01-01

    up. We are also working on necessary purification of nanotubes. Applications of nanotubes are in such various fields as lightweight composites, molecular electronics, energy storage (electrodes in Li ion batteries), flat panel displays, conductive polymers, etc. JSC nanotube team is focused on development of lightweight materials. We work on the injection thermoset epoxies reinforced with nanotubes. Early results show good wetting of nanotube surface with epoxy, which is very important. More research will be possible as more nanotubes become available.

  19. High Volume Fraction Carbon Nanotube Composites for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Siochi, E. J.; Kim, J.-W.; Sauti, G.; Cano, R. J.; Wincheski, R. A.; Ratcliffe, J. G.; Czabaj, M.

    2016-01-01

    Reported mechanical properties of carbon nanotubes (CNTs) at the nanoscale suggest their potential to enable significantly lighter structures of interest for space applications. However, their utility depends on the retention of these properties in bulk material formats that permit practical fabrication of large structures. This presentation summarizes recent progress made to produce carbon nanotube composites with specific tensile properties that begin to rival those of carbon fiber reinforced polymer composites. CNT content in these nanocomposites was greater than 70% by weight. Tested nanocomposite specimens were fabricated from kilometers or tens of square meters of CNT, depending on the starting material format. Processing methods to yield these results, and characterization and testing to evaluate the performance of these composites will be discussed. The final objective is the demonstration of a CNT composite overwrapped pressure vessel to be flight tested in the Fall of 2016.

  20. Tungsten Disulfide Nanotubes Reinforced Biodegradable Polymers for Bone Tissue Engineering

    PubMed Central

    Lalwani, Gaurav; Henslee, Allan M.; Farshid, Behzad; Parmar, Priyanka; Lin, Liangjun; Qin, Yi-Xian; Kasper, F. Kurtis; Mikos, Antonios G.; Sitharaman, Balaji

    2013-01-01

    In this study, we have investigated the efficacy of inorganic nanotubes as reinforcing agents to improve the mechanical properties of poly(propylene fumarate) (PPF) composites as a function of nanomaterial loading concentration (0.01-0.2 wt%). Tungsten disulfide nanotubes (WSNTs) were used as reinforcing agents in the experimental groups. Single- and multi- walled carbon nanotubes (SWCNTs and MWCNTs) were used as positive controls, and crosslinked PPF composites were used as baseline control. Mechanical testing (compression and three-point bending) shows a significant enhancement (up to 28-190%) in the mechanical properties (compressive modulus, compressive yield strength, flexural modulus, and flexural yield strength) of WSNT reinforced PPF nanocomposites compared to the baseline control. In comparison to positive controls, at various concentrations, significant improvements in the mechanical properties of WSNT nanocomposites were also observed. In general, the inorganic nanotubes (WSNTs) showed a better (up to 127%) or equivalent mechanical reinforcement compared to carbon nanotubes (SWCNTs and MWCNTs). Sol fraction analysis showed significant increases in the crosslinking density of PPF in the presence of WSNTs (0.01-0.2 wt%). Transmission electron microscopy (TEM) analysis on thin sections of crosslinked nanocomposites showed the presence of WSNTs as individual nanotubes in the PPF matrix, whereas SWCNTs and MWCNTs existed as micron sized aggregates. The trend in the surface area of nanostructures obtained by BET surface area analysis was SWCNTs > MWCNTs > WSNTs. The BET surface area analysis, TEM analysis, and sol fraction analysis results taken together suggest that chemical composition (inorganic vs. carbon nanomaterials), presence of functional groups (such as sulfide and oxysulfide), and individual dispersion of the nanomaterials in the polymer matrix (absence of aggregation of the reinforcing agent) are the key parameters affecting the mechanical

  1. Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite

    NASA Astrophysics Data System (ADS)

    Poduval, Radhika K.; Noimark, Sacha; Colchester, Richard J.; Macdonald, Thomas J.; Parkin, Ivan P.; Desjardins, Adrien E.; Papakonstantinou, Ioannis

    2017-05-01

    All-optical ultrasound transducers are promising for imaging applications in minimally invasive surgery. In these devices, ultrasound is transmitted and received through laser modulation, and they can be readily miniaturized using optical fibers for light delivery. Here, we report optical ultrasound transmitters fabricated by electrospinning an absorbing polymer composite directly onto the end-face of optical fibers. The composite coating consisting of an aqueous dispersion of multi-walled carbon nanotubes (MWCNTs) in polyvinyl alcohol was directly electrospun onto the cleaved surface of a multimode optical fiber and subsequently dip-coated with polydimethylsiloxane (PDMS). This formed a uniform nanofibrous absorbing mesh over the optical fiber end-face wherein the constituent MWCNTs were aligned preferentially along individual nanofibers. Infiltration of the PDMS through this nanofibrous mesh onto the underlying substrate was observed and the resulting composites exhibited high optical absorption (>97%). Thickness control from 2.3 μm to 41.4 μm was obtained by varying the electrospinning time. Under laser excitation with 11 μJ pulse energy, ultrasound pressures of 1.59 MPa were achieved at 1.5 mm from the coatings. On comparing the electrospun ultrasound transmitters with a dip-coated reference fabricated using the same constituent materials and possessing identical optical absorption, a five-fold increase in the generated pressure and wider bandwidth was observed. The electrospun transmitters exhibited high optical absorption, good elastomer infiltration, and ultrasound generation capability in the range of pressures used for clinical pulse-echo imaging. All-optical ultrasound probes with such transmitters fabricated by electrospinning could be well-suited for incorporation into catheters and needles for diagnostics and therapeutic applications.

  2. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    NASA Astrophysics Data System (ADS)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  3. Polyethylene-Carbon Nanotube Composite Film Deposited by Cold Spray Technique

    NASA Astrophysics Data System (ADS)

    Ata, Nobuhisa; Ohtake, Naoto; Akasaka, Hiroki

    2017-10-01

    Carbon nanotubes (CNTs) are high-performance materials because of their superior electrical conductivity, thermal conductivity, and self-lubrication, and they have been studied for application to polymer composite materials as fillers. However, the methods of fabricating polymer composites with CNTs, such as injection molding, are too complicated for industrial applications. We propose a simple cold spray (CS) technique to obtain a polymer composite of polyethylene (PE) and CNTs. The composite films were deposited by CS on polypropylene and nano-porous structured aluminum substrates. The maximum thickness of the composite film was approximately 1 mm. Peaks at G and D bands were observed in the Raman spectra of the films. Scanning electron microscopy images of the film surface revealed that PE particles were melted by the acceleration gas and CNTs were attached with melted PE. The PE particles solidified after contact with the substrate. These results indicate that PE-CNT composite films were successfully deposited on polypropylene and nano-porous structured aluminum substrates by CS.

  4. Fabrication and flow characterization of vertically aligned carbon-nanotube/polymer membranes

    NASA Astrophysics Data System (ADS)

    Castellano, Richard; Meshot, Eric; Fornasiero, Francesco; Shan, Jerry

    2017-11-01

    Membranes with well-controlled nanopores are of interest for applications as diverse as chemical separations, water purification, and ``green'' power generation. In particular, membranes incorporating carbon nanotubes (CNTs) as through-pores have been shown to pass fluids at rates orders-of-magnitude faster than predicted by continuum theory. However, cost-effective and scalable solutions for fabricating such membranes are still an area of research. We describe a solution-based fabrication technique for creating polymer composite membranes from bulk nanotubes using electric-field alignment and electrophoretic concentration. We then focus on flow characterization of membranes with single-wall nanotube (SWNT) pores. We demonstrate membrane quality by size-exclusion testing and showing that the flowrate of different gasses scales as the square root of molecular weight. The gas flowrates and moisture-vapor-transmission rates are compared with theoretical predictions and with composite membranes -fabricated from CVD-grown SWNT arrays. Funded by DTRA Grant BA12PHM123.

  5. Very high laser-damage threshold of polymer-derived Si(B)CN-carbon nanotube composite coatings.

    PubMed

    Bhandavat, R; Feldman, A; Cromer, C; Lehman, J; Singh, G

    2013-04-10

    We study the laser irradiance behavior and resulting structural evolution of polymer-derived silicon-boron-carbonitride (Si(B)CN) functionalized multiwall carbon nanotube (MWCNT) composite spray coatings on copper substrate. We report a damage threshold value of 15 kWcm(-2) and an optical absorbance of 0.97 after irradiation. This is an order of magnitude improvement over MWCNT (1.4 kWcm(-2), 0.76), SWCNT (0.8 kWcm(-2), 0.65) and carbon paint (0.1 kWcm(-2), 0.87) coatings previously tested at 10.6 μm (2.5 kW CO2 laser) exposure. Electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy suggests partial oxidation of Si(B)CN forming a stable protective SiO2 phase upon irradiation.

  6. Enhancing Thermal Conductive Performance of Vertically Aligned Carbon Nanotube Array Composite by Pre-Annealing Treatment.

    PubMed

    Wang, Miao; Chen, Hong-Yuan; Xing, Ya-Juan; Wei, Han-Xing; Li, Qiang; Chen, Ming-Hai; Li, Qing-Wen; Xuan, Yi-Min

    2015-04-01

    Vertically aligned carbon nanotube (VACNT) array/polymer composite has already been recognized as a promising candidate for advanced thermal pad in thermal management of high-power electronic devices. However, the thermal conductive performance of this composite was limited by the quality of CNTs arrays. In this study, pre-annealing treatment was used to purify CNT arrays and improve thermal conductive performance of VACNT arrays/silicone composite. The thermal conductivity of the composite was enhanced by 34.52% and the thermal interface resistance was also reduced by 65.94% at a pre-annealing temperature of 490 °C for 5 min. The annealing process could remove some amorphous carbon and open the tips of CNTs. As a result, the interfacial compatibility in composite between carbon nanotube and polymer matrix was improved. The cyclic compression and tension performance of VACNT/S160 composite was investigated for further application.

  7. Method for producing nanowire-polymer composite electrodes

    DOEpatents

    Pei, Qibing; Yu, Zhibin

    2017-11-21

    A method for producing flexible, nanoparticle-polymer composite electrodes is described. Conductive nanoparticles, preferably metal nanowires or nanotubes, are deposited on a smooth surface of a platform to produce a porous conductive layer. A second application of conductive nanoparticles or a mixture of nanoparticles can also be deposited to form a porous conductive layer. The conductive layer is then coated with at least one coating of monomers that is polymerized to form a conductive layer-polymer composite film. Optionally, a protective coating can be applied to the top of the composite film. In one embodiment, the monomer coating includes light transducing particles to reduce the total internal reflection of light through the composite film or pigments that absorb light at one wavelength and re-emit light at a longer wavelength. The resulting composite film has an active side that is smooth with surface height variations of 100 nm or less.

  8. Preparation of Mesoporous Ceramics from Polymer Nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Dian; Park, Soojin; Chen, Jiun-Tai; Redston, Emily; Russell, Thomas

    2009-03-01

    Poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) nanotubes were prepared by placing polymer solution into the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. The PS-b-P4VP nanotubes within the AAO membranes were exposed to tetrahydrofuran vapor to produce uniform spherical micelles along the tube. The tubes were removed from the membranes, then suspended in ethylene glycol, a preferential solvent for P4VP. At 95^ oC, near the glass transition temperature (Tg) of PS, nanotubes with uniform nanopores were obtained by a reconstruction of the nanotubes. As the temperature was increased, mesoporous polymer structures were obtained. Tetraethyl orthosilicate or titanium tetraethoxide, ceramic precursors, were introduced into the 4VP microdomains. After exposure to an oxygen plasma or high temperature, the copolymer was removed and the precursor converted to a mesoporous ceramic. This process offers a simple route for the fabrication of tunable mesoporous ceramic or metallic structures by changing molecular weight of copolymers.

  9. Investigation of the interfacial properties of polyurethane/carbon nanotube hybrid composites: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Goclon, Jakub; Panczyk, Tomasz; Winkler, Krzysztof

    2018-03-01

    Considering the varied applications of hybrid polymer/carbon nanotube composites and the constant progress in the synthesis methods of such materials, we report a theoretical study of interfacial layer formation between pristine single-wall carbon nanotubes (SWCNTs) and polyurethane (PU) using molecular dynamic simulations. We vary the SWCNT diameter and the number of PU chains to examine various PU-SWCNT interaction patterns. Our simulations indicate the important role of intra-chain forces in PU. No regular polymeric structures could be identified on the carbon nanotube surface during the simulations. We find that increasing the SWCNT diameter results in stronger polymer binding. However, higher surface loadings of PU lead to stronger interpenetration by the polymeric segments; this effect is more apparent for SWCNTs with small diameters. Our core finding is that the attached PU binds most strongly to the carbon nanotubes with the largest diameters. Polymer dynamics reveal the loose distribution of PU chains in these systems.

  10. Degradable conjugated polymers for the selective sorting of semiconducting carbon nanotubes

    DOEpatents

    Gopalan, Padma; Arnold, Michael Scott; Kansiusarulsamy, Catherine Kanimozhi; Brady, Gerald Joseph; Shea, Matthew John

    2018-04-10

    Conjugated polymers composed of bi-pyridine units linked to 9,9-dialkyl fluorenyl-2,7-diyl units via imine linkages along the polymer backbone are provided. Also provided are semiconducting single-walled carbon nanotubes coated with the conjugated polymers and methods of sorting and separating s-SWCNTs from a sample comprising a mixture of s-SWCNTs and metallic single-walled carbon nanotubes using the conjugated polymers.

  11. Hysteresis Compensation of Piezoresistive Carbon Nanotube/Polydimethylsiloxane Composite-Based Force Sensors

    PubMed Central

    Kim, Ji-Sik; Kim, Gi-Woo

    2017-01-01

    This paper provides a preliminary study on the hysteresis compensation of a piezoresistive silicon-based polymer composite, poly(dimethylsiloxane) dispersed with carbon nanotubes (CNTs), to demonstrate its feasibility as a conductive composite (i.e., a force-sensitive resistor) for force sensors. In this study, the potential use of the nanotube/polydimethylsiloxane (CNT/PDMS) as a force sensor is evaluated for the first time. The experimental results show that the electrical resistance of the CNT/PDMS composite changes in response to sinusoidal loading and static compressive load. The compensated output based on the Duhem hysteresis model shows a linear relationship. This simple hysteresis model can compensate for the nonlinear frequency-dependent hysteresis phenomenon when a dynamic sinusoidal force input is applied. PMID:28125046

  12. Single Wall Carbon Nanotube-polymer Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2005-01-01

    Investigation of single wall carbon nanotube (SWNT)-polymer solar cells has been conducted towards developing alternative lightweight, flexible devices for space power applications. Photovoltaic devices were constructed with regioregular poly(3-octylthiophene)-(P3OT) and purified, >95% w/w, laser-generated SWNTs. The P3OT composites were deposited on ITO-coated polyethylene terapthalate (PET) and I-V characterization was performed under simulated AM0 illumination. Fabricated devices for the 1.0% w/w SWNT-P3OT composites showed a photoresponse with an open-circuit voltage (V(sub oc)) of 0.98 V and a short-circuit current density (I(sub sc)) of 0.12 mA/sq cm. Optimization of carrier transport within these novel photovoltaic systems is proposed, specifically development of nanostructure-SWNT complexes to enhance exciton dissociation.

  13. Mechanical Properties of Polymer Nano-composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  14. Amperometric L-lysine enzyme electrodes based on carbon nanotube/redox polymer and graphene/carbon nanotube/redox polymer composites.

    PubMed

    Kaçar, Ceren; Erden, Pınar Esra; Kılıç, Esma

    2017-04-01

    Highly sensitive L-lysine enzyme electrodes were constructed by using poly(vinylferrocene)-multiwalled carbon nanotubes-gelatine (PVF/MWCNTs-GEL) and poly(vinylferrocene)-multiwalled carbon nanotubes-gelatine-graphene (PVF/MWCNTs-GEL/GR) composites as sensing interfaces and their performances were evaluated. Lysine oxidase (LO) was immobilized onto the composite modified glassy carbon electrodes (GCE) by crosslinking using glutaraldehyde and bovine serum albumin. Effects of pH value, enzyme loading, applied potential, electrode composition, and interfering substances on the amperometric response of the enzyme electrodes were discussed. The analytical characteristics of the enzyme electrodes were also investigated. The linear range, detection limit, and sensitivity of the LO/PVF/MWCNTs-GEL/GCE were 9.9 × 10 -7 -7.0 × 10 -4  M, 1.8 × 10 -7  M (S/N = 3), and 13.51 μA mM -1  cm -2 , respectively. PVF/MWCNTs-GEL/GR-based L-lysine enzyme electrode showed a short response time (<5 s) and a linear detection range from 9.9 × 10 -7 to 7.0 × 10 -4  M with good sensitivity of 17.8 μA mM -1  cm -2 and a low detection limit of 9.2 × 10 -8  M. The PVF/MWCNTs-GEL/GR composite-based L-lysine enzyme electrode exhibited about 1.3-fold higher sensitivity than its MWCNTs-based counterpart and its detection limit was superior to the MWCNTs-based one. In addition, enzyme electrodes were successfully applied to determine L-lysine in pharmaceutical sample and cheese.

  15. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    NASA Astrophysics Data System (ADS)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae

  16. Processing and Characterization of Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Can, Roberto J.; Grimsley, Brian W.; Czabaj, Michael W.; Siochi, Emilie J.; Hull, Brandon

    2014-01-01

    Recent advances in the synthesis of large-scale quantities of carbon nanotubes (CNT) have provided the opportunity to study the mechanical properties of polymer matrix composites using these novel materials as reinforcement. Nanocomp Technologies, Inc. currently supplies large sheets with dimensions up to 122 cm x 244 cm containing both single-wall and few-wall CNTs. The tubes are approximately 1 mm in length with diameters ranging from 8 to 12 nm. In the present study being conducted at NASA Langley Research Center (LaRC), single and multiple layers of CNT sheets were infused or coated with various polymer solutions that included commercial toughened-epoxies and bismaleimides, as well as a LaRC developed polyimide. The resulting CNT composites were tested in tension using a modified version of ASTM D882-12 to determine their strength and modulus values. The effects of solvent treatment and mechanical elongation/alignment of the CNT sheets on the tensile performance of the composite were determined. Thin composites (around 50 wt% CNT) fabricated from acetone condensed and elongated CNT sheets with either a BMI or polyimide resin solution exhibited specific tensile moduli approaching that of toughened epoxy/ IM7 carbon fiber unidirectional composites.

  17. Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability

    NASA Astrophysics Data System (ADS)

    Zhao, Wenqi; Wang, Shanshan; Wang, Chunhui; Wu, Shiting; Xu, Wenjing; Zou, Mingchu; Ouyang, An; Cao, Anyuan; Li, Yibin

    2015-12-01

    Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices.Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05978j

  18. Boron Nitride Nanotubes-Reinforced Glass Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam; Hurst, Janet B.; Choi, Sung R.

    2005-01-01

    Boron nitride nanotubes of significant lengths were synthesized by reaction of boron with nitrogen. Barium calcium aluminosilicate glass composites reinforced with 4 weight percent of BN nanotubes were fabricated by hot pressing. Ambient-temperature flexure strength and fracture toughness of the glass-BN nanotube composites were determined. The strength and fracture toughness of the composite were higher by as much as 90 and 35 percent, respectively, than those of the unreinforced glass. Microscopic examination of the composite fracture surfaces showed pullout of the BN nanotubes. The preliminary results on the processing and improvement in mechanical properties of BN nanotube reinforced glass matrix composites are being reported here for the first time.

  19. Piezoelectric nanoparticle-polymer composite foams.

    PubMed

    McCall, William R; Kim, Kanguk; Heath, Cory; La Pierre, Gina; Sirbuly, Donald J

    2014-11-26

    Piezoelectric polymer composite foams are synthesized using different sugar-templating strategies. By incorporating sugar grains directly into polydimethylsiloxane mixtures containing barium titanate nanoparticles and carbon nanotubes, followed by removal of the sugar after polymer curing, highly compliant materials with excellent piezoelectric properties can be fabricated. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio which gave an upper bound on the porosity of 73% and a lower bound on the elastic coefficient of 32 kPa. The electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs, giving piezoelectric coefficient values of ∼112 pC/N and a power output of ∼18 mW/cm3 under a load of 10 N for the highest porosity samples. These novel materials should find exciting use in a variety of applications including energy scavenging platforms, biosensors, and acoustic actuators.

  20. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    DOE PAGES

    Paxton, Walter F.; Bachand, George D.; Gomez, Andrew; ...

    2015-04-24

    In this study, we describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4–5 h for corresponding lipid networks).more » The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.« less

  1. Effect of reduced graphene oxide-carbon nanotubes hybrid nanofillers in mechanical properties of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Sa, Kadambinee; Mahakul, Prakash C.; Subramanyam, B. V. R. S.; Raiguru, Jagatpati; Das, Sonali; Alam, Injamul; Mahanandia, Pitamber

    2018-03-01

    Graphene and carbon nanotubes (CNTs) have tremendous interest as reinforcing fillers due to their excellent physical properties. However, their reinforcing effect in polymer matrix is limited due to agglomeration of graphene and CNTs within the polymer matrix. Mechanical properties by the admixture of reduced graphene oxide (rGO) and CNTs in Poly (methyl methacrylate) (PMMA) prepared by solution mixing method has been investigated. The prepared samples are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy. The hybrid composite shows improvement in the mechanical properties compared to rGO/PMMA and MWCNTs/PMMA composites due to better interaction between rGO-MWCNTs and polymer matrix.

  2. Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof

    NASA Technical Reports Server (NTRS)

    Watson, Kent A. (Inventor); Connell, John W. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Ounaies, Zoubeida (Inventor); Smith, Joseph G. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400 800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  3. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  4. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Watson, A. (Inventor); Ounales, Zoubeida (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T(sub g)) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted hy selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  5. Polymer-mediated tunneling transport between carbon nanotubes in nanocomposites.

    PubMed

    Derosa, Pedro A; Michalak, Tyler

    2014-05-01

    Electron transport in nanocomposites has attracted a good deal of attention for some time now; furthermore, the ability to control its characteristics is a necessary step in the design of multifunctional materials. When conductive nanostructures (for example carbon nanotubes) are inserted in a non-conductive matrix, electron transport below the percolation threshold is dominated by tunneling and thus the conductive characteristics of the composite depends heavily on the characteristics of the tunneling currents between nanoinserts. A parameter-free approach to study tunneling transport between carbon nanotubes across a polymer matrix is presented. The calculation is done with a combination of Density Functional Theory and Green functions (an approach heavily used in molecular electronics) which is shown here to be effective in this non-resonant transport condition. The results show that the method can effectively capture the effect of a dielectric layer in tunneling transport. The current is found to exponentially decrease with the size of the gap for both vacuum and polymer, and that the polymer layer lowers the tunneling barrier enhancing tunneling conduction. For a polyacrylonitrile matrix, a four-fold decrease in the tunneling constant, compared to tunneling in vacuum, is observed, a result that is consistent with available information. The method is very versatile as any DFT functional (or any other quantum mechanics method) can be used and thus the most accurate method for each particular system can be chosen. Furthermore as more methods become available, the calculations can be revised and improved. This approach can be used to design functional materials for fine-tunning the tunneling transport, for instance, the effect of modifying the nanoinsert-matrix interface (for example, by adding functional groups to carbon nanotubes) can be captured and the comparative performance of each interface predicted by simulation.

  6. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    PubMed Central

    Hampel, Silke; Spizzirri, Umile Gianfranco; Parisi, Ortensia Ilaria; Picci, Nevio; Iemma, Francesca

    2014-01-01

    The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability) with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior). The applicability of polymer-carbon nanotubes composites in drug delivery, with particular attention to the controlled release by composites hydrogel, is being extensively investigated in the present review. PMID:24587993

  7. Welding of 3D-printed carbon nanotube-polymer composites by locally induced microwave heating.

    PubMed

    Sweeney, Charles B; Lackey, Blake A; Pospisil, Martin J; Achee, Thomas C; Hicks, Victoria K; Moran, Aaron G; Teipel, Blake R; Saed, Mohammad A; Green, Micah J

    2017-06-01

    Additive manufacturing through material extrusion, often termed three-dimensional (3D) printing, is a burgeoning method for manufacturing thermoplastic components. However, a key obstacle facing 3D-printed plastic parts in engineering applications is the weak weld between successive filament traces, which often leads to delamination and mechanical failure. This is the chief obstacle to the use of thermoplastic additive manufacturing. We report a novel concept for welding 3D-printed thermoplastic interfaces using intense localized heating of carbon nanotubes (CNTs) by microwave irradiation. The microwave heating of the CNT-polymer composites is a function of CNT percolation, as shown through in situ infrared imaging and simulation. We apply CNT-loaded coatings to a 3D printer filament; after printing, microwave irradiation is shown to improve the weld fracture strength by 275%. These remarkable results open up entirely new design spaces for additive manufacturing and also yield new insight into the coupling between dielectric properties and radio frequency field response for nanomaterial networks.

  8. A Facile Synthesis of a Palladium-Doped Polyaniline-Modified Carbon Nanotube Composites for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Giri, Soumen; Ghosh, Debasis; Malas, Asish; Das, Chapal Kumar

    2013-08-01

    Supercapacitors have evolved as the premier choice of the era for storing huge amounts of charge in the field of energy storage devices, but it is still necessary to enhance their performance to meet the increasing requirements of future systems. This could be achieved either through advancing the interfaces of the material at the nanoscale or by using novel material compositions. We report a high-performance material composition prepared by combining a transition metal (palladium)-doped conductive polymer with multiwalled carbon nanotubes (MWCNTs). MWCNTs/palladium-doped polyaniline (MWCNTs/Pd/PANI) composites and multiwalled carbon nanotube/polyaniline (MWCNTs/PANI) composites (for comparison) were prepared via in situ oxidative polymerization of aniline monomer. The reported composites were characterized by Fourier-transform infrared (FTIR), x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) studies. FESEM and TEM studies indicated the narrow size distribution of the π-conjugated polymer-protected palladium nanoparticles on the surface of the carbon nanotubes. All the electrochemical characterizations were executed using a three-electrode system in 1 M H2SO4 electrolyte. Cyclic voltammetry (CV) analysis was performed to observe the capacitive performance and redox behavior of the composites. The ion transfer behavior and cyclic stability of the composites were investigated by electrochemical impedance spectroscopy (EIS) analysis and cyclic charge-discharge (CCD) testing, respectively. The MWCNTs/Pd/PANI composite was found to exhibit an especially high specific capacitance value of 920 F/g at scan rate of 2 mV/s.

  9. Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Martinez, Amos; Al Araimi, Mohammed; Dmitriev, Artemiy; Lutsyk, Petro; Li, Shen; Mou, Chengbo; Rozhin, Alexey; Sumetsky, Misha; Turitsyn, Sergei

    2017-12-01

    The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors) and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50%) and poor saturable to non-saturable absorption ratios (typically above 1:5). In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%), and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.

  10. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites.

    PubMed

    Chen, Luzhuo; Liu, Changhong; Liu, Ke; Meng, Chuizhou; Hu, Chunhua; Wang, Jiaping; Fan, Shoushan

    2011-03-22

    In this work, we show that embedding super-aligned carbon nanotube sheets into a polymer matrix (polydimethylsiloxane) can remarkably reduce the coefficient of thermal expansion of the polymer matrix by two orders of magnitude. Based on this unique phenomenon, we fabricated a new kind of bending actuator through a two-step method. The actuator is easily operable and can generate an exceptionally large bending actuation with controllable motion at very low driving DC voltages (<700 V/m). Furthermore, the actuator can be operated without electrolytes in the air, which is superior to conventional carbon nanotube actuators. Proposed electrothermal mechanism was discussed and confirmed by our experimental results. The exceptional bending actuation performance together with easy fabrication, low-voltage, and controllable motion demonstrates the potential ability of using this kind of actuator in various applicable areas, such as artificial muscles, microrobotics, microsensors, microtransducers, micromanipulation, microcantilever for medical applications, and so on.

  11. High Volume Fraction Carbon Nanotube Composites for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie J.; Kim, Jae-Woo; Sauti, Godfrey; Cano, Roberto J.; Wincheski, Russell A.; Ratcliffe, James G.; Czabaj, Michael; Jensen, Benjamin D.; Wise, Kristopher E.

    2015-01-01

    Reported nanoscale mechanical properties of carbon nanotubes (CNTs) suggest that their use may enable the fabrication of significantly lighter structures for use in space applications. To be useful in the fabrication of large structures, however, their attractive nanoscale properties must be retained as they are scaled up to bulk materials and converted into practically useful forms. Advances in CNT production have significantly increased the quantities available for use in manufacturing processes, but challenges remain with the retention of nanoscale properties in larger assemblies of CNTs. This work summarizes recent progress in producing carbon nanotube composites with tensile properties approaching those of carbon fiber reinforced polymer composites. These advances were achieved in nanocomposites with CNT content of 70% by weight. The processing methods explored to yield these CNT composite properties will be discussed, as will the characterization and test methods that were developed to provide insight into the factors that contribute to the enhanced tensile properties. Technology maturation was guided by parallel advancements in computational modeling tools that aided in the interpretation of experimental data.

  12. Self-healing nanocomposite using shape memory polymer and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi

    2013-04-01

    Carbon fiber reinforced composites are used in a wide range of applications in aerospace, mechanical, and civil structures. Due to the nature of material, most damage in composites, such as delaminations, are always barely visible to the naked eye, which makes it difficult to detect and repair. The investigation of biological systems has inspired the development and characterization of self-healing composites. This paper presents the development of a new type of self-healing material in order to impede damage progression and conduct in-situ damage repair in composite structures. Carbon nanotubes, which are highly conductive materials, are mixed with shape memory polymer to develop self-healing capability. The developed polymeric material is applied to carbon fiber reinforced composites to automatically heal the delamination between different layers. The carbon fiber reinforced composite laminates are manufactured using high pressure molding techniques. Tensile loading is applied to double cantilever beam specimens using an MTS hydraulic test frame. A direct current power source is used to generate heat within the damaged area. The application of thermal energy leads to re-crosslinking in shape memory polymers. Experimental results showed that the developed composite materials are capable of healing the matrix cracks and delaminations in the bonded areas of the test specimens. The developed self-healing material has the potential to be used as a novel structural material in mechanical, civil, aerospace applications.

  13. Self-Assembled CNT-Polymer Hybrids in Single-Walled Carbon Nanotubes Dispersed Aqueous Triblock Copolymer Solutions

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, D.; Manjunatha, A. S.; Poojitha, C. G.

    2018-04-01

    We have carried out scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), electrical conductivity, and 1H NMR studies as a function of temperature on single-walled carbon nanotubes (SWCNTs) dispersed aqueous triblock copolymer (P123) solutions. The single-walled carbon nanotubes in this system aggregate to form bundles, and the bundles aggregate to form net-like structures. Depending on the temperature and phases of the polymer, this system exhibits three different self-assembled CNT-polymer hybrids. We find CNT-unimer hybrid at low temperatures, CNT-micelle hybrid at intermediate temperatures wherein the polymer micelles are adsorbed in the pores of the CNT nets, and another type of CNT-micelle hybrid at high temperatures wherein the polymer micelles are adsorbed on the surface of the CNT bundles. Our DSC thermogram showed two peaks related to these structural changes in the CNT-polymer hybrids. Temperature dependence of the 1H NMR chemical shifts of the molecular groups of the polymer and the AC electrical conductivity of the composite also showed discontinuous changes at the temperatures at which the CNT-polymer hybrid's structural changes are seen. Interestingly, for a higher CNT concentration (0.5 wt.%) in the system, the aggregated polymer micelles adsorbed on the CNTs exhibit cone-like and cube-like morphologies at the intermediate and at high temperatures respectively.

  14. Optical manipulation of lipid and polymer nanotubes with optical tweezers

    NASA Astrophysics Data System (ADS)

    Reiner, Joseph E.; Kishore, Rani; Pfefferkorn, Candace; Wells, Jeffrey; Helmerson, Kristian; Howell, Peter; Vreeland, Wyatt; Forry, Samuel; Locascio, Laurie; Reyes-Hernandez, Darwin; Gaitan, Michael

    2004-10-01

    Using optical tweezers and microfluidics, we stretch either the lipid or polymer membranes of liposomes or polymersomes, respectively, into long nanotubes. The membranes can be grabbed directly with the optical tweezers to produce sub-micron diameter tubes that are several hundred microns in length. We can stretch tubes up to a centimeter in length, limited only by the travel of our microscope stage. We also demonstrate the cross linking of a pulled polymer nanotube.

  15. Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers

    PubMed Central

    Bhattacharya, Mrinal

    2016-01-01

    Nanofilled polymeric matrices have demonstrated remarkable mechanical, electrical, and thermal properties. In this article we review the processing of carbon nanotube, graphene, and clay montmorillonite platelet as potential nanofillers to form nanocomposites. The various functionalization techniques of modifying the nanofillers to enable interaction with polymers are summarized. The importance of filler dispersion in the polymeric matrix is highlighted. Finally, the challenges and future outlook for nanofilled polymeric composites are presented. PMID:28773388

  16. Carbon Nanotube Sheet Scrolled Fiber Composite for Enhanced Interfacial Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Kokkada Ravindranath, Pruthul

    The high tensile strength of Polymer Matrix Composites (PMC) is derived from the high tensile strength of the embedded carbon fibers. However, their compressive strength is significantly lower than their tensile strength, as they tend to fail through micro-buckling, under compressive loading. Fiber misalignment and the presence of voids created during the manufacturing processes, add to the further reduction in the compressive strength of the composites. Hence, there is more scope for improvement. Since, the matrix is primarily responsible for the shear load transfer and dictating the critical buckling load of the fibers by constraining the fibers from buckling, to improve the interfacial mechanical properties of the composite, it is important to modify the polymer matrix, fibers and/or the interface. In this dissertation, a novel approach to enhance the polymer matrix-fiber interface region has been discussed. This approach involves spiral wrapping carbon nanotube (CNT) sheet around individual carbon fiber or fiber tow, at room temperature at a prescribed wrapping angle (bias angle), and then embed the scrolled fiber in a resin matrix. The polymer infiltrates into the nanopores of the multilayer CNT sheet to form CNT/polymer nanocomposite surrounding fiber, and due to the mechanical interlocking, provides reinforcement to the interface region between fiber and polymer matrix. This method of nano-fabrication has the potential to improve the mechanical properties of the fiber-matrix interphase, without degrading the fiber properties. The effect of introducing Multi-Walled Carbon Nanotubes (MWNT) in the polymer matrix was studied by analyzing the atomistic model of the epoxy (EPON-862) and the embedded MWNTs. A multi-scale method was utilized by using molecular dynamics (MD) simulations on the nanoscale model of the epoxy with and without the MWNTs to calculate compressive strength of the composite and predict the enhancement in the composite material. The influence

  17. Polymer-Carbon Nanotube Composites, A Literature Review

    DTIC Science & Technology

    2004-08-01

    have led to improvements in product controllability, yield, and cost . Other aspects of nanotube synthesis currently under scrutiny include study of...progress in many areas of characterization and applications was initially hindered by the high cost of production, as well as the requirement of...processing the nanotubes. In recent years, the production costs have decreased dramatically as a result of the development of new, high-throughput

  18. Metal- and Polymer-Matrix Composites: Functional Lightweight Materials for High-Performance Structures

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2014-06-01

    The special topic "Metal- and Polymer-Matrix Composites" is intended to capture the state of the art in the research and practice of functional composites. The current set of articles related to metal-matrix composites includes reviews on functionalities such as self-healing, self-lubricating, and self-cleaning capabilities; research results on a variety of aluminum-matrix composites; and investigations on advanced composites manufacturing methods. In addition, the processing and properties of carbon nanotube-reinforced polymer-matrix composites and adhesive bonding of laminated composites are discussed. The literature on functional metal-matrix composites is relatively scarce compared to functional polymer-matrix composites. The demand for lightweight composites in the transportation sector is fueling the rapid development in this field, which is captured in the current set of articles. The possibility of simultaneously tailoring several desired properties is attractive but very challenging, and it requires significant advancements in the science and technology of composite materials. The progress captured in the current set of articles shows promise for developing materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications.

  19. Positive temperature coefficient thermistors based on carbon nanotube/polymer composites

    PubMed Central

    Zeng, You; Lu, Guixia; Wang, Han; Du, Jinhong; Ying, Zhe; Liu, Chang

    2014-01-01

    In order to explore availability of carbon nanotube (CNT)-based positive temperature coefficient (PTC) thermistors in practical application, we prepared carbon nanotube (CNT) filled high density polyethylene (HDPE) composites by using conventional melt-mixing methods, and investigated their PTC effects in details. The CNT-based thermistors exhibit much larger hold current and higher hold voltage, increasing by 129% in comparison with the commercial carbon black (CB) filled HDPE thermistors. Such high current-bearing and voltage-bearing capacity for the CNT/HDPE thermistors is mainly attributed to high thermal conductivity and heat dissipation of entangled CNT networks. Moreover, the CNT/HDPE thermistors exhibit rapid electrical response to applied voltages, comparable to commercial CB-based thermistors. In light of their high current-bearing capacity and quick response, the CNT-based thermistors have great potential to be used as high-performance thermistors in practical application, especially in some critical circumstances of high temperature, large applied currents, and high applied voltages. PMID:25327951

  20. Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electromechanical Sensors.

    PubMed

    Kim, Chae Bin; Jeong, Ki Beom; Yang, Beom Joo; Song, Jong-Won; Ku, Bon-Cheol; Lee, Seunghyun; Lee, Seoung-Ki; Park, Chiyoung

    2017-12-18

    We herein report a facile, cost-competitive, and scalable method for producing viscoelastic conductors via one-pot melt-blending using polymers and supramolecular gels composed of carbon nanotubes (CNTs), diphenylamine (DP), and benzophenone (BP). When mixed, a non-volatile eutectic liquid (EL) produced by simply blending DP with BP (1:1 molar ratio) enabled not only the gelation of CNTs (EL-CNTs) but also the dissolution of a number of commodity polymers. To make use of these advantages, viscoelastic conductors were produced via one-pot melt-blending the EL and CNTs with a model thermoplastic elastomer, poly(styrene-b-butadiene-b-styrene) (SBS, styrene 30 wt %). The resulting composites displayed an excellent electromechanical sensory along with re-mendable properties. This simple method using cost-competitive EL components is expected to provide an alternative to the use of expensive ionic liquids as well as to facilitate the fabrication of novel composites for various purposes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Process for derivatizing carbon nanotubes with diazonium species

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  2. Polymer nanofiber-carbon nanotube network generating circuits

    NASA Astrophysics Data System (ADS)

    Mutlu, Mustafa Umut; Akın, Osman; Yildiz, Ümit Hakan

    2018-02-01

    The polymer nanofiber carbon nanotube (CNT) based devices attracts attention since they promise high performance for next generation devices such as wearable electronics, ultra-light weighted appliances and foldable devices. This abstract describes the utilization of polymer nanofibers and CNT as major component of low cost foldable photo-resistor. We use polymer nanofiber as template guiding CNTs to generate nanocircuits and conductive sensing network. The controlled combination of CNTs and polymer nanofibers provide opportunities for device miniaturization without loss of performance. The nanofiber-CNT network based photo-resistor exhibits broad band response 400 to 1600 nm that holding promises for ultra-thin devices and new sensing platforms.

  3. Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials

    PubMed Central

    2011-01-01

    Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region. PMID:21711633

  4. Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning

    NASA Astrophysics Data System (ADS)

    Cohen, Yachin; Dror, Yael; Khalfin, Rafail L.; Salalha, Wael; Yarin, Alexander L.; Zussman, Eyal

    2004-03-01

    The electrospinning process was used successfully to fabricate nanofibers of poly(ethylene oxide) [PEO] in which carbon nanotubes, either multi-walled (MWCNT) or single-walled (SWCNT) are embedded. MWCNTs were dispersed in water using SDS or Gum Arabic - a highly branched polyelectrolyte. Aqueous dispersion of SWCNT's was achieved using an alternating copolymer of styrene and maleic anhydride, hydrolyzed with NaOH. The focus of this work is on the development of axial orientations in the multi-component nanofibers. The degree of orientation of polymers, surfactants and nanotubes was studied using X-ray diffraction and transmission electron microscopy. Individual nanotubes were successfully embedded in the polymer nanofibers with good axial alignment. A high degree of alignment of PEO crystals and SDS layers was also found in the electrospun nanofibers containing SWCNT's. Oriented ropes of the nanofibers were fabricated in a converging electric field by a rotating disc with a tapered edge. These results can lead to further usage of the nanofibers with embedded carbon nanotubes in applications such as nano-scale energy storage devices.

  5. Novel Materials Containing Single-Wall Carbon Nanotubes Wrapped in Polymer Molecules

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E.; O'Connell, Michael J.; Smith, Kenneth; Colbert, Daniel T.

    2009-01-01

    In this design, single-wall carbon nanotubes (SWNTs) have been coated in polymer molecules to create a new type of material that has low electrical conductivity, but still contains individual nanotubes, and small ropes of individual nanotubes, which are themselves good electrical conductors and serve as small conducting rods immersed in an electrically insulating matrix. The polymer is attached through weak chemical forces that are primarily non-covalent in nature, caused primarily through polarization rather than the sharing of valence electrons. Therefore, the electronic structure of the SWNT involved is substantially the same as that of free, individual (and small ropes of) SWNT. Their high conductivity makes the individual nanotubes extremely electrically polarizable, and materials containing these individual, highly polarizable molecules exhibit novel electrical properties including a high dielectric constant.

