Sample records for nanotube tnt arrays

  1. Betavoltaic effect in titanium dioxide nanotube arrays under build-in potential difference

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Ranbin; San, Haisheng; Liu, Guohua; Wang, Kaiying

    2015-05-01

    We report the fabrication of sandwich-type metal/TiO2 nanotube (TNT) array/metal structures as well as their betavoltaic effects under build-in voltage through contact potential difference. The sandwiched structure is integrated by immobilized TNT arrays on Ti foil with radioisotope 63Ni planar source on Ni substrate (Ni-63Ni/TNT array/Ti). Under irradiation of the 63Ni source with activity of 8 mCi, the structure (TNT diameter ∼ 130 nm, length ∼ 11 μm) presents optimum energy conversion efficiency of 7.30% with open-circuit voltage of 1.54 V and short-circuit current of 12.43 nA. The TNT arrays exhibit a highly potential for developing betavoltaic batteries due to its wide band gap and nanotube array configuration. The TNT-betavoltaic concept offers a facile solution for micro/nano electronics with high efficiency and long life-time instead of conventional planar junction-type batteries.

  2. Molecular imprinting at walls of silica nanotubes for TNT recognition.

    PubMed

    Xie, Chenggen; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Guan, Guijian; Zhang, Zhongping

    2008-01-15

    This paper reports the molecular imprinting at the walls of highly uniform silica nanotubes for the recognition of 2,4,6-trinitrotoluene (TNT). It has been demonstrated that TNT templates were efficiently imprinted into the matrix of silica through the strong acid-base pairing interaction between TNT and 3-aminopropyltriethoxysilane (APTS). TNT-imprinted silica nanotubes were synthesized by the gelation reaction between APTS and tetraethylorthosilicate (TEOS), selectively occurring at the porous walls of APTS-modified alumina membranes. The removal of the original TNT templates leaves the imprinted cavities with covalently anchored amine groups at the cavity walls. A high density of recognition sites with molecular selectivity to the TNT analyte was created at the wall of silica nanotubes. Furthermore, most of these recognition sites are situated at the inside and outside surfaces of tubular walls and in the proximity of the two surfaces due to the ultrathin wall thickness of only 15 nm, providing a better site accessibility and lower mass-transfer resistance. Therefore, greater capacity and faster kinetics of uptaking target species were achieved. The silica nanotube reported herein is an ideal form of material for imprinting various organic or biological molecules toward applications in chemical/biological sensors and bioassay.

  3. Formation of anodic TiO2 nanotube arrays in NaOH added fluoride-ethylene glycol electrolyte for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Nyein, Nyein; Tan, Wai Kian; Kawamura, Go; Matsuda, Atsunori; Lockman, Zainovia

    2017-07-01

    TiO2 nanotube (TNT) arrays were formed by anodizing titanium foil in fluoride-ethylene glycol (EG) electrolyte added to it either water (H2O) or sodium hydroxide (NaOH) as oxidant. In NaOH added fluoride-EG electrolyte, 10 µm long TNT arrays were formed compared to 5 μm long nanotubes in H2O added fluoride-EG electrolyte. When NaOH was added to EG, the electrolyte pH was 9. As the pH of the electrolyte was rather high, surface etching of the nanotubes was reduced resulting in tubes with longer length. Moreover, the addition of NaOH into fluoride-EG resulted in the crystallization of anatase in the as-made TNT arrays. Annealing obviously improved the crystallinity of the oxide. The TNT arrays were then used as a photoanode in a dye-sensitized solar cell (DSSC). A photoconversion efficiency of 2.4 % was recorded with photocurrent of 6.9 mA/cm2.

  4. Ag nanoparticle-filled TiO2 nanotube arrays prepared by anodization and electrophoretic deposition for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Sugri Nbelayim, Pascal; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2017-03-01

    A layer of TiO2 nanotube (TNT) arrays with a thickness of 13 μm is synthesized by a two-step anodic oxidation from Ti metal foil. Surface charged Ag nanoparticles (NPs) are prepared by chemical reduction. After a pretreatment of the TNT arrays by acetone vapor, Ag NP filled TNT arrays can be achieved by electrophoretic deposition (EPD). Effects of the applied voltage during EPD such as DC-AC difference, frequency and waveform are investigated by quantitative analysis using atomic absorption spectroscopy. The results show that the best EPD condition is using DC 2 V + AC 4 V and a square wave of 1 Hz as the applied voltage. Back illuminated dye-sensitized solar cells are fabricated from TNT arrays with and without Ag NPs. The efficiency increased from 3.70% to 5.01% by the deposition of Ag NPs.

  5. Electrochemical deposition of copper decorated titania nanotubes and its visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lim, Y. C.; Siti, A. S.; Nur Amiera, P.; Devagi, K.; Lim, Y. P.

    2017-09-01

    Coupling of titania with narrow band gap materials has been a promising strategy in preparing visible light responsive photocatalyst. In this work, self-organized copper decorated TiO2 nanotube (Cu/TNT) was prepared via electrodeposition of Cu onto highly ordered titania nanotube arrays (TNT). The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX). The DRS studies clearly show the extended absorption of Cu/TNT into the visible region and present a red shift of band gap to 2.1 eV. FESEM analysis has shown the dispersion of cubic-like Cu particles upon electrodeposition and EDX analysis supports the presence of copper species on the nanotubes surface. The photocatalytic ability of Cu/TNT was evaluated by the degradation of methyl orange from aqueous solution under low power visible light illumination. Compared to TNT, an appreciable improvement in methyl orange removal was observed for Cu/TNT and the highest removal efficiency of 80% was achieved. The effects of catalyst loading and samples repeatability were investigated and under optimum conditions, the removal efficiency of methyl orange over Cu/TNT had further increased to 93.4%. This work has demonstrated a feasible and simple way to introduce narrow band gap transition metal into nanotube arrays, which could create novel properties for functionalized nanotube arrays as well as promise a wide range of applications.

  6. Carbon nanotube nanoelectrode arrays

    DOEpatents

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  7. Sodium fluoride-assisted modulation of anodized TiO₂ nanotube for dye-sensitized solar cells application.

    PubMed

    Yun, Jung-Ho; Ng, Yun Hau; Ye, Changhui; Mozer, Attila J; Wallace, Gordon G; Amal, Rose

    2011-05-01

    This work reports the use of sodium fluoride (in ethylene glycol electrolyte) as the replacement of hydrofluoric acid and ammonium fluoride to fabricate long and perpendicularly well-aligned TiO₂ nanotube (TNT) (up to 21 μm) using anodization. Anodizing duration, applied voltage and electrolyte composition influenced the geometry and surface morphologies of TNT. The growth mechanism of TNT is interpreted by analyzing the current transient profile and the total charge density generated during anodization. The system with low water content (2 wt %) yielded a membrane-like mesoporous TiO₂ film, whereas high anodizing voltage (70 V) resulted in the unstable film of TNT arrays. An optimized condition using 5 wt % water content and 60 V of anodizing voltage gave a stable array of nanotube with controllable length and pore diameter. Upon photoexcitation, TNTs synthesized under this condition exhibited a slower charge recombination rate as nanotube length increased. When made into cis-diisothiocyanato-bis(2,2̀-bipyridyl-4,4̀-dicarboxylato) ruthenium(II) bis (tetrabutyl-ammonium)(N719) dye-sensitized solar cells, good device efficiency at 3.33 % based on the optimized TNT arrays was achieved with longer electron time compared with most mesoporous TiO₂ films.

  8. Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Subramaniam, M. N.; Goh, P. S.; Abdullah, N.; Lau, W. J.; Ng, B. C.; Ismail, A. F.

    2017-06-01

    Removal of methylene blue (MB) via adsorption and photocatalysis using titanate nanotubes (TNTs) with different surface areas were investigated and compared to commercial titanium dioxide (TiO2) P25 Degussa nanoparticles. The TNTs with surface area ranging from 20 m2/g to 200 m2/g were synthesized via hydrothermal method with different reaction times. TEM imaging confirmed the tubular structure of TNT while XRD spectra indicated all TNTs exhibited anatase crystallinity. Batch adsorption rate showed linearity with surface properties of TNTs, where materials with higher surface area showed higher adsorption rate. The highest MB adsorption (70%) was achieved by TNT24 in 60 min whereas commercial TiO2 exhibited the lowest adsorption of only 10% after 240 min. Adsorption isotherm studies indicated that adsorption using TNT is better fitted into Langmuir adsorption isotherm than Freundlich isotherm model. Furthermore, TNT24 was able to perform up to 90% removal of MB within 120 min, demonstrating performance that is 2-fold better compared to commercial TiO2. The high surface area and surface Bronsted acidity are the main reasons for the improvement in MB removal performance exhibited by TNT24. The improvement in surface acidity enhanced the adsorption properties of all the nanotubes prepared in this study.

  9. Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays.

    PubMed

    Aw, Moom Sinn; Losic, Dusan

    2013-02-25

    A non-invasive and external stimulus-driven local drug delivery system (DDS) based on titania nanotube (TNT) arrays loaded with drug encapsulated polymeric micelles as drug carriers and ultrasound generator is described. Ultrasound waves (USW) generated by a pulsating sonication probe (Sonotrode) in phosphate buffered saline (PBS) at pH 7.2 as the medium for transmitting pressure waves, were used to release drug-loaded nano-carriers from the TNT arrays. It was demonstrated that a very rapid release in pulsatile mode can be achieved, controlled by several parameters on the ultrasonic generator. This includes pulse length, time, amplitude and power intensity. By optimization of these parameters, an immediate drug-micelles release of 100% that spans a desirable time of 5-50 min was achieved. It was shown that stimulated release can be generated and reproduced at any time throughout the TNT-Ti implant life, suggesting considerable potential of this approach as a feasible and tunable ultrasound-mediated drug delivery system in situ via drug-releasing implants. It is expected that this concept can be translated from an in vitro to in vivo regime for therapeutic applications using drug-releasing implants in orthopedic and coronary stents. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  10. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  11. Tunneling nanotube (TNT) formation is downregulated by cytarabine and NF-κB inhibition in acute myeloid leukemia (AML)

    PubMed Central

    Omsland, Maria; Bruserud, Øystein; Gjertsen, Bjørn T; Andresen, Vibeke

    2017-01-01

    Acute myeloid leukemia (AML) is a bone marrow derived blood cancer where intercellular communication in the leukemic bone marrow participates in disease development, progression and chemoresistance. Tunneling nanotubes (TNTs) are intercellular communication structures involved in transport of cellular contents and pathogens, also demonstrated to play a role in both cell death modulation and chemoresistance. Here we investigated the presence of TNTs by live fluorescent microscopy and identified TNT formation between primary AML cells and in AML cell lines. We found that NF-κB activity was involved in TNT regulation and formation. Cytarabine downregulated TNTs and inhibited NF-κB alone and in combination with daunorubicin, providing additional support for involvement of the NF-κB pathway in TNT formation. Interestingly, daunorubicin was found to localize to lysosomes in TNTs connecting AML cells indicating a novel function of TNTs as drug transporting devices. We conclude that TNT communication could reflect important biological features of AML that may be explored in future therapy development. PMID:27974700

  12. Fabrication of transparent TiO2 nanotube-based photoanodes for CdS/CdTe quantum co-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gualdrón-Reyes, A. F.; Cárdenas-Arenas, A.; Martínez, C. A.; Kouznetsov, V. V.; Meléndez, A. M.

    2017-01-01

    In order to fabricate a solar cell, ordered TiO2 nanotube (TNT) arrays were prepared by double anodization. TNT arrays with variable lengths were obtained by changing the duration of the anodizing process of up to 3h. TNT membranes were transferred to indium tin oxide substrates and attached with a B-TiO2 sol. TNT photoanode with the best photoelectrochemical performance was sensitized with CdS by SILAR method. On other hand, CdTe quantum dots prepared via colloidal synthesis were deposited on TNT photoanodes for 2h, 4h and 6h. In addition, TNT/CdS was loaded with CdTe quantum dots for 4 h. Morphology and chemical modification of TiO2 were characterized by FESEM and XPS, while their photoelectrochemical performance was measured by open-circuit photopotential and photovoltammetry under visible light. TiO2 nanotubes grown during 2.5h showed the highest photocurrent due to presence of Ti3+ donor states by N and F co-doping, increasing the number of photogenerated electrons transported to back collector. TNT/CdS/CdTe photoanode reach the highest conversion efficiency under AM 1.5G simulated solar illumination.

  13. Near infrared optical biosensor based on peptide functionalized single-walled carbon nanotubes hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection.

    PubMed

    Wang, Jin

    2018-06-01

    A near infrared (NIR) optical biosensor based on peptide functionalized single-walled carbon nanotubes (SWCNTs) hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection was developed. The TNT binding peptide was directly anchored on the sidewall of the SWCNTs using the π-π interaction between the aromatic amino acids and SWCNTs, forming the peptide-SWCNTs hybrids for near infrared absorption spectra measurement. The evidence of the morphology of peptide-SWCNTs hybrids was obtained using atomic force microscopy (AFM). The results demonstrated that peptide-SWCNTs hybrids based NIR optical biosensor exhibited sensitive and highly selective for TNT explosive determination, addressing a promising optical biosensor for security application. Copyright © 2018. Published by Elsevier Inc.

  14. Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays

    NASA Technical Reports Server (NTRS)

    Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.

    2004-01-01

    We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.

  15. Array-Based Rational Design of Short Peptide Probe-Derived from an Anti-TNT Monoclonal Antibody.

    PubMed

    Okochi, Mina; Muto, Masaki; Yanai, Kentaro; Tanaka, Masayoshi; Onodera, Takeshi; Wang, Jin; Ueda, Hiroshi; Toko, Kiyoshi

    2017-10-09

    Complementarity-determining regions (CDRs) are sites on the variable chains of antibodies responsible for binding to specific antigens. In this study, a short peptide probe for recognition of 2,4,6-trinitrotoluene (TNT), was identified by testing sequences derived from the CDRs of an anti-TNT monoclonal antibody. The major TNT-binding site in this antibody was identified in the heavy chain CDR3 by antigen docking simulation and confirmed by an immunoassay using a spot-synthesis based peptide array comprising amino acid sequences of six CDRs in the variable region. A peptide derived from heavy chain CDR3 (RGYSSFIYWF) bound to TNT with a dissociation constant of 1.3 μM measured by surface plasmon resonance. Substitution of selected amino acids with basic residues increased TNT binding while substitution with acidic amino acids decreased affinity, an isoleucine to arginine change showed the greatest improvement of 1.8-fold. The ability to create simple peptide binders of volatile organic compounds from sequence information provided by the immune system in the creation of an immune response will be beneficial for sensor developments in the future.

  16. TiO2 nanotube platforms for smart drug delivery: a review.

    PubMed

    Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Chen, Zhong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Al-Deyab, Salem S; Lai, Yue-Kun

    Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.

  17. Tunneling Nanotubes: Intimate Communication between Myeloid Cells.

    PubMed

    Dupont, Maeva; Souriant, Shanti; Lugo-Villarino, Geanncarlo; Maridonneau-Parini, Isabelle; Vérollet, Christel

    2018-01-01

    Tunneling nanotubes (TNT) are dynamic connections between cells, which represent a novel route for cell-to-cell communication. A growing body of evidence points TNT towards a role for intercellular exchanges of signals, molecules, organelles, and pathogens, involving them in a diverse array of functions. TNT form among several cell types, including neuronal cells, epithelial cells, and almost all immune cells. In myeloid cells (e.g., macrophages, dendritic cells, and osteoclasts), intercellular communication via TNT contributes to their differentiation and immune functions. Importantly, TNT enable myeloid cells to communicate with a targeted neighboring or distant cell, as well as with other cell types, therefore creating a complex variety of cellular exchanges. TNT also contribute to pathogen spread as they serve as "corridors" from a cell to another. Herein, we addressed the complexity of the definition and in vitro characterization of TNT in innate immune cells, the different processes involved in their formation, and their relevance in vivo . We also assess our current understanding of how TNT participate in immune surveillance and the spread of pathogens, with a particular interest for HIV-1. Overall, despite recent progress in this growing research field, we highlight that further investigation is needed to better unveil the role of TNT in both physiological and pathological conditions.

  18. Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites

    DOEpatents

    Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN

    2010-07-27

    Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.

  19. TiO2 nanotube platforms for smart drug delivery: a review

    PubMed Central

    Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Chen, Zhong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Al-Deyab, Salem S; Lai, Yue-Kun

    2016-01-01

    Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided. PMID:27703349

  20. Wire-shaped perovskite solar cell based on TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan; Kulkarni, Sneha A.; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K.; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-01

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

  1. TiO2 Nanotube-Carbon (TNT-C) as Support for Pt-based Catalyst for High Methanol Oxidation Reaction in Direct Methanol Fuel Cell.

    PubMed

    Abdullah, M; Kamarudin, S K; Shyuan, L K

    2016-12-01

    In this study, TiO 2 nanotubes (TNTs) were synthesized via a hydrothermal method using highly concentrated NaOH solutions varying from 6 to 12 M at 180 °C for 48 h. The effects of the NaOH concentration and the TNT crystal structure on the performance for methanol oxidation were investigated to determine the best catalyst support for Pt-based catalysts. The results showed that TNTs produced with 10 M NaOH exhibited a length and a diameter of 550 and 70 nm, respectively; these TNTs showed the best nanotube structure and were further used as catalyst supports for a Pt-based catalyst in a direct methanol fuel cell. The synthesized TNT and Pt-based catalysts were analysed by FESEM, TEM, BET, EDX, XRD and FTIR. The electrochemical performance of the catalysts was investigated using cyclic voltammetry (CV) and chronoamperometric (CA) analysis to further understand the methanol oxidation in the direct methanol fuel cell (DMFC). Finally, the result proves that Pt-Ru/TNT-C catalyst shows high performance in methanol oxidation as the highest current density achieved at 3.3 mA/cm 2 (normalised by electrochemically active surface area) and high catalyst tolerance towards poisoning species was established.

  2. Density controlled carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  3. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells.

    PubMed

    Zhang, Changkun; Yu, Hongmei; Li, Yongkun; Gao, Yuan; Zhao, Yun; Song, Wei; Shao, Zhigang; Yi, Baolian

    2013-04-01

    Hydrogen-treated TiO2 nanotube (H-TNT) arrays serve as highly ordered nanostructured electrode supports, which are able to significantly improve the electrochemical performance and durability of fuel cells. The electrical conductivity of H-TNTs increases by approximately one order of magnitude in comparison to air-treated TNTs. The increase in the number of oxygen vacancies and hydroxyl groups on the H-TNTs help to anchor a greater number of Pt atoms during Pt electrodeposition. The H-TNTs are pretreated by using a successive ion adsorption and reaction (SIAR) method that enhances the loading and dispersion of Pt catalysts when electrodeposited. In the SIAR method a Pd activator can be used to provide uniform nucleation sites for Pt and leads to increased Pt loading on the H-TNTs. Furthermore, fabricated Pt nanoparticles with a diameter of 3.4 nm are located uniformly around the pretreated H-TNT support. The as-prepared and highly ordered electrodes exhibit excellent stability during accelerated durability tests, particularly for the H-TNT-loaded Pt catalysts that have been annealed in ultrahigh purity H2 for a second time. There is minimal decrease in the electrochemical surface area of the as-prepared electrode after 1000 cycles compared to a 68 % decrease for the commercial JM 20 % Pt/C electrode after 800 cycles. X-ray photoelectron spectroscopy shows that after the H-TNT-loaded Pt catalysts are annealed in H2 for the second time, the strong metal-support interaction between the H-TNTs and the Pt catalysts enhances the electrochemical stability of the electrodes. Fuel-cell testing shows that the power density reaches a maximum of 500 mWcm(-2) when this highly ordered electrode is used as the anode. When used as the cathode in a fuel cell with extra-low Pt loading, the new electrode generates a specific power density of 2.68 kWg(Pt) (-1) . It is indicated that H-TNT arrays, which have highly ordered nanostructures, could be used as ordered electrode supports

  4. Synthesis and characterization of titanate nanotube/single-walled carbon nanotube (TNT/SWCNT) porous nanocomposite and its photocatalytic activity on 4-chlorophenol degradation under UV and solar irradiation

    NASA Astrophysics Data System (ADS)

    Payan, A.; Fattahi, M.; Jorfi, S.; Roozbehani, B.; Payan, S.

    2018-03-01

    The titanate nanotube/single-wall carbon nanotube (TNT/SWCNT) nanocomposites from different titania precursors were prepared by a two-step hydrothermal process. These nanocomposites were characterized by XRD, BET, Raman, FESEM, TEM, EDX, EDS, EIS, UV-vis DRS and FTIR techniques. The FESEM and TEM images showed the high porous nanocomposites with two types of tubular structure relating to TNTs and SWCNTs which were interwoven together uniformly. The XRD and Raman analysis further corroborated the chemical interaction between the SWCNT and the TNT in the nanocomposites. The photocatalytic performance of the as-synthesized composites were examined by the photodegradation of 4-CP under solar and UV illumination. The results revealed an impressive enhancement in photocatalytic activity of the nanocomposites under both irradiation conditions comparison to bare TNPs and TNTs. Amongst the TNT/SWCNT nanocomposites, 10% loading of SWCNT under UV irradiation and 5% loading of SWCNT under solar irradiation exhibited the maximum photocatalytic performance while the photocatalytic degradation efficiency of nanocomposites were not affected considerably by the type of precursor. Moreover, the mechanism and role of SWCNT were investigated and the plausible degradation pathways of 4-CP was suggested. TOC analyses was performed for determination of 4-CP mineralization rate and results showed complete mineralization after 240 and 390 min under UV and solar irradiation, respectively. The trapping experiments corroborated the O2- and OH radicals as the main reactive species in 4-CP degradation process. Langmuir-Hinshelwood kinetic model was fittingly matched with the experimental data (R2: 0.9218 and 0.9703 for UV and solar irradiation). Additionally, the stability of the nanocomposites were investigated and revealed 8% decrease in degradation efficiency after four cycles.

  5. Making Carbon-Nanotube Arrays Using Block Copolymers: Part 2

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael

    2004-01-01

    Some changes have been incorporated into a proposed method of manufacturing regular arrays of precisely sized, shaped, positioned, and oriented carbon nanotubes. Such arrays could be useful as mechanical resonators for signal filters and oscillators, and as electrophoretic filters for use in biochemical assays. A prior version of the method was described in Block Copolymers as Templates for Arrays of Carbon Nanotubes, (NPO-30240), NASA Tech Briefs, Vol. 27, No. 4 (April 2003), page 56. To recapitulate from that article: As in other previously reported methods, carbon nanotubes would be formed by decomposition of carbon-containing gases over nanometer-sized catalytic metal particles that had been deposited on suitable substrates. Unlike in other previously reported methods, the catalytic metal particles would not be so randomly and densely distributed as to give rise to thick, irregular mats of nanotubes with a variety of lengths, diameters, and orientations. Instead, in order to obtain regular arrays of spaced-apart carbon nanotubes as nearly identical as possible, the catalytic metal particles would be formed in predetermined regular patterns with precise spacings. The regularity of the arrays would be ensured by the use of nanostructured templates made of block copolymers.

  6. Fabrication of titanium dioxide nanotube arrays using organic electrolytes

    NASA Astrophysics Data System (ADS)

    Yoriya, Sorachon

    This dissertation focuses on fabrication and improvement of morphological features of TiO2 nanotube arrays in the selected organic electrolytes including dimethyl sulfoxide (DMSO; see Chapter 4) and diethylene glycol (DEG; see Chapter 5). Using a polar dimethyl sulfoxide containing hydrofluoric acid, the vertically oriented TiO2 nanotube arrays with well controlled morphologies, i.e. tube lengths ranging from few microns up to 101 microm, pore diameters from 100 nm to 150 nm, and wall thicknesses from 15 nm to 50 nm were achieved. Various anodization variables including fluoride ion concentration, voltage, anodization time, water content, and reuse of the anodized electrolyte could be manipulated under proper conditions to control the nanotube array morphology. Anodization current behaviors associated with evolution of nanotube length were analyzed in order to clarify and better understand the formation mechanism of nanotubes grown in the organic electrolytes. Typically observed for DMSO electrolyte, the behavior that anodization current density gradually decreases with time is a reflection of a constant growth rate of nanotube arrays. Large fluctuation of anodization current was significantly observed probably due to the large change in electrolyte properties during anodization, when anodizing in high conductivity electrolytes such as using high HF concentration and reusing the anodized electrolyte as a second time. It is believed that the electrolyte properties such as conductivity and polarity play important role in affecting ion solvation and interactions in the solution consequently determining the formation of oxide film. Fabrication of the TiO2 nanotube array films was extended to study in the more viscous diethylene glycol (DEG) electrolyte. The arrayed nanotubes achieved from DEG electrolytes containing either HF or NH4 F are fully separated, freely self-standing structure with open pores and a wide variation of tube-to-tube spacing ranging from < 100 nm

  7. Carbon Nanotube Electrode Arrays For Enhanced Chemical and Biological Sensing

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2003-01-01

    Applications of carbon nanotubes for ultra-sensitive electrical sensing of chemical and biological species have been a major focus in NASA Ames Center for Nanotechnology. Great progress has been made toward controlled growth and chemical functionalization of vertically aligned carbon nanotube arrays and integration into micro-fabricated chip devices. Carbon nanotube electrode arrays devices have been used for sub-attomole detection of DNA molecules. Interdigitated carbon nanotubes arrays devices have been applied to sub ppb (part per billion) level chemical sensing for many molecules at room temperature. Stability and reliability have also been addressed in our device development. These results show order of magnitude improvement in device performance, size and power consumption as compared to micro devices, promising applications of carbon nanotube electrode arrays for clinical molecular diagnostics, personal medical testing and monitoring, and environmental monitoring.

  8. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.

  9. Carbon Nanotube Array for Infrared Detection

    DTIC Science & Technology

    2008-12-05

    ctron Transport Charact eri stic s of a Carbon nanotub es/S i He terodimensional He tero structure." Materials Research Society, Spring meeting (2008). 3...From - To) 05-12-2008 Final 27 09 2006-26 09 2008 4 . TITLE AND SUBTITLE 5a . CONTRACT NUMBER Carbon Nanotube Array for Infrared Detection 5b...Distribution is unlimited 13 . SUPPLEMENTARY NOTES 14 . ABSTRACT We explore the basic science issues and device potential of our carbon nanotube-silicon (CNT

  10. Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Xu, Y. N.; Liu, M. N.; Wang, M. C.; Oloyede, A.; Bell, J. M.; Yan, C.

    2015-10-01

    Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load-displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed.

  11. MnO 2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Feng, Jinkui; Wang, Hailong; Lai, Man On; Lu, Li

    Highly ordered MnO 2 nanotube and nanowire arrays are successfully synthesized via a electrochemical deposition technique using porous alumina templates. The morphologies and microstructures of the MnO 2 nanotube and nanowire arrays are investigated by field emission scanning electron microscopy and transmission electron microscopy. Electrochemical characterization demonstrates that the MnO 2 nanotube array electrode has superior capacitive behaviour to that of the MnO 2 nanowire array electrode. In addition to high specific capacitance, the MnO 2 nanotube array electrode also exhibits good rate capability and good cycling stability, which makes it promising candidate for supercapacitors.

  12. Array of aligned and dispersed carbon nanotubes and method of producing the array

    DOEpatents

    Ivanov, Ilia N [Knoxville, TN; Simpson, John T [Clinton, TN; Hendricks, Troy R [Knoxville, TN

    2012-06-19

    An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm.sup.2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 .OMEGA.m or less.

  13. Array of aligned and dispersed carbon nanotubes and method of producing the array

    DOEpatents

    Ivanov, Ilia N; Simpson, John T; Hendricks, Troy R

    2013-06-11

    An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm.sup.2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 .OMEGA.m or less.

  14. Arrays of Bundles of Carbon Nanotubes as Field Emitters

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bronkowski, Michael

    2007-01-01

    Experiments have shown that with suitable choices of critical dimensions, planar arrays of bundles of carbon nanotubes (see figure) can serve as high-current-density field emitter (cold-cathode) electron sources. Whereas some hot-cathode electron sources must be operated at supply potentials of thousands of volts, these cold-cathode sources generate comparable current densities when operated at tens of volts. Consequently, arrays of bundles of carbon nanotubes might prove useful as cold-cathode sources in miniature, lightweight electron-beam devices (e.g., nanoklystrons) soon to be developed. Prior to the experiments, all reported efforts to develop carbon-nanotube-based field-emission sources had yielded low current densities from a few hundred microamperes to a few hundred milliamperes per square centimeter. An electrostatic screening effect, in which taller nanotubes screen the shorter ones from participating in field emission, was conjectured to be what restricts the emission of electrons to such low levels. It was further conjectured that the screening effect could be reduced and thus emission levels increased by increasing the spacing between nanotubes to at least by a factor of one to two times the height of the nanotubes. While this change might increase the emission from individual nanotubes, it would decrease the number of nanotubes per unit area and thereby reduce the total possible emission current. Therefore, to maximize the area-averaged current density, it would be necessary to find an optimum combination of nanotube spacing and nanotube height. The present concept of using an array of bundles of nanotubes arises partly from the concept of optimizing the spacing and height of field emitters. It also arises partly from the idea that single nanotubes may have short lifetimes as field emitters, whereas bundles of nanotubes could afford redundancy so that the loss of a single nanotube would not significantly reduce the overall field emission.

  15. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    PubMed

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.

  16. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion.

    PubMed

    Gulati, Karan; Ramakrishnan, Saminathan; Aw, Moom Sinn; Atkins, Gerald J; Findlay, David M; Losic, Dusan

    2012-01-01

    Bacterial infection, extensive inflammation and poor osseointegration have been identified as the major reasons for [early] orthopaedic implant failures based on titanium. Creating implants with drug-eluting properties to locally deliver drugs is an appealing way to address some of these problems. To improve properties of titanium for orthopaedic applications, this study explored the modification of titanium surfaces with titaniananotube (TNT) arrays, and approach that combines drug delivery into bone and potentially improved bone integration. A titania layer with an array of nanotube structures (∼120 nm in diameter and 50 μm in length) was synthesized on titanium surfaces by electrochemical anodization and loaded with the water-insoluble anti-inflammatory drug indomethacin. A simple dip-coating process of polymer modification formed thin biocompatible polymer films over the drug-loaded TNTs to create TNTs with predictable drug release characteristics. Two biodegradable and antibacterial polymers, chitosan and poly(lactic-co-glycolic acid), were tested for their ability to extend the drug release time of TNTs and produce favourable bone cell adhesion properties. Dependent on polymer thickness, a significant improvement in the drug release characteristics was demonstrated, with reduced burst release (from 77% to >20%) and extended overall release from 4 days to more than 30 days. Excellent osteoblast adhesion and cell proliferation on polymer-coated TNTs compared with uncoated TNTs were also observed. These results suggest that polymer-modified implants with a TNT layer are capable of delivering a drug to a bone site over an extended period and with predictable kinetics. In addition, favourable bone cell adhesion suggests that such an implant would have good biocompatibility. The described approach is broadly applicable to a wide range of drugs and implants currently used in orthopaedic practice. Crown Copyright © 2011. Published by Elsevier Ltd. All rights

  17. Influence of anodization parameters on the morphology of TiO 2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Omidvar, Hamid; Goodarzi, Saba; Seif, Ahmad; Azadmehr, Amir R.

    2011-07-01

    TiO 2 nanotube arrays can be fabricated by electrochemical anodization in organic and inorganic electrolytes. Morphology of these nanotube arrays changes when anodization parameters such as applied voltage, type of electrolyte, time and temperature are varied. Nanotube arrays fabricated by anodization of commercial titanium in electrolytes containing NH 4F solution and either sulfuric or phosphoric acid were studied at room temperature; time of anodization was kept constant. Applied voltage, fluoride ion concentration, and acid concentrations were varied and their influences on TiO 2 nanotubes were investigated. The current density of anodizing was recorded by computer controlled digital multimeter. The surface morphology (top-view) of nanotube arrays were observed by SEM. The nanotube arrays in this study have inner diameters in range of 40-80 nm.

  18. TiO2 Nanotube Arrays: Fabricated by Soft-Hard Template and the Grain Size Dependence of Field Emission Performance

    NASA Astrophysics Data System (ADS)

    Yang, Xuxin; Ma, Pei; Qi, Hui; Zhao, Jingxin; Wu, Qiang; You, Jichun; Li, Yongjin

    2017-11-01

    Highly ordered TiO2 nanotube (TNT) arrays were successfully synthesized by the combination of soft and hard templates. In the fabrication of them, anodic aluminum oxide membranes act as the hard template while the self-assembly of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) complexed with titanium-tetraisopropoxide (TTIP, the precursor of TiO2) provides the soft template to control the grain size of TiO2 nanotubes. Our results indicate that the field emission (FE) performance depends crucially on the grain size of the calcinated TiO2 which is dominated by the PS-b-PEO and its blending ratio with TTIP. The optimized sample (with the TTIP/PEO ratio of 3.87) exhibits excellent FE performances involving both a low turn-on field of 3.3 V/um and a high current density of 7.6 mA/cm2 at 12.7 V/μm. The enhanced FE properties can be attributed to the low effective work function (1.2 eV) resulted from the smaller grain size of TiO2.

  19. Periodically striped films produced from super-aligned carbon nanotube arrays.

    PubMed

    Liu, Kai; Sun, Yinghui; Liu, Peng; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2009-08-19

    We report a novel way to draw films from super-aligned carbon nanotube arrays at large drawing angles. The obtained super-aligned carbon nanotube films have a periodically striped configuration with alternating thinner and thicker film sections, and the width of the stripes is equal to the height of the original arrays. Compared with ordinary uniform films, the striped films provide a better platform for understanding the mechanism of spinning films from arrays because carbon nanotube junctions are easily observed and identified at the boundary of the stripes. Further studies show that the carbon nanotube junctions are bottleneck positions for thermal conduction and mechanical strength of the film, but do not limit its electrical conduction. These films can be utilized as striped and high-degree polarized light emission sources. Our results will be valuable for new applications and future large-scale production of tunable super-aligned carbon nanotube films.

  20. Investigation on the storage of benzotriazole corrosion inhibitor in TiO2 nanotube

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Dieu Hang; Tiep Nong, Thanh; Quang Nguyen, Van; Quyen Nguyen, The; Le, Quang Trung

    2018-06-01

    The present paper describes different methods for storing the benzotriazole (BTA) corrosion inhibitor in the titanium dioxide nanotubes (TNT) as nanocontainers. Three methods were used, including the vacuum impregnation at ambient temperature, the vacuum impregnation at cooling temperature () and the rotary vacuum evaporation. TNT, BTA and BTA/TNT products were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. nanotube powder was synthesized by hydrothermal treatment from the inexpensive spherical commercial precursor. The results obtained from SEM, TEM images and BET values showed the successful synthesis of TNT with a homogeneous morphology of nano size tubes and a large specific surface . The existence of BTA in TNT was demonstrated. The BTA/TNT obtained via the rotary vacuum evaporation contained a very significant amount of BTA (66.6 weight %) but BTA existed mostly outside the nanotubes. Two processes of vacuum impregnation at ambient temperature and vacuum impregnation at cooling temperature revealed that there was about 8 weight % BTA stored in BTA/TNT product and BTA was present mostly inside the nanotubes.

  1. Electrochemical properties of Ti3+ doped Ag-Ti nanotube arrays coated with hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Zhang, Hangzhou; Shi, Xiaoguo; Tian, Ang; Wang, Li; Liu, Chuangwei

    2018-04-01

    Ag-Ti nanotube array was prepared by simple anodic oxidation method and uniform hydroxyapatite were electrochemically deposited on the nanotubes, and then characterized by SEM, XRD, XPS and EIS. In order to investigate the influence of Ti3+ on the electrochemical deposition of hydroxyapatite on the nanotubes, the Ag-Ti nanotube array self-doped with Ti3+ was prepared by one step reduction method. The experiment results revealed that the Ti3+ can promote the grow rate of hydroxyapatite coatings on nanotube surface. The hydroxyapatite coated Ag-Ti nanotube arrays with Ti3+ exhibit excellent stability and higher corrosion resistance. Moreover, the compact and dense hydroxyapatite coating can also prevent the Ag atom erosion from the Ag-Ti nanotube.

  2. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants.

    PubMed

    Aw, Moom Sinn; Khalid, Kamarul A; Gulati, Karan; Atkins, Gerald J; Pivonka, Peter; Findlay, David M; Losic, Dusan

    2012-01-01

    The aim of this study was to investigate the application of the three-dimensional bone bioreactor for studying drug-release kinetics and distribution of drugs in the ex vivo cancellous bone environment, and to demonstrate the application of nanoengineered titanium (Ti) wires generated with titania nanotube (TNT) arrays as drug-releasing implants for local drug delivery Nanoengineered Ti wires covered with a layer of TNT arrays implanted in bone were used as a drug-releasing implant. Viable bovine trabecular bone was used as the ex vivo bone substrate embedded with the implants and placed in the bone reactor. A hydrophilic fluorescent dye (rhodamine B) was used as the model drug, loaded inside the TNT-Ti implants, to monitor drug release and transport in trabecular bone. The distribution of released model drug in the bone was monitored throughout the bone structure, and concentration profiles at different vertical (0-5 mm) and horizontal (0-10 mm) distances from the implant surface were obtained at a range of release times from 1 hour to 5 days. Scanning electron microscopy confirmed that well-ordered, vertically aligned nanotube arrays were formed on the surface of prepared TNT-Ti wires. Thermogravimetric analysis proved loading of the model drug and fluorescence spectroscopy was used to show drug-release characteristics in-vitro. The drug release from implants inserted into bone ex vivo showed a consistent gradual release of model drug from the TNT-Ti implants, with a characteristic three-dimensional distribution into the surrounding bone, over a period of 5 days. The parameters including the flow rate of bone culture medium, differences in trabecular microarchitecture between bone samples, and mechanical loading were found to have the most significant influence on drug distribution in the bone. These results demonstrate the utility of the Zetos™ system for ex vivo drug-release studies in bone, which can be applied to optimize the delivery of specific therapies

  3. Ice-assisted transfer of carbon nanotube arrays.

    PubMed

    Wei, Haoming; Wei, Yang; Lin, Xiaoyang; Liu, Peng; Fan, Shoushan; Jiang, Kaili

    2015-03-11

    Decoupling the growth and the application of nanomaterials by transfer is an important issue in nanotechnology. Here, we developed an efficient transfer technique for carbon nanotube (CNT) arrays by using ice as a binder to temporarily bond the CNT array and the target substrate. Ice makes it an ultraclean transfer because the evaporation of ice ensures that no contaminants are introduced. The transferred superaligned carbon nanotube (SACNT) arrays not only keep their original appearance and initial alignment but also inherit their spinnability, which is the most desirable feature. The transfer-then-spin strategy can be employed to fabricate patterned CNT arrays, which can act as 3-dimensional electrodes in CNT thermoacoustic chips. Besides, the flip-chipped CNTs are promising field electron emitters. Furthermore, the ice-assisted transfer technique provides a cost-effective solution for mass production of SACNTs, giving CNT technologies a competitive edge, and this method may inspire new ways to transfer other nanomaterials.

  4. Transparent Nanotubular TiO₂ Photoanodes Grown Directly on FTO Substrates.

    PubMed

    Paušová, Šárka; Kment, Štěpán; Zlámal, Martin; Baudys, Michal; Hubička, Zdeněk; Krýsa, Josef

    2017-05-10

    This work describes the preparation of transparent TiO₂ nanotube (TNT) arrays on fluorine-doped tin oxide (FTO) substrates. An optimized electrolyte composition (0.2 mol dm -3 NH₄F and 4 mol dm -3 H₂O in ethylene glycol) was used for the anodization of Ti films with different thicknesses (from 100 to 1300 nm) sputtered on the FTO glass substrates. For Ti thicknesses 600 nm and higher, anodization resulted in the formation of TNT arrays with an outer nanotube diameter around 180 nm and a wall thickness around 45 nm, while for anodized Ti thicknesses of 100 nm, the produced nanotubes were not well defined. The transmittance in the visible region (λ = 500 nm) varied from 90% for the thinnest TNT array to 65% for the thickest TNT array. For the fabrication of transparent TNT arrays by anodization, the optimal Ti thickness on FTO was around 1000 nm. Such fabricated TNT arrays with a length of 2500 nm exhibit stable photocurrent densities in aqueous electrolytes (~300 µA cm -2 at potential 0.5 V vs. Ag/AgCl). The stability of the photocurrent response and a sufficient transparency (≥65%) enables the use of transparent TNT arrays in photoelectrochemical applications when the illumination from the support/semiconductor interface is a necessary condition and the transmitted light can be used for another purpose (photocathode or photochemical reaction in the electrolyte).

  5. Block Copolymers as Templates for Arrays of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael; Hunt, Brian

    2003-01-01

    A method of manufacturing regular arrays of precisely sized, shaped, positioned, and oriented carbon nanotubes has been proposed. Arrays of carbon nanotubes could prove useful in such diverse applications as communications (especially for filtering of signals), biotechnology (for sequencing of DNA and separation of chemicals), and micro- and nanoelectronics (as field emitters and as signal transducers and processors). The method is expected to be suitable for implementation in standard semiconductor-device fabrication facilities.

  6. Preparation of arrays of long carbon nanotubes using catalyst structure

    DOEpatents

    Zhu, Yuntian T.; Arendt, Paul; Li, Qingwen; Zhang, Xiefie

    2016-03-22

    A structure for preparing an substantially aligned array of carbon nanotubes include a substrate having a first side and a second side, a buffer layer on the first side of the substrate, a catalyst on the buffer layer, and a plurality of channels through the structure for allowing a gaseous carbon source to enter the substrate at the second side and flow through the structure to the catalyst. After preparing the array, a fiber of carbon nanotubes may be spun from the array. Prior to spinning, the array can be immersed in a polymer solution. After spinning, the polymer can be cured.

  7. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.

    PubMed

    Shekhar, Shashank; Stokes, Paul; Khondaker, Saiful I

    2011-03-22

    We report ultrahigh density assembly of aligned single-walled carbon nanotube (SWNT) two-dimensional arrays via AC dielectrophoresis using high-quality surfactant-free and stable SWNT solutions. After optimization of frequency and trapping time, we can reproducibly control the linear density of the SWNT between prefabricated electrodes from 0.5 SWNT/μm to more than 30 SWNT/μm by tuning the concentration of the nanotubes in the solution. Our maximum density of 30 SWNT/μm is the highest for aligned arrays via any solution processing technique reported so far. Further increase of SWNT concentration results in a dense array with multiple layers. We discuss how the orientation and density of the nanotubes vary with concentrations and channel lengths. Electrical measurement data show that the densely packed aligned arrays have low sheet resistances. Selective removal of metallic SWNTs via controlled electrical breakdown produced field-effect transistors with high current on-off ratio. Ultrahigh density alignment reported here will have important implications in fabricating high-quality devices for digital and analog electronics.

  8. Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them

    DOEpatents

    Kim, Myung Jong; Nicholas, Nolan Walker; Kittrell, W. Carter; Schmidt, Howard K.

    2015-06-30

    According to some embodiments, the present invention provides a system and method for supporting a carbon nanotube array that involve an entangled carbon nanotube mat integral with the array, where the mat is embedded in an embedding material. The embedding material may be depositable on a carbon nanotube. A depositable material may be metallic or nonmetallic. The embedding material may be an adhesive material. The adhesive material may optionally be mixed with a metal powder. The embedding material may be supported by a substrate or self-supportive. The embedding material may be conductive or nonconductive. The system and method provide superior mechanical and, when applicable, electrical, contact between the carbon nanotubes in the array and the embedding material. The optional use of a conductive material for the embedding material provides a mechanism useful for integration of carbon nanotube arrays into electronic devices.

  9. Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tran, Vy Anh; Truong, Trieu Thinh; Phan, Thu Anh Pham; Nguyen, Trang Ngoc; Huynh, Tuan Van; Agresti, Antonio; Pescetelli, Sara; Le, Tien Khoa; Di Carlo, Aldo; Lund, Torben; Le, So-Nhu; Nguyen, Phuong Tuyet

    2017-03-01

    Our research aimed to improve the overall energy conversion efficiency of DSCs by applying nitrogen-doped TiO2 nano-tubes (N-TNT) for the preparation of DSCs photo-anodes. The none-doped TiO2 nano-tubes (TNTs) were synthesized by alkaline hydrothermal treatment of Degussa P25 TiO2 particles in 10 M NaOH. The nano-tubes were N-doped by reflux in various concentrations of NH4NO3. The effects of nitrogen doping on the structure, morphology, and crystallography of N-TNT were analyzed by transmission electron microscopy (TEM), infrared spectroscopy (IR), Raman spectroscopy, and X-ray photoelectron spectra (XPS). DSCs fabricated with doped N-TNT and TNT was characterized by J-V measurements. Results showed that nitrogen doping significantly enhanced the efficiency of N-TNT cells, reaching the optimum value (η = 7.36%) with 2 M nitrogen dopant, compared to η = 4.75% of TNT cells. The high efficiency of the N-TNT cells was attributed to increased current density due to the reduction of dark current in the DSCs.

  10. Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: Structural and biological properties

    NASA Astrophysics Data System (ADS)

    Mokhtari, H.; Ghasemi, Z.; Kharaziha, M.; Karimzadeh, F.; Alihosseini, F.

    2018-05-01

    Bacterial infection and insignificant osseointegration have been recognized as the main reasons of the failures of titanium based implants. The aim of this study was to apply titanium oxide nanotube (TNT) array on titanium using electrochemical anodization process as a more appropriate substrate for chitosan and chitosan-58S bioactive glass (BG) (58S-BG-Chitosan) nanocomposite coatings covered TNTs (TNT/Chiosan, TNT/58S-BG-Chitosan, respectively) through a conventional dip-coating process. Results showed that a TNT layer with average inner diameter of 82 ± 19 nm and wall's thickness of 23 ± 9 nm was developed on titanium surface using electrochemical anodization process. Roughness and contact angle measurement showed that TNT with Ra = 449 nm had highest roughness and hydrophilicity which then reduced to 86 nm and 143 nm for TNT/Chitosan and TNT/58S-BG-Chitosan, respectively. In vitro bioactivity evaluation in simulated buffer fluid (SBF) solution and antibacterial activity assay predicted that TNT/58S-BG-Chitosan was superior in bone like apatite formation and antibacterial activity against both gram-positive and gram-negative bacteria compared to Ti, TNT and TNT/Chitosan samples, respectively. Results revealed the noticeable MG63 cell attachment and proliferation on TNT/58S-BG-Chitosan coating compared to those of uncoated TNTs. These results confirmed the positive effect of using TNT substrate for natural polymer coating on improved bioactivity of implant.

  11. Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance.

    PubMed

    Li, Qi; Shang, Jian Ku

    2009-12-01

    Self-organized nitrogen and fluorine co-doped titanium oxide (TiONF) nanotube arrays were created by anodizing titanium foil in a fluoride and ammoniate-based electrolyte, followed by calcination of the amorphous nanotube arrays under a nitrogen protective atmosphere for crystallization. TiONF nanotube arrays were found to have enhanced visible light absorption capability and photodegradation efficiency on methylene blue under visible light illumination over the TiO(2) nanotube arrays. The enhancement was dependent on both the nanotube structural architecture and the nitrogen and fluorine co-doping effect. TiONF nanotube arrays promise a wide range of technical applications, especially for environmental applications and solar cell devices.

  12. Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection

    NASA Technical Reports Server (NTRS)

    Li, Jun; Koehne, Jessica; Chen, Hua; Cassell, Alan; Ng, Hou Tee; Fan, Wendy; Ye, Qi; Han, Jie; Meyyappan, M.

    2003-01-01

    A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in SiO2 is used for ultrasensitive DNA detection. Characteristic nanoelectrode behavior is observed using low-density MWNT arrays for measuring both bulk and surface immobilized redox species such as K4Fe(CN)6. The open-end of MWNTs present similar properties as graphite edge-plane electrodes with wide potential window, flexible chemical functionalities, and good biocompatibility. Oligonucleotide probes are selectively functionalized at the open ends cf the nanotube array and specifically hybridized with oligonucleotide targets. The guanine groups are employed as the signal moieties in the electrochemical measurements. Ru(bpy)3(2+) mediator is used to further amplify the guanine oxidation signal. The hybridization of subattomoles of PCR amplified DNA targets is detected electrochemically by combining the MWNT nanoelectrode array with the Ru(bpy)32' amplification mechanism. This system provides a general platform of molecular diagnostics for applications requiring ultrahigh sensitivity, high-degree of miniaturization, and simple sample preparations.