  6. Enhanced health monitoring of fibrous composites with aligned carbon nanotube networks and electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Tallman, T.; Semperlotti, F.; Wang, K. W.

    2012-04-01

    The high strength to weight ratio of fibrous composites such as glass-fiber reinforced polymers (GFRP) makes them prominent structural materials. However, their laminar nature is susceptible to delamination failure the onset of which traditional structural health monitoring (SHM) techniques cannot reliably and accurately detect. Carbon nano-tubes (CNT) have been recently used to tailor the electrical conductivity of polymer based materials that otherwise behave as insulators. The occurrence of damage in the polymer matrix produces localized changes in conductivity which can be tracked using electrical impedance tomography (EIT). This paper explores combining advances in composite manufacturing with EIT to develop a SHM technique that exploits anisotropic conductance monitoring for enhanced delamination and matrix crack detection.

  7. Flow Kills Conductivity of Single Wall Carbon Nanotubes (SWNT) Composites

    NASA Astrophysics Data System (ADS)

    Bhatt, Sanjiv; Macosko, Christopher

    2006-03-01

    Most composites of polymer and single wall carbon nanotubes (SWNT) reported in the literature are made by solvent casting or simple compression molding. Commercial utility of these composites requires use of precision injection molding. We have observed a unique behavior wherein the SWNT composites made by injection molding or by extrusion are insulators but upon heating become electrically conductive. This behavior appears to be the result of a relaxation phenomenon in the SWNT composite. During flow into an injection mold or through an extrusion die the well-dispersed SWNT in the polymer matrix tend to align such that they are not in contact with each other and are farther than the minimum required distance, 5 nm (1), to achieve electrical percolation through electron hopping. Upon heating the SWNT relax and either touch each other or are at a distance less than or equal to 5 nm from each other to create a percolating. [1] Du, F., Scogna, R, C., Zhou, W., Brand, Stijn, Fischer, J. E., and Winey, K. I., Macromolecules 2004, 37, 9048-9055.

  8. Investigation of dielectric properties of polymer composites reinforced with carbon nanotubes in the frequency band of 0.01 Hz - 10 MHz

    NASA Astrophysics Data System (ADS)

    Goshev, A. A.; Eseev, M. K.; Kapustin, S. N.; Vinnik, L. N.; Volkov, A. S.

    2016-08-01

    The goal of this work is experimental study of dielectric properties of polymer nanocomposites reinforced with multiwalled carbon nanotubes (MWCNTs) in alternating electric field in low frequency band of 0.01 Hz - 10 MHz. We investigated the influence, functionalization degree, aspect ratio, concentration of carbon nanotubes (CNTs) on dielectric properties of polymer sample. We also studied the dependence of dielectric properties on the polymerization temperature. The dependence of CNTs agglomeration on sample polymerization temperature and temperature's influence on conductivity has been shown. We conducted model calculation of percolation threshold and figured out its dependence on CNTs aspect ratio.

  9. Progress toward Making Epoxy/Carbon-Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Tiano, Thomas; Roylance, Margaret; Gassner, John; Kyle, William

    2008-01-01

    A modicum of progress has been made in an effort to exploit single-walled carbon nanotubes as fibers in epoxy-matrix/fiber composite materials. Two main obstacles to such use of carbon nanotubes are the following: (1) bare nanotubes are not soluble in epoxy resins and so they tend to agglomerate instead of becoming dispersed as desired; and (2) because of lack of affinity between nanotubes and epoxy matrices, there is insufficient transfer of mechanical loads between the nanotubes and the matrices. Part of the effort reported here was oriented toward (1) functionalization of single-walled carbon nanotubes with methyl methacrylate (MMA) to increase their dispersability in epoxy resins and increase transfer of mechanical loads and (2) ultrasonic dispersion of the functionalized nanotubes in tetrahydrofuran, which was used as an auxiliary solvent to aid in dispersing the functionalized nanotubes into a epoxy resin. In another part of this effort, poly(styrene sulfonic acid) was used as the dispersant and water as the auxiliary solvent. In one experiment, the strength of composite of epoxy with MMA-functionalized-nanotubes was found to be 29 percent greater than that of a similar composite of epoxy with the same proportion of untreated nanotubes.

  10. Antifouling Thermoplastic Composites with Maleimide Encapsulated in Clay Nanotubes.

    PubMed

    Fu, Ye; Gong, Congcong; Wang, Wencai; Zhang, Liqun; Ivanov, Evgenii; Lvov, Yuri

    2017-09-06

    An antifouling ethylene-vinyl acetate copolymer (EVA) coating with halloysite clay nanotubes loaded with maleimide (TCPM) is prepared. Such antifoulant encapsulation allowed for extended release of TCPM and a long-lasting, efficient protection of the coated surface against marine microorganisms proliferation. Halloysite also induces the composite's anisotropy due to parallel alignment of the nanotubes. The maleimide loaded halloysite incorporated into the polymer matrix allowed for 12-month release of the bacterial inhibitor preventing fouling; it is much longer than the 2-3 month protection when TCPM is directly admixed into EVA. The antifouling properties of the EVA-halloysite nanocomposites were tested by monitoring surface adhesion and proliferation of marine V. natriegens bacteria with SEM. As compared to the composite directly doped with TCPM-antifoulant, there were much less bacteria accumulated on the EVA-halloysite-TCPM coating after a 2-month exposure to seawater. Field tests at South China Sea marine station further confirmed the formulation efficiency. The doping of 28 wt % TCPM loaded halloysite drastically enhanced material antifouling property, which promises wide applications for protective marine coating.

  11. Dispersion of carbon nanotubes in melt compounded polypropylene based composites investigated by THz spectroscopy.

    PubMed

    Casini, R; Papari, G; Andreone, A; Marrazzo, D; Patti, A; Russo, P

    2015-07-13

    We investigate the use of Terahertz (THz) Time Domain Spectroscopy (TDS) as a tool for the measurement of the index dispersion of multi-walled carbon nanotubes (MWCNT) in polypropylene (PP) based composites. Samples containing 0.5% by volume concentration of non-functionalized and functionalized carbon nanotubes are prepared by melt compounding technology. Results indicate that the THz response of the investigated nanocomposites is strongly dependent on the kind of nanotube functionalization, which in turn impacts on the level of dispersion inside the polymer matrix. We show that specific dielectric parameters such as the refractive index and the absorption coefficient measured by THz spectroscopy can be both correlated to the index of dispersion as estimated using conventional optical microscopy.

  12. Evaluation of particles released from single-wall carbon nanotube/polymer composites with or without thermal aging by an accelerated abrasion test.

    PubMed

    Jiang, Lin; Kondo, Akira; Shigeta, Masahiro; Endoh, Shigehisa; Uejima, Mitsugu; Ogura, Isamu; Naito, Makio

    2014-01-01

    To provide data required for assessing the environmental health and safety risks of nanocomposites, abrasion-induced particle release from single-wall carbon nanotube (SWCNT)/polymer composites with or without thermal aging were evaluated by a shot blast system. First, overall composite weight loss (i.e., overall particle release) as a result of shot blasting was measured. Incorporating 5 wt% SWCNTs in polystyrene (PS) matrix was observed to reduce overall particle release by approximately 30% compared with pure PS. Heat treatment of the 5 wt% SWCNT/PS composites at 100°C for 10 days induced very slight change in overall particle release due to shot blasting. However, heat treatment at 350°C for 1 hr greatly deteriorated the abrasion resistance of the composites, enhancing overall particle release. Second, to verify the existence and form of SWCNTs released from the composites, released particles were observed by electron microscopy. Micron-sized particles with protruding SWCNTs and submicron-sized SWCNT clusters were observed in the particles released from the composites. Heat treatment of the composites at 350°C for 1 hr enhanced SWCNT release, which mainly formed clusters or rope-like bundles.

  13. Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment

    NASA Astrophysics Data System (ADS)

    Kamali, M.; Shamsi, M.; Saidi, A. R.

    2018-03-01

    As a first endeavor, the effect of nonlinear elastic foundation on the postbuckling behavior of smart magneto-electro-elastic (MEE) composite nanotubes is investigated. The composite nanotube is affected by a non-uniform thermal environment. A typical MEE composite nanotube consists of microtubules (MTs) and carbon nanotubes (CNTs) with a MEE cylindrical nanoshell for smart control. It is assumed that the nanoscale layers of the system are coupled by a polymer matrix or filament network depending on the application. In addition to thermal loads, magneto-electro-mechanical loads are applied to the composite nanostructure. Length scale effects are taken into account using the nonlocal elasticity theory. The principle of virtual work and von Karman's relations are used to derive the nonlinear governing differential equations of MEE CNT-MT nanotubes. Using Galerkin's method, nonlinear critical buckling loads are determined. Various types of non-uniform temperature distribution in the radial direction are considered. Finally, the effects of various parameters such as the nonlinear constant of elastic medium, thermal loading factor and small scale coefficient on the postbuckling of MEE CNT-MT nanotubes are studied.

  14. Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing

    PubMed Central

    Pozegic, T. R.; Anguita, J. V.; Hamerton, I.; Jayawardena, K. D. G. I.; Chen, J-S.; Stolojan, V.; Ballocchi, P.; Walsh, R.; Silva, S. R. P.

    2016-01-01

    Carbon fibre reinforced polymers (CFRP) were introduced to the aerospace, automobile and civil engineering industries for their high strength and low weight. A key feature of CFRP is the polymer sizing - a coating applied to the surface of the carbon fibres to assist handling, improve the interfacial adhesion between fibre and polymer matrix and allow this matrix to wet-out the carbon fibres. In this paper, we introduce an alternative material to the polymer sizing, namely carbon nanotubes (CNTs) on the carbon fibres, which in addition imparts electrical and thermal functionality. High quality CNTs are grown at a high density as a result of a 35 nm aluminium interlayer which has previously been shown to minimise diffusion of the catalyst in the carbon fibre substrate. A CNT modified-CFRP show 300%, 450% and 230% improvements in the electrical conductivity on the ‘surface’, ‘through-thickness’ and ‘volume’ directions, respectively. Furthermore, through-thickness thermal conductivity calculations reveal a 107% increase. These improvements suggest the potential of a direct replacement for lightning strike solutions and to enhance the efficiency of current de-icing solutions employed in the aerospace industry. PMID:27876858

  15. Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing

    NASA Astrophysics Data System (ADS)

    Pozegic, T. R.; Anguita, J. V.; Hamerton, I.; Jayawardena, K. D. G. I.; Chen, J.-S.; Stolojan, V.; Ballocchi, P.; Walsh, R.; Silva, S. R. P.

    2016-11-01

    Carbon fibre reinforced polymers (CFRP) were introduced to the aerospace, automobile and civil engineering industries for their high strength and low weight. A key feature of CFRP is the polymer sizing - a coating applied to the surface of the carbon fibres to assist handling, improve the interfacial adhesion between fibre and polymer matrix and allow this matrix to wet-out the carbon fibres. In this paper, we introduce an alternative material to the polymer sizing, namely carbon nanotubes (CNTs) on the carbon fibres, which in addition imparts electrical and thermal functionality. High quality CNTs are grown at a high density as a result of a 35 nm aluminium interlayer which has previously been shown to minimise diffusion of the catalyst in the carbon fibre substrate. A CNT modified-CFRP show 300%, 450% and 230% improvements in the electrical conductivity on the ‘surface’, ‘through-thickness’ and ‘volume’ directions, respectively. Furthermore, through-thickness thermal conductivity calculations reveal a 107% increase. These improvements suggest the potential of a direct replacement for lightning strike solutions and to enhance the efficiency of current de-icing solutions employed in the aerospace industry.

  16. Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing.

    PubMed

    Pozegic, T R; Anguita, J V; Hamerton, I; Jayawardena, K D G I; Chen, J-S; Stolojan, V; Ballocchi, P; Walsh, R; Silva, S R P

    2016-11-23

    Carbon fibre reinforced polymers (CFRP) were introduced to the aerospace, automobile and civil engineering industries for their high strength and low weight. A key feature of CFRP is the polymer sizing - a coating applied to the surface of the carbon fibres to assist handling, improve the interfacial adhesion between fibre and polymer matrix and allow this matrix to wet-out the carbon fibres. In this paper, we introduce an alternative material to the polymer sizing, namely carbon nanotubes (CNTs) on the carbon fibres, which in addition imparts electrical and thermal functionality. High quality CNTs are grown at a high density as a result of a 35 nm aluminium interlayer which has previously been shown to minimise diffusion of the catalyst in the carbon fibre substrate. A CNT modified-CFRP show 300%, 450% and 230% improvements in the electrical conductivity on the 'surface', 'through-thickness' and 'volume' directions, respectively. Furthermore, through-thickness thermal conductivity calculations reveal a 107% increase. These improvements suggest the potential of a direct replacement for lightning strike solutions and to enhance the efficiency of current de-icing solutions employed in the aerospace industry.

  17. Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.

    2009-01-01

    Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.

  18. Failure mechanism of the polymer infiltration of carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Buchheim, Jakob; Park, Hyung Gyu

    2016-11-01

    Polymer melt infiltration is one of the feasible methods for manufacturing filter membranes out of carbon nanotubes (CNTs) on large scales. Practically, however, its process suffers from low yields, and the mechanism behind this failure is rather poorly understood. Here, we investigate a failure mechanism of polymer melt infiltration of vertical aligned (VA-) CNTs. In penetrating the VA-CNT interstices, polymer melts exert a capillarity-induced attractive force laterally on CNTs at the moving meniscus, leading to locally agglomerated macroscale bunches. Such a large configurational change can deform and distort individual CNTs so much as to cause buckling or breakdown of the alignment. In view of membrane manufacturing, this irreversible distortion of nanotubes is detrimental, as it could block the transport path of the membranes. The failure mechanism of the polymer melt infiltration is largely attributed to steric hindrance and an energy penalty of confined polymer chains. Euler beam theory and scaling analysis affirm that CNTs with low aspect ratio, thick walls and sparse distribution can maintain their vertical alignment. Our results can enrich a mechanistic understanding of the polymer melt infiltration process and offer guidelines to the facile large-scale manufacturing of the CNT-polymer filter membranes.

  19. Thermoplastic/Nanotube Composite Fibers

    NASA Astrophysics Data System (ADS)

    Haggenmueller, Reto; Fischer, John; Winey, Karen

    2000-03-01

    A combination of solvent casting and melt mixing methods are used to compound selected thermoplastics with single-wall carbon nanotubes. Subsequently, melt extrusion is used to form thermoplastic-nanotube composite fibers. The structural characteristics are investigated by electron microscopy and x-ray scattering methods. In addition the electrical, thermal and mechanical properties were measured. Correlations are sought between the viscoelastic properties of the compounded materials, the nanotube loading and elongation ratio after spinning, and the properties of the resultant fibers.

  20. Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation

    PubMed Central

    2014-01-01

    We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 μm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT–polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics. PMID:24735347

  1. Investigation of the adsorption of polymer chains on amine-functionalized double-walled carbon nanotubes.

    PubMed

    Ansari, R; Ajori, S; Rouhi, S

    2015-12-01

    Molecular dynamics (MD) simulations were used to study the adsorption of different polymer chains on functionalized double-walled carbon nanotubes (DWCNTs). The nanotubes were functionalized with two different amines: NH2 (a small amine) and CH2-NH2 (a large amine). Considering three different polymer chains, all with the same number of atoms, the effect of polymer type on the polymer-nanotube interaction was studied. In general, it was found that covalent functionalization considerably improved the polymer-DWCNT interaction. By comparing the results obtained with different polymer chains, it was observed that, unlike polyethylene and polyketone, poly(styrene sulfonate) only weakly interacts with the functionalized DWCNTs. Accordingly, the smallest radius of gyration was obtained with adsorbed poly(styrene sulfonate). It was also observed that the DWCNTs functionalized with the large amine presented more stable interactions with polyketone and poly(styrene sulfonate) than with polyethylene, whereas the DWCNTs functionalized with the small amine showed better interfacial noncovalent bonding with polyethylene.

  2. Carbon Nanotube/Polymer Nanocomposites Flexible Stress and Strain Sensors

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Scholl, Jonathan A.; Lowther, Sharon E.; Harrison, Joycelyn S.

    2008-01-01

    Conformable stress and strain sensors are required for monitoring the integrity of airframe structures as well as for sensing the mechanical stimuli in prosthetic arms. For this purpose, we have developed a series of piezoresistive single-wall carbon nanotube (SWCNT)/polymer nanocomposites. The electromechanical coupling of pressure with resistance changes in these nanocomposites is exceptionally greater than that of metallic piezoresistive materials. In fact, the piezoresistive stress coefficient (pi) of a SWCNT/polymer nanocomposite is approximately two orders of magnitude higher than that of a typical metallic piezoresistive. The piezoresistive stress coefficient is a function of the nanotube concentration wherein the maximum value occurs at a concentration just above the percolation threshold concentration (phi approx. 0.05 %). This response appears to originate from a change in intrinsic resistivity under compression/tension. A systematic study of the effect of the modulus of the polymer matrix on piezoresistivity allowed us to make flexible and conformable sensors for biomedical applications. The prototype haptic sensors using these nanocomposites are demonstrated. The piezocapacitive properties of SWCNT/polymer are also characterized by monitoring the capacitance change under pressure.

  3. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    PubMed

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  4. Microinjection moulding of polymeric composites with functionalized carbon nanotubes =

    NASA Astrophysics Data System (ADS)

    Ferreira, Tania Sofia Araujo Figueiras

    Microinjection moulding of polymeric composites with functionalized carbon nanotubes The unique electronic, mechanical, and structural properties of carbon nanotubes (CNT) make them suitable for applications in the fields of electronics, sensors, medical devices, aerospace and automotive industries. The preparation of CNT/polymer nanocomposites presents particular interest among the various possible applications. However, the long entangled nanotubes form agglomerates that poses serious obstacles to further development of nanocomposites with the target properties. One of the approaches to overcome the CNT chemical inertness, enhance the compatibility with the matrix and improve homogeneous dispersion through the matrix is through its covalent functionalization. This is expected to improve the CNT interface with the polymer matrix, thus improving the mechanical properties of the nanocomposites at very low content. One of the purposes of this thesis was to implement the covalent modification of the CNT surface using a simple functionalization method, to increase the CNT surface reactivity and possibly help their dispersion into the polyamide matrix without inducing structural damage on the CNT. The functionalization of CNT was carried out through the 1,3-dipolar cycloaddition reaction of azomethine ylides using a solvent-free reaction route. CNT were successful functionalized with pyrrolidine groups through a simple and fast procedure that was scaled up, and may be compatible with current industrial processes. Another objective was to disperse the CNT in polyamide 6 (PA6) using melt mixing, and to produce PA6/CNT nanocomposites by microinjection molding (plM). Finally, the morphological and physical properties of the mouldings produced were evaluated. The plM process is becoming of greater importance for the manufacturing of polymeric micro- components considering its low cost and short cycle times, useful for mass production. The as-received and functionalized CNT

  5. Insight into the Broad Field of Polymer Nanocomposites: From Carbon Nanotubes to Clay Nanoplatelets, via Metal Nanoparticles

    PubMed Central

    Stefanescu, Eduard A.; Daranga, Codrin; Stefanescu, Cristina

    2009-01-01

    Highly ordered polymer nanocomposites are complex materials that display a rich morphological behavior owing to variations in composition, structure, and properties on a nanometer length scale. Metal-polymer nanocomposite materials are becoming more popular for applications requiring low cost, high metal surface areas. Catalytic systems seem to be the most prevalent application for a wide range of metals used in polymer nanocomposites, particularly for metals like Pt, Ni, Co, and Au, with known catalytic activities. On the other hand, among the most frequently utilized techniques to prepare polymer/CNT and/or polymer/clay nanocomposites are approaches like melt mixing, solution casting, electrospinning and solid-state shear pulverization. Additionally, some of the current and potential applications of polymer/CNT and/or polymer/clay nanocomposites include photovoltaic devices, optical switches, electromagnetic interference (EMI) shielding, aerospace and automotive materials, packaging, adhesives and coatings. This extensive review covers a broad range of articles, typically from high impact-factor journals, on most of the polymer-nanocomposites known to date: polymer/carbon nanotubes, polymer/metal nanospheres, and polymer/clay nanoplatelets composites. The various types of nanocomposites are described form the preparation stages to performance and applications. Comparisons of the various types of nanocomposites are conducted and conclusions are formulated.

  6. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    NASA Technical Reports Server (NTRS)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  7. About the relevance of waviness, agglomeration, and strain on the electrical behavior of polymer composites filled with carbon nanotubes evaluated by a Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Román, Sebastián; Lund, Fernando; Bustos, Javier; Palza, Humberto

    2018-01-01

    In several technological applications, carbon nanotubes (CNT) are added to a polymer matrix in order to develop electrically conductive composite materials upon percolation of the CNT network. This percolation state depends on several parameters such as particle characteristics, degree of dispersion, and filler orientation. For instance, CNT aggregation is currently avoided because it is thought that it will have a negative effect on the electrical behavior despite some experimental evidence showing the contrary. In this study, the effect of CNT waviness, degree of agglomeration, and external strain, on the electrical percolation of polymer composites is studied by a three dimensional Monte-Carlo simulation. The simulation shows that the percolation threshold of CNT depends on the particle waviness, with rigid particles displaying the lowest values. Regarding the effect of CNT dispersion, our numerical results confirm that low levels of agglomeration reduce the percolation threshold of the composite. However, the threshold is shifted to larger values at high agglomeration states because of the appearance of isolated areas of high CNT concentrations. These results imply, therefore, an optimum of agglomeration that further depends on the waviness and concentration of CNT. Significantly, CNT agglomeration can further explain the broad percolation transition found in these systems. When an external strain is applied to the composites, the percolation concentration shifts to higher values because CNT alignment increases the inter-particle distances. The strain sensitivity of the composites is affected by the percolation state of CNT showing a maximum value at certain filler concentration. These results open up the discussion about the relevance in polymer composites of the dispersion state of CNT and filler flexibility towards electrically conductive composites.

  8. Near-Edge X-ray Absorption Fine Structure Studies of Electrospun Poly(dimethylsiloxane)/Poly (methyl methacrylate)/Multiwall Carbon Nanotube Composites

    PubMed Central

    Winter, A. Douglas; Larios, Eduardo; Alamgir, Faisal M.; Jaye, Cherno; Fischer, Daniel; Campo, Eva M.

    2014-01-01

    This work describes the near conduction band edge structure of electrospun mats of MWCNT-PDMS-PMMA by near edge X-Ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra; which may evidence phase separation within the bulk of the micron-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C=O and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent, and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown CNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation. PMID:24308286

  9. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol.

    PubMed

    Alshehri, Saad M; Almuqati, Turki; Almuqati, Naif; Al-Farraj, Eida; Alhokbany, Norah; Ahamad, Tansir

    2016-10-20

    A novel catalyst for the reduction of 4-nitrophenol (4-NP) was prepared using carboxyl group-functionalized multiwalled carbon nanotubes (MWCNTs), polymer matrix, and silver nanoparticles (AgNPs). The AgNPs were prepared by the reduction of silver nitrate by trisodium citrate in the MWCNTs-polymer nanocomposite; the size of the synthesized AgNPs was found to be 3nm (average diameter). The synthesized nanocomposites were characterized using several analytical techniques. Ag@MWCNTs-polymer composite in the presence of sodium borohydride (NaBH4) in aqueous solution is an effective catalyst for the reduction of 4-NP. The apparent kinetics of reduction has a pseudo-first-order kinetics, and the rate constant and catalytic activity parameter were found to be respectively 7.88×10(-3)s(-1)and 11.64s(-1)g(-1). The MWCNTs-polymer nanocomposite renders stability to AgNPs against the environment and the reaction medium, which means that the Ag@MWCNTs-polymer composite can be re-used for many catalytic cycles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nanohelices from planar polymer self-assembled in carbon nanotubes

    PubMed Central

    Fu, Hongjin; Xu, Shuqiong; Li, Yunfang

    2016-01-01

    The polymer possessing with planar structure can be activated and guided to encapsulate the inner space of SWNT and form a helix through van der Waals interaction and the π-π stacking effect between the polymer and the inner surface of SWNT. The SWNT size, the nanostructure and flexibility of polymer chain are all determine the final structures. The basic interaction between the polymer and the nanotubes is investigated, and the condition and mechanism of the helix-forming are explained particularly. Hybrid polymers improve the ability of the helix formation. This study provides scientific basis for fabricating helical polymers encapsulated in SWNTs and eventually on their applications in various areas. PMID:27440493

  11. Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    DOE PAGES

    Arman, B.; An, Q.; Luo, S. N.; ...

    2011-01-04

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore » CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less

  12. Long conducting polymer nanonecklaces with a `beads-on-a-string' morphology: DNA nanotube-template synthesis and electrical properties

    NASA Astrophysics Data System (ADS)

    Chen, Guofang; Mao, Chengde

    2016-05-01

    Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties.Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01603k

  13. Studies of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  14. Conducting polymer nanocomposites loaded with nanotubes and fibers for electrical and thermal applications

    NASA Astrophysics Data System (ADS)

    Chiguma, Jasper

    The design, fabrication and measurement of electrical and thermal properties of polymers loaded with nanotubes and fibers are the foci of the work presented in this dissertation. The resulting products of blending polymers with nanomaterials are called nanocomposites and are already finding applications in many areas of human endeavour. Among some of the most recent envisioned applications of nanocomposites is in electronic devices as thermal interface materials (TIMs). This potential application as TIMs, has been made more real by the realization that carbon nanotubes, could potentially transfer their high electrical, thermal and mechanical properties to polymers in the nanocomposites. In Chapter 1, the events leading to the discovery of carbon nanotubes are reviewed followed by an elaborate discussion of their structure and properties. The discussion of the structure and properties of carbon nanotubes help in understanding the envisaged applications. Chapter 2 focuses on the fabrication of insulating polymer nanocomposites, their electrical and mechanical properties. Poly (methyl methacrylate) (PMMA) and a polyimide formed by reacting pyromellitic dianhydride (PMDA) and 4, 4'-oxydianiline (ODA) (PMDA-ODA) nanocomposites with carbon nanotubes were prepared by in-situ polymerization. Poly (1-methyl-4-pentene) (TPX), Polycarbonate (PC), Poly (vinyl chloride) (PVC), Poly (acrylonitrile-butadiene-styrene) (ABS), the alloys ABS-PC, ABS-PVC, and ABS-PC-PVC nanocomposites were prepared from the respective polymers and carbon nanotubes and their mechanical and electrical properties measured. Chapter 3 covers the nanocomposites that were prepared by the in-situ polymerization of the conducting polymers Polyaniline (PANi), Polypyrrole (PPy) and Poly (3, 4-ethylenedioxythiophene) (PEDOT) by in-situ polymerization. These are evaluated for electrical conductivity. The use of surfactants in facilitating carbon nanotube dispersion is discussed and applied in the preparation of

  15. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.

    PubMed

    Shankar, Karthik; Mor, Gopal K; Prakasam, Haripriya E; Varghese, Oomman K; Grimes, Craig A

    2007-11-20

    Films comprised of 4 microm long titanium dioxide nanotube arrays were fabricated by anodizing Ti foils in an ethylene glycol based electrolyte. A carboxylated polythiophene derivative was self-assembled onto the TiO2 nanotube arrays by immersing them in a solution of the polymer. The binding sites of the carboxylate moiety along the polymer chain provide multiple anchoring sites to the substrate, making for a stable rugged film. Backside illuminated liquid junction solar cells based on TiO2 nanotube films sensitized by the self-assembled polymeric layer showed a short-circuit current density of 5.5 mA cm-2, a 0.7 V open circuit potential, and a 0.55 fill factor yielding power conversion efficiencies of 2.1% under AM 1.5 sun. A backside illuminated single heterojunction solid state solar cell using the same self-assembled polymer was demonstrated and yielded a photocurrent density as high as 2.0 mA cm-2. When a double heterojunction was formed by infiltrating a blend of poly(3-hexylthiophene) (P3HT) and C60-methanofullerene into the self-assembled polymer coated nanotube arrays, a photocurrent as high as 6.5 mA cm-2 was obtained under AM 1.5 sun with a corresponding efficiency of 1%. The photocurrent action spectra showed a maximum incident photon-to-electron conversion efficiency (IPCE) of 53% for the liquid junction cells and 25% for the single heterojunction solid state solar cells.

  16. Composite Reinforcement using Boron Nitride Nanotubes

    DTIC Science & Technology

    2014-05-09

    while retaining the nanotube structure. This project involves the use of computational quantum chemistry to study interactions of aluminium (Al...small clusters of 1–4 metal atoms. The effect of varying the radius of the nanotubes and the size of aluminium and titanium clusters was considered...15. SUBJECT TERMS Boron Nitride Nanotubes, composite materials, Aluminum Alloys , Titanium Alloy , Theoretical Chemistry 16. SECURITY

  17. STIR: Microwave Response of Carbon Nanotubes in Polymer Nanocomposite Welds

    DTIC Science & Technology

    2016-01-28

    system, we choose polylactic acid ( PLA ) as a model polymer, given its common application in additive manufacturing. 1-3 For the nanofiller, we utilize...polylactic acid ( PLA ) with dispersed multi-walled carbon nanotubes (MWCNTs) made at Texas A&M will be characterized in the microwave lab at TTU. In...the heating effects associated with percolated network formation. Samples of polylactic acid ( PLA ) with dispersed multi-walled carbon nanotubes

  18. Microstructure and Thermal Conductivity of Carbon Nanotube Reinforced Cu Composites.

    PubMed

    Chen, Pingan; Zhang, Jian; Shen, Qiang; Luo, Guoqiang; Dai, Yang; Wang, Chuanbing; Li, Meijuan; Zhang, Lianmeng

    2017-04-01

    Microstructure and thermal conductivity (TC) of carbon nanotubes reinforced Cu (CNT-Cu) composites have been studied. When CNTs were coated with nano Cu by electroless plating, the TC of CNT-Cu composites showed a noticeable improvement and increased with CNT contents. When 1.0 vol% CNTs was added, the TC of CNT-Cu composites increased to 420.4 W/(m · K), 30% higher than that of monolithic Cu (323.1 W/(m · K)). According to the measured TC of CNT-Cu composites, the interfacial thermal resistance of CNT-Cu composites was calculated as 3.0 × 10⁻⁹ m² K/W which was lower than the reported values of CNTs reinforced polymer matrix composites and ceramic matrix composites. Microstructures showed that CNTs modified with nano Cu were homogeneously dispersed and embedded in the Cu matrix, indicating that there was strong bonding between CNTs and Cu. The homogeneously dispersed CNTs and reduction of interfacial thermal resistance resulted in the improvement of thermal conductivity of CNT-Cu composites. Therefore, the prepared CNT-Cu composites are promising materials for thermal management applications.

  19. Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites

    NASA Astrophysics Data System (ADS)

    Li, Bin; Dong, Shuai; Wang, Caiping; Wang, Xiaojie; Fang, Jun

    2016-04-01

    This paper proposes a method for preparing multi-walled carbon nanotubea/polydimethylsiloxane (MWCNTs/PDMS) composites with enhanced thermal properties by using a high magnetic field (up to 10T). The MWCNT are oriented magnetically inside a silicone by in-situ polymerization method. The anisotropic structure would be expected to produce directional thermal conductivity. This study will provide a new approach to the development of anisotropic thermal-conductive polymer composites. Systematic studies with the preparation of silicone/graphene composites corresponding to their thermal and mechanical properties are carried out under various conditions: intensity of magnetic field, time, temperature, fillings. The effect of MWCNT/graphene content and preparation procedures on thermal conductivity of composites is investigated. Dynamic mechanical analysis (DMA) is used to reveal the mechanical properties of the composites in terms of the filling contents and magnetic field strength. The scanning electron microscope (SEM) is used to observe the micro-structure of the MWCNT composites. The alignment of MWCNTs in PDMS matrix is also studied by Raman spectroscopy. The thermal conductivity measurements show that the magnetically aligned CNT-composites feature high anisotropy in thermal conductivity.

  20. Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments.

    PubMed

    Simoes, Ricardo; Silva, Jaime; Vaia, Richard; Sencadas, Vítor; Costa, Pedro; Gomes, João; Lanceros-Méndez, Senentxu

    2009-01-21

    The low concentration behaviour and the increase of the dielectric constant in carbon nanotubes/polymer nanocomposites near the percolation threshold are still not well understood. In this work, a numerical model has been developed which focuses on the effect of the inclusion of conductive fillers in a dielectric polymer matrix on the dielectric constant and the dielectric strength. Experiments have been carried out in carbon nanotubes/poly(vinylidene fluoride) nanocomposites in order to compare to the simulation results. This work shows how the critical concentration is related to the formation of capacitor networks and that these networks give rise to high variations in the electrical properties of the composites. Based on numerical studies, the dependence of the percolation transition on the preparation of the nanocomposite is discussed. Finally, based on numerical and experimental results, both ours and from other authors, the causes of anomalous percolation behaviour of the dielectric constant are identified.

  1. Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites

    PubMed Central

    Han, Yue; Zhang, Xiaohua; Yu, Xueping; Zhao, Jingna; Li, Shan; Liu, Feng; Gao, Peng; Zhang, Yongyi; Zhao, Tong; Li, Qingwen

    2015-01-01

    High performance nanocomposites require well dispersion and high alignment of the nanometer-sized components, at a high mass or volume fraction as well. However, the road towards such composite structure is severely hindered due to the easy aggregation of these nanometer-sized components. Here we demonstrate a big step to approach the ideal composite structure for carbon nanotube (CNT) where all the CNTs were highly packed, aligned, and unaggregated, with the impregnated polymers acting as interfacial adhesions and mortars to build up the composite structure. The strategy was based on a bio-inspired aggregation control to limit the CNT aggregation to be sub 20–50 nm, a dimension determined by the CNT growth. After being stretched with full structural relaxation in a multi-step way, the CNT/polymer (bismaleimide) composite yielded super-high tensile strengths up to 6.27–6.94 GPa, more than 100% higher than those of carbon fiber/epoxy composites, and toughnesses up to 117–192 MPa. We anticipate that the present study can be generalized for developing multifunctional and smart nanocomposites where all the surfaces of nanometer-sized components can take part in shear transfer of mechanical, thermal, and electrical signals. PMID:26098627

  2. Studies on possibilities of polymer composites with conductive nanomaterials application in wearable electronics

    NASA Astrophysics Data System (ADS)

    Gralczyk, Kinga; Janczak, D.; Dybowska-Sarapuk, Ł.; Lepak, S.; Wróblewski, G.; Jakubowska, M.

    2017-08-01

    In the last few years there has been a growing interest in wearable electronic products, which are generating considerable interest especially in sport and medical industries. But rigid electronics is not comfortable to wear, so things like stretchable substrates, interconnects and electronic devices might help. Flexible electronics could adjust to the curves of a human body and allow the users to move freely. The objective of this paper is to study possibilities of polymer composites with conductive nanomaterials application in wearable electronics. Pastes with graphene, silver nanoplates and carbon nanotubes were manufactured and then interconnects were screen-printed on the surfaces of polyethylene terephthalate (PET) and fabric. Afterwards, the resistance and mechanical properties of samples were examined, also after washing them in a washing machine. It has been found that the best material for the conductive phase is silver. Traces printed directly on the fabric using conductive composites with one functional phase (silver nanoplates or graphene or carbon nanotubes) are too fragile to use them as a common solution in wearable electronics. Mechanical properties can be improved not only by adding carbon nanotubes or graphene to the silver paste, but also by printing additional layer of graphene paste or carbon nanotube paste onto silver layer. In fact, these solutions are not sufficient enough to solve a problem of using these composites in wearable electronics.

  3. On the Wrapping of Polyglycolide, Poly(Ethylene Oxide), and Polyketone Polymer Chains Around Single-Walled Carbon Nanotubes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.

    2015-02-01

    By using molecular dynamics simulations, the interaction between a single-walled carbon nanotube and three different polymers has been studied in this work. The effects of various parameters such as the nanotube geometry and temperature on the interaction energy and radius of gyration of polymers have been explored. By studying the snapshots of polymers along the single-walled carbon nanotube, it has been shown that 50 ps can be considered as a suitable time after which the shape of polymer chains around the nanotube remains almost unchanged. It is revealed that the effect of temperature on the interaction energy and radius of gyration of polymers in the range of 250 to 500 K is not significant Also, it is shown that the interaction energy depends on the nanotube diameter.

  4. Comparison of mechanical properties of multi-walled carbon nanotube and graphene nanosheet/polyethylene oxide composites plasticized with lithium triflate

    NASA Astrophysics Data System (ADS)

    Jurkane, A.; Gaidukov, S.

    2017-10-01

    A strong engineering interest in nanostructured conducting polymers and its composite materials have been widely used to build various sensor devices, electronic interconnect devices, fuel cells and batteries. Preparation of polymeric nano-composites with finely controlled structure, especially, at nano-scale, is still one of the most perspective modification ways of the properties of polymeric composites. Multi-walled carbon nanotube (MWCNT)/polyethylene oxide (PEO) and graphene nanosheets (GR)/PEO composites and composite of MWCNT/GR/PEO were prepared by solution casting and hot-pressing method. Composites were plasticized by 5% of Lithium triflate (LiTrifl), which play role of additional ion source in conducting polymer composite. Mechanical tensile tests were performed to evaluate nanoparticles influence on the mechanical strength of the conductive polymer composite materials. Difference of tensile tests of prepared composition can be seen from tensile tests data curves. The results of tensile tests indicated that the nanoparticles can provide PEO/5%LiTrifl composite with stiffening effects at rather low filler content (at least 0.05% by volume).

  5. Carbon nanotube-polymer nanocomposite infrared sensor.

    PubMed

    Pradhan, Basudev; Setyowati, Kristina; Liu, Haiying; Waldeck, David H; Chen, Jian

    2008-04-01

    The infrared photoresponse in the electrical conductivity of single-walled carbon nanotubes (SWNTs) is dramatically enhanced by embedding SWNTs in an electrically and thermally insulating polymer matrix. The conductivity change in a 5 wt % SWNT-polycarbonate nanocomposite is significant (4.26%) and sharp upon infrared illumination in the air at room temperature. While the thermal effect predominates in the infrared photoresponse of a pure SWNT film, the photoeffect predominates in the infrared photoresponse of SWNT-polycarbonate nanocomposites.

  6. Three-dimensional polymer MEMS with functionalized carbon nanotubes by microstereolithography

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Xie, Jining

    2003-04-01

    Microfabrication techniques such as bulk micromachining and surface micromachining currently employed to conceive MEMS are largely derived from the standard IC and microelectronics technology. Even though many MEMS devices with integrated electronics have been achieved by using the traditional micromachining techniques, some limitations have nevertheless to be underlined: 1) these techniques are very expensive and need specific installations as well as a cleanroom environment, 2) the materials that can be used up to now are restricted to silicon and metals, 3) the manufacture of 3D parts having curved surfaces or an important number of layers is not possible. Moreover, for some biological applications, the materials used for sensors must be compatible with human body and the actuators need to have high strain and displacement which the current silicon based MEMS do not provide. It is thus natural for the researchers to look for alternative methods such as Microstereolithography (MSL) to make 3D sensors and actuators using polymeric based materials. For MSL techniques to be successful as their silicon counterparts, one has to come up with multifunctional polymers with electrical properties comparable to silicon. These multifunctional polymers should not only have a high sensing capability but also a high strain and actuation performance. A novel UV-curable polymer uniformly bonded with functionalised nanotubes was synthesized via a modified three-step in-situ polymerization. Purified multi-walled nanotubes, gained from the microwave chemical vapor deposition method, were functionalised by oxidation. The UV curable polymer was prepared from toluene diisocyantae (TDI), functionalised nanotubes, and 2-hydroxyethyl methacrylate (HEMA). The chemical bonds between -NCO groups of TDI and -OH, -COOH groups of functionalised nanotubes help for conceiving polymeric based MEMS devices. A cost effective fabrication techniques was presented using Micro Stereo Lithography and an

  7. Three-dimensional polymer MEMS with functionalized carbon nanotubes by microstereolithography

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Xie, Jining

    2003-01-01

    Microfabrication techniques such as bulk micromachining and surface micromachining currently employed to conceive MEMS are largely derived from the standard IC and microelectronics technology. Even though many MEMS devices with integrated electronics have been achieved by using the traditional micromachining techniques, some limitations have nevertheless to be underlined: 1) these techniques are very expensive and need specific installations as well as a cleanroom environment, 2) the materials that can be used up to now are restricted to silicon and metals, 3) the manufacture of 3D parts having curved surfaces or an important number of layers is not possible. Moreover, for some biological applications, the materials used for sensors must be compatible with human body and the actuators need to have high strain and displacement which the current silicon based MEMS do not provide. It is thus natural for the researchers to look for alternative methods such as Microstereolithography (MSL) to make 3D sensors and actuators using polymeric based materials. For MSL techniques to be successful as their silicon counterparts, one has to come up with multifunctional polymers with electrical properties comparable to silicon. These multifunctional polymers should not only have a high sensing capability but also a high strain and actuation performance. A novel UV-curable polymer uniformly bonded with functionalized nanotubes was synthesized via a modified three-step in-situ polymerization. Purified multi-walled nanotubes, gained from the microwave chemical vapor deposition method, were functionalized by oxidation. The UV curable polymer was prepared from toluene diisocyanate (TDI), functionalized nanotubes, and 2 hydroxyethyl methacrylate (HEMA). The chemical bonds between NCO groups of TDI and OH, COOH groups of functionalized nanotubes help for conceiving polymeric based MEMS devices. A cost effective fabrication techniques was presented using Micro Stereo Lithography and an

  8. Titania carbon nanotube composites for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Pyrgiotakis, Georgios

    Photocatalytic composites have been used for the past few decades in a wide range of applications. The most common application is the purification of air and water by removing toxic compounds. There is limited use however towards biocidal applications. Despite their high efficiency, photocatalytic materials are not comparable to the effectiveness of conventional biocidal compounds such as chlorine and alcoholic disinfectants. On the other hand, nearly a decade ago with the discovery of the carbon nanotubes a new vibrant scientific field emerged. Nanotubes are unique structures of carbon that posse amazing electrical, mechanical and thermal properties. In this research carbon nanotubes are used as photocatalytic enhancers. They were coated with anatase titania to form a composite material. Two different types of nanotubes (metallic versus non-metallic) were used and the photocatalytic activity was measured. The metallic tubes demonstrated exceptional photocatalytic properties, while non-metallic tubes had low photocatalytic efficiency. The reason for that difference was investigated and was the major focus of this research. The research concluded that the reasons for the high efficiency of the carbon nanotubes were (i) the metallic nature of the tubes and (ii) the possible bond between the titania coating and the underlying graphite layers (C-O-Ti). Since both composites had the same indications regarding the C-O-Ti bond, the metallic nature of the carbon nanotubes is believed to be the most dominant factor contributing to the enhancement of the photocatalysis. The composite material may have other potential applications such as for sensing and photovoltaic uses.