  13. Self-assembled ordered carbon-nanotube arrays and membranes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overmyer, Donald L.; Siegal, Michael P.; Yelton, William Graham

    2004-11-01

    Imagine free-standing flexible membranes with highly-aligned arrays of carbon nanotubes (CNTs) running through their thickness. Perhaps with both ends of the CNTs open for highly controlled nanofiltration? Or CNTs at heights uniformly above a polymer membrane for a flexible array of nanoelectrodes or field-emitters? How about CNT films with incredible amounts of accessible surface area for analyte adsorption? These self-assembled crystalline nanotubes consist of multiple layers of graphene sheets rolled into concentric cylinders. Tube diameters (3-300 nm), inner-bore diameters (2-15 nm), and lengths (nanometers - microns) are controlled to tailor physical, mechanical, and chemical properties. We proposed to explore growthmore » and characterize nanotube arrays to help determine their exciting functionality for Sandia applications. Thermal chemical vapor deposition growth in a furnace nucleates from a metal catalyst. Ordered arrays grow using templates from self-assembled hexagonal arrays of nanopores in anodized-aluminum oxide. Polymeric-binders can mechanically hold the CNTs in place for polishing, lift-off, and membrane formation. The stiffness, electrical and thermal conductivities of CNTs make them ideally suited for a wide-variety of possible applications. Large-area, highly-accessible gas-adsorbing carbon surfaces, superb cold-cathode field-emission, and unique nanoscale geometries can lead to advanced microsensors using analyte adsorption, arrays of functionalized nanoelectrodes for enhanced electrochemical detection of biological/explosive compounds, or mass-ionizers for gas-phase detection. Materials studies involving membrane formation may lead to exciting breakthroughs in nanofiltration/nanochromatography for the separation of chemical and biological agents. With controlled nanofilter sizes, ultrafiltration will be viable to separate and preconcentrate viruses and many strains of bacteria for 'down-stream' analysis.« less

  14. P(VDF-TrFE) ferroelectric nanotube array for high energy density capacitor applications.

    PubMed

    Li, Xue; Lim, Yee-Fun; Yao, Kui; Tay, Francis Eng Hock; Seah, Kar Heng

    2013-01-14

    Poly(vinylidene-fluoride-co-trifluoroethylene) (P(VDF-TrFE)) ferroelectric nanotube arrays were fabricated using an anodized alumina membrane (AAM) as a template and silver electrodes were deposited on both the outer and inner sides of the nanotubes by an electroless plating method. The nanotubes have the unique structure of being sealed at one end and linked at the open end, thus preventing electrical shorting between the inner and outer electrodes. Compared with a P(VDF-TrFE) film with a similar overall thickness, the idealized nanotube array has a theoretical capacitance that is 763 times larger due to the greatly enlarged contact area between the electrodes and the polymer dielectric. A capacitance that is 95 times larger has been demonstrated experimentally, thus indicating that such nanotube arrays are promising for realizing high density capacitance and high power dielectric energy storage.

  15. Arrays of Carbon Nanotubes as RF Filters in Waveguides

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel; Hunt, Brian; Hoenk, Michael; Noca, Flavio; Xu, Jimmy

    2003-01-01

    Brushlike arrays of carbon nanotubes embedded in microstrip waveguides provide highly efficient (high-Q) mechanical resonators that will enable ultraminiature radio-frequency (RF) integrated circuits. In its basic form, this invention is an RF filter based on a carbon nanotube array embedded in a microstrip (or coplanar) waveguide, as shown in Figure 1. In addition, arrays of these nanotube-based RF filters can be used as an RF filter bank. Applications of this new nanotube array device include a variety of communications and signal-processing technologies. High-Q resonators are essential for stable, low-noise communications, and radar applications. Mechanical oscillators can exhibit orders of magnitude higher Qs than electronic resonant circuits, which are limited by resistive losses. This has motivated the development of a variety of mechanical resonators, including bulk acoustic wave (BAW) resonators, surface acoustic wave (SAW) resonators, and Si and SiC micromachined resonators (known as microelectromechanical systems or MEMS). There is also a strong push to extend the resonant frequencies of these oscillators into the GHz regime of state-of-the-art electronics. Unfortunately, the BAW and SAW devices tend to be large and are not easily integrated into electronic circuits. MEMS structures have been integrated into circuits, but efforts to extend MEMS resonant frequencies into the GHz regime have been difficult because of scaling problems with the capacitively-coupled drive and readout. In contrast, the proposed devices would be much smaller and hence could be more readily incorporated into advanced RF (more specifically, microwave) integrated circuits.

  16. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    PubMed

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  17. Cr(VI) removal on visible light active TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Bashirom, Nurulhuda; Zulkifli, Muhammad Afiq; Subagja, Subagja; Kian, Tan Wai; Matsuda, Atsunori; Lockman, Zainovia

    2018-05-01

    Self-organized TiO2 nanotube (TNT) arrays were fabricated by anodic oxidation of titanium foil in three different fluoride electrolytes: ethylene glycol (EG), glycerol, and sodium sulfate (Na2SO4) at different voltage and anodization time. In these electrolytes, the TNTs were produced in ˜ 2 µm long, but at the different diameter. The size of inner diameter can be arranged from the largest to the smallest value in the order of glycerol > EG > Na2SO4. Crystallization of the TNTs by annealing was led to the formation of anatase-TiO2. The sample can be activated under natural sunlight for reduction of hexavalent chromium, Cr(VI) into trivalent chromium, Cr(III). The reduction was thought to occur via synergistic reactions between adsorption and photoreduction. The result demonstrates 100 % of Cr(VI) removal efficiency over the TNTs grown in EG after 120 min. Whereas, only 48 % and 45 % of Cr(VI) can be removed over the TNTs fabricated in glycerol and Na2SO4, respectively. High photocatalytic activity of the TNTs-EG can be attributed to high crystallinity of anatase phase, enhanced Cr(VI) adsorption, and less electron-hole recombination due to smoother tube walls.

  18. Toward single-chirality carbon nanotube device arrays.

    PubMed

    Vijayaraghavan, Aravind; Hennrich, Frank; Stürzl, Ninette; Engel, Michael; Ganzhorn, Marc; Oron-Carl, Matti; Marquardt, Christoph W; Dehm, Simone; Lebedkin, Sergei; Kappes, Manfred M; Krupke, Ralph

    2010-05-25

    The large-scale integration of devices consisting of individual single-walled carbon nanotubes (SWCNT), all of the same chirality, is a critical step toward their electronic, optoelectronic, and electromechanical application. Here, the authors realize two related goals, the first of which is the fabrication of high-density, single-chirality SWCNT device arrays by dielectrophoretic assembly from monodisperse SWCNT solution obtained by polymer-mediated sorting. Such arrays are ideal for correlating measurements using various techniques across multiple identical devices, which is the second goal. The arrays are characterized by voltage-contrast scanning electron microscopy, electron transport, photoluminescence (PL), and Raman spectroscopy and show identical signatures as expected for single-chirality SWCNTs. In the assembled nanotubes, a large D peak in Raman spectra, a large dark-exciton peak in PL spectra as well as lowered conductance and slow switching in electron transport are all shown to be correlated to each other. By comparison to control samples, we conclude that these are the result of scattering from electronic and not structural defects resulting from the polymer wrapping, similar to what has been predicted for DNA wrapping.

  19. ZnO nanotube waveguide arrays on graphene films for local optical excitation on biological cells

    NASA Astrophysics Data System (ADS)

    Baek, Hyeonjun; Kwak, Hankyul; Song, Minho S.; Ha, Go Eun; Park, Jongwoo; Tchoe, Youngbin; Hyun, Jerome K.; Park, Hye Yoon; Cheong, Eunji; Yi, Gyu-Chul

    2017-04-01

    We report on scalable and position-controlled optical nanoprobe arrays using ZnO nanotube waveguides on graphene films for use in local optical excitation. For the waveguide fabrication, position-controlled and well-ordered ZnO nanotube arrays were grown on chemical vapor deposited graphene films with a submicron patterned mask layer and Au prepared between the interspace of nanotubes. Mammalian cells were cultured on the nanotube waveguide arrays and were locally excited by light illuminated through the nanotubes. Fluorescence and optogenetic signals could be excited through the optical nanoprobes. This method offers the ability to investigate cellular behavior with a high spatial resolution that surpasses the current limitation.

  20. Visible diffraction from quasi-crystalline arrays of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Butler, Timothy P.; Butt, Haider; Wilkinson, Timothy D.; Amaratunga, Gehan A. J.

    2015-08-01

    Large area arrays of vertically-aligned carbon nanotubes (VACNTs) are patterned in a quasi-crystalline Penrose tile arrangement through electron beam lithography definition of Ni catalyst dots and subsequent nanotube growth by plasma-enhanced chemical vapour deposition. When illuminated with a 532 nm laser beam high-quality and remarkable diffraction patterns are seen. The diffraction is well matched to theoretical calculations which assume apertures to be present at the location of the VACNTs for transmitted light. The results show that VACNTs act as diffractive elements in reflection and can be used as spatially phased arrays for producing tailored diffraction patterns.

  1. Bioavailability of TNT residues in composts of TNT-contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, W.G.; Beaman, J.R.; Walters, D.M.

    1997-10-01

    Composting is being explored as a means to remediate 2,4,6-trinitrotoluene (TNT) contaminated soils. This process appears to modify TNT and to bind it to organic matter. The health hazards associated with dusts generated from such materials cannot be predicted without knowing if the association between TNT residues and compost particulate is stable in biological systems. To address this question, single doses of [{sup 14}C]-TNT, soil spiked with [{sup 14C]-TNT, or compost generated with [{sup 14}C]-TNT-spiked soils were administered to rats by intratracheal instillation. The appearance of {sup 14}C in urine and tissues was taken as an indication of the bioavailabilitymore » of TNT residues from compost particles. In rats instilled with neat [{sup 14}C]-TNT, about 35% of the {sup 14}C dose appeared in urine within 3 d. The {sup 14}C excreted in urine by these rats decreased rapidly thereafter, and was undetectable by 4 wk after treatment. Similar results were obtained with soil-treated rats. In contrast, after treatment with [{sup 14}C]-TNT-labeled compost, only 2.3% of the total {sup 14}C dose appeared in urine during the first 3 d. Low levels of {sup 14}C continued to be excreted in urine from compost-treated rats for more than 6 mo, and the total amount of {sup 14}C in urine was comparable to that in TNT-treated animals. Determination of the radiolabel in tissues showed that {sup 14}C accumulated in the kidneys of rats treated with labeled compost but not in rats treated with [{sup 14}C]-TNT or [{sup 14}C]-TNT-spiked soil. These results indicate that the association between TNT and particulate matter in compost is not stable when introduced into the lungs. Accumulation of {sup 14}C in kidneys suggests the presence of a unique TNT residue in compost-treated rats. The rate of excretion and tissue disposition of {sup 14}}C in rats treated with TNT-spiked soil indicate that TNT in soil is freely available in the lungs. 12 refs., 4 figs., 1 tab.« less

  2. Transparent anodic TiO2 nanotube arrays on plastic substrates for disposable biosensors and flexible electronics.

    PubMed

    Farsinezhad, Samira; Mohammadpour, Arash; Dalrymple, Ashley N; Geisinger, Jared; Kar, Piyush; Brett, Michael J; Shankar, Karthik

    2013-04-01

    Exploitation of anodically formed self-organized TiO2 nanotube arrays in mass-manufactured, disposable biosensors, rollable electrochromic displays and flexible large-area solar cells would greatly benefit from integration with transparent and flexible polymeric substrates. Such integration requires the vacuum deposition of a thin film of titanium on the desired substrate, which is then anodized in suitable media to generate TiO2 nanotube arrays. However the challenges associated with control of Ti film morphology, nanotube array synthesis conditions, and film adhesion and transparency, have necessitated the use of substrate heating during deposition to temperatures of at least 300 degrees C and as high as 500 degrees C to generate highly ordered open-pore nanotube arrays, thus preventing the use of polymeric substrates. We report on a film growth technique that exploits atomic peening to achieve high quality transparent TiO2 nanotube arrays with lengths up to 5.1 microm at room temperature on polyimide substrates without the need for substrate heating or substrate biasing or a Kauffman ion source. The superior optical quality and uniformity of the nanotube arrays was evidenced by the high specular reflectivity and the smooth pattern of periodic interferometric fringes in the transmission spectra of the nanotube arrays, from which the wavelength-dependent effective refractive index was extracted for the air-TiO2 composite medium. A fluorescent immunoassay biosensor constructed using 5.1 microm-long transparent titania nanotube arrays (TTNAs) grown on Kapton substrates detected human cardiac troponin I at a concentration of 0.1 microg ml(-1).

  3. Photoluminescence of samarium-doped TiO{sub 2} nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Dong Jin; Sekino, Tohru, E-mail: sekino@tagen.tohoku.ac.jp; Tsukuda, Satoshi

    2011-10-15

    Samarium (Sm)-modified TiO{sub 2} nanotubes (TNTs) were synthesized by low-temperature soft chemical processing. X-ray powder diffraction analyses of the synthesized Sm-doped and non-doped TNTs show a broad peak near 2{theta}=10{sup o}, which is typical of TNTs. The binding energy of Sm {sup 3}d{sub 5/2} for 10 mol% Sm-doped TNT (1088.3 eV) was chemically shifted from that of Sm{sub 2}O{sub 3} (1087.5 eV), showing that Sm existed in the TiO{sub 2} lattice. Sm-doped TNTs clearly exhibited red fluorescence, corresponding to the doped Sm{sup 3+} ion in the TNT lattice. The Sm-doped TNT excitation spectrum exhibited a broad curve, which was similarmore » to the UV-vis optical absorption spectrum. Thus, it was considered that the photoluminescence emission of Sm{sup 3+}-doped TNT with UV-light irradiation was caused by the energy transfer from the TNT matrix via the band-to-band excitation of TiO{sub 2} to the Sm{sup 3+} ion. - Graphical Abstract: Samarium-doped TiO{sub 2} nanotubes (TNTs) having a nanotubular structure were synthesized by soft chemical route. It was revealed that the energy associated by the band-to-band excitation of TNT matrix transferred to the doped Sm{sup 3+} ions in the lattice, resulting in emission of strong and visible red fluorescence. Highlights: > Sm-doped TiO{sub 2} nanotubes synthesized by low-temperature soft chemical processing. > Sm{sup 3+} substitutes Ti{sup 4+} ions in the nanotube lattice. > Clear fluorescent emission due to the f-f transition at the Sm{sup 3+} in a crystal field environment. > Band-to-band excitation of TiO{sub 2} and followed energy transfer to Sm{sup 3+} causes the luminescence.« less

  4. Reactivity of TNT & TNT - Microbial Reduction Products with Soil Components

    DTIC Science & Technology

    1983-07-01

    TECHNICAL REPORT REACTIVITY OF N TNT & TNT - MICROBIAL REDUCTION PRODUCTS WITH SOIL COMPONENTS BY D. L.KAPLAN ANDDTI C A. M. KAPLAN APPPoVrD FOPJUY1S...3. RECIPIENT’S CATALOG NUMBER NATICK TR-83/041 / 5c ’_______________ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD -COVERED REACTIVITY OF TNT... REACTIVITY OF TNT AND TNT-MICROBIAL REDUCTION PRODUCTS WITH SOIL COMPONENTS INTRODUCTION Contamination of soils by hazardous wastes (toxic

  5. Effects of TNT and its metabolites on anaerobic TNT degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, D.J.; Pendharkar, S.; Ahmad, F.

    1998-07-01

    The effects of the presence of 2,4,6-trinitrotoluene (TNT), 4-amino-2,6-dinitrotoluene, and 2,4-diamino-6-nitrotoluene on the anaerobic treatment procedure developed for munitions-contaminated soil were examined. When 4-amino-2,6-dinitrotoluene was spiked in increasing levels into cultures containing TNT, inhibition of the rate of TNT degradation was observed. The degradation of 4-amino-2,6-dinitrotoluene did not proceed while TNT was present in the cultures. When 2,4-diamino-6-nitrotoluene was spiked into cultures that also contained TNT, TNT degradation rates were inhibited, and 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene were not degraded at all. When 2,4-diamino-6-nitrotoluene was spiked into cultures containing 4-amino-2,6-dinitrotoluene, degradation of 4-amino-2,6-dinitrotoluene was not effected but 2,4-diamino-6-nitrotoluene was not degraded. Thesemore » results suggest that the rapid removal of TNT from the treatment system, before the intermediates have a chance to accumulate, or the rapid removal of the intermediates of TNT degradation is of utmost importance during the remediation of TNT-contaminated soils. If these intermediates are allowed to accumulate above inhibitory levels, the degradation of TNT will be slowed and the removal of the intermediates will halt completely.« less

  6. Carbon Nanotube Array for Infrared Detection

    DTIC Science & Technology

    2011-09-28

    Scientific Progress Technology Transfer 1    Carbon Nanotube Array for Infrared Detection Final Report Jimmy Xu...devices. In contrast to photocarrier generation across a band gap, nature’s bolometers convert infrared radiation into heating of tissues thereby...been investigated. [5, 6] High TCR is, however, not the only important parameter for bolometric sensing. Heat capacity, thermal conductivity

  7. Efficient generation and transportation of energetic electrons in a carbon nanotube array target

    NASA Astrophysics Data System (ADS)

    Ji, Yanling; Jiang, Gang; Wu, Weidong; Wang, Chaoyang; Gu, Yuqiu; Tang, Yongjian

    2010-01-01

    Laser-driven energetic electron propagation in a carbon nanotube-array target is investigated using two-dimensional particle-in-cell simulations. Energetic electrons are efficiently generated when the array is irradiated by a short intense laser pulse. Confined and guided transportation of energetic electrons in the array is achieved by exploiting strong transient electromagnetic fields created at the wall surfaces of nanotubes. The underlying mechanisms are discussed in detail. Our investigation shows that the laser energy can be transferred more effectively to the target electrons in the array than that of in the flat foil due to the hole structures in the array.

  8. Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO{sub 2} nanotube arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Shang-Chao, E-mail: schung99@gmail.com; Chen, Yu-Jyun

    2016-07-15

    Highlights: • Graphene nanoribbons (GNBs) slanted on aggregate TiO{sub 2} nanotube (A-TNTs) as field-emitters. • Turn-on electric field and field enhancement factor β are dependent on the substrate morphology. • Various quantities of GNRs are deposited on top of A-TNTs (GNRs/A-TNTs) with different morphologies. • With an increase of GNBs compositions, the specimens' turn-on electric field is reduced to 2.8 V/μm. • The field enhancement factor increased rapidly to about 1964 with the addition of GNRs. - Abstract: Graphene nanoribbons (GNRs) slanted on aggregate TiO{sub 2} nanotube arrays (A-TNTs) with various compositions as field-emitters are reported. The morphology, crystalline structure,more » and composition of the as-obtained specimens were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Raman spectrometry. The dependence of the turn-on electric field and the field enhancement factor β on substrate morphology was studied. An increase of GNRs reduces the specimens’ turn-on electric field to 2.8 V/μm and the field enhancement factor increased rapidly to about 1964 with the addition of GNRs. Results show a strong dependence of the field emission on GNR composition aligned with the gradient on the top of the A-TNT substrate. Enhanced FE properties of the modified TNTs can be mainly attributed to their improved electrical properties and rougher surface morphology.« less

  9. The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor.

    PubMed

    Banerjee, Subarna; Mohapatra, Susanta K; Misra, Mano; Mishra, Indu B

    2009-02-18

    There is a critical need to develop an efficient, reliable and highly selective sensor for the detection of improvised nonmilitary explosives. This paper describes the utilization of functionalized titania nanotube arrays for sensing improvised organic peroxide explosives such as triacetone triperoxide (TATP). TATP forms complexes with titania nanotube arrays (prepared by anodization and sensitized with zinc ions) and thus affects the electron state of the nanosensing device, which is signaled as a change in current of the overall nanotube material. The response is rapid and a signal of five to eight orders of magnitude is observed. These nanotube array sensors can be used as hand-held miniaturized devices as well as large scale portable units for military and homeland security applications.

  10. Biocompatibility of Titania Nanotube Coatings Enriched with Silver Nanograins by Chemical Vapor Deposition

    PubMed Central

    Piszczek, Piotr; Lewandowska, Żaneta; Radtke, Aleksandra; Kozak, Wiesław; Sadowska, Beata; Szubka, Magdalena; Talik, Ewa; Fiori, Fabrizio

    2017-01-01

    Bioactivity investigations of titania nanotube (TNT) coatings enriched with silver nanograins (TNT/Ag) have been carried out. TNT/Ag nanocomposite materials were produced by combining the electrochemical anodization and chemical vapor deposition methods. Fabricated coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The release effect of silver ions from TNT/Ag composites immersed in bodily fluids, has been studied using inductively coupled plasma mass spectrometry (ICP-MS). The metabolic activity assay (MTT) was applied to determine the L929 murine fibroblasts adhesion and proliferation on the surface of TNT/Ag coatings. Moreover, the results of immunoassays (using peripheral blood mononuclear cells—PBMCs isolated from rats) allowed the estimation of the immunological activity of TNT/Ag surface materials. Antibacterial activity of TNT/Ag coatings with different morphological and structural features was estimated against two Staphylococcus aureus strains (ATCC 29213 and H9). The TNT/Ag nanocomposite layers produced revealed a good biocompatibility promoting the fibroblast adhesion and proliferation. A desirable anti-biofilm activity against the S. aureus reference strain was mainly noticed for these TiO2 nanotube coatings, which contain dispersed Ag nanograins deposited on their surface. PMID:28914821

  11. THz generation by laser coupling to carbon nanotube array

    NASA Astrophysics Data System (ADS)

    Malik, Rakhee; Uma, R.

    2018-01-01

    A viable scheme of THz radiation generation by beating of two lasers ( ω1 , k→ 1 ; ω2 , k→ 2 ) in a nanotube array, mounted on a dielectric substrate, is proposed and studied. The free electrons of the nanotubes acquire a large oscillatory velocity and experience a beat frequency ponderomotive force that turns nanotubes into oscillating dipole antennae emitting THz radiation. The THz power peaks in directions where a phase difference between fields due to successive nanotubes is integral multiple of 2 π . The THz power is large when the beat frequency equals ωp/√{2 } (where ωp is the electron plasma frequency) and surface plasmon resonance occurs. For our set of laser and carbon nanotube parameters, the generated THz is about 0.1 kW for CO2 laser power of 10 GW and pulse length of a few picoseconds.

  12. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts

    PubMed Central

    Liu, Xiangning; Zhou, Xiaosong; Li, Shaobing; Lai, Renfa; Zhou, Zhiying; Zhang, Ye; Zhou, Lei

    2014-01-01

    Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs) with or without using bovine serum albumin (BSA) to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE), were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs) was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1) gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because BSA coating actions in vivo are very rapid. PMID:24623977

  13. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Shuchen; Kang, Lixing; Wang, Xiao; Tong, Lianming; Yang, Liangwei; Wang, Zequn; Qi, Kuo; Deng, Shibin; Li, Qingwen; Bai, Xuedong; Ding, Feng; Zhang, Jin

    2017-02-01

    The semiconductor industry is increasingly of the view that Moore’s law—which predicts the biennial doubling of the number of transistors per microprocessor chip—is nearing its end. Consequently, the pursuit of alternative semiconducting materials for nanoelectronic devices, including single-walled carbon nanotubes (SWNTs), continues. Arrays of horizontal nanotubes are particularly appealing for technological applications because they optimize current output. However, the direct growth of horizontal SWNT arrays with controlled chirality, that would enable the arrays to be adapted for a wider range of applications and ensure the uniformity of the fabricated devices, has not yet been achieved. Here we show that horizontal SWNT arrays with predicted chirality can be grown from the surfaces of solid carbide catalysts by controlling the symmetries of the active catalyst surface. We obtained horizontally aligned metallic SWNT arrays with an average density of more than 20 tubes per micrometre in which 90 per cent of the tubes had chiral indices of (12, 6), and semiconducting SWNT arrays with an average density of more than 10 tubes per micrometre in which 80 per cent of the nanotubes had chiral indices of (8, 4). The nanotubes were grown using uniform size Mo2C and WC solid catalysts. Thermodynamically, the SWNT was selectively nucleated by matching its structural symmetry and diameter with those of the catalyst. We grew nanotubes with chiral indices of (2m, m) (where m is a positive integer), the yield of which could be increased by raising the concentration of carbon to maximize the kinetic growth rate in the chemical vapour deposition process. Compared to previously reported methods, such as cloning, seeding and specific-structure-matching growth, our strategy of controlling the thermodynamics and kinetics offers more degrees of freedom, enabling the chirality of as-grown SWNTs in an array to be tuned, and can also be used to predict the growth conditions

  14. The influence of surface roughness and high pressure torsion on the growth of anodic titania nanotubes on pure titanium

    NASA Astrophysics Data System (ADS)

    Hu, Nan; Gao, Nong; Starink, Marco J.

    2016-11-01

    Anodic titanium dioxide nanotube (TNT) arrays have wide applications in photocatalytic, catalysis, electronics, solar cells and biomedical implants. When TNT coatings are combined with severe plastic deformation (SPD), metal processing techniques which efficiently improve the strength of metals, a new generation of biomedical implant is made possible with both improved bulk and surface properties. This work investigated the effect of processing by high pressure torsion (HPT) and different mechanical preparations on the substrate and subsequently on the morphology of TNT layers. HPT processing was applied to refine the grain size of commercially pure titanium samples and substantially improved their strength and hardness. Subsequent anodization at 30 V in 0.25 wt.% NH4F for 2 h to form TNT layers on sample surfaces prepared with different mechanical preparation methods was carried out. It appeared that the local roughness of the titanium surface on a microscopic level affected the TNT morphology more than the macroscopic surface roughness. For HPT-processed sample, the substrate has to be pre-treated by a mechanical preparation finer than 4000 grit for HPT to have a significant influence on TNTs. During the formation of TNT layers the oxide dissolution rate was increased for the ultrafine-grained microstructure formed due to HPT processing.

  15. Nanomolecular gas sensor architectures based on functionalized carbon nanotubes for vapor detection

    NASA Astrophysics Data System (ADS)

    Hines, Deon; Zhang, Henan; Rümmeli, Mark H.; Adebimpe, David; Akins, Daniel L.

    2015-05-01

    There is enormous interest in detection of simple & complex odors by mean of electronic instrumentation. Specifically, our work focuses on creating derivatized-nanotube-based "electronic noses" for the detection and identification of gases, and other materials. We have grafted single-walled carbon nanotubes (SWNTs) with an array of electron-donating and electron withdrawing moieties and have characterized some of the physicochemical properties of the modified nanotubes. Gas sensing elements have been fabricated by spin coating the functionalized nanotubes onto interdigitated electrodes (IDE's), creating an array of sensors. Each element in the sensor array can contain a different functionalized matrix. This facilitates the construction of chemical sensor arrays with high selectivity and sensitivity; a methodology that mimics the mammalian olfactory system. Exposure of these coated IDEs to organic vapors and the successful classification of the data obtained under DC monitoring, indicate that the system can function as gas sensors of high repeatability and selectivity for a wide range of common analytes. Since the detection of explosive materials is also of concern in this research, our next phase focuses on explosives such as, TNT, RDX, and Triacetone Triperoxide (TATP). Sensor data from individual detection are assessed on their own individual merits, after which they are amalgamated and reclassified to present each vapor as unique data point on a 2-dimensional map and with minimum loss of information. This approach can assist the nation's need for a technology to defeat IEDs through the use of methods that detect unique chemical signatures associated with explosive molecules and byproducts.

  16. Copper-encapsulated vertically aligned carbon nanotube arrays.

    PubMed

    Stano, Kelly L; Chapla, Rachel; Carroll, Murphy; Nowak, Joshua; McCord, Marian; Bradford, Philip D

    2013-11-13

    A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.

  17. Novel iron oxide nanotube arrays as high-performance anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Fan, Huiqing; Chang, Ling; Shao, Haibo; Wang, Jianming; Zhang, Jianqing; Cao, Chu-nan

    2015-11-01

    Nanostructured iron oxides can be promising anode materials for lithium ion batteries (LIBs). However, improvement on the rate capability and/or electrochemical cycling stability of iron oxide anode materials remains a key challenge because of their poor electrical conductivities and large volume expansion during cycling. Herein, the vertically aligned arrays of one-dimensional (1D) iron oxide nanotubes with 5.8 wt% carbon have been fabricated by a novel surfactant-free self-corrosion process and subsequent thermal treatment. The as-fabricated nanotube array electrode delivers a reversible capacity of 932 mAh g-1 after 50 charge-discharge cycles at a current of 0.6 A g-1. The electrode still shows a reversible capacity of 610 mAh g-1 even at a very high rate (8.0 A g-1), demonstrating its prominent rate capability. Furthermore, the nanotube array electrode also exhibits the excellent electrochemical cycling stability with a reversible capacity of 880 mAh g-1 after 500 cycles at a current of 4 A g-1. The nanotube array electrode with superior lithium storage performance reveals the promising potential as a high-performance anode for LIBs.

  18. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayanithy, Venugopal; Babatunde, Victor; Dickson, Elizabeth L.

    Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formationmore » (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes

  19. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations.

    PubMed

    Varghese, Oomman K; Mor, Gopal K; Grimes, Craig A; Paulose, Maggie; Mukherjee, Niloy

    2004-09-01

    A tremendous variation in electrical resistance, from the semiconductor to metallic range, has been observed in titania nanotube arrays at room temperature, approximately 25 degrees C, in the presence of < or = 1000 ppm hydrogen gas. The nanotube arrays are fabricated by anodizing titanium foil in an aqueous electrolyte solution containing hydrofluoric acid and acetic acid. Subsequently, the arrays are coated with a 10 nm layer of palladium by evaporation. Electrical contacts are made by sputtering a 2 mm diameter platinum disk atop the Pd-coated nanotube array. These sensors exhibit a resistance variation of the order of 10(4) in the presence of 100 ppm hydrogen at 25 degrees C. The sensors demonstrate complete reversibility, repeatability, high selectivity, negligible drift and wide dynamic range. The nanoscale geometry of the nanotubes, in particular the points of tube-to-tube contact, is believed to be responsible for the outstanding hydrogen gas sensitivities.

  20. Effects of Functionalization of TiO2 Nanotube Array Sensors with Pd Nanoparticles on Their Selectivity

    PubMed Central

    Park, Sunghoon; Kim, Soohyun; Park, Suyoung; Lee, Wan In; Lee, Chongmu

    2014-01-01

    This study compared the responses of Pd-functionalized and pristine titanate (TiO2) nanotube arrays to ethanol with those to acetone to determine the effects of functionalization of TiO2 nanotubes with Pd nanoparticles on the sensitivity and selectivity. The responses of pristine and Pd-functionalized TiO2 nanotube arrays to ethanol gas at 200 °C were ∼2877% and ∼21,253%, respectively. On the other hand, the responses of pristine and Pd-functionalized TiO2 nanotube arrays to acetone gas at 250 °C were ∼1636% and 8746% respectively. In the case of ethanol sensing, the response and recovery times of Pd-functionalized TiO2 nanotubes (10.2 and 7.1 s) were obviously shorter than those of pristine TiO2 nanotubes (14.3 and 8.8 s), respectively. In contrast, in the case of acetone sensing the response and recovery times of Pd-functionalized TiO2 nanotubes (42.5 and 19.7 s) were almost the same as those of pristine TiO2 nanotubes (47.2 and 17.9 s). TiO2 nanotube arrays showed the strongest response to ethanol and Pd functionalization was the most effective in improving the response of TiO2 nanotubes to ethanol among six different types of gases: ethanol, acetone, CO, H2, NH3 and NO2. The origin of the superior sensing properties of Pd-functionalized TiO2 nanotubes toward ethanol to acetone is also discussed. PMID:25166499

  1. Biochips Containing Arrays of Carbon-Nanotube Electrodes

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, M.; Koehne, Jessica; Cassell, Alan; Chen, Hua

    2008-01-01

    Biochips containing arrays of nanoelectrodes based on multiwalled carbon nanotubes (MWCNTs) are being developed as means of ultrasensitive electrochemical detection of specific deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) biomarkers for purposes of medical diagnosis and bioenvironmental monitoring. In mass production, these biochips could be relatively inexpensive (hence, disposable). These biochips would be integrated with computer-controlled microfluidic and microelectronic devices in automated hand-held and bench-top instruments that could be used to perform rapid in vitro genetic analyses with simplified preparation of samples. Carbon nanotubes are attractive for use as nanoelectrodes for detection of biomolecules because of their nanoscale dimensions and their chemical properties.

  2. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Han, Shu-Jen; Tulevski, George S.

    2014-09-01

    One key challenge of realizing practical high-performance electronic devices based on single-walled carbon nanotubes is to produce electronically pure nanotube arrays with both a minuscule and uniform inter-tube pitch for sufficient device-packing density and homogeneity. Here we develop a method in which the alternating voltage-fringing electric field formed between surface microelectrodes and the substrate is utilized to assemble semiconducting nanotubes into well-aligned, ultrahigh-density and submonolayered arrays, with a consistent pitch as small as 21±6 nm determined by a self-limiting mechanism, based on the unique field focusing and screening effects of the fringing field. Field-effect transistors based on such nanotube arrays exhibit record high device transconductance (>50 μS μm-1) and decent on current per nanotube (~1 μA per tube) together with high on/off ratios at a drain bias of -1 V.

  3. Self-Ordered Titanium Dioxide Nanotube Arrays: Anodic Synthesis and Their Photo/Electro-Catalytic Applications

    PubMed Central

    Smith, York R.; Ray, Rupashree S.; Carlson, Krista; Sarma, Biplab; Misra, Mano

    2013-01-01

    Metal oxide nanotubes have become a widely investigated material, more specifically, self-organized titania nanotube arrays synthesized by electrochemical anodization. As a highly investigated material with a wide gamut of applications, the majority of published literature focuses on the solar-based applications of this material. The scope of this review summarizes some of the recent advances made using metal oxide nanotube arrays formed via anodization in solar-based applications. A general methodology for theoretical modeling of titania surfaces in solar applications is also presented. PMID:28811415

  4. Synthesis of molecular imprinted polymer modified TiO{sub 2} nanotube array electrode and their photoelectrocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Na; Chen Shuo; Wang Hongtao

    2008-10-15

    A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less

  5. Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.

    PubMed

    Han, Zhao Jun; Ostrikov, Kostya

    2012-04-04

    Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

  6. Structure and dye-sensitized solar cell application of TiO2 nanotube arrays fabricated by the anodic oxidation method

    NASA Astrophysics Data System (ADS)

    Ok, Seon-Yeong; Cho, Kwon-Koo; Kim, Ki-Won; Ryu, Kwang-Sun

    2010-05-01

    Well-ordered TiO2 nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH4F and H2O. The influence of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays was examined. The TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO2 nanotube arrays in the manufacturing process of a photoelectrode.

  7. Nanotube Surface Arrays: Weaving, Bending, and Assembling on Patterned Silicon

    NASA Astrophysics Data System (ADS)

    Tsukruk, Vladimir V.; Ko, Hyunhyub; Peleshanko, Sergiy

    2004-02-01

    We report the fabrication of ordered arrays of oriented and bent carbon nanotube on a patterned silicon surface with a micron scale spacing extending over millimeter size surface areas. We suggest that the patterning is controlled by the hydrodynamic behavior of a fluid front and orientation and bending mechanisms are facilitated by the pinned carbon nanotubes trapped by the liquid-solid-vapor contact line. The bending of the pinned nanotubes occurs along the shrinking receding front of the drying microdroplets. The formation of stratified microfluidic layers is vital for stimulating periodic instabilities of the contact line.

  8. Si/Ge double-layered nanotube array as a lithium ion battery anode.

    PubMed

    Song, Taeseup; Cheng, Huanyu; Choi, Heechae; Lee, Jin-Hyon; Han, Hyungkyu; Lee, Dong Hyun; Yoo, Dong Su; Kwon, Moon-Seok; Choi, Jae-Man; Doo, Seok Gwang; Chang, Hyuk; Xiao, Jianliang; Huang, Yonggang; Park, Won Il; Chung, Yong-Chae; Kim, Hansu; Rogers, John A; Paik, Ungyu

    2012-01-24

    Problems related to tremendous volume changes associated with cycling and the low electron conductivity and ion diffusivity of Si represent major obstacles to its use in high-capacity anodes for lithium ion batteries. We have developed a group IVA based nanotube heterostructure array, consisting of a high-capacity Si inner layer and a highly conductive Ge outer layer, to yield both favorable mechanics and kinetics in battery applications. This type of Si/Ge double-layered nanotube array electrode exhibits improved electrochemical performances over the analogous homogeneous Si system, including stable capacity retention (85% after 50 cycles) and doubled capacity at a 3C rate. These results stem from reduced maximum hoop strain in the nanotubes, supported by theoretical mechanics modeling, and lowered activation energy barrier for Li diffusion. This electrode technology creates opportunities in the development of group IVA nanotube heterostructures for next generation lithium ion batteries. © 2011 American Chemical Society

  9. Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti

    2013-05-01

    Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm-2, representing a more than 200% improvement over that of bare CNT electrodes.

  10. Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors.

    PubMed

    Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti

    2013-05-17

    Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm(-2), representing a more than 200% improvement over that of bare CNT electrodes.

  11. Biotransformation of trinitrotoluene (TNT) by Pseudomonas spp. isolated from a TNT-contaminated environment.

    PubMed

    Chien, Chih-Ching; Kao, Chih-Ming; Chen, De-Yu; Chen, Ssu Ching; Chen, Chien-Cheng

    2014-05-01

    The compound 2,4,6-trinitrotoluene (TNT) is a secondary explosive widely used worldwide for both military and civil purposes. As a result, residual TNT has been detected as an environmental pollutant in both soil and groundwater. The authors have isolated several microbial strains from soil contaminated with TNT by enrichment culture techniques using TNT as a carbon, nitrogen, and energy source. The contaminated soil contained approximately 1860 ppm TNT measured by high-performance liquid chromatography (HPLC). The initial identification of these isolates was determined by 16S rRNA gene comparison. The isolates mainly included species belonging to the genus Pseudomonas. Two strains (Pseudomonas putida strain TP1 and Pseudomonas aeruginosa strain TP6) were selected for further examination. Both strains demonstrated the ability to grow on the medium containing TNT as a carbon, energy, and nitrogen source and also clearly demonstrated the ability to degrade TNT. More than 90% of the TNT in the growth medium was degraded by both strains after 22 d incubation, as determined by HPLC. Additionally, the resting cells of P. putida TP1 and P. aeruginosa TP6 both significantly displayed the ability to transform (metabolize) TNT. © 2014 SETAC.

  12. Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments.

    PubMed Central

    Pasti-Grigsby, M B; Lewis, T A; Crawford, D L; Crawford, R L

    1996-01-01

    Actinomycete strains isolated from 2,4,6-trinitrotoluene (TNT)-contaminated and uncontaminated environments were compared for TNT tolerance and abilities to transform TNT. Regardless of previous TNT exposure history, no significant differences in TNT tolerance were seen among strains. Selected strains did not significantly mineralize [14C]TNT. The actinomycetes did, however, transform TNT into reduced intermediates. The data indicate that, in actinomycete-rich aerobic environments like composts, actinomycetes will transform TNT into intermediates which are known to form recalcitrant polymers. PMID:8975606

  13. Fast fabrication of long TiO2 nanotube array with high photoelectrochemical property on flexible stainless steel.

    PubMed

    Tao, Jie; Wu, Tao; Gao, Peng

    2012-03-01

    Oriented highly ordered long TiO2 nanotube array films with nanopore structure and high photoelectrochemical property were fabricated on flexible stainless steel substrate (50 microm) by anodization treatment of titanium thin films in a short time. The samples were characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and photoelectrochemical methods, respectively. The results showed that Ti films deposited at the condition of 0.7 Pa Ar pressure and 96 W sputtering power at room temperature was uniform and dense with good homogeneity and high crystallinity. The voltage and the anodization time both played significant roles in the formation of TiO2 nanopore-nanotube array film. The optimal voltage was 60 V and the anodization time is less than 30 min by anodizing Ti films in ethylene glycerol containing 0.5% (w) NH4F and 3% (w) H2O. The growth rate of TiO2 nanotube array was as high as 340 nm/min. Moreover, the photocurrent-potential curves, photocurrent response curves and electrochemical impedance spectra results indicated that the TiO2 nanotube array film with the nanoporous structure exhibited a better photo-response ability and photoelectrochemical performance than the ordinary TiO2 nanotube array film. The reason is that the nanoporous structure on the surface of the nanotube array can separate the photo electron-hole pairs more efficiently and completely than the tubular structure.

  14. Solution and solid trinitrotoluene (TNT) photochemistry: persistence of TNT-like ultraviolet (UV) resonance Raman bands.

    PubMed

    Gares, Katie L; Bykov, Sergei V; Godugu, Bhaskar; Asher, Sanford A

    2014-01-01

    We examined the 229 nm deep-ultraviolet resonance Raman (DUVRR) spectra of solution and solid-state trinitrotoluene (TNT) and its solution and solid-state photochemistry. Although TNT photodegrades with a solution quantum yield of ϕ ∼ 0.015, the initial photoproducts show DUVRR spectra extraordinarily similar to pure TNT, due to the similar photoproduct enhancement of the -NO2 stretching vibrations. This results in TNT-like DUVRR spectra even after complete TNT photolysis. These ultraviolet resonance Raman spectral bands enable DUVRR of trace as well as DUVRR standoff TNT detection. We determined the structure of various initial TNT photoproducts by using liquid chromatography-mass spectrometry and tandem mass spectrometry. Similar TNT DUVRR spectra and photoproducts are observed in the solution and solid states.

  15. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  16. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  17. Impact, thermal, and shock sensitivity of molten TNT and of asphalt-contaminated molten TNT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainiero, R.J.; Miron, Y.; Kwak, S.S.W.

    1996-12-01

    The research reported here was part of an effort to evaluate the safety of a process to recover TNT from MK-9 depth bombs by the autoclave meltout process. In this process the depth bombs are heated to 121 C so that the TNT will melt and run into a vat. Unfortunately, asphalt lining the inside surface of the bomb also melts and flows out with the TNT. Testing was conducted on molten TNT and molten TNT contaminated with 2 pct asphalt at 90, 100, 110, 120, 125, and 130 C. In the liquid drop test apparatus with a 2-kg weight,more » the molten TNT yielded a 50 pct probability of initiation at a drop height of 6.5 cm at 110 C, decreasing to 4.5 cm at 130 C. Asphalt-contaminated TNT was somewhat less impact-sensitive than pure TNT at temperatures of 110 to 125 C, but became more sensitive at 130 C. There is a 50 pct probability of initiation at a drop height of 7.8 cm at 110 C, decreasing to 3.3 cm at 130 C. In the card gap test, the molten TNT detonated at high velocity for a gap of 0.25 inches at 90 to 125 C and detonated at high velocity for a gap of 0.5 inches at 130 C. For gaps of 0.5 to 3 inches at 90 to 125 C and 0.75 inches to 3 inches at 130 C, the TNT did not detonate at high velocity but produced a violent explosion that caused significant damage to the test fixture. The thermal analysis test results showed that when asphalt is present in TNT, it greatly accelerates the exothermic decomposition of TNT, starting at temperatures near 200 C. It appears that at relatively low shock stimulus levels, the molten TNT may be undergoing a low velocity detonation, wherein the shock wave traveling through the gap test pipe cavitates the molten TNT, greatly increasing its sensitivity. These results are crucial for assuring continued safety in recovering TNT from munitions through the autoclave meltout process.« less

  18. Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity

    NASA Astrophysics Data System (ADS)

    Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib

    2018-01-01

    In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.

  19. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices.

    PubMed

    In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.

  20. Bioelectrocatalytic application of titania nanotube array for molecule detection.

    PubMed

    Xie, Yibing; Zhou, Limin; Huang, Haitao

    2007-06-15

    A bioelectrocatalysis system based on titania nanotube electrode has been developed for the quantitative detection application. Highly ordered titania nanotube array with inner diameter of 60 nm and total length of 540 nm was formed by anodizing titanium foils. The functionalization modification was achieved by embedding glucose oxidases inside tubule channels and electropolymerizing pyrrole for interfacial immobilization. Morphology and microstructure characterization, electrochemical properties and bioelectrocatalytic reactivities of this composite were fully investigated. The direct detection of hydrogen peroxide by electrocatalytic reduction reaction was fulfilled on pure titania nanotube array with a detection limit up to 2.0 x 10(-4)mM. A biosensor based on the glucose oxidase-titania/titanium electrode was constructed for amperometric detection and quantitative determination of glucose in a phosphate buffer solution (pH 6.8) under a potentiostatic condition (-0.4V versus SCE). The resulting glucose biosensor showed an excellent performance with a response time below 5.6s and a detection limit of 2.0 x 10(-3)mM. The corresponding detection sensitivity was 45.5 microA mM(-1)cm(-2). A good operational reliability was also achieved with relative standard deviations below 3.0%. This novel biosensor exhibited quite high response sensitivity and low detection limit for potential applications.

  1. Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasti-Grigsby, M.B.; Lewis, T.A.; Crawford, D.L.

    1996-03-01

    Biotransformation of TNT has been reported under both aerobic and anaerobic conditions. Actinomycetes are important decomposers in composts. This study examines the tolerance of acitomycete cultures, isolated from both TNT-contaminated and uncontaminated environments for different concentrations to TNT, determined how selected isolates transform TNT, and examined whether such TNT transformations were constitutive or induced by exposure to TNT. 33 refs., 1 figs., 1 tab.

  2. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xie, Keyu; Li, Jie; Lai, Yanqing; Zhang, Zhi'an; Liu, Yexiang; Zhang, Guoge; Huang, Haitao

    2011-05-01

    Conducting polymer with 1D nanostructure exhibits excellent electrochemical performances but a poor cyclability that limits its use in supercapacitors. In this work, a novel composite electrode made of polyaniline nanowire-titania nanotube array was synthesized via a simple and inexpensive electrochemical route by electropolymerizing aniline onto an anodized titania nanotube array. The specific capacitance was as high as 732 F g-1 at 1 A g-1, which remained at 543 F g-1 when the current density was increased by 20 times. 74% of the maximum energy density (36.6 Wh kg-1) was maintained even at a high power density of 6000 W kg-1. An excellent long cycle life of the electrode was observed with a retention of ~86% of the initial specific capacitance after 2000 cycles. The good electrochemical performance was attributed to the unique microstructure of the electrode with disordered PANI nanowire arrays encapsulated inside the TiO2 nanotubes, providing high surface area, fast diffusion path for ions and long-term cycle stability. Such a nanocomposite electrode is attractive for supercapacitor applications.

  3. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.

    PubMed

    Shankar, Karthik; Mor, Gopal K; Prakasam, Haripriya E; Varghese, Oomman K; Grimes, Craig A

    2007-11-20

    Films comprised of 4 microm long titanium dioxide nanotube arrays were fabricated by anodizing Ti foils in an ethylene glycol based electrolyte. A carboxylated polythiophene derivative was self-assembled onto the TiO2 nanotube arrays by immersing them in a solution of the polymer. The binding sites of the carboxylate moiety along the polymer chain provide multiple anchoring sites to the substrate, making for a stable rugged film. Backside illuminated liquid junction solar cells based on TiO2 nanotube films sensitized by the self-assembled polymeric layer showed a short-circuit current density of 5.5 mA cm-2, a 0.7 V open circuit potential, and a 0.55 fill factor yielding power conversion efficiencies of 2.1% under AM 1.5 sun. A backside illuminated single heterojunction solid state solar cell using the same self-assembled polymer was demonstrated and yielded a photocurrent density as high as 2.0 mA cm-2. When a double heterojunction was formed by infiltrating a blend of poly(3-hexylthiophene) (P3HT) and C60-methanofullerene into the self-assembled polymer coated nanotube arrays, a photocurrent as high as 6.5 mA cm-2 was obtained under AM 1.5 sun with a corresponding efficiency of 1%. The photocurrent action spectra showed a maximum incident photon-to-electron conversion efficiency (IPCE) of 53% for the liquid junction cells and 25% for the single heterojunction solid state solar cells.

  4. Highly efficient SERS substrate for direct detection of explosive TNT using popcorn-shaped gold nanoparticle-functionalized SWCNT hybrid.

    PubMed

    Demeritte, Teresa; Kanchanapally, Rajashekhar; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Dubey, Madan; Zakar, Eugene; Ray, Paresh Chandra

    2012-11-07

    This paper reports for the first time the development of a large-scale SERS substrate from a popcorn-shaped gold nanoparticle-functionalized single walled carbon nanotubes hybrid thin film for the selective and highly sensitive detection of explosive TNT material at a 100 femtomolar (fM) level.

  5. Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pan, G. X.; Cao, F.; Xia, X. H.; Zhang, Y. J.

    2016-11-01

    Rational construction of advanced FeS2 cathode is one of research hotspots, and of great importance for developing high-performance lithium ion batteries (LIBs). Herein we report a facile hydrolysis-sulfurization method for fabrication of FeS2/C nanotubes arrays with the help of sacrificial Co2(OH)2CO3 nanowires template and glucose carbonization. Self-supported FeS2/C nanotubes consist of interconnected nanoburrs of 5-20 nm, and show hierarchical porous structure. The FeS2/C nanotubes arrays are demonstrated with enhanced cycling life and noticeable high-rate capability with capacities ranging from 735 mAh g-1 at 0.25 C to 482 mAh g-1 at 1.5 C, superior to those FeS2 counterparts in the literature. The composite nanotubes arrays architecture plays positive roles in the electrochemical enhancement due to combined advantages of large electrode-electrolyte contact area, good strain accommodation, improved electrical conductivity, and enhanced structural stability.

  6. N- and C-Modified TiO2 Nanotube Arrays: Enhanced Photoelectrochemical Properties and Effect of Nanotubes Length on Photoconversion Efficiency

    PubMed Central

    Mohamed, Ahmed El Ruby; Barghi, Shahzad

    2018-01-01

    In this investigation, a new, facile, low cost and environmental-friendly method was introduced to fabricate N- and C-modified TiO2 nanotube arrays by immersing the as-anodized TiO2 nanotube arrays (TNTAs) in a urea aqueous solution with mechanical agitation for a short time and keeping the TNTAs immersed in the solution for 6 h at room temperature. Then, the TNTAs were annealed at different temperatures. The produced N-, C-modified TNTAs were characterized using FESEM, EDX, XRD, XPS, UV-Vis diffuse reflectance spectra. Modified optical properties with narrow band gap energy, Eg, of 2.65 eV was obtained after annealing the modified TNTAs at 550 °C. Modified TNTAs showed enhanced photoelectochemical performance. Photoconversion efficiency (PCE) was increased from 4.35% for pristine (unmodified) TNTAs to 5.18% for modified TNTAs, an increase of 19%. Effect of nanotubes length of modified TNTAs on photoelectrochemical performance was also studied. Photocurrent density and PCE were increased by increasing nanotube length with a maximum PCE of 6.38% for nanotube length of 55 µm. This high PCE value was attributed to: band gap reduction due to C- and N-modification of TNTAs surface, increased surface area of long TNTAs compared with short TNTAs, investigated in previous studies. PMID:29597248

  7. Hot spot dynamics in carbon nanotube array devices.

    PubMed

    Engel, Michael; Steiner, Mathias; Seo, Jung-Woo T; Hersam, Mark C; Avouris, Phaedon

    2015-03-11

    We report on the dynamics of spatial temperature distributions in aligned semiconducting carbon nanotube array devices with submicrometer channel lengths. By using high-resolution optical microscopy in combination with electrical transport measurements, we observe under steady state bias conditions the emergence of time-variable, local temperature maxima with dimensions below 300 nm, and temperatures above 400 K. On the basis of time domain cross-correlation analysis, we investigate how the intensity fluctuations of the thermal radiation patterns are correlated with the overall device current. The analysis reveals the interdependence of electrical current fluctuations and time-variable hot spot formation that limits the overall device performance and, ultimately, may cause device degradation. The findings have implications for the future development of carbon nanotube-based technologies.

  8. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Yingzhi; Li, Aoxiang; Yue, Xiaoqi; Wang, Lu-Ning; Huang, Zheng-Hong; Kang, Feiyu; Volinsky, Alex A.

    2016-07-01

    Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi) layer were fabricated for photoelectrochemical water splitting. In this arrayed architecture, a PDi layer with a tunable thickness was coated on anodic TiO2 nanotube arrays by physical vapor deposition, which is advantageous for the formation of a uniform layer and an adequate interface contact between PDi and TiO2. The obtained PDi/TiO2 junction exhibited broadened visible light absorption, and an effective interface for enhanced photogenerated electron-hole separation, which is supported by the reduced charge transfer resistance and prolonged excitation lifetime via impedance spectroscopy analysis and fluorescence emission decay investigations. Consequently, such a heterojunction photoanode was photoresponsive to a wide visible light region of 400-600 nm, and thus demonstrated a highly enhanced photocurrent density at 1.23 V vs. a reversible hydrogen electrode. Additionally, the durability of such a photoanode can be guaranteed after long-time illumination because of the geometrical restraint imposed by the PDi aggregates. These results pave the way to discover new organic/inorganic assemblies for high-performance photoelectric applications and device integration.Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi

  9. Backward scattering effect of aligned carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Wu, Pengfei; Ren, Zhifeng; Wang, Michael R.

    2009-02-01

    In terms of operational bandwidth and speed, photonic components are superior to electronic ones. However, it is difficult to control photons on nanoscale structures for data processing and interconnection. Nanophotonic device using surface plasmon (SP) offers an ideal solution to combine the superior technical advantages of both photonics and electronics on the same chip. The SP wavelength is much shorter than that of the exciting light, allowing the use of SP in various techniques that overcome diffraction limits. In this paper, we report an interesting plasmonic effect, enhanced backward scattering, by using a periodically-aligned carbon nanotube (CNT) array. The CNTs are grown on a transparent glass substrate with an average diameter of 50 nm and a length of about 1 μm. To enhance the conductivity, the CNTs are also coated with 10-nm Au layer by using E-beam CVD technique. By shining a laser beam to the CNT array, we found that the scattering intensity is maximally enhanced at the backward incident direction. The enhanced backward incident scattering is observed by using both periodic and nonperiodic CNT samples. The experimental results suggest that the backward scattering effect is due to the SP excitation and coupling. The proposed technique exploiting aligned carbon-nanotube arrays to manipulate surface plasmon will lead to useful optical features such as optical antennae effects, retro-reflection, switching, wavelength add/drop multiplexing, and may be particularly useful for optical sensing, smart target identification and optical wireless secure communication applications.

  10. TNT transport and fate in contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comfort, S.D.; Shea, P.J.; Hundal, L.S.

    1995-11-01

    Past disposal practices at munitions production plants have contaminated terrestrial and aquatk ecosystems with 2,4,6-trinitrotoluene (TNT). We determined TNT transport, degradation, and long-term sorption characteristics in soil. Transport experiments were conducted with repacked, unsaturated soil columns containing uncontaminated soil or layers of contaminated and uncontaminated soil. Uncontaminated soil columns received multiple pore volumes (22-50) of a TNT-{sup 3}H{sub 2}O pulse, containing 70 or 6.3 mg TNT L{sup -1} at a constant pore water velocity. TNT breakthrough curves (BTCs) never reached initial solute pulse concentrations. Apex concentrations (C/C{sub o}) were between 0.6 and 0.8 for an initial pulse of 70 mgmore » TNT L{sup -1} and 0.2 to 0.3 for the 6.3 mg TNT L{sup -1} pulse. Earlier TNT breakthrough was observed at the higher pulse concentration. This mobility difference was predicted from the nonlinear adsorption isotherm determined for TNT sorption. In all experiments, a significant fraction of added TNT was recovered as amino degradates of TNT. Mass balance estimates indicated 81% of the added TNT was recovered (as TNT and amino degradates) from columns receiving the 70 mg TNT L{sup -1} pulse compared to 35% from columns receiving the 6.3 mg TNT L{sup -1} pulse. Most of the unaccountable TNT was hypothesized to be unextractable. This was supported by a 168-d sorption experiment, which found that within 14d, 80% of {sup 14}C activity (added as {sup 14}C-TNT) was adsorbed and roughly 40% unextractable. Our observations illustrate that TNT sorption and degradation are concentration-dependent and the assumptions of linear adsorption and adsorption-desorption singularity commonly used in transport modeling, may not be valid for predicting TNT transport in munitions-contaminated soils. 29 refs., 6 figs., 7 tabs.« less

  11. Fabrication of thin film TiO2 nanotube arrays on Co-28Cr-6Mo alloy by anodization.

    PubMed

    Ni, Jiahua; Frandsen, Christine J; Noh, Kunbae; Johnston, Gary W; He, Guo; Tang, Tingting; Jin, Sungho

    2013-04-01

    Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co-28Cr-6Mo alloy substrate at 400 °C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 °C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co-28Cr-6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co-28Cr-6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage

    PubMed Central

    2014-01-01

    Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy layer over hydrothermally synthesized vertical ZnO nanorod array by controlled pulsed current electropolymerization of pyrrole monomer under surfactant action. The vertical PPy nanotube arrays of different tube diameter are created by selective etching of the ZnO nanorod core in ammonia solution for different periods. Cyclic voltammetry studies show high areal-specific capacitance approximately 240 mF.cm-2 for open pore and approximately 180 mF.cm-2 for narrow 30-to-36-nm diameter PPy nanotube arrays attributed to intensive faradic processes arising from enhanced access of electrolyte ions through nanotube interior and exterior. Impedance spectroscopy studies show that capacitive response extends over larger frequency domain in electrodes with PPy nanotube structure. Simulation of Nyquist plots by electrical equivalent circuit modeling establishes that 3-D nanostructure is better represented by constant phase element which accounts for the inhomogeneous electrochemical redox processes. Charge-discharge studies at different current densities establish that kinetics of the redox process in PPy nanotube electrode is due to the limitation on electron transport rather than the diffusive process of electrolyte ions. The PPy nanotube electrodes show deep discharge capability with high coulomb efficiency and long-term charge-discharge cyclic studies show nondegrading performance of the specific areal capacitance tested for 5,000 cycles. PMID:25246867

  13. WIMP detection and slow ion dynamics in carbon nanotube arrays.

    PubMed

    Cavoto, G; Cirillo, E N M; Cocina, F; Ferretti, J; Polosa, A D

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs ([Formula: see text] GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.

  14. NanoBench: An Individually Addressable Nanotube Array

    DTIC Science & Technology

    2006-03-25

    17 (1999). 5 Cai, L., H. Tabata and T. Kawai, "Probing electrical properties of oriented DNA by conducting atomic force microscopy", Nanotechnology 12...the e-beam hits the other side of the NanoBench. This allows the cells to be kept alive in a biological medium while they are being tested. The key...advantage of the NanoBench is that the e-beam never hits the sample. UHV Technologies Inc. 7 NanoBench: An Individually Addressable Nanotube Array Final

  15. Carbon nanotubes-based chemiresistive immunosensor for small molecules: detection of nitroaromatic explosives.

    PubMed

    Park, Miso; Cella, Lakshmi N; Chen, Wilfred; Myung, Nosang V; Mulchandani, Ashok

    2010-12-15

    In recent years, there has been a growing focus on use of one-dimensional (1-D) nanostructures, such as carbon nanotubes and nanowires, as transducer elements for label-free chemiresistive/field-effect transistor biosensors as they provide label-free and high sensitivity detection. While research to-date has elucidated the power of carbon nanotubes- and other 1-D nanostructure-based field effect transistors immunosensors for large charged macromolecules such as proteins and viruses, their application to small uncharged or charged molecules has not been demonstrated. In this paper we report a single-walled carbon nanotubes (SWNTs)-based chemiresistive immunosensor for label-free, rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT), a small molecule. The newly developed immunosensor employed a displacement mode/format in which SWNTs network forming conduction channel of the sensor was first modified with trinitrophenyl (TNP), an analog of TNT, and then ligated with the anti-TNP single chain antibody. Upon exposure to TNT or its derivatives the bound antibodies were displaced producing a large change, several folds higher than the noise, in the resistance/conductance of SWNTs giving excellent limit of detection, sensitivity and selectivity. The sensor detected between 0.5 ppb and 5000 ppb TNT with good selectivity to other nitroaromatic explosives and demonstrated good accuracy for monitoring TNT in untreated environmental water matrix. We believe this new displacement format can be easily generalized to other one-dimensional nanostructure-based chemiresistive immuno/affinity-sensors for detecting small and/or uncharged molecules of interest in environmental monitoring and health care. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Experimental observation of an extremely dark material made by a low-density nanotube array.

    PubMed

    Yang, Zu-Po; Ci, Lijie; Bur, James A; Lin, Shawn-Yu; Ajayan, Pulickel M

    2008-02-01

    An ideal black material absorbs light perfectly at all angles and over all wavelengths. Here, we show that low-density vertically aligned carbon nanotube arrays can be engineered to have an extremely low index of refraction, as predicted recently by theory [Garcia-Vidal, F. J.; Pitarke, J. M.; Pendry, J. B. Phys. Rev. Lett. 1997, 78, 4289-4292] and, combined with the nanoscale surface roughness of the arrays, can produce a near-perfect optical absorption material. An ultralow diffused reflectance of 1 x 10(-7) measured from such arrays is an order-of-magnitude lower compared to commercial low-reflectance standard carbon. The corresponding integrated total reflectance of 0.045% from the nanotube arrays is three times lower than the lowest-ever reported values of optical reflectance from any material, making it the darkest man-made material ever.

  17. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors.

    PubMed

    Xie, Keyu; Li, Jie; Lai, Yanqing; Zhang, Zhi'an; Liu, Yexiang; Zhang, Guoge; Huang, Haitao

    2011-05-01

    Conducting polymer with 1D nanostructure exhibits excellent electrochemical performances but a poor cyclability that limits its use in supercapacitors. In this work, a novel composite electrode made of polyaniline nanowire-titania nanotube array was synthesized via a simple and inexpensive electrochemical route by electropolymerizing aniline onto an anodized titania nanotube array. The specific capacitance was as high as 732 F g(-1) at 1 A g(-1), which remained at 543 F g(-1) when the current density was increased by 20 times. 74% of the maximum energy density (36.6 Wh kg(-1)) was maintained even at a high power density of 6000 W kg(-1). An excellent long cycle life of the electrode was observed with a retention of ∼86% of the initial specific capacitance after 2000 cycles. The good electrochemical performance was attributed to the unique microstructure of the electrode with disordered PANI nanowire arrays encapsulated inside the TiO(2) nanotubes, providing high surface area, fast diffusion path for ions and long-term cycle stability. Such a nanocomposite electrode is attractive for supercapacitor applications. © The Royal Society of Chemistry 2011

  18. The effect of ionic Co presence on the structural, optical and photocatalytic properties of modified cobalt-titanate nanotubes.

    PubMed

    Barrocas, B; Silvestre, A J; Rolo, A G; Monteiro, O C

    2016-07-21

    With the aim of producing materials with enhanced optical and photocatalytic properties, titanate nanotubes (TNTs) modified by cobalt doping (Co-TNT) and by Na(+)→ Co ion-exchange (TNT/Co) were successfully prepared by a hydrothermal method. The influence of the doping level and of the cobalt position in the TNT crystalline structure was studied. Although no perceptible influence of the cobalt ion position on the morphology of the prepared titanate nanotubes was observed, the optical behaviour of the cobalt modified samples is clearly dependent on the cobalt ions either substituting the Ti(4+) ions in the TiO6 octahedra building blocks of the TNT structure (doped samples) or replacing the Na(+) ions between the TiO6 interlayers (ion-exchange samples). The catalytic ability of these materials on pollutant photodegradation was investigated. First, the evaluation of hydroxyl radical formation using the terephthalic acid as a probe was performed. Afterwards, phenol, naphthol yellow S and brilliant green were used as model pollutants. Anticipating real world situations, photocatalytic experiments were performed using solutions combining these pollutants. The results show that the Co modified TNT materials (Co-TNT and TNT/Co) are good catalysts, the photocatalytic performance being dependent on the Co/Ti ratio and on the structural metal location. The Co(1%)-TNT doped sample was the best photocatalyst for all the degradation processes studied.

  19. Fabrication and structural characterization of highly ordered titania nanotube arrays

    NASA Astrophysics Data System (ADS)

    Shi, Hongtao; Ordonez, Rosita

    Titanium (Ti) dioxide nanotubes have drawn much attention in the past decade due to the fact that titania is an extremely versatile material with a variety of technological applications. Anodizing Ti in different electrolytes has proved to be quite successful so far in creating the nanotubes, however, their degree of order is still not nearly as good as nanoporous anodic alumina. In this work, we first deposit a thin layer of aluminum (Al) onto electropolished Ti substrates, using thermal evaporation. Such an Al layer is then anodized in 0.3 M oxalic acid, forming an ordered nanoporous alumina mask on top of Ti. Afterwards, the anodization of Ti is accomplished at 20 V in solutions containing 1 M NaH2PO4 and 0.5% HF or H2SO4, which results in the creation of ordered titania nanotube arrays. The inner pore diameter of the nanotubes can be tuned from ~50 nm to ~75 nm, depending on the anodization voltage applied to Al or Ti. X-ray diffractometry shows the as-grown titania nanotubes are amorphous. Samples annealed at different temperatures in ambient atmosphere will be also reported.

  20. Nanoengineered thermal materials based on carbon nanotube array composites

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor); Dangelo, Carlos (Inventor)

    2010-01-01

    A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  1. Nanoengineered thermal materials based on carbon nanotube array composites

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  2. Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  3. Correlation of lattice defects and thermal processing in the crystallization of titania nanotube arrays

    NASA Astrophysics Data System (ADS)

    Hosseinpour, Pegah M.; Yung, Daniel; Panaitescu, Eugen; Heiman, Don; Menon, Latika; Budil, David; Lewis, Laura H.

    2014-12-01

    Titania nanotubes have the potential to be employed in a wide range of energy-related applications such as solar energy-harvesting devices and hydrogen production. As the functionality of titania nanostructures is critically affected by their morphology and crystallinity, it is necessary to understand and control these factors in order to engineer useful materials for green applications. In this study, electrochemically-synthesized titania nanotube arrays were thermally processed in inert and reducing environments to isolate the role of post-synthesis processing conditions on the crystallization behavior, electronic structure and morphology development in titania nanotubes, correlated with the nanotube functionality. Structural and calorimetric studies revealed that as-synthesized amorphous nanotubes crystallize to form the anatase structure in a three-stage process that is facilitated by the creation of structural defects. It is concluded that processing in a reducing gas atmosphere versus in an inert environment provides a larger unit cell volume and a higher concentration of Ti3+ associated with oxygen vacancies, thereby reducing the activation energy of crystallization. Further, post-synthesis annealing in either reducing or inert atmospheres produces pronounced morphological changes, confirming that the nanotube arrays thermally transform into a porous morphology consisting of a fragmented tubular architecture surrounded by a network of connected nanoparticles. This study links explicit data concerning morphology, crystallization and defects, and shows that the annealing gas environment determines the details of the crystal structure, the electronic structure and the morphology of titania nanotubes. These factors, in turn, impact the charge transport and consequently the functionality of these nanotubes as photocatalysts.

  4. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array

    NASA Astrophysics Data System (ADS)

    Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun

    2012-02-01

    A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies.A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11532h

  5. Drying induced upright sliding and reorganization of carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Li, Qingwen; DePaula, Raymond; Zhang, Xiefei; Zheng, Lianxi; Arendt, Paul N.; Mueller, Fred M.; Zhu, Y. T.; Tu, Yi

    2006-09-01

    Driven by capillary force, wet carbon nanotube (CNT) arrays have been found to reorganize into cellular structures upon drying. During the reorganization process, individual CNTs are firmly attached to the substrate and have to lie down on the substrate at cell bottoms, forming closed cells. Here we demonstrate that by modifying catalyst structures, the adhesion of CNTs to the substrate can be weakened. Upon drying such CNT arrays, CNTs may slide away from their original sites on the surface and self-assemble into cellular patterns with bottoms open. It is also found that the sliding distance of CNTs increases with array height, and drying millimetre tall arrays leads to the sliding of CNTs over a few hundred micrometres and the eventual self-assembly into discrete islands. By introducing regular vacancies in CNT arrays, CNTs may be manipulated into different patterns.

  6. Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong

    Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.

  7. Conical islands of TiO2 nanotube arrays in the photoelectrode of dye-sensitized solar cells.

    PubMed

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2015-01-01

    Ti conical island structures were fabricated using photolithography and the reactive ion etching method. The resulting conical island structures were anodized in ethylene glycol solution containing 0.25 wt% NH4F and 2 vol% H2O, and conical islands composed of TiO2 nanotubes were successfully formed on the Ti foils. The conical islands composed of TiO2 nanotubes were employed in photoelectrodes for dye-sensitized solar cells (DSCs). DSC photoelectrodes based on planar Ti structures covered with TiO2 nanotubes were also fabricated as a reference. The short-circuit current (J sc) and efficiency of DSCs based on the conical island structures were higher than those of the reference samples. The efficiency of DSCs based on the conical island structures reached up to 1.866%. From electrochemical impedance spectroscopy and open-circuit voltage (V oc) decay measurements, DSCs based on the conical island structures exhibited a lower charge transfer resistance at the counter cathode and a longer electron lifetime at the interface of the photoelectrode and electrolyte compared to the reference samples. The conical island structure was very effective at improving performances of DSCs based on TiO2 nanotubes. Graphical AbstractConical islands of TiO2 nanotube arrays are fabricated by an anodizing process with Ti protruding dots which have a conical shape. The conical islands are applied for use in DSC photoelectrodes. DSCs based on the conical islands of TiO2 nanotube arrays have the potential to achieve higher efficiency levels compared to DSCs based on normal TiO2 nanotubes and TiO2 nanoparticles because the conical islands of TiO2 nanotube arrays enlarge the surface area for dye adsorption.

  8. Biotransformation of trinitrotoluene (TNT) by Streptomyces species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, S.B.; Pasti-Grigsby, M.B.; Felicione, E.C.

    1995-12-31

    Composting has been proposed as one process for use in the bioremediation of 2,4,6 trinitrotoluene (TNT)-contaminated soils. However, the biotransformations of TNT that occur during composting, and the specific compost microorganisms involved in TNT metabolism, are not well understood. Both mesophilic and thermophilic actinomycetes are important participants in the biodegradation of organic matter, and possibly TNT, in composts. Here the authors report on the biotransformation of TNT by Streptomyces species growing aerobically in a liquid medium supplemented with 10 to 100 mg/L of TNT. Streptomyces spp. are able to completely remove TNT from the culture medium within 24 hours. Asmore » has been observed with other bacteria, these streptomycetes transform TNT first by reducing the 4-nitro and 2-nitro groups to the corresponding amino group; reducing TNT first to 4-amino-2,6-dinitrotoluene and then 2,4-diamino-6-nitrotoluene. These intermediates are transitory and are themselves removed from the medium within 7 days.« less

  9. FeP@C Nanotube Arrays Grown on Carbon Fabric as a Low Potential and Freestanding Anode for High-Performance Li-Ion Batteries.

    PubMed

    Xu, Xijun; Liu, Jun; Liu, Zhengbo; Wang, Zhuosen; Hu, Renzong; Liu, Jiangwen; Ouyang, Liuzhang; Zhu, Min

    2018-06-26

    An anode of self-supported FeP@C nanotube arrays on carbon fabric (CF) is successfully fabricated via a facile template-based deposition and phosphorization route: first, well-aligned FeOOH nanotube arrays are simply obtained via a solution deposition and in situ etching route with hydrothermally crystallized (Co,Ni)(CO 3 ) 0.5 OH nanowire arrays as the template; subsequently, these uniform FeOOH nanotube arrays are transformed into robust carbon-coated Fe 3 O 4 (Fe 3 O 4 @C) nanotube arrays via glucose adsorption and annealing treatments; and finally FeP@C nanotube arrays on CF are achieved through the facile phosphorization of the oxide-based arrays. As an anode for lithium-ion batteries (LIBs), these FeP@C nanotube arrays exhibit superior rate capability (reversible capacities of 945, 871, 815, 762, 717, and 657 mA h g -1 at 0.1, 0.2, 0.4, 0.8, 1.3, and 2.2 A g -1 , respectively, corresponding to area specific capacities of 1.73, 1.59, 1.49, 1.39, 1.31, 1.20 mA h cm -2 at 0.18, 0.37, 0.732, 1.46, 2.38, and 4.03 mA cm -2 , respectively) and a stable long-cycling performance (a high specific capacity of 718 mA h g -1 after 670 cycles at 0.5 A g -1 , corresponding to an area capacity of 1.31 mA h cm -2 at 0.92 mA cm -2 ). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrochemiluminescence detection of TNT by resonance energy transfer through the formation of a TNT-amine complex.

    PubMed

    Qi, Wenjing; Xu, Min; Pang, Lei; Liu, Zhongyuan; Zhang, Wei; Majeed, Saadat; Xu, Guobao

    2014-04-14

    2,4,6-Trinitrotoluene (TNT) is a widely used nitroaromatic explosive with significant detrimental effects on the environment and human health. Its detection is of great importance. In this study, both electrochemiluminescence (ECL)-based detection of TNT through the formation of a TNT-amine complex and the detection of TNT through electrochemiluminescence resonance energy transfer (ECRET) are developed for the first time. 3-Aminopropyltriethoxysilane (APTES)-modified [Ru(phen)3](2+) (phen=1,10-phenanthroline)-doped silica nanoparticles (RuSiNPs) with uniform sizes of (73±3) nm were synthesized. TNT can interact with APTES-modified RuSiNPs through charge transfer from electron-rich amines in the RuSiNPs to the electron-deficient aromatic ring of TNT to form a red TNT-amine complex. The absorption spectrum of this complex overlaps with the ECL spectrum of the APTES-modified RuSiNPs/triethylamine system. As a result, ECL signals of the APTES-modified RuSiNPs/triethylamine system are turned off in the presence of TNT owing to resonance energy transfer from electrochemically excited RuSiNPs to the TNT-amine complex. This ECRET method has been successfully applied for the sensitive determination of TNT with a linear range from 1×10(-9) to 1×10(-6) M with a fast response time within 1 min. The limit of detection is 0.3 nM. The method exhibits good selectivity towards 2,4-dinitrotoluene, p-nitrotoluene, nitrobenzene, phenol, p-quinone, 8-hydroxyquinoline, p-phenylenediamine, K3[Fe(CN)6], Fe(3+), NO3(-), NO2(-), Cr(3+), Fe(2+), Pb(2+), SO3(2-), formaldehyde, oxalate, proline, and glycine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparative analysis of the vapor headspace of military-grade TNT versus NESTT TNT under dynamic and static conditions

    NASA Astrophysics Data System (ADS)

    Edge, Cindy C.; Gibb, Julie; Wasserzug, Louis S.

    1998-09-01

    The Institute for Biological Detection Systems (IBDS) has developed a quantitative vapor delivery system that can aid in characterizing dog's sensitivity and ability to recognize odor signatures for explosives and contraband substances. Determining of the dog's odor signature for detection of explosives is important because it may aid in eliminating the risk of handling explosives and reducing cross-contamination. Progress is being made in the development of training aids that represent the headspace of the explosives. NESTTTM TNT materials have been proposed as an approach to developing training aid simulates. In order for such aids to be effective they must mimic the headspace of the target material. This study evaluates the NESTTTM TNT product with regard to this criterion. NESTTTM TNT vapor was generated by the IBDS vapor delivery system, which incorporates a vapor generation cell that enables the user to control the conditions under which a substance is tested. The NESTTTM TNT vapor was compared to the headspace of military-grade TNT. The findings identify and quantify major vapor constituents of military-grade TNT and NESTTTM TNT. A comparative analysis evaluated the degree to which the NESTTTM TNT mimics the headspace of an actual TNT sample.

  12. Polyoxometalate-modified TiO2 nanotube arrays photoanode materials for enhanced dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Sun, Zhixia; Zhang, Yuzhuo; Xu, Lin; Li, Na

    2017-10-01

    In this work, we prepared for the first time the TiO2 nanotube arrays (TNAs) photoanode with polyoxometalate(POMs)-modified TiO2 electron-transport layer for improving the performance of zinc phthalocyanine(ZnPc)-sensitized solar cells. The as-prepared POMs/TNAs/ZnPc composite photoanode exhibited higher photovoltaic performances than the TNAs/ZnPc photoanode, so that the power conversion efficiency of the solar cell device based on the POMs/TNAs/ZnPc photoanode displayed a notable improvement of 45%. These results indicated that the POMs play a key role in reducing charge recombination in phthalocyanine-sensitized solar cells, together with TiO2 nanotube arrays being helpful for electron transport. The mechanism of the performance improvement was demonstrated by the measurements of electrochemical impedance spectra and open-circuit voltage decay curves. Although the resulting performance is still below that of the state-of-the-art dye-sensitized solar cells, this study presents a new insight into improving the power conversion efficiency of phthalocyanine-sensitized solar cells via polyoxometalate-modified TiO2 nanotube arrays photoanode.

  13. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance.

    PubMed

    Ping, Linquan; Hou, Peng-Xiang; Liu, Chang; Li, Jincheng; Zhao, Yang; Zhang, Feng; Ma, Chaoqun; Tai, Kaiping; Cong, Hongtao; Cheng, Hui-Ming

    2017-06-22

    A vertically aligned carbon nanotube (VACNT) array is a promising candidate for a high-performance thermal interface material in high-power microprocessors due to its excellent thermal transport property. However, its rough and entangled free tips always cause poor interfacial contact, which results in serious contact resistance dominating the total thermal resistance. Here, we employed a thin carbon cover to restrain the disorderly growth of the free tips of a VACNT array. As a result, all the free tips are seamlessly connected by this thin carbon cover and the top surface of the array is smoothed. This unique structure guarantees the participation of all the carbon nanotubes in the array in the heat transport. Consequently the VACNT array grown on a Cu substrate shows a record low thermal resistance of 0.8 mm 2 K W -1 including the two-sided contact resistances, which is 4 times lower than the best result previously reported. Remarkably, the VACNT array can be easily peeled away from the Cu substrate and act as a thermal pad with excellent flexibility, adhesive ability and heat transport capability. As a result the CNT array with a thin carbon cover shows great potential for use as a high-performance flexible thermal interface material.

  14. Titania nanotubes prepared by rapid breakdown anodization for photocatalytic decolorization of organic dyes under UV and natural solar light.

    PubMed

    Ali, Saima; Granbohm, Henrika; Lahtinen, Jouko; Hannula, Simo-Pekka

    2018-06-14

    Titania nanotube (TNT) powder was prepared by rapid breakdown anodization (RBA) in a perchloric acid electrolyte. The photocatalytic efficiency of the as-prepared and powders annealed at temperatures between 250 and 550 °C was tested under UV and natural sunlight irradiation by decolorization of both anionic and cationic organic dyes, i.e., methyl orange (MO) and rhodamine B (RhB), as model pollutants. The tubular structure of the nanotubes was retained up to 250 °C, while at 350 °C and above, the nanotubes transformed into nanorods and nanoparticles. Depending on the annealing temperature, the TNTs consist of anatase, mixed anatase/brookite, or anatase/rutile phases. The bandgap of the as-prepared nanotubes is 3.04 eV, and it shifts towards the visible light region upon annealing. The X-ray photoelectron spectroscopy (XPS) results show the presence of titania and impurities including chlorine on the surface of the TNTs. The atomic ratio of Ti/O remains unchanged for the annealed TNTs, but the concentration of chlorine decreases with temperature. The photoluminescence (PL) indicate high electron-hole recombination for the as-prepared TNTs, probably due to the residual impurities, low crystallinity, and vacancies in the structure, while the highest photocurrent was observed for the TNT sample annealed at 450 °C. The TNTs induce a small degradation of the dyes under UV light; however, contrary to previous reports, complete decolorization of dyes is observed under sunlight. All TNT samples showed higher decolorization rates under sunlight irradiation than under UV light. The highest reaction rate for the TNT samples was obtained for the as-prepared TNT powder sample under sunlight using RhB (κ 1  = 1.29 h -1 ). This is attributed to the bandgap, specific surface area and the crystal structure of the nanotubes. The as-prepared TNTs performed most efficiently for decolorization of RhB and outperformed the reference anatase powder under sunlight irradiation

  15. Negative results of growing titania nanotubes on cellulose nanocrystals - Effect of hydrothermal reaction

    NASA Astrophysics Data System (ADS)

    Chamakh, Mariem Mohamed; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    Titania nanotubes (TiO2 nanotubes or TNT) are grown hydrothermally on cellulose nanocrystals (CNC) synthesized from microcrystalline cellulose. It is observed that the CNC are lost during synthesis due to its low thermal stability. This negative result of metal growth on CNC and its influence on thermal degradation are reported here.

  16. Enhancing Thermal Conductive Performance of Vertically Aligned Carbon Nanotube Array Composite by Pre-Annealing Treatment.

    PubMed

    Wang, Miao; Chen, Hong-Yuan; Xing, Ya-Juan; Wei, Han-Xing; Li, Qiang; Chen, Ming-Hai; Li, Qing-Wen; Xuan, Yi-Min

    2015-04-01

    Vertically aligned carbon nanotube (VACNT) array/polymer composite has already been recognized as a promising candidate for advanced thermal pad in thermal management of high-power electronic devices. However, the thermal conductive performance of this composite was limited by the quality of CNTs arrays. In this study, pre-annealing treatment was used to purify CNT arrays and improve thermal conductive performance of VACNT arrays/silicone composite. The thermal conductivity of the composite was enhanced by 34.52% and the thermal interface resistance was also reduced by 65.94% at a pre-annealing temperature of 490 °C for 5 min. The annealing process could remove some amorphous carbon and open the tips of CNTs. As a result, the interfacial compatibility in composite between carbon nanotube and polymer matrix was improved. The cyclic compression and tension performance of VACNT/S160 composite was investigated for further application.

  17. Biochemical Sensors Using Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya (Inventor); Cassell, Alan M. (Inventor); Li, Jun (Inventor)

    2011-01-01

    Method and system for detecting presence of biomolecules in a selected subset, or in each of several selected subsets, in a fluid. Each of an array of two or more carbon nanotubes ("CNTs") is connected at a first CNT end to one or more electronics devices, each of which senses a selected electrochemical signal that is generated when a target biomolecule in the selected subset becomes attached to a functionalized second end of the CNT, which is covalently bonded with a probe molecule. This approach indicates when target biomolecules in the selected subset are present and indicates presence or absence of target biomolecules in two or more selected subsets. Alternatively, presence of absence of an analyte can be detected.

  18. Modelling clustering of vertically aligned carbon nanotube arrays.

    PubMed

    Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N

    2015-08-06

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.

  19. Nanoscale thermocapillarity enabled purification for horizontally aligned arrays of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jin, Sung Hun; Dunham, Simon; Xie, Xu; Rogers, John A.

    2015-09-01

    Among the remarkable variety of semiconducting nanomaterials that have been discovered over the past two decades, single-walled carbon nanotubes remain uniquely well suited for applications in high-performance electronics, sensors and other technologies. The most advanced opportunities demand the ability to form perfectly aligned, horizontal arrays of purely semiconducting, chemically pristine carbon nanotubes. Here, we present strategies that offer this capability. Nanoscale thermos-capillary flows in thin-film organic coatings followed by reactive ion etching serve as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous aligned arrays grown on quartz substrates. The low temperatures and unusual physics associated with this process enable robust, scalable operation, with clear potential for practical use. Especially for the purpose of selective joule heating over only metallic nanotubes, two representative platforms are proposed and confirmed. One is achieved by selective joule heating associated with thin film transistors with partial gate structure. The other is based on a simple, scalable, large-area scheme through microwave irradiation by using micro-strip dipole antennas of low work-function metals. In this study, based on purified semiconducting SWNTs, we demonstrated field effect transistors with mobility (> 1,000 cm2/Vsec) and on/off switching ratio (~10,000) with current outputs in the milliamp range. Furthermore, as one demonstration of the effectiveness over large area-scalability and simplicity, implementing the micro-wave based purification, on large arrays consisting of ~20,000 SWNTs completely removes all of the m-SWNTs (~7,000) to yield a purity of s-SWNTs that corresponds, quantitatively, to at least to 99.9925% and likely significantly higher.

  20. Titanium wire implants with nanotube arrays: A study model for localized cancer treatment.

    PubMed

    Kaur, Gagandeep; Willsmore, Tamsyn; Gulati, Karan; Zinonos, Irene; Wang, Ye; Kurian, Mima; Hay, Shelley; Losic, Dusan; Evdokiou, Andreas

    2016-09-01

    Adverse complications associated with systemic administration of anti-cancer drugs are a major problem in cancer therapy in current clinical practice. To increase effectiveness and reduce side effects, localized drug delivery to tumour sites requiring therapy is essential. Direct delivery of potent anti-cancer drugs locally to the cancer site based on nanotechnology has been recognised as a promising alternative approach. Previously, we reported the design and fabrication of nano-engineered 3D titanium wire based implants with titania (TiO2) nanotube arrays (Ti-TNTs) for applications such as bone integration by using in-vitro culture systems. The aim of present study is to demonstrate the feasibility of using such Ti-TNTs loaded with anti-cancer agent for localized cancer therapy using pre-clinical cancer models and to test local drug delivery efficiency and anti-tumour efficacy within the tumour environment. TNF-related apoptosis-inducing ligand (TRAIL) which has proven anti-cancer properties was selected as the model drug for therapeutic delivery by Ti-TNTs. Our in-vitro 2D and 3D cell culture studies demonstrated a significant decrease in breast cancer cell viability upon incubation with TRAIL loaded Ti-TNT implants (TRAIL-TNTs). Subcutaneous tumour xenografts were established to test TRAIL-TNTs implant performance in the tumour environment by monitoring the changes in tumour burden over a selected time course. TRAIL-TNTs showed a significant regression in tumour burden within the first three days of implant insertion at the tumour site. Based on current experimental findings these Ti-TNTs wire implants have shown promising capacity to load and deliver anti-cancer agents maintaining their efficacy for cancer treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Parametrically Optimized Carbon Nanotube-Coated Cold Cathode Spindt Arrays

    PubMed Central

    Yuan, Xuesong; Cole, Matthew T.; Zhang, Yu; Wu, Jianqiang; Milne, William I.; Yan, Yang

    2017-01-01

    Here, we investigate, through parametrically optimized macroscale simulations, the field electron emission from arrays of carbon nanotube (CNT)-coated Spindts towards the development of an emerging class of novel vacuum electron devices. The present study builds on empirical data gleaned from our recent experimental findings on the room temperature electron emission from large area CNT electron sources. We determine the field emission current of the present microstructures directly using particle in cell (PIC) software and present a new CNT cold cathode array variant which has been geometrically optimized to provide maximal emission current density, with current densities of up to 11.5 A/cm2 at low operational electric fields of 5.0 V/μm. PMID:28336845

  2. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Saima, E-mail: saima.ali@aalto.fi; Hannula, Simo-Pekka

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO{sub 4}) solution (Process 1), and ethylene glycol (EG) mixture with HClO{sub 4} and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted tomore » nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m{sup 2} g{sup −1} is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical

  3. Investigation of the influence of geometric parameters of carbon nanotube arrays on their adhesion properties

    NASA Astrophysics Data System (ADS)

    Il’ina, M. V.; Konshin, A. A.; Il’in, O. I.; Rudyk, N. N.; Fedotov, A. A.; Ageev, O. A.

    2018-03-01

    The results of experimental studies of adhesion of carbon nanotube (CNT) arrays with different geometric parameters and orientations using atomic-force microscopy are presented. The adhesion values of CNT arrays were determined, which were from 82 to 1315 nN depending on the parameters of the array. As a result, it was established that the adhesion of a CNT array increases with an increase in branching and disorientation of the array, as well as with the growth of the aspect ratio of CNTs in the array.

  4. Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes.

    PubMed

    Liu, Jinyun; Li, Nan; Goodman, Matthew D; Zhang, Hui Gang; Epstein, Eric S; Huang, Bo; Pan, Zeng; Kim, Jinwoo; Choi, Jun Hee; Huang, Xingjiu; Liu, Jinhuai; Hsia, K Jimmy; Dillon, Shen J; Braun, Paul V

    2015-02-24

    Stability and high energy densities are essential qualities for emerging battery electrodes. Because of its high specific capacity, silicon has been considered a promising anode candidate. However, the several-fold volume changes during lithiation and delithiation leads to fractures and continuous formation of an unstable solid-electrolyte interphase (SEI) layer, resulting in rapid capacity decay. Here, we present a carbon-silicon-carbon (C@Si@C) nanotube sandwich structure that addresses the mechanical and chemical stability issues commonly associated with Si anodes. The C@Si@C nanotube array exhibits a capacity of ∼2200 mAh g(-1) (∼750 mAh cm(-3)), which significantly exceeds that of a commercial graphite anode, and a nearly constant Coulombic efficiency of ∼98% over 60 cycles. In addition, the C@Si@C nanotube array gives much better capacity and structure stability compared to the Si nanotubes without carbon coatings, the ZnO@C@Si@C nanorods, a Si thin film on Ni foam, and C@Si and Si@C nanotubes. In situ SEM during cycling shows that the tubes expand both inward and outward upon lithiation, as well as elongate, and then revert back to their initial size and shape after delithiation, suggesting stability during volume changes. The mechanical modeling indicates the overall plastic strain in a nanotube is much less than in a nanorod, which may significantly reduce low-cycle fatigue. The sandwich-structured nanotube design is quite general, and may serve as a guide for many emerging anode and cathode systems.

  5. Spin-polarized electron emitter: Mn-doped GaN nanotubes and their arrays

    NASA Astrophysics Data System (ADS)

    Hao, Shaogang; Zhou, Gang; Wu, Jian; Duan, Wenhui; Gu, Bing-Lin

    2004-03-01

    The influences from the doping magnetic atom, Mn, on the geometry, electronic properties, and spin-polarization characteristics are demonstrated for open armchair gallium nitrogen (GaN) nanotubes and arrays by use of the first-principles calculations. The interaction between dangling bonds of Ga (Mn) and N atoms at the open-end promotes the self-close of the tube mouth and formation of a more stable open semicone top. Primarily owing to hybridization of Mn 3d and N 2p orbitals, one Mn atom introduces several impurity energy levels into the original energy gap, and the calculated magnetic moment is 4μB. The electron spin polarizations in the field emission are theoretically evaluated. We suggest that armchair open GaN nanotube arrays doped with a finite number of magnetic atoms may have application potential as the electron source of spintronic devices in the future.

  6. Preparation of magnetic TNT-imprinted polymer nanoparticles and their accumulation onto magnetic carbon paste electrode for TNT determination.

    PubMed

    Alizadeh, Taher

    2014-11-15

    In this study, the TNT-imprinted polymer shell was created on nano-sized Fe3O4 cores in order to construct the nano-sized magnetic molecularly imprinted polymer (nano-MMIP). For this purpose, the surface of the synthesized magnetic nanoparticles was modified with methacrylic acid. The modified particles were then utilized as the core on which the TNT-imprinted polymeric shell was synthesized. The synthesized materials were then characterized by scanning electron microscopy, FT-IR and thermal gravimetric analysis (TGA). The resulting nano-MMIP particles were suspended in TNT solution and then collected on the surface of a carbon paste electrode via a permanent magnet, situated within the CP electrode. The extracted TNT was analyzed on the CP electrode by applying square wave voltammetry (SWV). It was found that the oxidative signal of TNT is much favorable for TNT detection on the resulting magnetic carbon paste electrode. The electrode with nano-MMIP showed distinctly higher signal to TNT, compared to that containing magnetic non-imprinted polymer (MNIP) nanoparticles. All parameters influencing the method performance including extraction pH, extraction time and sorbent amount were evaluated and optimized. The developed method showed a dynamic linear concentration range of 1.0-130.0 nM for TNT measurement. The detection limit of the method was calculated to be 0.5 nM. The method showed appropriate capability for TNT analysis in real water samples. Copyright © 2014. Published by Elsevier B.V.

  7. Gas Composition Sensing Using Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jing; Meyyappan, Meyya

    2012-01-01

    This innovation is a lightweight, small sensor for inert gases that consumes a relatively small amount of power and provides measurements that are as accurate as conventional approaches. The sensing approach is based on generating an electrical discharge and measuring the specific gas breakdown voltage associated with each gas present in a sample. An array of carbon nanotubes (CNTs) in a substrate is connected to a variable-pulse voltage source. The CNT tips are spaced appropriately from the second electrode maintained at a constant voltage. A sequence of voltage pulses is applied and a pulse discharge breakdown threshold voltage is estimated for one or more gas components, from an analysis of the current-voltage characteristics. Each estimated pulse discharge breakdown threshold voltage is compared with known threshold voltages for candidate gas components to estimate whether at least one candidate gas component is present in the gas. The procedure can be repeated at higher pulse voltages to estimate a pulse discharge breakdown threshold voltage for a second component present in the gas. The CNTs in the gas sensor have a sharp (low radius of curvature) tip; they are preferably multi-wall carbon nanotubes (MWCNTs) or carbon nanofibers (CNFs), to generate high-strength electrical fields adjacent to the tips for breakdown of the gas components with lower voltage application and generation of high current. The sensor system can provide a high-sensitivity, low-power-consumption tool that is very specific for identification of one or more gas components. The sensor can be multiplexed to measure current from multiple CNT arrays for simultaneous detection of several gas components.

  8. Enhancement in photo-electrochemical efficiency by reducing recombination rate in branched TiO2 nanotube array on functionalizing with ZnO micro crystals

    NASA Astrophysics Data System (ADS)

    Boda, Muzaffar Ahmad; Ashraf Shah, Mohammad

    2018-06-01

    In this study, branched TiO2 nanotube array were fabricated through electrochemical anodization process at constant voltage using third generation electrolyte. On account of morphological advantage, these nanotubes shows significant enhancement in photo-electrochemical property than compact or conventional titania nanotube array. However, their photo-electrochemical efficiency intensifies on coating with ZnO micro-crystals. ZnO coated branched TiO2 nanotube array shows a photocurrent density of 27.8 mA cm‑2 which is 1.55 times the photocurrent density (17.2 mA cm‑2) shown by bare branched titania nanotubes. The significant enhancement in photocurrent density shown by the resulting ZnO/TiO2 hybrid structure is attributed to suppression in electron–hole recombination phenomenon by offering smooth pathway to photo generated excitons on account of staggered band edge positions in individual semiconductors.

  9. Propagation of three-dimensional bipolar ultrashort electromagnetic pulses in an inhomogeneous array of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fedorov, Eduard G.; Zhukov, Alexander V.; Bouffanais, Roland; Timashkov, Alexander P.; Malomed, Boris A.; Leblond, Hervé; Mihalache, Dumitru; Rosanov, Nikolay N.; Belonenko, Mikhail B.

    2018-04-01

    We study the propagation of three-dimensional (3D) bipolar ultrashort electromagnetic pulses in an inhomogeneous array of semiconductor carbon nanotubes. The heterogeneity is represented by a planar region with an increased concentration of conduction electrons. The evolution of the electromagnetic field and electron concentration in the sample are governed by the Maxwell's equations and continuity equation. In particular, nonuniformity of the electromagnetic field along the axis of the nanotubes is taken into account. We demonstrate that depending on values of the parameters of the electromagnetic pulse approaching the region with the higher electron concentration, the pulse is either reflected from the region or passes it. Specifically, our simulations demonstrate that after interacting with the higher-concentration area, the pulse can propagate steadily, without significant spreading. The possibility of such ultrashort electromagnetic pulses propagating in arrays of carbon nanotubes over distances significantly exceeding characteristic dimensions of the pulses makes it possible to consider them as 3D solitons.

  10. Double-sided anodic titania nanotube arrays: a lopsided growth process.

    PubMed

    Sun, Lidong; Zhang, Sam; Sun, Xiao Wei; Wang, Xiaoyan; Cai, Yanli

    2010-12-07

    In the past decade, the pore diameter of anodic titania nanotubes was reported to be influenced by a number of factors in organic electrolyte, for example, applied potential, working distance, water content, and temperature. All these were closely related to potential drop in the organic electrolyte. In this work, the essential role of electric field originating from the potential drop was directly revealed for the first time using a simple two-electrode anodizing method. Anodic titania nanotube arrays were grown simultaneously at both sides of a titanium foil, with tube length being longer at the front side than that at the back side. This lopsided growth was attributed to the higher ionic flux induced by electric field at the front side. Accordingly, the nanotube length was further tailored to be comparable at both sides by modulating the electric field. These results are promising to be used in parallel configuration dye-sensitized solar cells, water splitting, and gas sensors, as a result of high surface area produced by the double-sided architecture.

  11. Effects of hydrogenated TiO2 nanotube arrays on protein adsorption and compatibility with osteoblast-like cells.

    PubMed

    Lu, Ran; Wang, Caiyun; Wang, Xin; Wang, Yuji; Wang, Na; Chou, Joshua; Li, Tao; Zhang, Zhenting; Ling, Yunhan; Chen, Su

    2018-01-01

    Modified titanium (Ti) substrates with titanium dioxide (TiO 2 ) nanotubes have broad usage as implant surface treatments and as drug delivery systems. To improve drug-loading capacity and accelerate bone integration with titanium, in this study, we hydrogenated anodized titanium dioxide nanotubes (TNTs) by a thermal treatment. Three groups were examined, namely: hydrogenated TNTs (H 2 -TNTs, test), unmodified TNTs (air-TNTs, control), and Ti substrates (Ti, control). Our results showed that oxygen vacancies were present in all the nanotubes. The quantity of -OH groups greatly increased after hydrogenation. Furthermore, the protein adsorption and loading capacity of the H 2 -TNTs were considerably enhanced as compared with the properties of the air-TNTs ( P <0.05). Additionally, time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to investigate the interactions of TNTs with proteins. During the protein-loading process, the H 2 -TNTs not only enabled rapid protein adsorption, but also decreased the rate of protein elution compared with that of the air-TNTs. We found that the H 2 -TNTs exhibited better biocompatibility than the air-TNT and Ti groups. Both cell adhesion activity and alkaline phosphatase activity were significantly improved toward MG-63 human osteoblast-like cells as compared with the control groups ( P <0.05). We conclude that hydrogenated TNTs could greatly improve the loading capacity of bioactive molecules and MG-63 cell proliferation.

  12. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants

    PubMed Central

    Aw, Moom Sinn; Khalid, Kamarul A; Gulati, Karan; Atkins, Gerald J; Pivonka, Peter; Findlay, David M; Losic, Dusan

    2012-01-01

    Purpose The aim of this study was to investigate the application of the three-dimensional bone bioreactor for studying drug-release kinetics and distribution of drugs in the ex vivo cancellous bone environment, and to demonstrate the application of nanoengineered titanium (Ti) wires generated with titania nanotube (TNT) arrays as drug-releasing implants for local drug delivery Methods Nanoengineered Ti wires covered with a layer of TNT arrays implanted in bone were used as a drug-releasing implant. Viable bovine trabecular bone was used as the ex vivo bone substrate embedded with the implants and placed in the bone reactor. A hydrophilic fluorescent dye (rhodamine B) was used as the model drug, loaded inside the TNT–Ti implants, to monitor drug release and transport in trabecular bone. The distribution of released model drug in the bone was monitored throughout the bone structure, and concentration profiles at different vertical (0–5 mm) and horizontal (0–10 mm) distances from the implant surface were obtained at a range of release times from 1 hour to 5 days. Results Scanning electron microscopy confirmed that well-ordered, vertically aligned nanotube arrays were formed on the surface of prepared TNT–Ti wires. Thermogravimetric analysis proved loading of the model drug and fluorescence spectroscopy was used to show drug-release characteristics in-vitro. The drug release from implants inserted into bone ex vivo showed a consistent gradual release of model drug from the TNT–Ti implants, with a characteristic three-dimensional distribution into the surrounding bone, over a period of 5 days. The parameters including the flow rate of bone culture medium, differences in trabecular microarchitecture between bone samples, and mechanical loading were found to have the most significant influence on drug distribution in the bone. Conclusion These results demonstrate the utility of the Zetos™ system for ex vivo drug-release studies in bone, which can be applied to

  13. Titania nanotube arrays as potential interfaces for neurological prostheses

    NASA Astrophysics Data System (ADS)

    Sorkin, Jonathan Andrew

    Neural prostheses can make a dramatic improvement for those suffering from visual and auditory, cognitive, and motor control disabilities, allowing them regained functionality by the use of stimulating or recording electrical signaling. However, the longevity of these devices is limited due to the neural tissue response to the implanted device. In response to the implant penetrating the blood brain barrier and causing trauma to the tissue, the body forms a to scar to isolate the implant in order to protect the nearby tissue. The scar tissue is a result of reactive gliosis and produces an insulated sheath, encapsulating the implant. The glial sheath limits the stimulating or recording capabilities of the implant, reducing its effectiveness over the long term. A favorable interaction with this tissue would be the direct adhesion of neurons onto the contacts of the implant, and the prevention of glial encapsulation. With direct neuronal adhesion the effectiveness and longevity of the device would be significantly improved. Titania nanotube arrays, fabricated using electrochemical anodization, provide a conductive architecture capable of altering cellular response. This work focuses on the fabrication of different titania nanotube array architectures to determine how their structures and properties influence the response of neural tissue, modeled using the C17.2 murine neural stem cell subclone, and if glial encapsulation can be reduced while neuronal adhesion is promoted.