  9. General Syntheses of Nanotubes Induced by Block Copolymer Self-Assembly.

    PubMed

    Zhao, Jianming; Huang, Wei; Si, Pengchao; Ulstrup, Jens; Diao, Fangyuan; Zhang, Jingdong

    2018-06-01

    Amphiphilic block copolymer templating strategies are extensively used for syntheses of mesoporous materials. However, monodisperse tubular nanostructures are limited. Here, a general method is developed to synthesize monodisperse nanotubes with narrow diameter distribution induced by self-assembly of block copolymer. 3-Aminophenol (AP) and formaldehyde (F) polymerize and self-assemble with cylindrical PS-b-PEO micelles into worm-like PS-b-PEO@APF composites with uniform diameter (49 ± 3 nm). After template extraction, worm-like APF polymer nanotubes are formed. The structure and morphology of the polymer nanotubes can be tuned by regulating the synthesis conditions. Furthermore, PS-b-PEO@APF composites are uniformly converted to isomorphic carbon nanotubes with large surface area of 662 m 2 g -1 , abundant hierarchical porous frameworks and nitrogen doping. The synthesis can be extended to silica nanotubes. These findings open an avenue to the design of porous materials with controlled structural framework, composition, and properties for a wide range of applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Precursor polymer compositions comprising polybenzimidazole

    DOEpatents

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  11. Oriented nanofibers embedded in a polymer matrix

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V. (Inventor); Lozano, Karen (Inventor); Rodriguez-Macias, Fernando J. (Inventor); Chibante, Luis Paulo Felipe (Inventor); Stewart, David Harris (Inventor)

    2011-01-01

    A method of forming a composite of embedded nanofibers in a polymer matrix is disclosed. The method includes incorporating nanofibers in a plastic matrix forming agglomerates, and uniformly distributing the nanofibers by exposing the agglomerates to hydrodynamic stresses. The hydrodynamic said stresses force the agglomerates to break apart. In combination or additionally elongational flow is used to achieve small diameters and alignment. A nanofiber reinforced polymer composite system is disclosed. The system includes a plurality of nanofibers that are embedded in polymer matrices in micron size fibers. A method for producing nanotube continuous fibers is disclosed. Nanofibers are fibrils with diameters of 100 nm, multiwall nanotubes, single wall nanotubes and their various functionalized and derivatized forms. The method includes mixing a nanofiber in a polymer; and inducing an orientation of the nanofibers that enables the nanofibers to be used to enhance mechanical, thermal and electrical properties. Orientation is induced by high shear mixing and elongational flow, singly or in combination. The polymer may be removed from said nanofibers, leaving micron size fibers of aligned nanofibers.

  12. Effect of Multiwalled Carbon Nanotubes on the Mechanical Properties of Carbon Fiber-Reinforced Polyamide-6/Polypropylene Composites for Lightweight Automotive Parts.

    PubMed

    Nguyen-Tran, Huu-Duc; Hoang, Van-Tho; Do, Van-Ta; Chun, Doo-Man; Yum, Young-Jin

    2018-03-15

    The development of lightweight automotive parts is an important issue for improving the efficiency of vehicles. Polymer composites have been widely applied to reduce weight and improve mechanical properties by mixing polymers with carbon fibers, glass fibers, and carbon nanotubes. Polypropylene (PP) has been added to carbon fiber-reinforced nylon-6 (CF/PA6) composite to achieve further weight reduction and water resistance. However, the mechanical properties were reduced by the addition of PP. In this research, multiwalled carbon nanotubes (CNTs) were added to compensate for the reduced mechanical properties experienced when adding PP. Tensile testing and bending tests were carried out to evaluate the mechanical properties. A small amount of CNTs improved the mechanical properties of carbon fiber-reinforced PA6/PP composites. For example, the density of CF/PA6 was reduced from 1.214 to 1.131 g/cm³ (6.8%) by adding 30 wt % PP, and the tensile strength of 30 wt % PP composite was improved from 168 to 173 MPa (3.0%) by adding 0.5 wt % CNTs with small increase of density (1.135 g/cm³). The developed composite will be widely used for lightweight automotive parts with improved mechanical properties.

  13. Transparent and Electrically Conductive Carbon Nanotube-Polymer Nanocomposite Materials for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Dervishi, E.; Biris, A. S.; Biris, A. R.; Lupu, D.; Trigwell, S.; Miller, D. W.; Schmitt, T.; Buzatu, D. A.; Wilkes, J. G.

    2006-01-01

    In recent years, nanocomposite materials have been extensively studied because of their superior electrical, magnetic, and optical properties and large number of possible applications that range from nano-electronics, specialty coatings, electromagnetic shielding, and drug delivery. The aim of the present work is to study the electrical and optical properties of carbon nanotube(CNT)-polymer nanocomposite materials for electrostatic charge dissipation. Single and multi-wall carbon nanotubes were grown by catalytic chemical vapor deposition (CCVD) on metal/metal oxide catalytic systems using acetylene or other hydrocarbon feedstocks. After the purification process, in which amorphous carbon and non-carbon impurities were removed, the nanotubes were functionalized with carboxylic acid groups in order to achieve a good dispersion in water and various other solvents. The carbon nanostructures were analyzed, both before and after functionalization by several analytical techniques, including microscopy, Raman spectroscopy, and X-Ray photoelectron spectroscopy. Solvent dispersed nanotubes were mixed (1 to 7 wt %) into acrylic polymers by sonication and allowed to dry into 25 micron thick films. The electrical and optical properties of the films were analyzed as a function of the nanotubes' concentration. A reduction in electrical resistivity, up to six orders of magnitude, was measured as the nanotubes' concentration in the polymeric films increased, while optical transparency remained 85 % or higher relative to acrylic films without nanotubes.

  14. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  15. Aerogel / Polymer Composite Materials

    NASA Technical Reports Server (NTRS)

    Smith, Trent M. (Inventor); Clayton, LaNetra M. (Inventor); Fesmire, James E. (Inventor); Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  16. Enhanced thermal conductance of polymer composites through embedding aligned carbon nanofibers

    DOE PAGES

    Nicholas, Roberts; Hensley, Dale K.; Wood, David

    2016-07-08

    The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers

  17. Enhanced thermal conductance of polymer composites through embedding aligned carbon nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas, Roberts; Hensley, Dale K.; Wood, David

    The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers

  18. Polymer-assisted deposition of films and preparation of carbon nanotube arrays using the films

    DOEpatents

    Luo, Hongmei; Li, Qingwen; Bauer, Eve; Burrell, Anthony Keiran; McCleskey, Thomas Mark; Jia, Quanxi

    2013-07-16

    Carbon nanotubes were prepared by coating a substrate with a coating solution including a suitable solvent, a soluble polymer, a metal precursor having a first metal selected from iron, nickel, cobalt, and molybdenum, and optionally a second metal selected from aluminum and magnesium, and also a binding agent that forms a complex with the first metal and a complex with the second metal. The coated substrate was exposed to a reducing atmosphere at elevated temperature, and then to a hydrocarbon in the reducing atmosphere. The result was decomposition of the polymer and formation of carbon nanotubes on the substrate. The carbon nanotubes were often in the form of an array on the substrate.

  19. Resistive and Capacitive γ-Ray Dosimeters Based On Triggered Depolymerization in Carbon Nanotube Composites.

    PubMed

    Zeininger, Lukas; He, Maggie; Hobson, Stephen T; Swager, Timothy M

    2018-05-25

    We report γ-ray dosimeters using carbon nanotubes wrapped with metastable poly(olefin sulfone)s (POSs) that readily depolymerize when exposed to ionizing radiation. New POSs, designed for wrapping single-walled carbon nanotubes (SWCNTs), are synthesized and characterized. The resulting POS-SWCNT composites serve as the active transducer in a novel class of γ-ray dosimeters. In our devices, polymer degradation results in immediate changes in the electronic potential of the POS-SWCNT active layers by decreasing the electron tunneling barriers between individualized tubes and by creating enhanced cofacial π-π electron contacts. By incorporating the SWCNT-POS composites into small resistive device platforms, we establish a rare example of real-time detection and dosimetry of radioactive ionizing radiation using organic-based materials. We show that the sensitivity of our platform closely depends on the intrinsic stability of the polymer matrix, the opacity toward γ-rays, and the dispersion efficiency (i.e., the individualization and isolation of the individual SWCNT charge carriers). Resistance decreases up to 65% after irradiation with a 40 krad dose demonstrates the high sensitivity of this novel class of γ-ray sensors. In addition, the detection mechanism was evaluated using a commercial capacitive device platform. The ease of fabrication and low power consumption of these small and inexpensive sensor platforms combined with appealing sensitivity parameters establishes the potential of the poly(olefin sulfone)-SWCNT composites to serve as a new transduction material in γ-ray sensor applications.

  20. Molecular imprinted polymer functionalized carbon nanotube sensors for detection of saccharides

    NASA Astrophysics Data System (ADS)

    Badhulika, Sushmee; Mulchandani, Ashok

    2015-08-01

    In this work, we report the synthesis and fabrication of an enzyme-free sugar sensor based on molecularly imprinted polymer (MIP) on the surface of single walled carbon nanotubes (SWNTs). Electropolymerization of 3-aminophenylboronic acid (3-APBA) in the presence of 10 M d-fructose and fluoride at neutral pH conditions resulted in the formation of a self-doped, molecularly imprinted conducting polymer (MICP) via the formation of a stable anionic boronic ester complex between poly(aniline boronic acid) and d-fructose. Template removal generated binding sites on the polymer matrix that were complementary to d-fructose both in structure, i.e., shape, size, and positioning of functional groups, thus enabling sensing of d-fructose with enhanced affinity and specificity over non-MIP based sensors. Using carbon nanotubes along with MICPs helped to develop an efficient electrochemical sensor by enhancing analyte recognition and signal generation. These sensors could be regenerated and used multiple times unlike conventional affinity based biosensors which suffer from physical and chemical stability.

  1. Novel self-sensing carbon nanotube-based composites for rehabilitation of structural steel members

    NASA Astrophysics Data System (ADS)

    Ahmed, Shafique; Doshi, Sagar; Schumacher, Thomas; Thostenson, Erik T.; McConnell, Jennifer

    2016-02-01

    Fatigue and fracture are among the most critical forms of damage in metal structures. Fatigue damage can initiate from microscopic defects (e.g., surface scratches, voids in welds, and internal defects) and initiate a crack. Under cyclic loading, these cracks can grow and reach a critical level to trigger fracture of the member which leads to compromised structural integrity and, in some cases, catastrophic failure of the entire structure. In our research, we are investigating a solution using carbon nanotube-based sensing composites, which have the potential to simultaneously rehabilitate and monitor fatigue-cracked structural members. These composites consist of a fiber-reinforced polymer (FRP) layer and a carbon nanotube-based sensing layer, which are integrated to form a novel structural self-sensing material. The sensing layer is composed of a non-woven aramid fabric that is coated with carbon nanotubes (CNT) to form an electrically conductive network that is extremely sensitive to detecting deformation as well as damage accumulation via changes in the resistance of the CNT network. In this paper, we introduce the sensing concept, describe the manufacturing of a model sensing prototype, and discuss a set of small-scale laboratory experiments to examine the load-carrying capacity and damage sensing response.

  2. Nanoscale Structure-Property Relationships of Polyacrylonitrile/CNT Composites as a Function of Polymer Crystallinity and CNT Diameter.

    PubMed

    Gissinger, Jacob R; Pramanik, Chandrani; Newcomb, Bradley; Kumar, Satish; Heinz, Hendrik

    2018-01-10

    Polyacrylonitrile (PAN)/carbon nanotube (CNT) composites are used as precursors for ultrastrong and lightweight carbon fibers. However, insights into the structure at the nanoscale and the relationships to mechanical and thermal properties have remained difficult to obtain. In this study, molecular dynamics simulation with accurate potentials and available experimental data were used to describe the influence of different degrees of PAN preorientation and CNT diameter on the atomic-scale structure and properties of the composites. The inclusion of CNTs in the polymer matrix is favored for an intermediate degree of PAN orientation and small CNT diameter whereas high PAN crystallinity and larger CNT diameter disfavor CNT inclusion. The glass transition at the CNT/PAN interface involves the release of rotational degrees of freedom of the polymer backbone and increased mobility of the protruding nitrile side groups in contact with the carbon nanotubes. The glass-transition temperature of the composite increases in correlation with the amount of CNT/polymer interfacial area per unit volume, i.e., in the presence of CNTs, for higher CNT volume fraction,  and inversely with CNT diameter. The increase in glass-transition temperature upon CNT addition is larger for PAN of lower crystallinity than for PAN of higher crystallinity. Interfacial shear strengths of the composites are higher for CNTs of smaller diameter and for PAN with preorientation, in correlation with more favorable CNT inclusion energies. The lowest interfacial shear strength was observed in amorphous PAN for the same CNT diameter. PAN with ∼75% crystallinity exhibited hexagonal patterns of nitrile groups near and far from the CNT interface which could influence carbonization into regular graphitic structures. The results illustrate the feasibility of near-quantitative insights into macroscale properties of polymer/CNT composites from simulations of nanometer-scale composite domains. Guidance is most

  3. Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin

    PubMed Central

    Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S. V.; Werner, Carsten; Steinhart, Martin; Wang, Wenxin

    2015-01-01

    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers, and various therapeutics. PMID:26619814

  4. Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin

    NASA Astrophysics Data System (ADS)

    Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S. V.; Werner, Carsten; Steinhart, Martin; Wang, Wenxin

    2015-12-01

    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers, and various therapeutics.

  5. Polyaniline/carbon nanotube/CdS quantum dot composites with enhanced optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Goswami, Mrinmoy; Ghosh, Ranajit; Maruyama, Takahiro; Meikap, Ajit Kumar

    2016-02-01

    A new kind of polyaniline/carbon nanotube/CdS quantum dot composites have been developed via in-situ polymerization of aniline monomer in the presence of dispersed CdS quantum dots (size: 2.7-4.8 nm) and multi-walled carbon nanotubes (CNT), which exhibits enhanced optical and electrical properties. The existences of 1st order, 2nd order, and 3rd order longitudinal optical phonon modes, strongly indicate the high quality of synthesized CdS quantum dots. The occurrence of red shift of free exciton energy in photoluminescence is due to size dependent quantum confinement effect of CdS. The conductivity of the composites (for example PANI/CNT/CdS (2 wt.% CdS)) is increased by about 7 of magnitude compared to that of pure PANI indicating a charge transfer between CNT and polymer via CdS quantum dots. This advanced material has a great potential for high-performance of electro-optical applications.

  6. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes.

    PubMed

    Hou, Ye; Cheng, Yingwen; Hobson, Tyler; Liu, Jie

    2010-07-14

    For efficient use of metal oxides, such as MnO(2) and RuO(2), in pseudocapacitors and other electrochemical applications, the poor conductivity of the metal oxide is a major problem. To tackle the problem, we have designed a ternary nanocomposite film composed of metal oxide (MnO(2)), carbon nanotube (CNT), and conducting polymer (CP). Each component in the MnO(2)/CNT/CP film provides unique and critical function to achieve optimized electrochemical properties. The electrochemical performance of the film is evaluated by cyclic voltammetry, and constant-current charge/discharge cycling techniques. Specific capacitance (SC) of the ternary composite electrode can reach 427 F/g. Even at high mass loading and high concentration of MnO(2) (60%), the film still showed SC value as high as 200 F/g. The electrode also exhibited excellent charge/discharge rate and good cycling stability, retaining over 99% of its initial charge after 1000 cycles. The results demonstrated that MnO(2) is effectively utilized with assistance of other components (fFWNTs and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) in the electrode. Such ternary composite is very promising for the next generation high performance electrochemical supercapacitors.

  7. Filament Winding Multifunctional Carbon Nanotube Composites of Various Dimensionality

    NASA Astrophysics Data System (ADS)

    Wells, Brian David

    Carbon nanotubes (CNT) have been long considered an optimal material for composites due to their high strength, high modulus, and electrical/thermal conductivity. These composite materials have the potential to be used in the aerospace, computer, automotive, medical industry as well as many others. The nano dimensions of these structures make controlled alignment and distribution difficult using many production techniques. An area that shows promise for controlled alignment is the formation of CNT yarns. Different approaches have been used to create yarns with various winding angles and diameters. CNTs resemble traditional textile fiber structures due to their one-dimensional dimensions, axial strength and radial flexibility. One difference is, depending on the length, CNTs can have aspect ratios that far exceed those of traditional textile fibers. This can complicate processing techniques and cause agglomeration which prevents optimal structures from being created. However, with specific aspect ratios and spatial distributions a specific type of CNT, vertically aligned spinnable carbon nanotubes (VASCNTs), have interesting properties that allow carbon nanotubes to be drawn from an array in a continuous aligned web. This dissertation examines the feasibility of combining VASCNTs with another textile manufacturing process, filament winding, to create structures with various levels of dimensionality. While yarn formation with CNTs has been largely studied, there has not been significant work studying the use of VASCNTs to create composite materials. The studies that have been produces revolve around mixing CNTs into epoxy or creating uni-directional wound structures. In this dissertation VASCNTs are used to create filament wound materials with various degrees of alignment. These structures include 1 dimensional coatings applied to non-conductive polymer monofilaments, two dimensional multifunctional adhesive films, and three dimensional hybrid-nano composites. The

  8. Composites of multi-walled carbon nanotubes with polypropylene and thermoplastic olefin blends prepared by melt compounding

    NASA Astrophysics Data System (ADS)

    Petrie, Kyle G.

    Composites of multi-walled carbon nanotubes (MWCNTs) with polypropylene (PP) and thermoplastic olefins (TPOs) were prepared by melt compounding. Two non-covalent functionalization methods were employed to improve nanotube dispersion and the resulting composite properties are reported. The first functionalization approach involved partial coating of the surface of the nanotubes with a hyperbranched polyethylene (HBPE). MWCNT functionalization with HBPE was only moderately successful in breaking up the large aggregates that formed upon melt mixing with PP. In spite of the formation of large aggregates, the samples were conductive above a percolation threshold of 7.3 wt%. MWCNT functionalization did not disrupt the electrical conductivity of the nanotubes. The composite strength was improved with addition of nanotubes, but ductility was severely compromised because of the existence of aggregates. The second method involved PP matrix functionalization with aromatic moieties capable of pi-pi interaction with MWCNT sidewalls. Various microscopy techniques revealed the addition of only 25 wt% of PP-g-pyridine (Py) to the neat PP was capable of drastically reducing nanotube aggregate size and amount. Raman spectroscopy confirmed improved polymer/nanotube interaction with the PP-g-Py matrix. Electrical percolation threshold was obtained at a MWCNT loading of approximately 1.2 wt%. Electrical conductivity on the order of 10 -2 S/m was achieved, suggesting possible use in semi-conducting applications. Composite strength was improved upon addition of MWCNTs. The matrix functionalization with Py resulted in a significant improvement in composite ductility when filled with MWCNTs in comparison to its maleic anhydride (MA) counterpart. Preliminary investigations suggest that the use of alternating current (AC) electric fields may be effective in aligning nanotubes in PP to reduce the filler loading required for electrical percolation. Composites containing MWCNT within PP

  9. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth

    NASA Astrophysics Data System (ADS)

    Singh, Nandita; Chen, Jinhu; Koziol, Krzysztof K.; Hallam, Keith R.; Janas, Dawid; Patil, Avinash J.; Strachan, Ally; G. Hanley, Jonathan; Rahatekar, Sameer S.

    2016-04-01

    The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.

  10. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth.

    PubMed

    Singh, Nandita; Chen, Jinhu; Koziol, Krzysztof K; Hallam, Keith R; Janas, Dawid; Patil, Avinash J; Strachan, Ally; G Hanley, Jonathan; Rahatekar, Sameer S

    2016-04-21

    The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.

  11. Responsive Block Copolymer and Gold Nanoparticle Hybrid Nanotubes.

    NASA Astrophysics Data System (ADS)

    Chang, Sehoon; Singamaneni, Srikanth; Young, Seth; Tsukruk, Vladimir

    2009-03-01

    We demonstrate the facile fabrication of responsive polymer and metal nanoparticle composite nanotube structures. The nanotubes are comprised of responsive block copolymer, polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP), and gold nanoparticles. PS-b-P2VP nanotubes were fabricated using porous alumina template and in situ reduction of the gold nanoparticles in P2VP domains. Owing to the pH sensitive nature of P2VP (anionic polymer with a pKa of 3.8), the nanotubes exhibit a dramatic change in topology in response to the changes in the external pH. Furthermore, the gold nanoparticles in the responsive block exhibit a reversible aggregation, causing a reversible change in optical properties such as absorption.

  12. Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness.

    PubMed

    Shim, Bong Sup; Zhu, Jian; Jan, Edward; Critchley, Kevin; Ho, Szushen; Podsiadlo, Paul; Sun, Kai; Kotov, Nicholas A

    2009-07-28

    Efficient coupling of mechanical properties of SWNTs with the matrix leading to the transfer of unique mechanical properties of SWNTs to the macroscopic composites is a tremendous challenge of today's materials science. The typical mechanical properties of known SWNT composites, such as strength, stiffness, and toughness, are assessed in an introductory survey where we focused on concrete numerical parameters characterizing mechanical properties. Obtaining ideal stress transfer will require fine optimization of nanotube-polymer interface. SWNT nanocomposites were made here by layer-by-layer (LBL) assembly with poly(vinyl alcohol) (PVA), and the first example of optimization in respect to key parameters determining the connectivity at the graphene-polymer interface, namely, degree of SWNT oxidation and cross-linking chemistry, was demonstrated. The resulting SWNT-PVA composites demonstrated tensile strength (σ(ult)) = 504.5 ± 67.3 MPa, stiffness (E) = 15.6 ± 3.8 GPa, and toughness (K) = 121.2 ± 19.2 J/g with maximum values recorded at σ(ult) = 600.1 MPa, E = 20.6 GPa, and K = 152.1 J/g. This represents the strongest and stiffest nonfibrous SWNT composites made to date outperforming other bulk composites by 2-10 times. Its high performance is attributed to both high nanotube content and efficient stress transfer. The resulting LBL composite is also one of the toughest in this category of materials and exceeding the toughness of Kevlar by 3-fold. Our observation suggests that the strengthening and toughening mechanism originates from the synergistic combination of high degree of SWNT exfoliation, efficient SWNT-PVA binding, crack surface roughening, and fairly efficient distribution of local stress over the SWNT network. The need for a multiscale approach in designing SWNT composites is advocated.

  13. Multifunctional Poly(2,5-benzimidazole)/Carbon Nanotube Composite Films

    DTIC Science & Technology

    2010-01-01

    Multifunctional Poly(2,5- benzimidazole )/Carbon Nanotube Composite Films JI-YE KANG,1 SOO-MI EO,1 IN-YUP JEON,1 YEONG SUK CHOI,2 LOON-SENG TAN,3 JONG...molecular-weight poly(2,5- benzimidazole ) (ABPBI). ABPBI/carbon nanotube (CNT) compo- sites were prepared via in situ polymerization of the AB-monomer in the...polymerization; multiwalled carbon nanotube (MWCNT); nano- composites; poly(2,5- benzimidazole ); (ABPBI); polycondensa- tion; poly(phosphoric acid); single-walled

  14. Carbon Nanotubes for Supercapacitor

    PubMed Central

    2010-01-01

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage. PMID:20672061

  15. Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites

    DOEpatents

    Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN

    2010-07-27

    Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.

  16. Characterization of Hybrid CNT Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Kinney, Megan C.; Pressley, James; Sauti, Godfrey; Czabaj, Michael W.; Kim, Jae-Woo; Siochi, Emilie J.

    2015-01-01

    Carbon nanotubes (CNTs) have been studied extensively since their discovery and demonstrated at the nanoscale superior mechanical, electrical and thermal properties in comparison to micro and macro scale properties of conventional engineering materials. This combination of properties suggests their potential to enhance multi-functionality of composites in regions of primary structures on aerospace vehicles where lightweight materials with improved thermal and electrical conductivity are desirable. In this study, hybrid multifunctional polymer matrix composites were fabricated by interleaving layers of CNT sheets into Hexcel® IM7/8552 prepreg, a well-characterized toughened epoxy carbon fiber reinforced polymer (CFRP) composite. The resin content of these interleaved CNT sheets, as well as ply stacking location were varied to determine the effects on the electrical, thermal, and mechanical performance of the composites. The direct-current electrical conductivity of the hybrid CNT composites was characterized by in-line and Montgomery four-probe methods. For [0](sub 20) laminates containing a single layer of CNT sheet between each ply of IM7/8552, in-plane electrical conductivity of the hybrid laminate increased significantly, while in-plane thermal conductivity increased only slightly in comparison to the control IM7/8552 laminates. Photo-microscopy and short beam shear (SBS) strength tests were used to characterize the consolidation quality of the fabricated laminates. Hybrid panels fabricated without any pretreatment of the CNT sheets resulted in a SBS strength reduction of 70 percent. Aligning the tubes and pre-infusing the CNT sheets with resin significantly improved the SBS strength of the hybrid composite To determine the cause of this performance reduction, Mode I and Mode II fracture toughness of the CNT sheet to CFRP interface was characterized by double cantilever beam (DCB) and end notch flexure (ENF) testing, respectively. Results are compared to the

  17. Effects of 1 MeV electrons on the deformation mechanisms of polyethylene/carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Yang, Jianqun; Zhang, Xiaodong; Liu, Chaoming; Li, Xingji; Li, Hongxia; Ma, Guoliang; Tian, Feng

    2017-10-01

    Polymer nano-composites, especially in polyethylene (PE)/carbon nanotube (CNT) composites can be employed as radiation shielding and structural materials in space. When the PE/CNT composites are used in space, it is easy to suffer from radiation damage caused by charged particles. However, few studies about deformation mechanisms of the composites exposed to electron become available so far. In this paper, mutiwalled carbon nanotubes (MWCNTs) were incorporated into low density polyethylene (LDPE) with MWCNT loadings concentrations of 0.1 wt%. The structural evolution during uniaxial tensile deformation of the LDPE/0.1% MWCNT composites before and after 1 MeV electrons were investigated by means of a small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD). Experimental results show that 1 MeV electrons obviously increase the ultimate tensile strength of the LDPE/MWCNT composites. From SAXS and WAXD analyses, it is shown that 1 MeV electrons inhibit the disintegration and the rotation of the lamellae, and slow down the formation of the new crystals. It is concluded that the intense interaction between MWCNTs and LDPE matrix and the crosslinking strengthening generated by 1 MeV electrons is the dominant reason for the changes of the deformation behaviors of LDPE.

  18. Towards fractional-order capacitors with broad tunable constant phase angles: multi-walled carbon nanotube-polymer composite as a case study

    NASA Astrophysics Data System (ADS)

    Agambayev, Agamyrat; Rajab, Karam H.; Hassan, Ali H.; Farhat, Mohamed; Bagci, Hakan; Salama, Khaled N.

    2018-02-01

    In this study, multi-walled carbon nanotube (MWCNT) filled polyevinelidenefluoride-trifluoroethylene-chlorofluoroethylene composites are used to realize fractional-order capacitors (FOCs). A solution-mixing and drop-casting approach is used to fabricate the composite. Due to the high aspect ratio of MWCNTs, percolation regime starts at a small weight percentage (wt%), 1.00%.The distributed MWCNTs inside the polymer act as an electrical network of micro-capacitors and micro-resistors, which, in effect, behaves like a FOC. The resulting FOCs’ constant phase angle (CPA) can be tuned from -65{\\hspace{0pt}}^\\circ to -7{\\hspace{0pt}}^\\circ by changing the wt% of the MWCNTs. This is the largest dynamic range reported so far at the frequency range from 150 kHz to 2 MHz for an FOC. Furthermore, the CPA and pseudo-capacitance are shown to be practically stable (with less than 1% variation) when the applied voltage is, changed between 500 µV and 5 V. For a fixed value of CPA, the pseudo-capacitance can be tuned by changing the thickness of the composite, which can be done in a straightforward manner via the solution-mixing and drop-casting fabrication approach. Finally, it is shown that the frequency of a Hartley oscillator built using an FOC is almost 15 times higher than that of a Hartley oscillator built using a conventional capacitor.

  19. Effect of Multiwalled Carbon Nanotubes on the Mechanical Properties of Carbon Fiber-Reinforced Polyamide-6/Polypropylene Composites for Lightweight Automotive Parts

    PubMed Central

    Nguyen-Tran, Huu-Duc; Do, Van-Ta; Yum, Young-Jin

    2018-01-01

    The development of lightweight automotive parts is an important issue for improving the efficiency of vehicles. Polymer composites have been widely applied to reduce weight and improve mechanical properties by mixing polymers with carbon fibers, glass fibers, and carbon nanotubes. Polypropylene (PP) has been added to carbon fiber-reinforced nylon-6 (CF/PA6) composite to achieve further weight reduction and water resistance. However, the mechanical properties were reduced by the addition of PP. In this research, multiwalled carbon nanotubes (CNTs) were added to compensate for the reduced mechanical properties experienced when adding PP. Tensile testing and bending tests were carried out to evaluate the mechanical properties. A small amount of CNTs improved the mechanical properties of carbon fiber-reinforced PA6/PP composites. For example, the density of CF/PA6 was reduced from 1.214 to 1.131 g/cm3 (6.8%) by adding 30 wt % PP, and the tensile strength of 30 wt % PP composite was improved from 168 to 173 MPa (3.0%) by adding 0.5 wt % CNTs with small increase of density (1.135 g/cm3). The developed composite will be widely used for lightweight automotive parts with improved mechanical properties. PMID:29543754

  20. Materials Science: Nanotube composites

    NASA Astrophysics Data System (ADS)

    Ajayan, Pulickel M.; Tour, James M.

    2007-06-01

    A carbon revolution has occurred - carbon atoms can be coaxed into several topologies to make materials with unique properties. Nanotubes are the vanguard of this innovation, and are on the cusp of commercial exploitation as the multifunctional components of the next generation of composite materials.

  1. Aligned Carbon Nanotubes for High-Performance Films and Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Liwen

    buckypapers. This novel technique could construct CNT films with reproducible properties, which also had the potential to be scale-up for industrial mass production. Based on the microcombing approach, dispersion issue of the long, straight, and highly aligned CNTs was investigated by adding PVA matrix into the microcombed CNT sheets. It was found although microcombing promoted the formation of agglomerated strands of the long, straight, and aligned CNTs, this was not an adverse problem in impairing the composite performance. When matrix was added, those agglomerated strands were wrapped together which maintained a more stable and better contact between nanotubes than those in the dry films. The as-produced CNT/PVA composite films exhibit an electrical conductivity of 1.84x105 S/m, Young's modulus of 119 GPa, tensile strength of 2.9 GPa, and toughness of 52.4 J/cm3, which represent improvements over those of uncombed samples by 300%, 100%, 120%, and 200%, respectively, demonstrating the effectiveness and reliability of microcombing in producing high-performance CNT/polymer composite films.

  2. Polymer-wrapped single-walled carbon nanotubes: a transformation toward better applications in healthcare.

    PubMed

    Chik, Mazzura Wan; Hussain, Zahid; Zulkefeli, Mohd; Tripathy, Minaketan; Kumar, Sunil; Majeed, Abu Bakar Abdul; Byrappa, K

    2018-03-28

    Carbon nanotubes (CNTs) possess outstanding properties that could be useful in several technological, drug delivery, and diagnostic applications. However, their unique physical and chemical properties are hindered due to their poor solubility. This article review's the different ways and means of solubility enhancement of single-wall carbon nanotubes (SWNTs). The advantages of SWNTs over the multi-walled carbon nanotubes (MWNTs) and the method of non-covalent modification for solubility enhancement has been the key interest in this review. The review also highlights a few examples of dispersant design. The review includes some interesting utility of SWNTs being wrapped with polymer especially in biological media that could mediate proper drug delivery to target cells. Further, the use of wrapped SWNTs with phospholipids, nucleic acid, and amphiphillic polymers as biosensors is of research interest. The review aims at summarizing the developments relating to wrapped SWNTs to generate further research prospects in healthcare.

  3. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    PubMed Central

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  4. Carbon Nanotubes for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Files, Brad; Yowell, Leonard

    2003-01-01

    Single-wall carbon nanotubes offer the promise of a new class of revolutionary materials for space applications. The Carbon Nanotube Project at NASA Johnson Space Center has been actively researching this new technology by investigating nanotube production methods (arc, laser, and HiPCO) and gaining a comprehensive understanding of raw and purified material using a wide range of characterization techniques. After production and purification, single wall carbon nanotubes are processed into composites for the enhancement of mechanical, electrical, and thermal properties. This "cradle-to-grave" approach to nanotube composites has given our team unique insights into the impact of post-production processing and dispersion on the resulting material properties. We are applying our experience and lessons-learned to developing new approaches toward nanotube material characterization, structural composite fabrication, and are also making advances in developing thermal management materials and electrically conductive materials in various polymer-nanotube systems. Some initial work has also been conducted with the goal of using carbon nanotubes in the creation of new ceramic materials for high temperature applications in thermal protection systems. Human space flight applications such as advanced life support and fuel cell technologies are also being investigated. This discussion will focus on the variety of applications under investigation.

  5. Effect of platelet-shaped graphene additives on actuating response of carbon nanotube/ionic liquid/polymer composite actuators

    NASA Astrophysics Data System (ADS)

    Monobe, Hirosato; Tsuchiya, Nobuyuki; Yamamura, Masahiro; Mukai, Ken; Sugino, Takushi; Asaka, Kinji

    2018-03-01

    In this study, the platelet-shaped graphene was used as a conductive additive in porous electrodes of a dry-type polymer actuator consisting of carbon nanotube (CNT), ionic liquid, and a base polymer to improve actuation properties. The generated strain was estimated from the bending motion of the actuator in the frequency range from 0.005 to 10 Hz. Ten different types of electrode film were prepared by changing the mixing amounts and surface areas of the platelet-shaped graphene. When a small amount of graphene (30 mg) relative to CNT (50 mg) was added to the CNT electrode, the strain was increased to be almost twice larger than that of CNT (50 mg) without any additives. The strain coefficient of the three-layered actuator with CNT electrodes with graphene additives is positively correlated with the capacitance per volume of such electrodes.

  6. Carbon Nanomaterials as Reinforcements for Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanomaterials including fellerenes, nanotubes (CNT) and nanofibers have been proposed for many applications. One of applications is to use the carbon nanomaterials as reinforcements for composites, especially for polymer matrices. Carbon nanotubes is a good reinforcement for lightweight composite applications due to its low mass density and high Young's modulus. Two obscures need to overcome for carbon nanotubes as reinforcements in composites, which are large quantity production and functioning the nanotubes. This presentation will discuss the carbon nanotube growth by chemical vapor deposition. In order to reduce the cost of producing carbon nanotubes as well as preventing the sliding problems, carbon nanotubes were also synthesized on carbon fibers. The synthesis process and characterization results of nanotubes and nanotubes/fibers will be discussed in the presentation.

  7. Polymer compositions, polymer films and methods and precursors for forming same

    DOEpatents

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  8. Three-dimensional polymer MEMS with functionalized carbon nanotubes by microstereolithography

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Xie, Jining

    2002-11-01

    Microfabrication techniques such as bulk micromachining and surface micromachining currently employed to conceive MEMS are largely derived from the standard IC and microelectronics technology. Even though many MEMS devices with integrated electronics have been achieved by using the traditional micromachining techniques, some limitations have nevertheless to be underlined: 1) these techniques are very expensive and need specific installations as well as a cleanroom environment, 2) the materials that can be used up to now are restricted to silicon and metals, 3) the manufacture of 3D parts having curved surfaces or an important numberof layers is not possible. Moreover, for some biological applications, the materials used for sensors must be compatible with human body and the actuators need to have high strain and displacement which the current silicon based MEMS do not provide. It is thus natural for the researchers to 'look' for alternative methods such as Microstereolithography (MSL) to make 3D sensors and actuators using polymeric based materials. For MSL techniques to be successful as their silicon counterparts, one has to come up with multifunctional polyers with electrical properties comparable to silicon. These multifunctional polymers should not only have a high sensing capability but also a high strain and actuation performance. A novel UV-curable polymer uniformly bonded with functionalized nanotubes was synthesized via a modified three-step in-sity polumerization. Purified multi-walled nanotubes, gained from the microwave chemical vapor deposition method, were functionalized by oxidation. The UV curable polymer was prepared from toluene diisocyanate (TDI), functionalized nanotubes, and 2-hydroxyethyl methacrylate (HEMA). The chemical bonds between -NCO groups of TDI and -OH, -COOH groups of functionalized nanotubes help for conceiving polymeric based MEMS devices. A cost effective fabrication techniques was presented using Micro Stereo Lithography and an

  9. Application of atmospheric pressure plasma in polymer and composite adhesion

    NASA Astrophysics Data System (ADS)

    Yu, Hang

    carboxyl groups, on the polymer surface after plasma treatment. The resulting strength of the bond based on lap-shear and T-peel tests correlates well with the concentration of oxygen on the polymer surface. The failure modes observed for lap-shear and T-peel tests changed from interfacial to cohesive after the plasma activation. Treating carbon-fiber-reinforced epoxy composites with the atmospheric plasma resulted in the removal of fluorinated contaminants in shallow surface layers. For contaminants that diffused deeply into the composite surface, mechanical abrasion was needed in addition to the plasma treatment to remove the impurities. While cleaning the composite, plasma also generated active oxygen groups on the substrate surface. The presence of these groups improved the adhesive bonding strength of the composite even in the presence of residual fluorine contaminants. Thus, it was speculated that plasma treatment can promote better polymer adhesion with or without fluorine contamination. Carbon nanotube sheets were also treated by the helium oxygen plasma, and the CNT surface turn from super hydrophobic to hydrophilic after a few seconds of exposure. The nanotube surface contained 15% of oxygen in the form of hydroxyl groups. Chemical coupling agents were added to the plasma activated CNT surfaces in order to crosslink the CNTs and to create bonding sites for the resin matrix. Stretched, activated and functionalized CNT was cured with dicyclopentadiene (DCPD) to produce a sheet composite with a tensile strength of 636 MPa, a modulus of 28 GPa, and a density of 1.4 g/cm 3. This may be compared to aerospace-grade aluminum with tensile strength of 572 MPa, modulus of 72 GPa, and density of 2.7 g/cm3. This work demonstrates that new high-strength composite can be produced with the use of atmospheric plasma activation and chemical crosslinking of the fiber matrix.

  10. Multifunctional smart composites with integrated carbon nanotube yarn and sheet

    NASA Astrophysics Data System (ADS)

    Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark

    2017-04-01

    Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.

  11. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    PubMed Central

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M.; Gambhir, Sanjeev; Wallace, Gordon G.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g−1, far exceeding spider dragline silk (165 J g−1) and Kevlar (78 J g−1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs. PMID:22337128

  12. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes.

    PubMed

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M; Gambhir, Sanjeev; Wallace, Gordon G; Kozlov, Mikhail E; Baughman, Ray H; Kim, Seon Jeong

    2012-01-31

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g(-1), far exceeding spider dragline silk (165 J g(-1)) and Kevlar (78 J g(-1)). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  13. Multiscale metrologies for process optimization of carbon nanotube polymer composites

    DOE PAGES

    Natarajan, Bharath; Orloff, Nathan D.; Ashkar, Rana; ...