  14. Post-Detonation Energy Release from TNT-Aluminum Explosives

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Anderson, John; Yoshinaka, Akio

    2007-06-01

    Detonation and post-detonation energy release from TNT and TNT-aluminum composite have been experimentally studied in an air-filled chamber, 26 m^3 in volume and 3 m in diameter. While TNT has a high oxygen deficiency, experiments with 1.1 kg to 4 kg charges yield energy releases reaching only 86% of theoretical equilibrium values, possibly due to the non-uniform mixing between the detonation products and air. In order to improve mixing and further increase afterburning energy, large mass fractions of large aluminum particles are combined with TNT. The effect of particle distribution is also investigated in two composite configurations, whereby the aluminum particles are uniformly mixed in cast TNT or arranged in a shell surrounding a TNT cylinder. It is shown that the TNT-aluminum composite outperforms pure TNT, while improved performance is achieved for the shell configuration due to enhanced spatial mixing of hot fuels with oxidizing gases. Comparisons with the equilibrium theory and a liquid-based aluminized composite explosive (with an oxygen deficiency less than that of TNT) are conducted to further explore the mixing and afterburning mechanism.

  15. Thermoacoustic chips with carbon nanotube thin yarn arrays.

    PubMed

    Wei, Yang; Lin, Xiaoyang; Jiang, Kaili; Liu, Peng; Li, Qunqing; Fan, Shoushan

    2013-10-09

    Aligned carbon nanotube (CNT) films drawn from CNT arrays have shown the potential as thermoacoustic loudspeakers. CNT thermoacoustic chips with robust structures are proposed to promote the applications. The silicon-based chips can play sound and fascinating rhythms by feeding alternating currents and audio signal to the suspending CNT thin yarn arrays across grooves in them. In additional to the thin yarns, experiments further revealed more essential elements of the chips, the groove depth and the interdigital electrodes. The sound pressure depends on the depth of the grooves, and the thermal wavelength can be introduced to define the influence-free depth. The interdigital fingers can effectively reduce the driving voltage, making the chips safe and easy to use. The chips were successfully assembled into earphones and have been working stably for about one year. The thermoacoustic chips can find many applications in consumer electronics and possibly improve the audiovisual experience.

  16. Enrichment and characterization of anaerobic TNT-degrading bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, D.J.; Pendharkar, S.

    1995-12-31

    Three media constitutions were used to enrich for mixed cultures capable of degrading 2,4,6-trinitrotoluene (TNT) under strictly anaerobic conditions. The media were derived from a mineral salts solution buffered to pH 7 with CO{sub 2}/bicarbonate and all contained TNT. The cultures were enriched in the TNT mineral salts medium or the TNT mineral salts medium supplemented with glucose, yeast extract, or ammonia in various combinations. Inocula were obtained from a treated soil, previously contaminated with dinoseb and then treated using anaerobic procedures, or from a bench-top aqueous culture, maintained with an extract from a munitions-contaminated soil for more than 4more » years. Several cultures reduced TNT, producing 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene as the major products. The cultures were unable to effectively remove TNT when cross-transferred to the media they were not enriched on, suggesting that different media had enriched different subcultures form the original inoculum. The treated soil provided the most successful inoculum. Two media were chosen for further studies. Medium 1 contained TNT and glucose and produced a culture that might have used TNT as a nitrogen source. Medium 2, containing TNT and yeast extract, enriched cultures that degraded TNT, accumulating small amounts of p-cresol during the degradation.« less

  17. Superaligned carbon nanotube arrays, films, and yarns: a road to applications.

    PubMed

    Jiang, Kaili; Wang, Jiaping; Li, Qunqing; Liu, Liang; Li, Changhong; Fan, Shoushan

    2011-03-04

    A superaligned carbon nanotube (CNT) array is a special kind of vertically aligned CNT array with the capability of being converted into continuous fi lms and yarns. The as-produced CNT fi lms are transparent and highly conductive, with aligned CNTs parallel to the direction of drawing. After passing through volatile solutions or being twisted, CNT fi lms can be further condensed into shrunk yarns. These shrunk yarns possess high tensile strengths and Young’s moduli, and are good conductors. Many applications of CNT fi lms and shrunk yarns have been demonstrated, such as TEM grids, loudspeakers, touch screens, etc.

  18. Transparent TiO 2 nanotube array photoelectrodes prepared via two-step anodization

    DOE PAGES

    Kim, Jin Young; Zhu, Kai; Neale, Nathan R.; ...

    2014-04-04

    Two-step anodization of transparent TiO 2 nanotube arrays has been demonstrated with aid of a Nb-doped TiO 2 buffer layer deposited between the Ti layer and TCO substrate. Enhanced physical adhesion and electrochemical stability provided by the buffer layer has been found to be important for successful implementation of the two-step anodization process. As a result, with the proposed approach, the morphology and thickness of NT arrays could be controlled very precisely, which in turn, influenced their optical and photoelectrochemical properties.

  19. Systemic complications of trinitrotoluene (TNT) in exposed workers.

    PubMed

    Naderi, Mostafa; Ghanei, Mostafa; Shohrati, Majid; Saburi, Amin; Babaei, Mahmoud; Najafian, Bita

    2013-03-01

    2,4,6-trinitrotoluene (TNT) has been widely used as an explosive. TNT can induce some well-recognized toxic impacts comprising toxic hepatitis, aplastic anemia and cataract. The aim of study was evaluation of TNT exposed workers for systemic complication. In a cross-sectional study, we carried out Liver Function Test (LFT), complete blood count (CBC) and slit lamp biomicroscopy to compare the prevalence and severity of these 3 complications between 47 male TNT exposed workers (with at least one year continuous experience of TNT exposure) and 43 unexposed male hospital worker who hadn't had any previous contacts with TNT. We also performed Pulmonary Function Test (PFT) to assess the probable obstructive/restrictive abnormalities, caused by TNT. Mean alkaline phosphatase (ALP) level of TNT exposed group was significantly higher than the unexposed group (p = 0.023) Forced Expiratory Volume in one second to Forced Vital Capacity (FEV1/FVC) ratios of both groups were in the range of restrictive pattern (82.03% and 81.42% for the exposed and unexposed group, respectively) with no meaningful difference. We didn't find out any specific TNT induced cataract and general cortical cataract (CC) and nuclear sclerotic cataract (NSC) prevalence was not significantly different. we haven't found TNT as a chemical, causing toxic hepatitis or aplastic anemia; neither did we find it as a compound, responsible for a meaningful increase in cataract prevalence. However, due to the increased ALP serum levels and FEV1/FVC ratios among TNT workers, safety precautions are advised.

  20. Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays.

    PubMed

    Jiao, Zhengbo; Chen, Tao; Xiong, Jinyan; Wang, Teng; Lu, Gongxuan; Ye, Jinhua; Bi, Yingpu

    2013-01-01

    Well-aligned TiO2 nanotube arrays have become of increasing significance because of their unique highly ordered array structure, high specific surface area, unidirectional charge transfer and transportation features. However, their poor visible light utilization as well as the high recombination rate of photoexcited electron-hole pairs greatly limited their practical applications. Herein, we demonstrate the fabrication of visible-light-responsive heterostructured Cr-doped SrTiO3/TiO2 nanotube arrays by a simple hydrothermal method, which facilitate efficient charge separation and thus improve the photoelectrochemical as well as photocatalytic performances.

  1. Biological treatment of TNT-contaminated soil. 1: Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daun, G.; Lenke, H.; Knackmuss, H.J.

    1998-07-01

    The explosive 2,4,6-trinitrotoluene (TNT), found as a major contaminant at armament plants from the two world wars, is reduced by a variety of microorganisms when electron donors such as glucose are added. This study shows that the cometabolic reduction of TNT to 2,4,6-triaminotoluene by an undefined anaerobic consortium increased considerably with increasing TNT concentrations and decreased with decreasing concentrations and feeding rates of glucose. The interactions of TNT and its reduction products with montmorillonitic clay and humic acids were investigated in abiotic adsorption experiments and during the microbial reduction of TNT. The results indicate that reduction products of TNT particularlymore » hydroxylaminodinitrotoluenes and 2,4,6-triaminotoluene bind irreversibly to soil components, which would prevent or prolong mineralization of the contaminants. Irreversible binding also hinders a further spread of the contaminants through soil or leaching into the groundwater.« less

  2. Drug release characteristics of quercetin-loaded TiO2 nanotubes coated with chitosan.

    PubMed

    Mohan, L; Anandan, C; Rajendran, N

    2016-12-01

    TiO 2 nanotubes formed by anodic oxidation of Ti-6Al-7Nb were loaded with quercetin (TNTQ) and chitosan was coated on the top of the quercetin (TNTQC) to various thicknesses. Field emission scanning electron microscopy (FESEM), 3D and 2D analyses were used to characterize the samples. The drug release studies of TNTQ and TNTQC were studied in Hanks' solution for 192h. The studies showed that the native oxide on the sample is substituted by self assembled nanotube arrays by anodisation. FESEM images of chitosan-loaded TNT samples showed that filling of chitosan takes place in inter-tubular space and pores. Drug release studies revealed that the release of drug into the local environment during that duration was constant. The local concentration of the drug can be controlled and tuned by controlling the thickness of the chitosan (0.6, 1 and 3μm) to fit into an optimal therapeutic window in order to treat postoperative infections, inflammation and for quick healing with better osseointegration of the titanium implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. 2,4,6-Trinitrotoluene (TNT) air concentrations, hemoglobin changes, and anemia cases in respirator protected TNT munitions demilitarization workers.

    PubMed

    Bradley, Melville D

    2011-03-01

    2,4,6-Trinitrotoluene (TNT) is an explosive used in munitions production that is known to cause both aplastic and hemolytic anemia in exposed workers. Anemia in a TNT worker is considered a sentinel health event (occupational) (SHE(O)) in the United States (US). Deaths have been reported secondary to aplastic anemia. Studies have shown that TNT systemic absorption is significant by both the respiratory and dermal routes. No studies encountered looked at hemoglobin change or anemia cases in respiratory protected workers. It is hypothesized that respiratory protection is insufficient to protect TNT workers from the risk of anemia development and hemoglobin concentration drop. A records review of eight groups of respiratory protected TNT workers' pre-exposure hemoglobin levels were compared with their during-exposure hemoglobin levels for statistically significant (alpha level 0.05) hemoglobin level changes, and anemia cases were recorded. A curve estimation analysis was performed between mean TNT air concentrations and mean hemoglobin change values. Statistically significant hemoglobin level drops and anemia cases were apparent at TNT air concentrations about the REL and PEL in respiratory protected workers. There were no anemia cases or statistically significant hemoglobin level drops at concentrations about the TLV, however. A statistically significant inverse non-linear regression model was found to be the best fit for regressing hemoglobin change on TNT air concentration. Respiratory protection may be inadequate to prevent workers who are at risk for TNT skin absorption from developing anemia. This study contributes evidence that the TLV should be considered for adoption as the new PEL.

  4. A Detailed Chemical Kinetic Model for TNT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitz, W J; Westbrook, C K

    2005-01-13

    A detailed chemical kinetic mechanism for 2,4,6-tri-nitrotoluene (TNT) has been developed to explore problems of explosive performance and soot formation during the destruction of munitions. The TNT mechanism treats only gas-phase reactions. Reactions for the decomposition of TNT and for the consumption of intermediate products formed from TNT are assembled based on information from the literature and on current understanding of aromatic chemistry. Thermodynamic properties of intermediate and radical species are estimated by group additivity. Reaction paths are developed based on similar paths for aromatic hydrocarbons. Reaction-rate constant expressions are estimated from the literature and from analogous reactions where themore » rate constants are available. The detailed reaction mechanism for TNT is added to existing reaction mechanisms for RDX and for hydrocarbons. Computed results show the effect of oxygen concentration on the amount of soot precursors that are formed in the combustion of RDX and TNT mixtures in N{sub 2}/O{sub 2} mixtures.« less

  5. Efficient silver modification of TiO2 nanotubes with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Ding, Lei; Xi, Yaoning; Shi, Liang; Su, Ge; Gao, Rongjie; Wang, Wei; Dong, Bohua; Cao, Lixin

    2018-06-01

    In this paper, Ag(CH3NH2)2+, Ag(NH3)2+ and Ag+ with different radii have been used as silver sources to find out the distribution of Ag ions on the H-TNT surface, which is critical to the final performance. The influence of this distribution on visible photocatalytic activity is further studied. The results indicate that, when Ag+ used as silver source with low concentration, these small sized silver ions mainly distribute on interlayer spacing of H-TNT. After heat-treatment and photo-reduction, the generated silver nanoparticles uniformly embed in the anatase TiO2 nanotube walls, and bring large interfacial area between Ag particles and TiO2 nanotubes. The separation effect of photogenerated electron-hole pair in TiO2 is enhanced by Ag particles, and achieves the best at 0.15 g/L, much higher than P25, TiO2/0, Ag-N@TiO2 and Ag-C-N@TiO2. This paper provides new ideas for the modification of TiO2 nanotubes.

  6. Polymer-assisted deposition of films and preparation of carbon nanotube arrays using the films

    DOEpatents

    Luo, Hongmei; Li, Qingwen; Bauer, Eve; Burrell, Anthony Keiran; McCleskey, Thomas Mark; Jia, Quanxi

    2013-07-16

    Carbon nanotubes were prepared by coating a substrate with a coating solution including a suitable solvent, a soluble polymer, a metal precursor having a first metal selected from iron, nickel, cobalt, and molybdenum, and optionally a second metal selected from aluminum and magnesium, and also a binding agent that forms a complex with the first metal and a complex with the second metal. The coated substrate was exposed to a reducing atmosphere at elevated temperature, and then to a hydrocarbon in the reducing atmosphere. The result was decomposition of the polymer and formation of carbon nanotubes on the substrate. The carbon nanotubes were often in the form of an array on the substrate.

  7. In-vitro bioactivity and electrochemical behavior of polyaniline encapsulated titania nanotube arrays for biomedical applications

    NASA Astrophysics Data System (ADS)

    Agilan, P.; Rajendran, N.

    2018-05-01

    Titania nanotube arrays (TNTA) have attracted increasing attention due to their outstanding properties and potential applications in biomedical field. Fabrication of titania nanotubes on titanium surface enhances the biocompatibility. Polyaniline (PANI) is one of the best conducting polymers with remarkable corrosion resistance and reasonable biocompatibility. In this work, the corrosion resistance and biocompatibility of polyaniline encapsulated TiO2 nanotubes for orthopaedic applications were investigated. The vertically oriented, highly ordered TiO2 nanotubes were fabricated on titanium by electrochemical anodization process using fluoride containing electrolytes. The anodization parameters viz., voltage, pH, time and electrolyte concentration were optimized to get orderly arranged TNTA. Further, the conducting polymer PANI was encapsulated on TNTA by electropolymerization process to enhance the corrosion resistance. The nanostructure of the fabricated TNTA and polyaniline encapsulated titania nanotube arrays (PANI-TNTA) were investigated by HR SEM analysis. The formed phases and functional groups were find using XRD, ATR-FTIR. The hydrophilic surface of TNTA and PANI-TNTA was identified by water contact angle studies. The corrosion behavior of specimens was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies. In-vitro immersion studies were carried out in simulated body fluid solution (Hanks' solution) to evaluate the bioactivity of the TNTA and PANI-TNTA. The surface morphological studies revealed the formation of PANI on the TNTA surface. Formation of hydroxyapatite (HAp) on the surfaces of TNTA and PANI-TNTA enhanced the bioactivity and corrosion resistance.

  8. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances

    NASA Astrophysics Data System (ADS)

    Farsinezhad, Samira; Shanavas, Thariq; Mahdi, Najia; Askar, Abdelrahman M.; Kar, Piyush; Sharma, Himani; Shankar, Karthik

    2018-04-01

    Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.

  9. Influence of Thermal Modification and Morphology of TiO₂ Nanotubes on Their Electrochemical Properties for Biosensors Applications.

    PubMed

    Arkusz, Katarzyna; Paradowska, Ewa; Nycz, Marta; Krasicka-Cydzik, Elżzbieta

    2018-05-01

    The morphology of self-assembled TiO2 nanotubes layer plays a key role in electrical conductivity and biocompatibility properties in terms of cell proliferation, adhesion and mineralization. Many research studies have been reported in using a TiO2 nanotubes for different medical applications, there is a lack of unified correlation between TNT morphology and its electrochemical properties. The aim of this study was to examine the effects of diameter and annealing conditions on TiO2 nanotubes with identical height and their behaviour as biosensor platform. TiO2 nanotubes layer, 1000 nm thick with nanotubes of diameters in range: 25 ÷ 100 nm, was prepared by anodizing of the titanium foil in ethylene glycol solution. To change the crystal structure and improve the electrical conductivity of the semiconductive TiO2 nanotubes layer the thermal treatment by annealing in argon, nitrogen or air was used. Basing on the electrochemical tests, the XPS and scanning microscopy examinations, as well as the contact angle measurements and the amperometric detection of potassium ferricyanide, it was concluded that the 1000 nm thick TiO2 nanotubes layer with nanotubes of 50 nm diameter, annealed in argon, showed the best physicochemical properties, which helps investigate the adsorption immobilization mechanism. The possibility of using TNT as a biosensor platform was confirmed in hydrogen detection.

  10. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array.

    PubMed

    Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun

    2012-02-21

    A type of highly efficient completely flexible fiber-shaped solar cell based on TiO(2) nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm(-2)) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO(2) nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. This journal is © The Royal Society of Chemistry 2012

  11. Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koroesi, Laszlo, E-mail: korosi@enviroinvest.hu; Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertvaros utca 2, H-7632 Pecs; Papp, Szilvia

    2012-08-15

    Titanate nanotubes were synthesized from TiO{sub 2} in alkaline medium by a conventional hydrothermal method (150 Degree-Sign C, 4.7 bar). To obtain hydrogen titanates, the as-prepared sodium titanates were treated with either HCl or H{sub 3}PO{sub 4} aqueous solutions. A simple synthesis procedure was devised for stable titanate nanotube sols without using any additives. These highly stable ethanolic sols can readily be used to prepare transparent titanate nanotube thin films of high quality. The resulting samples were studied by X-ray diffraction, N{sub 2}-sorption measurements, Raman spectroscopy, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The comparative resultsmore » of using two kinds of acids shed light on the superior thermal stability of the H{sub 3}PO{sub 4}-treated titanate nanotubes (P-TNTs). X-ray photoelectron spectroscopy revealed that P-TNTs contains P in the near-surface region and the thermal stability was enhanced even at a low ({approx}0.5 at%) concentration of P. After calcination at 500 Degree-Sign C, the specific surface areas of the HCl- and H{sub 3}PO{sub 4}-treated samples were 153 and 244 m{sup 2} g{sup -1}, respectively. The effects of H{sub 3}PO{sub 4} treatment on the structure, morphology and porosity of titanate nanotubes are discussed. - Graphical Abstract: TEM picture (left) shows P-TNTs with diameters about 5-6 nm. Inset shows a stable titanate nanotube sol illuminated by a 532 nm laser beam. Due to the presence of the nanoparticles the way of the light is visible in the sol. Cross sectional SEM picture (right) as well as ellipsometry revealed the formation of optical quality P-TNT films with thicknesses below 50 nm. Highlights: Black-Right-Pointing-Pointer H{sub 3}PO{sub 4} treatment led to TNTs with high surface area even after calcination at 500 Degree-Sign C. Black-Right-Pointing-Pointer H{sub 3}PO{sub 4}-treated TNTs preserved their nanotube morphology up

  12. Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes

    PubMed Central

    Chen, Zhaowei; Wang, Qixin; Asmani, Mohammadnabi; Li, Yan; Liu, Chang; Li, Changning; Lippmann, Julian M.; Wu, Yun; Zhao, Ruogang

    2016-01-01

    Due to their excellent physical and chemical characteristics, multi-wall carbon nanotubes (MWCNT) have the potential to be used in structural composites, conductive materials, sensors, drug delivery and medical imaging. However, because of their small-size and light-weight, the applications of MWCNT also raise health concerns. In vivo animal studies have shown that MWCNT cause biomechanical and genetic alterations in the lung tissue which lead to lung fibrosis. To screen the fibrogenic risk factor of specific types of MWCNT, we developed a human lung microtissue array device that allows real-time and in-situ readout of the biomechanical properties of the engineered lung microtissue upon MWCNT insult. We showed that the higher the MWCNT concentration, the more severe cytotoxicity was observed. More importantly, short type MWCNT at low concentration of 50 ng/ml stimulated microtissue formation and contraction force generation, and caused substantial increase in the fibrogenic marker miR-21 expression, indicating the high fibrogenic potential of this specific carbon nanotube type and concentration. The presented microtissue array system provides a powerful tool for high-throughput examination of the therapeutic and toxicological effects of target compounds in realistic tissue environment. PMID:27510174

  13. Carbon Nanotube Bundle Array Cold Cathodes for THz Vacuum Tube Sources

    NASA Astrophysics Data System (ADS)

    Manohara, Harish M.; Toda, Risaku; Lin, Robert H.; Liao, Anna; Bronikowski, Michael J.; Siegel, Peter H.

    2009-12-01

    We present high performance cold cathodes composed of arrays of carbon nanotube bundles that routinely produce > 15 A/cm2 at applied fields of 5 to 8 V/µm without any beam focusing. They have exhibited robust operation in poor vacuums of 10-6 to 10-4 Torr- a typically achievable range inside hermetically sealed microcavities. A new double-SOI process was developed to monolithically integrate a gate and additional beam tailoring electrodes. The ability to design the electrodes for specific requirements makes carbon nanotube field emission sources extremely flexible. The lifetime of these cathodes is found to be affected by two effects: a gradual decay of emission due to anode sputtering, and catastrophic failure because of dislodging of CNT bundles at high fields ( > 10 V/µm).

  14. Exploring doxorubicin localization in eluting TiO2 nanotube arrays through fluorescence correlation spectroscopy analysis.

    PubMed

    De Santo, Ilaria; Sanguigno, Luigi; Causa, Filippo; Monetta, Tullio; Netti, Paolo A

    2012-11-07

    Drug elution properties of TiO(2) nanotube arrays have been largely investigated by means of solely macroscopic observations. Controversial elution performances have been reported so far and a clear comprehension of these phenomena is still missing as a consequence of a lack of molecular investigation methods. Here we propose a way to discern drug elution properties of nanotubes through the evaluation of drug localization by Fluorescence Correlation Spectroscopy (FCS) analysis. We verified this method upon doxorubicin elution from differently loaded TiO(2) nanotubes. Diverse elution profiles were obtained from nanotubes filled by soaking and wet vacuum impregnation methods. Impregnated nanotubes controlled drug diffusion up to thirty days, while soaked samples completed elution in seven days. FCS analysis of doxorubicin motion in loaded nanotubes clarified that more than 90% of drugs dwell preferentially in inter-nanotube spaces in soaked samples due to decorrelation in a 2D fashion, while a 97% fraction of molecules showed 1D mobility ascribable to displacements along the nanotube vertical axis of wet vacuum impregnated nanotubes. The diverse drug localizations inferred from FCS measurements, together with distinct drug-surface interaction strengths resulting from diverse drug filling techniques, could explain the variability in elution kinetics.

  15. Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

    NASA Astrophysics Data System (ADS)

    Maschmann, Matthew R.; Dickinson, Ben; Ehlert, Gregory J.; Baur, Jeffery W.

    2012-09-01

    The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0-1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.

  16. Detection of the Odor Signature of Ovarian Cancer using DNA-Decorated Carbon Nanotube Field Effect Transistor Arrays

    NASA Astrophysics Data System (ADS)

    Kehayias, Christopher; Kybert, Nicholas; Yodh, Jeremy; Johnson, A. T. Charlie

    Carbon nanotubes are low-dimensional materials that exhibit remarkable chemical and bio-sensing properties and have excellent compatibility with electronic systems. Here, we present a study that uses an electronic olfaction system based on a large array of DNA-carbon nanotube field effect transistors vapor sensors to analyze the VOCs of blood plasma samples collected from patients with malignant ovarian cancer, patients with benign ovarian lesions, and age-matched healthy subjects. Initial investigations involved coating each CNT sensor with single-stranded DNA of a particular base sequence. 10 distinct DNA oligomers were used to functionalize the carbon nanotube field effect transistors, providing a 10-dimensional sensor array output response. Upon performing a statistical analysis of the 10-dimensional sensor array responses, we showed that blood samples from patients with malignant cancer can be reliably differentiated from those of healthy control subjects with a p-value of 3 x 10-5. The results provide preliminary evidence that the blood of ovarian cancer patients contains a discernable volatile chemical signature that can be detected using DNA-CNT nanoelectronic vapor sensors, a first step towards a minimally invasive electronic diagnostic technology for ovarian cancer.

  17. Preparation, characterization, and application of titanium nano-tube array in dye-sensitized solar cells

    PubMed Central

    2012-01-01

    The vertically orientated TiO2 nanotube array (TNA) decorated with TiO2 nano-particles was successfully fabricated by electrochemically anodizing titanium (Ti) foils followed by Ti-precursor post-treatment and annealing process. The TNA morphology characterized by SEM and TEM was found to be filled with TiO2 nano-particles interior and exterior of the TiO2 nano-tubes after titanium (IV) n-butoxide (TnB) treatment, whereas TiO2 nano-particles were only found inside of TiO2 nano-tubes upon titanium tetrachloride (TiCl4) treatment. The efficiency in TNA-based DSSCs was improved by both TnB and TiCl4 treatment presumably due to the increase of dye adsorption. PMID:22353282

  18. Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium.

    PubMed Central

    Spiker, J K; Crawford, D L; Crawford, R L

    1992-01-01

    The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed. PMID:1444437

  19. Ag Nanoparticle-Functionalized Open-Ended Freestanding TiO₂ Nanotube Arrays with a Scattering Layer for Improved Energy Conversion Efficiency in Dye-Sensitized Solar Cells.

    PubMed

    Rho, Won-Yeop; Chun, Myeung-Hwan; Kim, Ho-Sub; Kim, Hyung-Mo; Suh, Jung Sang; Jun, Bong-Hyun

    2016-06-15

    Dye-sensitized solar cells (DSSCs) were fabricated using open-ended freestanding TiO₂ nanotube arrays functionalized with Ag nanoparticles (NPs) in the channel to create a plasmonic effect, and then coated with large TiO₂ NPs to create a scattering effect in order to improve energy conversion efficiency. Compared to closed-ended freestanding TiO₂ nanotube array-based DSSCs without Ag or large TiO₂ NPs, the energy conversion efficiency of closed-ended DSSCs improved by 9.21% (actual efficiency, from 5.86% to 6.40%) with Ag NPs, 6.48% (actual efficiency, from 5.86% to 6.24%) with TiO₂ NPs, and 14.50% (actual efficiency, from 5.86% to 6.71%) with both Ag NPs and TiO₂ NPs. By introducing Ag NPs and/or large TiO₂ NPs to open-ended freestanding TiO₂ nanotube array-based DSSCs, the energy conversion efficiency was improved by 9.15% (actual efficiency, from 6.12% to 6.68%) with Ag NPs and 8.17% (actual efficiency, from 6.12% to 6.62%) with TiO₂ NPs, and by 15.20% (actual efficiency, from 6.12% to 7.05%) with both Ag NPs and TiO₂ NPs. Moreover, compared to closed-ended freestanding TiO₂ nanotube arrays, the energy conversion efficiency of open-ended freestanding TiO₂ nanotube arrays increased from 6.71% to 7.05%. We demonstrate that each component-Ag NPs, TiO₂ NPs, and open-ended freestanding TiO₂ nanotube arrays-enhanced the energy conversion efficiency, and the use of a combination of all components in DSSCs resulted in the highest energy conversion efficiency.

  20. Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays

    NASA Astrophysics Data System (ADS)

    Proenca, M. P.; Sousa, C. T.; Escrig, J.; Ventura, J.; Vazquez, M.; Araujo, J. P.

    2013-03-01

    Ordered hexagonal arrays of Co nanowires (NWs) and nanotubes (NTs), with diameters between 40 and 65 nm, were prepared by potentiostatic electrodeposition into suitably modified nanoporous alumina templates. The geometrical parameters of the NW/NT arrays were tuned by the pore etching process and deposition conditions. The magnetic interactions between NWs/NTs with different diameters were studied using first-order reversal curves (FORCs). From a quantitative analysis of the FORC measurements, we are able to obtain the profiles of the magnetic interactions and the coercive field distributions. In both NW and NT arrays, the magnetic interactions were found to increase with the diameter of the NWs/NTs, exhibiting higher values for NW arrays. A comparative study of the magnetization reversal processes was also performed by analyzing the angular dependence of the coercivity and correlating the experimental data with theoretical calculations based on a simple analytical model. The magnetization in the NW arrays is found to reverse by the nucleation and propagation of a transverse-like domain wall; on the other hand, for the NT arrays a non-monotonic behavior occurs above a diameter of ˜50 nm, revealing a transition between the vortex and transverse reversal modes.

  1. Post-Detonation Energy Release from Tnt-Aluminum Explosives

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Anderson, John; Yoshinaka, Akio

    2007-12-01

    TNT and TNT-aluminum composites were experimentally studied in an air-filled 26 m3 chamber for charge masses ranging from 1.1 to 4 kg. Large aluminum mass fractions (35 to 50%wt.) and particle sizes (36 μm) were combined with TNT in two configurations, whereby the aluminum particles were uniformly mixed in cast TNT or arranged into a shell surrounding a cast TNT cylinder. The results show that improved performance is achieved for the shell configuration versus the mixed version during the early afterburning phase (10-40 ms), while both approach the same quasi-static explosion overpressure (QSP) after a long duration. The QSP ratios with respect to TNT in nitrogen are in good agreement with equilibrium predictions. Thus, the large aluminum mass fraction improves spatial mixing of hot fuels with oxidizing gases in the detonation products and chamber air, resulting in more efficient afterburning energy release.

  2. The Bioactivity and Photocatalytic Properties of Titania Nanotube Coatings Produced with the Use of the Low-Potential Anodization of Ti6Al4V Alloy Surface

    PubMed Central

    Radtke, Aleksandra; Kozak, Wiesław; Sadowska, Beata; Więckowska-Szakiel, Marzena; Szubka, Magdalena; Talik, Ewa; Pleth Nielsen, Lars; Piszczek, Piotr

    2017-01-01

    Titania nanotube (TNT) coatings were produced using low-potential anodic oxidation of Ti6Al4V substrates in the potential range 3–20 V. They were analysed by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The wettability was estimated by measuring the contact angle when applying water droplets. The bioactivity of the TNT coatings was established on the basis of the biointegration assay (L929 murine fibroblasts adhesion and proliferation) and antibacterial tests against Staphylococcus aureus (ATCC 29213). The photocatalytic efficiency of the TNT films was studied by the degradation of methylene blue under UV irradiation. Among the studied coatings, the TiO2 nanotubes obtained with the use of 5 V potential (TNT5) were found to be the most appropriate for medical applications. The TNT5 sample possessed antibiofilm properties without enriching it by additional antimicrobial agent. Furthermore, it was characterized by optimal biocompatibility, performing better than pure Ti6Al4V alloy. Moreover, the same sample was the most photocatalytically active and exhibited the potential for the sterilization of implants with the use of UV light and for other environmental applications. PMID:28933732

  3. pH dependent silver nanoparticles releasing titanium implant: A novel therapeutic approach to control peri-implant infection.

    PubMed

    Dong, Yiwen; Ye, Hui; Liu, Yi; Xu, Lihua; Wu, Zuosu; Hu, Xiaohui; Ma, Jianfeng; Pathak, Janak L; Liu, Jinsong; Wu, Gang

    2017-10-01

    Peri-implant infection control is crucial for implant fixation and durability. Antimicrobial administration approaches to control peri-implant infection are far from satisfactory. During bacterial infection, pH level around the peri-implant surface decreases as low as pH 5.5. This change of pH can be used as a switch to control antimicrobial drug release from the implant surface. Silver nanoparticles (AgNPs) have broad-spectrum antimicrobial properties. In this study, we aimed to design a pH-dependent AgNPs releasing titania nanotube arrays (TNT) implant for peri-implant infection control. The nanotube arrays were fabricated on the surface of titanium implant as containers; AgNPs were grafted on TNT implant surface via a low pH-sensitive acetal linker (TNT-AL-AgNPs). SEM, TEM, AFM, FTIR as well as XPS data showed that AgNPs have been successfully linked to TNT via acetal linker without affecting the physicochemical characteristics of TNT. The pH 5.5 enhanced AgNPs release from TNT-AL-AgNPs implant compared with pH 7.4. AgNPs released at pH 5.5 robustly increased antimicrobial activities against gram-positive and gram-negative bacteria compared with AgNPs released at pH 7.4. TNT-AL-AgNPs implant enhanced osteoblast proliferation, differentiation, and did not affect osteoblast morphology in vitro. In conclusion, incorporation of AgNPs in TNT via acetal linker maintained the surface characteristics of TNT. TNT-AL-AgNPs implant was biocompatible to osteoblasts and showed osteoinductive properties. AgNPs were released from TNT-AL-AgNPs implant in high dose at pH 5.5, and this release showed strong antimicrobial properties in vitro. Therefore, this novel design of low pH-triggered AgNPs releasing TNT-AL-AgNPs could be an infection-triggered antimicrobial releasing implant model to control peri-implant infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Directing Stem Cell Differentiation via Electrochemical Reversible Switching between Nanotubes and Nanotips of Polypyrrole Array.

    PubMed

    Wei, Yan; Mo, Xiaoju; Zhang, Pengchao; Li, Yingying; Liao, Jingwen; Li, Yongjun; Zhang, Jinxing; Ning, Chengyun; Wang, Shutao; Deng, Xuliang; Jiang, Lei

    2017-06-27

    Control of stem cell behaviors at solid biointerfaces is critical for stem-cell-based regeneration and generally achieved by engineering chemical composition, topography, and stiffness. However, the influence of dynamic stimuli at the nanoscale from solid biointerfaces on stem cell fate remains unclear. Herein, we show that electrochemical switching of a polypyrrole (Ppy) array between nanotubes and nanotips can alter surface adhesion, which can strongly influence mechanotransduction activation and guide differentiation of mesenchymal stem cells (MSCs). The Ppy array, prepared via template-free electrochemical polymerization, can be reversibly switched between highly adhesive hydrophobic nanotubes and poorly adhesive hydrophilic nanotips through an electrochemical oxidation/reduction process, resulting in dynamic attachment and detachment to MSCs at the nanoscale. Multicyclic attachment/detachment of the Ppy array to MSCs can activate intracellular mechanotransduction and osteogenic differentiation independent of surface stiffness and chemical induction. This smart surface, permitting transduction of nanoscaled dynamic physical inputs into biological outputs, provides an alternative to classical cell culture substrates for regulating stem cell fate commitment. This study represents a general strategy to explore nanoscaled interactions between stem cells and stimuli-responsive surfaces.

  5. Enhancing of Osseointegration with Propolis-Loaded TiO2 Nanotubes in Rat Mandible for Dental Implants

    PubMed Central

    Somsanith, Nithideth; Jang, Young-Seok; Lee, Young-Hee; Yi, Ho-Keun; Kim, Kyoung-A; Bae, Tae-Sung; Lee, Min-Ho

    2018-01-01

    TiO2 nanotubes (TNT) formation is beneficial for improving bone cell–material interaction and drug delivery for Ti dental implants. Among the natural drugs to be installed in TNT, selected propolis has antibacterial and anti-inflammatory properties. It is a resinous natural product which is collected by the honeybees from the various types of plants with their salivary enzymes. This study concludes that TNT loaded with a propolis (PL-TNT-Ti) dental implant has the ability to improve osseointegration. The propolis particles were embedded within the TNT or adhered to the top. In a cytotoxicity test using osteoblast, PL-TNT-Ti group exhibited an increased cell proliferation and differentiation. A Sprague Dawley rat mandibular model was used to evaluate the osseointegration and bone bonding of TNT or PL-TNT-Ti. From the µ-CT and hematoxylin and eosin (HE) histological results after implantation at 1 and 4 weeks to rat mandibular, an increase in the extent of new bone formation and mineral density around the PL-TNT-Ti implant was confirmed. The Masson’s trichrome staining showed the expression of well-formed collagenous for bone formation on the PL-TNT-Ti. Immunohistochemistry staining indicate that bone morphogenetic proteins (BMP-2 and BMP-7) around the PL-TNT-Ti increased the expression of collagen fibers and of osteogenic differentiation whereas the expression of inflammatory cytokine such as interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) is decreased. PMID:29301269

  6. Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium.

    PubMed Central

    Fernando, T; Bumpus, J A; Aust, S D

    1990-01-01

    Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT. PMID:2383008

  7. Chemical modification of TiO2 nanotube arrays for label-free optical biosensing applications

    NASA Astrophysics Data System (ADS)

    Terracciano, Monica; Galstyan, Vardan; Rea, Ilaria; Casalino, Maurizio; De Stefano, Luca; Sbervegleri, Giorgio

    2017-10-01

    In this study, we have fabricated TiO2 nanotube arrays by the potentiostatic anodic oxidation of Ti foils in fluoride-containing electrolyte and explored them as versatile devices for biosensing applications. TiO2 nanotubes have been chemically modified in order to bind Protein A as a specific target analyte for the optical biosensing. The obtained structures have been characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, water contact angle, fluorescence microscopy, spectroscopic reflectometry and photoluminescence. Investigations show that the prepared TiO2 nanotubes, 2.5 μm long and 75 nm thick, can be easily and efficiently bio-modified, and the obtained structures are strongly photoluminescent, thus suitable for the label-free biosensing applications in the range of μM, due to their peculiar optical properties.

  8. Biodegradation of trinitrotoluene (TNT) by a strain of Clostridium bifermentans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, C.Y.; Crawford, D.L.

    1995-12-31

    A Clostridium capable of degrading 2,4,6-trinitrotoluene (TNT) cometabolically was isolated from a mixed culture obtained from a bioreactor fed TNT. This bacterium, identified as a strain of Clostridium bifermentans, and designated strain CYS-1, was able to degrade TNT via 4-amino-2,6-dinitrotoluene (4-ADNT) and 2,4-diamino-6-nitrotoluene (2,4-DANT) to aliphatic polar products which are now being identified and are assumed to be organic acids. CYS 1 cells are tolerant of TNT and capable of degrading it at starting concentrations of up to {ge}100 mg/L TNT. The number of cells inoculated and the availability of cosubstrate nutrients are significant factors influencing TNT degradation, as aremore » TNT tolerance and survival of the cells at high TNT concentrations. In liquid media, at high TNT concentrations, TNT toxicity could be overcome by increasing the amount of inoculum and supplementing the culture with appropriate rich organic cosubstrates. Under these conditions, the reduction of 4-ADNT to 2,4-DANT occurred very fast, whereas the further degradation of 2,4-DANT proceeded more slowly.« less

  9. An Evaluation of the Environmental Fate and behavior of Munitions Materiel (TNT, RDX) in Soil and Plant Systems. Environmental Fate and behavior of TNT

    DTIC Science & Technology

    1989-08-01

    to which roots are exposed. Thus, soil sorption will control the concentration of soil - solution TNT and/or TNT-derived residues available for root... soil - solution TNT and/or TNT-derived residues available for root uptake. Hydroponic systems were used to calibrate subsequent soil studies and to

  10. Poly(lactic-co-glycolic acid)(PLGA)/TiO2 nanotube bioactive composite as a novel scaffold for bone tissue engineering: In vitro and in vivo studies.

    PubMed

    Eslami, Hossein; Azimi Lisar, Hamidreza; Jafarzadeh Kashi, Tahereh Sadat; Tahriri, Mohammadreza; Ansari, Mojtaba; Rafiei, Tohid; Bastami, Farshid; Shahin-Shamsabadi, Alireza; Mashhadi Abbas, Fatemeh; Tayebi, Lobat

    2018-05-01

    The aim of this study was to synthesize and characterize novel three-dimensional porous scaffolds made of poly (lactic-co-glycolic acid)/TiO 2 nanotube (TNT) composite microspheres for bone tissue engineering applications. The incorporation of TNT greatly increases mechanical properties of PLGA/TNT microsphere-sintered scaffold. The experimental results exhibit that the PLGA/0.5 wt% TNT scaffold sintered at 100 °C for 3 h showed the best mechanical properties and a proper pore structure for tissue engineering. Biodegradation test ascertained that the weight of both PLGA and PLGA/PLGA/0.5 wt% TiO 2 nanotube composites slightly reduced during the first 4 weeks following immersion in SBF solution. Moreover, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and alkaline phosphatase activity (ALP activity) results represent increased cell viability for PLGA/0.5%TNT composite scaffold in comparison to the control group. In vivo studies show the amount of bone formation for PLGA/TNT was approximately twice of pure PLGA. Vivid histologic images of the newly generated bone on the implants further supported our test results. Eventually, a mathematical model showed that both PLGA and PLGA/TNT scaffolds' mechanical properties follow an exponential trend with time as their degradation occurs. By a three-dimensional finite element model, a more monotonous distribution of stress was present in the scaffold due to the presence of TNT with a reduction in maximum stress on bone. Copyright © 2018 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  11. High-sensitivity detection of TNT

    PubMed Central

    Pushkarsky, Michael B.; Dunayevskiy, Ilya G.; Prasanna, Manu; Tsekoun, Alexei G.; Go, Rowel; Patel, C. Kumar N.

    2006-01-01

    We report high-sensitivity detection of 2,4,6-trinitrotoluene (TNT) by using laser photoacoustic spectroscopy where the laser radiation is obtained from a continuous-wave room temperature high-power quantum cascade laser in an external grating cavity geometry. The external grating cavity quantum cascade laser is continuously tunable over ≈400 nm around 7.3 μm and produces a maximum continuous-wave power of ≈200 mW. The IR spectroscopic signature of TNT is sufficiently different from that of nitroglycerine so that unambiguous detection of TNT without false positives from traces of nitroglycerine is possible. We also report the results of spectroscopy of acetylene in the 7.3-μm region to demonstrate continuous tunability of the IR source. PMID:17164325

  12. Synthesis and Investigation of Millimeter-Scale Vertically Aligned Boron Nitride Nanotube Arrays

    NASA Astrophysics Data System (ADS)

    Tay, Roland; Li, Hongling; Tsang, Siu Hon; Jing, Lin; Tan, Dunlin; Teo, Edwin Hang Tong

    Boron nitride nanotubes (BNNTs) have shown potential in a wide range of applications due to their superior properties such as exceptionally high mechanical strength, excellent chemical and thermal stabilities. However, previously reported methods to date only produced BNNTs with limited length/density and insufficient yield at high temperatures. Here we present a facile and effective two-step synthesis route involving template-assisted chemical vapor deposition at a relatively low temperature of 900 degree C and subsequent annealing process to fabricate vertically aligned (VA) BN coated carbon nanotube (VA-BN/CNT) and VA-BNNT arrays. By using this method, we achieve the longest VA-BN/CNTs and VA-BNNTs to date with lengths of over millimeters (exceeding two orders of magnitude longer than the previously reported length of VA-BNNTs). In addition, the morphology, chemical composition and microstructure of the resulting products, as well as the mechanism of coating process are systematically investigated. This versatile BN coating technique and the synthesis of millimeter-scale BN/CNT and BNNT arrays pave a way for new applications especially where the aligned geometry of the NTs is essential such as for field-emission, interconnects and thermal management.

  13. Label-free capture of breast cancer cells spiked in buffy coats using carbon nanotube antibody micro-arrays

    NASA Astrophysics Data System (ADS)

    Khosravi, Farhad; Trainor, Patrick; Rai, Shesh N.; Kloecker, Goetz; Wickstrom, Eric; Panchapakesan, Balaji

    2016-04-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in buffy coats using nanotube-antibody micro-arrays. Single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (EpCAM) antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester functionalization method. Following functionalization, plain buffy coat and MCF7 cell spiked buffy coats were adsorbed on to the nanotube device and electrical signatures were recorded for differences in interaction between samples. A statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping to classify device electrical signals that corresponded to plain (control) or spiked buffy coats (case). In training test, the device electrical signals originating from buffy versus spiked buffy samples were classified with ˜100% sensitivity, ˜91% specificity and ˜96% accuracy. In the blinded test, the signals were classified with ˜91% sensitivity, ˜82% specificity and ˜86% accuracy. A heatmap was generated to visually capture the relationship between electrical signatures and the sample condition. Confocal microscopic analysis of devices that were classified as spiked buffy coats based on their electrical signatures confirmed the presence of cancer cells, their attachment to the device and overexpression of EpCAM receptors. The cell numbers were counted to be ˜1-17 cells per 5 μl per device suggesting single cell sensitivity in spiked buffy coats that is scalable to higher volumes using the micro-arrays.

  14. Modeling and simulation for the field emission of carbon nanotubes array

    NASA Astrophysics Data System (ADS)

    Wang, X. Q.; Wang, M.; Ge, H. L.; Chen, Q.; Xu, Y. B.

    2005-12-01

    To optimize the field emission of the infinite carbon nanotubes (CNTs) array on a planar cathode surface, the numerical simulation for the behavior of field emission with finite difference method was proposed. By solving the Laplace equation with computer, the influence of the intertube distance, the anode-cathode distance and the opened/capped CNT on the field emission of CNTs array were taken into account, and the results could accord well with the experiments. The simulated results proved that the field enhancement factor of individual CNT is largest, but the emission current density is little. Due to the enhanced screening of the electric field, the enhancement factor of CNTs array decreases with decreasing the intertube distance. From the simulation the field emission can be optimized when the intertube distance is close to the tube height. The anode-cathode distance hardly influences the field enhancement factor of CNTs array, but can low the threshold voltage by decreasing the anode-cathode distance. Finally, the distribution of potential of the capped CNTs array and the opened CNTs array was simulated, which the results showed that the distribution of potential can be influenced to some extent by the anode-cathode distance, especially at the apex of the capped CNTs array and the brim of the opened CNTs array. The opened CNTs array has larger field enhancement factor and can emit more current than the capped one.

  15. A hybrid nanosensor for TNT vapor detection.

    PubMed

    Díaz Aguilar, Alvaro; Forzani, Erica S; Leright, Mathew; Tsow, Francis; Cagan, Avi; Iglesias, Rodrigo A; Nagahara, Larry A; Amlani, Islamshah; Tsui, Raymond; Tao, N J

    2010-02-10

    Real-time detection of trace chemicals, such as explosives, in a complex environment containing various interferents has been a difficult challenge. We describe here a hybrid nanosensor based on the electrochemical reduction of TNT and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance change of the polymer nanojunction caused from the reduction product. The hybrid detection mechanism, together with the unique selective preconcentration capability of the ionic liquid, provides a selective, fast, and sensitive detection of TNT. The sensor, in its current form, is capable of detecting parts-per-trillion level TNT in the presence of various interferents within a few minutes.

  16. High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters.

    PubMed

    Lekha, C S Chitra; Kumar, Ajith S; Vivek, S; Rasi, U P Mohammed; Saravanan, K Venkata; Nandakumar, K; Nair, Swapna S

    2017-02-03

    Harvesting energy from surrounding vibrations and developing self-powered portable devices for wireless and mobile electronics have recently become popular. Here the authors demonstrate the synthesis of piezoelectric energy harvesters based on nanotube arrays by a wet chemical route, which requires no sophisticated instruments. The energy harvester gives an output voltage of 400 mV. Harvesting energy from a sinusoidal magnetic field is another interesting phenomenon for which the authors fabricated a magnetoelectric energy harvester based on piezoelectric-magnetostrictive coaxial nanotube arrays. Piezoelectric K 0.5 Na 0.5 NbO 3 (KNN) is fabricated as the shell and magnetostrictive CoFe 2 O 4 (CFO) as the core of the composite coaxial nanotubes. The delivered voltages are as high as 300 mV at 500 Hz and at a weak ac magnetic field of 100 Oe. Further tailoring of the thickness of the piezoelectric and magnetic layers can enhance the output voltage by several orders. Easy, single-step wet chemical synthesis enhances the industrial upscaling potential of these nanotubes as energy harvesters. In view of the excellent properties reported here, the lead-free piezoelectric component (KNN) in this nanocomposite should be explored for eco-friendly piezoelectric as well as magnetoelectric power generators in nanoelectromechanical systems (NEMS).

  17. High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters

    NASA Astrophysics Data System (ADS)

    Lekha, C. S. Chitra; Kumar, Ajith S.; Vivek, S.; Rasi, U. P. Mohammed; Venkata Saravanan, K.; Nandakumar, K.; Nair, Swapna S.

    2017-02-01

    Harvesting energy from surrounding vibrations and developing self-powered portable devices for wireless and mobile electronics have recently become popular. Here the authors demonstrate the synthesis of piezoelectric energy harvesters based on nanotube arrays by a wet chemical route, which requires no sophisticated instruments. The energy harvester gives an output voltage of 400 mV. Harvesting energy from a sinusoidal magnetic field is another interesting phenomenon for which the authors fabricated a magnetoelectric energy harvester based on piezoelectric-magnetostrictive coaxial nanotube arrays. Piezoelectric K0.5Na0.5NbO3 (KNN) is fabricated as the shell and magnetostrictive CoFe2O4 (CFO) as the core of the composite coaxial nanotubes. The delivered voltages are as high as 300 mV at 500 Hz and at a weak ac magnetic field of 100 Oe. Further tailoring of the thickness of the piezoelectric and magnetic layers can enhance the output voltage by several orders. Easy, single-step wet chemical synthesis enhances the industrial upscaling potential of these nanotubes as energy harvesters. In view of the excellent properties reported here, the lead-free piezoelectric component (KNN) in this nanocomposite should be explored for eco-friendly piezoelectric as well as magnetoelectric power generators in nanoelectromechanical systems (NEMS).