    2016-07-18

    Carbon nanotube (CNT) polymer nanocomposites are attractive multifunctional materials with a growing range of commercial applications. With the increasing demand for these materials, it is imperative to develop and validate methods for on-line quality control and process monitoring during production. In this work, a novel combination of characterization techniques is utilized, that facilitates the non-invasive assessment of CNT dispersion in epoxy produced by the scalable process of calendering. First, the structural parameters of these nanocomposites are evaluated across multiple length scales (10 -10 m to 10 -3 m) using scanning gallium-ion microscopy, transmission electron microscopy and small-angle neutron scattering. Then,more » a non-contact resonant microwave cavity perturbation (RCP) technique is employed to accurately measure the AC electrical conductivity of the nanocomposites. Quantitative correlations between the conductivity and structural parameters find the RCP measurements to be sensitive to CNT mass fraction, spatial organization and, therefore, the processing parameters. These results, and the non-contact nature and speed of RCP measurements identify this technique as being ideally suited for quality control of CNT nanocomposites in a nanomanufacturing environment. In conclusion, when validated by the multiscale characterization suite, RCP may be broadly applicable in the production of hybrid functional materials, such as graphene, gold nanorod, and carbon black nanocomposites.« less

  14. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  15. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy.

    PubMed

    Li, Wei; Liu, Dongfei; Zhang, Hongbo; Correia, Alexandra; Mäkilä, Ermei; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2017-01-15

    Harsh conditions of the gastrointestinal tract hinder the oral delivery of many drugs. Developing oral drug delivery systems based on commercially available materials is becoming more challenging due to the demand for simultaneously delivering physicochemically different drugs for treating complex diseases. A novel architecture, namely nanotube-in-microsphere, was developed as a drug delivery platform by encapsulating halloysite nanotubes (HNTs) in a pH-responsive hydroxypropyl methylcellulose acetate succinate polymer using microfluidics. HNTs were selected as orally acceptable clay mineral and their lumen was enlarged by selective acid etching. Model drugs (atorvastatin and celecoxib) with different physicochemical properties and synergistic effect on colon cancer prevention and inhibition were simultaneously incorporated into the microspheres at a precise ratio, with atorvastatin and celecoxib being loaded in the HNTs and polymer matrix, respectively. The microspheres showed spherical shape, narrow particle size distribution and pH-responsive dissolution behavior. This nanotube/pH-responsive polymer composite protected the loaded drugs from premature release at pH⩽6.5, but allowed their fast release and enhanced the drug permeability, and the inhibition of colon cancer cell proliferation at pH 7.4. Overall, the nano-in-micro drug delivery composite fabricated by microfluidics is a promising and flexible platform for the delivery of multiple drugs for combination therapy. Halloysite nanotubes (HNTs) are attracting increasing attention for drug delivery applications. However, conventional HNTs-based oral drug delivery systems are lack of the capability to precisely control the drug release at a desired site in the gastrointestinal tract. In this study, a nanotube-in-microsphere drug delivery platform is developed by encapsulating HNTs in a pH-responsive polymer using microfluidics. Drugs with different physicochemical properties and synergistic effect on colon

  16. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes.

    PubMed

    Berber, Mohamed R; Hafez, Inas H; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-11-23

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm(2) (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs.

  17. Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites.

    PubMed

    Tan, Wei; Twomey, John; Guo, Dongjie; Madhavan, Krishna; Li, Min

    2010-06-01

    Collagen I is an essential structural and mechanical building block of various tissues, and it is often used as tissue-engineering scaffolds. However, collagen-based constructs reconstituted in vitro often lacks robust fiber structure, mechanical stability, and molecule binding capability. To enhance these performances, the present study developed 3-D collagen-nanotube composite constructs with two types of functionalized carbon nanotubes, carboxylated nanotubes and covalently functionalized nanotubes (CFNTs). The influences of nanotube functionalization and loading concentration on the collagen fiber structure, mechanical property, biocompatibility, and molecule binding were examined. Results revealed that surface modification and loading concentration of nanotubes determined the interactions between nanotubes and collagen fibrils, thus altering the structure and property of nanotube-collagen composites. Scanning electron microscopy and confocal microscopy revealed that the incorporation of CFNT in collagen-based constructs was an effective means of restructuring collagen fibrils because CFNT strongly bound to collagen molecules inducing the formation of larger fibril bundles. However, increased nanotube loading concentration caused the formation of denser fibril network and larger aggregates. Static stress-strain tests under compression showed that the addition of nanotube into collagen-based constructs did not significantly increase static compressive moduli. Creep/recovery testing under compression revealed that CFNT-collagen constructs showed improved mechanical stability under continuous loading. Testing with endothelial cells showed that biocompatibility was highly dependent on nanotube loading concentration. At a low loading level, CFNT-collagen showed higher endothelial coverage than the other tested constructs or materials. Additionally, CFNT-collagen showed capability of binding to other biomolecules to enhance the construct functionality. In conclusion

  18. Unusually conductive carbon-inherently conducting polymer (ICP) composites: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Bourdo, Shawn Edward

    Two groups of materials that have recently come to the forefront of research initiatives are carbon allotropes, especially nanotubes, and conducting polymers-more specifically inherently conducting polymers. The terms conducting polymers and inherently conducting polymers sometimes are used interchangeably without fully acknowledging a major difference in these terms. Conducting polymers (CPs) and inherently conducting polymers (ICPs) are both polymeric materials that conduct electricity, but the difference lies in how each of these materials conducts electricity. For CPs of the past, an electrically conductive filler such as metal particles, carbon black, or graphite would be blended into a polymer (insulator) allowing for the CP to carry an electric current. An ICP conducts electricity due to the intrinsic nature of its chemical structure. The two materials at the center of this research are graphite and polyaniline. For the first time, a composite between carbon allotropes (graphite) and an inherently conducting polymer (PANI) has exhibited an electrical conductivity greater than either of the two components. Both components have a plethora of potential applications and therefore the further investigation could lead to use of these composites in any number of technologies. Touted applications that use either conductive carbons or ICPs exist in a wide range of fields, including electromagnetic interference (EMI) shielding, radar evasion, low power rechargeable batteries, electrostatic dissipation (ESD) for anti-static textiles, electronic devices, light emitting diodes (LEDs), corrosion prevention, gas sensors, super capacitors, photovoltaic cells, and resistive heating. The main motivation for this research has been to investigate the connection between an observed increase in conductivity and structure of composites. Two main findings have resulted from the research as related to the observed increase in conductivity. The first was the structural evidence from

  19. Autonomous sensing of composites with carbon nanotubes for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Yekani Fard, Masoud; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-04-01

    The development of structural health monitoring techniques leads to the integration of sensing capability within engineering structures. This study investigates the application of multi walled carbon nanotubes in polymer matrix composites for autonomous damage detection through changes in electrical resistance. The autonomous sensing capabilities of fiber reinforced nanocomposites are studied under multiple loading conditions including tension loads. Single-lap joints with different joint lengths are tested. Acoustic emission sensing is used to validate the matrix crack propagation. A digital image correlation system is used to measure the shear strain field of the joint area. The joints with 1.5 inch length have better autonomous sensing capabilities than those with 0.5 inch length. The autonomous sensing capabilities of nanocomposites are found to be sensitive to crack propagation and can revolutionize the research on composite structural health management in the near future.

  20. Multifunctional Carbon Nanotube Fiber Composites

    DTIC Science & Technology

    2004-12-26

    Opt. Eng. 4234 (Smart Materials), 223-23 1, (2001). 9. " Microfabricated Electroactive Carbon Nanotube Actuators", A. Ahluwalia, R.H. Baughman, D. De...peristaltic pumped circulating flow of PVA operating in an open loop consisting of a 1.5 m long, 0.40 cm diameter glass pipe , flex-tubing, and a polymer reserve...forming a gel-like ribbon that flows down the length of the pipe before being released into a rotating water bath where it is collected on a mandrel. Our

  1. Asphaltenes-based polymer nano-composites

    DOEpatents

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  2. Biodegradability of carbon nanotube/polymer nanocomposites under aerobic mixed culture conditions.

    PubMed

    Phan, Duc C; Goodwin, David G; Frank, Benjamin P; Bouwer, Edward J; Fairbrother, D Howard

    2018-10-15

    The properties and commercial viability of biodegradable polymers can be significantly enhanced by the incorporation of carbon nanotubes (CNTs). The environmental impact and persistence of these carbon nanotube/polymer nanocomposites (CNT/PNCs) after disposal will be strongly influenced by their microbial interactions, including their biodegradation rates. At the end of consumer use, CNT/PNCs will encounter diverse communities of microorganisms in landfills, surface waters, and wastewater treatment plants. To explore CNT/PNC biodegradation under realistic environmental conditions, the effect of multi-wall CNT (MWCNT) incorporation on the biodegradation of polyhydroxyalkanoates (PHA) was investigated using a mixed culture of microorganisms from wastewater. Relative to unfilled PHA (0% w/w), the MWCNT loading (0.5-10% w/w) had no statistically significant effect on the rate of PHA matrix biodegradation. Independent of the MWCNT loading, the extent of CNT/PNC mass remaining closely corresponded to the initial mass of CNTs in the matrix suggesting a lack of CNT release. CNT/PNC biodegradation was complete in approximately 20 days and resulted in the formation of a compressed CNT mat that retained the shape of the initial CNT/PNC. This study suggests that although CNTs have been shown to be cytotoxic towards a range of different microorganisms, this does not necessarily impact the biodegradation of the surrounding polymer matrix in mixed culture, particularly in situations where the polymer type and/or microbial population favor rapid polymer biodegradation. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.; Wincheski, Russell A.; Park, Cheol

    2008-01-01

    Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.

  4. Fluorescent single walled nanotube/silica composite materials

    DOEpatents

    Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

    2013-03-12

    Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

  5. Performance of Nanotube-Based Ceramic Composites: Modeling and Experiment

    NASA Technical Reports Server (NTRS)

    Curtin, W. A.; Sheldon, B. W.; Xu, J.

    2004-01-01

    The excellent mechanical properties of carbon-nanotubes are driving research into the creation of new strong, tough nanocomposite systems. In this program, our initial work presented the first evidence of toughening mechanisms operating in carbon-nanotube- reinforced ceramic composites using a highly-ordered array of parallel multiwall carbon-nanotubes (CNTs) in an alumina matrix. Nanoindentation introduced controlled cracks and the damage was examined by SEM. These nanocomposites exhibit the three hallmarks of toughening in micron-scale fiber composites: crack deflection at the CNT/matrix interface; crack bridging by CNTs; and CNT pullout on the fracture surfaces. Furthermore, for certain geometries a new mechanism of nanotube collapse in shear bands was found, suggesting that these materials can have multiaxial damage tolerance. The quantitative indentation data and computational models were used to determine the multiwall CNT axial Young's modulus as 200-570 GPa, depending on the nanotube geometry and quality.

  6. Method of making molecularly doped composite polymer material

    DOEpatents

    Affinito, John D [Tucson, AZ; Martin, Peter M [Kennewick, WA; Graff, Gordon L [West Richland, WA; Burrows, Paul E [Kennewick, WA; Gross, Mark E. , Sapochak, Linda S.

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  7. Free-standing carbon nanotube composite sensing skin for distributed strain sensing in structures

    NASA Astrophysics Data System (ADS)

    Burton, Andrew R.; Minegishi, Kaede; Kurata, Masahiro; Lynch, Jerome P.

    2014-04-01

    The technical challenges of managing the health of critical infrastructure systems necessitate greater structural sensing capabilities. Among these needs is the ability for quantitative, spatial damage detection on critical structural components. Advances in material science have now opened the door for novel and cost-effective spatial sensing solutions specially tailored for damage detection in structures. However, challenges remain before spatial damage detection can be realized. Some of the technical challenges include sensor installations and extensive signal processing requirements. This work addresses these challenges by developing a patterned carbon nanotube composite thin film sensor whose pattern has been optimized for measuring the spatial distribution of strain. The carbon nanotube-polymer nanocomposite sensing material is fabricated on a flexible polyimide substrate using a layer-by-layer deposition process. The thin film sensors are then patterned into sensing elements using optical lithography processes common to microelectromechanical systems (MEMS) technologies. The sensor array is designed as a series of sensing elements with varying width to provide insight on the limitations of such patterning and implications of pattern geometry on sensing signals. Once fabrication is complete, the substrate and attached sensor are epoxy bonded to a poly vinyl composite (PVC) bar that is then tested with a uniaxial, cyclic load pattern and mechanical response is characterized. The fabrication processes are then utilized on a larger-scale to develop and instrument a component-specific sensing skin in order to observe the strain distribution on the web of a steel beam. The instrumented beam is part of a larger steel beam-column connection with a concrete slab in composite action. The beam-column subassembly is laterally loaded and strain trends in the web are observed using the carbon nanotube composite sensing skin. The results are discussed in the context of

  8. Composites Based on Conducting Polymers and Carbon Nanomaterials for Heavy Metal Ion Sensing (Review).

    PubMed

    Deshmukh, Megha A; Shirsat, Mahendra D; Ramanaviciene, Almira; Ramanavicius, Arunas

    2018-07-04

    Current review signifies recent trends and challenges in the development of electrochemical sensors based on organic conducting polymers (OCPs), carbon nanotubes (CNTs) and their composites for the determination of trace heavy metal ions in water are reviewed. OCPs and CNTs have some suitable properties, such as good electrical, mechanical, chemical and structural properties as well as environmental stability, etc. However, some of these materials still have significant limitations toward selective and sensitive detection of trace heavy metal ions. To overcome the limitations of these individual materials, OCPs/CNTs composites were developed. Application of OCPs/CNTs composite and their novel properties for the adsorption and detection of heavy metal ions outlined and discussed in this review.

  9. Polymer-free carbon nanotube thermoelectrics with improved charge carrier transport and power factor

    DOE PAGES

    Norton-Baker, Brenna; Ihly, Rachelle; Gould, Isaac E.; ...

    2016-11-17

    Here, semiconducting single-walled carbon nanotubes (s-SWCNTs) have recently attracted attention for their promise as active components in a variety of optical and electronic applications, including thermoelectricity generation. Here we demonstrate that removing the wrapping polymer from the highly enriched s-SWCNT network leads to substantial improvements in charge carrier transport and thermoelectric power factor. These improvements arise primarily from an increase in charge carrier mobility within the s-SWCNT networks because of removal of the insulating polymer and control of the level of nanotube bundling in the network, which enables higher thin-film conductivity for a given carrier density. Ultimately, these studies demonstratemore » that highly enriched s-SWCNT thin films, in the complete absence of any accompanying semiconducting polymer, can attain thermoelectric power factors in the range of approximately 400 μW m -1K -2, which is on par with that of some of the best single-component organic thermoelectrics demonstrated to date.« less

  10. Functionalization of carbon nanotubes: Characterization, modeling and composite applications

    NASA Astrophysics Data System (ADS)

    Wang, Shiren

    Carbon nanotubes have demonstrated exceptional mechanical, thermal and electrical properties, and are regarded as one of the most promising reinforcement materials for the next generation of high performance structural and multifunctional composites. However, to date, most application attempts have been hindered by several technical roadblocks, such as poor dispersion and weak interfacial bonding. In this dissertation, several innovative functionalization methods were proposed, studied to overcome these technical issues in order to realize the full potential of nanotubes as reinforcement. These functionalization methods included precision sectioning of nanotubes using an ultra-microtome, electron-beam irradiation, amino and epoxide group grafting. The characterization results of atomic force microscope, transmission electronic microscope and Raman suggested that aligned carbon nanotubes can be precisely sectioned with controlled length and minimum sidewall damage. This study also designed and demonstrated new covalent functionalization approaches through unique epoxy-grafting and one-step amino-grafting, which have potential of scale-up for composite applications. In addition, the dissertation also successfully tailored the structure and properties of the thin nanotube film through electron beam irradiation. Significant improvement of both mechanical and electrical conducting properties of the irradiated nanotube films or buckypapers was achieved. All these methods demonstrated effectiveness in improving dispersion and interfacial bonding in the epoxy resin, resulting in considerable improvements in composite mechanical properties. Modeling of functionalization methods also provided further understanding and offered the reasonable explanations of SWNTs length distribution as well as carbon nanostructure transformation upon electron-beam irradiation. Both experimental and modeling results provide important foundations for the further comprehensively investigation of

  11. Method of making metal-polymer composite catalysts

    DOEpatents

    Zelena, Piotr [Los Alamos, NM; Bashyam, Rajesh [Los Alamos, NM

    2009-06-23

    A metal-polymer-carbon composite catalyst for use as a cathode electrocatalyst in fuel cells. The catalyst includes a heteroatomic polymer; a transition metal linked to the heteroatomic polymer by one of nitrogen, sulfur, and phosphorus, and a recast ionomer dispersed throughout the heteroatomic polymer-carbon composite. The method includes forming a heteroatomic polymer-carbon composite and loading the transition metal onto the composite. The invention also provides a method of making a membrane electrode assembly for a fuel cell that includes the metal-polymer-carbon composite catalyst.

  12. Compositions and methods for cancer treatment using targeted carbon nanotubes

    DOEpatents

    Harrison, Jr., Roger G.; Resasco, Daniel E.; Neves, Luis Filipe Ferreira

    2016-11-29

    Compositions for detecting and/or destroying cancer tumors and/or cancer cells via photodynamic therapy are disclosed, as well as methods of use thereof. The compositions comprise a linking protein or peptide attached to or otherwise physically associated with a carbon nanotube to form a targeted protein-carbon nanotube complex.

  13. Study of thermal stability of (3-aminopropyl)trimethoxy silane-grafted titanate nanotubes for application as nanofillers in polymers.

    PubMed

    Plodinec, Milivoj; Gajović, Andreja; Iveković, Damir; Tomašić, Nenad; Zimmermann, Boris; Macan, Jelena; Haramina, Tatjana; Su, D S; Willinger, Marc

    2014-10-31

    Protonated titanate nanotubes (TiNT-H) were surface-modified with (3-aminopropyl)trimethoxy silane (APTMS) by a novel method suitable for the syntheses of large amounts of materials at a low cost. The usage of prepared nanotubes for polymer reinforcement was studied. Since the thermal stability of the nanofiller was important to preserve its functional properties, its stability was studied by in situ high-temperature measurements. The most thermally stable nanotubes were silanized for 20 min and used for the preparation of epoxy-based nanocomposites. The nanofiller formed smaller (a few hundred nm) and larger (a few μm) aggregates in the polymer matrix, and the amount of aggregates increased as the nanofiller content increased. The APTMS-modified titanate nanotubes bonded well with the epoxy matrix since amine groups on the TiNT's surface can react with an epoxy group to form covalent bonds between the matrix and the nanofiller. A very small addition (0.19-1.52 wt%) of the nanotubes significantly increased the glass transition temperature and the modulus in the rubbery state of the epoxy-based polymer. Smaller nanofiller content leads to a larger increase in these parameters and therefore better dynamic mechanical properties due to the smaller amount of large aggregates. APTMS-modified titanate nanotubes have proven to be a promising nanofiller in epoxy-based nanocomposites.

  14. Solid Oxide Fuel Cell Seal Glass - BN Nanotubes Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.; Hurst, Janet B.; Garg, Anita

    2005-01-01

    Solid oxide fuel cell seal glass G18 composites reinforced with approx.4 weight percent of BN nanotubes were fabricated via hot pressing. Room temperature strength and fracture toughness of the composite were determined by four-point flexure and single edge V-notch beam methods, respectively. The strength and fracture toughness of the composite were higher by as much as 90% and 35%, respectively, than those of the glass G18. Microscopic examination of the composite fracture surfaces using SEM and TEM showed pullout of the BN nanotubes, similar in feature to fiber-reinforced ceramic matrix composites with weak interfaces. Other mechanical and physical properties of the composite will also be presented.

  15. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes

    PubMed Central

    Berber, Mohamed R.; Hafez, Inas H.; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-01-01

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm2 (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs. PMID:26594045

  16. Self-lubricating polymer composites and polymer transfer film lubrication for space applications

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1990-01-01

    The use of self-lubricating polymers and polymer composites in space is somewhat limited today. In general, they are only used when other methods are inadequate. There is potential, however, for these materials to make a significant impact on future space missions if properly utilized. Some of the different polymers and fillers used to make self-lubricating composites are surveyed. The mechanisms of composite lubrication and wear, the theory behind transfer film lubricating mechanisms, and some factors which affect polymer composite wear and transfer are examined. In addition, some of the current space tribology application areas for self-lubricating polymer composites and polymer transfer are mentioned.

  17. Analysis of Carbon Nanotube Pull-out from a Polymer Matrix

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Harik, V. M.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Molecular dynamics (MD) simulations of carbon nanotube (NT) pull-out from a polymer matrix are carried out. As the NT pull-out develops in the simulation, variations in the displacement and velocities of the NT are monitored. The existence of a carbon-ring-based period in NT sliding during pull-out is identified. Linear trends in the NT velocity-force relation are observed and used to estimate an effective viscosity coefficient for interfacial sliding at the NT/polymer interface. As a result, the entire process of NT pull-out is characterized by an interfacial friction model that is based on a critical pull-out force, and an analog of Newton's friction law used to describe the NT/polymer interfacial sliding.

  18. Revealing the nature of morphological changes in carbon nanotube-polymer saturable absorber under high-power laser irradiation.

    PubMed

    Chernysheva, Maria; Araimi, Mohammed Al; Rance, Graham A; Weston, Nicola J; Shi, Baogui; Saied, Sayah; Sullivan, John L; Marsh, Nicholas; Rozhin, Aleksey

    2018-05-10

    Composites of single-walled carbon nanotubes (SWNTs) and water-soluble polymers (WSP) are the focus of significant worldwide research due to a number of applications in biotechnology and photonics, particularly for ultrashort pulse generation. Despite the unique possibility of constructing non-linear optical SWNT-WSP composites with controlled optical properties, their thermal degradation threshold and limit of operational power remain unexplored. In this study, we discover the nature of the SWNT-polyvinyl alcohol (PVA) film thermal degradation and evaluate the modification of the composite properties under continuous high-power ultrashort pulse laser operation. Using high-precision optical microscopy and micro-Raman spectroscopy, we have examined SWNT-PVA films before and after continuous laser radiation exposure (up to 40 hours) with a maximum optical fluence of 2.3 mJ·cm -2 . We demonstrate that high-intensity laser radiation results in measurable changes in the composition and morphology of the SWNT-PVA film due to efficient heat transfer from SWNTs to the polymer matrix. The saturable absorber modification does not affect the laser operational performance. We anticipate our work to be a starting point for more sophisticated research aimed at the enhancement of SWNT-PVA films fabrication for their operation as reliable saturable absorbers in high-power ultrafast lasers.

  19. Water-soluble carbon nanotube compositions for drug delivery and medicinal applications

    DOEpatents

    Tour, James M.; Lucente-Schultz, Rebecca; Leonard, Ashley; Kosynkin, Dmitry V.; Price, Brandi Katherine; Hudson, Jared L.; Conyers, Jr., Jodie L.; Moore, Valerie C.; Casscells, S. Ward; Myers, Jeffrey N.; Milas, Zvonimir L.; Mason, Kathy A.; Milas, Luka

    2014-07-22

    Compositions comprising a plurality of functionalized carbon nanotubes and at least one type of payload molecule are provided herein. The compositions are soluble in water and PBS in some embodiments. In certain embodiments, the payload molecules are insoluble in water. Methods are described for making the compositions and administering the compositions. An extended release formulation for paclitaxel utilizing functionalized carbon nanotubes is also described.

  20. Modeling the Effects of Interfacial Characteristics on Gas Permeation Behavior of Nanotube-Mixed Matrix Membranes.

    PubMed

    Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad

    2017-10-25

    Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.

  1. Semiconducting polymers with nanocrystallites interconnected via boron-doped carbon nanotubes.

    PubMed

    Yu, Kilho; Lee, Ju Min; Kim, Junghwan; Kim, Geunjin; Kang, Hongkyu; Park, Byoungwook; Ho Kahng, Yung; Kwon, Sooncheol; Lee, Sangchul; Lee, Byoung Hun; Kim, Jehan; Park, Hyung Il; Kim, Sang Ouk; Lee, Kwanghee

    2014-12-10

    Organic semiconductors are key building blocks for future electronic devices that require unprecedented properties of low-weight, flexibility, and portability. However, the low charge-carrier mobility and undesirable processing conditions limit their compatibility with low-cost, flexible, and printable electronics. Here, we present significantly enhanced field-effect mobility (μ(FET)) in semiconducting polymers mixed with boron-doped carbon nanotubes (B-CNTs). In contrast to undoped CNTs, which tend to form undesired aggregates, the B-CNTs exhibit an excellent dispersion in conjugated polymer matrices and improve the charge transport between polymer chains. Consequently, the B-CNT-mixed semiconducting polymers enable the fabrication of high-performance FETs on plastic substrates via a solution process; the μFET of the resulting FETs reaches 7.2 cm(2) V(-1) s(-1), which is the highest value reported for a flexible FET based on a semiconducting polymer. Our approach is applicable to various semiconducting polymers without any additional undesirable processing treatments, indicating its versatility, universality, and potential for high-performance printable electronics.

  2. Do Membranes Dream of Electric Tubes? Advanced Membranes Using Carbon Nanotube - Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    de Lannoy, Charles-Francois Pedro Claude Karolek Ghislain

    Membrane technologies represent an energy efficient, effective solution for treating municipal and commercial waters/wastewaters. Membranes are predominantly polymer-based and despite steady advances in polymeric materials, they continue to suffer from operational problems including biofouling and breakages. This work addresses these two disparate problems by developing novel CNT-polymer nanocomposite materials that contain variously functionalized carbon nanotubes (fCNTs) in low quantities (<0.5wt%). Several strategies have been employed to achieve highly functional CNT-polymer nanocomposite membranes including blend mixing, ionic charge association, and covalent cross-linking with monomer and oligomer constituents. These CNT-polymer nanocomposite membranes were compared to traditional polymer membranes across various properties including increased Young's Modulus, changes in surface hydrophilicity, fine control over molecular weight cut-off and flux, and surface electrical conductivity. Membranes with high surface electrical conductivity were further tested for their anti-biofouling properties. Finally, CNT stability and polymer compatibility were evaluated throughout membrane manufacture, use, and cleaning. The incorporation of CNTs mixed in bulk phase and linked through ionic associations in polymer matrices showed significant (50%) increases in Young's modulus for certain CNT functionalizations and derivatization percent. Membranes formed with high surface electrical conductivity demonstrated almost complete resistance to biofouling (> 95%) in long-term bacterially challenged experiments. CNTs and polymer mixtures that lacked covalent or ionic bonds were susceptible to significant (up to 10%) loss of CNTs during membrane non-solvent gelation and aggressive chemical cleaning treatment. Functionalized carbon nanotubes endow polymer membranes with their unique strength and electrically conductive properties. These added properties were demonstrated to greatly

  3. Thermo-active polymer nanocomposites: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Winter, A. Douglas; Larios, Eduardo; Jaye, Cherno; Fischer, Daniel A.; Omastová, Mária; Campo, Eva M.

    2014-09-01

    Photo- and thermo-mechanical actuation behaviour in specific polymer-carbon nanotube composites has been observed in recent years and studied at the macroscale. These systems may prove to be suitable components for a wide range of applications, from MOEMs and nanotechnology to neuroscience and tissue engineering. Absence of a unified model for actuation behaviour at a molecular level is hindering development of such smart materials. We observed thermomechanical actuation of ethylene-vinyl acetate | carbon nanotube composites through in situ near-edge X-ray absorption fine structure spectroscopy to correlate spectral trends with macroscopic observations. This paper presents spectra of composites and constituents at room temperature to identify resonances in a building block model, followed by spectra acquired during thermo-actuation. Effects of strain-induced filler alignment are also addressed. Spectral resonances associated with C=C and C=O groups underwent synchronised intensity variations during excitation, and were used to propose a conformational model of actuation based on carbon nanotube torsion. Future actuation studies on other active polymer nanocomposites will verify the universality of the proposed model.

  4. Sintering Process and Mechanical Property of MWCNTs/HDPE Bulk Composite

    PubMed Central

    Tze-Chi, Hsu; Jie-Ren, Zheng

    2009-01-01

    Studies have proved that increasing polymer matrices by carbon nanotubes to form structural reinforcement and electrical conductivity have significantly improved mechanical and electrical properties at very low carbon nanotubes loading. In other words, increasing polymer matrices by carbon nanotubes to form structural reinforcement can reduce friction coefficient and enhance anti-wear property. However, producing traditional MWCNTs in polymeric materix is an extremely complicated process. Using melt-mixing process or in situ polymerization leads to better dispersion effect on composite materials. In this study, therefore, to simplify MWCNTs /HDPE composite process and increase dispersion, powder was used directly to replace pellet to mix and sinter with MWCNTs. The composite bulks with 0, 0.5, 1, 2 and 4% nanotube content by weight was analyzed under SEM to observe nanotubes dispersion. At this rate, a MWCNTs/HDPE composite bulk with uniformly dispersed MWCNTs was achieved, and through the wear bench (Pin-on-Disk), the wear experiment has accomplished. Accordingly, the result suggests the sintered MWCNTs/HDPE composites amplify the hardness and wear-resist property. PMID:19730688

  5. Sintering Process and Mechanical Property of MWCNTs/HDPE Bulk Composite.

    PubMed

    Ming-Wen, Wang; Tze-Chi, Hsu; Jie-Ren, Zheng

    2009-08-01

    Studies have proved that increasing polymer matrices by carbon nanotubes to form structural reinforcement and electrical conductivity have significantly improved mechanical and electrical properties at very low carbon nanotubes loading. In other words, increasing polymer matrices by carbon nanotubes to form structural reinforcement can reduce friction coefficient and enhance anti-wear property. However, producing traditional MWCNTs in polymeric materix is an extremely complicated process. Using melt-mixing process or in situ polymerization leads to better dispersion effect on composite materials. In this study, therefore, to simplify MWCNTs /HDPE composite process and increase dispersion, powder was used directly to replace pellet to mix and sinter with MWCNTs. The composite bulks with 0, 0.5, 1, 2 and 4% nanotube content by weight was analyzed under SEM to observe nanotubes dispersion. At this rate, a MWCNTs/HDPE composite bulk with uniformly dispersed MWCNTs was achieved, and through the wear bench (Pin-on-Disk), the wear experiment has accomplished. Accordingly, the result suggests the sintered MWCNTs/HDPE composites amplify the hardness and wear-resist property.

  6. High Electromechanical Response of Ionic Polymer Actuators with Controlled-Morphology Aligned Carbon Nanotube/Nafion Nanocomposite Electrodes

    PubMed Central

    Liu, Sheng; Liu, Yang; Cebeci, Hülya; de Villoria, Roberto Guzmán; Lin, Jun-Hong

    2011-01-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fraction create unique opportunities for markedly improving the electromechanical performance of ionic polymer conductor network composite (IPCNC) actuators. Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast device actuation speed (>10% strain/second). One critical issue in developing advanced actuator materials is how to suppress the strain that does not contribute to the actuation (unwanted strain) thereby reducing actuation efficiency. Here our experiments demonstrate that the VA-CNTs give an anisotropic elastic response in the composite electrodes, which suppresses the unwanted strain and markedly enhances the actuation strain (>8% strain under 4 volts). The results reported here suggest pathways for optimizing the electrode morphology in IPCNCs using ultra-high volume fraction VA-CNTs to further enhanced performance. PMID:21765822

  7. Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.

    PubMed

    Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok

    2014-10-01

    To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.

  8. A study of the electrical properties of carbon nanofiber polymer composites

    NASA Astrophysics Data System (ADS)

    Cardoso, Paulo Jorge Magalhaes

    The interest of industry on using carbon nanofibers (CNF) as a possible alternative to carbon nanotubes (CNT) to produce polymer based composites is due to their lower price, the ability to be produced in large amounts and the their usefulness as a reinforcement filler in order to improve the matrix properties such as mechanical, thermal and electrical. Polymers like epoxy resins already have good-to-excellent properties and an extensive range of applications, but the reinforcement with fillers like CNF, which has high aspect ratio (AR) and surface energy, has the potential to extend the range of applications. The Van der Waals interactions between nanofillers, such as CNF, promote the clustering effect which affects their dispersion in the polymer and may interfere with some properties of the nanocomposites. In this sense, it is very important to use appropriate dispersion methods which are able to disentangle the nanofillers to a certain degree, but avoiding the reduction of the nanofibers AR as much as possible. In fact, the methods and conditions of nanocomposites processing have also influence on the filler orientation, dispersion, distribution and aspect ratio. To the present day, there is a lack of complete information in the literature about the relation between structure and properties, in particular electrical properties, for polymer nanocomposites. The main objective of this work is to study the electrical properties of composites based on CNF and epoxy resin using production methods which can be easily implemented in industrial environments and that provide different dispersion levels, investigating therefore the relationship between dispersion level and electrical response. Some of the requirements for such methods are the adaptability to the industrial processes and facilities which allow large scale productions and provide a good relation between quality and cost of the composite materials. In this work, morphological, electrical and

  9. Induction heating process of ferromagnetic filled carbon nanotubes based on 3-D model

    NASA Astrophysics Data System (ADS)

    Wiak, Sławomir; Firych-Nowacka, Anna; Smółka, Krzysztof; Pietrzak, Łukasz; Kołaciński, Zbigniew; Szymański, Łukasz

    2017-12-01

    Since their discovery by Iijima in 1991 [1], carbon nanotubes have sparked unwavering interest among researchers all over the world. This is due to the unique properties of carbon nanotubes (CNTs). Carbon nanotubes have excellent mechanical and electrical properties with high chemical and thermal stability. In addition, carbon nanotubes have a very large surface area and are hollow inside. This gives a very broad spectrum of nanotube applications, such as in combination with polymers as polymer composites in the automotive, aerospace or textile industries. At present, many methods of nanotube synthesis are known [2, 3, 4, 5, 6]. It is also possible to use carbon nanotubes in biomedical applications [7, 8, 9, 10, 11, 12, 13, 14], including the destruction of cancer cells using iron-filled carbon nanotubes in the hyperthermia process. Computer modelling results of Fe-CNTs induction heating process are presented in the paper. As an object used for computer model creation, Fe-CNTs were synthesized by the authors using CCVD technique.

  10. Local Elastic Constants for Epoxy-Nanotube Composites from Molecular Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Gates, T. S.

    2007-01-01

    A method from molecular dynamics simulation is developed for determining local elastic constants of an epoxy/nanotube composite. The local values of C11, C33, K12, and K13 elastic constants are calculated for an epoxy/nanotube composite as a function of radial distance from the nanotube. While the results possess a significant amount of statistical uncertainty resulting from both the numerical analysis and the molecular fluctuations during the simulation, the following observations can be made. If the size of the region around the nanotube is increased from shells of 1 to 6 in thickness, then the scatter in the data reduces enough to observe trends. All the elastic constants determined are at a minimum 20 from the center of the nanotube. The C11, C33, and K12 follow similar trends as a function of radial distance from the nanotube. The K13 decreases greater distances from the nanotube and becomes negative which may be a symptom of the statistical averaging.

  11. Supercapacitors based on carbon nanotube fuzzy fabric structural composites

    NASA Astrophysics Data System (ADS)

    Alresheedi, Bakheet Awad

    Supercapacitors used in conjunction with batteries offer a solution to energy storage and delivery problems in systems where high power output is required, such as in fully electric cars. This project aimed to enhance current supercapacitor technology by fabricating activated carbon on a substrate consisting of carbon nanotubes (CNTs) grown on a carbon fiber fabric (fuzzy fabric). The fuzzy surface of CNTs lowers electrical resistance and increases porosity, resulting in a flexible fabric with high specific capacitance. Experimental results confirm that the capacitance of activated carbon fabricated on the fuzzy fiber composite is significantly higher than when activated carbon is formed simply on a bare carbon fiber substrate, indicating the usefulness of CNTs in supercapacitor technology. The fabrication of the fuzzy fiber based carbon electrode was fairly complex. The processing steps included composite curing, stabilization, carbonization and activation. Ratios of the three basic ingredients for the supercapacitor (fiber, CNT and polymer matrix) were investigated through experimentation and Grey relational analysis. The aim of Grey relational analysis was to examine factors that affect the overall performance of the supercapacitor. It is based on finding relationships in both independent and interrelated data series (parameters). Using this approach, it was determined that the amount of CNTs on the fiber surface plays a major role in the capacitor properties. An increased amount of CNTs increases the surface area and electrical conductivity of the substrate, while also reducing the required time of activation. Technical advances in the field of Materials and Structures are usually focused on attaining superior performance while reducing weight and cost. To achieve such combinations, multi-functionality has become essential; namely, to reduce weight by imparting additional functions simultaneously to a single material. In this study, a structural composite with

  12. Carbon Nanotube Purification and Functionalization

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Mintz, Eric; Smalley, Richard E.; Meador, Michael A.

    2003-01-01

    Carbon nanotubes have the potential to significantly enhance the mechanical, thermal, and electrical properties of polymers. However, dispersion of carbon nanotubes in a polymer matrix is hindered by the electrostatic forces that cause them to agglomerate. Chemical modification of the nanotubes is necessary to minimize these electrostatic forces and promote adhesion between the nanotubes and the polymer matrix. In a collaborative research program between Clark Atlanta University, Rice University, and NASA Glenn Research Center several approaches are being explored to chemically modify carbon nanotubes. The results of this research will be presented.

  13. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites

    PubMed Central

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; Maitland, Duncan J.

    2014-01-01

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C. PMID:25663711

  14. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites.

    PubMed

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A; Maitland, Duncan J

    2015-01-05

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature ( T g ) resulting in shape recovery in vivo . While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo . In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al 2 O 3 - or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent T g depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C.

  15. Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (T g) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this paper, a silicone membrane was used to inhibit water uptake into a thermoset SMPmore » composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al 2O 3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37°C) and subsequent T g depression versus uncoated composites. Finally, in turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C.« less

  16. Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites

    DOE PAGES

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; ...

    2014-07-24

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (T g) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this paper, a silicone membrane was used to inhibit water uptake into a thermoset SMPmore » composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al 2O 3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37°C) and subsequent T g depression versus uncoated composites. Finally, in turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C.« less

  17. Improving Multi-Functional Properties in Polymer Based Nano Composites by Interfacial

    NASA Astrophysics Data System (ADS)

    Tajaddod, Navid

    Polymer nanocomposites (PNCs) have become an area of increasing interest for study in the field of polymer science and technology since the rise of nanotechnology research. Despite the significant amount of progress being made towards producing high quality PNC materials, improvement in the mechanical, electrical, thermal and other functional properties still remain a challenge. To date, these properties are only a fraction of the expected theoretical values predicted for these materials. Development of interfacial regions between the filler and matrix within the composite has been found to be an important focus in terms of processing. Proper interfacial control and development may ensure excellent interaction and property transfer between the filler and polymer matrix in addition to improvement of multi-functional properties of PNCs. The property-structure importance for the existence of the interfacial and interphase region within PNCs is discussed in this thesis work. Two specific PNC systems are selected for study as part of this dissertation in order to understand the effect of interfacial region development on influencing multi-functional property trends. Polyethylene (PE)/boron nitride (BN) and polyacrylonitrile (PAN)/carbon nanotube (CNT) composites were selected to investigate their mechanical performance and thermal and electrical conductivity properties, respectively. For these systems it was found that the interfacial region structure is directly related to the enhancement of the subsequent multi-functional properties.

  18. Composition Based Strategies for Controlling Radii in Lipid Nanotubes

    PubMed Central

    Kurczy, Michael E.; Mellander, Lisa J.; Najafinobar, Neda; Cans, Ann-Sofie

    2014-01-01

    Nature routinely carries out small-scale chemistry within lipid bound cells and organelles. Liposome–lipid nanotube networks are being developed by many researchers in attempt to imitate these membrane enclosed environments, with the goal to perform small-scale chemical studies. These systems are well characterized in terms of the diameter of the giant unilamellar vesicles they are constructed from and the length of the nanotubes connecting them. Here we evaluate two methods based on intrinsic curvature for adjusting the diameter of the nanotube, an aspect of the network that has not previously been controllable. This was done by altering the lipid composition of the network membrane with two different approaches. In the first, the composition of the membrane was altered via lipid incubation of exogenous lipids; either with the addition of the low intrinsic curvature lipid soy phosphatidylcholine (soy-PC) or the high intrinsic curvature lipid soy phosphatidylethanolamine (soy-PE). In the second approach, exogenous lipids were added to the total lipid composition during liposome formation. Here we show that for both lipid augmentation methods, we observed a decrease in nanotube diameter following soy-PE additions but no significant change in size following the addition of soy-PC. Our results demonstrate that the effect of soy-PE on nanotube diameter is independent of the method of addition and suggests that high curvature soy-PE molecules facilitate tube membrane curvature. PMID:24392077

  19. Glass/polymer composites and methods of making

    DOEpatents

    Samuels, W. D.; Exarhos, Gregory J.

    1995-01-01

    The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.

  20. Glass/polymer composites and methods of making

    DOEpatents

    Samuels, W.D.; Exarhos, G.J.