  18. Photoelectrochemical CdSe/TiO2 nanotube array microsensor for high-resolution in-situ detection of dopamine.

    PubMed

    Qin, Caidie; Bai, Xue; Zhang, Yue; Gao, Kai

    2018-05-03

    A photoelectrochemical wire microelectrode was constructed based on the use of a TiO 2 nanotube array with electrochemically deposited CdSe semiconductor. A strongly amplified photocurrent is generated on the sensor surface. The microsensor has a response in the 0.05-20 μM dopamine (DA) concentration range and a 16.7 μM detection limit at a signal-to-noise ratio of 3. Sensitivity, recovery and reproducibility of the sensor were validated by detecting DA in spiked human urine, and satisfactory results were obtained. Graphical abstract Schematic of a sensitive photoelectrochemical microsensor based on CdSe modified TiO 2 nanotube array. The photoelectrochemical microsensor was successfully applied to the determination of dopamine in urine samples.

  19. Planarized arrays of aligned, untangled multiwall carbon nanotubes with Ohmic back contacts

    DOE PAGES

    Rochford, C.; Limmer, S. J.; Howell, S. W.; ...

    2014-11-26

    Vertically aligned, untangled planarized arrays of multiwall carbon nanotubes (MWNTs) with Ohmic back contacts were grown in nanopore templates on arbitrary substrates. The templates were prepared by sputter depositing Nd-doped Al films onto W-coated substrates, followed by anodization to form an aluminum oxide nanopore array. The W underlayer helps eliminate the aluminum oxide barrier that typically occurs at the nanopore bottoms by instead forming a thin WO 3 layer. The WO 3 can be selectively etched to enable electrodeposition of Co catalysts with control over the Co site density. This led to control of the site density of MWNTs grownmore » by thermal chemical vapor deposition, with the W also serving as a back electrical contact. As a result, Ohmic contact to MWNTs was confirmed, even following ultrasonic cutting of the entire array to a uniform height.« less

  20. Photoluminescence detection of 2,4,6-trinitrotoluene (TNT) binding on diatom frustule biosilica functionalized with an anti-TNT monoclonal antibody fragment.

    PubMed

    Zhen, Le; Ford, Nicole; Gale, Debra K; Roesijadi, Guritno; Rorrer, Gregory L

    2016-05-15

    A selective and label-free biosensor for detection of the explosive compound 2,4,6-trinitrotoluene (TNT) in aqueous solution was developed based on the principle of photoluminescence quenching of upon immunocomplex formation with antibody-functionalized diatom frustule biosilica. The diatom frustule is an intricately nanostructured, highly porous biogenic silica material derived from the shells of microscopic algae called diatoms. This material emits strong visible blue photoluminescence (PL) upon UV excitation. PL-active frustule biosilica was isolated from cultured cells of the marine diatom Pinnularia sp. and functionalized with a single chain variable fragment (scFv) derived from an anti-TNT monoclonal antibody. When TNT was bound to the anti-TNT scFv-functionalized diatom frustule biosilica, the PL emission from the biosilica was partially quenched due to the electrophilic nature of the nitro (-NO2) groups on the TNT molecule. The dose-response curve for immunocomplex formation of TNT on the scFv-functionalized diatom frustule biosilica had a half-saturation binding constant of 6.4 ± 2.4·10(-8)M and statistically-significant measured detection limit of 3.5·10(-8)M. The binding and detection were selective for TNT and TNB (trinitrobenzene) but not RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) or 2,6-DNT (2,6-dinitrotoluene). Copyright © 2016. Published by Elsevier B.V.

  1. Carbon Nanotube Nanoelectrode Array as an Electronic Chip for Ultrasensitive Label-free DNA Detection

    NASA Technical Reports Server (NTRS)

    Li, Jun; Koehne, Jessica; Chen, Hua; Cassell, Alan; Ng, Hou Tee; Fan, Wendy; Ye, Qi; Han, Jie; Meyyappan, M.

    2003-01-01

    A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in SiO2 is used for ultrasensitive DNA detection. Characteristic nanoelectrode behavior is observed using low-density MWNT arrays for measuring both bulk and surface immobilized redox species such as K4Fe(CN)6 and ferrocene derivatives. The open-end of MWNTs are found to present similar properties as graphite edge-plane electrodes with wide potential window, flexible chemical functionalities, and good biocompatibility. BRCA1 related oligonucleotide probes with 18 bp are selectively functionalized at the open ends of the nanotube array and specifically hybridized with oligonucleotide targets incorporated with a polyG tag. The guanine groups are employed as the signal moieties in the electrochemical measurements. R(bpy)(sup 2+, sub 3) mediator is used to further amplify the guanine oxidation signal. The hybridization of sub-attomoles of DNA targets is detected electrochemically by combining the MWNT nanoelectrode array with the R(bpy)(sup 2+, sub 3) amplification mechanism. This technique was employed for direct electrochemical detection of label-free PCR amplicon from a healthy donor through specific hybridization with the BRCA1 probe. The detection limit is estimated to be less than 1000 DNA molecules since abundant guanine bases in the PCR amplicon provides a large signal. This system provides a general platform for rapid molecular diagnostics in applications requiring ultrahigh sensitivity, high-degree of miniaturization, and simple sample preparation, and low-cost operation.

  2. Effect of Size-Dependent Thermal Instability on Synthesis of Zn2 SiO4-SiOx Core–Shell Nanotube Arrays and Their Cathodoluminescence Properties

    PubMed Central

    2010-01-01

    Vertically aligned Zn2SiO4-SiOx(x < 2) core–shell nanotube arrays consisting of Zn2SiO4-nanoparticle chains encapsulated into SiOx nanotubes and SiOx-coated Zn2SiO4 coaxial nanotubes were synthesized via one-step thermal annealing process using ZnO nanowire (ZNW) arrays as templates. The appearance of different nanotube morphologies was due to size-dependent thermal instability and specific melting of ZNWs. With an increase in ZNW diameter, the formation mechanism changed from decomposition of “etching” to Rayleigh instability and then to Kirkendall effect, consequently resulting in polycrystalline Zn2SiO4-SiOx coaxial nanotubes, single-crystalline Zn2SiO4-nanoparticle-chain-embedded SiOx nanotubes, and single-crystalline Zn2SiO4-SiOx coaxial nanotubes. The difference in spatially resolved optical properties related to a particular morphology was efficiently documented by means of cathodoluminescence (CL) spectroscopy using a middle-ultraviolet emission at 310 nm from the Zn2SiO4 phase. PMID:20672064

  3. Field analysis for explosives: TNT and RDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elcoate, W.; Mapes, J.

    The EPA has listed as hazardous many of the compounds used in the production of ammunitions and other explosive ordnance. The contamination of soil with TNT (2,4,6-trinitrotoluene), the major component of many munitions formulations and to a lesser degree RDX (hexhydro-1,3,5-trinitro-1,3,5-trizine) is a significant problem at many ammunition manufacturing facilities, depots, and ordnance disposal sites. Field test kits for explosives TNT and RDX (hexhydro-1,3,5-trinitro-1,3,5-triazine) were developed based on the methods of T.F. Jenkins and M.E. Walsh and T.F Jenkins. EnSys Environmental Products, Inc. with technical support from T.F. Jenkins took the original TNT procedure, modified it for easier field use,more » performed validation studies to ensure that it met or exceeded the method specifications for both the T.F. Jenkins and SW-846 methods, and developed an easy to use test format for the field testing of TNT. The RDX procedure has gone through the development cycle and is presently in the field validation phase. This paper describes the test protocol and performance characteristics of the TNT test procedure.« less

  4. Ionization-Enhanced Decomposition of 2,4,6-Trinitrotoluene (TNT) Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bin; Wright, David; Cliffel, David

    2011-01-01

    The unimolecular decomposition reaction of TNT can in principle be used to design ways to either detect or remove TNT from the environment. Here, we report the results of a density functional theory study of possible ways to lower the reaction barrier for this decomposition process by ionization, so that decomposition and/or detection can occur at room temperature. We find that ionizing TNT lowers the reaction barrier for the initial step of this decomposition. We further show that a similar effect can occur if a positive moiety is bound to the TNT molecule. The positive charge produces a pronounced electronmore » redistribution and dipole formation in TNT with minimal charge transfer from TNT to the positive moiety.« less

  5. Monodehydroascorbate reductase mediates TNT toxicity in plants.

    PubMed

    Johnston, Emily J; Rylott, Elizabeth L; Beynon, Emily; Lorenz, Astrid; Chechik, Victor; Bruce, Neil C

    2015-09-04

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target. Copyright © 2015, American Association for the Advancement of Science.

  6. Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.

    PubMed

    Yin, Zhe; Wang, Huimin; Jian, Muqiang; Li, Yanshen; Xia, Kailun; Zhang, Mingchao; Wang, Chunya; Wang, Qi; Ma, Ming; Zheng, Quan-Shui; Zhang, Yingying

    2017-08-30

    The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.

  7. Sequential biodegradation of TNT, RDX and HMX in a mixture.

    PubMed

    Sagi-Ben Moshe, S; Ronen, Z; Dahan, O; Weisbrod, N; Groisman, L; Adar, E; Nativ, R

    2009-01-01

    We describe TNT's inhibition of RDX and HMX anaerobic degradation in contaminated soil containing indigenous microbial populations. Biodegradation of RDX or HMX alone was markedly faster than their degradation in a mixture with TNT, implying biodegradation inhibition by the latter. The delay caused by the presence of TNT continued even after its disappearance and was linked to the presence of its intermediate, tetranitroazoxytoluene. PCR-DGGE analysis of cultures derived from the soil indicated a clear reduction in microbial biomass and diversity with increasing TNT concentration. At high-TNT concentrations (30 and 90 mg/L), only a single band, related to Clostridium nitrophenolicum, was observed after 3 days of incubation. We propose that the mechanism of TNT inhibition involves a cytotoxic effect on the RDX- and HMX-degrading microbial population. TNT inhibition in the top active soil can therefore initiate rapid transport of RDX and HMX to the less active subsurface and groundwater.

  8. Formation of TiO2 nanotube arrays in KOH added fluoride-ethylene glycol (EG) electrolyte and its photoelectrochemical response

    NASA Astrophysics Data System (ADS)

    Nyein, Nyein; Lockman, Zainovia; Matsuda, Astunori; Kawamura, Go; Tan, Wai Kian; Oo, Than Zaw

    2016-07-01

    In this study, highly ordered TiO2 nanotube arrays were prepared by anodic oxidation of titanium foil in fluoride -EG electrolyte containing a small amount of potassium hydroxide, KOH at 60 V for 30 min. This electrolyte resulted in the formation of long nanotubes with an average length of 10 µm and diameter of 170 nm. For comparison, TiO2 nanotubes anodized in H2O added EG electrolyte which produces short nanotubes with an average tube length of 5 µm and diameter of 170 nm. It appears that the addition of KOH into the fluoride EG electrolyte accelerated the formation of the TiO2 nanotubes as it is believed that the chemical dissolution at the tips of the nanotubes is suppressed. Highly ordered TiO2 nanotubes anodized in KOH added EG electrolyte exhibited the photocurrent density of 2 mA/cm2, which is significantly higher than H2O added sample (1.5 mA/cm2).

  9. Nanotube antibody biosensor arrays for the detection of circulating breast cancer cells

    NASA Astrophysics Data System (ADS)

    Shao, Ning; Wickstrom, Eric; Panchapakesan, Balaji

    2008-11-01

    Recent reports have shown that nanoscale electronic devices can be used to detect a change in electrical properties when receptor proteins bind to their corresponding antibodies functionalized on the surface of the device, in extracts from as few as ten lysed tumor cells. We hypothesized that nanotube-antibody devices could sensitively and specifically detect entire live cancer cells. We report for the first time a single nanotube field effect transistor array, functionalized with IGF1R-specific and Her2-specific antibodies, which exhibits highly sensitive and selective sensing of live, intact MCF7 and BT474 human breast cancer cells in human blood. Those two cell lines both overexpress IGF1R and Her2, at different levels. Single or small bundle of nanotube devices that were functionalized with IGF1R-specific or Her2-specific antibodies showed 60% decreases in conductivity upon interaction with BT474 or MCF7 breast cancer cells in two µl drops of blood. Control experiments with non-specific antibodies or with MCF10A control breast cells produced a less than 5% decrease in electrical conductivity, illustrating the high sensitivity for whole cell binding by these single nanotube-antibody devices. We postulate that the free energy change due to multiple simultaneous cell-antibody binding events exerted stress along the nanotube surface, decreasing its electrical conductivity due to an increase in band gap. Because the free energy change upon cell-antibody binding, the stress exerted on the nanotube, and the change in conductivity are specific to a specific antigen-antibody interaction; these properties might be used as a fingerprint for the molecular sensing of circulating cancer cells. From optical microscopy observations during sensing, it appears that the binding of a single cell to a single nanotube field effect transistor produced the change in electrical conductivity. Thus we report a nanoscale oncometer with single cell sensitivity with a diameter 1000 times

  10. Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications.

    PubMed

    Lovera, Pierre; Creedon, Niamh; Alatawi, Hanan; Mitchell, Micki; Burke, Micheal; Quinn, Aidan J; O'Riordan, Alan

    2014-05-02

    In this paper, we describe the fabrication, simulation and characterization of dense arrays of freestanding silver capped polystyrene nanotubes, and demonstrate their suitability for surface enhanced Raman scattering (SERS) applications. Substrates are fabricated in a rapid, low-cost and scalable way by melt wetting of polystyrene (PS) in an anodized alumina (AAO) template, followed by silver evaporation. Scanning electron microscopy reveals that substrates are composed of a dense array of freestanding polystyrene nanotubes topped by silver nanocaps. SERS characterization of the substrates, employing a monolayer of 4-aminothiophenol (4-ABT) as a model molecule, exhibits an enhancement factor of ∼1.6 × 10(6), in agreement with 3D finite difference time domain simulations. Contact angle measurements of the substrates revealed super-hydrophobic properties, allowing pre-concentration of target analyte into a small volume. These super-hydrophobic properties of the samples are taken advantage of for sensitive detection of the organic pollutant crystal violet, with detection down to ∼400 ppt in a 2 μl aliquot demonstrated.

  11. Tunable TiO2 Nanotube Arrays for Flexible Bio-Sensitized Solar Cells

    DTIC Science & Technology

    2012-08-01

    microid extender followed by a colloidal silica /wetted imperial cloth. The foil was then cut into 1- × 2-cm samples. Then, the substrates were...17. Lei, B.; Liao, J.; Wang, R. J.; Su, C.; Kuang, D. Ordered Crystalline Ti02 Nanotube Arrays on Transparent FTO Glass for Efficient Dye...combined with a transparent , Indium Tin Dioxide coated PET film are attractive candidates for efficient, flexible DSSC’s. Flexible solar cells offer

  12. Multidirectional flexible force sensors based on confined, self-adjusting carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Lee, J.-I.; Pyo, Soonjae; Kim, Min-Ook; Kim, Jongbaeg

    2018-02-01

    We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures. The sensing mechanism is based on variations in the contact resistance between the facing CNT arrays under the applied force. By finite element analysis, proper dimensions and positions for each component are determined. Further, high sensitivities up to 15.05%/mN of the proposed sensors were confirmed experimentally. Multidirectional sensing capability could also be achieved by designing multiple sets of sensing elements in a single sensor. The sensors show long-term operational stability, owing to the unique properties of the constituent CNTs, such as outstanding mechanical durability and elasticity.

  13. Dynamic and Quasi Static Mechanical Properties of Comp B and TNT.

    DTIC Science & Technology

    1985-11-01

    strains Explosives RDX pArticle size TNT puriety TNT puriety Wax Brittle Voids Poroaity Artillery launch Young’s modulus Polsson’s ratio Cracks...the yield strength under the confined condition of the triaxial test Is larger than the uniaxial coapres- sive strength as expected for brittle ...TNT both for a reference for Coup B and because TNT is an Important explisive itself. SComposition B and TNT are very brittle materials and are much

  14. Morphological evolution of TiO2 nanotube arrays with lotus-root-shaped nanostructure

    NASA Astrophysics Data System (ADS)

    Yu, Dongliang; Song, Ye; Zhu, Xufei; Yang, Ruiquan; Han, Aijun

    2013-07-01

    TiO2 nanotube arrays (TNAs) with lotus-root-shaped nanostructure have been fabricated by a modified two-step electrochemical anodization method. In the present work, different morphologies formed under different anodizing voltages are investigated in detail by field-emission scanning electron microscope. The results show that the concaves left by the first-step anodization can guide the uniform growth of TNAs in some degree as the second-step anodizing voltage is the same with that in the first step, however, when lower voltages are adopted in the second-step anodization, no guidance can be achieved, and different morphological TNAs with lotus-root-shaped nanostructure are fabricated. And we find that the nanotube diameters are directly proportional to the applied voltage in the second-step anodization. Furthermore, a possible mechanism for the growth of the TiO2 nanotubes with the special morphology is proposed for the first time, which depends on both the oxygen bubble mold and the viscous flow of the barrier oxide from the pore base to the pore wall.

  15. Are TiO2 nanotubes worth using in photocatalytic purification of air and water?

    PubMed

    Pichat, Pierre

    2014-09-19

    Titanium dioxide nanotubes (TNT) have mainly been used in dye sensitized solar cells, essentially because of a higher transport rate of electrons from the adsorbed photo-excited dye to the Ti electrode onto which TNT instead of TiO2 nanoparticles (TNP) are attached. The dimension ranges and the two main synthesis methods of TNT are briefly indicated here. Not surprisingly, the particular and regular texture of TNT was also expected to improve the photocatalytic efficacy for pollutant removal in air and water with respect to TNP. In this short review, the validity of this expectation is checked using the regrettably small number of literature comparisons between TNT and commercialized TNP referring to films of similar thickness and layers or slurries containing an equal TiO2 mass. Although the irradiated geometrical area differed for each study, it was identical for each comparison considered here. For the removal of toluene (methylbenzene) or acetaldehyde (ethanal) in air, the average ratio of the efficacy of TNT over that of TiO2 P25 was about 1.5, and for the removal of dyes in water, it was around 1. This lack of major improvement with TNT compared to TNP could partially be due to TNT texture disorders as seems to be suggested by the better average performance of anodic oxidation-prepared TNT. It could also come from the fact that the properties influencing the efficacy are more numerous, their interrelations more complex and their effects more important for pollutant removal than for dye sensitized solar cells and photoelectrocatalysis where the electron transport rate is the crucial parameter.

  16. Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors.

    PubMed

    Wu, Mao-Sung; Huang, Kuo-Chih

    2011-11-28

    A nickel hydroxide electrode with open-ended hexagonal nanotube arrays, prepared by hydrolysis of nickel chloride in the presence of hexagonal ZnO nanorods, shows a very high capacitance of 1328 F g(-1) at a discharge current density of 1 A g(-1) due to the significantly improved ion transport.

  17. Differential sensitivity of aerobic gram-positive and gram-negative microorganisms to 2,4,6-trinitrotoluene (TNT) leads to dissimilar growth and TNT transformation: Results of soil and pure culture studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, M.E.; Manning, J.F. Jr.

    1996-07-30

    The effects of 2,4,6-trinitrotoluene (TNT) on indigenous soil populations and pure bacterial cultures were examined. The number of colony-forming units (CFU) appearing when TNT-contaminated soil was spread on 0.3% molasses plates decreased by 50% when the agar was amended with 67 {mu}g TNT mL{sup -1}, whereas a 99% reduction was observed when uncontaminated soil was plated. Furthermore, TNT-contaminated soil harbored a greater number of organisms able to grow on plates amended with greater than 10 {mu}g TNT mL{sup -1}. The percentage of gram-positive isolates was markedly less in TNT-contaminated soil (7%; 2 of 30) than in uncontaminated soil (61%; 20more » of 33). Pseudomonas aeruginosa, Pseudomonas corrugate, Pseudomonasfluorescens and Alcaligenes xylosoxidans made up the majority of the gram-negative isolates from TNT-contaminated soil. Gram-positive isolates from both soils demonstrated marked growth inhibition when greater than 8-16 {mu}g TNT mL{sup -1} was present in the culture media. Most pure cultures of known aerobic gram-negative organisms readily degraded TNT and evidenced net consumption of reduced metabolites. However, pure cultures of aerobic gram-positive bacteria were sensitive to relatively low concentrations of TNT as indicated by the 50% reduction in growth and TNT transformation which was observed at approximately 10 {mu}g TNT mL{sup -1}. Most non-sporeforming gram-positive organisms incubated in molasses media amended with 80 {mu}g TNT mL{sup -1} or greater became unculturable, whereas all strains tested remained culturable when incubated in mineral media amended with 98 {mu}g TNT mL{sup -1}, indicating that TNT sensitivity is likely linked to cell growth. These results indicate that gram-negative organisms are most likely responsible for any TNT transformation in contaminated soil, due to their relative insensitivity to high TNT concentrations and their ability to transform TNT.« less

  18. Environmental process descriptors for TNT, TNT-related compounds and picric acid in marine sediment slurries.

    PubMed

    Yost, Sally L; Pennington, Judith C; Brannon, James M; Hayes, Charolett A

    2007-08-01

    Process descriptors were determined for picric acid, TNT, and the TNT-related compounds 2,4DNT, 2,6DNT, 2ADNT, 4ADNT, 2,4DANT, 2,6DANT, TNB and DNB in marine sediment slurries. Three marine sediments of various physical characteristics (particle size ranging from 15 to >90% fines and total organic carbon ranging from <0.10 to 3.60%) were kept in suspension with 20ppt saline water. Concentrations of TNT and its related compounds decreased immediately upon contact with the marine sediment slurries, with aqueous concentrations slowly declining throughout the remaining test period. Sediment-water partition coefficients could not be determined for these compounds since solution phase concentrations were unstable. Kinetic rates and half-lives were influenced by the sediment properties, with the finer grained, higher organic carbon sediment being the most reactive. Aqueous concentrations of picric acid were very stable, demonstrating little partitioning to the sediments. Degradation to picramic acid was minimal, exhibiting concentrations at or just above the detection limit.

  19. Long-term TNT sorption and bound residue formation in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hundal, L.S.; Shea, P.J.; Comfort, S.D.

    1997-05-01

    Soils surrounding former munitions production facilities are highly contaminated with 2,4,6-trinitrotoluene (TNT). Long-term availability and fate of TNT and its transformation products must be understood to predict environmental impact and develop appropriate remediation strategies. Sorption and transport in surface soil containing solid-phase TNT are particularly critical, since nonlinear sorption isotherms indicate greater TNT availability for transport at high concentrations. Our objectives were to determine long-term sorption and bound residue formation in surface and subsurface Sharpsburg soil (Typic Argiudoll). Prolonged equilibration of {sup 14}C-TNT with the soil revealed a gradual increase in amount sorbed and formation of unextractable (bound) {sup 14}Cmore » residues. The presence of solid-phase TNT did not initially affect the amount of {sup 14}C sorbed during a 168-d equilibration. After 168d, 93% of the added {sup 14}C was sorbed by uncontaminated soil, while 79% was sorbed by soil containing solid-phase TNT. In the absence of solid phase, pools of readily available (extractable with 3 mM CaCl{sub 2}) and potentially available (CH{sub 3}CN-extractable) sorbed TNT decreased rapidly with time and coincided with increased {sup 14}C in soil organic matter. More {sup 14}C was found in fulvic acid than in the humic acid fraction when no solid-phase TNT was present. After sequential extractions, including strong alkali and acid, 32 to 40% of the sorbed {sup 14}C was irreversibly bound (unextractable) in Sharpsburg surface and subsurface soil. Results provide strong evidence for humification of TNT in soil. This process may represent a significant route for detoxification in the soil-water environment. 58 refs., 6 figs., 3 tabs.« less

  20. Early events in 2,4,6-trinitrotoluene (TNT) degradation by porphyrins: binding of TNT to porphyrin by hydrophobic and hydrogen bonds.

    PubMed

    Hikal, Walid M; Harmon, H James

    2008-06-15

    The interaction of meso-tri(4-sulfonatophenyl)mono(4-carboxyphenyl) porphyrin (C1TPP) with 2,4,6-trinitrotoluene (TNT) has been explored by UV-vis and fluorescence spectroscopy. The influence of temperature on the interaction has also been studied. C1TPP binds to TNT at pH 7.0 at room temperature via 1.94 kcal/mole hydrogen bonds with absorbance loss at 412-413 nm and the appearance of a new peak at 422-424 nm. The hydrogen binding of TNT to C1TPP was confirmed by the dissolution of the complex upon the addition of urea. Increasing the temperature results in the appearance of a new absorbance peak at 540 nm and absorbance loss at 515 nm with activation energy of 29.7 kcal/mole in the range of the hydrophobic bond energy. This suggests the hydrophobic bonding of TNT with the pyrrole nitrogens in the porphyrin. Increasing the concentration of the TNT in the solution quenches the fluorescence of the porphyrin following the Stern-Volmer equation. The association constants calculated from absorbance and fluorescence are expectedly similar.

  1. TiO 2 nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure

    DOE PAGES

    Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; ...

    2014-11-19

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samplesmore » partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti 3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure

  2. Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, Meyya; Dangelo, Carols

    2012-01-01

    State-of-the-art integrated circuits (ICs) for microprocessors routinely dissipate power densities on the order of 50 W/cm2. This large power is due to the localized heating of ICs operating at high frequencies and must be managed for future high-frequency microelectronic applications. As the size of components and devices for ICs and other appliances becomes smaller, it becomes more difficult to provide heat dissipation and transport for such components and devices. A thermal conductor for a macro-sized thermal conductor is generally inadequate for use with a microsized component or device, in part due to scaling problems. A method has been developed for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler-composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place, and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  3. Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array.

    PubMed

    Li, Huihua; Song, Juan; Wang, Linlin; Feng, Xiaomiao; Liu, Ruiqing; Zeng, Wenjin; Huang, Zhendong; Ma, Yanwen; Wang, Lianhui

    2017-01-07

    Flexible all-solid-state supercapacitors are crucial to meet the growing needs for portable electronic devices such as foldable phones and wearable electronics. As promising candidates for pseudocapacitor electrode materials, polyaniline (PANI) orderly nanotube arrays are prepared via a simple template electrodeposition method. The structures of the final product were characterized using various characterization techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The obtained PANI nanotube film could be directly used as a flexible all-solid-state supercapacitor electrode. Electrochemical results show that the areal capacitance of a PANI nanotube-based supercapacitor with the deposition cycle number of 100 can achieve a maximum areal capacitance of 237.5 mF cm -2 at a scan rate of 10 mV s -1 and maximum energy density of 24.31 mW h cm -2 at a power density of 2.74 mW cm -2 . In addition, the prepared supercapacitor exhibits excellent flexibility under different bending conditions. It retains 95.2% of its initial capacitance value after 2000 cycles at a current density of 1.0 mA cm -1 , which displays its superior cycling stability. Moreover, the prepared flexible all-solid-state supercapacitor can power a light-emitting-diode (LED), which meets the practical applications of micropower supplies.

  4. Studies of thermal dissolution of RDX in TNT melt

    NASA Astrophysics Data System (ADS)

    Suvorova, N. A.; Hamilton, V. T.; Oschwald, D. M.; Balakirev, F. F.; Smilowitz, L. B.; Henson, B. F.

    2017-01-01

    The thermal response of energetic materials is studied due to its importance in issues of material safety and surety. Secondary high explosives which melt before they thermally decompose present challenging systems to model due to the addition of material flow. Composition B is a particularly challenging system due to its multiphase nature with a low melt component (TNT) and a high melt component (RDX). The dissolution of RDX crystals in molten TNT at the temperature below RDX melting point has been investigated using hot stage microscopy. In this paper, we present data on the dissolution rate of RDX crystals in molten TNT as a function of temperature above the TNT melt.

  5. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays.

    PubMed

    Boncel, Slawomir; Pattinson, Sebastian W; Geiser, Valérie; Shaffer, Milo S P; Koziol, Krzysztof K K

    2014-01-01

    The catalytic chemical vapour deposition (c-CVD) technique was applied in the synthesis of vertically aligned arrays of nitrogen-doped carbon nanotubes (N-CNTs). A mixture of toluene (main carbon source), pyrazine (1,4-diazine, nitrogen source) and ferrocene (catalyst precursor) was used as the injection feedstock. To optimize conditions for growing the most dense and aligned N-CNT arrays, we investigated the influence of key parameters, i.e., growth temperature (660, 760 and 860 °C), composition of the feedstock and time of growth, on morphology and properties of N-CNTs. The presence of nitrogen species in the hot zone of the quartz reactor decreased the growth rate of N-CNTs down to about one twentieth compared to the growth rate of multi-wall CNTs (MWCNTs). As revealed by electron microscopy studies (SEM, TEM), the individual N-CNTs (half as thick as MWCNTs) grown under the optimal conditions were characterized by a superior straightness of the outer walls, which translated into a high alignment of dense nanotube arrays, i.e., 5 × 10(8) nanotubes per mm(2) (100 times more than for MWCNTs grown in the absence of nitrogen precursor). In turn, the internal crystallographic order of the N-CNTs was found to be of a 'bamboo'-like or 'membrane'-like (multi-compartmental structure) morphology. The nitrogen content in the nanotube products, which ranged from 0.0 to 3.0 wt %, was controlled through the concentration of pyrazine in the feedstock. Moreover, as revealed by Raman/FT-IR spectroscopy, the incorporation of nitrogen atoms into the nanotube walls was found to be proportional to the number of deviations from the sp(2)-hybridisation of graphene C-atoms. As studied by XRD, the temperature and the [pyrazine]/[ferrocene] ratio in the feedstock affected the composition of the catalyst particles, and hence changed the growth mechanism of individual N-CNTs into a 'mixed base-and-tip' (primarily of the base-type) type as compared to the purely 'base'-type for undoped

  6. Aerobic Growth of Escherichia coli with 2,4,6-Trinitrotoluene (TNT) as the Sole Nitrogen Source and Evidence of TNT Denitration by Whole Cells and Cell-Free Extracts▿ †

    PubMed Central

    Stenuit, Ben; Eyers, Laurent; Rozenberg, Raoul; Habib-Jiwan, Jean-Louis; Agathos, Spiros N.

    2006-01-01

    Escherichia coli grew aerobically with 2,4,6-trinitrotoluene (TNT) as sole nitrogen source and caused TNT's partial denitration. This reaction was enhanced in nongrowing cell suspensions with 0.516 mol nitrite released per mol TNT. Cell extracts denitrated TNT in the presence of NAD(P)H. Isomers of amino-dimethyl-tetranitrobiphenyl were detected and confirmed with U-15N-labeled TNT. PMID:17012591

  7. Controllable 3D architectures of aligned carbon nanotube arrays by multi-step processes

    NASA Astrophysics Data System (ADS)

    Huang, Shaoming

    2003-06-01

    An effective way to fabricate large area three-dimensional (3D) aligned CNTs pattern based on pyrolysis of iron(II) phthalocyanine (FePc) by two-step processes is reported. The controllable generation of different lengths and selective growth of the aligned CNT arrays on metal-patterned (e.g., Ag and Au) substrate are the bases for generating such 3D aligned CNTs architectures. By controlling experimental conditions 3D aligned CNT arrays with different lengths/densities and morphologies/structures as well as multi-layered architectures can be fabricated in large scale by multi-step pyrolysis of FePc. These 3D architectures could have interesting properties and be applied for developing novel nanotube-based devices.

  8. Designing nanostructured one-dimensional TiO2 nanotube and TiO2 nanoparticle multilayer composite film as photoanode in dye-sensitized solar cells to increase the charge collection efficiency

    NASA Astrophysics Data System (ADS)

    Akilavasan, Jeganathan; Al-Jassim, Maufick; Bandara, Jayasundera

    2015-01-01

    A photoanode consisting of hydrothermally synthesized TiO2 nanotubes (TNT) and TiO2 nanoparticles (TNP) was designed for efficient charge collection in dye-sensitized solar cells. TNT and TNP films were fabricated on a conductive glass substrate by using electrophoretic deposition and doctor-blade methods, respectively. The TNP, TNT, and TNT/TNP bi-layer electrodes exhibit solar cell efficiencies of 5.3, 7.4, and 9.2%, respectively. Solar cell performance results indicate a higher short-circuit current density (Jsc) for the TNT/TNP bi-layer electrode when compared to a TNT or TNP electrode alone. The open-circuit voltages (Voc) of TNT/TNP and TNT electrodes are comparable while the Voc of TNP electrode is inferior to that of the TNT/TNP electrode. Fill factors of TNT/TNP, TNT, and TNP electrodes also exhibit similar behaviors. The enhanced efficiency of the TNT/TNP bi-layer electrode is found to be mainly due to the enhancement of charge collection efficiency, which is confirmed by the charge transport parameters measured by electrochemical impedance spectroscopy (EIS). EIS analyses also revealed that the TNT/TNP incurs smaller charge transport resistances and longer electron life times when compared to those of TNT or TNP electrodes alone. It was demonstrated that the TNT/TNP bi-layer electrode can possess the advantages of both rapid electron transport rate and a high light scattering effect.

  9. Phytoremediation of TNT: C. roseus hairy roots as a model system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauritzen, J.R.; Hughes, J.B.; Shanks, J.V.

    Widespread contamination by 2,4,6-trinitrotoluene (TNT) of Soil exists at former munitions production and handling facilities. Phytoremediation may be an effective alternative to existing methods of TNT remediation: incineration is highly expensive and recalcitrant reduction products are formed in composting. Recently, the intrinsic ability of plants to transform TNT has been demonstrated using hairy root cultures of Catharanthus roseus as a model system. Kinetic studies were performed at concentrations of 30 and 50 mg/L TNT in growth medium. The pseudo-first order rate constants for disappearance ranged from 0.0103 to 0.0161 (L/g-day); TNT disappears completely within seven to ten days of exposure.more » The fate of the TNT molecule in plants is also currently under study, mass balance studies were performed with 1-{sup 14}C TNT. After a seven day exposure period, 72% of the label was associated with the roots and 30% was associated with the medium. However, HPLC analysis shows that less than 5% (wt%) of the TNT added is recoverable from both the plants and the media in the form of reduction products. 11 refs., 2 figs.« less

  10. Adsorption coefficients for TNT on soil and clay minerals

    NASA Astrophysics Data System (ADS)

    Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen

    2007-04-01

    To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

  11. Highly efficient biosensors by using well-ordered ZnO/ZnS core/shell nanotube arrays

    NASA Astrophysics Data System (ADS)

    Tarish, Samar; Xu, Yang; Wang, Zhijie; Mate, Faten; Al-Haddad, Ahmed; Wang, Wenxin; Lei, Yong

    2017-10-01

    We have studied the fabrication of highly efficient glucose sensors using well-ordered heterogeneous ZnO/ZnS core/shell nanotube arrays (CSNAs). The modified electrodes exhibit a superior electrochemical response towards ferrocyanide/ferricyanide and in glucose sensing. Further, the fabricated glucose biosensor exhibited good performance over an acceptable linear range from 2.39 × 10-5 to 2.66 × 10-4 mM, with a sensitivity of 188.34 mA mM-1 cm-2, which is higher than that of the ZnO nanotube array counterpart. A low limit of detection was realized (24 μM), which is good compared with electrodes based on conventional structures. In addition, the enhanced direct electrochemistry of glucose oxidase indicates the fast electron transfer of ZnO/ZnS CSNA electrodes, with a heterogeneous electron transfer rate constant (K s) of 1.69 s-1. The fast electron transfer is attributed to the high conductivity of the modified electrodes. The presented ZnS shell can facilitate the construction of future sensors and enhance the ZnO surface in a biological environment.

  12. Influence of immersion cycles during n-β-Bi2O3 sensitization on the photoelectrochemical behaviour of N-F-codoped TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Hoyos, Lina J.; Rivera, Diego F.; Gualdrón-Reyes, Andrés F.; Ospina, Rogelio; Rodríguez-Pereira, Jhonatan; Ropero-Vega, Jose L.; Niño-Gómez, Martha E.

    2017-11-01

    Sensitization of TiO2 nanotube (TNT)-based photoanodes with narrow-band gap semiconductors is an important alternative to improving the photoelectrochemical properties of the material. However, the interaction between the sensitizer and TNT is not understood deeply enough to relate charge carrier transport into the composite photoanode with its photoactivity. In this contribution, we studied the photoelectrochemical behaviour of N-F-self codoped TiO2 nanotubes (N-F-TNTs) that were grown by anodization of titanium plates and sensitized with β-Bi2O3 by immersing the TNTs into a Bi2O3 sol solution by dip-coating. The number of immersion cycles was varied. The as-fabricated photoanodes were characterized by FESEM, GIXRD, DRS and XPS, while their photoelectrochemical and semiconducting properties were investigated by photovoltammetry, electrochemical impedance spectroscopy and Mott-Schottky analysis in 0.1 M HClO4. The photoelectrocatalytic activity of the composite photoanodes was evaluated for glycerol oxidation under acidic and alkaline conditions. The N-F-TNTs exhibit a well-oriented structure after β-Bi2O3 deposition. The presence of substitutions of both N and F, identified by XPS, indicates the self-doping of the TNTs during anodization. The visible-light harvesting of the N-F-TNT photoanode was enhanced after three -immersion cycles during β-Bi2O3 sensitization, establishing an adequate n-n heterojunction at the N-F-TNT/Bi2O3 interface. In addition, bismuth migration from the sensitizer to the TNT lattice was promoted during thermal treatment, forming Bi-N-F-tridoping of TNT (Bi-N-F-TNT). The suitable band alignment between TNT and β-Bi2O3 and incorporation of the Bi3+ energy levels into TiO2 facilitate charge carrier separation and electron transport throughout the cell. Nevertheless, increasing the number of immersion cycles over three creates an excess of Bi3+ species at the N-F-TNT/β-Bi2O3 interface, producing an energetic barrier that hinders electron

  13. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  14. Colorimetric-Based Detection of TNT Explosives Using Functionalized Silica Nanoparticles

    PubMed Central

    Idros, Noorhayati; Ho, Man Yi; Pivnenko, Mike; Qasim, Malik M.; Xu, Hua; Gu, Zhongze; Chu, Daping

    2015-01-01

    This proof-of-concept study proposes a novel sensing mechanism for selective and label-free detection of 2,4,6-trinitrotoluene (TNT). It is realized by surface chemistry functionalization of silica nanoparticles (NPs) with 3-aminopropyl-triethoxysilane (APTES). The primary amine anchored to the surface of the silica nanoparticles (SiO2-NH2) acts as a capturing probe for TNT target binding to form Meisenheimer amine–TNT complexes. A colorimetric change of the self-assembled (SAM) NP samples from the initial green of a SiO2-NH2 nanoparticle film towards red was observed after successful attachment of TNT, which was confirmed as a result of the increased separation between the nanoparticles. The shift in the peak wavelength of the reflected light normal to the film surface (λpeak) and the associated change of the peak width were measured, and a merit function taking into account their combined effect was proposed for the detection of TNT concentrations from 10−12 to 10−4 molar. The selectivity of our sensing approach is confirmed by using TNT-bound nanoparticles incubated in AptamerX, with 2,4-dinitrotoluene (DNT) and toluene used as control and baseline, respectively. Our results show the repeatable systematic color change with the TNT concentration and the possibility to develop a robust, easy-to-use, and low-cost TNT detection method for performing a sensitive, reliable, and semi-quantitative detection in a wide detection range. PMID:26046595

  15. Thermally Conductive Tape Based on Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Kashani, Ali

    2011-01-01

    To increase contact conductance between two mating surfaces, a conductive tape has been developed by growing dense arrays of carbon nanotubes (CNTs, graphite layers folded into cylinders) on both sides of a thermally conductive metallic foil. When the two mating surfaces are brought into contact with the conductive tape in between, the CNT arrays will adhere to the mating surface. The van der Waals force between the contacting tubes and the mating surface provides adhesion between the two mating surfaces. Even though the thermal contact conductance of a single tube-to-tube contact is small, the tremendous amount of CNTs on the surface leads to a very large overall contact conductance. Interface contact thermal resistance rises from the microroughness and the macroscopic non-planar quality of mating surfaces. When two surfaces come into contact with each other, the actual contact area may be much less than the total area of the surfaces. The real area of contact depends on the load, the surface roughness, and the elastic and inelastic properties of the surface. This issue is even more important at cryogenic temperatures, where materials become hard and brittle and vacuum is used, which prevents any gas conduction through the interstitial region. A typical approach to increase thermal contact conductance is to use thermally conducting epoxies or greases, which are not always compatible with vacuum conditions. In addition, the thermal conductivities of these compounds are often relatively low. The CNTs used in this approach can be metallic or semiconducting, depending on the folding angle and diameter. The electrical resistivity of multiwalled carbon nanotubes (MWCNTs) has been reported. MWCNTs can pass a current density and remain stable at high temperatures in air. The thermal conductivity of a MWCNT at room temperature is measured to be approximately 3,000 W/m-K, which is much larger than that of diamond. At room temperature, the thermal conductance of a 0.3 sq cm

  16. Solution-processed single-wall carbon nanotube transistor arrays for wearable display backplanes

    NASA Astrophysics Data System (ADS)

    Kang, Byeong-Cheol; Ha, Tae-Jun

    2018-01-01

    In this paper, we demonstrate solution-processed single-wall carbon nanotube thin-film transistor (SWCNT-TFT) arrays with polymeric gate dielectrics on the polymeric substrates for wearable display backplanes, which can be directly attached to the human body. The optimized SWCNT-TFTs without any buffer layer on flexible substrates exhibit a linear field-effect mobility of 1.5cm2/V-s and a threshold voltage of around 0V. The statistical plot of the key device metrics extracted from 35 SWCNT-TFTs which were fabricated in different batches at different times conclusively support that we successfully demonstrated high-performance solution-processed SWCNT-TFT arrays which demand excellent uniformity in the device performance. We also investigate the operational stability of wearable SWCNT-TFT arrays against an applied strain of up to 40%, which is the essential for a harsh degree of strain on human body. We believe that the demonstration of flexible SWCNT-TFT arrays which were fabricated by all solution-process except the deposition of metal electrodes at process temperature below 130oC can open up new routes for wearable display backplanes.

  17. Decomposition of 2,4,6-trinitrotoluene (TNT) by gamma irradiation.

    PubMed

    Lee, Byungjin; Lee, Myunjoo

    2005-12-01

    The purpose of this study was to evaluate the potential of gamma irradiation to decompose 2,4,6-trinitrotoluene (TNT) in an aqueous solution; the concentration range of the TNT solution was 0.11-0.44 mmol/L. The decomposition rate of TNT by gamma irradiation was pseudo-first-order kinetic over the applied initial concentrations. The dose constant was strongly dependent on the initial concentration of TNT. Increasing the concentration of dissolved oxygen in the solution was more effective on the decomposition of TNT as well as its mineralization. The required irradiation dose to remove 90% of initial TNT (0.44 mmol/L) was 58, 41, 32, 28, and 25 kGy at the dissolved oxygen concentration of 0.025, 0.149, 0.3, 0.538, and 0.822 mmol/L, respectively. However, TOC still remained as 30% of the initial TOC (3.19 mmol/L) when 200 kGy irradiation dose was applied to the TNT solution (0.44 mmol/L) containing dissolved oxygen of 0.822 mmol/L. The removal of the TNT was more efficient at a pH below 3 and at a pH above 11 than at neutral pH (pH 5-9). The required irradiation dose to remove over 99% of the initial TNT (0.44 mmol/L) was 39, 76, and 10 kGy at pH 2, 7, and 13, respectively. The dose constant was increased 1.6-fold and over 15.6-fold at pH 2 and 13, respectively, compared to that at pH 7. When an irradiation dose of 200 kGy was applied, the removal efficiencies of the TOC (initial concentration 3.19 mmol/L) were 91, 46, and 53% at pH 2, 7, and 13, respectively. Ammonia and nitrate were detected as the main nitrogen byproducts of TNT, and glyoxalic acid and oxalic acid were detected as organic byproducts.

  18. Enhanced photocatalytic activity of hydrogenated and vanadium doped TiO2 nanotube arrays grown by anodization of sputtered Ti layers

    NASA Astrophysics Data System (ADS)

    Motola, Martin; Satrapinskyy, Leonid; Čaplovicová, Mária; Roch, Tomáš; Gregor, Maroš; Grančič, Branislav; Greguš, Ján; Čaplovič, Ľubomír; Plesch, Gustav

    2018-03-01

    TiO2 nanotube (TiNT) arrays were grown on silicon substrate via electrochemical anodization of titanium films sputtered by magnetron. To improve the photocatalytic activity of arrays annealed in air (o-TiNT), doping of o-TiNT with vanadium was performed (o-V/TiNT). These non-doped and doped TiNT arrays were also hydrogenated in H2/Ar atmosphere to r-TiNT and r-V/TiNT samples, respectively. Investigation of composition and morphology by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and X-ray photoelectron spectroscopy (XPS) showed the presence of well-ordered arrays of anatase nanotubes with average diameter and length of 100 nm and 1.3 μm, respectively. In both oxidized and reduced V-doped samples, vanadium is partly dissolved in the structure of anatase and partly deposited in form of oxide on the nanotube surface. Vanadium-doped and reduced samples exhibited higher rates in the photodegradation of organic dyes (compared to non-modified o-TiNT sample) and this is caused by limitation of electron-hole recombination rates and by shift of the energy gap into visible region. The photocatalytic activity was measured under UV, sunlight and visible irradiation, and the corresponding efficiency increased in the order (o-TiNT) < (r-TiNT) < (o-V/TiNT) < (r-V/TiNT). Under visible light, only r-TiNT and r-V/TiNT showed significant photocatalytic activity.

  19. Detection of Explosives in a Dynamic Marine Environment Using a Moored TNT Immunosensor

    PubMed Central

    Charles, Paul T.; Adams, André A.; Deschamps, Jeffrey R.; Veitch, Scott; Hanson, Al; Kusterbeck, Anne W.

    2014-01-01

    A field demonstration and longevity assessment for long-term monitoring of the explosive 2,4,6-trinitrotoluene (TNT) in a marine environment using an anti-TNT microfluidic immunosensor is described. The TNT immunosensor is comprised of a microfluidic device with 39 parallel microchannels (2.5 cm × 250 μm × 500 μm, L × W × D) fabricated in poly(methylmethacrylate) (PMMA), then chemically functionalized with antibodies possessing a high affinity for TNT. Synthesized fluorescence reporter complexes used in a displacement-based assay format were used for TNT identification. For field deployment the TNT immunosensor was configured onto a submersible moored steel frame along with frame controller, pumps and TNT plume generator and deployed pier side for intermittent plume sampling of TNT (1h increments). Under varying current and tidal conditions trace levels of TNT in natural seawater were detected over an extended period (>18 h). Overnight operation and data recording was monitored via a web interface. PMID:24583970

  20. Detection of explosives in a dynamic marine environment using a moored TNT immunosensor.

    PubMed

    Charles, Paul T; Adams, André A; Deschamps, Jeffrey R; Veitch, Scott; Hanson, Al; Kusterbeck, Anne W

    2014-02-27

    A field demonstration and longevity assessment for long-term monitoring of the explosive 2,4,6-trinitrotoluene (TNT) in a marine environment using an anti-TNT microfluidic immunosensor is described. The TNT immunosensor is comprised of a microfluidic device with 39 parallel microchannels (2.5 cm × 250 µm × 500 µm, L × W × D) fabricated in poly(methylmethacrylate) (PMMA), then chemically functionalized with antibodies possessing a high affinity for TNT. Synthesized fluorescence reporter complexes used in a displacement-based assay format were used for TNT identification. For field deployment the TNT immunosensor was configured onto a submersible moored steel frame along with frame controller, pumps and TNT plume generator and deployed pier side for intermittent plume sampling of TNT (1h increments). Under varying current and tidal conditions trace levels of TNT in natural seawater were detected over an extended period (>18 h). Overnight operation and data recording was monitored via a web interface.

  1. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    PubMed

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  2. Bioconcentration of TNT and RDX in coastal marine biota.

    PubMed

    Ballentine, Mark; Tobias, Craig; Vlahos, Penny; Smith, Richard; Cooper, Christopher

    2015-05-01

    The bioconcentration factor (BCF) was measured for 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in seven different marine species of varying trophic levels. Time series and concentration gradient treatments were used for water column and tissue concentrations of TNT, RDX, and their environmentally important derivatives 2-amino-4,6-dintrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT). BCF values ranged from 0.0031 to 484.5 mL g(-1) for TNT and 0.023 to 54.83 mL g(-1) for RDX. The use of log K ow value as an indicator was evaluated by adding marine data from this study to previously published data. For the munitions in this study, log K ow value was a good indicator in the marine environment. The initial uptake and elimination rates of TNT and RDX for Fucus vesiculosus were 1.79 and 0.24 h(-1) for TNT and 0.50 and 0.0035 h(-1) for RDX respectively. Biotransformation was observed in all biota for both TNT and RDX. Biotransformation of TNT favored 4-ADNT over 2-ADNT at ratios of 2:1 for F. vesiculosus and 3:1 for Mytilus edulis. Although RDX derivatives were measureable, the ratios of RDX derivatives were variable with no detectable trend. Previous approaches for measuring BCF in freshwater systems compare favorably with these experiments with marine biota, yet significant gaps on the ultimate fate of munitions within the biota exist that may be overcome with the use stable isotope-labeled munitions substrates.

  3. Multiwalled Carbon Nanotube/nanofiber Arrays as Conductive and Dry Adhesive Interface Materials

    NASA Technical Reports Server (NTRS)

    Tong, Tao; Zhao, Yang; Delzeit, Lance; Majumdar, Arun; Kashani, Ali

    2004-01-01

    We demonstrate the possibility of making conductive and dry adhesive interfaces between multiwalled carbon nanotube (MWNT) and nanofiber (MWNF) arrays grown by chemical vapor deposition with transition-metal as catalyst on highly Boron doped silicon substrates. The maximum observed adhesion force between MWNT and MWNF surfaces is 3.5 mN for an apparent contact area of 2 mm by 4 mm. The minimum contact resistance measured at the same time is approx.20 Omega. Contact resistances of MWNT-MWNT and MWNT-gold interfaces were also measured as pressure forces around several mN were applied at the interface. The resulting minimum contact resistances are on the same order but with considerable variation from sample to sample. For MWNT-MWNT contacts, a minimum contact resistance of approx.1 Omega is observed for a contact area of 2 mm by 1 mm. The relatively high contact resistances, considering the area density of the nanotubes, might be explained by the high cross-tube resistances at the contact interfaces.

  4. Mobility and bioavailability reduction of soil TNT via sorption enhancement using monopotassium phosphate.

    PubMed

    Jung, Jae-Woong; Nam, Kyoungphile

    2014-06-30

    In this study, the effect of monopotassium phosphate (MKP) on the reduction in mobility and bioavailability of 2,4,6-trinitrotoluene (TNT) was tested. In the test soil, collected from an active firing range, of which cation binding sites were mostly exchanged with H(+) or Al(3+), potassium ions in MKP exchanged the existing cations and hence significantly increased TNT sorption. In addition, a competitive sorption experiment with hexafluorobenzene and 2,4-dinitrotoluene suggests that TNT was specifically sorbed through cation-polar interaction in the test soil. The unit-equivalent Freundlich sorption coefficient of TNT in MKP-amended soil (1370.96 mg-TNT/kg-soil) was about 13 times higher than that in untreated soil (106.23 mg-TNT/kg-soil). Finally, modified synthetic precipitation leaching procedure and hydroxypropyl-β-cyclodextrin extraction result revealed that MKP application could reduce both the leachability and bioavailability of soil TNT. The leachable and extractable fraction of TNT in untreated soil were 87.63% and 94.47% of the initial TNT, respectively, whereas these fractions decreased to 49.15% and 54.85% of the initial TNT in the presence of MKP, respectively. MKP application can be a benign technology which can reduce both mobility and bioavailability of TNT in soil. Copyright © 2014. Published by Elsevier B.V.

  5. Quantification and aging of the post-blast residue of TNT landmines.

    PubMed

    Oxley, Jimmie C; Smith, James L; Resende, Elmo; Pearce, Evan

    2003-07-01

    Post-blast residues are potential interferents to chemical detection of landmines. To assess the potential problem related to 2,4,6-trinitrotoluene (TNT), its post-blast residue was identified and quantified. In the first part of this study laboratory-scale samples of TNT (2 g) were detonated in a small-scale explosivity device (SSED) to evaluate the explosive power and collect post-blast residue for chemical analysis. Initiator size was large relative to the TNT charge; thus, issues arose regarding choice of initiator, residue from the initiator, and afterburning of TNT. The second part of this study detonated 75 to 150 g of military-grade TNT (typical of antipersonnel mines) in 55-gal barrels containing various witness materials (metal plates, sand, barrel walls, the atmosphere). The witness materials were analyzed for explosive residue. In a third set of tests, 75-g samples of TNT were detonated over soil (from Fort Leonard Wood or Sandia National Laboratory) in an indoor firing chamber (100 by 4.6 by 2.7 m high). Targeted in these studies were TNT and four explosive-related compounds (ERC): 2,4-dinitrotoluene (DNT), 1,3-dinitrobenzene (DNB), 2- and 4-aminodinitrotoluene (2-ADNT and 4-ADNT). The latter two are microbial degradation products of TNT. Post-blast residue was allowed to age in the soils as a function of moisture contents (5 and 10%) in order to quantify the rate of degradation of the principal residues (TNT, DNT, and DNB) and formation of the TNT microbial degradation products (2-ADNT and 4-ADNT). The major distinction between landmine leakage and post-blast residue was not the identity of the species but relative ratios of amounts. In landmine leakage the DNT/TNT ratio was usually greater than 1. In post-blast residue it was on the order of 1 to 1/100th of a percent, and the total amount of pre-blast residue (landmine leakage) was a factor of 1/100 to 1/1000 less than post-blast. In addition, landmine leakage resulted in low DNT/ADNT ratios, usually

  6. Oriented nanotube electrodes for lithium ion batteries and supercapacitors

    DOEpatents

    Frank, Arthur J.; Zhu, Kai; Wang, Qing

    2013-03-05

    An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

  7. Phytodetoxification of TNT by transplastomic tobacco (Nicotiana tabacum) expressing a bacterial nitroreductase.

    PubMed

    Zhang, Long; Rylott, Elizabeth L; Bruce, Neil C; Strand, Stuart E

    2017-09-01

    Expression of the bacterial nitroreductase gene, nfsI, in tobacco plastids conferred the ability to detoxify TNT. The toxic pollutant 2,4,6-trinitrotoluene (TNT) is recalcitrant to degradation in the environment. Phytoremediation is a potentially low cost remediation technique that could be applied to soil contaminated with TNT; however, progress is hindered by the phytotoxicity of this compound. Previous studies have demonstrated that plants transformed with the bacterial nitroreductase gene, nfsI have increased ability to tolerate and detoxify TNT. It has been proposed that plants engineered to express nfsI could be used to remediate TNT on military ranges, but this could require steps to mitigate transgene flow to wild populations. To address this, we have developed nfsI transplastomic tobacco (Nicotiana tabacum L.) to reduce pollen-borne transgene flow. Here we have shown that when grown on solid or liquid media, the transplastomic tobacco expressing nfsI were significantly more tolerant to TNT, produced increased biomass and removed more TNT from the media than untransformed plants. Additionally, transplastomic plants expressing nfsI regenerated with high efficiency when grown on medium containing TNT, suggesting that nfsI and TNT could together be used to provide a selectable screen for plastid transformation.

  8. Successful Gene Tagging in Lettuce Using the Tnt1 Retrotransposon from Tobacco

    PubMed Central

    Mazier, Marianne; Botton, Emmanuel; Flamain, Fabrice; Bouchet, Jean-Paul; Courtial, Béatrice; Chupeau, Marie-Christine; Chupeau, Yves; Maisonneuve, Brigitte; Lucas, Hélène

    2007-01-01

    The tobacco (Nicotiana tabacum) element Tnt1 is one of the few identified active retrotransposons in plants. These elements possess unique properties that make them ideal genetic tools for gene tagging. Here, we demonstrate the feasibility of gene tagging using the retrotransposon Tnt1 in lettuce (Lactuca sativa), which is the largest genome tested for retrotransposon mutagenesis so far. Of 10 different transgenic bushes carrying a complete Tnt1 containing T-DNA, eight contained multiple transposed copies of Tnt1. The number of transposed copies of the element per plant was particularly high, the smallest number being 28. Tnt1 transposition in lettuce can be induced by a very simple in vitro culture protocol. Tnt1 insertions were stable in the progeny of the primary transformants and could be segregated genetically. Characterization of the sequences flanking some insertion sites revealed that Tnt1 often inserted into genes. The progeny of some primary transformants showed phenotypic alterations due to recessive mutations. One of these mutations was due to Tnt1 insertion in the gibberellin 3β-hydroxylase gene. Taken together, these results indicate that Tnt1 is a powerful tool for insertion mutagenesis especially in plants with a large genome. PMID:17351058

  9. Linear flow dynamics near a T/NT interface

    NASA Astrophysics Data System (ADS)

    Teixeira, Miguel; Silva, Carlos

    2011-11-01

    The characteristics of a suddenly-inserted T/NT interface separating a homogeneous and isotropic shear-free turbulence region from a non-turbulent flow region are investigated using rapid distortion theory (RDT), taking full account of viscous effects. Profiles of the velocity variances, TKE, viscous dissipation rate, turbulence length scales, and pressure statistics are derived, showing very good agreement with DNS. The normalized inviscid flow statistics at the T/NT interface do not depend on the form of the assumed TKE spectrum. In the non-turbulent region, where the flow is irrotational (except within a thin viscous boundary layer), the dissipation rate decays as z-6, where z is distance from the T/NT interface. The mean pressure exhibits a decrease towards the turbulence due to the associated velocity fluctuations, consistent with the generation of a mean entrainment velocity. The vorticity variance and dissipation rate display large maxima at the T/NT interface due to the existing inviscid discontinuities of the tangential velocity, and these maxima are quantitatively related to the thickness of the viscous boundary layer (VBL). At equilibrium, RDT suggests that the thickness of the T/NT interface scales on the Kolmogorov microscale. We acknowledge the financial support of FCT under Project PTDC/EME-MFE/099636/2008.

  10. Enhanced Transformation of TNT by Arabidopsis Plants Expressing an Old Yellow Enzyme

    PubMed Central

    Zhu, Bo; Peng, Ri-He; Fu, Xiao-Yan; Jin, Xiao-Fen; Zhao, Wei; Xu, Jing; Han, Hong-Juan; Gao, Jian-Jie; Xu, Zhi-Sheng; Bian, Lin; Yao, Quan-Hong

    2012-01-01

    2,4,6-Trinitrotoluene (TNT) is released in nature from manufacturing or demilitarization facilities, as well as after the firing or detonation of munitions or leakage from explosive remnants of war. Environmental contamination by TNT is associated with human health risks, necessitating the development of cost-effective remediation techniques. The lack of affordable and effective cleanup technologies for explosives contamination requires the development of better processes. In this study, we present a system for TNT phytoremediation by overexpressing the old yellow enzyme (OYE3) gene from Saccharomyces cerevisiae. The resulting transgenic Arabidopsis plants demonstrated significantly enhanced TNT tolerances and a strikingly higher capacity to remove TNT from their media. The current work indicates that S. cerevisiae OYE3 overexpression in Arabidopsis is an efficient method for the phytoremoval and degradation of TNT. Our findings have the potential to provide a suitable remediation strategy for sites contaminated by TNT. PMID:22808068

  11. Phytotransformation of TNT and distribution of metabolic products in Myriophyllum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderford, M.; Hughes, J.

    Recent investigations indicate that 2,4,6-trinitrotoluene (TNT) disappears from solution in the presence of aquatic macrophytes. Studies using (U) {sup 14}C TNT were conducted to monitor the fate of TNT and its transformation products in Myriophyllum aquaticum. Plants were exposed to TNT solution for several days and destructively sampled at the end of that time. Data for live plants were compared with those for heat killed controls and axenic Myriophyllum systems. Distribution of radiolabel was analyzed in the root, stem and leaf tissue of Myriophyllum directly by incineration of plant tissue and capture of {sup 14}CO{sub 2}. Tissues were also extractedmore » with methanol and subjected to scintillation analysis. Plant extracts were examined by HPLC for TNT and its known reduction products. A complete mass balance analysis was performed for the system. Significant differences in distribution of {sup 14}C were noted between the live and killed plants. For live plants, the majority of {sup 14}C associated with the plant was sequestered in the roots and was largely unextractable. Extracts of stem and leaf were lower in total {sup 14}C content, but the radiolabel was more extractable from these tissues. In the extracted fractions, TNT and monoamino transformation products were detected, but not in stoichiometric quantities. Investigations are currently underway to identify the extractable products of plant associated TNT transformation.« less

  12. Fabrication of free-standing aligned multiwalled carbon nanotube array for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Bulusheva, L. G.; Arkhipov, V. E.; Fedorovskaya, E. O.; Zhang, Su; Kurenya, A. G.; Kanygin, M. A.; Asanov, I. P.; Tsygankova, A. R.; Chen, Xiaohong; Song, Huaihe; Okotrub, A. V.

    2016-04-01

    We show that a high-temperature CCl4 vapor treatment of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) grown on silicon substrate allows carefully detach the array from the substrate. Moreover, this procedure partially purifies the VA-MWCNTs from the residual iron catalyst. To improve electrical connectivity of free-standing VA-MWCNTs in an electrochemical cell, the array was placed between the layers of Ni foam. Such assembly demonstrated the better performance in Li-battery as compared to the disordered MWCNTs. After 50 cycles, the specific capacity of VA-MWCNT array synthesized from 0.5 wt% ferrocene solution in toluene was 350 mAh g-1 at a current density of 0.1 A g-1, while the battery with the disordered MWCNTs achieved 197 mAh g-1 only. By the results of electrochemical impedance spectroscopy, the higher capacity of VA-MWCNTs was attributed to larger surface area available for electrolyte and Li ions due to the absence of binder coating.

  13. Easy methods to study the smart energetic TNT/CL-20 co-crystal.

    PubMed

    Li, Huarong; Shu, Yuanjie; Gao, Shijie; Chen, Ling; Ma, Qing; Ju, Xuehai

    2013-11-01

    2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a high-energy nitramine explosive with high mechanical sensitivity. 2,4,6-trinitrotoluene (TNT) is insensitive but by no means a high performance explosive. To reveal the significant importance and smart-material functionality of the energetic-energetic co-crystals, the stability, mechanical and explosive properties TNT/CL-20 co-crystal, TNT crystal and CL-20 crystal were studied. Non-hydrogen bonded non-covalent interactions govern the structures of energetic-energetic co-crystals. However, it is very difficult to accurately calculate the non-covalent intermolecular interaction energies. In this paper, the local conformation and the intricate non-covalent interactions were effectively mapped and analyzed from the electron density (ρ) and its derivatives. The results show that the two components TNT and CL-20 are connected mainly by nitro-aromatic interactions, and nitro-nitro interactions. The steric interactions in TNT/CL-20 could not be confronted with the attractive interactions. Moreover, the scatter graph of TNT crystal reveals the reason why TNT is brittle. The detailed electrostatic potential analysis predicted that the detonation velocities (D) and impact sensitivity for the compounds both increase in the sequence of CL-20 > TNT/CL-20 co-crystal > TNT. Additionally, TNT/CL-20 co-crystal has better malleability than its pure components. This demonstrates the capacity and the feasibility of realizing explosive smart materials by co-crystallization, even if strong hydrogen bonding schemes are generally lacking in energetic materials.

  14. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patheja, Pooja, E-mail: pooja.patheja8@gmail.com; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra; Sahu, Khageswar

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MφCM) not only enhanced TNT formation between cells but also stimulated the releasemore » of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MφCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation.« less

  15. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments.

    PubMed

    Patheja, Pooja; Sahu, Khageswar

    2017-06-15

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MɸCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MɸCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Electrodeposition synthesis of MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites and their visible light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xuyao; Zhou, Xiaosong, E-mail: zxs801213@163.com; Li, Xiaoyu, E-mail: lixiaoyu@iga.ac.cn

    2014-11-15

    Highlights: • MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites are prepared by electrodeposition. • MnO{sub 2}/TiO{sub 2} exhibits high visible light photocatalytic activity. • The results of XRD show the depositions are attributed to α-MnO{sub 2}. • A photocatalytic mechanism is discussed under visible light irradiation. - Abstract: MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposite photocatalysts have been synthesized through an electrodeposition method. X-ray powder diffraction analysis and X-ray photoelectron spectroscopy measurements reveal that the products of electrodeposition method are MnO{sub 2}. Scanning electron microscopy measurements suggest that the depositions are deposited on the surface or internal of the nanotube. UV–vis lightmore » absorbance spectra demonstrate the excellent adsorption properties of MnO{sub 2}/TiO{sub 2} over the whole region of visible light, which enables this novel photocatalytic material to possess remarkable activity in the photocatalytic degradation of acid Orange II under visible light radiation. Moreover, a possible photocatalytic mechanism is discussed.« less

  17. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform.

    PubMed

    Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi

    2016-04-15

    The template assisted electrochemical deposition technique was used for the synthesis of gold nanotubes array (AuNTsA). The morphological structure of the synthesized AuNTsA was observed by scanning electron microscopy and found that the individual nanotubes are around 1.5 μm in length with a diameter of 200 nm. Nanotubes are vertically aligned to the Au thick film, which is formed during the synthesis process of nanotubes. The electrochemical performance of the AuNTsA was compared with the bare Au electrode and found that AuNTsA has better electron transfer surface than bare Au electrode which is due to the high surface area. Hence, the AuNTsA was used as an electrode for the fabrication of DNA hybridization biosensor for detection of Mycobacterium Tuberculosis DNA. The DNA hybridization biosensor constructed by AuNTsA electrode was characterized by cyclic voltammetry technique with Fe(CN)6(3-/4-) as an electrochemical redox indicator. The selectivity of the fabricated biosensor was illustrated by hybridization with complementary DNA and non-complementary DNA with probe DNA immobilized AuNTsA electrode using methylene blue as a hybridization indicator. The developed electrochemical DNA biosensor shows good linear range of complementary DNA concentration from 0.01 ng/μL to 100 ng/μL with high detection limit. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Non-metal doped TiO2 nanotube arrays for high efficiency photocatalytic decomposition of organic species in water

    NASA Astrophysics Data System (ADS)

    Szkoda, Mariusz; Siuzdak, Katarzyna; Lisowska-Oleksiak, Anna

    2016-10-01

    Titanium dioxide is a well-known photoactive semiconductor with a variety of possible applications. The procedure of pollutant degradation is mainly performed using TiO2 powder suspension. It can also be exploited an immobilized catalyst on a solid support. Morphology and chemical doping have a great influence on TiO2 activity under illumination. Here we compare photoactivity of titania nanotube arrays doped with non-metal atoms: nitrogen, iodine and boron applied for photodegradation of organic dye - methylene blue and terephtalic acid. The doped samples act as a much better photocatalyst in the degradation process of methylene blue and lead to the formation of much higher amount of hydroxyl radicals (•OH) than undoped TiO2 nanotube arrays. The use of a catalyst active under solar light illumination in the form of thin films on a stable substrate can be scaled up for an industrial application.

  19. Preparation of electrochemically active silicon nanotubes in highly ordered arrays

    PubMed Central

    Grünzel, Tobias; Lee, Young Joo; Kuepper, Karsten

    2013-01-01

    Summary Silicon as the negative electrode material of lithium ion batteries has a very large capacity, the exploitation of which is impeded by the volume changes taking place upon electrochemical cycling. A Si electrode displaying a controlled porosity could circumvent the difficulty. In this perspective, we present a preparative method that yields ordered arrays of electrochemically competent silicon nanotubes. The method is based on the atomic layer deposition of silicon dioxide onto the pore walls of an anodic alumina template, followed by a thermal reduction with lithium vapor. This thermal reduction is quantitative, homogeneous over macroscopic samples, and it yields amorphous silicon and lithium oxide, at the exclusion of any lithium silicides. The reaction is characterized by spectroscopic ellipsometry for thin silica films, and by nuclear magnetic resonance and X-ray photoelectron spectroscopy for nanoporous samples. After removal of the lithium oxide byproduct, the silicon nanotubes can be contacted electrically. In a lithium ion electrolyte, they then display the electrochemical waves also observed for other bulk or nanostructured silicon systems. The method established here paves the way for systematic investigations of how the electrochemical properties (capacity, charge/discharge rates, cyclability) of nanoporous silicon negative lithium ion battery electrode materials depend on the geometry. PMID:24205460

  20. Tnt1 Retrotransposon Mutagenesis: A Tool for Soybean Functional Genomics1[W][OA

    PubMed Central

    Cui, Yaya; Barampuram, Shyam; Stacey, Minviluz G.; Hancock, C. Nathan; Findley, Seth; Mathieu, Melanie; Zhang, Zhanyuan; Parrott, Wayne A.; Stacey, Gary

    2013-01-01

    Insertional mutagenesis is a powerful tool for determining gene function in both model and crop plant species. Tnt1, the transposable element of tobacco (Nicotiana tabacum) cell type 1, is a retrotransposon that replicates via an RNA copy that is reverse transcribed and integrated elsewhere in the plant genome. Based on studies in a variety of plants, Tnt1 appears to be inactive in normal plant tissue but can be reactivated by tissue culture. Our goal was to evaluate the utility of the Tnt1 retrotransposon as a mutagenesis strategy in soybean (Glycine max). Experiments showed that the Tnt1 element was stably transformed into soybean plants by Agrobacterium tumefaciens-mediated transformation. Twenty-seven independent transgenic lines carrying Tnt1 insertions were generated. Southern-blot analysis revealed that the copy number of transposed Tnt1 elements ranged from four to 19 insertions, with an average of approximately eight copies per line. These insertions showed Mendelian segregation and did not transpose under normal growth conditions. Analysis of 99 Tnt1 flanking sequences revealed insertions into 62 (62%) annotated genes, indicating that the element preferentially inserts into protein-coding regions. Tnt1 insertions were found in all 20 soybean chromosomes, indicating that Tnt1 transposed throughout the soybean genome. Furthermore, fluorescence in situ hybridization experiments validated that Tnt1 inserted into multiple chromosomes. Passage of transgenic lines through two different tissue culture treatments resulted in Tnt1 transposition, significantly increasing the number of insertions per line. Thus, our data demonstrate the Tnt1 retrotransposon to be a powerful system that can be used for effective large-scale insertional mutagenesis in soybean. PMID:23124322

  1. Confirmation of conjugation processes during TNT metabolism by axenic plant roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadra, R.; Wayment, D.G.; Hughes, J.B.

    1999-02-01

    This paper examines processes in plants for the formation of fate products of TNT beyond its animated reduction products, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene. TNT metabolites were isolated and characterized in combination with temporal analyses of production profiles and {sup 14}C distribution, in microbe-free, axenic root cultures of Catharanthus roseus. Four unique TNT-derived compounds were isolated. Using evidence from {sup 1}H NMR, mass spectroscopy, HPLC, acid hydrolysis, and enzymatic hydrolysis with {beta}-glucuronidase and {beta}-glucosidase, they were established as conjugates formed by reactions of the amine groups of 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene. From the mass spectral evidence, at least a six-carbon unit from themore » plant intracellular milleu was involved in conjugate formation. Mass balance analysis indicated that, by 75 h after TNT amendment of the initial TNT radiolabel, extractable conjugates comprised 22%, bound residues comprised another 29%, 2-amino-4,6-dinitrotoluene was 4%, and the rest remained unidentified. Isolates from TNT-amended roots versus monoamino-dinitrotoluene-amended roots were not identical, suggesting numerous possible outcomes for the plant-based conjugation of 2-amino-2,6-dinitrotoluene or 4-amino-2,6-dinitrotoluene. This study is the first direct evidence for the involvement of the primary reduction products of TNT--2-amino-4,6-dinitrotoluene ad 4-amino--2,6-dinitrotoluene--in conjugation process in plant detoxification of TNT.« less

  2. Comparative study of the vapor analytes of trinitrotoluene (TNT)

    NASA Astrophysics Data System (ADS)

    Edge, Cindy C.; Gibb, Julie; Dugan, Regina E.

    1998-12-01

    Trinitrotoluene (TNT) is a high explosive used in most antipersonnel and antitank landmines. The Institute for Biological Detection Systems (IBDS) has developed a quantitative vapor delivery system, termed olfactometer, for conducting canine olfactory research. The research is conducted utilizing dynamic conditions, therefore, it is imperative to evaluate the headspace of TNT to ensure consistency with the dynamic generation of vapor. This study quantified the vapor headspace of military- grade TNT utilizing two different vapor generated methodologies, static and dynamic, reflecting differences between field and laboratory environments. Static vapor collection, which closely mimics conditions found during field detection, is defined as vapor collected in an open-air environment at ambient temperature. Dynamic vapor collection incorporates trapping of gases from a high flow vapor generation cell used during olfactometer operation. Analysis of samples collected by the two methodologies was performed by gas chromatography/mass spectrometry and the results provided information with regard to the constituents detected. However, constituent concentration did vary between the sampling methods. This study provides essential information regarding the vapor constituents associated with the TNT sampled using different sampling methods. These differences may be important in determining the detection signature dogs use to recognize TNT.

  3. Research of influence of the underlayer material on the growth rate of carbon nanotube arrays for manufacturing non-volatile memory elements with high speed

    NASA Astrophysics Data System (ADS)

    Klimin, V. S.; Il'ina, M. V.; Il'in, O. I.; Rudyk, N. N.; Ageev, O. A.

    2017-11-01

    This experimental work is devoted to the regimes of obtaining arrays of carbon nanotubes. Arrays of perpendicular nanotubes perpendicular to the surface were obtained by the method of Plasma-enhanced chemical vapor deposition. In this paper, geometric and electronic parameters of carbon nanotubes were investigated depending on the material of the sublayer. The rates of growth of carbon nanotubes on various structures were also determined. In the experiments for growth, structures such as Ni-Al-Si, Ni-V-Si, Ni-Ti-Si, Ni-Cr-Si were used. The growth rates for the intensive section were for the Ni-Cr-Si structure, the growth rate is about 1 μm / min, for the Ni-V-Si structure it is 0.55 μm / min. The growth rates for the saturation region for the Ni-Cr-Si structure, the growth rate is about 0.2 μm / min, for the Ni-V-Si structure 0.16 μm / min. The results obtained in this paper can be used to optimize the growth regimes perpendicularly oriented to the substrate carbon nanotubes, which are used as various elements in modern nanoelectronics.

  4. Raman microspectroscopy and FTIR crystallization studies of 2,4,6-TNT in soil

    NASA Astrophysics Data System (ADS)

    Manrique-Bastidas, Cesar A.; Mina, Nairmen; Castro, Miguel E.; Hernandez-Rivera, Samuel P.

    2005-06-01

    2,4,6-Trinitrotoluene is a high explosive used in manufacturing landmine, bombs, and other explosive devices. It has been the main source of contamination in groundwater, soil as a result of intentional or accidental releases at many places around the world. Crystallization of TNT in soil from TNT/methanol solutions was carried out and characterized using vibrational spectroscopy. TNT exhibits a series of characteristic bands that allow its detection when in soil. The spectroscopic signatures of neat TNT and TNT in soil samples were determined with Raman Microspectroscopy and Fourier Transform Infrared (FTIR) Microscopy. The spectroscopic signature of neat TNT is dominated by strong bands about 1380 and 2970 cm-1. The intensity and position of these bands are found remarkably different in soil samples spiked with TNT. The 1380 cm-1 band is split into a number of bands in that region. The 2970 cm-1 is reduced in intensity and new bands are observed at about 2880 cm-1. The results are consistent with a different chemical environment for TNT in soil as compared to neat TNT. Further measurements are required to fully understand the spectroscopic signature of TNT in soil samples. Its detection in soil is essential in landmine detection technology, and could address the improvement of the devices in the mentioned technology.

  5. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    NASA Astrophysics Data System (ADS)

    Ali, Saima; Hannula, Simo-Pekka

    2017-05-01

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO4) solution (Process 1), and ethylene glycol (EG) mixture with HClO4 and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted to nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25-600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m2 g-1 is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes.

  6. Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes.

    PubMed

    Delage, Elise; Cervantes, Diégo Cordero; Pénard, Esthel; Schmitt, Christine; Syan, Sylvie; Disanza, Andrea; Scita, Giorgio; Zurzolo, Chiara

    2016-12-23

    Tunneling Nanotubes (TNTs) are actin enriched filopodia-like protrusions that play a pivotal role in long-range intercellular communication. Different pathogens use TNT-like structures as "freeways" to propagate across cells. TNTs are also implicated in cancer and neurodegenerative diseases, making them promising therapeutic targets. Understanding the mechanism of their formation, and their relation with filopodia is of fundamental importance to uncover their physiological function, particularly since filopodia, differently from TNTs, are not able to mediate transfer of cargo between distant cells. Here we studied different regulatory complexes of actin, which play a role in the formation of both these structures. We demonstrate that the filopodia-promoting CDC42/IRSp53/VASP network negatively regulates TNT formation and impairs TNT-mediated intercellular vesicle transfer. Conversely, elevation of Eps8, an actin regulatory protein that inhibits the extension of filopodia in neurons, increases TNT formation. Notably, Eps8-mediated TNT induction requires Eps8 bundling but not its capping activity. Thus, despite their structural similarities, filopodia and TNTs form through distinct molecular mechanisms. Our results further suggest that a switch in the molecular composition in common actin regulatory complexes is critical in driving the formation of either type of membrane protrusion.

  7. Hierarchical structures of carbon nanotubes and arrays of chromium-capped silicon nanopillars: formation and electrical properties.

    PubMed

    Koch, Stefan; Joshi, Ravi K; Noyong, Michael; Timper, Jan; Schneider, Jörg J; Simon, Ulrich

    2012-09-10

    The formation of stochastically oriented carbon-nanotube networks on top of an array of free-standing chromium-capped silicon nanopillars is reported. The combination of nanosphere lithography and chemical vapor deposition enables the construction of nanostructures that exhibit a hierarchical sequence of structural sizes. Metallic chromium serves as an etching mask for Si-pillar formation and as a nucleation site for the formation of carbon nanotubes through the chemical vapor deposition of ethene, ethanol, and methane, respectively, thereby bridging individual pillars from top to top. Iron and cobalt were applied onto the chromium caps as catalysts for CNT growth and the influence of different carbon sources and different gas-flow rates were investigated. The carbon nanotubes were structurally characterized and their DC electrical properties were studied by in situ local- and ex situ macroscopic measurements, both of which reveal their semiconductor properties. This process demonstrates how carbon nanotubes can be integrated into Si-based semiconductors and, thus, this process may be used to form high-surface-area sensors or new porous catalyst supports with enhanced gas-permeation properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influences of solution chemical conditions on mobilization of TNT from contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dante, D.A.; Tiller, C.L.; Pennell, K.D.

    1996-12-31

    Residual explosives and their byproducts are common contaminants at several US military installations. One of the major explosive contaminants is 2,4,6-Trinitrotoluene (TNT) (a hydrophobic organic compound). Contamination from TNT has resulted from manufacturing and handling processes which occurred at military installations, especially Army Ammunition Plants (AAP), over many decades until environmental regulations were implemented. TNT causes adverse effects to the environment, including growth inhibition to plants, toxicity to aquatic life, and possible mutagenicity, and also is toxic to humans. As a result of the effects of TNT on the environment and current environmental regulations, substantial research effort has been focusedmore » on determining the fate of TNT in natural systems and the development of remediation processes. Many potential remediation processes, such as those involving plants or microorganisms, are in part limited by the transfer of TNT from solid phases (e.g., sorbed to soil or present as TNT granules) to the aqueous phase. The purpose of this research is to assess the release of TNT from a soil phase to a mobile aqueous phase under varying solution chemical conditions. In particular, influences of pH, aquatic natural organic matter, and surfactants are investigated.« less

  9. Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xu; Islam, Ahmad E.; Seabron, Eric

    2015-04-07

    Aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) represent ideal configurations for use of this class of material in high performance electronics. Development of means for removing the metallic SWNTs (m-SWNTs) in as-grown arrays represents an essential challenge. Here, we introduce a simple scheme that achieves this type of purification using direct, selective current injection through interdigitated electrodes into the m-SWNTs, to allow their complete removal using processes of thermocapillarity and dry etching. Experiments and numerical simulations establish the fundamental aspects that lead to selectivity in this process, thereby setting design rules for optimization. Single-step purification of arrays that includemore » thousands of SWNTs demonstrates the effectiveness and simplicity of the procedures. The result is a practical route to large-area aligned arrays of purely s-SWNTs with low-cost experimental setups.« less

  10. Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films.

    PubMed

    Zhu, Yan-Feng; Zhang, Juan; Xu, Lu; Guo, Ya; Wang, Xiao-Ping; Du, Rong-Gui; Lin, Chang-Jian

    2013-03-21

    A highly ordered TiO(2) nanotube array film was fabricated by an anodic oxidation method. The film was modified by Au nanoparticles (NPs) formed by a deposition-precipitation technique and was covered with a thin ZnS shell prepared by a successive ionic layer adsorption and reaction (SILAR) method. The photoelectrochemical properties of the prepared ZnS/Au/TiO(2) composite film were evaluated by incident photon-to-current conversion efficiency (IPCE), and photopotential and electrochemical impedance spectroscopy (EIS) measurements under white light illumination. The results indicated that the Au NPs could expand the light sensitivity range of the film and suppress the electron-hole recombination, and the ZnS shell could inhibit the leakage of photogenerated electrons from the surface of Au NPs to the ZnS/electrolyte interface. When the 403 stainless steel in a 0.5 M NaCl solution was coupled to the ZnS/Au/TiO(2) nanotube film photoanode under illumination, its potential decreased by 400 mV, showing that the composite film had a better photocathodic protection effect on the steel than that of a pure TiO(2) nanotube film.

  11. Ionization Gas Sensor using Aligned Multiwalled Carbon Nanotubes Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kermany, A. R.; Mohamed, N. M.; Singh, B. S. M.

    2011-05-25

    The challenge with current conventional gas sensors which are operating using semiconducting oxides is their size. After the introduction of nanotechnology and in order to reduce the dimension and consequently the power consumption and cost, new materials such as carbon nanotubes (CNTs) are being introduced. From previous works and characterization results, it was proven that the CNTs based gas sensor has better sensitivity, selectivity and faster response time in compared with semiconducting oxides based gas sensors. As in this work, a fabrication and successful testing of an ionization-based gas sensor using aligned Multiwalled CNTs (MWCNTs) as sensing element is discussed,more » in which MWCNTs array and Al film are used as anode and cathode plates respectively with electrode separation ranging from 80 {mu}m to 140 {mu}m. Aligned MWCNTs array was incorporated into a sensor configuration in the gas chamber for testing of gases such as argon, air, and mixed gas of 2%H{sub 2} in air. Obtained results show that among the three gases, argon has the lowest breakdown voltage whilst air has the highest value and the breakdown voltage was found to decrease as the electrode spacing was reduced from 140 {mu}m to 80 {mu}m for all three gases.« less

  12. Development of Amperometric Glucose Biosensor Based on Prussian Blue Functionlized TiO2 Nanotube Arrays

    PubMed Central

    Gao, Zhi-Da; Qu, Yongfang; Li, Tongtong; Shrestha, Nabeen K.; Song, Yan-Yan

    2014-01-01

    Amperometric biosensors consisting of oxidase and peroxidase have attracted great attention because of their wide application. The current work demonstrates a novel approach to construct an enzymatic biosensor based on TiO2 nanotube arrays (TiNTs) as a supporting electrode on which Prussian Blue (PB)-an “artificial enzyme peroxidase” and enzyme glucose oxidase (GOx) have been immobilized. For this, PB nanocrystals are deposited onto the nanotube wall photocatalytically using the intrinsic photocatalytical property of TiO2, and the GOx/AuNPs nanobiocomposites are subsequently immobilized into the nanotubes via the electrodeposition of polymer. The resulting electrode exhibits a fast response, wide linear range, and good stability for glucose sensing. The sensitivity of the sensor is as high as 248 mA M−1 cm−2, and the detection limit is about 3.2 μM. These findings demonstrate a promising strategy to integrate enzymes and TiNTs, which could provide an analytical access to a large group of enzymes for bioelectrochemical applications including biosensors and biofuel cells. PMID:25367086

  13. Visible light-harvesting of TiO2 nanotubes array by pulsed laser deposited CdS

    NASA Astrophysics Data System (ADS)

    Bjelajac, Andjelika; Djokic, Veljko; Petrovic, Rada; Socol, Gabiel; Mihailescu, Ion N.; Florea, Ileana; Ersen, Ovidiu; Janackovic, Djordje

    2014-08-01

    Titanium dioxide (TiO2) nanotubes arrays, obtained by anodization technique and annealing, were decorated with CdS using pulsed laser deposition method. Their structural, morphological and chemical characterization was carried out by electron microscopy in scanning (SEM) and transmission (TEM) modes, combined with energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS). It was demonstrated that the quantity of deposited CdS can be controlled by varying the number of laser pulses. The chemical mapping of the elements of interest was performed using the energy filtered mode of the electron microscope. The results showed that pulse laser deposition is an adequate technique for deposition of CdS inside and between 100 nm wide TiO2 nanotubes. The diffuse reflectance spectroscopy investigation of selected samples proved that the absorption edge of the prepared CdS/TiO2 nanocomposites is significantly extended to the visible range. The corresponding band gaps were determinated from the Tauc plot of transformed Kubelka-Munk function. The band gap reduction of TiO2 nanotubes by pulsed laser deposition of CdS was put in evidence.

  14. On-Chip Sorting of Long Semiconducting Carbon Nanotubes for Multiple Transistors along an Identical Array.

    PubMed

    Otsuka, Keigo; Inoue, Taiki; Maeda, Etsuo; Kometani, Reo; Chiashi, Shohei; Maruyama, Shigeo

    2017-11-28

    Ballistic transport and sub-10 nm channel lengths have been achieved in transistors containing one single-walled carbon nanotube (SWNT). To fill the gap between single-tube transistors and high-performance logic circuits for the replacement of silicon, large-area, high-density, and purely semiconducting (s-) SWNT arrays are highly desired. Here we demonstrate the fabrication of multiple transistors along a purely semiconducting SWNT array via an on-chip purification method. Water- and polymer-assisted burning from site-controlled nanogaps is developed for the reliable full-length removal of metallic SWNTs with the damage to s-SWNTs minimized even in high-density arrays. All the transistors with various channel lengths show large on-state current and excellent switching behavior in the off-state. Since our method potentially provides pure s-SWNT arrays over a large area with negligible damage, numerous transistors with arbitrary dimensions could be fabricated using a conventional semiconductor process, leading to SWNT-based logic, high-speed communication, and other next-generation electronic devices.

  15. Development of a Luminex based competitive immunoassay for 2,4,6-trinitrotoluene (TNT).

    PubMed

    Anderson, George P; Lamar, Jacqueline D; Charles, Paul T

    2007-04-15

    Previously, a displacement immunoassay for 2,4,6-trinitrotoluene (TNT) was demonstrated using the Luminex 100. The work presented utilized this same specialized flow cytometer to demonstrate a highly sensitive and rapid competitive immunoassay for TNT. This required a TNT analog to be attached to the microsphere surface. Various linkers were evaluated; bovine serum albumin provided over 3 times more binding sites in comparison to various shorter diamine linkers. For this assay TNB-coated microspheres were added to samples; then biotinylated anti-TNT antibody and the reporter molecule, Streptavidin-R-Phycoerythrin, were added. In the absence of TNT, a highly fluorescent complex was formed on the surface of the microsphere. The presence of TNT resulted in dose-dependent decreased fluorescence. Various anti-TNT antibodies were evaluated; Mab 30-1 gave the strongest response, yielding the lowest limit of detection (<1.0 ng/mL) and a dynamic range up to 1 microg/mL. Other factors such as reaction time, cross reactivity to other nitro-compounds, evaluation of acetone extracts of TNT contaminated soils, testing in environmental matrices such as fresh water and seawater were all completed. Finally, a multiplex assay for TNT and three protein toxins was successfully conducted using the competitive format.

  16. Ultrasensitive Label-free Electronic Chip for DNA Analysis Using Carbon Nanotube Nanoelectrode Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Koehne, Jessica; Chen, Hua; Cassell, Alan; Ng, Hou Tee; Ye, Qi; Han, Jie; Meyyappan, M.

    2004-01-01

    There is a strong need for faster, cheaper, and simpler methods for nucleic acid analysis in today s clinical tests. Nanotechnologies can potentially provide solutions to these requirements by integrating nanomaterials with biofunctionalities. Dramatic improvement in the sensitivity and multiplexing can be achieved through the high-degree miniaturization. Here, we present our study in the development of an ultrasensitive label-free electronic chip for DNA/RNA analysis based on carbon nanotube nanoelectrode arrays. A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in a SiO2 matrix is fabricated using a bottom-up approach. Characteristic nanoelectrode behavior is observed with a low-density MWNT nanoelectrode array in measuring both the bulk and surface immobilized redox species. The open-end of MWNTs are found to present similar properties as graphite edge-plane electrodes, with a wide potential window, flexible chemical functionalities, and good biocompatibility. A BRCA1 related oligonucleotide probe with 18 bases is covalently functionalized at the open ends of the MWNTs and specifically hybridized with an oligonucleotide target as well as a PCR amplicon. The guanine bases in the target molecules are employed as the signal moieties for the electrochemical measurements. Ru(bpy)3(2+) mediator is used to further amplify the guanine oxidation signal. This technique has been employed for direct electrochemical detection of label-free PCR amplicon through specific hybridization with the BRCAl probe. The detection limit is estimated to be less than approximately 1000 DNA molecules, approaching the limit of the sensitivity by laser-based fluorescence techniques in DNA microarray. This system provides a general electronic platform for rapid molecular diagnostics in applications requiring ultrahigh sensitivity, high-degree of miniaturization, simple sample preparation, and low- cost operation.

  17. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies

    PubMed Central

    2011-01-01

    Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170–180 A/cm2 were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma. PMID:27502662

  18. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies.

    PubMed

    Liao, Qingliang; Qin, Zi; Zhang, Zheng; Qi, Junjie; Zhang, Yue; Huang, Yunhua; Liu, Liang

    2011-12-01

    Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170-180 A/cm(2) were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma.

  19. ELECTROCHEMICAL TECHNIQUE FOR TNT USING DISPOSABLE SCREEN-PRINTED ELECTRODE

    EPA Science Inventory

    Screen-printed thick film electrodes are demonstrated as voltammetric sensors for measurement of 2,4,6-trinitrotoluene (TNT). The square wave voltammetric (SWV) scan technique is used to measure TNT in as little as 50 uL sample volumes. This electrochemical assay is coupled ...

  20. Rational Design of Peptide-Functionalized Surface Plasmon Resonance Sensor for Specific Detection of TNT Explosive.

    PubMed

    Wang, Jin; Muto, Masaki; Yatabe, Rui; Onodera, Takeshi; Tanaka, Masayoshi; Okochi, Mina; Toko, Kiyoshi

    2017-09-30

    In this study, a rationally-designed 2,4,6-trinitrotoluene (TNT) binding peptide derived from an amino acid sequence of the complementarity-determining region (CDR) of an anti-TNT monoclonal antibody was used for TNT detection based on a maleimide-functionalized surface plasmon resonance (SPR) sensor. By antigen-docking simulation and screening, the TNT binding candidate peptides were obtained as TNTHCDR1 derived from the heavy chain of CDR1, TNTHCDR2 derived from CDR2, and TNTHCDR3 from CDR3 of an anti-TNT antibody. The binding events between candidate peptides and TNT were evaluated using the SPR sensor by direct determination based on the 3-aminopropyltriethoxysilane (APTES) surface. The TNT binding peptide was directly immobilized on the maleimide-functionalized sensor chip surface from N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS). The results demonstrated that peptide TNTHCDR3 was identified and selected as a TNT binding peptide among the other two candidate peptides. Five kinds of TNT analogues were also investigated to testify the selectivity of TNT binding peptide TNTHCDR3. Furthermore, the results indicated that the APTES-GMBS-based SPR sensor chip procedure featured a great potential application for the direct detection of TNT.

  1. Rational Design of Peptide-Functionalized Surface Plasmon Resonance Sensor for Specific Detection of TNT Explosive

    PubMed Central

    Wang, Jin; Muto, Masaki; Yatabe, Rui; Onodera, Takeshi; Okochi, Mina; Toko, Kiyoshi

    2017-01-01

    In this study, a rationally-designed 2,4,6-trinitrotoluene (TNT) binding peptide derived from an amino acid sequence of the complementarity-determining region (CDR) of an anti-TNT monoclonal antibody was used for TNT detection based on a maleimide-functionalized surface plasmon resonance (SPR) sensor. By antigen-docking simulation and screening, the TNT binding candidate peptides were obtained as TNTHCDR1 derived from the heavy chain of CDR1, TNTHCDR2 derived from CDR2, and TNTHCDR3 from CDR3 of an anti-TNT antibody. The binding events between candidate peptides and TNT were evaluated using the SPR sensor by direct determination based on the 3-aminopropyltriethoxysilane (APTES) surface. The TNT binding peptide was directly immobilized on the maleimide-functionalized sensor chip surface from N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS). The results demonstrated that peptide TNTHCDR3 was identified and selected as a TNT binding peptide among the other two candidate peptides. Five kinds of TNT analogues were also investigated to testify the selectivity of TNT binding peptide TNTHCDR3. Furthermore, the results indicated that the APTES-GMBS-based SPR sensor chip procedure featured a great potential application for the direct detection of TNT. PMID:28973962

  2. Visible-light-assisted photocatalytic activity of bismuth-TiO2 nanotube composites for chromium reduction and dye degradation.

    PubMed

    Ali, Imran; Kim, Jong-Oh

    2018-09-01

    TiO 2 nanotubes (TNTs) were synthesized on a Ti sheet using the electrochemical anodization method. Bismuth (Bi) was coupled on the anodized TNTs via hydrothermal process. We verified the effect of different Bi concentrations on the photocatalytic properties of Bi-TNT composites. The obtained samples were characterized using field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, UV-Vis diffuse reflectance spectra, and photoluminescence spectra. The Bi-TNT photocatalysts exhibited higher activities by factors of 6.6 and 3.6 toward chromium reduction and methylene blue degradation, respectively, under visible light than the pure TNTs. The Bi-TNT material was recycled to examine the stability of the catalyst. The quantum efficiency of the photocatalytic system was calculated, and the synergistic effects of bismuth modification were discussed. The Bi-TNT composites were observed to be promising for separation of photoinduced e - and h + by decreasing charge recombination, and helped the formation of the hydroxyl radicals, h + , and superoxides used in the photocatalytic process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates.

    PubMed

    Huang, Jia-Qi; Zhang, Qiang; Xu, Guang-Hui; Qian, Wei-Zhong; Wei, Fei

    2008-10-29

    In this paper, hydrophobic carbon nanotube (CNT) arrays, ropes, and agglomerates were synthesized through self-organization on quartz substrates with different micro-structures under the same growth condition. On a flat substrate, a uniform woven structure was formed which resulted in a synchronous growth into an array. When the substrate with 10 µm round concaves distributed on the surface was adopted, the woven structure was sporadic and a CNT cluster was grown in the concave. With further growth, CNT ropes were self-organized. Subsequently, when the substrate consisting of irregular ∼100 nm gaps was used, the initial woven structure was high density, thus resulting in the formation of CNT agglomerates. Study results showed that CNT arrays grown on the flat substrate were of the highest purity and had a contact angle of 153.8 ± 0.9°. Thus, the self-organization behavior among CNTs was in situ modulated by different substrate morphology without further treatments. This provides us with an additional understanding of the self-organization of CNTs during growth, as well as strategies for the controllable synthesis of CNTs with fixed properties.

  4. The Role of Oxygen in the Formation of TNT Product Ions in Ion Mobility Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daum, Keith Alvin; Atkinson, David Alan; Ewing, Robert Gordon

    2002-03-01

    The atmospheric pressure ionization of 2,4,6-trinitrotoluene (TNT) in air yields the (TNT-H)- product ion. It is generally accepted that this product ion is formed by the direct proton abstraction of neutral TNT by O2- reactant ions. Data presented here demonstrate the reaction involves the formation of an intermediate (TNT·O2)-, from the association of either TNT+O2- or TNT-+O2. This intermediate has two subsequent reaction branches. One of these branches involves simple dissociation of the intermediate to TNT-; the other branch is a terminal reaction that forms the typically observed (TNT-H)- ion via proton abstraction. The dissociation reaction involving electron transfer tomore » TNT- appeared to be kinetically favored and prevailed at low concentrations of oxygen (less than 2%). The presence of significant amounts of oxygen, however, resulted in the predominant formation of the (TNT-H)- ion by the terminal reaction branch. With TNT- in the system, either from direct electron attachment or by simple dissociation of the intermediate, increasing levels of oxygen in the system will continue to reform the intermediate, allowing the cycle to continue until proton abstraction occurs. Key to understanding this complex reaction pathway is that O2- was observed to transfer an electron directly to neutral TNT to form the TNT-. At oxygen levels of less than 2%, the TNT- ion intensity increased with increasing levels of oxygen (and O2-) and was larger than the (TNT-H)- ion intensity. As the oxygen level increased from 2 to 10%, the (TNT-H)- product ion became predominant. The potential reaction mechanisms were investigated with an ion mobility spectrometer, which was configured to independently evaluate the ionization pathways.« less

  5. Application of CdSe quantum dots for the direct detection of TNT.

    PubMed

    Yi, Kui-Yu

    2016-02-01

    CdSe quantum dots were synthesized through a simple, green organic-phase method. Paraffin was used as the reaction solvent and a reducing agent, oleic acid was the reaction ligand, and oleyl amine was the stabilizer. Based on the phenomenon of TNT quenched oil-soluble CdSe quantum dot fluorescence, a simple, fast, and direct method of TNT detection was established. Under optimum conditions, the degree of fluorescence quenching of oil-soluble CdSe quantum dots had a good linear correlation with TNT concentration in the 1.0×10(-7)-5.0×10(-5) mol/L range, and the correlation coefficient was 0.9990. TNT detection limit was 2.1×10(-8)mol/L. The method was successfully used to determine TNT-explosion dust samples, results were satisfactory. The fluorescence quenching mechanism of oil-soluble CdSe quantum dots by TNT was also discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Direct electrodeposition of gold nanotube arrays of rough and porous wall by cyclic voltammetry and its applications of simultaneous determination of ascorbic acid and uric acid.