    1995-06-06

    The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.

  1. Nondestructive Evaluation Techniques for Development and Characterization of Carbon Nanotube Based Superstructures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Kim, Jae-Woo; Sauti, Godfrey; Wainwright, Elliot; Williams, Phillip; Siochi, Emile J.

    2014-01-01

    Recently, multiple commercial vendors have developed capability for the production of large-scale quantities of high-quality carbon nanotube sheets and yarns. While the materials have found use in electrical shielding applications, development of structural systems composed of a high volume fraction of carbon nanotubes is still lacking. A recent NASA program seeks to address this by prototyping a structural nanotube composite with strength-toweight ratio exceeding current state-of-the-art carbon fiber composites. Commercially available carbon nanotube sheets, tapes, and yarns are being processed into high volume fraction carbon nanotube-polymer nanocomposites. Nondestructive evaluation techniques have been applied throughout this development effort for material characterization and process control. This paper will report on the progress of these efforts, including magnetic characterization of residual catalyst content, Raman scattering characterization of nanotube diameter, defect ratio, and nanotube strain, and polarized Raman scattering for characterization of nanotube alignment.

  2. Electrical percolation in graphene–polymer composites

    NASA Astrophysics Data System (ADS)

    Marsden, A. J.; Papageorgiou, D. G.; Vallés, C.; Liscio, A.; Palermo, V.; Bissett, M. A.; Young, R. J.; Kinloch, I. A.

    2018-07-01

    Electrically conductive composites comprising polymers and graphene are extremely versatile and have a wide range of potential applications. The conductivity of these composites depends on the choice of polymer matrix, the type of graphene filler, the processing methodology, and any post-production treatments. In this review, we discuss the progress in graphene–polymer composites for electrical applications. Graphene filler types are reviewed, the progress in modelling these composites is outlined, the current optimal composites are presented, and the example of strain sensors is used to demonstrate their application.

  3. Preparation and mechanical properties of carbon nanotube-silicon nitride nano-ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Tian, C. Y.; Jiang, H.

    2018-01-01

    Carbon nanotube-silicon nitride nano-ceramic matrix composites were fabricated by hot-pressing nano-sized Si3N4 powders and carbon nanotubes. The effect of CNTs on the mechanical properties of silicon nitride was researched. The phase compositions and the microstructure characteristics of the samples as well as the distribution of carbon nanotube in the silicon nitride ceramic were analyzed by X-ray diffraction and scanning electron microscope. The results show that the microstructure of composites consists mainly of α-Si3N4, β-Si3N4, Si2N2O and carbon natubes. The addition of proper amount of carbon nanotubes can improve the fracture toughness and the flexural strength, and the optimal amount of carbon nanotube are both 3wt.%. However the Vickers hardness values decrease with the increase of carbon nanotubes content.

  4. Polymer grafted-magnetic halloysite nanotube for controlled and sustained release of cationic drug.

    PubMed

    Fizir, Meriem; Dramou, Pierre; Zhang, Kai; Sun, Cheng; Pham-Huy, Chuong; He, Hua

    2017-11-01

    In this research, novel polymer grafted-magnetic halloysite nanotubes with norfloxacin loaded (NOR-MHNTs) and controlled-release, was achieved by surface-initiated precipitation polymerization. The magnetic halloysite nanotubes exhibited better adsorption of NOR (72.10mgg -1 ) compared with the pristine HNTs (30.80mgg -1 ). Various parameters influencing the drug adsorption of the MHNTs for NOR were studied. Polymer grafted NOR-MHNTs has been designed using flexible docking in computer simulation to choose optimal monomers. NOR-MHNTs/poly (methacrylic acid or acrylamide-co-ethylene glycol dimethacrylate) nanocomposite were synthesized using NOR-MHNTs, methacrylic acid (MAA) or acrylamide (AM), ethylene glycol dimethacrylate (EGDMA) and AIBN as nanotemplate, monomers, cross linker and initiator, respectively. The magnetic nanocomposites were characterized by FTIR, TEM, XRD and VSM. The magnetic nanocomposites show superparamagnetic property and fast magnetic response (12.09emug -1 ). The copolymerization of monomers and cross linker led to a better sustained release of norfloxacin (>60h) due to the strong interaction formed between monomers and this cationic drug. The cumulative release rate of NOR is closely related to the cross linker amount. In conclusion, combining the advantages of the high adsorption capacity and magnetic proprieties of this biocompatible clay nanotube and the advantages of polymer shell in the enhancement of controlled-sustained release of cationic drug, a novel formulation for the sustained-controlled release of bioactive agents is developed and may have considerable potential application in targeting drug delivery system. Copyright © 2017. Published by Elsevier Inc.

  5. A molecular dynamics study on Young's modulus and tribology of carbon nanotube reinforced styrene-butadiene rubber.

    PubMed

    Chawla, Raj; Sharma, Sumit

    2018-03-18

    Styrene-butadiene rubber is a copolymer widely used in making car tires and has excellent abrasion resistance. The Young's modulus and tribology of pure styrene butadiene rubber (SBR) polymer and carbon nanotube reinforced polymer composites have been investigated using molecular dynamics simulations. The mechanism of enhanced tribology properties using carbon nanotube has been studied and discussed. The obtained Young's modulus shows the enhancement in mechanical properties of SBR polymer when carbon nanotubes are used as reinforcement. The concentration, temperature and velocity profiles, radial distribution function, frictional stresses, and cohesive energy density are calculated and analyzed in detail. The Young's modulus of SBR matrix increases about 29.16% in the presence of the 5% CNT. The atom movement velocity and average cohesive energy density in the friction area of pure SBR matrix was found to be more than that of the CNT/SBR composite. Graphical abstract Initial and final conditions of (a) pure SBR matrix and (b) CNT/SBR matrix subjected toshear loading and frictional stresses of top Fe layers of both pure SBR and CNT/SBR composite.

  6. Additive-free carbon nanotube dispersions, pastes, gels, and doughs in cresols.

    PubMed

    Chiou, Kevin; Byun, Segi; Kim, Jaemyung; Huang, Jiaxing

    2018-05-29

    Cresols are a group of naturally occurring and massively produced methylphenols with broad use in the chemical industry. Here, we report that m -cresol and its liquid mixtures with other isomers are surprisingly good solvents for processing carbon nanotubes. They can disperse carbon nanotubes of various types at unprecedentedly high concentrations of tens of weight percent, without the need for any dispersing agent or additive. Cresols interact with carbon nanotubes by charge transfer through the phenolic hydroxyl proton and can be removed after processing by evaporation or washing, without altering the surface of carbon nanotubes. Cresol solvents render carbon nanotubes polymer-like rheological and viscoelastic properties and processability. As the concentration of nanotubes increases, a continuous transition of four states can be observed, including dilute dispersion, thick paste, free-standing gel, and eventually a kneadable, playdough-like material. As demonstrated with a few proofs of concept, cresols make powders of agglomerated carbon nanotubes immediately usable by a broad array of material-processing techniques to create desirable structures and form factors and make their polymer composites.

  7. Charge transport kinetics in a robust radical-substituted polymer/nanocarbon composite electrode

    NASA Astrophysics Data System (ADS)

    Sato, Kan; Oyaizu, Kenichi; Nishide, Hiroyuki

    We have reported a series of organic radical-substituted polymers as new-type charge storage and transport materials which could be used for energy related devices such as batteries and solar cells. Redox-active radical moieties introduced to the non-conjugated polymer backbones enable the rapid electron transfer among the adjacent radical sites, and thus large diffusive flux of electrical charge at a bulk scale. Here we present the elucidated charge transport kinetics in a radical polymer/single-walled carbon nanotube (SWNT) composite electrode. The synergetic effect of electrical conduction by a three-dimensional SWNT network and electron self-exchange reaction by radical polymers contributed to the 105-fold (per 1 g of added SWNT) boosting of electrochemical reactions and exceptionally large current density (greater than 1 A/cm2) as a rechargeable electrode. A totally organic-based secondary battery with a submicron thickness was fabricated to demonstrate the splendid electrochemical performances. Grants-in-Aid for Scientific Research (No. 24225003, 15J00888) and the Leading Graduate Program in Science and Engineering, from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  8. Influence of surface modification of halloysite nanotubes on their dispersion in epoxy matrix: Mesoscopic DPD simulation

    NASA Astrophysics Data System (ADS)

    Komarov, P.; Markina, A.; Ivanov, V.

    2016-06-01

    The problems of constructing of a meso-scale model of composites based on polymers and aluminosilicate nanotubes for prediction of the filler's spatial distribution at early stages of material formation have been considered. As a test system for the polymer matrix, the mixture of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate as epoxy resin monomers and 4-methylhexahydrophthalic anhydride as curing agent has been used. It is shown that the structure of a mixture of uncured epoxy resin and nanotubes is (mainly) determined by the surface functionalization of nanotubes. The results indicate that only nanotubes with maximum functionalization can preserve a uniform distribution in space.

  9. Using molecular dynamics simulations and finite element method to study the mechanical properties of nanotube reinforced polyethylene and polyketone

    NASA Astrophysics Data System (ADS)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.; Aryayi, M.

    2015-09-01

    Molecular dynamics simulations are used to study the mechanical behavior of single-walled carbon nanotube reinforced composites. Polyethylene and polyketone are selected as the polymer matrices. The effects of nanotube atomic structure and diameter on the mechanical properties of polymer matrix nanocomposites are investigated. It is shown that although adding nanotube to the polymer matrix raises the longitudinal elastic modulus significantly, the transverse tensile and shear moduli do not experience important change. As the previous finite element models could not be used for polymer matrices with the atom types other than carbon, molecular dynamics simulations are used to propose a finite element model which can be used for any polymer matrices. It is shown that this model can predict Young’s modulus with an acceptable accuracy.

  10. Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor

    PubMed Central

    Lin, Huijuan; Li, Li; Ren, Jing; Cai, Zhenbo; Qiu, Longbin; Yang, Zhibin; Peng, Huisheng

    2013-01-01

    Polyaniline composite films incorporated with aligned multi-walled carbon nanotubes (MWCNTs) are synthesized through an easy electrodeposition process. These robust and electrically conductive films are found to function as effective electrodes to fabricate transparent and flexible supercapacitors with a maximum specific capacitance of 233 F/g at a current density of 1 A/g. It is 36 times of bare MWCNT sheet, 23 times of pure polyaniline and 3 times of randomly dispersed MWCNT/polyaniline film under the same conditions. The novel supercapacitors also show a high cyclic stability. PMID:23443325

  11. Role of interfacial effects in carbon nanotube/epoxy nanocomposite behavior.

    PubMed

    Pécastaings, G; Delhaès, P; Derré, A; Saadaoui, H; Carmona, F; Cui, S

    2004-09-01

    The interfacial effects are critical to understand the nanocomposite behavior based on polymer matrices. These effects are dependent upon the morphology of carbon nanotubes, the type of used polymer and the processing technique. Indeed, we show that the different parameters, as the eventual surfactant use, the ultrasonic treatment and shear mixing have to be carefully examined, in particular, for nanotube dispersion and their possible alignment. A series of multiwalled nanotubes (MWNT) have been mixed with a regular epoxy resin under a controlled way to prepare nanocomposites. The influence of nanotube content is examined through helium bulk density, glass transition temperature of the matrix and direct current electrical conductivity measurements. These results, including the value of the percolation threshold, are analyzed in relationship with the mesostructural organization of these nanotubes, which is observed by standard and conductive probe atomic force microscopy (AFM) measurements. The wrapping effect of the organic matrix along the nanotubes is evidenced and analyzed to get a better understanding of the final composite characteristics, in particular, for eventually reinforcing the matrix without covalent bonding.

  12. A facile growth process of CeO2-Co3O4 composite nanotubes and its catalytic stability for CO oxidation

    NASA Astrophysics Data System (ADS)

    Oh, Hyerim; Kim, Il Hee; Lee, Nam-Suk; Dok Kim, Young; Kim, Myung Hwa

    2017-08-01

    Hybrid cerium dioxide (CeO2)-cobalt oxide (Co3O4) composite nanotubes were successfully prepared by a combination of electrospinning and thermal annealing using CeO2 and Co3O4 precursors for the first time. Electrospun CeO2-Co3O4 composite nanotubes represent relatively porous surface texture with small dimensions between 80 and 150 nm in the outer diameter. The microscopic investigations indicate that the nanoparticle like crystalline structures of CeO2 and Co3O4 are homogenously distributed and continuously connected to form the shape of nanotube in the length of a few micrometers during thermal annealing. It is expected that the different evaporation behaviors of solvents and matrix polymer between the core and the shell in as-spun nanofibers in the course of thermal annealing could be reasonably responsible for the formation of well-defined CeO2/Co3O4 hybrid nanotubes. Additionally, the general catalytic activities of electrospun CeO2/Co3O4 hybrid nanotubes toward the oxidation of carbon monoxide (CO) were carefully examined by a continuous flow system, resulting in favorable catalytic activity as well as catalytic stability for CO oxidation between 150 °C and 200 °C without the deactivation of the catalyst with time stems from accumulation of reaction intermediates such as carbonate species.

  13. Composite microparticles of halloysite clay nanotubes bound by calcium carbonate.

    PubMed

    Jin, Yi; Yendluri, Raghuvara; Chen, Bin; Wang, Jingbo; Lvov, Yuri

    2016-03-15

    Natural halloysite clay nanotubes with 15 nm inner and 75 nm outer diameters have been used as vehicles for sustained release of drugs in composite hollow microparticles "glued" with CaCO3. We used a layer-by layer assembly accomplished alginate binding with Ca(2+) followed by CO2 bubbling to prepare the composite microspheres of CaCO3 and polyelectrolytes (PE) modified halloysite nanotubes (HNTs-PE2/CaCO3) with the diameter of about 5-10 μm. These microparticles have empty spherical structure and abundant pore distributions with maxima at 2.5, 3.9, 6.0 and 13.3 nm, and higher surface area of 82.3 m(2) g(-1) as characterized by SEM and BET test. We loaded drugs in these micro-nano carriers of tight piles of halloysite nanotube with end clogged with CaCO3. The sustained release of Nifedipine drug from HNTs-PE2/CaCO3 composite microspheres was slower than for pristine halloysite nanotubes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Enhanced durability of carbon nanotube grafted hierarchical ceramic microfiber-reinforced epoxy composites.

    PubMed

    Krishnamurthy, Ajay; Hunston, Donald L; Forster, Amanda L; Natarajan, Bharath; Liotta, Andrew H; Wicks, Sunny S; Stutzman, Paul E; Wardle, Brian L; Liddle, J Alexander; Forster, Aaron M

    2017-12-01

    As carbon nanotube (CNT) infused hybrid composites are increasingly identified as next-generation aerospace materials, it is vital to evaluate their long-term structural performance under aging environments. In this work, the durability of hierarchical, aligned CNT grafted aluminoborosilicate microfiber-epoxy composites (CNT composites) are compared against baseline aluminoborosilicate composites (baseline composites), before and after immersion in water at 25 °C (hydro) and 60 °C (hydrothermal), for extended durations (90 d and 180 d). The addition of CNTs is found to reduce water diffusivities by approximately 1.5 times. The mechanical properties (bending strength and modulus) and the damage sensing capabilities (DC conductivity) of CNT composites remain intact regardless of exposure conditions. The baseline composites show significant loss of strength (44 %) after only 15 d of hydrothermal aging. This loss of mechanical strength is attributed to fiber-polymer interfacial debonding caused by accumulation of water at high temperatures. In situ acoustic and DC electrical measurements of hydrothermally aged CNT composites identify extensive stress-relieving micro-cracking and crack deflections that are absent in the aged baseline composites. These observations are supported by SEM images of the failed composite cross-sections that highlight secondary matrix toughening mechanisms in the form of CNT pullouts and fractures which enhance the service life of composites and maintain their properties under accelerated aging environments.

  15. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube.

    PubMed

    Jung, Haejong; Yu, Seunggun; Bae, Nam-Seok; Cho, Suk Man; Kim, Richard Hahnkee; Cho, Sung Hwan; Hwang, Ihn; Jeong, Beomjin; Ryu, Ji Su; Hwang, Junyeon; Hong, Soon Man; Koo, Chong Min; Park, Cheolmin

    2015-07-22

    Design of materials to be heat-conductive in a preferred direction is a crucial issue for efficient heat dissipation in systems using stacked devices. Here, we demonstrate a facile route to fabricate polymer composites with directional thermal conduction. Our method is based on control of the orientation of fillers with anisotropic heat conduction. Melt-compression of solution-cast poly(vinylidene fluoride) (PVDF) and graphene nanoflake (GNF) films in an L-shape kinked tube yielded a lightweight polymer composite with the surface normal of GNF preferentially aligned perpendicular to the melt-flow direction, giving rise to a directional thermal conductivity of approximately 10 W/mK at 25 vol % with an anisotropic thermal conduction ratio greater than six. The high directional thermal conduction was attributed to the two-dimensional planar shape of GNFs readily adaptable to the molten polymer flow, compared with highly entangled carbon nanotubes and three-dimensional graphite fillers. Furthermore, our composite with its density of approximately 1.5 g/cm(3) was mechanically stable, and its thermal performance was successfully preserved above 100 °C even after multiple heating and cooling cycles. The results indicate that the methodology using an L-shape kinked tube is a new way to achieve polymer composites with highly anisotropic thermal conduction.

  16. Isolation of Pristine Electronics Grade Semiconducting Carbon Nanotubes by Switching the Rigidity of the Wrapping Polymer Backbone on Demand.

    PubMed

    Joo, Yongho; Brady, Gerald J; Shea, Matthew J; Oviedo, M Belén; Kanimozhi, Catherine; Schmitt, Samantha K; Wong, Bryan M; Arnold, Michael S; Gopalan, Padma

    2015-10-27

    Conjugated polymers are among the most selective carbon nanotube sorting agents discovered and enable the isolation of ultrahigh purity semiconducting singled-walled carbon nanotubes (s-SWCNTs) from heterogeneous mixtures that contain problematic metallic nanotubes. The strong selectivity though highly desirable for sorting, also leads to irreversible adsorption of the polymer on the s-SWCNTs, limiting their electronic and optoelectronic properties. We demonstrate how changes in polymer backbone rigidity can trigger its release from the nanotube surface. To do so, we choose a model polymer, namely poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,60-(2,20-bipyridine))] (PFO-BPy), which provides ultrahigh selectivity for s-SWCNTs, which are useful specifically for FETs, and has the chemical functionality (BPy) to alter the rigidity using mild chemistry. Upon addition of Re(CO)5Cl to the solution of PFO-BPy wrapped s-SWCNTs, selective chelation with the BPy unit in the copolymer leads to the unwrapping of PFO-BPy. UV-vis, XPS, and Raman spectroscopy studies show that binding of the metal ligand complex to BPy triggers up to 85% removal of the PFO-BPy from arc-discharge s-SWCNTs (diameter = 1.3-1.7 nm) and up to 72% from CoMoCAT s-SWCNTs (diameter = 0.7-0.8 nm). Importantly, Raman studies show that the electronic structure of the s-SWCNTs is preserved through this process. The generalizability of this method is demonstrated with two other transition metal salts. Molecular dynamics simulations support our experimental findings that the complexation of BPy with Re(CO)5Cl in the PFO-BPy backbone induces a dramatic conformational change that leads to a dynamic unwrapping of the polymer off the nanotube yielding pristine s-SWCNTs.

  17. Quantitative measurement of carbon nanotubes released from their composites by thermal carbon analysis

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Kotake, M.; Ata, S.; Honda, K.

    2017-06-01

    The release of free carbon nanotubes (CNTs) and CNTs partly embedded in matrix debris into the air may occur during mechanical and abrasion processes involving CNT composites. Since the harmful effects of CNT-matrix mixtures have not yet been fully evaluated, it is considered that any exposure to CNTs, including CNT-matrix mixtures, should be measured and controlled. Thermal carbon analysis, such as Method 5040 of the National Institute for Occupational Safety and Health, is one of the most reliable quantitative methods for measuring CNTs in the air. However, when CNTs are released together with polymer matrices, this technique may be inapplicable. In this study, we evaluated the potential for using thermal carbon analysis to determine CNTs in the presence of polymer matrices. Our results showed that thermal carbon analysis was potentially capable of determining CNTs in distinction from polyamide 12, polybutylene terephthalate, polypropylene, and polyoxymethylene. However, it was difficult to determine CNTs in the presence of polyethylene terephthalate, polycarbonate, polyetheretherketone, or polyamide 6.

  18. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manjula, E-mail: manjula.physics@gmail.com; Pal, Hemant; Sharma, Vimal

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased bymore » 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.« less

  19. Redox responsive nanotubes from organometallic polymers by template assisted layer by layer fabrication

    NASA Astrophysics Data System (ADS)

    Song, Jing; Jańczewski, Dominik; Guo, Yuanyuan; Xu, Jianwei; Vancso, G. Julius

    2013-11-01

    Redox responsive nanotubes were fabricated by the template assisted layer-by-layer (LbL) assembly method and employed as platforms for molecular payload release. Positively and negatively charged organometallic poly(ferrocenylsilane)s (PFS) were used to construct the nanotubes, in combination with other polyions. During fabrication, multilayers of these polyions were deposited onto the inner pores of template porous membranes, followed by subsequent removal of the template. Anodized porous alumina and track-etched polycarbonate membranes were used as templates. The morphology, electrochemistry, composition and other properties of the obtained tubular structure were characterized by fluorescence microscopy, scanning (SEM) and transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy. Composite nanotubes, consisting of poly(acrylic acid) anions with PFS+ and nanoparticles including fluorophore labelled dextran and decorated quantum dots, with PFS polyelectrolytes were also fabricated, broadening the scope of the structures. Cyclic voltammograms of PFS containing nanotubes showed similar redox responsive behaviour to thin LbL assembled films. Redox triggered release of labelled macromolecules from these tubular structures demonstrated application potential in controlled molecular delivery.Redox responsive nanotubes were fabricated by the template assisted layer-by-layer (LbL) assembly method and employed as platforms for molecular payload release. Positively and negatively charged organometallic poly(ferrocenylsilane)s (PFS) were used to construct the nanotubes, in combination with other polyions. During fabrication, multilayers of these polyions were deposited onto the inner pores of template porous membranes, followed by subsequent removal of the template. Anodized porous alumina and track-etched polycarbonate membranes were used as templates. The morphology, electrochemistry, composition and other properties of the obtained tubular

  20. Hypervelocity Impact Experiments on Epoxy/Ultra-High Molecular Weight Polyethylene Composite Panels Reinforced with Nanotubes

    NASA Technical Reports Server (NTRS)

    Khatiwada, Suman; Laughman, Jay W.; Armada, Carlos A.; Christiansen, Eric L.; Barrera, Enrique V.

    2012-01-01

    Advanced composites with multi-functional capabilities are of great interest to the designers of aerospace structures. Polymer matrix composites (PMCs) reinforced with high strength fibers provide a lightweight and high strength alternative to metals and metal alloys conventionally used in aerospace architectures. Novel reinforcements such as nanofillers offer potential to improve the mechanical properties and add multi-functionality such as radiation resistance and sensing capabilities to the PMCs. This paper reports the hypervelocity impact (HVI) test results on ultra-high molecular weight polyethylene (UHMWPE) fiber composites reinforced with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT). Woven UHMWPE fabrics, in addition to providing excellent impact properties and high strength, also offer radiation resistance due to inherent high hydrogen content. SWCNT have exceptional mechanical and electrical properties. BNNT (figure 1) have high neutron cross section and good mechanical properties that add multi-functionality to this system. In this project, epoxy based UHMWPE composites containing SWCNT and BNNT are assessed for their use as bumper shields and as intermediate plates in a Whipple Shield for HVI resistance. Three composite systems are prepared to compare against one another: (I) Epoxy/UHMWPE, (II) Epoxy/UHMWPE/SWCNT and (III) Epoxy/UHMWPE/SWCNT/BNNT. Each composite is a 10.0 by 10.0 by 0.11 cm3 panel, consisting of 4 layers of fabrics arranged in cross-ply orientation. Both SWCNT and BNNT are 0.5 weight % of the fabric preform. Hypervelocity impact tests are performed using a two-stage light gas gun at Rice University

  1. Titanium dioxide, single-walled carbon nanotube composites

    DOEpatents

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  2. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameli, A.; Nofar, M.; Saniei, M.

    A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed inmore » an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.« less

  3. Synthesis of molecular imprinted polymer modified TiO{sub 2} nanotube array electrode and their photoelectrocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Na; Chen Shuo; Wang Hongtao

    2008-10-15

    A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less

  4. Correlation between the length reduction of carbon nanotubes and the electrical percolation threshold of melt compounded polyolefin composites.

    PubMed

    Vasileiou, Alexandros A; Kontopoulou, Marianna; Gui, Hua; Docoslis, Aristides

    2015-01-28

    The objectives of this work are to quantify the degree of multiwalled carbon nanotube (MWCNT) length reduction upon melt compounding and to demonstrate unambiguously that the length reduction is mainly responsible for the increase in electrical percolation threshold of the resulting composites. Polyolefin matrices of varying viscosities and different functional groups are melt compounded with MWCNTs. A simple method is developed to solubilize the polymer matrix and isolate the MWCNTs, enabling detailed imaging analysis. In spite of the perceived strength of the MWCNTs, the results demonstrate that the shear forces developed during melt mixing are sufficient to cause significant nanotube breakage and length reduction. Breakage is promoted when higher MWCNT contents are used, due to increased probability of particle collisions. Furthermore, the higher shear forces transmitted to the nanotubes in the presence of higher matrix viscosities and functional groups that promote interfacial interactions, shift the nanotube distribution toward smaller sizes. The length reduction of the MWCNTs causes significant increases in the percolation threshold, due to the loss of interconnectivity, which results in fewer conductive pathways. These findings are validated by comparing the experimental percolation threshold values with those predicted by the improved interparticle distance theoretical model.

  5. Computer-aided design of polymers and composites

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.

    1985-01-01

    This book on computer-aided design of polymers and composites introduces and discusses the subject from the viewpoint of atomic and molecular models. Thus, the origins of stiffness, strength, extensibility, and fracture toughness in composite materials can be analyzed directly in terms of chemical composition and molecular structure. Aspects of polymer composite reliability are considered along with characterization techniques for composite reliability, relations between atomic and molecular properties, computer aided design and manufacture, polymer CAD/CAM models, and composite CAD/CAM models. Attention is given to multiphase structural adhesives, fibrous composite reliability, metal joint reliability, polymer physical states and transitions, chemical quality assurance, processability testing, cure monitoring and management, nondestructive evaluation (NDE), surface NDE, elementary properties, ionic-covalent bonding, molecular analysis, acid-base interactions, the manufacturing science, and peel mechanics.

  6. Reinforcement of flowable dental composites with titanium dioxide nanotubes.

    PubMed

    Dafar, Manal O; Grol, Matthew W; Canham, Peter B; Dixon, S Jeffrey; Rizkalla, Amin S

    2016-06-01

    Flowable dental composites are used as restorative materials due to their excellent esthetics and rheology. However, they suffer from inferior mechanical properties compared to conventional composites. The aim of this study was to reinforce a flowable dental composite with TiO2 nanotubes (n-TiO2) and to assess the effect of n-TiO2 surface modifications on the mechanical properties of the reinforced composite. n-TiO2 were synthesized using an alkaline hydrothermal process and then functionalized with silane or methacrylic acid (MA). Nanotubes were characterized by scanning and transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. Commercially available flowable composite (Filtek™ Supreme Ultra Flowable Restorative, 3M ESPE) was reinforced with varying amounts of nanotubes (0-5wt%). Flowability of the resulting composites was evaluated using a Gillmore needle method. Dynamic Young's modulus (E) was measured using an ultrasonic technique. Fracture toughness (KIc) was assessed using a notchless triangular prism and radiopacity was quantified. Viability of NIH/3T3 fibroblasts was evaluated following incubation on composite specimens for 24h. Electron microscopy revealed a tubular morphology of n-TiO2. All reinforced composites exhibited significantly greater values of E than unreinforced composite. Composites reinforced with 3wt% n-TiO2 functionalized with MA exhibited the greatest values of E and KIc. Cytotoxicity assays revealed that reinforced composites were biocompatible. Taken together, flowable composites reinforced with n-TiO2 exhibited mechanical properties superior to those of unreinforced composite, with minimal effects on flowability and radiopacity. n-TiO2-reinforced flowable composites are promising materials for use in dental restorations. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Flexible microstrip antenna based on carbon nanotubes/(ethylene-octene copolymer) thin composite layer deposited on PET substrate

    NASA Astrophysics Data System (ADS)

    Matyas, J.; Olejnik, R.; Slobodian, P.

    2017-12-01

    A most of portable devices, such as mobile phones, tablets, uses antennas made of cupper. In this paper we demonstrate possible use of electrically conductive polymer composite material for such antenna application. Here we describe the method of preparation and properties of the carbon nanotubes (CNTs)/(ethylene-octene copolymer) as flexible microstrip antenna. Carbon nanotubes dispersion in (ethylene-octene copolymer) toluene solution was prepared by ultrasound finally coating PET substrate by method of dip-coating. Main advantages of PET substrate are low weight and also flexibility. The final size of flexible microstrip antenna was 5 x 50 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with the weight of only 0.402 g. Antenna operates at three frequencies 1.66 GHz (-6.51 dB), 2.3 GHz (-13 dB) and 2.98 GHz (-33.59 dB).

  8. Carbon nanotube-based structural health monitoring for fiber reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Liu, Kan; Mardirossian, Aris; Heider, Dirk; Thostenson, Erik

    2017-04-01

    In fiber reinforced composite materials, the modes of damage accumulation, ranging from microlevel to macro-level (matrix cracks development, fiber breakage, fiber-matrix de-bonding, delamination, etc.), are complex and hard to be detected through conventional non-destructive evaluation methods. Therefore, in order to assure the outstanding structural performance and high durability of the composites, there has been an urgent need for the design and fabrication smart composites with self-damage sensing capabilities. In recent years, the macroscopic forms of carbon nanotube materials have been maturely investigated, which provides the opportunity for structural health monitoring based on the carbon nanotubes that are integrated in the inter-laminar areas of advanced fiber composites. Here in this research, advanced fiber composites embedded with laminated carbon nanotube layers are manufactured for damage detection due to the relevant spatial electrical property changes once damage occurs. The mechanical-electrical coupling response is recorded and analyzed during impact test. The design and manufacturing of integrating the carbon nanotubes intensely affect the detecting sensitivity and repeatability of the integrated multifunctional sensors. The ultimate goal of the reported work is to develop a novel structural health monitoring method with the capability of reporting information on the damage state in a real-time way.

  9. Fabrication of antibacterial PVA nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sapalidis, Andreas; Sideratou, Zili; Panagiotaki, Katerina N.; Sakellis, Elias; Kouvelos, Evangelos P.; Papageorgiou, Sergios; Katsaros, Fotios

    2018-03-01

    A series of Poly(vinyl alcohol) (PVA) nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI) functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI) are prepared by solvent casting technique. The modified carbon based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls, as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0 % w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized carbon nanotubes into the PVA matrix.

  10. Carbon nanotube suspensions, dispersions, & composites

    NASA Astrophysics Data System (ADS)

    Simmons, Trevor John

    Carbon Nanotubes (CNTs) are amazing structures that hold the potential to revolutionize many areas of scientific research. CNTs can be behave both as semiconductors and metals, can be grown in highly ordered arrays and patterns or in random orientation, and can be comprised of one graphene cylinder (single wall nanotube, SWNT) or several concentric graphene cylinders (multi-wall nanotube, MWNT). Although these structures are usually only a few nanometers wide, they can be grown up to centimeter lengths, and in massive quantities. CNTs can be produced in a variety of processes ranging from repeated combustion of organic material such as dried grass, arc-discharge with graphite electrodes, laser ablation of a graphitic target, to sophisticated chemical vapor deposition (CVD) techniques. CNTs are stronger than steel but lighter than aluminum, and can be more conductive than copper or semiconducting like silicon. This variety of properties has been matched by the wide variety of applications that have been developed for CNTs. Many of these applications have been limited by the inability of researchers to tame these structures, and incorporating CNTs into existing technologies can be exceedingly difficult and prohibitively expensive. It is therefore the aim of the current study to develop strategies for the solution processing and deposition of CNTs and CNT-composites, which will enable the use of CNTs in existing and emerging technologies. CNTs are not easily suspended in polar solvents and are extremely hydrophobic materials, which has limited much of the solution processing to organic solvents, which also cannot afford high quality dispersions of CNTs. The current study has developed a variety of aqueous CNT solutions that employ surfactants, water-soluble polymers, or both to create suspensions of CNTs. These CNT 'ink' solutions were deposited with a variety of techniques that have afforded many interesting structures, both randomly oriented as well as highly

  11. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Fang, Menglu; Wang, Zhao; Chen, Xiaojun; Guan, Shiyou

    2018-04-01

    Three-dimensional sponge-like reduced graphene oxide/silicon/carbon nanotube composites were synthesized by one-step hydrothermal self-assembly using silicon nanoparticles, graphene oxide and amino modified carbon nanotubes to develop high-performance anode materials of lithium ion batteries. Scanning electron microscopy and transmission electron microscopy images show the structure of composites that Silicon nanoparticles are coated with reduced graphene oxide while amino modified carbon nanotubes wrap around the reduced graphene oxide in the composites. When applied to lithium ion battery, these composites exhibit high initial specific capacity of 2552 mA h/g at a current density of 0.05 A/g. In addition, reduced graphene oxide/silicon/carbon nanotube composites also have better cycle stability than bare Silicon nanoparticles electrode with the specific capacity of 1215 mA h/g after 100 cycles. The three-dimension sponge-like structure not only ensures the electrical conductivity but also buffers the huge volume change, which has broad potential application in the field of battery.

  12. Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites

    PubMed Central

    Monsiváis-Barrón, Alejandra J.; Bonilla-Rios, Jaime; Sánchez-Fernández, Antonio

    2014-01-01

    Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes. PMID:28788233

  13. Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites.

    PubMed

    Monsiváis-Barrón, Alejandra J; Bonilla-Rios, Jaime; Sánchez-Fernández, Antonio

    2014-10-20

    Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes.

  14. Fabrication of self-organized conical microstructures by excimer laser irradiation of cyanoacrylate-carbon nanotube composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yuming; Liu Liang; Fan Shoushan

    2005-02-07

    Self-organized conical microstructures are fabricated by 308 nm XeCl excimer laser irradiation of cyanoacrylate-carbon nanotube composites in air. The morphology of the surface on the composite films is studied, varying the total number and fluence of the applied laser pulses. A simple mechanism of the fabrication based on the evaporation of cyanoacrylate and the burning of carbon nanotubes is proposed. The conical peak structures of cyanoacrylate-carbon nanotube composite films show good field-emission properties. Similar structures are also observed on carbon nanotube arrays.

  15. Dynamic mechanical analysis of multi-walled carbon nanotube/HDPE composites.

    PubMed

    Kanagaraj, S; Guedes, R M; Oliveira, Mónica S A; Simões, José A O

    2008-08-01

    Since the discovery of carbon nanotubes (CNTs), their remarkable properties make them ideal candidates to reinforce in advanced composites. In this attempt, an enhancement of mechanical properties of high density polyethylene (HDPE) by adding 1 wt% of CNTs is studied using Dynamic mechanical and Thermal analyzer (DMTA). The chemically treated and functionalized CNTs were homogeneously dispersed with HDPE and the test samples were made using injection molding machine. Using DMTA, storage modulus (E'), loss modulus (E") and damping factor (tan delta) of the sample under oscillating load were studied as a function of frequency of oscillation and temperatures. The storage modulus decreases with an increase of temperature and increases by adding CNTs in the composites where the reinforcing effect of CNT is confirmed. It is concluded that the large scale polymer relaxations in the composites are effectively restrained by the presence of CNTs and thus the mechanical properties of nanocomposites increase. The transition frequency of loss modulus is observed at 1 Hz. The loss modulus decreases with an increase of temperature at below 1 Hz but opposite trend was observed at above 1 Hz. The shift factor could be predicted from Williams-Landel-Ferry (WLF) model which has good agreement with experimental results.

  16. Thermal boundary resistances of carbon nanotubes in contact with metals and polymers.

    PubMed

    Li, Qingwei; Liu, Changhong; Fan, Shoushan

    2009-11-01

    In recent years carbon-nanotube-based thermal interface materials have shown great potential for solving the thermal management problem of integrated circuits and nanodevices. For a long time, the exceptionally high thermal boundary resistances (TBRs) between carbon nanotubes (CNTs) and their surroundings have been suspected as a major factor to restraining their performance. But so far, there are few or no reported work to determine or compare the TBRs between CNTs and various materials. In this paper, we carefully design and carry out the TBR measurements of CNTs in contact with metal and polymer materials, and we present a conclusion that the CNT/polymer generally gives a lower TBR compared to the CNT/metal, which seems a little counterintuitive. We further suggest that the larger CNT-metal TBRs arise from the smaller phonon-mode overlapping between the CNT and the metals at low frequencies, and the low phonon transmission coefficient at the metal-CNT interface in the intermediate and high frequency range. This work may inspire deeper understanding of the TBR and shed light on related theoretical and applied research.

  17. Conductor-polymer composite electrode materials

    DOEpatents

    Ginley, D.S.; Kurtz, S.R.; Smyrl, W.H.; Zeigler, J.M.

    1984-06-13

    A conductive composite material useful as an electrode, comprises a conductor and an organic polymer which is reversibly electrochemically dopable to change its electrical conductivity. Said polymer continuously surrounds the conductor in intimate electrical contact therewith and is prepared by electrochemical growth on said conductor or by reaction of its corresponding monomer(s) on said conductor which has been pre-impregnated or pre-coated with an activator for said polymerization. Amount of the conductor is sufficient to render the resultant composite electrically conductive even when the polymer is in an undoped insulating state.

  18. High Thermal Conductivity Carbon Nanomaterials for Improved Thermal Management in Armament Composites

    DTIC Science & Technology

    2017-03-01

    polymer matrices. In addition to improving mechanical and electrical properties, these forms of carbon typically demonstrate high intrinsic thermal...conductivities, a property that could be useful in improving the thermal dissipation performance of polymer matrix composites. In this study, carbon...nanotubes, carbon nanofibers and graphene have been added to polymers and polymer matrix composites in order to study the effect on the thermal

  19. The deflection of carbon composite carbon nanotube / graphene using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Kolesnikova, A. S.; Kirillova, I. V.; Kossovich, L. U.

    2018-02-01

    For the first time, the dependence of the bending force on the transverse displacement of atoms in the center of the composite material consisting of graphene and parallel oriented zigzag nanotubes was studied. Mathematical modeling of the action of the needle of the atomic force microscope was carried out using the single-layer armchair carbon nanotube. Armchair nanotubes are convenient for using them as a needle of an atomic force microscope, because their edges are not sharpened (unlike zigzag tubes). Consequently, armchair nanotubes will cause minimal damage upon contact with the investigation object. The geometric parameters of the composite was revealed under the action of the bending force of 6μN.

  20. Technology and Development of Self-Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Alcock, Ben; Peijs, Ton

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first conceived in the 1970s, and are now beginning to appear in a range of commercial products. While high mechanical performance polymer fibres or tapes are an obvious precursor for composite development, various different technologies have been developed to consolidate these into two- or three-dimensional structures. This paper presents a review of the various processing techniques that have been reported in the literature for the manufacture of self-reinforced polymer composites from fibres or tapes of different polymers, and so exploit the fibre or tape performance in a commercial material or product.

  1. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    DOEpatents

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  2. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    DOEpatents

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  3. Boron Nitride Nanotube: Synthesis and Applications

    NASA Technical Reports Server (NTRS)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  4. Boron nitride nanotube: synthesis and applications

    NASA Astrophysics Data System (ADS)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Kang, Jin Ho; Sauti, Godfrey; Thibeault, Sheila A.; Yamakov, Vesselin; Wise, Kristopher E.; Su, Ji; Fay, Catharine C.

    2014-04-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA/JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800°C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  5. Design and synthesis of polymer, carbon and composite electrodes for high energy and high power supercapacitors

    NASA Astrophysics Data System (ADS)

    Arcila Velez, Margarita Rosa

    Supercapacitors (SCs) are promising energy storage devices because they deliver energy faster than Li-ion batteries and store larger amounts of charge compared to dielectric capacitors. SCs are classified in electrical double layer capacitors (EDLCs) and pseudocapacitors, based on their charge storage mechanism. EDLCs store charge electrostatically, i.e. by physical charge separation. This mechanism limits the storable amount of energy to the available surface area of the electrode, typically made of carbon materials, but grants good cycling stability of the SC device. Pseudocapacitor electrodes, commonly made of conducting polymers or metal oxides, store charge faradaically, i.e. through redox reactions throughout the bulk material, which allows them to store significantly larger amounts of energy than EDLCs, but their stability is compromised due to the partial irreversibility of the faradaic processes. To accomplish the commercialization of SCs, devices must show a combination of high charge storage capacities and long-term stability, besides being cost-effective. To tackle the current issues of SCs, this field of study has taken mainly two directions: 1) the development of new architectures and nanostructures of the active materials, which has shown to increase the surface area, enhance stability, and facilitate ion diffusion; and 2) fabrication of composites between non-faradaic (carbon), faradaic materials, and/or redox-active components to achieve a balance between the amount of energy stored and the stability. Following the first approach, a continuous process to grow vertically aligned carbon nanotubes (VACNTs) on cost-effective aluminum foil was developed. The resulting electrodes were analyzed as SC electrodes and in symmetric cells, and the influence of the arrangement of the nanotubes and the synthesis conditions was studied. The performance of the VACNTs produced continuously showed similar performance to the VACNTs produced stationarily and the

  6. Critical Role of the Sorting Polymer in Carbon Nanotube-Based Minority Carrier Devices.

    PubMed

    Mallajosyula, Arun T; Nie, Wanyi; Gupta, Gautam; Blackburn, Jeffrey L; Doorn, Stephen K; Mohite, Aditya D

    2016-12-27

    A prerequisite for carbon nanotube-based optoelectronic devices is the ability to sort them into a pure semiconductor phase. One of the most common sorting routes is enabled through using specific wrapping polymers. Here we show that subtle changes in the polymer structure can have a dramatic influence on the figures of merit of a carbon nanotube-based photovoltaic device. By comparing two commonly used polyfluorenes (PFO and PFO-BPy) for wrapping (7,5) and (6,5) chirality SWCNTs, we demonstrate that they have contrasting effects on the device efficiency. We attribute this to the differences in their ability to efficiently transfer charge. Although PFO may act as an efficient interfacial layer at the anode, PFO-BPy, having the additional pyridine side groups, forms a high resistance layer degrading the device efficiency. By comparing PFO|C 60 and C 60 -only devices, we found that presence of a PFO layer at low optical densities resulted in the increase of all three solar cell parameters, giving nearly an order of magnitude higher efficiency over that of C 60 -only devices. In addition, with a relatively higher contribution to photocurrent from the PFO-C 60 interface, an open circuit voltage of 0.55 V was obtained for PFO-(7,5)-C 60 devices. On the other hand, PFO-BPy does not affect the open circuit voltage but drastically reduces the short circuit current density. These results indicate that the charge transport properties and energy levels of the sorting polymers have to be taken into account to fully understand their effect on carbon nanotube-based solar cells.

  7. Critical role of the sorting polymer in carbon nanotube-based minority carrier devices

    DOE PAGES

    Mallajosyula, Arun T.; Nie, Wanyi; Gupta, Gautam; ...

    2016-11-27

    A prerequisite for carbon nanotube-based optoelectronic devices is the ability to sort them into a pure semiconductor phase. One of the most common sorting routes is enabled through using specific wrapping polymers. Here we show that subtle changes in the polymer structure can have a dramatic influence on the figures of merit of a carbon nanotube-based photovoltaic device. By comparing two commonly used polyfluorenes (PFO and PFO-BPy) for wrapping (7,5) and (6,5) chirality SWCNTs, we demonstrate that they have contrasting effects on the device efficiency. We attribute this to the differences in their ability to efficiently transfer charge. Although PFOmore » may act as an efficient interfacial layer at the anode, PFO-BPy, having the additional pyridine side groups, forms a high resistance layer degrading the device efficiency. By comparing PFO|C 60 and C 60-only devices, we found that presence of a PFO layer at low optical densities resulted in the increase of all three solar cell parameters, giving nearly an order of magnitude higher efficiency over that of C 60-only devices. In addition, with a relatively higher contribution to photocurrent from the PFO-C 60 interface, an open circuit voltage of 0.55 V was obtained for PFO-(7,5)-C 60 devices. On the other hand, PFO-BPy does not affect the open circuit voltage but drastically reduces the short circuit current density. Lastly, these results indicate that the charge transport properties and energy levels of the sorting polymers have to be taken into account to fully understand their effect on carbon nanotube-based solar cells.« less

  8. Water-splitting using photocatalytic porphyrin-nanotube composite devices

    DOEpatents

    Shelnutt, John A [Tijeras, NM; Miller, James E [Albuquerque, NM; Wang, Zhongchun [Albuquerque, NM; Medforth, Craig J [Winters, CA

    2008-03-04

    A method for generating hydrogen by photocatalytic decomposition of water using porphyrin nanotube composites. In some embodiments, both hydrogen and oxygen are generated by photocatalytic decomposition of water.

  9. Modeling of Interfacial Modification Effects on Thermal Conductivity of Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2006-01-01

    The effect of functionalization of carbon nanotubes on the thermal conductivity of nanocomposites has been studied using a multi-scale modeling approach. These results predict that grafting linear hydrocarbon chains to the surface of a single wall carbon nanotube with covalent chemical bonds should result in a significant increase in the thermal conductivity of these nanocomposites. This is due to the decrease in the interfacial thermal (Kapitza) resistance between the single wall carbon nanotube and the surrounding polymer matrix upon chemical functionalization. The nanocomposites studied here consist of single wall carbon nanotubes in a bulk poly(ethylene vinyl acetate) matrix. The nanotubes are functionalized by end-grafting linear hydrocarbon chains of varying length to the surface of the nanotube. The effect which this functionalization has on the interfacial thermal resistance is studied by molecular dynamics simulation. Interfacial thermal resistance values are calculated for a range of chemical grafting densities and with several chain lengths. These results are subsequently used in an analytical model to predict the resulting effect on the bulk thermal conductivity of the nanocomposite.

  10. Composite polymer electrolyte based on PEO/Pvdf-HFP with MWCNT for lithium battery applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradeepa, P.; Edwinraj, S.; Sowmya, G.

    In the present study PEO and PVdF-HFP blend based composite polymer electrolytes (CPEs) has been prepared by using Multi Walled Carbon Nanotube (MWCNT), in order to examine the filler addition effect on the electrochemical properties. The complexed nanocomposite polymer electrolytes were obtained in the form of dimensionally stable and free standing films by using solution casting technique. The electrochemical properties of CPEs were measured by the AC impedance method. From the ionic conductivity results, the CPE containing MWCNT 2wt% showed the highest ionic conductivity with an excellent thermal stability at room temperature. The dielectric loss curve s for the samplemore » 6.25wt% PEO: 18.75 wt% PVdF-HFP: 2wt% MWCNT reveal the low frequency β relaxation peak pronounced at high temperature, and it may caused by side group dipoles.« less

  11. Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sabet, Maziyar; Soleimani, Hassan

    2014-08-01

    Carbon nanotubes (CNTs) reveal outstanding electrical and mechanical properties in addition to nanometer scale diameter and high aspect ratio, consequently, making it an ideal reinforcing agent for high strength polymer composites. Low density polyethylene (LDPE)/CNT composites were prepared via melt compounding. Mechanical and electrical properties of (LDPE)/CNT composites with different CNT contents were studied in this research.

  12. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors.

    PubMed

    Liu, Ran; Duay, Jonathon; Lane, Timothy; Bok Lee, Sang

    2010-05-07

    We report the synthesis of composite RuO(2)/poly(3,4-ethylenedioxythiophene) (PEDOT) nanotubes with high specific capacitance and fast charging/discharging capability as well as their potential application as electrode materials for a high-energy and high-power supercapacitor. RuO(2)/PEDOT nanotubes were synthesized in a porous alumina membrane by a step-wise electrochemical deposition method, and their structures were characterized using electron microscopy. Cyclic voltammetry was used to qualitatively characterize the capacitive properties of the composite RuO(2)/PEDOT nanotubes. Their specific capacitance, energy density and power density were evaluated by galvanostatic charge/discharge cycles at various current densities. The pseudocapacitance behavior of these composite nanotubes originates from ion diffusion during the simultaneous and parallel redox processes of RuO(2) and PEDOT. We show that the energy density (specific capacitance) of PEDOT nanotubes can be remarkably enhanced by electrodepositing RuO(2) into their porous walls and onto their rough internal surfaces. The flexible PEDOT prevents the RuO(2) from breaking and detaching from the current collector while the rigid RuO(2) keeps the PEDOT nanotubes from collapsing and aggregating. The composite RuO(2)/PEDOT nanotube can reach a high power density of 20 kW kg(-1) while maintaining 80% energy density (28 Wh kg(-1)) of its maximum value. This high power capability is attributed to the fast charge/discharge of nanotubular structures: hollow nanotubes allow counter-ions to readily penetrate into the composite material and access their internal surfaces, while a thin wall provides a short diffusion distance to facilitate ion transport. The high energy density originates from the RuO(2), which can store high electrical/electrochemical energy intrinsically. The high specific capacitance (1217 F g(-1)) which is contributed by the RuO(2) in the composite RuO(2)/PEDOT nanotube is realized because of the high

  13. Solid polymer electrolyte compositions

    DOEpatents

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  14. Graphene-Reinforced Metal and Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-03-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  15. Graphene-Reinforced Metal and Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  16. Piezoresistive effect of the carbon nanotube yarn embedded axially into the 3D braided composite

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Cao, Xiaona

    2018-06-01

    A new method for monitoring 3D braided composite structure health in real time by embedding the carbon nanotube yarn, based on its piezoresistivity, in the composite axially has been designed. The experimental system for piezoresistive effect detection of the carbon nanotube yarn in the 3D braided composite was built, and the sensing characteristics has been analyzed for further research. Compared with other structural health monitoring methods, the monitoring technique with carbon nanotubes yarns is more suitable for internal damage detection immediately, in addition the strength of the composite can be increased by embedding carbon nanotubes yarns. This method can also be used for strain sensing, the development of intelligent materials and structure systems.

  17. Multifunctional Flexible Composites Based on Continuous Carbon Nanotube Fiber

    DTIC Science & Technology

    2014-07-28

    fibers [1] The mechanical and electrical behavior of carbon nanotube fibers spun continuously from an aerogel is discussed. These fibers exhibit moderate...loading, demonstrates their potential for sensing applications in advanced composite materials. Insight into the failure behavior of the aerogel -spun...nanotube fibers is reported-the aerogel -spun fibers are observed to undergo mild to severe kinking due to tensile failure. This kinking is attributed to

  18. 3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Z. C.; Christ, J. F.; Evans, K. A.

    We report the production of flexible, highly-conductive poly(vinylidene flouride) (PVDF) and multi-walled carbon nanotube (MWCNT) composites as filament feedstock for 3D-printing. This account further describes, for the first-time, fused deposition modelling (FDM) derived 3D-printed objects with chemiresistive properties in response to volatile organic compounds. The typically prohibitive thermal expansion and die swell characteristics of PVDF were minimized by the presence of MWCNTs in the composites enabling straightforward processing and printing. The nanotubes form a dispersed network as characterized by helium ion microscopy, contributing to excellent conductivity (1 x 10-2 S / cm). The printed composites contain little residual metal particulatemore » relative to parts from commercial PLA-nanocomposite material visualized by micro X-ray computed tomography (μ-CT) and corroborated with thermogravimetric analysis. Printed sensing strips, with MWCNT loadings up to 15 % mass, function as reversible vapour sensors with the strongest responses arising with organic compounds capable of readily intercalating, and subsequently swelling the PVDF matrix (acetone and ethyl acetate). A direct correlation between MWCNT concentration and resistance change was also observed, with larger responses (up to 161 % after 3 minutes) generated with decreased MWCNT loadings. These findings highlight the utility of FDM printing in generating low-cost sensors that respond strongly and reproducibly to target vapours. Furthermore, the sensors can be easily printed in different geometries, expanding their utility to wearable form factors. The proposed formulation strategy may be tailored to sense diverse sets of vapour classes through structural modification of the polymer backbone and/or functionalization of the nanotubes within the composite.« less

  19. Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering

    PubMed Central

    Tonelli, Fernanda MP; Santos, Anderson K; Gomes, Katia N; Lorençon, Eudes; Guatimosim, Silvia; Ladeira, Luiz O; Resende, Rodrigo R

    2012-01-01

    In recent years, significant progress has been made in organ transplantation, surgical reconstruction, and the use of artificial prostheses to treat the loss or failure of an organ or bone tissue. In recent years, considerable attention has been given to carbon nanotubes and collagen composite materials and their applications in the field of tissue engineering due to their minimal foreign-body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth, proliferation, and differentiation. Recently, grafted collagen and some other natural and synthetic polymers with carbon nanotubes have been incorporated to increase the mechanical strength of these composites. Carbon nanotube composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. PMID:22923989

  20. Theory of Transport of Long Polymer Molecules through Carbon Nanotube Channels

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Srivastava, Deepak

    2003-01-01

    A theory of transport of long chain polymer molecules through carbon nanotube (CNT) channels is developed using Fokker-Planck equation and direct molecular dynamics (MD) simulations. The mean transport or translocation time tau is found to depend on the chemical potential energy, entropy and diffusion coefficient. A power law dependence tau approx. N(sup 2)is found where N is number of monomers in a molecule. For 10(exp 5)-unit long polyethylene molecules, tau is estimated to be approx. 1micro-s. The diffusion coefficient of long polymer molecules inside CNTs, like that of short ones, are found to be few orders of magnitude larger than in ordinary silicate based zeolite systems.

  1. Damage-Tolerant Polymer Composite Systems

    NASA Astrophysics Data System (ADS)

    Reifsnider, Kenneth L.

    1988-11-01

    One of the reasons for the rapid growth in the application of polymer composites is the opportunity they provide for the design and construction of composite structures that are especially resistant to losses of strength or reduced life resulting from damage during service. The usefulness of such materials is enhanced by the variety of reinforcement schemes that can be chosen to reflect specific service conditions. Under cyclic loading and demanding mechanical situations (e.g., helicopter parts, vehicle springs and high-speed rotors), polymer composites are considerably superior to competing materials.

  2. Influence of carbon nanotubes on the optical properties of plasticized solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ibrahim, Suriani; Yasin, Siti Mariah Mohd; Johan, Mohd Rafie

    2013-07-01

    Polyethylene oxide (PEO) based solid polymer electrolyte films complexed with lithium hexafluorophosphate (LiPF6), ethylene carbonate (EC) and carbon nanotubes (CNTs) are prepared by solution-casting technique. The complexation of doping materials with polymer is confirmed by X-ray diffraction and infrared studies. The incorporation of LiPF6, EC and CNTs into the host polymer shows a significant increase in conductivity of 10-10 and 10-3 S cm-1. The optical properties such as direct and indirect band gaps are investigated for pure and doped polymer films within a wavelength range of 200-400 nm. It is found that the energy gaps and band edge values shift towards lower energies upon doping. It is shown that LiPF6, EC and CNTs are responsible for the formation of defects in polymer electrolytes, which increases the degree of disorder in the films.

  3. Composites incorporated a conductive polymer nanofiber network

    DOEpatents

    Pozzo, Lilo Danielle; Newbloom, Gregory

    2017-04-11

    Methods of forming composites that incorporate networks of conductive polymer nanofibers are provided. Networks of less-than conductive polymers are first formed and then doped with a chemical dopant to provide networks of conductive polymers. The networks of conductive polymers are then incorporated into a matrix in order to improve the conductivity of the matrix. The formed composites are useful as conductive coatings for applications including electromagnetic energy management on exterior surfaces of vehicles.

  4. Polymerization initated at sidewalls of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  5. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  6. Electrical conductivity of multi-walled carbon nanotubes-SU8 epoxy composites

    NASA Astrophysics Data System (ADS)

    Grimaldi, Claudio; Mionić, Marijana; Gaal, Richard; Forró, László; Magrez, Arnaud

    2013-06-01

    We have characterized the electrical conductivity of the composite which consists of multi-walled carbon nanotubes dispersed in SU8 epoxy resin. Depending on the processing conditions of the epoxy (ranging from non-polymerized to cross-linked), we obtained tunneling and percolating-like regimes of the electrical conductivity of the composites. We interpret the observed qualitative change of the conductivity behavior in terms of reduced separation between the nanotubes induced by polymerization of the epoxy matrix.

  7. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors

    PubMed Central

    2014-01-01

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm2·V–1·s–1, low ohmic contact resistance, steep subthreshold swings (0.12–0.14 V/dec) and high on/off ratios (106) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  8. Cyclic Peptide-Polymer Nanotubes as Efficient and Highly Potent Drug Delivery Systems for Organometallic Anticancer Complexes.

    PubMed

    Larnaudie, Sophie C; Brendel, Johannes C; Romero-Canelón, Isolda; Sanchez-Cano, Carlos; Catrouillet, Sylvain; Sanchis, Joaquin; Coverdale, James P C; Song, Ji-Inn; Habtemariam, Abraha; Sadler, Peter J; Jolliffe, Katrina A; Perrier, Sébastien

    2018-01-08

    Functional drug carrier systems have potential for increasing solubility and potency of drugs while reducing side effects. Complex polymeric materials, particularly anisotropic structures, are especially attractive due to their long circulation times. Here, we have conjugated cyclic peptides to the biocompatible polymer poly(2-hydroxypropyl methacrylamide) (pHPMA). The resulting conjugates were functionalized with organoiridium anticancer complexes. Small angle neutron scattering and static light scattering confirmed their self-assembly and elongated cylindrical shape. Drug-loaded nanotubes exhibited more potent antiproliferative activity toward human cancer cells than either free drug or the drug-loaded polymers, while the nanotubes themselves were nontoxic. Cellular accumulation studies revealed that the increased potency of the conjugate appears to be related to a more efficient mode of action rather than a higher cellular accumulation of iridium.

  9. Experimental Study and Numerical Modelling of Low Velocity Impact on Laminated Composite Reinforced with Thin Film Made of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    El Moumen, A.; Tarfaoui, M.; Hassoon, O.; Lafdi, K.; Benyahia, H.; Nachtane, M.

    2018-04-01

    In this work, polymer laminated composites based on Epon 862 Epoxy resin, T300 6 k carbon fibers and carbon nanotubes (CNTs) were tested with the aim to elucidate the effect of CNTs on impact properties including impact force and capacity to absorb impact energy. The polymer matrix was reinforced by a random distribution of CNTs with fraction ranging from 0.5 to 4.wt%. Composite panels were manufactured by using the infusion process. Taylor impact test was used to obtain the impact response of specimens. Projectile manufactured from a high strength and hardened steel with a diameter of 20 mm and 1.5 kg of mass was launched by a compressed gas gun within the velocity of 3 m/s. Impact force histories and absorbed energy of specimens were recorded. A numerical model was employed to simulate the impact performance. This model has been accomplished by forming a user established subroutine (VUMAT) and executing it in ABAQUS software. Finally, the effect of CNTs amount on dynamic properties of laminated composites was discussed.

  10. Stress-tuned conductor-polymer composite for use in sensors

    DOEpatents

    Martin, James E; Read, Douglas H

    2013-10-22

    A method for making a composite polymeric material with electrical conductivity determined by stress-tuning of the conductor-polymer composite, and sensors made with the stress-tuned conductor-polymer composite made by this method. Stress tuning is achieved by mixing a miscible liquid into the polymer precursor solution or by absorbing into the precursor solution a soluble compound from vapor in contact with the polymer precursor solution. The conductor may or may not be ordered by application of a magnetic field. The composite is formed by polymerization with the stress-tuning agent in the polymer matrix. The stress-tuning agent is removed following polymerization to produce a conductor-polymer composite with a stress field that depends on the amount of stress-tuning agent employed.

  11. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  12. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  13. Release of (14)C-labelled carbon nanotubes from polycarbonate composites.

    PubMed

    Rhiem, Stefan; Barthel, Anne-Kathrin; Meyer-Plath, Asmus; Hennig, Michael P; Wachtendorf, Volker; Sturm, Heinz; Schäffer, Andreas; Maes, Hanna M

    2016-08-01

    Waste disposal of carbon nanotube (CNT) containing products is expected to be the most important pathway for release of CNTs into the environment. In the present work, the use of radiolabelled CNTs ((14)C-CNT) for polycarbonate polymer nanocomposites with 1 wt% (14)C-CNT content allowed for the first time to quantify and differentiate the CNT release according to the type of impact along the materials' ageing history. After an initial exposure of the nanocomposite by solar-like irradiation, further environmental impacts were applied to composite material. They aimed at mimicking disposal site conditions that may induce further ageing effects and CNT release. This study included shaking in water, rapid temperature changes, soaking in humic acid solution as well as waste water effluent, and, finally, gentle mechanical abrasion. All ageing impacts were applied sequentially, both on pristine (control) and on solar-irradiated nanocomposites. All experiments were accompanied by absolute quantification of radioactive release as well as chemical and morphological analyses of the nanocomposite surfaces using infra-red (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The morphological analysis showed that spectral irradiation can uncover CNT networks on the outer nanocomposite surface layers by polymer degradation. After having subjected the solar-irradiated nanocomposite to all studied disposal site effect, the total radioactive release was quantified to amount to 64 mg CNT/m(2), whereas only 0.8 mg CNT/m(2) were found for the un-irradiated control sample. Solar degradation of polymers was thus found to significantly increase the propensity of the studied polymer nanocomposites to release CNTs during ageing effects at the product's end-of-life typical for disposal sites. Copyright © 2016. Published by Elsevier Ltd.

  14. Passive approach for the improved dispersion of polyvinyl alcohol-based functionalized multi-walled carbon nanotubes/Nafion membranes for polymer electrolyte membrane fuel cells.

    PubMed

    Abu Sayeed, M D; Talukdar, Krishan; Kim, Hee Jin; Park, Younjin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2014-12-01

    Multi-walled carbon nanotubes (MWCNTs) are regarded as ideal fillers for Nafion polymer electrolyte membranes (PEMs) for fuel cell applications. The highly aggregated properties of MWCNTs can be overcome by the successful cross-linking with polyvinyl alcohol (PVA) into the MWCNTs/Nafion membrane. In this study, a series of nanocomposite membranes were fabricated with the PVA-influenced functionalized MWCNTs reinforced into the Nafion polymer matrix by a solution casting method. Several different PVA contents were blended to f-MWCNTs/Nafion nanocomposite membranes followed by successful cross-linking by annealing. The surface morphologies and the inner structures of the resulting PVA-MWCNTs/Nafion nanocomposite membranes were then observed by optical microscopy and scanning electron microscopy (SEM) to investigate the dispersion of MWCNTs into the PVA/Nafion composite membranes. After that, the nanocomposite membranes were characterized by thermo-gravimetric analysis (TGA) to observe the thermal enhancement caused by effective cross-linking between the f-MWCNTs with the composite polymer matrixes. Improved water uptake with reduced methanol uptake revealed the successful fabrication of PVA-blended f-MWCNTs/Nafion membranes. In addition, the ion exchange capacity (IEC) was evaluated for PEM fuel cell (PEMFC) applications.

  15. Hybrid Composite Using Natural Filler and Multi-Walled Carbon Nanotubes (MWCNTs)

    NASA Astrophysics Data System (ADS)

    Nabinejad, Omid; Sujan, D.; Rahman, Muhammad Ekhlasur; Liew, Willey Yun Hsien; Davies, Ian J.

    2017-12-01

    This paper presents an experimental study on the development of hybrid composites comprising of multi-walled carbon nanotubes (MWCNTs) and natural filler (oil palm shell (OPS) powder) within unsaturated polyester (UP) matrix. The results revealed that the dispersion of pristine MWCNTs in the polymer matrix was strongly enhanced through use of the solvent mixing method assisted by ultrasonication. Four different solvents were investigated, namely, ethanol, methanol, styrene and acetone. The best compatibility with minimum side effects on the curing of the polyester resin was exhibited by the styrene solvent and this produced the maximum tensile and flexural properties of the resulting nanocomposites. A relatively small amount of pristine MWCNTs well dispersed within the natural filler polyester composite was found to be capable of improving mechanical properties of hybrid composite. However, increasing the MWCNT amount resulted in increased void content within the matrix due to an associated rapid increase in viscosity of the mixture during processing. Due to this phenomenon, the maximum tensile and flexural strengths of the hybrid composites were achieved at MWCNT contents of 0.2 to 0.4 phr and then declined for higher MWCNT amounts. The flexural modulus also experienced its peak at 0.4 phr MWCNT content whereas the tensile modulus exhibited a general decrease with increasing MWCNT content. Thermal stability analysis using TGA under an oxidative atmosphere showed that adding MWCNTs shifted the endset degradation temperature of the hybrid composite to a higher temperature.

  16. Preparation of aligned nanotube membranes for water and gas separation applications

    DOEpatents

    Lulevich, Valentin; Bakajin, Olgica; Klare, Jennifer E.; Noy, Aleksandr

    2016-01-05

    Fabrication methods for selective membranes that include aligned nanotubes can advantageously include a mechanical polishing step. The nanotubes have their ends closed off during the step of infiltrating a polymer precursor around the nanotubes. This prevents polymer precursor from flowing into the nanotubes. The polishing step is performed after the polymer matrix is formed, and can open up the ends of the nanotubes.

  17. Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout

    PubMed Central

    Mirzaei, Mostafa

    2016-01-01

    Summary During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC). The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement. PMID:27335742

  18. Understanding selective molecular recognition in integrated carbon nanotube-polymer sensors by simulating physical analyte binding on carbon nanotube-polymer scaffolds.

    PubMed

    Lin, Shangchao; Zhang, Jingqing; Strano, Michael S; Blankschtein, Daniel

    2014-08-28

    Macromolecular scaffolds made of polymer-wrapped single-walled carbon nanotubes (SWCNTs) have been explored recently (Zhang et al., Nature Nanotechnology, 2013) as a new class of molecular-recognition motifs. However, selective analyte recognition is still challenging and lacks the underlying fundamental understanding needed for its practical implementation in biological sensors. In this report, we combine coarse-grained molecular dynamics (CGMD) simulations, physical adsorption/binding theories, and photoluminescence (PL) experiments to provide molecular insight into the selectivity of such sensors towards a large set of biologically important analytes. We find that the physical binding affinities of the analytes on a bare SWCNT partially correlate with their distribution coefficients in a bulk water/octanol system, suggesting that the analyte hydrophobicity plays a key role in determining the binding affinities of the analytes considered, along with the various specific interactions between the analytes and the polymer anchor groups. Two distinct categories of analytes are identified to demonstrate a complex picture for the correlation between optical sensor signals and the simulated binding affinities. Specifically, a good correlation was found between the sensor signals and the physical binding affinities of the three hormones (estradiol, melatonin, and thyroxine), the neurotransmitter (dopamine), and the vitamin (riboflavin) to the SWCNT-polymer scaffold. The four amino acids (aspartate, glycine, histidine, and tryptophan) and the two monosaccharides (fructose and glucose) considered were identified as blank analytes which are unable to induce sensor signals. The results indicate great success of our physical adsorption-based model in explaining the ranking in sensor selectivities. The combined framework presented here can be used to screen and select polymers that can potentially be used for creating synthetic molecular recognition motifs.

  19. Pyrolytic Carbon Coatings on Aligned Carbon Nanotube Assemblies and Fabrication of Advanced Carbon Nanotube/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Faraji, Shaghayegh

    Chemical vapor deposition (CVD) is a technique used to create a pyrolytic carbon (PyC) matrix around fibrous preforms in carbon/carbon (C/C) composites. Due to difficulties in producing three-dimensional carbon nanotube (CNT) assemblies, use of nanotubes in CVD fabricated CNT/C composites is limited. This dissertation describes efforts to: 1) Study the microstructure of PyC deposited on CNTs in order to understand the effect of microstructure and morphology of carbon coatings on graphitization behavior of CNT/PyC composites. This understanding helped to suggest a new approach for controlled radial growth of CNTs. 2) Evaluate the properties of CNT/PyC structures as a novel form of CNT assemblies with resilient, anisotropic and tunable properties. PyC was deposited on aligned sheets of nanotubes, drawn from spinnable CNT arras, using CVD of acetylene gas. At longer deposition times, the microstructure of PyC changed from laminar turbostratic carbon to a disordered carbon. For samples with short PyC deposition times (up to 30 minutes), deposited carbon layer rearranged during graphitization treatment and resulted in a crystalline structure where the coating and original tube walls could not be easily differentiated. In contrast, in samples with longer carbon deposition durations, carbon layers close to the surface of the coating remained disordered even after graphitization thermal treatment. Understanding the effect of PyC microstructure transition on graphitization behavior of CNT/PyC composites was used to develop a new method for controlled radial growth of CNTs. Carbon coated aligned CNT sheets were graphitized after each short (20 minutes) carbon deposition cycle. This prevented development of disorder carbon during subsequent PyC deposition cycles. Using cyclic-graphitization method, thick PyC coating layers were successfully graphitized into a crystalline structure that could not be differentiated from the original nanotube walls. This resulted into radial

  20. Preparation and Characterization of Space Durable Polymer Nanocomposite Films from Functionalized Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Connell, J. W.; Smith, J. G.; Watson, K. A.

    2003-01-01

    Low color, flexible, space durable polyimide films with inherent, robust electrical conductivity have been under investigation as part of a continuing materials development activity for future NASA space missions involving Gossamer structures. Electrical conductivity is needed in these films to dissipate electrostatic charge build-up that occurs due to the orbital environment. One method of imparting conductivity is through the use of single walled carbon nanotubes (SWNTs). However, the incompatibility and insolubility of the SWNTs severely hampers their dispersion in polymeric matrices. In an attempt to improve their dispersability, SWNTs were functionalized by the reaction with an alkyl hydrazone. After this functionalization, the SWNTs were soluble in select solvents and dispersed more readily in the polymer matrix. The functionalized SWNTs were characterized by Raman spectroscopy and thermogravimetric analysis (TGA). The functionalized nanotubes were dispersed in the bulk of the films using a solution technique. The functionalized nanotubes were also applied to the surface of polyimide films using a spray coating technique. The resultant polyimide nanocomposite films were evaluated for nanotube dispersion, electrical conductivity, mechanical, and optical properties and compared with previously prepared polyimide-SWNT samples to assess the effects of SWNT functionalization.

  1. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices.

    PubMed

    In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.

  2. Novel Nanotube Manufacturing Streamlines Production

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Nanotubes have novel qualities that make them uniquely qualified for a plethora of uses, including applications in electronics, optics, and other scientific and industrial fields. The NASA process for creating these nanostructures involves using helium arc welding to vaporize an amorphous carbon rod and then form nanotubes by depositing the vapor onto a water-cooled carbon cathode, which then yields bundles, or ropes, of single-walled nanotubes at a rate of 2 grams per hour using a single setup. This eliminates costs associated with the use of metal catalysts, including the cost of product purification, resulting in a relatively inexpensive, high-quality, very pure end product. While managing to be less expensive, safer, and simpler, the process also increases the quality of the nanotubes. Goddard's Innovative Partnerships Program (IPP) Office promoted the technology, and in 2005, Boise-based Idaho Space Materials Inc. (ISM) was formed and applied for a nonexclusive license for the single-walled carbon nanotube (SWCNT) manufacturing technology. ISM commercialized its products, and the inexpensive, robust nanotubes are now in the hands of the scientists who will create the next generation of composite polymers, metals, and ceramics that will impact the way we live. In fact, researchers are examining ways for these newfound materials to be used in the manufacture of transistors and fuel cells, large screen televisions, ultra-sensitive sensors, high-resolution atomic force microscopy probes, supercapacitors, transparent conducting films, drug carriers, catalysts, and advanced composite materials, to name just a few of the myriad technologies to benefit.

  3. Self-cleaning skin-like prosthetic polymer surfaces

    DOEpatents

    Simpson, John T [Clinton, TN; Ivanov, Ilia N [Knoxville, TN; Shibata, Jason [Manhattan Beach, CA

    2012-03-27

    An external covering and method of making an external covering for hiding the internal endoskeleton of a mechanical (e.g., prosthetic) device that exhibits skin-like qualities is provided. The external covering generally comprises an internal bulk layer in contact with the endoskeleton of the prosthetic device and an external skin layer disposed about the internal bulk layer. The external skin layer is comprised of a polymer composite with carbon nanotubes embedded therein. The outer surface of the skin layer has multiple cone-shaped projections that provide the external skin layer with superhydrophobicity. The carbon nanotubes are preferably vertically aligned between the inner surface and outer surface of the external skin layer in order to provide the skin layer with the ability to transmit heat. Superhydrophobic powders may optionally be used as part of the polymer composite or applied as a coating to the surface of the skin layer to enhance superhydrophobicity.

  4. Functionalized graphene sheets for polymer nanocomposites.

    PubMed

    Ramanathan, T; Abdala, A A; Stankovich, S; Dikin, D A; Herrera-Alonso, M; Piner, R D; Adamson, D H; Schniepp, H C; Chen, X; Ruoff, R S; Nguyen, S T; Aksay, I A; Prud'Homme, R K; Brinson, L C

    2008-06-01

    Polymer-based composites were heralded in the 1960s as a new paradigm for materials. By dispersing strong, highly stiff fibres in a polymer matrix, high-performance lightweight composites could be developed and tailored to individual applications. Today we stand at a similar threshold in the realm of polymer nanocomposites with the promise of strong, durable, multifunctional materials with low nanofiller content. However, the cost of nanoparticles, their availability and the challenges that remain to achieve good dispersion pose significant obstacles to these goals. Here, we report the creation of polymer nanocomposites with functionalized graphene sheets, which overcome these obstacles and provide superb polymer-particle interactions. An unprecedented shift in glass transition temperature of over 40 degrees C is obtained for poly(acrylonitrile) at 1 wt% functionalized graphene sheet, and with only 0.05 wt% functionalized graphene sheet in poly(methyl methacrylate) there is an improvement of nearly 30 degrees C. Modulus, ultimate strength and thermal stability follow a similar trend, with values for functionalized graphene sheet- poly(methyl methacrylate) rivaling those for single-walled carbon nanotube-poly(methyl methacrylate) composites.

  5. Functionalized Carbon Nanotubes in Modified Plant Oil Composites.

    NASA Astrophysics Data System (ADS)

    McAninch, Ian M.; Wool, Richard P.

    2007-03-01

    Carbon nanotubes (CNTs) with their impressive mechanical properties are ideal reinforcement material. Acrylated epoxidized soy oil (AESO) has been previously shown to have favorable interactions with carbon nanotubes; however a mixture of aggregates and dispersed tubes were found even at low CNT concentrations. In order to prevent re-aggregation, the CNTs were functionalized with a 10 carbon long aliphatic chain. These aliphatic chains are similar to the fatty acids that make up soy oil. Functionalization was verified using XPS and IR spectroscopy. These functionalized CNTs were dispersed by mechanical shear mixing into AESO both with and without styrene as a comonomer. No large aggregates were observed in the liquid, uncured, samples or in the final cured composites. Dispersion in the solid composites was verified using optical and electron microscopy. Better dispersion also resulted in improved mechanical properties.

  6. Ground-based simulation of the Earth's upper atmosphere oxygen impact on polymer composites with nanosized fillers

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Chernik, Vladimir; Voronina, Ekaterina; Chechenin, Nikolay; Samokhina, Maria S.; Bondarenko, Gennady G.; Gaidar, Anna I.; Vorobyeva, Ekaterina A.; Petrov, Dmitrii V.; Chirskaya, Natalia P.

    The improvement of durability of polymer composites to the space environment impact is a very important task because these materials are considered currently as very promising type of materials for aerospace engineering. By embedding various nanosized fillers into a polymer matrix it is possible to obtain composites with required mechanical, thermal, electrical and optic properties. However, while developing such materials for operation in low Earth orbits (LEO), it is necessary to study thoroughly their durability to the impact of atomic oxygen (AO) of the Earth’s upper atmosphere, because AO is the main factor that causes erosion and damage of spacecraft surface materials in LEO. Ground-based simulation of AO impact on polymer composites was performed on a magnetoplasmadynamic accelerator developed at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University. Polymer composite samples which were prepared as films of 30-50 mum thickness with different amount (3-20 wt%) of various inorganic and organic nanofillers including nanoparticles of metal oxides and carbides as well as polyethoxysiloxanes and carbon nanotubes (CNTs), were exposed to hyperthermal AO flow, and mass losses of samples were estimated. Changes in the structure of composite surface and in material optical properties were studied. The experiments demonstrated that embedding nanosized fillers into a polymer matrix can significantly reduced mass losses, and the good dispersion of fillers improves AO durability in comparison with initial polymers [1]. The computer simulation within the developed 2D Monte-Carlo model demonstrated a good agreement with the experimental data [2]. Special attention was given to the study of AO impact on aligned multiwalled CNTs and CNT-based composites [3]. Some results of computer simulation of hyperthermal oxygen atom interaction with CNT and graphene as well as with polymers are presented to discuss elementary processes which occur in nanostructures

  7. New High Aspect-Ratio Titania Nanotubes

    NASA Astrophysics Data System (ADS)

    Panaitescu, Eugen; Richter, Christiaan; Menon, Latika

    2007-03-01

    Titanium oxide nanotubes show great promise in photocatalytic, gas sensing, biological, and other applications. Techniques for the fabrication of titania nanotubes include electrodeposition in polymer molds starting from alumina templates, anodization of titanium in fluoride containing solutions, and hydrothermal treatment of nano- and micropowders. We have developed a new synthesis route for the production of new ultra-high aspect-ratio (over 1000:1) titania nanotubes by anodization in chloride containing acid solutions. The fabrication process occurs rapidly, in a fraction of the time when compared with other methods such as anodization in the highly toxic fluoride-containing electrolytes. We have demonstrated nanotubes with diameters as small as 25 nm, and lengths of up to 50 μm, and we have produced them with varying carbon content through the addition of organic acids in the electrolyte. This opens up new possibilities for many advanced applications of such nanotubes. Various synthesis conditions (pH, chloride content, electrolyte nature), and their influence on morphology, composition, and crystalline structure will be presented. Preliminary results on photocatalytic and transmission properties will also be discussed.

  8. Preparation and Characterization of PETI-330/Multiwalled Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Delozier, Donavon M.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2005-01-01

    As part of an ongoing effort to incorporate multi-functionality into advanced composites, blends of PETI-330 and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approx. 300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were fabricated by injecting the mixtures at 260-280 C into a stainless steel tool followed by curing for 1 h at 371 C. The tool was designed to impart high shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Good quality moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of the MWCNTs were investigated using high-resolution scanning electron microscopy and Raman spectroscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed. Keywords: phenylethynyl terminated imides, high temperature polymers, nanocomposites,

  9. Multifunctional Carbon Nanotube-Based Sensors for Damage Detection and Self Healing in Structural Composites

    DTIC Science & Technology

    2010-10-29

    established based on the concept of equipotential surface . The effect of nanotube length on the critical charge level is plotted in Fig. 17. Fig...walled carbon nanotubes was used to develop composites with agglomerated regions of nanotubes at the fiber surface [3]. An image of the nanotube...coating on the surface of two E-glass fibers is shown in Fig. 5. Fig. 5. (a) Carbon nanotube agglomerates on the surface of glass fibers in the

  10. Optimization of Buckypaper-enhanced Multifunctional Thermoplastic Composites

    PubMed Central

    Li, Zhongrui; Liang, Zhiyong

    2017-01-01

    A series of flattened-nanotube reinforced thermoplastic composites are sizably fabricated as a function of buckypaper loading. The effects of the volume fraction, nanotube alignment and length on the tensile performance of the composites are factored into a general expression. The incorporation of self-reinforcing polyphenylene resin (Parmax) into a highly aligned buckypaper frame at an optimal weight ratio boosts the tensile strength and Young’s modulus of the buckypaper/Parmax composite to 1145 MPa and 150 GPa, respectively, far exceeding those of Parmax and aligned buckypaper individually. The composite also exhibits improved thermal (>65 W/m-K) and electrical (~700 S/cm) conductivities, as well as high thermoelectric power (22 μV/K) at room temperature. Meanwhile, the composite displays a heterogeneously complex structure. The hexyl groups of Parmax noncovalently interact with the honeycomb structure of the flattened nanotube through π-stacking and CH-π interaction, correspondingly improving the dispersity of polymer on the nanotube surface and the interfacial stress transferring while the high alignment degrees of nanotube facilitate phonon and charge transport in the composites. PMID:28205637

  11. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  12. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  13. High Performance Polymers and Composites (HiPPAC) Center

    NASA Technical Reports Server (NTRS)

    Mintz, Eric A.; Veazie, David

    2005-01-01

    NASA University Research Centers funding has allowed Clark Atlanta University (CAU) to establish a High Performance Polymers and Composites (HiPPAC) Research Center. Clark Atlanta University, through the HiPPAC Center has consolidated and expanded its polymer and composite research capabilities through the development of research efforts in: (1) Synthesis and characterization of polymeric NLO, photorefractive, and piezoelectric materials; (2) Characterization and engineering applications of induced strain smart materials; (3) Processable polyimides and additives to enhance polyimide processing for composite applications; (4) Fabrication and mechanical characterization of polymer based composites.