    PubMed

    Yang, Guangming; Li, Ling; Jiang, Jinhe; Yang, Yunhui

    2012-08-01

    Gold nanotube arrays of rough and porous wall has been synthesized by direct electrodeposition with cyclic voltammetry utilizing anodic aluminum oxide template (AAO) and polycarbonate membrane (PC) during short time (only 3 min and 2 min, respectively). The mechanism of the direct electrodeposition of gold nanotube arrays by cyclic voltammetry (CV) has been discussed. The morphological characterizations of the gold nanotube arrays have been investigated by scanning electron microscopy (SEM). A simultaneous determination of ascorbic acid (AA) and uric acid (UA) by differential pulse voltammetry (DPV) was constructed by attaching gold nanotube arrays (using AAO) onto the surface of a glassy carbon electrode (GCE). The electrochemical behavior of AA and UA at this modified electrode has been studied by CV and differential pulse voltammetry (DPV). The sensor offers an excellent response for AA and UA and the linear response range for AA and UA were 1.02×10(-7)-5.23×10(-4) mol L(-1) and 1.43×10(-7)-4.64×10(-4) mol L(-1), the detection limits were 1.12×10(-8) mol L(-1) and 2.24×10(-8) mol L(-1), respectively. This sensor shows good regeneration, stability and selectivity and has been used for the determination of AA and UA in real human urine and serum samples with satisfied results. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.

    PubMed

    Teng, Xue; Wang, Jianying; Ji, Lvlv; Lv, Yaokang; Chen, Zuofeng

    2018-05-17

    The design of cost-efficient earth-abundant catalysts with superior performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely important for future renewable energy production. Herein, we report a facile strategy for constructing Ni nanotube arrays (NTAs) on a Ni foam (NF) substrate through cathodic deposition of NiCu alloy followed by anodic stripping of metallic Cu. Based on Ni NTAs, the as-prepared NiSe2 NTA electrode by NiSe2 electrodeposition and the NiFeOx NTA electrode by dipping in Fe3+ solution exhibit excellent HER and OER performance in alkaline conditions. In these systems, Ni NTAs act as a binder-free multifunctional inner layer to support the electrocatalysts, offer a large specific surface area and serve as a fast electron transport pathway. Moreover, an alkaline electrolyzer has been constructed using NiFeOx NTAs as the anode and NiSe2 NTAs as the cathode, which only demands a cell voltage of 1.78 V to deliver a water-splitting current density of 500 mA cm-2, and demonstrates remarkable stability during long-term electrolysis. This work provides an attractive method for the design and fabrication of nanotube array-based catalyst electrodes for highly efficient water-splitting.

  8. Hierarchical NiCo2 S4 Nanotube@NiCo2 S4 Nanosheet Arrays on Ni Foam for High-Performance Supercapacitors.

    PubMed

    Chen, Haichao; Chen, Si; Shao, Hongyan; Li, Chao; Fan, Meiqiang; Chen, Da; Tian, Guanglei; Shu, Kangying

    2016-01-01

    Hierarchical NiCo2 S4 nanotube@NiCo2 S4 nanosheet arrays on Ni foam have been successfully synthesized. Owing to the unique hierarchical structure, enhanced capacitive performance can be attained. A specific capacitance up to 4.38 F cm(-2) is attained at 5 mA cm(-2) , which is much higher than the specific capacitance values of NiCo2 O4 nanosheet arrays, NiCo2 S4 nanosheet arrays and NiCo2 S4 nanotube arrays on Ni foam. The hierarchical NiCo2 S4 nanostructure shows superior cycling stability; after 5000 cycles, the specific capacitance still maintains 3.5 F cm(-2) . In addition, through the morphology and crystal structure measurement after cycling stability test, it is found that the NiCo2 S4 electroactive materials are gradually corroded; however, the NiCo2 S4 phase can still be well-maintained. Our results show that hierarchical NiCo2 S4 nanostructures are suitable electroactive materials for high performance supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mutual recognition of TNT using antibodies polymeric shell having CdS.

    PubMed

    Say, Ridvan; Büyüktiryaki, Sibel; Hür, Deniz; Yilmaz, Filiz; Ersöz, Arzu

    2012-02-15

    Click chemistry is the latest strategy called upon in the development of state of the art exponents of bioconjugation. In this study, we have proposed a covalent and photosensitive crosslinking conjugation of the antibody on nano-structures. For this purpose, quantum dots (QDs) without affecting conformation and function of proteins through the ruthenium-chelate based aminoacid monomer linkages have been applied. The aminoacid-monomer linkages called ANADOLUCA (AmiNoAcid Decorated and Light Underpining Conjugation Approach) give reusable oriented and cross-linked anti 2,4,6-trinitrotoluene (TNT) conjugated QD for TNT detection. In this work, a new and simple method has improved to design and prepare high sensitive nanoconjugates for TNT determination. We have demonstrated the use of luminescent QDs conjugated to antibody for the specific detection of the explosive TNT in aqueous environments. The binding affinity of each nanoconjugates for TNT detection by using Langmuir adsorption methods has also been investigated. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Efficient transposition of the retrotransposon Tnt1 in Cucumber (Cucumis sativus L.)

    USDA-ARS?s Scientific Manuscript database

    The Tnt1 is a type of active DNA retrotransposon originally identified in tobacco. The transposition activity of TNT1 could be activated through tissue culture in other plant species. The insertions of TNT1 in the recipient genome are stable and inheritable in the progeny, which has made it a valuab...

  11. From GaN to ZnGa(2)O(4) through a low-temperature process: nanotube and heterostructure arrays.

    PubMed

    Lu, Ming-Yen; Zhou, Xiang; Chiu, Cheng-Yao; Crawford, Samuel; Gradečak, Silvija

    2014-01-22

    We demonstrate a method to synthesize GaN-ZnGa2O4 core-shell nanowire and ZnGa2O4 nanotube arrays by a low-temperature hydrothermal process using GaN nanowires as templates. Transmission electron microscopy and X-ray photoelectron spectroscopy results show that a ZnGa2O4 shell forms on the surface of GaN nanowires and that the shell thickness is controlled by the time of the hydrothermal process and thus the concentration of Zn ions in the solution. Furthermore, ZnGa2O4 nanotube arrays were obtained by depleting the GaN core from GaN-ZnGa2O4 core-shell nanowire arrays during the reaction and subsequent etching with HCl. The GaN-ZnGa2O4 core-shell nanowires exhibit photoluminescence peaks centered at 2.60 and 2.90 eV attributed to the ZnGa2O4 shell, as well as peaks centered at 3.35 and 3.50 eV corresponding to the GaN core. We also demonstrate the synthesis of GaN-ZnGa2O4 heterojunction nanowires by a selective formation process as a simple route toward development of heterojunction nanodevices for optoelectronic applications.

  12. A Porous Perchlorate-Doped Polypyrrole Nanocoating on Nickel Nanotube Arrays for Stable Wide-Potential-Window Supercapacitors.

    PubMed

    Chen, Gao-Feng; Li, Xian-Xia; Zhang, Li-Yi; Li, Nan; Ma, Tian Yi; Liu, Zhao-Qing

    2016-09-01

    A bottom-up synthetic strategy is developed to fabricate a highly porous wave-superposed perchlorate-doped polypyrrole nanocoating on nickel nanotube arrays. The delicate nanostructure and the unique surface chemistry synergistically endow the obtained electrode with revealable pseudocapacitance, large operating potential window, and excellent cycling stability, which are highly promising for both asymmetric and symmetric supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors.

    PubMed

    Yin, Jiao; Qi, Li; Wang, Hongyu

    2012-05-01

    The lithium-based energy storage technology is currently being considered for electric automotive industry and even electric grid storage. However, the hungry demand for vast energy sources in the modern society will conflict with the shortage of lithium resources on the earth. The first alternative choice may be sodium-related materials. Herein, we propose an electric energy storage system (sodium-ion capacitor) based on porous carbon and sodium titanate nanotubes (Na-TNT, Na(+)-insertion compounds) as positive and negative electrode materials, respectively, in conjunction with Na(+)-containing non-aqueous electrolytes. As a low-voltage (0.1-2 V) sodium insertion nanomaterial, Na-TNT was synthesized via a simple hydrothermal reaction. Compared with bulk sodium titanate, the predominance of Na-TNT is the excellent rate performance, which exactly caters to the need for electrochemical capacitors. The sodium-ion capacitors exhibited desirable energy density and power density (34 Wh kg(-1), 889 W kg(-1)). Furthermore, the sodium-ion capacitors had long cycling life (1000 cycles) and high coulombic efficiency (≈ 98 % after the second cycle). More importantly, the conception of sodium-ion capacitor has been put forward.

  14. Resource recycling technique of abandoned TNT-RDX-AL mixed explosive

    NASA Astrophysics Data System (ADS)

    Chen, Siyang; Ding, Yukui

    2017-08-01

    TNT-RDX-AL mixed explosive is a kind of high energy mixed explosive. It has the detonation characteristics even when reaching the scrapping standard. Inappropriate disposal often causes serious accident. Employing the resource recycling technique, the abandoned TNT-RDX-AL mixed explosive can be recycled. This paper summarized the progress of recycling of abandoned mixed explosive. What's more, three kinds of technological process of resource recycling abandoned TNT-RDX-AL mixed explosives are introduced. The author analysis of the current recovery processes and provided a reference for the recycling of the other same type explosive.

  15. In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance

    NASA Astrophysics Data System (ADS)

    Chen, Haichao; Jiang, Jianjun; Zhang, Li; Xia, Dandan; Zhao, Yuandong; Guo, Danqing; Qi, Tong; Wan, Houzhao

    2014-05-01

    Self-standing NiCo2S4 nanotube arrays have been in situ grown on Ni foam by the anion-exchange reaction and directly used as the electrode for supercapacitors. The NiCo2S4 nanotube in the arrays effectively reduces the inactive material and increases the electroactive surface area because of the ultrathin wall, which is quite competent to achieve high utilization efficiency at high electroactive materials mass loading. The NiCo2S4 nanotube arrays hybrid electrode exhibits an ultrahigh specific capacitance of 14.39 F cm-2 at 5 mA cm-2 with excellent rate performance (67.7% retention for current increases 30 times) and cycling stability (92% retention after 5000 cycles) at a high mass loading of 6 mg cm-2. High areal capacitance (4.68 F cm-2 at 10 mA cm-2), high energy density (31.5 Wh kg-1 at 156.6 W kg-1) and high power density (2348.5 W kg-1 at 16.6 Wh kg-1) can be achieved by assembling asymmetric supercapacitor with reduced graphene oxide at a total active material mass loading as high as 49.5 mg. This work demonstrates that NiCo2S4 nanotube arrays structure is a superior electroactive material for high-performance supercapacitors even at a mass loading of potential application-specific scale.

  16. Exploring aligned-carbon-nanotubes@polyaniline arrays on household Al as supercapacitors.

    PubMed

    Huang, Fan; Lou, Fengliu; Chen, De

    2012-05-01

    Herein, we demonstrate a new approach towards the construction of supercapacitors consisting of carbon nanotubes (CNTs) and conducting polymers (ECPs) with high specific power, high specific energy, and stable cycling performance through a 3D design of a thin film of polyaniline (PANI) on an aligned small carbon nanotube (ACNT) array on household Al foils. The thin-film strategy is used to fully exploit the specific capacitance of PANI, and obtain regular pores, strong interaction between PANI and CNTs, and reduced electrical resistance for the electrodes. A facile process is developed to fabricate a highly flexible supercapacitor using this binder-free composite on household Al foil as the current collector. It exhibits high specific energy of 18.9 Wh kg(-1) , high maximum specific power of 11.3 kW kg(-1) of the active material in an aqueous electrolyte at 1.0 A g(-1) , and excellent rate performance and cycling stability. A high specific energy of 72.4 Wh kg(-1) , a high maximum specific power of 24.9 kW kg(-1) , and a good cycling performance of the active material are obtained in an organic electrolyte. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Efficient fabrication of carbon nanotube micro tip arrays by tailoring cross-stacked carbon nanotube sheets.

    PubMed

    Wei, Yang; Liu, Peng; Zhu, Feng; Jiang, Kaili; Li, Qunqing; Fan, Shoushan

    2012-04-11

    Carbon nanotube (CNT) micro tip arrays with hairpin structures on patterned silicon wafers were efficiently fabricated by tailoring the cross-stacked CNT sheet with laser. A blade-like structure was formed at the laser-cut edges of the CNT sheet. CNT field emitters, pulled out from the end of the hairpin by an adhesive tape, can provide 150 μA intrinsic emission currents with low beam noise. The nice field emission is ascribed to the Joule-heating-induced desorption of the emitter surface by the hairpin structure, the high temperature annealing effect, and the surface morphology. The CNT emitters with hairpin structures will greatly promote the applications of CNTs in vacuum electronic devices and hold the promises to be used as the hot tips for thermochemical nanolithography. More CNT-based structures and devices can be fabricated on a large scale by this versatile method. © 2012 American Chemical Society

  18. An NQR Study of TNT Characteristics.

    DTIC Science & Technology

    1977-09-01

    RDX , HMX , a r d some of t he heavy me t al 3~~: id~.s h~~’n for rn.nn ye.~rs been use d as rn~~lit~~ry nii p lns i n’t-~~~~, Thr p h y s i c a l...ambient temperatures of more than one coexisting crystal phase. This polymorphism is known to occur in TNT , HMX and PbN3, and is responsible for a...specific problems of TNT polymorphism and phase transitions were researched . This is one of the problems which is relevant to present day concerns . The

  19. Titania nanotube arrays as interfaces for blood-contacting implantable devices: a study evaluating the nanotopography-associated activation and expression of blood plasma components.

    PubMed

    Smith, Barbara S; Popat, Ketul C

    2012-08-01

    The constant exposure of implantable biomaterials such as titanium and titanium alloys to blood-introducesserious and ongoing concerns regarding poor blood-material interactions. To date, all blood-contacting materials have been shown to initiate immunological events in the form of inflammation, thrombosis, fibrosis and infection; potentially leading to complete implant failure. Material surfaces that provide biomimetic cues such as nanoscale architectures have been shown to elicit improved cellular interaction; and thus, may provide possible solutions for enhancing blood-compatibility. However, limited information exists about the thrombogenicityof nanoscalesurface architectures. In this study, we have evaluated the efficacy of titania nanotube arrays as interfaces for blood contacting devices by investigating the thrombogenic effects using whole blood plasma. Thus, platelet/leukocyte adhesion, activation and interaction, morphology, complement activation, contact activation, platelet release reaction, fibrinogen expression and material cytotoxicity were evaluated to determine the in vitro thrombogenicity. The results presented here indicate a decrease in thrombogenic effects of titania nanotube arrays as compared to biomedical grade titanium after 2 hours of contact with whole blood plasma. This work shows the improved blood-compatibility of titania nanotube arrays, identifying this specific nanoarchitecture as a potentially optimal interface for promoting the long-term success of blood contacting biomaterials.

  20. Reconstruction of TiO2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Xiong, Qinqin; Zheng, Cun; Chi, Hongzhong; Zhang, Jun; Ji, Zhenguo

    2017-02-01

    Construction of electrodes with fast reaction kinetics is of great importance for achieving advanced supercapacitors. Herein we report a facile combined synthetic strategy with atomic layer deposition (ALD) and electrodeposition to rationally fabricate nanotube/nanoflake core/shell arrays. ALD-TiO2 nanotubes are used as the skeleton core for assembly of electrodeposited MnO2-C nanoflake shells forming a core/shell structure. Highly porous architecture and good electrical conductivity are combined in this unique core/shell structure, resulting in fast ion/electron transfer. In tests of electrochemical performance, the TiO2/MnO2-C core/shell arrays are characterized as cathode for asymmetric supecapacitors and exhibit high specific capacitance (880 F g-1 at 2.5 A g-1), excellent rate properties (735 F g-1 at 30 A g-1) and good long-term cycling stability (94.3% capacitance retention after 20 000 cycles). The proposed electrode construction strategy is favorable for fabrication of other advanced supercapacitor electrodes.

  1. Reconstruction of TiO2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrodes.

    PubMed

    Xiong, Qinqin; Zheng, Cun; Chi, Hongzhong; Zhang, Jun; Ji, Zhenguo

    2017-02-03

    Construction of electrodes with fast reaction kinetics is of great importance for achieving advanced supercapacitors. Herein we report a facile combined synthetic strategy with atomic layer deposition (ALD) and electrodeposition to rationally fabricate nanotube/nanoflake core/shell arrays. ALD-TiO 2 nanotubes are used as the skeleton core for assembly of electrodeposited MnO 2 -C nanoflake shells forming a core/shell structure. Highly porous architecture and good electrical conductivity are combined in this unique core/shell structure, resulting in fast ion/electron transfer. In tests of electrochemical performance, the TiO 2 /MnO 2 -C core/shell arrays are characterized as cathode for asymmetric supecapacitors and exhibit high specific capacitance (880 F g -1 at 2.5 A g -1 ), excellent rate properties (735 F g -1 at 30 A g -1 ) and good long-term cycling stability (94.3% capacitance retention after 20 000 cycles). The proposed electrode construction strategy is favorable for fabrication of other advanced supercapacitor electrodes.

  2. Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes.

    PubMed

    Cheng, Jun; Zhang, Meng; Wu, Gai; Wang, Xin; Zhou, Junhu; Cen, Kefa

    2014-06-17

    The photoelectrocatalytic (PEC) reduction of CO2 into high-value chemicals is beneficial in alleviating global warming and advancing a low-carbon economy. In this work, Pt-modified reduced graphene oxide (Pt-RGO) and Pt-modified TiO2 nanotubes (Pt-TNT) were combined as cathode and photoanode catalysts, respectively, to form a PEC reactor for converting CO2 into valuable chemicals. XRD, XPS, TEM, AFM, and SEM were employed to characterize the microstructures of the Pt-RGO and Pt-TNT catalysts. Reduction products, such as C2H5OH and CH3COOH, were obtained from CO2 under band gap illumination and biased voltage. A combined liquid product generation rate (CH3OH, C2H5OH, HCOOH, and CH3COOH) of approximately 600 nmol/(h·cm(2)) was observed. Carbon atom conversion rate reached 1,130 nmol/(h·cm(2)), which were much higher than those achieved using Pt-modified carbon nanotubes and platinum carbon as cathode catalysts.

  3. TNT Prout-Tompkins Kinetics Calibration with PSUADE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wemhoff, A P; Hsieh, H

    2007-04-11

    We used the code PSUADE to calibrate Prout-Tompkins kinetic parameters for pure recrystallized TNT. The calibration was based on ALE3D simulations of a series of One Dimensional Time to Explosion (ODTX) experiments. The resultant kinetic parameters differed from TNT data points with an average error of 28%, which is slightly higher than the value of 23% previously calculated using a two-point optimization. The methodology described here provides a basis for future calibration studies using PSUADE. The files used in the procedure are listed in the Appendix.

  4. Effect of redox potential and pH on TNT transformation in soil-water slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, C.B.; Brannon, J.M.; Hayes, C.A.

    1997-10-01

    The presence of 2,4,6-trinitrotoluene (TNT) and its transformation products in surface soil, the vadose zone, and ground water can present serious environmental problems. This situation is exacerbated because the processes that control the mobility and transformation of TNT are not well understood. The objective of this study was to determine the effects of redox potential (Eh) and pH on the fate and transformation of TNT in soil. An initial investigation of soil components responsible for the observed TNT transformation was also conducted. Laboratory investigations consisted of testing at four separate redox potentials and four pH levels. An 18:1 (water:soil) suspensionmore » spiked with 100 {micro}g/g TNT was used. Results indicated that TNT was unstable under all redox and pH conditions, and was least stable under highly reducing conditions at all four pH values. Greater amounts of TNT were incorporated into soil organic matter under anaerobic than under aerobic conditions. Results of the soil component study indicated that the presence of Fe{sup +2} sorbed to clay surfaces may account for the rapid disappearance of TNT at reduced redox potentials. TNT in ground water moving into areas of intense reduction would not persist for long, but would undergo transformation and binding by soil organic matter.« less

  5. Method of making carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei; Liu, Jun

    2006-03-14

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  6. ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays

    NASA Astrophysics Data System (ADS)

    Meško, Marcel; Ou, Qiongrong; Matsuda, Takafumi; Ishikawa, Tomokazu; Veis, Martin; Antoš, Roman; Ogino, Akihisa; Nagatsu, Masaaki

    2009-06-01

    We report on ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays. We observed a significant reduction of the internal multiple light scattering phenomena, which are characteristic for ZnO micropowders. The microsized grains of the commercially available ZnO:Zn (P 15) were reduced to the nanometre scale by pulsed laser ablation at an oxygen ambient pressure of 10 kPa. Our investigations show no crystalline change and no shift of the broad green emission peak at 500 nm for the ZnO nanopowder. For the application in field emission displays, we demonstrate the possibility of achieving cathodoluminescence with a fine pitch size of 100 µm of the patterned pixels without requiring additional electron beam focusing and without a black matrix. Moreover, the presented results show the feasibility of employing ZnO nanopowder as a detection material for the phosphorus screen method, which is able to localize emission sites of carbon nanotube films and arrays with an accuracy comparable to scanning anode field emission microscopy.

  7. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment.

    PubMed

    Yang, Yang; Kao, Li Cheng; Liu, Yuanyue; Sun, Ke; Yu, Hongtao; Guo, Jinghua; Liou, Sofia Ya Hsuan; Hoffmann, Michael R

    2018-05-04

    TiO 2 has long been recognized as a stable and reusable photocatalyst for water splitting and pollution control. However, it is an inefficient anode material in the absence of photoactivation due to its low electron conductivity. To overcome this limitation, a series of conductive TiO 2 nanotube array electrodes have been developed. Even though nanotube arrays are effective for electrochemical oxidation initially, deactivation is often observed within a few hours. To overcome the problem of deactivation, we have synthesized cobalt-doped Black-TiO 2 nanotube array (Co-Black NTA) electrodes that are stable for more than 200 h of continuous operation in a NaClO 4 electrolyte at 10 mA cm -2 . Using X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, electron paramagnetic resonance spectroscopy, and DFT simulations, we are able to show that bulk oxygen vacancies (O v ) are the primary source of the enhanced conductivity of Co-Black. Cobalt doping both creates and stabilizes surficial oxygen vacancies, O v , and thus prevents surface passivation. The Co-Black electrodes outperform dimensionally stable IrO 2 anodes (DSA) in the electrolytic oxidation of organic-rich wastewater. Increasing the loading of Co leads to the formation of a CoO x film on top of Co-Black electrode. The CoO x /Co-Black composite electrode was found to have a lower OER overpotential (352 mV) in comparison to a DSA IrO 2 (434 mV) electrode and a stability that is greater than 200 h in a 1.0 M KOH electrolyte at a current density of 10 mA cm -2 .

  8. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

    PubMed

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-12-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

  9. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment

    PubMed Central

    2018-01-01

    TiO2 has long been recognized as a stable and reusable photocatalyst for water splitting and pollution control. However, it is an inefficient anode material in the absence of photoactivation due to its low electron conductivity. To overcome this limitation, a series of conductive TiO2 nanotube array electrodes have been developed. Even though nanotube arrays are effective for electrochemical oxidation initially, deactivation is often observed within a few hours. To overcome the problem of deactivation, we have synthesized cobalt-doped Black-TiO2 nanotube array (Co-Black NTA) electrodes that are stable for more than 200 h of continuous operation in a NaClO4 electrolyte at 10 mA cm–2. Using X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, electron paramagnetic resonance spectroscopy, and DFT simulations, we are able to show that bulk oxygen vacancies (Ov) are the primary source of the enhanced conductivity of Co-Black. Cobalt doping both creates and stabilizes surficial oxygen vacancies, Ov, and thus prevents surface passivation. The Co-Black electrodes outperform dimensionally stable IrO2 anodes (DSA) in the electrolytic oxidation of organic-rich wastewater. Increasing the loading of Co leads to the formation of a CoOx film on top of Co-Black electrode. The CoOx/Co-Black composite electrode was found to have a lower OER overpotential (352 mV) in comparison to a DSA IrO2 (434 mV) electrode and a stability that is greater than 200 h in a 1.0 M KOH electrolyte at a current density of 10 mA cm–2. PMID:29755829

  10. Control of Carbon Nanotube Density and Tower Height in an Array

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    A method for controlling density or tower height of carbon nanotube (CNT) arrays grown in spaced apart first and second regions on a substrate. CNTs having a first density range (or first tower height range) are grown in the first region using a first source temperature range for growth. Subsequently or simultaneously, CNTs having a second density range (or second tower height range), having an average density (or average tower height) in the second region different from the average density (or average tower height) for the first region, are grown in the second region, using supplemental localized hearing for the second region. Application for thermal dissipation and/or dissipation of electrical charge or voltage in an electronic device are discussed.

  11. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube-CTC chip

    NASA Astrophysics Data System (ADS)

    Khosravi, Farhad; Trainor, Patrick J.; Lambert, Christopher; Kloecker, Goetz; Wickstrom, Eric; Rai, Shesh N.; Panchapakesan, Balaji

    2016-11-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in blood using nanotube-antibody micro-arrays. 76-element single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (anti-EpCAM), Anti-human epithelial growth factor receptor 2 (anti-Her2) and non-specific IgG antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester. Following device functionalization, blood spiked with SKBR3, MCF7 and MCF10A cells (100/1000 cells per 5 μl per device, 170 elements totaling 0.85 ml of whole blood) were adsorbed on to the nanotube device arrays. Electrical signatures were recorded from each device to screen the samples for differences in interaction (specific or non-specific) between samples and devices. A zone classification scheme enabled the classification of all 170 elements in a single map. A kernel-based statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping series to classify device electrical signals that corresponded to plain blood (control) or SKBR3 spiked blood (case) on anti-Her2 functionalized devices with ˜90% sensitivity, and 90% specificity in capture of 1000 SKBR3 breast cancer cells in blood using anti-Her2 functionalized devices. Screened devices that gave positive electrical signatures were confirmed using optical/confocal microscopy to hold spiked cancer cells. Confocal microscopic analysis of devices that were classified to hold spiked blood based on their electrical signatures confirmed the presence of cancer cells through staining for DAPI (nuclei), cytokeratin (cancer cells) and CD45 (hematologic cells) with single cell sensitivity. We report 55%-100% cancer cell capture yield depending on the active device area for blood adsorption with mean of 62% (˜12 500 captured off 20 000 spiked cells in 0.1 ml

  12. PREFACE: TNT 2004: Trends in Nanotechnology

    NASA Astrophysics Data System (ADS)

    Correia, Antonio; Serena, Pedro A.; Saenz, Juan Jose; Welland, Mark; Reifenberger, Ron

    2005-05-01

    This special issue of Nanotechnology presents representative contributions describing the main topics covered at the fifth `Trends in Nanotechnology' (TNT2004) international conference, held in Segovia, Spain, 13-17 September 2004. During the past few years many international or regional conferences have emerged in response to the growing awareness of the importance of nanotechnology as a key issue for the future of scientific and technological development. Among these, the conference series `Trends in Nanotechnology' (Toledo, Spain, 2000; Segovia, Spain, 2001; Santiago de Compostela, Spain, 2002; Salamanca, Spain, 2003; and Segovia, Spain, 2004) has become one of the most important meeting points in the nanotechnology field: it provides fresh ideas, brings together well-known speakers, and promotes a suitable environment for discussions, exchanging ideas, and enhancing scientific and personal relations among participants. TNT2004 was organized in a similar way to the four previous TNT conferences, with an impressive scientific programme, without parallel sessions, covering a wide spectrum of nanotechnology research. In 2004, more than 370 scientists worldwide attended this event and contributed more than 80 talks, 236 posters, and stimulating discussions about their most recent research. The aim of the conference was to focus on the applications of nanotechnology and to bring together, in a scientific forum, various worldwide groups belonging to industry, universities and government institutions. TNT2004 was particularly effective at transmitting information and establishing contacts among workers in this field. Graduate students attending such conferences understand the importance of interdisciplinary skills in facilitating their future lines of research. Sixty-four graduate students received a grant (from NASA, ONRIFO, IRC, iNANO, SME, NSERC/CRSNG, EU PHANTOMS Network or TNT) allowing them to present their work. During this event, 22 prizes for the best posters

  13. Editorial: Trends in Nanotechnology (TNT2005)

    NASA Astrophysics Data System (ADS)

    Correia, Antonio; Serena, Pedro A.; José Saenz, Juan; Reifenberger, Ron; Ordejón, Pablo

    2006-05-01

    This special issue of physica status solidi (a) presents representative contributions describing the main topics covered at the sixth Trends in Nanotechnology (TNT2005) International Conference, held in Oviedo (Spain), 29 August-2 September 2005.During the last years many international or national conferences have emerged in response to the growing awareness of the importance of nanotechnology as key issue for the future scientific and technological development. Among these, the conference series Trends in Nanotechnology has become one of the most important meeting points in the nanotechnology field: it provides fresh organisation ideas, brings together well known speakers, and promotes a suitable environment for discussions, exchanging ideas, enhancing scientific and personal relations among participants. TNT2005 was organised in a similar way to the five prior TNT conferences, with an impressive scientific programme including 40 Keynote lectures and two Nobel prizes, without parallel sessions, covering a wide spectrum of Nanotechnology research. In 2005, more than 360 scientists worldwide attended this event and contributed with more than 60 oral contributions and 250 posters, stimulating discussions about their most recent research.The aim of the conference was to focus on the applications of Nanotechnology and to bring together, in a scientific forum, various worldwide groups belonging to industry, universities and government institutions. TNT2005 was particularly effective at transmitting information and establishing contacts among workers in this field. Graduate students attending such conferences have understood the importance of interdisciplinary skills to afford their future research lines. 76 graduate students received a grant allowing them to present their work. 28 prizes to the best posters were awarded during this event. We would like to thank all the participants for their assistance, as well as the authors for their written contributions.TNT2005 is

  14. Novel titanate nanotubes-cyanocobalamin materials: Synthesis and enhanced photocatalytic properties for pollutants removal

    NASA Astrophysics Data System (ADS)

    Silva, T. A.; Diniz, J.; Paixão, L.; Vieira, B.; Barrocas, B.; Nunes, C. D.; Monteiro, O. C.

    2017-01-01

    New hybrid nanomaterials, with improved photocatalytic performance in pollutants removal, were obtained through the modification of titanate nanotubes (TNT) with a cobalt porphyrin, the cyanocobalamin, also knowing as vitamin B12 (B12). The nanocrystalline TNT were produced by hydrothermal treatment and after treated with cobalamin to produce B12-TNT materials. The characterization of the new hybrid material was performed by XRD, FTIR, TEM-EDS, DRS, XPS and ICP. The results show that the immobilization of the cobalt containing specie is dependent on the point of zero charge of the TNT and no modifications on the structure and morphology were observed. No significant changes in the optical band gap were observed after B12 incorporation, but an increasing in the visible light absorption, which arises from charge transfer and d-d transitions of the cobalt, was visualized. The samples photocatalytic performance was studied for the hydroxyl radical production and the highest catalytic ability was achieved by the B12-HTNT sample. The catalytic ability of these new hybrid nanomaterials for two model pollutants photodegradation, phenol and rhodamine B (RhB) was investigated. For both pollutants, the best results were achieved using B12-HTNT with a removal of 94% of a 10 ppm RhB and 87% of a 20 ppm phenol solution in 90 min of irradiation (150 mL, 0.2 g catalyst/L).

  15. Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations.

    PubMed

    Bao, Hua; Ruan, Xiulin; Fisher, Timothy S

    2010-03-15

    A finite-difference time-domain (FDTD) method is used to model thermal radiative properties of vertical arrays of multi-walled carbon nanotubes (MWCNT). Individual CNTs are treated as solid circular cylinders with an effective dielectric tensor. Consistent with experiments, the results confirm that CNT arrays are highly absorptive. Compared with the commonly used Maxwell-Garnett theory, the FDTD calculations generally predict larger reflectance and absorbance, and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, tube distance, and incident angle on radiative properties are investigated systematically. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorbance. For a fixed volume fraction and finite tube length, larger periodicity results in larger reflectance and absorbance. The angular dependence studies reveal an optimum incident angle at which the reflectance can be minimized. The results also suggest that an even darker material could be achieved by using CNTs with good alignment on the top surface.

  16. Field Demonstration of Acetone Pretreatment and Composting of Particulate-TNT-Contaminated Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radtke, Corey William; Smith, D.; Owen, S.

    2002-02-01

    Solid fragments of explosives in soil are common in explosives testing and training areas. In this study we initially sieved the upper 6 in of contaminated soil through a 3-mm mesh, and found 2, 4, 6-trinitrotoluene (TNT) fragments. These contributed to an estimated concentration of 1.7 kg per cubic yard soil, or for 2000 ppm TNT in the soil. Most of the fragments ranged 4 mm to 10 mm diameter in size, but explosives particles weighing up to 56 g (about 4 cm diameter) were frequently observed. An acetone pretreatment/composting system was then demonstrated at field scale. The amount ofmore » acetone required for a TNT-dissolving slurry process was controlled by the viscosity of the soil/acetone mix rather than the TNT dissolution rate. The amount needed was estimated at about 55 gallons acetone per cubic yard soil. Smaller, 5- to 10-mm-diameter fragments went into solution in less than 15 min at a mixer speed of 36 rpm, with a minimum of 2 g TNT going into solution per 30 min for the larger chunks. The slurries were than mixed with compost starting materials and composted in a vented 1 yd3 container. After 34 days incubation time TNT was below the site-specific regulatory threshold of 44 ppm. TNT metabolites and acetone were also below their regulatory thresholds established for the site.« less

  17. Charcoal Regeneration. Part 1. Mechanism of TNT Adsorption

    DTIC Science & Technology

    1977-11-01

    cycle and particle size 29 6 Electron spectra of virgin FS300 as received 30 ii=_ 7 Electron spectrum of TNT standard 31 8 Electron spectrum of TNT in...ground in a mortar and pestle and passed through a series of US standard sieves. The ground charcoal passing through a 325 sieve (average particle...every case were crushed manually in a mortar and pestle and dis- persed ultrasonically in order to obtain a dispersion suitable for measurement. Mass

  18. Normal mode analysis of isotopic shifts in Raman spectrum of TNT-d5

    NASA Astrophysics Data System (ADS)

    Liu, Yuemin; Tzeng, Nianfeng; Liu, Yucheng; Junk, Thomas

    2017-09-01

    A combined experimental-computational study was conducted on the Raman spectrum of TNT-d5 in the present study. It was found that among the 24 hybrid density functional theory (DFT) methods, O3LYP, tHCTHhyb, and B3LYP simulations yielded the strongest Raman bands which were closest to those measured from experiments. Simulations of hybrid DFT methods did not show that deuterium replacements alter orientations of 2- and 6-nitro with respect to phenyl ring, considering a larger size of the methyl group. However, the deuterium replacements apparently changed the reduced masses for all deuterium related vibrations. Although no difference of structural parameters was shown between TNT and its deuterated analogue, discrepancy was indicated in vibrational zero energy from our simulations. O3LYP simulation exhibited 24 deuterium involved vibrations, which were coupled into seven Raman bands of TNT-d5. This phenomenon can account for the experimental Raman band shifts or split of TNT-d5 when compared with the corresponding bands of TNT. The present study and its outcomes provide in-depth microchemical insights of Raman characteristics of TNT and may facilitate the design of nano-structures of SERS substrates for detection of TNT and its degradation products. All intensities displayed in this study were calculated from numerical simulations.

  19. Gas composition sensing using carbon nanotube arrays

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Meyyappan, Meyya (Inventor)

    2008-01-01

    A method and system for estimating one, two or more unknown components in a gas. A first array of spaced apart carbon nanotubes (''CNTs'') is connected to a variable pulse voltage source at a first end of at least one of the CNTs. A second end of the at least one CNT is provided with a relatively sharp tip and is located at a distance within a selected range of a constant voltage plate. A sequence of voltage pulses {V(t.sub.n)}.sub.n at times t=t.sub.n (n=1, . . . , N1; N1.gtoreq.3) is applied to the at least one CNT, and a pulse discharge breakdown threshold voltage is estimated for one or more gas components, from an analysis of a curve I(t.sub.n) for current or a curve e(t.sub.n) for electric charge transported from the at least one CNT to the constant voltage plate. Each estimated pulse discharge breakdown threshold voltage is compared with known threshold voltages for candidate gas components to estimate whether at least one candidate gas component is present in the gas. The procedure can be repeated at higher pulse voltages to estimate a pulse discharge breakdown threshold voltage for a second component present in the gas.

  20. TNT removal from culture media by three commonly available wild plants growing in the Caribbean.

    PubMed

    Correa-Torres, Sandra N; Pacheco-Londoño, Leonardo C; Espinosa-Fuentes, Eduardo A; Rodríguez, Lolita; Souto-Bachiller, Fernando A; Hernández-Rivera, Samuel P

    2012-01-01

    Plants growing in the Caribbean, Rubia tinctorum, Lippia dulcis and Spermacoce remota, were used in vitro to remove TNT from culture media. Plants were found to be resistant to high TNT levels. S. remota was able to remove TNT in less than 48 h. Part of the TNT was physically removed from the culture media by evaporation.

  1. Synthesis and magnetotransport studies of CrO2 films grown on TiO2 nanotube arrays by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Zhang, Caiping; Wang, Lu; Lin, Tao; Wen, Gehui

    2018-04-01

    The CrO2 films have been prepared on the TiO2 nanotube array template via atmospheric pressure chemical vapor deposition method. And the growth procedure was studied. In the beginning of the deposition process, the CrO2 grows on the cross section of the TiO2 nanotubes wall, forms a nanonet-like layer. And the grain size of CrO2 is very small. With the increase of the deposition time, the grain size of CrO2 also increases, and the nanonet-like layer changes into porous film. With the further increase of the deposition time, all the nanotubes are covered by CrO2 grains and the surface structure becomes polycrystalline film. The average grain size on the surface of the CrO2 films deposited for 1 h, 2 h and 5 h is about 190 nm, 300 nm and 470 nm. The X-ray diffraction pattern reveals that the rutile CrO2 film has been synthesized on the TiO2 nanotube array template. The CrO2 films show large magnetoresistance (MR) at low temperature, which should originate from spin-dependent tunneling through grain boundaries between CrO2 grains. And the tunneling mechanism of the CrO2 films can be well described by the fluctuation-induced tunneling (FIT) model. The CrO2 film deposited for 2 h shows insulator behavior from 5 k to 300 K, but the CrO2 film deposited for 5 h shows insulator-metal transition around 140 K. The reason is briefly discussed.

  2. PHYTOTREATMENT OF TNT-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Phytoremediation is a viable technique for treating nitroaromatic compounds, particularly munitions. Continuous flow phyto-reactor studies were conducted at the following three influent concentrations of 2,4,6-trinitrotoluene (TNT): 1,5, and 10 ppm. A control was also prepared wi...

  3. PHYTOTREATMENT OF TNT CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Phytoremediation is a viable technique for treating nitroaromatic compounds, particularly munitions. Continuous flow phytoreactor studies were conducted at the following three influent concentrations of 2,4,6-trinitrotoluene (TNT): 1, 5, and 10 ppm. A control was also prepared wi...

  4. Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Grote, Fabian; Wen, Liaoyong; Lei, Yong

    2014-06-01

    Large-scale arrays of core/shell nanostructures are highly desirable to enhance the performance of supercapacitors. Here we demonstrate an innovative template-based fabrication technique with high structural controllability, which is capable of synthesizing well-ordered three-dimensional arrays of SnO2/MnO2 core/shell nanotubes for electrochemical energy storage in supercapacitor applications. The SnO2 core is fabricated by atomic layer deposition and provides a highly electrical conductive matrix. Subsequently a thin MnO2 shell is coated by electrochemical deposition onto the SnO2 core, which guarantees a short ion diffusion length within the shell. The core/shell structure shows an excellent electrochemical performance with a high specific capacitance of 910 F g-1 at 1 A g-1 and a good rate capability of remaining 217 F g-1 at 50 A g-1. These results shall pave the way to realize aqueous based asymmetric supercapacitors with high specific power and high specific energy.

  5. Microwave purification of large-area horizontally aligned arrays of single-walled carbon nanotubes.

    PubMed

    Xie, Xu; Jin, Sung Hun; Wahab, Muhammad A; Islam, Ahmad E; Zhang, Chenxi; Du, Frank; Seabron, Eric; Lu, Tianjian; Dunham, Simon N; Cheong, Hou In; Tu, Yen-Chu; Guo, Zhilin; Chung, Ha Uk; Li, Yuhang; Liu, Yuhao; Lee, Jong-Ho; Song, Jizhou; Huang, Yonggang; Alam, Muhammad A; Wilson, William L; Rogers, John A

    2014-11-12

    Recent progress in the field of single-walled carbon nanotubes (SWNTs) significantly enhances the potential for practical use of this remarkable class of material in advanced electronic and sensor devices. One of the most daunting challenges is in creating large-area, perfectly aligned arrays of purely semiconducting SWNTs (s-SWNTs). Here we introduce a simple, scalable, large-area scheme that achieves this goal through microwave irradiation of aligned SWNTs grown on quartz substrates. Microstrip dipole antennas of low work-function metals concentrate the microwaves and selectively couple them into only the metallic SWNTs (m-SWNTs). The result allows for complete removal of all m-SWNTs, as revealed through systematic experimental and computational studies of the process. As one demonstration of the effectiveness, implementing this method on large arrays consisting of ~20,000 SWNTs completely removes all of the m-SWNTs (~7,000) to yield a purity of s-SWNTs that corresponds, quantitatively, to at least to 99.9925% and likely significantly higher.

  6. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation.

    PubMed

    Wang, An-Liang; Xu, Han; Feng, Jin-Xian; Ding, Liang-Xin; Tong, Ye-Xiang; Li, Gao-Ren

    2013-07-24

    Low cost, high activity, and long-term durability are the main requirements for commercializing fuel cell electrocatalysts. Despite tremendous efforts, developing non-Pt anode electrocatalysts with high activity and long-term durability at low cost remains a significant technical challenge. Here we report a new type of hybrid Pd/PANI/Pd sandwich-structured nanotube array (SNTA) to exploit shape effects and synergistic effects of Pd-PANI composites for the oxidation of small organic molecules for direct alcohol fuel cells. These synthesized Pd/PANI/Pd SNTAs exhibit significantly improved electrocatalytic activity and durability compared with Pd NTAs and commercial Pd/C catalysts. The unique SNTAs provide fast transport and short diffusion paths for electroactive species and high utilization rate of catalysts. Besides the merits of nanotube arrays, the improved electrocatalytic activity and durability are especially attributed to the special Pd/PANI/Pd sandwich-like nanostructures, which results in electron delocalization between Pd d orbitals and PANI π-conjugated ligands and in electron transfer from Pd to PANI.

  7. Preparation and UV-Vis photodegradation of gaseous benzene by TiO2 nanotube arrays supporting V2O5 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Chunxia; Song, Yanbao; Yang, Yunxia; Chen, Wen; Li, Xiaoyu; Wang, Zongsheng

    2015-07-01

    TiO2-based catalysts effective in visible radiation for eliminating organic pollutants have attracted intense research activity as a future generation photocatalytic material. However, recombination of electron-hole pairs through trapping/de-trapping as well as the disadvantages of recycling and separation/filtration of powders lead to the limitation of powder TiO2 materials. TiO2 nanotube array films supporting vanadium pentoxide nanoparticles (VTNTs) were synthesized by electrophoresis deposition method with the prepared TiO2 nanotube arrays as the cathode and V2O5 sol as the electrolyte. The results indicate that the formation of Ti-O-V bonds and intimate interaction between host-guest interfaces help to enhance the hybrids’ photodegradation activity of gaseous benzene. Importantly, hybrid film catalysts prepared with 0.05 mol/L V2O5 sol for 10 min electrophoresis deposition perform a 98% conversion rate of benzene and 1028.8 mg/m3CO2 production in 80 min under UV-Vis irradiation.

  8. Gas Sensitivity and Sensing Mechanism Studies on Au-Doped TiO2 Nanotube Arrays for Detecting SF6 Decomposed Components

    PubMed Central

    Zhang, Xiaoxing; Yu, Lei; Tie, Jing; Dong, Xingchen

    2014-01-01

    The analysis to SF6 decomposed component gases is an efficient diagnostic approach to detect the partial discharge in gas-insulated switchgear (GIS) for the purpose of accessing the operating state of power equipment. This paper applied the Au-doped TiO2 nanotube array sensor (Au-TiO2 NTAs) to detect SF6 decomposed components. The electrochemical constant potential method was adopted in the Au-TiO2 NTAs' fabrication, and a series of experiments were conducted to test the characteristic SF6 decomposed gases for a thorough investigation of sensing performances. The sensing characteristic curves of intrinsic and Au-doped TiO2 NTAs were compared to study the mechanism of the gas sensing response. The results indicated that the doped Au could change the TiO2 nanotube arrays' performances of gas sensing selectivity in SF6 decomposed components, as well as reducing the working temperature of TiO2 NTAs. PMID:25330053

  9. The possible reduction pathways of 2,4,6-trinitrotoluene (TNT) by sulfide under simulated anaerobic conditions.

    PubMed

    Qiao, Hua; Feng, Hua-jun; Liu, Shao-ying; Wang, Chao-jun; Zhang, Yuan; Gao, Yan-ni; Li, Wen-bing; Yao, Jun; Wang, Mei-zhen; Shen, Dong-sheng

    2011-01-01

    To predict the final fate of 2,4,6-trinitrotoluene (TNT) and its intermediates in an anaerobic fermentative solution containing reduced sulfur species and to provide a basis for the adoption of remediation methods, we investigated the pathways of TNT (TNT(0) = 50 mg/L) reduction by Na(2)S at 30 ± 1 °C in an acetic acid-sodium bicarbonate buffer. Liquid chromatography/mass spectrometry (LC/MS) was used to identify TNT metabolites at different reaction times. The law of growth and decline of TNT and its metabolites was determined with time. The LC/MS result, combined with the physicochemical characteristics of related products and information from the literature, indicated possible TNT conversion pathways. Sulfide can initiate both nitroreduction and denitration of TNT simultaneously. Nitroreduction led to the accumulation of primary intermediates 4-hydroxylaminodinitrotoluene and 4-aminodinitrotoluene, whereas denitration resulted in the production of unidentified substances with molecular weight less than that of TNT. Also, polyreaction between the above intermediates formed many unidentified substances. Humification was concluded to be the best choice for remediation of TNT-contaminated soil and water due to the formation of intermediates with stable, intact aromatic systems. However, the denitration pathway of TNT offered the possibility of mineralization.

  10. Magnetic, electronic, optical, and photocatalytic properties of nonmetal- and halogen-doped anatase TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Fadlallah, M. M.

    2017-05-01

    The structure stability, magnetic, electronic, optical, and photocatalytic properties of nonmetal (B, C, N, P, and S), and halogen (F, Cl, Br, and I)-doped anatase TiO2 nanotubes (TNTs) have been investigated using spin polarized density functional theory. The N- and F-doped TNTs are the most stable among other doped TNTs. It is found that the magnetic moment of doped TNT is the difference between the number of the valence electrons of the dopant and host anion. All dopants decrease the band gap of TNT. The decrease in the band gap of nonmetal (C, N, P, and S)-doped TNTs, in particular N and P, is larger than that of halogen-doped TNTs due to the created states of the nonmetal dopant in the band gap. There is a good agreement between the calculation results and the experimental observations. Even though C-, N-, and P-doped TNTs have the lowest band gap, they cannot be used as a photocatalysis for water splitting. The B-, S-, and I-doped TiO2 nanotubes are of great potential as candidates for water splitting in the visible light range.

  11. Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor.

    PubMed

    Cizek, Karel; Prior, Chad; Thammakhet, Chongdee; Galik, Michal; Linker, Kevin; Tsui, Ray; Cagan, Avi; Wake, John; La Belle, Jeff; Wang, Joseph

    2010-02-19

    This article reports on an integrated explosive-preconcentration/electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. The challenges involved in such system integration are discussed. A hydrogel-coated screen-printed electrode is used for the detection of the thermally desorbed TNT from a preconcentration device using rapid square wave voltammetry. Optimization of the preconcentration system for desorption of TNT and subsequent electrochemical detection was conducted yielding a desorption temperature of 120 degrees C under a flow rate of 500 mL min(-1). Such conditions resulted in a characteristic electrochemical signal for TNT representing the multi-step reduction process. Quantitative measurements produced a linear signal dependence on TNT quantity exposed to the preconcentrator from 0.25 to 10 microg. Finally, the integrated device was successfully demonstrated using a sample of solid TNT located upstream of the preconcentrator. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Fusing chlorophyll fluorescence and plant canopy reflectance to detect TNT contamination in soils

    NASA Astrophysics Data System (ADS)

    Naumann, Julie C.; Rubis, Kathryn; Young, Donald R.

    2010-04-01

    TNT is released into the soil from many different sources, especially from military and mining activities, including buried land mines. Vegetation may absorb explosive residuals, causing stress and by understanding how plants respond to energetic compounds, we may be able to develop non-invasive techniques to detect soil contamination. The objectives of our study were to examine the physiological response of plants grown in TNT contaminated soils and to use remote sensing methods to detect uptake in plant leaves and canopies in both laboratory and field studies. Differences in physiology and light-adapted fluorescence were apparent in laboratory plants grown in N enriched soils and when compared with plants grown in TNT contaminated soils. Several reflectance indices were able to detect TNT contamination prior to visible signs of stress, including the fluorescence-derived indices, R740/R850 and R735/R850, which may be attributed to transformation and conjugation of TNT metabolites with other compounds. Field studies at the Duck, NC Field Research Facility revealed differences in physiological stress measures, and leaf and canopy reflectance when plants growing over suspected buried UXOs were compared with reference plants. Multiple reflectance indices indicated stress at the suspected contaminated sites, including R740/R850 and R735/R850. Under natural conditions of constant leaching of TNT into the soil, TNT uptake would be continuous in plants, potentially creating a distinct signature from remotely sensed vegetation. We may be able to use remote sensing of plant canopies to detect TNT soil contamination prior to visible signs.

  13. Improved TNT detoxification by starch addition in a nitrogen-fixing Methylophilus-dominant aerobic microbial consortium.