  14. The analysis of thermoplastic characteristics of special polymer sulfur composite

    NASA Astrophysics Data System (ADS)

    Książek, Mariusz

    2017-01-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  15. Self-healing polymers and composites based on thermal activation

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Bolanos, Ed; Wudl, Fred; Hahn, Thomas; Kwok, Nathan

    2007-04-01

    Structural polymer composites are susceptible to premature failure in the form of microcracks in the matrix. Although benign initially when they form, these matrix cracks tend to coalesce and lead in service to critical damage modes such as ply delamination. The matrix cracks are difficult to detect and almost impossible to repair because they form inside the composite laminate. Therefore, polymers with self-healing capability would provide a promising potential to minimize maintenance costs while extending the service lifetime of composite structures. In this paper we report on a group of polymers and their composites which exhibit mendable property upon heating. The failure and healing mechanisms of the polymers involve Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions on the polymer back-bone chain, which are thermally reversible reactions requiring no catalyst. The polymers exhibited good healing property in bulk form. Composite panels were prepared by sandwiching the monomers between carbon fiber fabric layers and cured in autoclave. Microcracks were induced on the resin-rich surface of composite with Instron machine at room temperature by holding at 1% strain for 1 min. The healing ability of the composite was also demonstrated by the disappearance of microcracks after heating. In addition to the self-healing ability, the polymers and composites also exhibited shape memory property. These unique properties may provide the material multi-functional applications. Resistance heating of traditional composites and its applicability in self-healing composites is also studied to lay groundwork for a fully integrated self-healing composite.

  16. Polymer Coating of Carbon Nanotube Fibers for Electric Microcables

    PubMed Central

    Alvarez, Noe T.; Ochmann, Timothy; Kienzle, Nicholas; Ruff, Brad; Haase, Mark R.; Hopkins, Tracy; Pixley, Sarah; Mast, David; Schulz, Mark J.; Shanov, Vesselin

    2014-01-01

    Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter—which is approximately four times the diameter of a red blood cell—is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core. PMID:28344254

  17. Polymer Coating of Carbon Nanotube Fibers for Electric Microcables.

    PubMed

    Alvarez, Noe T; Ochmann, Timothy; Kienzle, Nicholas; Ruff, Brad; Haase, Mark R; Hopkins, Tracy; Pixley, Sarah; Mast, David; Schulz, Mark J; Shanov, Vesselin

    2014-11-04

    Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter-which is approximately four times the diameter of a red blood cell-is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core.

  18. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites.

    PubMed

    Zaman, Izzuddin; Kuan, Hsu-Chiang; Dai, Jingfei; Kawashima, Nobuyuki; Michelmore, Andrew; Sovi, Alex; Dong, Songyi; Luong, Lee; Ma, Jun

    2012-08-07

    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy-graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.57 ± 0.50 nm in thickness were created after the expanded product was dispersed in tetrahydrofuran using 60 min ultrasonication. Since epoxy resins cured by various hardeners are widely used in industries, we chose two common hardeners: polyoxypropylene (J230) and 4,4'-diaminodiphenylsulfone (DDS). DDS-cured nanocomposites showed a better dispersion and exfoliation of GnPs, a higher improvement (573%) in fracture energy release rate and a lower percolation threshold (0.612 vol%) for electrical conductivity, because DDS contains benzene groups which create π-π interactions with GnPs promoting a higher degree of dispersion and exfoliation of GnPs during curing. This research pointed out a potential trend where GnPs would replace carbon nanotubes and silicate layers for many applications of polymer nanocomposites.

  19. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

    PubMed Central

    M., Anish Kumar; Jung, Soyoun; Ji, Taeksoo

    2011-01-01

    The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D) structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a) fabrication of biomaterials into nanostructures, (b) alignment of the nanostructures and (c) immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications. PMID:22163892

  20. Temperature effects on polymer-carbon composite sensors

    NASA Technical Reports Server (NTRS)

    Lim, J. R.; Homer, M. L.; Manatt, K.; Kisor, A.; Lara, L.; Jewell, A. D.; Shevade, A.; Ryan, M. A.

    2003-01-01

    At JPL we have investigated the effects of temperature on polymer-carbon black composite sensors. While the electrical properties of polymer composites have been studied, with mechanisms of conductivity described by connectivity and tunneling, it is not fully understood how these properties affect sensor characteristics and responses.

  1. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites

    PubMed Central

    Alamusi; Hu, Ning; Fukunaga, Hisao; Atobe, Satoshi; Liu, Yaolu; Li, Jinhua

    2011-01-01

    In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity. PMID:22346667

  2. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.

    PubMed

    Liu, Kai; Sun, Yinghui; Lin, Xiaoyang; Zhou, Ruifeng; Wang, Jiaping; Fan, Shoushan; Jiang, Kaili

    2010-10-26

    High-strength and conductive carbon nanotube (CNT) yarns are very attractive in many potential applications. However, there is a difficulty when simultaneously enhancing the strength and conductivity of CNT yarns. Adding some polymers into CNT yarns to enhance their strength will decrease their conductivity, while treating them in acid or coating them with metal nanoparticles to enhance their conductivity will reduce their strength. To overcome this difficulty, here we report a method to make high-strength and highly conductive CNT-based composite yarns by using a continuous superaligned CNT (SACNT) yarn as a conductive framework and then inserting polyvinyl alcohol (PVA) into the intertube spaces of the framework through PVA/dimethyl sulphoxide solution to enhance the strength of yarns. The as-produced CNT/PVA composite yarns possess very high tensile strengths up to 2.0 GPa and Young's moduli more than 120 GPa, much higher than those of the CNT/PVA yarns reported. The electric conductivity of as-produced composite yarns is as high as 9.2 × 10(4) S/m, comparable to HNO(3)-treated or Au nanoparticle-coated CNT yarns. These composite yarns are flexible, lightweight, scratch-resistant, very stable in the lab environment, and resistant to extremely humid ambient and as a result can be woven into high-strength and heatable fabrics, showing potential applications in flexible heaters, bullet-proof vests, radiation protection suits, and spacesuits.

  3. Raw materials for wood-polymer composites.

    Treesearch

    Craig Clemons

    2008-01-01

    To understand wood-plastic composites (WPCs) adequately, we must first understand the two main constituents. Though both are polymer based, they are very different in origin, structure, and performance. Polymers are high molecular weight materials whose performance is largely determined by its molecular architecture. In WPCs, a polymer matrix forms the continuous phase...

  4. Fermentation based carbon nanotube multifunctional bionic composites

    NASA Astrophysics Data System (ADS)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  5. Fermentation based carbon nanotube multifunctional bionic composites

    PubMed Central

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal. PMID:27279425

  6. Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Turner, Travis L. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)

    2017-01-01

    Provided is an electrically activated shape memory polymer composite capable of thermal shape reformation using electric power to heat the composite through its matrix glass transition temperature. The composite includes an adaptable polymer matrix component using a diglycidyl ether resin, at least one substantially well-dispersed conductive or magnetic nano-filler component, and at least one elastic, laminated layer. Also provided are methods of preparing the composite and methods of activating the composite. A shape reformation of the composite is triggered by applying an electric field at DC and/or at a frequency above about 1.mu.Hz for a sufficient time.

  7. Polymer Composite Using Aligned Carbon Nanotubes for Efficient Heat Transfer

    DTIC Science & Technology

    2012-01-17

    ultrasonic sprayer system (Figs. 2 & 3). We will thermolyze ferrocene -benzylamine solutions at 850 °C under an Ar atmosphere. The material produced...C (center pannel). 1.4 Production of COxHy nanotubes We will use the same ultrasonic sprayer but in this case with solutions of ferrocene (FeCp2...more reactive when compared to standard CNTs. For example, when adding 2.5% by wt. of ethanol in a ferrocene -toluene solution containing 5% by wt. of

  8. TOPICAL REVIEW: Monitoring of polymer melt processing

    NASA Astrophysics Data System (ADS)

    Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk

    2010-06-01

    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored.

  9. Elastomechanics of carbon nanotubes and their compositions

    NASA Astrophysics Data System (ADS)

    Yakobson, B. I.

    1997-03-01

    Nanotubes and their compositions have already revealed and promise more of unique mechanical properties, which are due to the three factors, corresponding to three different scales of organization. (i) The strength of the constituent C-C bonds, (ii) the spatial arrangement of these bonds within the tube layers, and (iii) the relatively weak interlayer and intertube forces. While the first has to be addressed by ab initio methods or by parameterization of empirical potentials, the important role of the two others can be investigated on a phenomenological level. Based on our shell model,(B.I. Yakobson, C. Brabec, J. Bernholc, PRL 76, 2511 (1996); also J. Comp.-Aided Mater. Design 3, 173 (1996).) we show how much can reasonably be expected for various mechanical parameters of nanotubes, in torsion, tension/compression, bending etc. Comparison with experimental data poses problems for future studies. We will discuss nanomechanics of NT compositions, their 2D and 3D arrays, largely determined by the weak lateral interactions, mostly of van Der Waals nature.

  10. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes

    NASA Astrophysics Data System (ADS)

    Bigeon, J.; Huby, N.; Amela-Cortes, M.; Molard, Y.; Garreau, A.; Cordier, S.; Bêche, B.; Duvail, J.-L.

    2016-06-01

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  11. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes.

    PubMed

    Bigeon, J; Huby, N; Amela-Cortes, M; Molard, Y; Garreau, A; Cordier, S; Bêche, B; Duvail, J-L

    2016-06-24

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  12. Hydroxyapatite-nanotube composites and coatings for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Lahiri, Debrupa

    Hydroxyapatite (HA) has received wide attention in orthopedics, due to its biocompatibility and osseointegration ability. Despite these advantages, the brittle nature and low fracture toughness of HA often results in rapid wear and premature fracture of implant. Hence, there is a need to improve the fracture toughness and wear resistance of HA without compromising its biocompatibility. The aim of the current research is to explore the potential of nanotubes as reinforcement to HA for orthopedic implants. HA- 4 wt.% carbon nanotube (CNT) composites and coatings are synthesized by spark plasma sintering and plasma spraying respectively, and investigated for their mechanical, tribological and biological behavior. CNT reinforcement improves the fracture toughness (>90%) and wear resistance (>66%) of HA for coating and free standing composites. CNTs have demonstrated a positive influence on the proliferation, differentiation and matrix mineralization activities of osteoblasts, during in-vitro biocompatibility studies. In-vivo exposure of HA-CNT coated titanium implant in animal model (rat) shows excellent histocompatibility and neobone integration on the implant surface. The improved osseointegration due to presence of CNTs in HA is quantified by the adhesion strength measurement of single osteoblast using nano-scratch technique. Considering the ongoing debate about cytotoxicity of CNTs in the literature, the present study also suggests boron nitride nanotube (BNNT) as an alternative reinforcement. BNNT with the similar elastic modulus and strength as CNT, were added to HA. The resulting composite having 4 wt.% BNNTs improved the fracture toughness (˜85%) and wear resistance (˜75%) of HA in the similar range as HA-CNT composites. BNNTs were found to be non-cytotoxic for osteoblasts and macrophages. In-vitro evaluation shows positive role of BNNT in osteoblast proliferation and viability. Apatite formability of BNNT surface in ˜4 days establishes its osseointegration

  13. Thermo-Mechanical Fatigue of Polymer Matrix Composites

    DTIC Science & Technology

    1994-10-01

    MATRIX COMPOSITES by L. H. Strait . - , 4- . [ : ’ . .. N ..::ii Technical Report No. TR 94-12 October 1994 94 11 3 002 Supported by: L.R. Hettche...mnechanical loading is an increasingly common service condition for polymer mnmx composite materials. Unfortunately, little or no information is available...regarding the behavior of polymer composites subject to this loading condition. The present thesis research program was undertaken to evaluate the effects

  14. Effective permittivity of single-walled carbon nanotube composites: Two-fluid model

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin; Zangeneh, Hamid Reza; Moghadam, Firoozeh Karimi

    2015-12-01

    We develop an effective medium theory to obtain effective permittivity of a composite of two-dimensional (2D) aligned single-walled carbon nanotubes. Electronic excitations on each nanotube surface are modeled by an infinitesimally thin layer of a 2D electron gas represented by two interacting fluids, which takes into account different nature of the σ and π electrons. Calculations of both real and imaginary parts of the effective dielectric function of the system are presented, for different values of the filling factor and radius of carbon nanotubes.

  15. Mechanochemically-Active Polymer Composites

    DTIC Science & Technology

    2013-09-13

    Jackson, Jonathan A. Bartelt, Paul V. Braun. Transparent Self - Healing Polymers Based on Encapsulated Plasticizers in a Thermoplastic Matrix...08/28/2008 4.00 J.P. Youngblood, N.R. Sottos. bioinspired materials for self cleaning and self healing , MRS Bulletin, ( ): . doi: 08/28/2008 5.00...H.M.Anderson, M.W.Keller, J.S. Moore, N.R. Sottos, S.R. White. Self Healing Polymers and Composites , , ( ): . doi: TOTAL: 35 (b) Papers published in

  16. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Caicedo, Hector M.; Dempere, Luisa A.; Vermerris, Wilfred

    2012-03-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells.

  17. Surface-assisted laser desorption/ionization time-of-flight mass spectrometry of small drug molecules and high molecular weight synthetic/biological polymers using electrospun composite nanofibers.

    PubMed

    Bian, Juan; Olesik, Susan V

    2017-03-27

    Polyacrylonitrile/Nafion®/carbon nanotube (PAN/Nafion®/CNT) composite nanofibers were prepared using electrospinning. These electrospun nanofibers were studied as possible substrates for surface-assisted laser desorption/ionization (SALDI) and matrix-enhanced surface-assisted laser desorption/ionization time-of-flight mass spectrometry (ME-SALDI/TOF-MS) for the first time in this paper. Electrospinning provides this novel substrate with a uniform morphology and a narrow size distribution, where CNTs were evenly and firmly immobilized on polymeric nanofibers. The results show that PAN/Nafion®/CNT nanofibrous mats are good substrates for the analysis of both small drug molecules and high molecular weight polymers with high sensitivity. Markedly improved reproducibility was observed relative to MALDI. Due to the composite formation between the polymers and the CNTs, no contamination of the carbon nanotubes to the mass spectrometer was observed. Furthermore, electrospun nanofibers used as SALDI substrates greatly extended the duration of ion signals of target analytes compared to the MALDI matrix. The proposed SALDI approach was successfully used to quantify small drug molecules with no interference in the low mass range. The results show that verapamil could be detected with a surface concentration of 220 femtomoles, indicating the high detection sensitivity of this method. Analysis of peptides and proteins with the electrospun composite substrate using matrix assisted-SALDI was improved and a low limit of detection of approximately 6 femtomoles was obtained for IgG. Both SALDI and ME-SALDI analyses displayed high reproducibility with %RSD ≤ 9% for small drug molecules and %RSD ≤ 14% for synthetic polymers and proteins.

  18. Fabrication and mechanical properties of aluminum composite reinforced with functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alavijeh, Elham Zamani; Kokhaei, Saeed; Dehghani, Kamran

    2018-01-01

    Composite aluminum alloy (5000 series) and multi-walled carbon nanotubes (MWCNTs) were made using mechanical alloying, cold press and sintering. The quality of interactions between Al powders and CNTs in the metal matrix composite has a significant effect on mechanical properties. Motivated from the properties of functionalized CNTs, the current study use this material rather than the raw type, because of its reactivity. Besides, a poly-vinyl-alcohol pre-mixing is done, the aim of which is to enhance mixing process. The functionalized carbon nanotubes ware made by chemically method through refluxing with nitric acid. By this method functional groups have been created on CNTs surfaces. 1% and 3% functionalized carbon nanotubes were manufactured using the aforementioned method. To provide unbiased comparisons, 1% and 3% with raw CNTs and pure aluminum is produced with same manner. The numerical experiments affirm the superiority of the functionalized carbon nano-tubes in terms of the relative density and hardness of nanocomposites. As a final activity, the Fourier transformation infrared spectroscopy and field emission scanning electron microscopy techniques were used to characterize the carbon nanotubes and the powders.

  19. A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water

    PubMed Central

    Maphutha, Selby; Moothi, Kapil; Meyyappan, M.; Iyuke, Sunny E.

    2013-01-01

    A carbon nanotube (CNT) integrated polymer composite membrane with a polyvinyl alcohol barrier layer has been prepared to separate oil from water for treatment of oil-containing waste water. The CNTs were synthesised using chemical vapour deposition, and a phase inversion method was employed for the blending of the CNTs in the polymer composite solution for casting of the membrane. Relative to the baseline polymer, an increase of 119% in the tensile strength, 77% in the Young's modulus and 258% in the toughness is seen for a concentration of 7.5% CNTs in the polymer composite. The permeate through the membrane shows oil concentrations below the acceptable 10 mg/L limit with an excellent throughput and oil rejection of over 95%. PMID:23518875

  20. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    PubMed

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of

  1. Electrospun PLA: PCL composites embedded with unmodified and 3-aminopropyltriethoxysilane (ASP) modified halloysite nanotubes (HNT)

    NASA Astrophysics Data System (ADS)

    Haroosh, Hazim J.; Dong, Yu; Chaudhary, Deeptangshu S.; Ingram, Gordon D.; Yusa, Shin-ichi

    2013-02-01

    Electrospinning is a simple and versatile fiber synthesis technique in which a high-voltage electric field is applied to a stream of polymer melt or polymer solution, resulting in the formation of continuous micro/nanofibers. Halloysite nanotubes (HNT) have been found to achieve improved structural and mechanical properties when embedded into various polymer matrices. This research work focuses on blending poly( ɛ-caprolactone) (PCL) (9 and 15 wt%/v) and poly(lactic acid) (PLA) (fixed at 8 wt%/v) solutions with HNT at two different concentrations 1 and 2 wt%/v. Both unmodified HNT and HNT modified with 3-aminopropyltriethoxysilane (ASP) were utilized in this study. Fiber properties have been shown to be strongly related to the solution viscosity and electrical conductivity. The addition of HNT increased the solution viscosity, thus resulting in the production of uniform fibers. For both PCL concentrations, the average fiber diameter increased with the increasing of HNT concentration. The average fiber diameters with HNT-ASP were reduced considerably in comparison to those with unmodified HNT when using 15 wt%/v PCL. Slightly better dispersion was obtained for PLA: PCL composites embedded with HNT-ASP compared to unmodified HNT. Furthermore, the addition of HNT-ASP to the polymeric blends resulted in a moderate decrease in the degree of crystallinity, as well as slight reductions of glass transition temperature of PCL, the crystallization temperature and melting temperature of PLA within composite materials. The infrared spectra of composites confirmed the successful embedding of HNT-ASP into PLA: PCL nanofibers relative to unmodified HNT due to the premodification using ASP to reduce the agglomeration behavior. This study provides a new material system that could be potentially used in drug delivery, and may facilitate good control of the drug release process.

  2. Electro-Responsive Behaviour Multi-Wall Nanotubes/Gelatin Composites and Cross-Linked Gelatin Electrospun Mats

    DTIC Science & Technology

    2008-02-11

    sample , could explain large swelling in blend samples which might enhance ions diffusion and lead to an increase of bending. 21 References [1...1 Final Report on Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats...12-10-2007 4. TITLE AND SUBTITLE Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats

  3. Nanotube Reinforcement of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Saltysiak, Bethany

    2002-01-01

    Over the past five years there has been much excitement about the development of nanotubes and nanofibers and the potential that these materials may offer in enhancing electrical and mechanical properties of systems. The purpose of this paper is to present research into improving the mechanical performance of polymers by using nanofibers as a reinforcement to make high performance composite materials. This paper will present theoretical predictions of the composite modulus and then present the actual performance of the composite. Fabrication details will be given along with photos of the microstructure. The matrix material is polymethylmethacrylate (PMMA) and the nanofibers are vapor-grown carbon nanofibers produced by Pyrograph Products, Inc.

  4. Nanotube Reinforcement of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Saltysiak, Bethany

    2003-01-01

    Over the past five years there has been much excitement about the development of nanotubes and nanofibers and the potential that these materials may offer in enhancing electrical and mechanical properties of systems. The purpose of this paper is to present research into improving the mechanical performance of polymers by using nanofibers as a reinforcement to make high performance composite materials. This paper will present theoretical predictions of the composite modulus and then present the actual performance of the composite. Fabrication details will be given along with photos of the microstructure. The matrix material is polymethylmethacrylate (PMMA) and the nanofibers are vapor-grown carbon nanofibers produced by Pyrograph Products, Inc.

  5. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications.

  6. Diamond and Carbon Nanotube Composites for Supercapacitor Devices

    NASA Astrophysics Data System (ADS)

    Moreira, João Vitor Silva; May, Paul William; Corat, Evaldo José; Peterlevitz, Alfredo Carlos; Pinheiro, Romário Araújo; Zanin, Hudson

    2017-02-01

    We report on the synthesis and electrochemical properties of diamond grown onto vertically aligned carbon nanotubes with high surface areas as a template, resulting in a composite material exhibiting high double-layer capacitance as well as low electrochemical impedance electrodes suitable for applications as supercapacitor devices. We contrast results from devices fabricated with samples which differ in both their initial substrates (Si and Ti) and their final diamond coatings, such as boron-doped diamond and diamond-like carbon (DLC). We present for first time a conducting model for non-doped DLC thin-films. All samples were characterized by scanning and transmission electron microscopy and Fourier transform infrared and Raman spectroscopy. Our results show specific capacitance as high as 8.25 F g-1 (˜1 F cm-2) and gravimetric specific energy and power as high as 0.7 W h kg-1 and 176.4 W kg-1, respectively, which suggest that these diamond/carbon nanotube composite electrodes are excellent candidates for supercapacitor fabrication.

  7. Process for attaching molecular wires and devices to carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Yang, Jiping (Inventor); Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor)

    2008-01-01

    The present invention is directed towards processes for covalently attaching molecular wires and molecular electronic devices to carbon nanotubes and compositions thereof. Such processes utilize diazonium chemistry to bring about this marriage of wire-like nanotubes with molecular wires and molecular electronic devices.

  8. Structure of single-wall carbon nanotubes purified and cut using polymer

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Yudasaka, M.; Koshio, A.; Jabs, C.; Ichihashi, T.; Iijima, S.

    2002-01-01

    Following on from our previous report that a monochlorobenzene solution of polymethylmethacrylate is useful for purifying and cutting single-wall carbon nanotubes (SWNTs) and thinning SWNT bundles, we show in this report that polymer and residual amorphous carbon can be removed by burning in oxygen gas. The SWNTs thus obtained had many holes (giving them a worm-eaten look) and were thermally unstable. Such severe damage caused by oxidation is unusual for SWNTs; we think that they were chemically damaged during ultrasonication in the monochlorobenzene solution of polymethylmethacrylate.

  9. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2011-11-22

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  10. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  11. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2010-12-07

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  12. Anion-Conducting Polymer, Composition, and Membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2008-10-21

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  13. High-performance supercapacitors of Cu-based porous coordination polymer nanowires and the derived porous CuO nanotubes.

    PubMed

    Wu, Meng-Ke; Zhou, Jiao-Jiao; Yi, Fei-Yan; Chen, Chen; Li, Yan-Li; Li, Qin; Tao, Kai; Han, Lei

    2017-12-12

    Electrode materials for supercapacitors with one-dimensional porous nanostructures, such as nanowires and nanotubes, are very attractive for high-efficiency storage of electrochemical energy. Herein, ultralong Cu-based porous coordination polymer nanowires (copper-l-aspartic acid) were used as the electrode material for supercapacitors, for the first time. The as-prepared material exhibits a high specific capacitance of 367 F g -1 at 0.6 A g -1 and excellent cycling stability (94% retention over 1000 cycles). Moreover, porous CuO nanotubes were successfully fabricated by the thermal decomposition of this nanowire precursor. The CuO nanotube exhibits good electrochemical performance with high rate capacity (77% retention at 12.5 A g -1 ) and long-term stability (96% retention over 1000 cycles). The strategy developed here for the synthesis of porous nanowires and nanotubes can be extended to the construction of other electrode materials for more efficient energy storage.

  14. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    DOEpatents

    Kumar, Binod

    2003-12-02

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  15. Enhanced graphitization of carbon around carbon nanotubes during the formation of carbon nanotube/graphite composites by pyrolysis of carbon nanotube/polyaniline composites.

    PubMed

    Nam, Dong Hoon; Cha, Seung Il; Jeong, Yong Jin; Hong, Soon Hyung

    2013-11-01

    The carbon nanotubes (CNTs) are actively applied to the reinforcements for composite materials during last decade. One of the attempts is development of CNT/Carbon composites. Although there are some reports on the enhancement of mechanical properties by addition of CNTs in carbon or carbon fiber, it is far below the expectation. Considering the microstructure of carbon materials such as carbon fiber, the properties of them can be modified and enhanced by control of graphitization and alignment of graphene planes. In this study, enhanced graphitization of carbon has been observed the vicinity of CNTs during the pyrolysis of CNT/Polyaniline composites. As a result, novel types of composite, consisting of treading CNTs and coated graphite, can be fabricated. High-resolution transmission electron microscopy revealed a specific orientation relationship between the graphene layers and the CNTs, with an angle of 110 degrees between the layers and the CNT axis. The possibility of graphene alignment control in the carbon by the addition of CNTs is demonstrated.

  16. Advances and prospects on biomolecules functionalized carbon nanotubes.

    PubMed

    Cui, Daxiang

    2007-01-01

    In recent years, functionalization of carbon nanotubes (CNTs) with biomolecules such as nucleotide acids, proteins, and polymers as well as cells have emerged as a new exciting field. Theoretical and experimental studies of structure and function of bio-inspired CNT composites have made great advances. The importance of nucleic acids, proteins, and polymers to the fundamental developments in CNT-based bio-nano-composites or devices has been recognized. In particular, biomechanics, biochemistry, thermodynamics, electronic, optical, and magnetic properties of the bio-inspired CNT composites have become a new interdisciplinary frontier in life science and nanomaterial science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing CNT-based bio-nanotechnology.

  17. Nanostructured polymer-titanium composites and titanium oxide through polymer swelling in titania precursor.

    PubMed

    Kierys, A; Zaleski, R; Buda, W; Pikus, S; Dziadosz, M; Goworek, J

    2013-06-01

    Polymer (XAD7HP)/Ti 4+ nanocomposites were prepared through the swelling of polymer in titanium (IV) ethoxide as a titanium dioxide precursor. The nanocomposite beads exhibit relatively high porosity different than the porosity of the initial polymer. Thermal treatment of composite particles up to 200 °C in vacuum causes the change of their internal structure. At higher temperature, the components of composite become more tightly packed. Calcination at 600 °C and total removal of polymer produce spherically shaped TiO 2 condensed phase as determined by XRD. Thermally treated composites show the substantial change of pore dimensions within micro- and mesopores. The presence of micropores and their transformation during thermal processing was studied successfully by positron annihilation lifetime spectroscopy (PALS). The results derived from PALS experiment were compared with those obtaining from low-temperature nitrogen adsorption data.

  18. Carbon Nanotube Coatings as Used in Strain Sensors for Composite Tanks

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Snyder, Sarah; Hatfield, Walt; Dervishi, Enkeleda; Biris, Alexandru S.

    2011-01-01

    The next generation of cryogenic fuel tanks, crew habitats and other components for future spacecraft will focus on the usc of lightweight carbon fiber composite materials. A critical issue in the design and optimization of such tanks and structures will bc in structural health monitoring, however, current strain sensors have limitations. In this study, a novel carbon nanotube thin film was applied to carbon fiber composites for structural monitoring. Applying a load using a 3-point bend test to simulate bowing of a tank wall, induced significant increases in the film's electrical resistance at small deflections. Upon release of the load, the resistance returned to its approximate start value and was reproducible over multiple tests. The results show that a carbon nanotube thin film has great potential for the health monitoring of composite structures.

  19. Carbon Nanotube Composites from Modified Plant Oils

    NASA Astrophysics Data System (ADS)

    McAninch, Ian; Wool, Richard

    2006-03-01

    Carbon nanotubes (CNTs) with their impressive mechanical properties are ideal reinforcement material. Acrylated epoxidized soy oil (AESO) has been previously shown to have favorable interactions with carbon nanotubes. CNTs mixed into AESO, both with and without styrene as a co-monomer, using mechanical shear mixing showed dispersion only on the micron level, resulting in modest mechanical property improvements. Greater improvements were seen, especially in the rubbery modulus, when the resin's viscosity was kept high, either through a reduction of the styrene content, or by curing at a lower temperature. CNTs were also dispersed via sonication in methyl methacrylate. The resulting dispersion was then mixed with AESO. The resulting composites showed better CNT dispersion, with no micron-sized aggregates, as verified using SEM and optical microscopy. The mechanical properties also showed greater improvement.

  20. Elastomer Filled With Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Files, Bradley S.; Forest, Craig R.

    2004-01-01

    Experiments have shown that composites of a silicone elastomer with single-wall carbon nanotubes (SWNTs) are significantly stronger and stiffer than is the unfilled elastomer. The large strengthening and stiffening effect observed in these experiments stands in contrast to the much smaller strengthening effect observed in related prior efforts to reinforce epoxies with SWNTs and to reinforce a variety of polymers with multiple-wall carbon nanotubes (MWNTs). The relative largeness of the effect in the case of the silicone-elastomer/SWNT composites appears to be attributable to (1) a better match between the ductility of the fibers and the elasticity of the matrix and (2) the greater tensile strengths of SWNTs, relative to MWNTs. For the experiments, several composites were formulated by mixing various proportions of SWNTs and other filling materials into uncured RTV-560, which is a silicone adhesive commonly used in aerospace applications. Specimens of a standard "dog-bone" size and shape for tensile testing were made by casting the uncured elastomer/filler mixtures into molds, curing the elastomer, then pressing the specimens from a "cookie-cutter" die. The results of tensile tests of the specimens showed that small percentages of SWNT filler led to large increases in stiffness and tensile strength, and that these increases were greater than those afforded by other fillers. For example, the incorporation of SWNTs in a proportion of 1 percent increased the tensile strength by 44 percent and the modulus of elasticity (see figure) by 75 percent. However, the relative magnitudes of the increases decreased with increasing nanotube percentages because more nanotubes made the elastomer/nanotube composites more brittle. At an SWNT content of 10 percent, the tensile strength and modulus of elasticity were 125 percent and 562 percent, respectively, greater than the corresponding values for the unfilled elastomer.

  1. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    NASA Astrophysics Data System (ADS)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on

  2. Polymer composites for thermoelectric applications.

    PubMed

    McGrail, Brendan T; Sehirlioglu, Alp; Pentzer, Emily

    2015-02-02

    This review covers recently reported polymer composites that show a thermoelectric (TE) effect and thus have potential application as thermoelectric generators and Peltier coolers. The growing need for CO2-minimizing energy sources and thermal management systems makes the development of new TE materials a key challenge for researchers across many fields, particularly in light of the scarcity or toxicity of traditional inorganic TE materials based on Te and Pb. Recent reports of composites with inorganic and organic additives in conjugated and insulating polymer matrices are covered, as well as the techniques needed to fully characterize their TE properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Polymer Composites Corrosive Degradation: A Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  4. Carbon nanotube-embedded advanced aerospace composites for early-stage damage sensing

    NASA Astrophysics Data System (ADS)

    Nataraj, Latha; Coatney, Michael; Cain, Jason; Hall, Asha

    2018-03-01

    Fiber reinforced polymer (FRP) composites featuring outstanding fatigue performance, high specific stiffness and strength, and low density have evolved as critical structural materials in aerospace applications. Microscale damage such as fiber breakage, matrix cracking, and delamination could occur in layered composites compromising structural integrity, emphasizing the critical need to monitor structural health. Early damage detection would lead to enhanced reliability, lifetime, and performance while minimizing maintenance time, leading to enormous scientific and technical interest in realizing physically stable, quick responding, and cost effective strain sensing materials, devices, and techniques with high sensitivity over a broad range of the practical strain spectrum. Today's most commonly used strain sensing techniques are metal foil strain gauges and optical fiber sensors. Metal foil gauges offer high stability and cost-effectiveness but can only be surface-mounted and have a low gauge factor. Optical fibers require expensive instrumentation, are mostly insensitive to cracks parallel to the fiber orientation and may lead to crack initiation as the diameter is larger than that of the reinforcement fibers. Carbon nanotubes (CNTs) have attracted much attention due to high aspect ratio and superior electrical, thermal, and mechanical properties. CNTs embedded in layered composites have improved performance. A variety of CNT architectures and configurations have shown improved piezoresistive behavior and stability for sensing applications. However, scaling up and commercialization remain serious challenges. The current study investigates a simple, cost effective and repeatable technique for highly sensitive, stable, linear and repeatable strain sensing for damage detection by integrating CNT laminates into composites.

  5. Composite Polymer-Garnet Solid State Electrolytes

    NASA Astrophysics Data System (ADS)

    Villa, Andres; Oduncu, Muhammed R.; Scofield, Gregory D.; Marinero, Ernesto E.; Forbey, Scott

    Solid-state electrolytes provide a potential solution to the safety and reliability issues of Li-ion batteries. We have synthesized cubic-phase Li7-xLa3Zr2-xBixO12 compounds utilizing inexpensive, scalable Sol-gel synthesis and obtained ionic conductivities 1.2 x 10-4 S/cm at RT in not-fully densified pellets. In this work we report on the fabrication of composite polymer-garnet ceramic particle electrolytes to produce flexible membranes that can be integrated with standard battery electrodes without the need for a separator. As a first step we incorporated the ceramic particles into polyethylene oxide polymers (PEO) to form flexible membranes. Early results are encouraging yielding ionic conductivity values 1.0 x 10-5 S/cm at RT. To increment the conductivity in the membranes, we are optimizing amongst other: the ceramic particle size distribution and weight load, the polymer molecular weight and chemical composition and the solvated Li-salt composition and content. Unhindered ion transport across interfaces between the composites and the battery electrode materials is paramount for battery performance. To this end, we are investigating the effect of interface morphology, its atomic composition and exploring novel electrode structures that facilitate ionic transport.

  6. Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures

    NASA Technical Reports Server (NTRS)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh; Mather, Patrick; Rodriguez, Erika

    2013-01-01

    Reinforcing critical areas in carbon polymer matrix composites (PMCs), also known as fiber reinforced composites (FRCs), is advantageous for structural durability. Since carbon nanotubes (CNTs) have extremely high tensile strength, they can be used as a functional additive to enhance the mechanical properties of FRCs. However, CNTs are not readily dispersible in the polymer matrix, which leads to lower than theoretically predicted improvement in mechanical, thermal, and electrical properties of CNT composites. The inability to align CNTs in a polymer matrix is also a known issue. The feasibility of incorporating aligned CNTs into an FRC was demonstrated using a novel, yet commercially viable nanofiber approach, termed NRMs (nanofiber-reinforcing mats). The NRM concept of reinforcement allows for a convenient and safe means of incorporating CNTs into FRC structural components specifically where they are needed during the fabrication process. NRMs, fabricated through a novel and scalable process, were incorporated into FRC test panels using layup and vacuum bagging techniques, where alternating layers of the NRM and carbon prepreg were used to form the reinforced FRC structure. Control FRC test panel coupons were also fabricated in the same manner, but comprised of only carbon prepreg. The FRC coupons were machined to size and tested for flexural, tensile, and compression properties. This effort demonstrated that FRC structures can be fabricated using the NRM concept, with an increased average load at break during flexural testing versus that of the control. The NASA applications for the developed technologies are for lightweight structures for in-space and launch vehicles. In addition, the developed technologies would find use in NASA aerospace applications such as rockets, aircraft, aircraft/spacecraft propulsion systems, and supporting facilities. The reinforcing aspect of the technology will allow for more efficient joining of fiber composite parts, thus offering

  7. Analysis of Mechanical and Thermogravimetric Properties of Composite Materials Based on PVA/MWCNT and Styrene-Acrylic Copolymer/MWCNT

    NASA Astrophysics Data System (ADS)

    Volynets, N. I.; Poddubskaya, O. G.; Demidenko, M. I.; Lyubimov, A. G.; Kuzhir, P. P.; Suslyaev, V. I.; Pletnev, M. A.; Zicans, Janis

    2017-08-01

    Mechanical and thermogravimetric properties of polymer composite materials with various concentrations of multiwalled carbon nanotubes effectively shielding radiation in the radio frequency (20 Hz - 1 MHz) and microwave (26-36 GHz) frequency ranges are studied. As a matrix, widely available polymeric materials, such as polyvinyl acetate and styrene-acrylate, were used in the form of dispersions. From the analysis of the obtained experimental data, it was shown that the introduction of carbon nanotubes into the polymer matrix makes it possible to increase mechanical properties and thermal stability of composite materials.

  8. Crosslinked Carbon Nanotubes/Polyaniline Composites as a Pseudocapacitive Material with High Cycling Stability

    PubMed Central

    Liu, Dong; Wang, Xue; Deng, Jinxing; Zhou, Chenglong; Guo, Jinshan; Liu, Peng

    2015-01-01

    The poor cycling stability of polyaniline (PANI) limits its practical application as a pseudocapacitive material due to the volume change during the charge-discharge procedure. Herein, crosslinked carbon nanotubes/polyaniline (C-CNTs/PANI) composites had been designed by the in situ chemical oxidative polymerization of aniline in the presence of crosslinked carbon nanotubes (C-CNTs), which were obtained by coupling of the functionalized carbon nanotubes with 1,4-benzoquinone. The composite showed a specific capacitance of 294 F/g at the scan rate of 10 mV/s, and could retain 95% of its initial specific capacitance after 1000 CV cycles. Such high electrochemical cycling stability resulting from the crosslinked skeleton of the C-CNTs makes them potential electrode materials for a supercapacitor. PMID:28347050

  9. Preparation of Conductive Polymer Graphite (PG) Composites

    NASA Astrophysics Data System (ADS)

    Munirah Abdullah, Nur; Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Abdullah, M. F. L.

    2017-08-01

    The preparation of conductive polymer graphite (PG) composites thin film is described. The thickness of the PG composites due to slip casting method was set approximately ~0.1 mm. The optical microscope (OM) and fourier transform infra-red spectroscopy (FTIR) has been operated to distinguish the structure-property relationships scheme of PG composites. It shows that the graphite is homogenously dispersed in polymer matrix composites. The electrical characteristics of the PG composite were measured at room temperature and the electrical conductivity (σ) was discovered with respect of its resistivity (Ω). By achieving conductivity of 103 S/m, it is proven that at certain graphite weight loading (PG20, PG25 and PG30) attributes to electron pathway in PG composites.

  10. Performance of polyacrylonitrile-carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells.

    PubMed

    Kim, Sun-Il; Lee, Jae-Wook; Roh, Sung-Hee

    2011-02-01

    The performance of carbon nanotubes composite-modified carbon cloth electrodes in two-chambered microbial fuel cell (MFC) was investigated. The electrode modified with polyacrylonitrile-carbon nanotubes (PAN-CNTs) composite showed better electrochemical performance than that of plain carbon cloth. The MFC with the composite-modified anode containing 5 mg/cm2 PAN-CNTs exhibited a maximum power density of 480 mW/m2.

  11. Preparation and crystalline studies of PVDF hybrid composites

    NASA Astrophysics Data System (ADS)

    Chethan P., B.; Renukappa, N. M.; Sanjeev, Ganesh

    2018-04-01

    The conducting polymer composites have become increasingly important for electrical and electronic applications due to their flexibility, easy of processing, high strength and low cost. A flexible conducting polymer hybrid composite was prepared by melt mixing of nickel coated multi-walled carbon nanotubes (Ni-MWNT) and graphitized carbon nanofibres (GCNF) in Polyvinylidene fluoride (PVDF) matrix. The crystalline structures of the nano composites were studied by X-ray diffraction (XRD) method and showed characteristic peaks at 17.7°, 18.5°, 20° and 26.7° of 2θ. The β phase crystalline nature of the composite films, degree of crystallinity, melting temperature and crystallization behavior of the hybrid composites were studied using appropriate characterization techniques. The filler in the insulating polymer matrix plays crucial role to improve the crystallinity of the composites.

  12. Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.

    PubMed

    Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi

    2018-06-13

    Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.

  13. Electrical and thermal response of carbon nanotube composites under quasi-static and dynamic loading

    NASA Astrophysics Data System (ADS)

    O'Connell, Christopher D.

    Carbon nanotube (CNT) composites have attracted much interest due to their possible technical applications as conductive polymers and sensory materials. This study will consist of two major objectives: 1.) to investigate the thermal conductivity and thermal response of multi-wall carbon nanotube (MWCNT) composites under quasi-static loading, and 2.) to investigate the electrical response of carboxyl-terminated butadiene (CTBN) rubber-reinforced MWCNT/Epoxy composites under quasi-static and dynamic loading. Similar studies have shown that the electrical conductivity of CNT/Epoxy composites dramatically increases with compressive strains up to 15%. Part 1 seeks to find out if thermal conductivity show a similar response to electrical conductivity under an applied load. Part 2 seeks to investigate how the addition of rubber affects the mechanical and electrical response of the composite subjected to quasi-static and dynamic loading. By knowing how thermal and electrical properties change under a given applied strain, we attempt to broaden the breadth of understanding of CNT/epoxy composites and inqure the microscopic interactions occurring between the two. Electrical experiments sought to investigate the electrical response of rubber-reinforced carbon nanotube epoxy composites under quasi-static and dynamic loading. Specimens were fabricated with CTBN rubber content of 10 parts per hundredth resin (phr), 20 phr, 30 phr and 0 phr for a basis comparison. Both quasi-static and dynamic mechanical response showed a consistent decrease in peak stress and Young's modulus with increasing rubber content. Trends in the electrical response between each case were clearly observed with peak resistance changes ranging from 58% to 73% and with each peak occurring at a higher value with increasing rubber content, with the exception of the rubber-free specimens. It was concluded that among the rubber-embedded specimens, the addition of rubber helped to delay micro-cracking and

  14. Thermal Protective Coating for High Temperature Polymer Composites

    NASA Technical Reports Server (NTRS)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  15. The Effects of Single-Wall Carbon Nanotubes on the Shear Piezoelectricity of Biopolymers

    NASA Technical Reports Server (NTRS)

    Lovell, Conrad; Fitz-Gerald, James M.; Harrison, Joycelyn S.; Park, Cheol

    2008-01-01

    Shear piezoelectricity was investigated in a series of composites consisting of increased loadings of single-wall carbon nanotubes (SWCNTs) in poly (gamma-benzyl-L-glutamate), or PBLG. The effects of the SWCNTs on this material property in PBLG will be discussed. Their influence on the morphology of the polymer (degree of orientation and crystallinity), and electrical and dielectric properties of the composite will be reported

  16. Development of Carbon/Carbon Composites with Through-Thickness Carbon Nanotubes for Thermal and Structural Applications

    DTIC Science & Technology

    2008-12-01

    AFRL-RX-WP-TR-2009-4013 DEVELOPMENT OF CARBON / CARBON COMPOSITES WITH THROUGH-THICKNESS CARBON NANOTUBES FOR THERMAL AND STRUCTURAL...31 August 2008 4. TITLE AND SUBTITLE DEVELOPMENT OF CARBON / CARBON COMPOSITES WITH THROUGH- THICKNESS CARBON NANOTUBES FOR THERMAL AND STRUCTURAL...13. SUPPLEMENTARY NOTES PAO Case Number: 88ABW-2009-1253; Clearance Date: 31 Mar 2009. Report contains color. 14. ABSTRACT Carbon / carbon

  17. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

    PubMed Central

    Atif, Rasheed

    2016-01-01

    Summary One of the main issues in the production of polymer nanocomposites is the dispersion state of filler as multilayered graphene (MLG) and carbon nanotubes (CNTs) tend to agglomerate due to van der Waals forces. The agglomeration can be avoided by using organic solvents, selecting suitable dispersion and production methods, and functionalizing the fillers. Another proposed method is the use of hybrid fillers as synergistic effects can cause an improvement in the dispersion state of the fillers. In this review article, various aspects of each process that can help avoid filler agglomeration and improve dispersion state are discussed in detail. This review article would be helpful for both current and prospective researchers in the field of MLG- and CNT-based polymer nanocomposites to achieve maximum enhancement in mechanical, thermal, and electrical properties of produced polymer nanocomposites. PMID:27826492

  18. Eco-Challenges of Bio-Based Polymer Composites

    PubMed Central

    Avella, Maurizio; Buzarovska, Aleksandra; Errico, Maria Emanuela; Gentile, Gennaro; Grozdanov, Anita

    2009-01-01

    In recent years bio-based polymer composites have been the subject of many scientific and research projects, as well as many commercial programs. Growing global environmental and social concern, the high rate of depletion of petroleum resources and new environmental regulations have forced the search for new composites and green materials, compatible with the environment. The aim of this article is to present a brief review of the most suitable and commonly used biodegradable polymer matrices and NF reinforcements in eco-composites and nanocomposites, with special focus on PLA based materials.

  19. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)

    1976-01-01

    A new class of polymers is provided, namely, poly (diarylsiloxy) arylazines. These novel polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides novel aromatic azines which are useful in the preparation of polymers such as those described.

  20. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)

    1974-01-01

    A class of polymers is provided, namely, poly(diarylsiloxy) arylazines. These polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers of the present invention useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides aromatic azines which are useful in the preparation of polymers such as those of the present invention.

  1. Conductive polymer nanotube patch for fast and controlled in vivo transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao M.

    Transdermal drug delivery has created new applications for existing therapies and offered an alternative to the traditional oral route where drugs can prematurely metabolize in the liver causing adverse side effects. Opening the transdermal delivery route to large hydrophilic drugs is one of the greatest challenges due to the hydrophobicity of the skin. However, the ability to deliver hydrophilic drugs using a transdermal patch would provide a solution to problems of other delivery methods for hydrophilic drugs. The switching of conductive polymers (CP) between redox states cause simultaneous changes in the polymer charge, conductivity, and volume—properties that can all be exploited in the biomedical field of controlled drug delivery. Using the template synthesis method, poly(3,4-ethylenedioxythiophene (PEDOT) nanotubes were synthesized electrochemically and a transdermal drug delivery patch was successfully designed and developed. In vitro and in vivo uptake and release of hydrophilic drugs were investigated. The relationship between the strength of the applied potential and rate of drug release were also investigated. Results revealed that the strength of the applied potential is proportional to the rate of drug release; therefore one can control the rate of drug release by controlling the applied potential. The in vitro studies focused on the kinetics of the drug delivery system. It was determined that the drug released mainly followed zero-order kinetics. In addition, it was determined that applying a releasing potential to the transdermal drug delivery system lead to a higher release rate constant (up to 7 times greater) over an extended period of time (˜24h). In addition, over 24 hours, an average of 80% more model drug molecules were released with an applied potential than without. The in vivo study showed that the drug delivery system was capable of delivering model hydrophilic drugs molecules through the dermis layer of the skin within 30 minutes

  2. The importance of carbon nanotube wire density, structural uniformity, and purity for fabricating homogeneous carbon nanotube-copper wire composites by copper electrodeposition

    NASA Astrophysics Data System (ADS)

    Sundaram, Rajyashree; Yamada, Takeo; Hata, Kenji; Sekiguchi, Atsuko

    2018-04-01

    We present the influence of density, structural regularity, and purity of carbon nanotube wires (CNTWs) used as Cu electrodeposition templates on fabricating homogeneous high-electrical performance CNT-Cu wires lighter than Cu. We show that low-density CNTWs (<0.6 g/cm3 for multiwall nanotube wires) with regular macro- and microstructures and high CNT content (>90 wt %) are essential for making homogeneous CNT-Cu wires. These homogeneous CNT-Cu wires show a continuous Cu matrix with evenly mixed nanotubes of high volume fractions (˜45 vol %) throughout the wire-length. Consequently, the composite wires show densities ˜5.1 g/cm3 (33% lower than Cu) and electrical conductivities ˜6.1 × 104 S/cm (>100 × CNTW conductivity). However, composite wires from templates with higher densities or structural inconsistencies are non-uniform with discontinuous Cu matrices and poor CNT/Cu mixing. These non-uniform CNT-Cu wires show conductivities 2-6 times lower than the homogeneous composite wires.

  3. Pilot Inter-Laboratory Studies for Evaluating Weathering-Induced Release of Carbon Nanotubes from Solid Matrices

    EPA Science Inventory

    Nanomaterials are increasingly being used in polymer composites to enhance the properties of these materials. Here we present results of a pilot inter-laboratory study to simulate the effects of weathering on the potential release of multiwalled carbon nanotubes (MWCNT) from thei...

  4. Method of making self-cleaning skin-like prosthetic polymer surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, John T.; Ivanov, Ilia N.; Shibata, Jason

    An external covering and method of making an external covering for hiding the internal endoskeleton of a mechanical (e.g., prosthetic) device that exhibits skin-like qualities is provided. The external covering generally comprises an internal bulk layer in contact with the endoskeleton of the prosthetic device and an external skin layer disposed about the internal bulk layer. The external skin layer is comprised of a polymer composite with carbon nanotubes embedded therein. The outer surface of the skin layer has multiple cone-shaped projections that provide the external skin layer with superhydrophobicity. The carbon nanotubes are preferably vertically aligned between the innermore » surface and outer surface of the external skin layer in order to provide the skin layer with the ability to transmit heat. Superhydrophobic powders may optionally be used as part of the polymer composite or applied as a coating to the surface of the skin layer to enhance superhydrophobicity.« less

  5. Magnetoreresistance of carbon nanotube-polypyrrole composite yarns

    NASA Astrophysics Data System (ADS)

    Ghanbari, R.; Ghorbani, S. R.; Arabi, H.; Foroughi, J.

    2018-05-01

    Three types of samples, carbon nanotube yarn and carbon nanotube-polypyrrole composite yarns had been investigated by measurement of the electrical conductivity as a function of temperature and magnetic field. The conductivity was well explained by 3D Mott variable range hopping (VRH) law at T < 100 K. Both positive and negative magnetoresistance (MR) were observed by increasing magnetic field. The MR data were analyzed based a theoretical model. A quadratic positive and negative MR was observed for three samples. It was found that the localization length decreases with applied magnetic field while the density of states increases. The increasing of the density of states induces increasing the number of available energy states for hopping. Thus the electron hopping probability increases in between sites with the shorter distance that results to small the average hopping length.

  6. Carbon Nanotube/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Watson, K. A.; Thompson, C. M.; Connell, J. W.

    2002-01-01

    Low solar absorptivity, space environmentally stable polymeric materials possessing sufficient electrical conductivity for electrostatic charge dissipation (ESD) are of interest for potential applications on spacecraft as thin film membranes on antennas, solar sails, large lightweight space optics, and second surface mirrors. One method of imparting electrical conductivity while maintaining low solar absorptivity is through the use of single wall carbon nanotubes (SWNTs). However, SWNTs are difficult to disperse. Several preparative methods were employed to disperse SWNTs into the polymer matrix. Several examples possessed electrical conductivity sufficient for ESD. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  7. Lattice-patterned LC-polymer composites containing various nanoparticles as additives

    PubMed Central

    2012-01-01

    In this study, we show the effect of various nanoparticle additives on phase separation behavior of a lattice-patterned liquid crystal [LC]-polymer composite system and on interfacial properties between the LC and polymer. Lattice-patterned LC-polymer composites were fabricated by exposing to UV light a mixture of a prepolymer, an LC, and SiO2 nanoparticles positioned under a patterned photomask. This resulted in the formation of an LC and prepolymer region through phase separation. We found that the incorporation of SiO2 nanoparticles significantly affected the electro-optical properties of the lattice-patterned LC-polymer composites. This effect is a fundamental characteristic of flexible displays. The electro-optical properties depend on the size and surface functional groups of the SiO2 nanoparticles. Compared with untreated pristine SiO2 nanoparticles, which adversely affect the performance of LC molecules surrounded by polymer walls, SiO2 nanoparticles with surface functional groups were found to improve the electro-optical properties of the lattice-patterned LC-polymer composites by increasing the quantity of SiO2 nanoparticles. The surface functional groups of the SiO2 nanoparticles were closely related to the distribution of SiO2 nanoparticles in the LC-polymer composites, and they influenced the electro-optical properties of the LC molecules. It is clear from our work that the introduction of nanoparticles into a lattice-patterned LC-polymer composite provides a method for controlling and improving the composite's electro-optical properties. This technique can be used to produce flexible substrates for various flexible electronic devices. PMID:22222011

  8. Nanocatalyst shape and composition during nucleation of single-walled carbon nanotubes

    DOE PAGES

    Gomez-Ballesteros, Jose L.; Burgos, Juan C.; Lin, Pin Ann; ...

    2015-12-07

    The dynamic evolution of nanocatalyst particle shape and carbon composition during the initial stages of single-walled carbon nanotube growth by chemical vapor deposition synthesis is investigated. Classical reactive and ab initio molecular dynamics simulations are used, along with environmental transmission electron microscope video imaging analyses. A clear migration of carbon is detected from the nanocatalyst/substrate interface, leading to a carbon gradient showing enrichment of the nanocatalyst layers in the immediate vicinity of the contact layer. However, as the metal nanocatalyst particle becomes saturated with carbon, a dynamic equilibrium is established, with carbon precipitating on the surface and nucleating a carbonmore » cap that is the precursor of nanotube growth. A carbon composition profile decreasing towards the nanoparticle top is clearly revealed by the computational and experimental results that show a negligible amount of carbon in the nanoparticle region in contact with the nucleating cap. The carbon composition profile inside the nanoparticle is accompanied by a well-defined shape evolution of the nanocatalyst driven by the various opposing forces acting upon it both from the substrate and from the nascent carbon nanostructure. In conclusion, this new understanding suggests that tuning the nanoparticle/substrate interaction would provide unique ways of controlling the nanotube synthesis.« less

  9. Thermoplastic-based conductive composites containing multi-wall carbon nanotubes aligned under the application of external electric fields

    NASA Astrophysics Data System (ADS)

    Osazuwa, Osayuki

    The objective of this thesis is to prepare thermoplastic/multi-wall carbon nanotubes (MWCNTs) and to apply external alternating current (AC) electric fields to achieve enhanced conductivity and dielectric properties. The first part of the thesis focuses on preparing polyolefin-based composites containing welldispersed MWCNTs. MWCNTs are functionalized with a hyperbranched polyethylene (HBPE) using a non-covalent, non-specific functionalization approach and melt compounded with an ethylene-octene copolymer (EOC) matrix. The improved filler dispersion in the functionalized EOC/MWCNT composite results in higher elongation at break compared to the non-functionalized composite. However, the electrical percolation threshold and the ultimate conductivity of the composites are not affected considerably, suggesting that this functionalization approach leaves the inherent properties of the nanotubes intact. EOC/HBPE-functionalized MWCNT composites are further subjected to external AC electric fields (35 -- 212 kV/m), which induce the formation of aligned columnar structures, as evidenced by Scanning Electron Microscopy. Experimentally acquired resistivity data are used to derive correlations between the characteristic insulator-to-conductor transition times of the composites and the electric field strength (E), polymer viscosity (eta) and MWCNT volume fraction (φ). A criterion for the selection of (eta, E, φ) conditions that enable MWCNT assembly under an electric field controlled regime (minimal Brownian motion-driven aggregation effects) is developed. The dielectric properties of the solidified aligned EOC/MWCNT composites are further studied using dielectric spectroscopy. Annealing of the composites at 160 °C results in the formation of interconnected structures, whereas electrification, using AC field of 71 and 212 kV/m induces the formation of aligned columnar structures. The electrified and annealed composites have increased real and imaginary permittivity compared

  10. Bamboo reinforced polymer composite - A comprehensive review

    NASA Astrophysics Data System (ADS)

    Roslan, S. A. H.; Rasid, Z. A.; Hassan, M. Z.

    2018-04-01

    Bamboo has greatly attention of researchers due to their advantages over synthetic polymers. It is entirely renewable, environmentally-friendly, non-toxic, cheap, non-abrasive and fully biodegradable. This review paper summarized an oveview of the bamboo, fiber extraction and mechanical behavior of bamboo reinforced composites. A number of studies proved that mechanical properties of bamboo fibers reinforced reinforced polymer composites are excellent and competent to be utilized in high-tech applications. The properties of the laminate are influenced by the fiber loading, fibre orientation, physical and interlaminar adhesion between fibre and matrix. In contrast, the presence of chemical constituents such as cellulose, lignin, hemicellulose and wax substances in natural fibres preventing them from firmly binding with polymer resin. Thus, led to poor mechanical properties for composites. Many attempt has been made in order to overcome this issue by using the chemical treatment.

  11. Potential release scenarios for carbon nanotubes used in composites

    EPA Science Inventory

    The expected widespread use of carbon nanotube (CNT)-composites in consumer products calls for an assessment of the possible release and exposure to workers, consumers and the environment. Release of CNTs may occur at all steps in the life cycle of products, but to date only limi...

  12. Unique synergism in flame retardancy in ABS based composites through blending PVDF and halloysite nanotubes

    NASA Astrophysics Data System (ADS)

    Remanan, Sanjay; Sharma, Maya; Jayashree, Priyadarshini; Parameswaranpillai, Jyotishkumar; Fabian, Thomas; Shih, Julie; Shankarappa, Prasad; Nuggehalli, Bharath; Bose, Suryasarathi

    2017-06-01

    This study demonstrates flame retardant materials designed using bi-phasic polymer blends of acrylonitrile butadiene styrene (ABS) and polyvinylidene fluoride (PVDF) containing halloysite nanotubes (HNTs) and Cloisite 30B nanoclay. The prepared blends with and without nanoparticles were extensively characterized. The nanoparticles were added in different weight concentrations to improve the flame retardancy. It was observed that prepared ABS/PVDF blends showed better flame retardancy than ABS based composites. The flame resistance was further improved by the addition of nanoparticles in the blends. The microscale combustion calorimetry (MCC) test showed better flame resistance in ABS/PVDF blends filled with 5 wt% HNTs than other composites. The total heat release of ABS/PVDF blend filled with 5 wt% HNTs decreased by 31% and also the heat of combustion decreased by 26% as compared to neat ABS. When compared with nanoparticles, the addition of PVDF reduced the peak heat release rate (PHRR) and increased the char residue more effectively. A synergistic improvement was observed from both PVDF and HNTs on the flame resistance properties.

  13. Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors.

    PubMed

    Shi, Kaiyuan; Zhitomirsky, Igor

    2013-10-01

    Thin films of multiwalled carbon nanotubes (MWCNT), graphene and polypyrrole (PPy) nanofibers were prepared by cathodic electrophoretic deposition (EPD) from aqueous suspensions, containing safranin (SAF) as a new dispersant. The results of Fourier transform infrared spectroscopy, UV-Vis spectroscopy studies and sedimentation tests, coupled with deposition yield and electron microscopy data showed that SAF adsorbed on MWCNT, graphene and PPy, provided their dispersion and charging in the suspensions and allowed efficient EPD. The deposition yield can be controlled by the variation of SAF concentration in the suspensions and deposition time. The use of SAF as a co-dispersant for MWCNT, graphene and PPy, allowed controlled EPD of composite graphene-MWCNT and graphene-PPy films. The proposed approach for the deposition of PPy paves the way for EPD of neutral polymers using organic dyes as dispersing and charging agents. The composite films were investigated for application in electrochemical supercapacitors (ES). The graphene-MWCNT and graphene-PPy films showed significant increase in capacitance, decrease in resistance and increase in capacitance retention at high charge-discharge rates compared to the films of individual components. The analysis of electrochemical testing results and electron microscopy data provided an insight into the influence of composite microstructure on electrochemical performance. The composites, prepared by EPD are promising materials for electrodes of ES. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Enhanced electrochemical performance of a LTO/carbon nanotubes/graphene composite as an anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wei, Aijia; Li, Wen; Zhang, Lihui; Liu, Zhenfa

    2017-09-01

    A Li4Ti5O12/carbon nanotubes/graphene composite has been successfully prepared by a solid-state method. For comparison, pure LTO and Li4Ti5O12/graphene composite were also synthesized using the same method. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to confirm the structure and morphology. The results reveal that LTO particles are well dispersed and wrapped in the graphene sheets with cross-linked carbon nanotubes. The electrochemical results show that the Li4Ti5O12/carbon nanotubes/graphene composite exhibits the best rate capacity, which lead to a charge capacity of 169.0, 168.5, 167.1, 153.2, 144.5, 131.5 mAh g-1 at 0.2, 0.5, 1, 3, 5 and 10 C, respectively between 1 and 3 V (1 C = 160 mAh g-1). The synergistic effect of graphene and carbon nanotubes constructing 3D networks could enhance the electronic conductivity of Li4Ti5O12/carbon nanotubes/graphene composite.

  15. Polymer compositions based on PXE

    DOEpatents

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2015-09-15

    New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers.

  16. On-line vs off-line electrical conductivity characterization. Polycarbonate composites developed with multiwalled carbon nanotubes by compounding technology

    NASA Astrophysics Data System (ADS)

    Llorens-Chiralt, R.; Weiss, P.; Mikonsaari, I.

    2014-05-01

    Material characterization is one of the key steps when conductive polymers are developed. The dispersion of carbon nanotubes (CNTs) in a polymeric matrix using melt mixing influence final composite properties. The compounding becomes trial and error using a huge amount of materials, spending time and money to obtain competitive composites. Traditional methods to carry out electrical conductivity characterization include compression and injection molding. Both methods need extra equipments and moulds to obtain standard bars. This study aims to investigate the accuracy of the data obtained from absolute resistance recorded during the melt compounding, using an on-line setup developed by our group, and to correlate these values with off-line characterization and processing parameters (screw/barrel configuration, throughput, screw speed, temperature profile and CNTs percentage). Compounds developed with different percentages of multi walled carbon nanotubes (MWCNTs) and polycarbonate has been characterized during and after extrusion. Measurements, on-line resistance and off-line resistivity, showed parallel response and reproducibility, confirming method validity. The significance of the results obtained stems from the fact that we are able to measure on-line resistance and to change compounding parameters during production to achieve reference values reducing production/testing cost and ensuring material quality. Also, this method removes errors which can be found in test bars development, showing better correlation with compounding parameters.

  17. The life times of polymer composites in construction

    NASA Astrophysics Data System (ADS)

    Meier, Urs

    2016-05-01

    This paper discusses examples that prove the long-term reliability of Fiber Reinforced Polymers (FRP) under extreme loading conditions and outdoor weathering. Results of polymer/steel-composite anchorage systems, Glass Fiber Reinforced Polymer (GFRP) plates and shells, GFRP box girders, Carbon Fiber Reinforced Polymer (CFRP) post-tensioning tendons and CFRP stays are going to be presented.

  18. A review of mechanical and tribological behaviour of polymer composite materials

    NASA Astrophysics Data System (ADS)

    Prabhakar, K.; Debnath, S.; Ganesan, R.; Palanikumar, K.

    2018-04-01

    Composite materials are finding increased applications in many industrial applications. A nano-composite is a matrix to which nanosized particles have been incorporated to drastically improve the mechanical performance of the original material. The structural components produced using nano-composites will exhibit a high strength-to-weight ratio. The properties of nano-composites have caused researchers and industries to consider using this material in several fields. Polymer nanocomposites consists of a polymer material having nano-particles or nano-fillers dispersed in the polymer matrix which may be of different shapes with at least one of the dimensions less than 100nm. In this paper, comprehensive review of polymer nanocomposites was done majorly in three different areas. First, mechanical behaviour of polymer nanocomposites which focuses on the mechanical property evaluation such as tensile strength, impact strength and modulus of elasticity based on the different combination of filler materials and nanoparticle inclusion. Second, wear behavior of Polymer composite materials with respect to different impingement angles and variation of filler composition using different processing techniques. Third, tribological (Friction and Wear) behaviour of nanocomposites using various combination of nanoparticle inclusion and time. Finally, it summarized the challenges and prospects of polymer nanocomposites.

  19. Electrochemical detection and degradation of ibuprofen from water on multi-walled carbon nanotubes-epoxy composite electrode.

    PubMed

    Motoc, Sorina; Remes, Adriana; Pop, Aniela; Manea, Florica; Schoonman, Joop

    2013-04-01

    This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-walled carbon nanotubes-epoxy (AgZMWCNT) composites electrodes. The composite electrodes were obtained using two-roll mill procedure. SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix. AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area. The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry and chronoamperometry. The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs. Ag/AgCl, and IBP concentration was determined comparatively by differential-pulsed voltammetry, under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode. AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.

  20. Thermal Conductivity of Carbon Nanotube Composite Films

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  1. Fibrous composites comprising carbon nanotubes and silica

    DOEpatents

    Peng, Huisheng [Shanghai, CN; Zhu, Yuntian Theodore [Cary, NC; Peterson, Dean E [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM

    2011-10-11

    Fibrous composite comprising a plurality of carbon nanotubes; and a silica-containing moiety having one of the structures: (SiO).sub.3Si--(CH.sub.2).sub.n--NR.sub.1R.sub.2) or (SiO).sub.3Si--(CH.sub.2).sub.n--NCO; where n is from 1 to 6, and R.sub.1 and R.sub.2 are each independently H, CH.sub.3, or C.sub.2H.sub.5.

  2. TiO2 nanotubes and mesoporous silica as containers in self-healing epoxy coatings

    PubMed Central

    Vijayan P., Poornima; Al-Maadeed, Mariam Ali S. A.

    2016-01-01

    The potential of inorganic nanomaterials as reservoirs for healing agents is presented here. Mesoporous silica (SBA-15) and TiO2 nanotubes (TNTs) were synthesized. Both epoxy-encapsulated TiO2 nanotubes and amine-immobilized mesoporous silica were incorporated into epoxy and subsequently coated on a carbon steel substrate. The encapsulated TiO2 nanotubes was quantitatively estimated using a ‘dead pore ratio’ calculation. The morphology of the composite coating was studied in detail using transmission electron microscopic (TEM) analysis. The self-healing ability of the coating was monitored using electrochemical impedance spectroscopy (EIS); the coating recovered 57% of its anticorrosive property in 5 days. The self-healing of the scratch on the coating was monitored using Scanning Electron Microscopy (SEM). The results confirmed that the epoxy pre-polymer was slowly released into the crack. The released epoxy pre-polymer came into contact with the amine immobilized in mesoporous silica and cross-linked to heal the scratch. PMID:27941829

  3. Three-dimensional Nitrogen-Doped Reduced Graphene Oxide/Carbon Nanotube Composite Catalysts for Vanadium Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua

    The development of vanadium redox flow battery is limited by the sluggish kinetics of the reaction, especially the cathodic VO2+/VO2+ redox couples. Therefore, it is vital to develop new electrocatalyst with enhanced activity to improve the battery performance. Herein, we first synthesized the hydrogel precursor by a facile hydrothermal method. After the following carbonization, nitrogen-doped reduced graphene oxide/carbon nanotube composite was obtained. By virtue of the large surface area and good conductivey, which are ensured by the unique hybrid structure, as well as the proper nitrogen doping, the as-prepared composite presents enhanced catalytic performance toward the VO2+/VO2+ redox reaction. Wemore » also demonstrated the composite with carbon nanotube loading of 2 mg/mL exhibits the highest activity and remarkable stability in aqueous solution due to the strong synergy between reduced graphene oxide and carbon nanotubes, indicating that this composite might show promising applications in vanadium redox flow battery.« less

  4. Polymer/clay/wood nanocomposites: The effect of incorporation of nanoclay into the wood/polymer composites

    NASA Astrophysics Data System (ADS)

    Hetzer, Max E.

    Thermoplastic composites play an important role in our society. The uses of these composites range from cookware to components for the space shuttle. In recent years, researchers at Toyota developed numerous methods of preparation for composites made from olefins and inorganic fillers such as clay and calcium carbonate. Wood fibers have been used as reinforcing filler in polymer matrices for the past several decades. The advantages of using wood fibers as reinforcing fillers are: the low cost of the fibers (or flour), low density, and resistance to breakage. The disadvantage of using wood as a filler is the thermal instability of wood above 200 °C. The majority of thermoplastics exhibit melting points between 160 and 220 °C, which is in the range of thermal decomposition of wood. Nanoclay was first successfully used as a filler in polyolefin materials by the Toyota research team in early 90s. It was found that the addition of a small amount (< 5 wt.%) of nanoclay increased the mechanical properties of a Nylon-6 matrix dramatically. Since Nylon-6 is a hydrophilic material no compatibilizer was necessary to exfoliate the nanoclay. The use of compatibilizers such as maleic modified polyethylenes (MAPEs) is necessary upon addition of nanoclay to a hydrophobic polyolefin systems such polyethylene (PE) or polypropylene (PP). Few researchers have attempted to reinforce the polymer matrix via the use of the nanoclay for use as a matrix in wood/polymer composites. High molecular weight and low molecular weight MAPEs have been used to enhance the bonding between the nanoclay and the polymer matrix as well as between the wood flour and the polymer matrix. The effects of combinations of the high and low molecular weight MAPEs on the mechanical and thermal properties of polymer/clay nanocomposites (PCNs) and of wood/polymer/clay composites (WPCs) were investigated. The effects of adding nanoclay to wood/polymer systems on the mechanical and thermal properties of the

  5. The Impact of Halloysite on the Thermo-Mechanical Properties of Polymer Composites.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H; Al-Amiery, Ahmed A; Nassir, Mohamed H; Jaaz, Ahed Hameed

    2017-05-20

    Nanotubular clay minerals, composed of aluminosilicate naturally structured in layers known as halloysite nanotubes (HNTs), have a significant reinforcing impact on polymer matrixes. HNTs have broad applications in biomedical applications, the medicine sector, implant alloys with corrosion protection and manipulated transportation of medicines. In polymer engineering, different research studies utilize HNTs that exhibit a beneficial enhancement in the properties of polymer-based nanocomposites. The dispersion of HNTs is improved as a result of pre-treating HNTs with acids. The HNTs' percentage additive up to 7% shows the highest improvement of tensile strength. The degradation of the polymer can be also significantly improved by doping a low percentage of HNTs. Both the mechanical and thermal properties of polymers were remarkably improved when mixed with HNTs. The effects of HNTs on the mechanical and thermal properties of polymers, such as ultimate strength, elastic modulus, impact strength and thermal stability, are emphasized in this study.

  6. Comparative VOCs sensing performance for conducting polymer and porphyrin functionalized carbon nanotubes based sensors

    NASA Astrophysics Data System (ADS)

    Datta, Kunal; Rushi, Arti; Ghosh, Prasanta; Shirsat, Mahendra

    2018-05-01

    We report sensors for detection of ethyl alcohol, a prominent volatile organic compound (VOC). Single walled carbon nanotubes were selected as main sensing backbone. As efficiency of sensor is dependent upon the choice of sensing materials, the performances of conducting polymer and porphyrin based sensors were compared. Chemiresistive sensing modality was adopted to observe the performance of sensors. It has been found that porphyrin based sensor shows higher affinity towards ethyl alcohol.

  7. Controlling the mechanics and nanotopography of biocompatible scaffolds through dielectrophoresis with carbon nanotubes.

    PubMed

    Lu, Yu-Lun; Cheng, Chao-Min; LeDuc, Philip R; Ho, Mon-Shu

    2008-08-01

    Creating a biocompatible carbon-nanotube polymer scaffold is an area that has a number of potential applications. Herein, a dielectrophoretic approach was pursued to integrate carbon nanotubes into a polymeric material for fabricating a nanoscale composite scaffold with increased and controllable mechanical strength. The adhesion force, which combines the surface energy of the sample and the interfacial energy between the tip and sample, was estimated to be 55.39 +/- 6.72 nN away from the center of the protrusions at a distance of 0.5 microm while being 24.01 +/- 4.45 nN at the center. The adhesion force for the center of the cavities was 42.47 +/- 6.91 and 88.21 +/- 15.05 nN at 0.5 microm away from the center. NIH 3T3 fibroblast cells were then utilized to test the cellular biocompatibility of this multiwalled carbon nanotubes (MWCNTs) film. Cells were cultured on the surface and then their attachment, spreading, and proliferation behaviors were observed. This nanotube-polymer scaffolding approach has a wide range of potential applications including in complex device fabrication as well as in developing biomimetic and tissue engineering scaffolds, and artificial organs.

  8. Phase stability and dynamics of entangled polymer-nanoparticle composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.

    Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales,more » where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.« less

  9. Processable Conducting Polyaniline, Carbon Nanotubes, Graphene and Their Composites

    NASA Astrophysics Data System (ADS)

    Wang, Kan

    Good processability is often required for applications of conducting materials like polyaniline (PANI), carbon nanotubes (CNTs) and graphene. This can be achieved by either physical stabilization or chemical functionalization. Functionalization usually expands the possible applications for the conducting materials depending on the properties of the functional groups. Processable conducting materials can also be combined with other co-dissolving materials to prepare composites with desired chemical and physical properties. Polyanilines (PANI) doped with dodecylbenzenesulfonic acid (DBSA) are soluble in many organic solvents such as chloroform and toluene. Single wall carbon nanotubes (SWCNTs) can be dispersed into PANI/DBSA to form homogeneous solutions. PANI/DBSA functions as a conducting surfactant for SWCNTs. The mixture can be combined with two-parts polyurethanes that co-dissolve in the organic solvent to produce conducting polymer composites. The composite mixtures can be applied onto various substrates by simple spray-on methods to obtain transparent and conducting coatings. Graphene, a single layer of graphite, has drawn intense interest for its unique properties. Processable graphene has been produced in N-methyl-2-pyrrolidone (NMP) by a one-step solvothermal reduction of graphite oxide without the aid of any reducing reagent and/or surfactant. The as-synthesized graphene disperses well in a variety of organic solvents such as dimethylsulfoxide (DMSO), ethanol and tetrahydrogenfuran (THF). The conductivity of solvothermal reduced graphite oxide is comparable to hydrazine reduced graphite oxide. Attempts were made to create intrinsically conducting glue comparable to mussel adhesive protiens using polyaniline and graphene. Mussels can attach to a variety of substrates under water. Catechol residue in 3,4-dihydroxyphenylalanine (L-DOPA) is the key to the wet adhesion. Tyrosine and phosphoserine with primary alkyl amine groups also participate in adhesion. A

  10. Processing and characterization of natural cellulose fibers/thermoset polymer composites.

    PubMed

    Thakur, Vijay Kumar; Thakur, Manju Kumari

    2014-08-30

    Recently natural cellulose fibers from different biorenewable resources have attracted the considerable attraction of research community all around the globe owing to their unique intrinsic properties such as biodegradability, easy availability, environmental friendliness, flexibility, easy processing and impressive physico-mechanical properties. Natural cellulose fibers based materials are finding their applications in a number of fields ranging from automotive to biomedical. Natural cellulose fibers have been frequently used as the reinforcement component in polymers to add the specific properties in the final product. A variety of cellulose fibers based polymer composite materials have been developed using various synthetic strategies. Seeing the immense advantages of cellulose fibers, in this article we discuss the processing of biorenewable natural cellulose fibers; chemical functionalization of cellulose fibers; synthesis of polymer resins; different strategies to prepare cellulose based green polymer composites, and diverse applications of natural cellulose fibers/polymer composite materials. The article provides an in depth analysis and comprehensive knowledge to the beginners in the field of natural cellulose fibers/polymer composites. The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Lowering the Percolation Threshold of Conductive Composites Using Particulate Polymer Microstructure

    NASA Astrophysics Data System (ADS)

    Grunlan, Jaime; Gerberich, William; Francis, Lorraine

    2000-03-01

    In an effort to lower the percolation threshold of carbon black-filled polymer composites, various polymer microstructures were examined. Composites were prepared using polyvinyl acetate (PVAc) latex, PVAc water-dispersible powder and polyvinylpyrrolidone (PVP) solution as the matrix starting material. Composites prepared using the particulate microstructures showed a significantly lowered percolation threshold relative to an equivalently prepared composite using the PVP solution. The PVAc latex-based composites has a percolation threshold of 3 volthe PVP solution-based composite yielded a percolation threshold near 15 voloccupied by polymer particles, the particulate matrix-based composites create a segregated CB network at low filler concentration.

  12. Enzyme-polymer composites with high biocatalytic activity and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungbae; Kosto, Timothy J.; Manimala, Joseph C.

    2004-08-22

    We have applied vacuum-spraying and electrospinning to incorporate an enzyme into a polymer matrix, creating a novel and highly active biocatalytic composite. As a unique technical approach, enzymes were co-dissolved in toluene with polymers, and the solvent was then rapidly removed by injecting the mixture into a vacuum chamber or by electrospinning. Subsequent crosslinking of the enzyme with glutaraldehyde resulted in stable entrapped enzyme within the polymeric matrices. For example, an amorphous composite of alpha-chymotrypsin and polyethylene showed no significant loss of enzymatic activity in aqueous buffer for one month. Nanofibers of alpha-chymotrypsin and polystyrene also showed no decrease inmore » activity for more than two weeks. The normalized activity of amorphous composite in organic solvents was 3-13 times higher than that of native alpha-chymotrypsin. The activity of nanofibers was 5-7 times higher than that of amorphous composite in aqueous buffer solution. The composites of alpha-chymotrypsin and polymers demonstrate the feasibility of obtaining a wide variety of active and stable biocatalytic materials with many combinations of enzymes and polymers.« less

  13. Cytocompatibility and uptake of halloysite clay nanotubes.

    PubMed

    Vergaro, Viviana; Abdullayev, Elshad; Lvov, Yuri M; Zeitoun, Andre; Cingolani, Roberto; Rinaldi, Ross; Leporatti, Stefano

    2010-03-08

    Halloysite is aluminosilicate clay with hollow tubular structure of 50 nm external diameter and 15 nm diameter lumen. Halloysite biocompatibility study is important for its potential applications in polymer composites, bone implants, controlled drug delivery, and for protective coating (e.g., anticorrosion or antimolding). Halloysite nanotubes were added to different cell cultures for toxicity tests. Its fluorescence functionalization by aminopropyltriethosilane (APTES) and with fluorescently labeled polyelectrolyte layers allowed following halloysite uptake by the cells with confocal laser scanning microscopy (CLSM). Quantitative Trypan blue and MTT measurements performed with two neoplastic cell lines model systems as a function of the nanotubes concentration and incubation time indicate that halloysite exhibits a high level of biocompatibility and very low cytotoxicity, rendering it a good candidate for household materials and medicine. A combination of transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning force microscopy (SFM) imaging techniques have been employed to elucidate the structure of halloysite nanotubes.

  14. A built-in sensor with carbon nanotubes coated by Ag clusters for deformation monitoring of glass fibre/epoxy composites

    NASA Astrophysics Data System (ADS)

    Slobodian, P.; Riha, P.; Matyas, J.; Olejnik, R.; Lloret Pertegás, S.; Schledjewski, R.; Kovar, M.

    2018-03-01

    A multiwalled carbon nanotube network embedded in a polyurethane membrane was integrated into a glass fibre reinforced epoxy composite by means of vacuum infusion to become a part of the composite and has been serving for a strain self-sensing functionality. Besides the pristine nanotubes also nanotubes with Ag nanoparticles attached to their surfaces were used to increase strain sensing. Moreover, the design of the carbon nanotube/polyurethane sensor allowed formation of network micro-sized cracks which increased its reversible electrical resistance resulted in an enhancement of strain sensing. The resistance sensitivity, quantified by a gauge factor, increased more than hundredfold in case of a pre-strained sensor with Ag decorated nanotubes in comparison with the sensor with pristine nanotubes.

  15. Carbon nanotube fiber spun from wetted ribbon

    DOEpatents

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  16. On the mechanical behaviours of a craze in particulate-polymer composites

    NASA Astrophysics Data System (ADS)

    Zhang, Y. M.; Zhang, W. G.; Fan, M.; Xiao, Z. M.

    2018-05-01

    In polymeric composites, well-defined inclusions are incorporated into the polymer matrix to alleviate the brittleness of polymers. When a craze is initiated in such a composite, the interaction between the craze and the surrounding inclusions will greatly affect the composite's mechanical behaviours and toughness. To the best knowledge of the authors, only little research work has been found so far on the interaction between a craze and the near-by inclusions in particulate-polymer composites. In the current study, the first time, the influences of the surrounding inclusions on the craze are investigated in particulate-polymer composites. The three-phase model is adopted to study the fracture behaviours of the craze affected by multiple inclusions. An iterative procedure is proposed to solve the stress intensity factors. Parametric studies are performed to investigate the influences of the reinforcing particle volume fraction and the shear modulus ratio on fracture behaviours of particulate-polymer composites.

  17. Linear strain sensor made of multi-walled carbon nanotube/epoxy composite

    NASA Astrophysics Data System (ADS)

    Tong, Shuying; Yuan, Weifeng; Liu, Haidong; Alamusi; Hu, Ning; Zhao, Chaoyang; Zhao, Yangzhou

    2017-11-01

    In this study, a fabrication process was developed to make the multi-walled carbon nanotubes/epoxy (MWCNT/EP) composite films. The electrical-strain behaviour of the films in direct and alternating current circuits were both tested. It is found that the direct current resistance and the dielectric loss tangent of the MWCNT/EP composite films are dependent on the strain and the weight fraction of the carbon nanotubes. In an alternating current circuit, the test frequency affects the impedance and the phase angle of the composite film, but it has nothing to do with the change ratio of the dielectric loss tangent of the film in tension. This phenomenon can be interpreted by a proposed equivalent circuit model. Experiment results show that the change rate of the dielectric loss tangent of the MWCNT/EP sensor is linearly proportional to the strain. The findings obtained in the present study provide a promising method to develop ultrasensitive linear strain gauges.

  18. Reduced Graphene Oxide/Carbon Nanotube Composites as Electrochemical Energy Storage Electrode Applications.

    PubMed

    Yang, Wenyao; Chen, Yan; Wang, Jingfeng; Peng, Tianjun; Xu, Jianhua; Yang, Bangchao; Tang, Ke

    2018-06-15

    We demonstrate an electrochemical reduction method to reduce graphene oxide (GO) to electrochemically reduced graphene oxide (ERGO) with the assistance of carbon nanotubes (CNTs). The faster and more efficient reduction of GO can be achieved after proper addition of CNTs into GO during the reduction process. This nanotube/nanosheet composite was deposited on electrode as active material for electrochemical energy storage applications. It has been found that the specific capacitance of the composite film was strongly affected by the mass ratio of GO/CNTs and the scanning ratio of cyclic voltammetry. The obtained ERGO/CNT composite electrode exhibited a 279.4 F/g-specific capacitance and showed good cycle rate performance with the evidence that the specific capacitance maintained above 90% after 6000 cycles. The synergistic effect between ERGO and CNTs as well as crossing over of CNTs into ERGO is attributed to the high electrochemical performance of composite electrode.

  19. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.

    1991-10-08

    Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.

  20. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, Stephen D.; Marshall, Kenneth L.; Cerqua, Kathleen A.

    1991-01-01

    Composite optical devices using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T.sub.g) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device.