    PubMed

    Khan, Muhammad Imran; Lee, Jaejin; Yoo, Keunje; Kim, Seonghoon; Park, Joonhong

    2015-12-30

    In this study, a novel aerobic microbial consortium for the complete detoxification of 2,4,6-trinitrotoluene (TNT) was developed using starch as a slow-releasing carbon source under nitrogen-fixing conditions. Aerobic TNT biodegradation coupled with microbial growth was effectively stimulated by the co-addition of starch and TNT under nitrogen-fixing conditions. The addition of starch with TNT led to TNT mineralization via ring cleavage without accumulation of any toxic by-products, indicating improved TNT detoxification by the co-addition of starch and TNT. Pyrosequencing targeting the bacterial 16S rRNA gene suggested that Methylophilus and Pseudoxanthomonas population were significantly stimulated by the co-addition of starch and TNT and that the Methylophilus population became predominant in the consortium. Together with our previous study regarding starch-stimulated RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) degradation (Khan et al., J. Hazard. Mater. 287 (2015) 243-251), this work suggests that the co-addition of starch with a target explosive is an effective way to stimulate aerobic explosive degradation under nitrogen-fixing conditions for enhancing explosive detoxification. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors.

    PubMed

    Kocabas, Coskun; Hur, Seung-Hyun; Gaur, Anshu; Meitl, Matthew A; Shim, Moonsub; Rogers, John A

    2005-11-01

    A convenient process for generating large-scale, horizontally aligned arrays of pristine, single-walled carbon nanotubes (SWNTs) is described. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on miscut single-crystal quartz substrates. Studies of the growth reveal important relationships between the density and alignment of the tubes, the CVD conditions, and the morphology of the quartz. Electrodes and dielectrics patterned on top of these arrays yield thin-film transistors that use the SWNTs as effective thin-film semiconductors. The ability to build high-performance devices of this type suggests significant promise for large-scale aligned arrays of SWNTs in electronics, sensors, and other applications.

  15. Graphitic carbon nitride (g-C3N4) coated titanium oxide nanotube arrays with enhanced photo-electrochemical performance.

    PubMed

    Sun, Mingxuan; Fang, Yalin; Kong, Yuanyuan; Sun, Shanfu; Yu, Zhishui; Umar, Ahmad

    2016-08-09

    Herein, we report the successful formation of graphitic carbon nitride coated titanium oxide nanotube array thin films (g-C3N4/TiO2) via the facile thermal treatment of anodized Ti sheets over melamine. The proportion of C3N4 and TiO2 in the composite can be adjusted by changing the initial addition mass of melamine. The as-prepared samples are characterized by several techniques in order to understand the morphological, structural, compositional and optical properties. UV-vis absorption studies exhibit a remarkable red shift for the g-C3N4/TiO2 thin films as compared to the pristine TiO2 nanotubes. Importantly, the prepared composites exhibit an enhanced photocurrent and photo-potential under both UV-vis and visible light irradiation. Moreover, the observed maximum photo-conversion efficiency of the prepared composites is 1.59 times higher than that of the pristine TiO2 nanotubes. The optical and electrochemical impedance spectra analysis reveals that the better photo-electrochemical performance of the g-C3N4/TiO2 nanotubes is mainly due to the wider light absorption and reduced impedance compared to the bare TiO2 nanotube electrode. The presented work demonstrates a facile and simple method to fabricate g-C3N4/TiO2 nanotubes and clearly revealed that the introduction of g-C3N4 is a new and innovative approach to improve the photocurrent and photo-potential efficiencies of TiO2.

  16. Persistence of pentolite (PETN and TNT) in soil microcosms and microbial enrichment cultures.

    PubMed

    Arbeli, Ziv; Garcia-Bonilla, Erika; Pardo, Cindy; Hidalgo, Kelly; Velásquez, Trigal; Peña, Luis; C, Eliana Ramos; Avila-Arias, Helena; Molano-Gonzalez, Nicolás; Brandão, Pedro F B; Roldan, Fabio

    2016-05-01

    Pentolite is a mixture (1:1) of 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN), and little is known about its fate in the environment. This study was aimed to determine the dissipation of pentolite in soils under laboratory conditions. Microcosm experiments conducted with two soils demonstrated that dissipation rate of PETN was significantly slower than that of TNT. Interestingly, the dissipation of PETN was enhanced by the presence of TNT, while PETN did not enhanced the dissipation of TNT. Pentolite dissipation rate was significantly faster under biostimulation treatment (addition of carbon source) in soil from the artificial wetland, while no such stimulation was observed in soil from detonation field. In addition, the dissipation rate of TNT and PETN in soil from artificial wetland under biostimulation was significantly faster than the equivalent abiotic control, although it seems that non-biological processes might also be important for the dissipation of TNT and PETN. Transformation of PETN was also slower during establishment of enrichment culture using pentolite as the sole nitrogen source. In addition, transformation of these explosives was gradually reduced and practically stopped after the forth cultures transfer (80 days). DGGE analysis of bacterial communities from these cultures indicates that all consortia were dominated by bacteria from the order Burkholderiales and Rhodanobacter. In conclusion, our results suggest that PETN might be more persistent than TNT.

  17. Optimization of extraction procedures for ecotoxicity analyses: Use of TNT contaminated soil as a model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunahara, G.I.; Renoux, A.Y.; Dodard, S.

    1995-12-31

    The environmental impact of energetic substances (TNT, RDX, GAP, NC) in soil is being examined using ecotoxicity bioassays. An extraction method was characterized to optimize bioassay assessment of TNT toxicity in different soil types. Using the Microtox{trademark} (Photobacterium phosphoreum) assay and non-extracted samples, TNT was most acutely toxic (IC{sub 50} = 1--9 PPM) followed by RDX and GAP; NC did not show obvious toxicity (probably due to solubility limitations). TNT (in 0.25% DMSO) yielded an IC{sub 50} 0.98 + 0.10 (SD) ppm. The 96h-EC{sub 50} (Selenastrum capricornutum growth inhibition) of TNT (1. 1 ppm) was higher than GAP and RDX;more » NC was not apparently toxic (probably due to solubility limitations). Soil samples (sand or a silt-sand mix) were spiked with either 2,000 or 20,000 mg TNT/kg soil, and were adjusted to 20% moisture. Samples were later mixed with acetonitrile, sonicated, and then treated with CaCl{sub 2} before filtration, HPLC and ecotoxicity analyses. Results indicated that: the recovery of TNT from soil (97.51% {+-} 2.78) was independent of the type of soil or moisture content; CaCl{sub 2} interfered with TNT toxicity and acetonitrile extracts could not be used directly for algal testing. When TNT extracts were diluted to fixed concentrations, similar TNT-induced ecotoxicities were generally observed and suggested that, apart from the expected effects of TNT concentrations in the soil, the soil texture and the moisture effects were minimal. The extraction procedure permits HPLC analyses as well as ecotoxicity testing and minimizes secondary soil matrix effects. Studies will be conducted to study the toxic effects of other energetic substances present in soil using this approach.« less

  18. Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials

    NASA Astrophysics Data System (ADS)

    De Nicola, Francesco; Hines, Peter; De Crescenzi, Maurizio; Motta, Nunzio

    2017-07-01

    Ultrablack metamaterials are artificial materials able to harvest all the incident light regardless of wavelength, angle, or polarization. Here, we show the ultrablack properties of randomly aligned hierarchical carbon nanotube arrays with thicknesses below 200 nm. The thin coatings are realized by solution processing and dry-transfer deposition on different substrates. The hierarchical surface morphology of the coatings is biomimetic and provides a large effective area that improves the film optical absorption. Also, such a morphology is responsible for the moth-eye effect, which leads to the omnidirectional and polarization-independent suppression of optical reflection. The films exhibit an emissivity up to 99.36% typical of an ideal black body, resulting in the thinnest ultrablack metamaterial ever reported. Such a material may be exploited for thermal, optical, and optoelectronic devices such as heat sinks, optical shields, solar cells, light and thermal sensors, and light-emitting diodes.

  19. Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.

    PubMed

    Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong

    2018-06-04

    In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.

  20. Carbon Nanotube Arrays for Intracellular Delivery and Biological Applications

    NASA Astrophysics Data System (ADS)

    Golshadi, Masoud

    Introducing nucleic acids into mammalian cells is a crucial step to elucidate biochemical pathways, modify gene expression in immortalized cells, primary cells, and stem cells, and intoduces new approaches for clinical diagnostics and therapeutics. Current gene transfer technologies, including lipofection, electroporation, and viral delivery, have enabled break-through advances in basic and translational science to enable derivation and programming of embryonic stem cells, advanced gene editing using CRISPR (Clustered regularly interspaced short palindromic repeats), and development of targeted anti-tumor therapy using chimeric antigen receptors in T-cells (CAR-T). Despite these successes, current transfection technologies are time consuming and limited by the inefficient introduction of test molecules into large populations of target cells, and the cytotoxicity of the techniques. Moreover, many cell types cannot be consistently transfected by lipofection or electroporation (stem cells, T-cells) and viral delivery has limitations to the size of experimental DNA that can be packaged. In this dissertation, a novel coverslip-like platform consisting of an array of aligned hollow carbon nanotubes (CNTs) embedded in a sacrificial template is developed that enhances gene transfer capabilities, including high efficiency, low toxicity, in an expanded range of target cells, with the potential to transfer mixed combinations of protein and nucleic acids. The CNT array devices are fabricated by a scalable template-based manufacturing method using commercially available membranes, eliminating the need for nano-assembly. High efficient transfection has been demonstrated by delivering various cargos (nanoparticles, dye and plasmid DNA) into populations of cells, achieving 85% efficiency of plasmid DNA delivery into immortalized cells. Moreover, the CNT-mediated transfection of stem cells shows 3 times higher efficiency compared to current lipofection methods. Evaluating the cell

  1. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes.

    PubMed

    Cruz-Silva, Eduardo; Cullen, David A; Gu, Lin; Romo-Herrera, Jose Manuel; Muñoz-Sandoval, Emilio; López-Urías, Florentino; Sumpter, Bobby G; Meunier, Vincent; Charlier, Jean-Christophe; Smith, David J; Terrones, Humberto; Terrones, Mauricio

    2008-03-01

    Arrays of multiwalled carbon nanotubes doped with phosphorus (P) and nitrogen (N) are synthesized using a solution of ferrocene, triphenyl-phosphine, and benzylamine in conjunction with spray pyrolysis. We demonstrate that iron phosphide (Fe(3)P) nanoparticles act as catalysts during nanotube growth, leading to the formation of novel PN-doped multiwalled carbon nanotubes. The samples were examined by high resolution electron microscopy and microanalysis techniques, and their chemical stability was explored by means of thermogravimetric analysis in the presence of oxygen. The PN-doped structures reveal important morphology and chemical changes when compared to N-doped nanotubes. These types of heterodoped nanotubes are predicted to offer many new opportunities in the fabrication of fast-response chemical sensors.

  2. Fabrication of ordered metallic glass nanotube arrays for label-free biosensing with diffractive reflectance.

    PubMed

    Chen, Wei-Ting; Li, Shao-Sian; Chu, Jinn P; Feng, Kuei Chih; Chen, Jem-Kun

    2018-04-15

    In this study, a photoresist template with well-defined contact hole array was fabricated, to which radio frequency magnetron sputtering process was then applied to deposit an alloyed Zr 55 Cu 30 Al 10 Ni 5 target, and finally resulted in ordered metallic glass nanotube (MGNT) arrays after removal of the photoresist template. The thickness of the MGNT walls increased from 98 to 126nm upon increasing the deposition time from 225 to 675s. The wall thickness of the MGNT arrays also increased while the dimensions of MGNT reduced under the same deposition condition. The MGNT could be filled with biomacromolecules to change the effective refractive index. The air fraction of the medium layer were evaluated through static water contact angle measurements and, thereby, the effective refractive indices the transverse magnetic (TM) and transverse electric (TE) polarized modes were calculated. A standard biotin-streptavidin affinity model was tested using the MGNT arrays and the fundamental response of the system was investigated. Results show that filling the MGNT with streptavidin altered the effective refractive index of the layer, the angle of reflectance and color changes identified by an L*a*b* color space and color circle on an a*b* chromaticity diagram. The limit of detection (LOD) of the MGNT arrays for detection of streptavidin was estimated as 25nM, with a detection time of 10min. Thus, the MGNT arrays may be used as a versatile platform for high-sensitive label-free optical biosensing. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. 2,4,6-Trinitrotoluene (TNT)

    Integrated Risk Information System (IRIS)

    2,4,6 - Trinitrotoluene ( TNT ) ; CASRN 118 - 96 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for N

  4. Conformal atomic layer deposition of alumina on millimeter tall, vertically-aligned carbon nanotube arrays.

    PubMed

    Stano, Kelly L; Carroll, Murphy; Padbury, Richard; McCord, Marian; Jur, Jesse S; Bradford, Philip D

    2014-11-12

    Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.

  5. Enhanced electrochemical performance of manganese dioxide spheres deposited on a titanium dioxide nanotube arrays substrate

    NASA Astrophysics Data System (ADS)

    Zhou, He; Zhang, Yanrong

    2014-12-01

    The deposition of MnO2 spheres on a TiO2 nanotube arrays substrate are achieved via a sequential chemical bath deposition (SCBD) method for an application of anode materials in supercapacitors. The electrochemical performance of the MnO2-TiO2 composite electrode is observed to show a strong dependence on the MnO2 loading mass, which could be adjusted by repeating the SCBD treatment for several cycles. The optimized doses of MnO2 loaded MnO2-TiO2 and MnO2-Ti samples are compared in terms of their areal capacitance studies and the former is of 175 and 101 mF cm-2 at a scan rate of 10 and 100 mV s-1, respectively, which are 1.52-fold and 1.51-fold of that of the latter sample at corresponding scan rates. The enhancement in areal capacitance has been accounted to the progressive effect of the TiO2 tubular substrate on the capacitive behavior of the loaded MnO2 rather than the different MnO2 loading mass on these two substrates. Impedance analysis reveals this enhanced electrochemical activity is owing to the tubular structure of the TiO2 substrate provides an increased reaction area and facilitates the contact of electrolyte with the active MnO2 material. This work justified the suitability of using the TiO2 nanotube arrays for constructing high-performance supercapacitors.

  6. How Do We Keep Teachers in Our Classrooms? The TNT Response.

    ERIC Educational Resources Information Center

    Gonzales, Frank; Sosa, Alicia Salinas

    1993-01-01

    This report outlines and evaluates a project, Teachers Need Teachers (TNT), developed by the Intercultural Development Research Association (IDRA). TNT is a teacher induction program for first-year teachers who are certified in bilingual education and teach limited-English-proficient students. Beginning teachers are assigned to experienced…

  7. Channel length scaling behavior in transistors based on individual versus dense arrays of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Brady, Gerald J.; Jinkins, Katherine R.; Arnold, Michael S.

    2017-09-01

    Recent advances in the solution-phase sorting and assembly of semiconducting single-walled carbon nanotubes (SWCNTs) have enabled significant gains in the performance of field-effect transistors (FETs) constructed from dense arrays of aligned SWCNTs. However, the channel length (LCH) downscaling behaviors of these arrays, which contain some organizational disorder (i.e., rotational misalignment and non-uniform pitch), have not yet been studied in detail below LCH of 100 nm. This study compares the behaviors of individualized SWCNTs with arrays of aligned, solution-cast SWCNTs in FETs with LCH ranging from 30 to 240 nm. The on-state conductance of both individual and array SWCNTs rises with decreasing LCH. Nearly ballistic transport is observed for LCH < 40 nm in both cases, reaching a conductance of 0.82 Go per SWCNT in arrays, where Go = 2e2/h is the quantum conductance. In the off-state, the off-current and subthreshold swing of the individual SWCNTs remain nearly invariant with decreasing LCH whereas array SWCNT FETs suffer from increasing off-state current and deteriorating subthreshold swing for LCH below 100 nm. We analyze array disorder using atomic force microscopy, which shows that crossing SWCNTs that arise from misoriented alignment raise SWCNTs off of the substrate for large portions of the channel when LCH is small. Electrostatics modeling analysis indicates that these raised SWCNTs are a likely contributor to the deteriorating off-current and subthreshold characteristics of arrays. These results demonstrate that improved inter-SWCNT pitch uniformity and alignment with minimal inter-SWCNT interactions will be necessary in order for solution processed SWCNT arrays to reach subthreshold performance on par with isolated SWCNTs. These results are also promising because they show that arrays of solution-processed SWCNTs can nearly reach ballistic conductance in the on-state despite imperfections in pitch and alignment.

  8. Self-Organized TiO₂-MnO₂ Nanotube Arrays for Efficient Photocatalytic Degradation of Toluene.

    PubMed

    Nevárez-Martínez, María C; Kobylański, Marek P; Mazierski, Paweł; Wółkiewicz, Jolanta; Trykowski, Grzegorz; Malankowska, Anna; Kozak, Magda; Espinoza-Montero, Patricio J; Zaleska-Medynska, Adriana

    2017-03-31

    Vertically oriented, self-organized TiO₂-MnO₂ nanotube arrays were successfully obtained by one-step anodic oxidation of Ti-Mn alloys in an ethylene glycol-based electrolyte. The as-prepared samples were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis absorption, photoluminescence spectroscopy, X-ray diffraction (XRD), and micro-Raman spectroscopy. The effect of the applied potential (30-50 V), manganese content in the alloy (5-15 wt. %) and water content in the electrolyte (2-10 vol. %) on the morphology and photocatalytic properties was investigated for the first time. The photoactivity was assessed in the toluene removal reaction under visible light, using low-powered LEDs as an irradiation source (λ max = 465 nm). Morphology analysis showed that samples consisted of auto-aligned nanotubes over the surface of the alloy, their dimensions were: diameter = 76-118 nm, length = 1.0-3.4 μm and wall thickness = 8-11 nm. It was found that the increase in the applied potential led to increase the dimensions while the increase in the content of manganese in the alloy brought to shorter nanotubes. Notably, all samples were photoactive under the influence of visible light and the highest degradation achieved after 60 min of irradiation was 43%. The excitation mechanism of TiO₂-MnO₂ NTs under visible light was presented, pointing out the importance of MnO₂ species for the generation of e - and h⁺.

  9. Vertically aligned carbon nanotube arrays as thermal interface material for vibrational structure of piezoelectric transformer

    NASA Astrophysics Data System (ADS)

    Chen, Lie; Ju, Bin; Feng, Zhihua; Zhao, Yang

    2018-07-01

    The application and characterization of thermal interface material (TIM) for vibrational structures is investigated in this paper. The vibrating feature during the operation requires unique solution for its thermal management, since the connection between the device and heat dissipater should be able to conduct heat efficiently and impose minimum constraint onto the vibration simultaneously. As a typical vibrational device, piezoelectric transformers (PTs) are discussed in this paper. The PTs have urgent demands for thermal dissipation since their power conversion efficiency decrease rapidly with the rising temperature. A novel method by applying vertically aligned carbon nanotube (VACNT) arrays to the interface between PT and heat dissipater is presented to enhance the performance of piezoelectric transformers. VACNT arrays are one of the excellent TIMs. It can directly establish thermal contact between two surfaces by van der Waals’ forces. In addition, the unique anisotropic character of CNT arrays provides enough flexibility to accommodate the vibration during the operation. Different configurations of TIMs are compared with each other in this work, including CNT arrays, tape of polypropylene (PP) membrane and without heat transfer structure (HTS). The results indicate that the temperature rise is lowest and the efficiency is highest at the same power density while CNT arrays served as the TIM. Almost no significant fretting and wearing damage occurred on PT electrode surface with CNT arrays TIM even after working continuously for 120 days. Meanwhile, the thermo-physical properties of CNT arrays at contact interface are measured by optical transient thermo-reflectance technique.

  10. Electrical device fabrication from nanotube formations

    DOEpatents

    Nicholas, Nolan Walker; Kittrell, W. Carter; Kim, Myung Jong; Schmidt, Howard K.

    2013-03-12

    A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.

  11. Field emission from optimized structure of carbon nanotube field emitter array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouhan, V., E-mail: vchouhan@post.kek.jp, E-mail: vijaychouhan84@gmail.com; Noguchi, T.; Kato, S.

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to bemore » 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm{sup 2} at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.« less

  12. Uptake and effects of 2, 4, 6 - trinitrotoluene (TNT) in juvenile Atlantic salmon (Salmo salar).

    PubMed

    Mariussen, Espen; Stornes, Siv Marie; Bøifot, Kari Oline; Rosseland, Bjørn Olav; Salbu, Brit; Heier, Lene Sørlie

    2018-01-01

    Organ specific uptake and depuration, and biological effects in Atlantic salmon (Salmo salar) exposed to 2, 4, 6-trinitrotoluene (TNT) were studied. Two experiments were conducted, the first using radiolabeled TNT ( 14 C-TNT, 0.16mg/L) to study uptake (48h) and depuration (48h), while the second experiment focused on physiological effects in fish exposed to increasing concentrations of unlabeled TNT (1μg-1mg/L) for 48h. The uptake of 14 C-TNT in the gills and most of the organs increased rapidly during the first 6h of exposure (12h in the brain) followed by a rapid decrease even though the fish were still exposed to TNT in the water. The radioactivity in the gall bladder reached a maximum after 55h, 7h after the transfer to the clean water. A high concentration of 14 C-TNT in the gall bladder indicates that TNT is excreted through the gall bladder. Mortality (2 out of 14) was observed at a concentration of 1mg/L, and the surviving fish had hemorrhages in the dorsal muscle tissue near the spine. Analysis of the physiological parameters in blood from the high exposure group revealed severe effects, with an increase in the levels of glucose, urea and HCO 3 , and a decrease in hematocrit and the levels of Cl and hemoglobin. No effects on blood physiology were observed in fish exposed to the lower concentrations of TNT (1-100μg/L). TNT and the metabolites 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) were found in the muscle tissue, whereas only 2-ADNT and 4-ADNT were found in the bile. The rapid excretion and estimated bioconcentration factors (range of 2-18 after 48h in gills, blood, liver, kidney, muscle and brain) indicated a low potential for bioaccumulation of TNT. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Field demonstration of on-site analytical methods for TNT and RDX in ground water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, H.; Ferguson, G.; Markos, A.

    1996-12-31

    A field demonstration was conducted to assess the performance of eight commercially-available and emerging colorimetric, immunoassay, and biosensor on-site analytical methods for explosives 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in ground water and leachate at the Umatilla Army Depot Activity, Hermiston, Oregon and US Naval Submarine Base, Bangor, Washington, Superfund sites. Ground water samples were analyzed by each of the on-site methods and results compared to laboratory analysis using high performance liquid chromatography (HPLC) with EPA SW-846 Method 8330. The commercial methods evaluated include the EnSys, Inc., TNT and RDX colorimetric test kits (EPA SW-846 Methods 8515 and 8510) with amore » solid phase extraction (SPE) step, the DTECH/EM Science TNT and RDX immunoassay test kits (EPA SW-846 Methods 4050 and 4051), and the Ohmicron TNT immunoassay test kit. The emerging methods tested include the antibody-based Naval Research Laboratory (NRL) Continuous Flow Immunosensor (CFI) for TNT and RDX, and the Fiber Optic Biosensor (FOB) for TNT. Accuracy of the on-site methods were evaluated using linear regression analysis and relative percent difference (RPD) comparison criteria. Over the range of conditions tested, the colorimetric methods for TNT and RDX showed the highest accuracy of the emerging methods for TNT and RDX. The colorimetric method was selected for routine ground water monitoring at the Umatilla site, and further field testing on the NRL CFI and FOB biosensors will continue at both Superfund sites.« less

  14. Reduction and conversion of 2,4,6-trinitrotoluene (TNT) by sulfide under simulated anaerobic conditions.

    PubMed

    Qiao, Hua; Wang, He-ling; Feng, Hua-jun; Yao, Jun; Shen, Dong-sheng; Tang, Zhi-jian

    2010-07-15

    To account for the fast disappearance of TNT in anaerobic fermentative liquid, we investigated TNT (TNT(0)=50 mg/L) reduction by Na(2)S at 30+/-1 degrees C in two types of buffer systems, a phosphate buffer (PB, system A) and a CH(3)COOH-NaHCO(3) buffer (system B). The effects of pH, sulfide concentration and buffer system on the conversion and reaction rate of TNT were investigated. The effect of different variables on the conversion of TNT decreased in the following order: Na(2)S concentration>pH>buffer system. A kinetics study showed that TNT reduction by Na(2)S occurred in two stages separated by a change point. The observed rate constants of the first stage K(obs-1) were 1 order of magnitude lower than those of the second stage. The TNT conversion rate increased and the time to reach the change point became shorter with increasing Na(2)S concentration and pH. A 5-fold increase in Na(2)S concentration above the theoretical stoichiometric concentration was optimum. Observed rate constants of the first stage K(obs-1) were proportional to the hydrosulfide ion concentration and the conversion rate of TNT was greater and faster in buffer system B than in system A. 2010 Elsevier B.V. All rights reserved.

  15. Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2016-08-07

    Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates that the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the "buckling failure" of the square-ice-nanotube columns, which is dominated by the lateral pressure.

  16. Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, YinBo; Wang, FengChao, E-mail: wangfc@ustc.edu.cn; Wu, HengAn

    Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates thatmore » the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the “buckling failure” of the square-ice-nanotube columns, which is dominated by the lateral pressure.« less

  17. Vertically Aligned Carbon Nanotube Arrays as Efficient Supports for Faradaic Capacitive Electrodes

    NASA Astrophysics Data System (ADS)

    Oguntoye, Moses; Holleran, Mary-Kate; Roberts, Katherine; Pesika, Noshir

    Supercapacitors are notable for their ability to deliver energy at higher power (compared to batteries) and store energy at higher density (compared to capacitors) as well as exhibit a long cycle life. In our efforts to further the development of supercapacitors, our focus is on using vertically aligned carbon nanotubes (VACNT) as supports for faradaic capacitive electrode materials. The objective is to develop electrodes functioning in an inexpensive aqueous environment with small potential windows, that store energy at a higher density than carbon materials alone. We describe the different approaches explored to overcome the challenges of non-uniform deposition, poor wetting and array collapse. Materials that are electrochemically anchored to VACNT supports include NiCo2O4, VOx, Fe2O3 and Co-Mn mixed oxides. In each case, the specific capacitance obtained using the VACNT arrays as supports is significantly more than that obtained by direct deposition onto current collectors or by using VACNT alone. The ease of VACNT growth and the degree of coating control achievable using electrodeposition means there is much potential in exploring them as supports for capacitive electrode materials.

  18. Field emission luminescence of nanodiamonds deposited on the aligned carbon nanotube array

    NASA Astrophysics Data System (ADS)

    Fedoseeva, Yu. V.; Bulusheva, L. G.; Okotrub, A. V.; Kanygin, M. A.; Gorodetskiy, D. V.; Asanov, I. P.; Vyalikh, D. V.; Puzyr, A. P.; Bondar, V. S.

    2015-03-01

    Detonation nanodiamonds (NDs) were deposited on the surface of aligned carbon nanotubes (CNTs) by immersing a CNT array in an aqueous suspension of NDs in dimethylsulfoxide (DMSO). The structure and electronic state of the obtained CNT-ND hybrid material were studied using optical and electron microscopy and Infrared, Raman, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy. A non-covalent interaction between NDs and CNT and preservation of vertical orientation of CNTs in the hybrid were revealed. We showed that current-voltage characteristics of the CNT-ND cathode are changed depending on the applied field; below ~3 V/µm they are similar to those of the initial CNT array and at the higher field they are close to the ND behavior. Involvement of the NDs in field emission process resulted in blue luminescence of the hybrid surface at an electric field higher than 3.5 V/µm. Photoluminescence measurements showed that the NDs emit blue-green light, while blue luminescence prevails in the CNT-ND hybrid. The quenching of green luminescence was attributed to a partial removal of oxygen-containing groups from the ND surface as the result of the hybrid synthesis.

  19. Shape-coded silica nanotubes for multiplexed bioassay: rapid and reliable magnetic decoding protocols

    PubMed Central

    He, Bo; Kim, Sung Kyoung; Son, Sang Jun; Lee, Sang Bok

    2010-01-01

    Aims The recent development of 1D barcode arrays has proved their capabilities to be applicable to highly multiplexed bioassays. This article introduces two magnetic decoding protocols for suspension arrays of shape-coded silica nanotubes to process multiplexed assays rapidly and easily, which will benefit the minimization and automation of the arrays. Methods In the first protocol, the magnetic nanocrystals are incorporated into the inner voids of barcoded silica nanotubes in order to give the nanotubes magnetic properties. The second protocol is performed by trapping the barcoded silica nanotubes onto streptavidin-modified magnetic beads. Results The rapid and easy decoding process was demonstrated by applying the above two protocols to multiplexed assays, resulting in high selectivity. Furthermore, the magnetic bead-trapped barcode nanotubes provided a great opportunity to exclude the use of dye molecules in multiplexed assays by using barcode nanotubes as signals. Conclusion The rapid and easy manipulation of encoded carriers using magnetic properties could be used to develop promising suspension arrays for portable bioassays. PMID:20025466

  20. Generic Synthesis of Carbon Nanotube Branches on Metal Oxide Arrays Exhibiting Stable High-Rate and Long-Cycle Sodium-Ion Storage.

    PubMed

    Xia, Xinhui; Chao, Dongliang; Zhang, Yongqi; Zhan, Jiye; Zhong, Yu; Wang, Xiuli; Wang, Yadong; Shen, Ze Xiang; Tu, Jiangping; Fan, Hong Jin

    2016-06-01

    A new and generic strategy to construct interwoven carbon nanotube (CNT) branches on various metal oxide nanostructure arrays (exemplified by V2 O3 nanoflakes, Co3 O4 nanowires, Co3 O4 -CoTiO3 composite nanotubes, and ZnO microrods), in order to enhance their electrochemical performance, is demonstrated for the first time. In the second part, the V2 O3 /CNTs core/branch composite arrays as the host for Na(+) storage are investigated in detail. This V2 O3 /CNTs hybrid electrode achieves a reversible charge storage capacity of 612 mAh g(-1) at 0.1 A g(-1) and outstanding high-rate cycling stability (a capacity retention of 100% after 6000 cycles at 2 A g(-1) , and 70% after 10 000 cycles at 10 A g(-1) ). Kinetics analysis reveals that the Na(+) storage is a pseudocapacitive dominating process and the CNTs improve the levels of pseudocapacitive energy by providing a conductive network. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. MoSe2 modified TiO2 nanotube arrays with superior photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Zhu, Haifeng; Yu, Lianqing; He, Jiandong; Huang, Chengxing

    2018-04-01

    TiO2 nanotube arrays (TNTs) are first prepared by anodization Ti foils in ethylene glycol electrolyte. Then, MoSe2 deposites electrochemically on TNTs. The as-synthesized MoSe2/TiO2 composite has a much higher photocurrent density of 1.07 mA cm‑2 at 0 V than pure TNTs of 0.38 mA cm‑2, which suggests that the MoSe2/TiO2 composite film has optimum photoelectrocatalysis properties. The electron transport resistances of the MoSe2/TiO2 decreases to half of pure TiO2, at 295.6 ohm/cm2. Both photocurrent-time and Mott-Schottky plots indicate MoSe2 a p-type semiconductor characteristics. MoSe2/TiO2 composite can achieve a maximum 5 orders of magnitude enhancement in carrier density (4.650 × 1027 cm‑3) than that of pure TiO2 arrays. It can be attributed to p-n heterojunction formed between MoSe2 and TiO2, and the composite can be potentially applied in photoelectrochemical, photocatalysis fields.

  2. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive.

    PubMed

    Tu, Renyong; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Wang, Feng; Fang, Qunling; Zhang, Zhongping

    2008-05-01

    Mn2+-doped ZnS nanocrystals with an amine-capping layer have been synthesized and used for the fluorescence detection of ultratrace 2,4,6-trinitrotoluene (TNT) by quenching the strong orange Mn2+ photoluminescence. The organic amine-capped nanocrystals can bind TNT species from solution and atmosphere by the acid-base pairing interaction between electron-rich amino ligands and electron-deficient aromatic rings. The resultant TNT anions bound onto the amino monolayer can efficiently quench the Mn2+ photoluminescence through the electron transfer from the conductive band of ZnS to the lowest unoccupied molecular orbital (LUMO) of TNT anions. The amino ligands provide an amplified response to the binding events of nitroaromatic compounds by the 2- to approximately 5-fold increase in quenching constants. Moreover, a large difference in quenching efficiency was observed for different types of nitroaromatic analytes, dependent on the affinity of nitro analytes to the amino monolayer and their electron-accepting abilities. The amine-capped nanocrystals can sensitively detect down to 1 nM TNT in solution or several parts-per-billion of TNT vapor in atmosphere. The ion-doped nanocrystal sensors reported here show a remarkable air/solution stability, high quantum yield, and strong analyte affinity and, therefore, are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.

  3. Gasdynamic Model of Turbulent Combustion in TNT Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Bell, J B; Beckner, V E

    2010-01-08

    A model is proposed to simulate turbulent combustion in confined TNT explosions. It is based on: (i) the multi-component gasdynamic conservation laws, (ii) a fast-chemistry model for TNT-air combustion, (iii) a thermodynamic model for frozen reactants and equilibrium products, (iv) a high-order Godunov scheme providing a non-diffusive solution of the governing equations, and (v) an ILES approach whereby adaptive mesh refinement is used to capture the energy bearing scales of the turbulence on the grid. Three-dimensional numerical simulations of explosion fields from 1.5-g PETN/TNT charges were performed. Explosions in six different chambers were studied: three calorimeters (volumes of 6.6-l, 21.2-lmore » and 40.5-l with L/D = 1), and three tunnels (L/D = 3.8, 4.65 and 12.5 with volumes of 6.3-l) - to investigate the influence of chamber volume and geometry on the combustion process. Predicted pressures histories were quite similar to measured pressure histories for all cases studied. Experimentally, mass fraction of products, Y{sub p}{sup exp}, reached a peak value of 88% at an excess air ratio of twice stoichiometric, and then decayed with increasing air dilution; mass fractions Y{sub p}{sup calc} computed from the numerical simulations followed similar trends. Based on this agreement, we conclude that the dominant effect that controls the rate of TNT combustion with air is the turbulent mixing rate; the ILES approach along with the fast-chemistry model used here adequately captures this effect.« less

  4. Selective spectrophotometric determination of TNT using a dicyclohexylamine-based colorimetric sensor.

    PubMed

    Erçağ, Erol; Uzer, Ayşem; Apak, Reşat

    2009-05-15

    Because of the extremely heterogeneous distribution of explosives in contaminated soils, on-site colorimetric methods are efficient tools to assess the nature and extent of contamination. To meet the need for rapid and low-cost chemical sensing of explosive traces or residues in soil and post-blast debris, a colorimetric absorption-based sensor for trinitrotoluene (TNT) determination has been developed. The charge-transfer (CT) reagent (dicyclohexylamine, DCHA) is entrapped in a polyvinylchloride (PVC) polymer matrix plasticised with dioctylphtalate (DOP), and moulded into a transparent sensor membrane sliced into test strips capable of sensing TNT showing an absorption maximum at 530 nm when placed in a 1-mm spectrophotometer cell. The sensor gave a linear absorption response to 5-50 mg L(-1) TNT solutions in 30% aqueous acetone with limit of detection (LOD): 3 mg L(-1). The sensor is only affected by tetryl, but not by RDX, pentaerythritoltetranitrate (PETN), dinitrotoluene (DNT), and picric acid. The proposed method was statistically validated for TNT assay against high performance liquid chromatography (HPLC) using a standard sample of Comp B. The developed sensor was relatively resistant to air and water, was of low-cost and high specificity, gave a rapid and reproducible response, and was suitable for field use of TNT determination in both dry and humid soil and groundwater with a portable colorimeter.

  5. High intensity, plasma-induced electron emission from large area carbon nanotube array cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Qingliang; Yang Ya; Qi Junjie

    2010-02-15

    The plasma-induced electron emission properties of large area carbon nanotube (CNT) array cathodes under different pulse electric fields were investigated. The formation and expansion of cathode plasmas were proved; in addition, the cathodes have higher emission current in the double-pulse mode than that in the single-pulse mode due to the expansion of plasma. Under the double-pulse electric field of 8.16 V/mum, the plasma's expansion velocity is about 12.33 cm/mus and the highest emission current density reached 107.72 A/cm{sup 2}. The Cerenkov radiation was used to diagnose the distribution of electron beams, and the electron beams' generating process was plasma-induced emission.

  6. Fast diffusion of silver in TiO2 nanotube arrays

    PubMed Central

    Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui

    2016-01-01

    Summary Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10−18 m2/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag. PMID:27547630

  7. Parametric Investigation of the Kinetics of Growth of Carbon-Nanotube Arrays on Iron Nanoparticles in the Process of Chemical Vapor Deposition of Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Futko, S. I.; Shulitski, B. G.; Labunov, V. A.; Ermolaevaa, E. M.

    2015-03-01

    On the basis of the kinetic model of synthesis of carbon nanotubes on iron nanoparticles in the process of chemical vapor deposition of hydrocarbons, the parametric dependences of characteristics of arrays of vertically oriented nanotubes on the temperature of their synthesis, the concentration of acetylene in a reactor, and the diameter of the catalyst nanoparticles were investigated. It is shown that the maximum on the temperature dependence of the rate of growth of carbon nanotubes, detected in experiments at a temperature of ~700oC is due to the competing processes of increasing the catalytic activity of iron nanoparticles and decreasing the acetylene concentration because of the signifi cant gas-phase decomposition of acetylene in the reactor before it enters the substrate with the catalyst. Our calculations have shown that the indicated maximum arises near the transition point separating the low-temperature region where multiwall nanotubes are predominantly synthesized from the higher-temperature region of generation of single-wall nanotubes in the process of chemical vapor deposition of hydrocarbons.

  8. Uptake of 2,4,6-Trinitrotoluene (TNT) by Vetiver grass (Vetiviera ziznoides L.) -- Preliminary results from a hydroponic study

    NASA Astrophysics Data System (ADS)

    Shakya, K. M.; Sarkar, D.; Datta, R.; Makris, K.; Pachanoor, D.

    2006-05-01

    2,4,6-Trinitrotoluene(TNT) is a potent mutagen and a Group C human carcinogen that has been widely used to produce munitions and explosives. As a result, vast areas that have been previously used as military ranges, munition burning and open detonation sites have been heavily contaminated with TNT. Conventional remedial activities in such contaminated sites commonly rely on methods such as incineration, land filling and soil composting. Phytoremediation offers a cost-effective solution, utilizing plants to phytoextract TNT from the contaminated soil. We propose the use of vetiver grass (Vetiveria zizanoides) to remove TNT from such contaminated soils. Vetiver is a fast-growing and adaptive grass, enabling its use in TNT-contaminated sites in a wide variety of soil types and climate. We also hypothesized that TNT removal by vetiver grass will be enhanced by utilizing a chaotropic agent (urea) to alter rhizosphere/root hair chemical environment. The objectives of this preliminary hydroponic study were: i) to investigate the effectiveness of vetiver grass in removing TNT from solution, and ii) to evaluate the use of a common agrochemical (urea) in enhancing TNT removal by vetiver grass. Vetiver plants were grown in a hydroponic system with five different TNT concentrations (0, 5, 10, 25, and 50 mg TNT L-1) and three urea concentrations (0, 0.01 and 0.1%). A plant density of 10 g L-1 and three replicate vessels per treatment were used. Aliquots were collected at several time intervals up to 192 hour, and were analyzed for TNT with HPLC. Results showed that vetiver was able to remove TNT from hydroponic solutions. The overall magnitude and kinetics of TNT removal by vetiver grass was enhanced in the presence of urea. TNT removal kinetics depended on TNT and urea initial concentrations, suggestive of second-order kinetic reactions. Preliminary results are encouraging, but in need for verification using more detailed studies involving TNT-contaminated soils. Ongoing

  9. Controlling Morphological Parameters of Anodized Titania Nanotubes for Optimized Solar Energy Applications

    PubMed Central

    Haring, Andrew; Morris, Amanda; Hu, Michael

    2012-01-01

    Anodized TiO2 nanotubes have received much attention for their use in solar energy applications including water oxidation cells and hybrid solar cells [dye-sensitized solar cells (DSSCs) and bulk heterojuntion solar cells (BHJs)]. High surface area allows for increased dye-adsorption and photon absorption. Titania nanotubes grown by anodization of titanium in fluoride-containing electrolytes are aligned perpendicular to the substrate surface, reducing the electron diffusion path to the external circuit in solar cells. The nanotube morphology can be optimized for the various applications by adjusting the anodization parameters but the optimum crystallinity of the nanotube arrays remains to be realized. In addition to morphology and crystallinity, the method of device fabrication significantly affects photon and electron dynamics and its energy conversion efficiency. This paper provides the state-of-the-art knowledge to achieve experimental tailoring of morphological parameters including nanotube diameter, length, wall thickness, array surface smoothness, and annealing of nanotube arrays.

  10. Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments.

    PubMed

    Ariyarathna, Thivanka; Vlahos, Penny; Smith, Richard W; Fallis, Stephen; Groshens, Thomas; Tobias, Craig

    2017-05-01

    The lack of knowledge on the fate of explosive compounds 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), particularly in marine ecosystems, constrains the application of bioremediation techniques in explosive-contaminated coastal sites. The authors present a comparative study on anaerobic biodegradation and mineralization of 15 N-nitro group isotopically labeled TNT and RDX in organic carbon-rich, fine-grained marine sediment with native microbial assemblages. Separate sediment slurry experiments were carried out for TNT and RDX at 23°C for 16 d. Dissolved and sediment-sorbed fractions of parent and transformation products, isotopic compositions of sediment, and mineralization products of the dissolved inorganic N pool ( 15 NH 4 + , 15 NO 3 - , 15 NO 2 - , and 15 N 2 ) were measured. The rate of TNT removal from the aqueous phase was faster (0.75 h -1 ) than that of RDX (0.37 h -1 ), and 15 N accumulation in sediment was higher in the TNT (13%) than the RDX (2%) microcosms. Mono-amino-dinitrotoluenes were identified as intermediate biodegradation products of TNT. Two percent of the total spiked TNT-N is mineralized to dissolved inorganic N through 2 different pathways: denitration as well as deamination and formation of NH 4 + , facilitated by iron and sulfate reducing bacteria in the sediments. The majority of the spiked TNT-N (85%) is in unidentified pools by day 16. Hexahydro-1,3,5-trinitro-1,3,5-triazine (10%) biodegrades to nitroso derivatives, whereas 13% of RDX-N in nitro groups is mineralized to dissolved inorganic N anaerobically by the end of the experiment. The primary identified mineralization end product of RDX (40%) is NH 4 + , generated through either deamination or mono-denitration, followed by ring breakdown. A reasonable production of N 2 gas (13%) was seen in the RDX system but not in the TNT system. Sixty-eight percent of the total spiked RDX-N is in an unidentified pool by day 16 and may include unquantified

  11. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection.

    PubMed

    Zhang, Diming; Jiang, Jing; Chen, Junye; Zhang, Qian; Lu, Yanli; Yao, Yao; Li, Shuang; Logan Liu, Gang; Liu, Qingjun

    2015-08-15

    Rapid, sensitive, selective and portable detection of 2,4,6-trinitrotoluene (TNT) is in high demand for public safety and environmental monitoring. In this study, we reported a smartphone-based system using impedance monitoring for TNT detection. The screen-printed electrodes modified with TNT-specific peptides were used as disposable a biosensor to produce impedance responses to TNT. The responses could be monitored by a hand-held device and send out to smartphone through Bluetooth. Then, the smartphone was used to display TNT responses in real time and report concentration finally. In the measurement, the system was demonstrated to detect TNT at concentration as low as 10(-6) M and distinguish TNT versus different chemicals in high specificity. Thus, the smartphone-based biosensing platform provided a convenient and efficient approach to design portable instruments for chemical detections such as TNT recognition. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comparison of Fresh and Aged TNT with Multiwavelength Raman Spectroscopy

    DTIC Science & Technology

    2014-12-04

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6730--14-9572 Comparison of Fresh and Aged TNT with Multiwavelength Raman Spectroscopy...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Comparison of Fresh and Aged TNT with Multiwavelength Raman Spectroscopy Robert Lunsford, Jacob Grun, and...fresh and aged variants. This is particularly true of UV aging which had the greater effect on the sample of the two aging processes tested

  13. Template-based synthesis and magnetic properties of Mn-Zn ferrite nanotube and nanowire arrays

    NASA Astrophysics Data System (ADS)

    Guo, Limin; Wang, Xiaohui; Zhong, Caifu; Li, Longtu

    2012-01-01

    Template-based electrophoretic deposition of Mn-Zn ferrite nanotubes (NTs) and nanowires (NWs) were achieved using anodic alumina oxide (AAO) membranes. The effect of electrophoretic current and deposition time on the morphology of the tubes was investigated. The samples show cubic spinel structure with no preferred orientation. Room-temperature magnetic properties of the Mn-Zn ferrite NT/NW arrays were studied. The magnetic easy axis parallels the NT/NW's channel axis attributing to the large shape anisotropy in this direction, especially for the NTs with a small wall thickness. Magnetocrystalline anisotropy and magnetostatic interactions were found dominant in the samples when applied field was perpendicular to the channel axis.

  14. Toxicity and accumulation of trinitrotoluene (TNT) and its metabolites in Atlantic salmon alevins exposed to an industrially polluted water.

    PubMed

    Leffler, Per; Brännäs, Eva; Ragnvaldsson, Daniel; Wingfors, Håkan; Berglind, Rune

    2014-01-01

    A pond in an industrial area in Sweden was selected to study adverse effects on salmon alevins from 2,4,6-trinitrotoluene (TNT)-contaminated water. Chemical screening revealed heavy contamination of TNT and its degradation products, 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT), ranging from 0.05 to 230 g/kg in the sediment (dry weight) within the water system. Pond water contained 3 mg/L TNT. A dilution series of pond water mixed with tap water revealed increased death frequency in alevins down to fivefold dilution (approximate 0.4 mg TNT/L). Uptake was concentration dependent, reaching 7, 9, and 22 μg/g tissue for TNT, 2-ADNT, and 4-ADNT at the highest test concentration. A time-dependent uptake of TNT and its degradation products was found at a water concentration of 0.08 mg TNT/L. Degradation products of TNT showed a more efficient uptake compared to native TNT, and accumulation of 4-ADNT was more pronounced during the late phase of the 40-d exposure study. Bioconcentration factors (BCF) (0.34, 52, and 134 ml/g for TNT, 2-ADNT, and 4-ADNT, respectively) demonstrated a significant uptake of the metabolite 4-ADNT in alevin tissue. Disturbed physiological conditions and delayed development in alevins were not studied, but may not be excluded even at 125-fold diluted pond water (0.016 mg TNT/L). BCF data indicated that bioaccumulation of TNT metabolites need to be considered in TNT chronic toxicity. Fish species and age differences in the accumulation of TNT metabolites need to be further studied.

  15. Controlled Growth of Carbon Nanotubes on Micropatterned Au/Cr Composite Film and Field Emission from Their Arrays

    NASA Astrophysics Data System (ADS)

    Kamide, Koichi; Araki, Hisashi; Yoshino, Katsumi

    2003-12-01

    Carbon nanotube (CNT) arrays with a controlled density are prepared on a micropatterned Au/Cr composite film formed on a quartz glass plate by pyrolysis of Ni-phthalocyanine at 800°C. It is clarified from characteristic X-ray analyses for those samples that a catalytic Ni nanoparticle is not contained within the base of the whisker-like CNT in contrast to that of the bamboo-like CNT, suggesting that the growth process of the present novel CNT is incompatible with that of the bamboo-like CNT. In the Au/Cr composite film, both the Cr atomic content of approximately 30% and the presence of the Ni catalyst devoid of a particle-like shape are important factors for the growth of CNTs. Field emission from the novel CNT arrays exhibits a lower turn-on voltage and a higher current density compared with that from the bamboo-like arrays formed on a quartz plate.

  16. Vertically aligned double wall carbon nanotube arrays adsorbent for pure and mixture adsorption of H2S, ethylbenzene and carbon monoxide, grand canonical Monte Carlo simulation.

    PubMed

    Tasharrofi, Saeideh; Taghdisian, Hossein; Golchoobi, Abdollah

    2018-05-01

    In this study, pure and ternary adsorption of hydrogen sulfide (H 2 S), ethylbenzene (EB), and carbon monoxide (CO) on different arrays of zigzag double wall carbon nanotube was investigated using grand canonical Monte Carlo simulations. The internal diameters of nanotube were fixed at 2r = 50.17 Å while nanotube wall distances were different values from d = 0 Å to d = 150 Å. Pure simulation results indicated that adsorption quantity of H 2 S and EB in low pressure ranges of P = 1.9 bar to P = 3.1 bar was at least 100% more than CO adsorption quantities. At high pressure ranges of P = 23.1 bar to P = 38.2 bar H 2 S adsorption was greater than EB and CO by about 200 molecules per unit cell (UC) at low nanotube distances. This was related to smaller kinetic diameter and greater dipole moment of H 2 S compared to EB and CO. At higher nanotube distance the effect of size however disappears and all three gases approach to adsorption quantity of about 800 molecules/UC. Graphical representation of adsorption areas showed that H 2 S and CO form multilayer adsorption around nanotube inner and outer walls while EB fill the whole space uniformly without any congestion around the walls. Ternary adsorption results EB/CO and H 2 S/CO selectivity are greater than EB/H 2 S selectivity. In addition, at smaller nanotube distances H 2 S/CO selectivity is generally higher than EB/CO selectivity, which at higher nanotube distance the order becomes revers suggesting that size dependent effects on adsorption vanishes. Isosteric heat of adsorption shows that the order of EB > H 2 S > CO suggesting that ethylbenzene interaction with nanotube arrays was strongest. Although H 2 S has a greater dipole moment and smaller molecular dimension, EB adsorption at higher nanotube distance is greater than H 2 S by at least 50% probably because EB is less volatile. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Anaerobic in situ biodegradation of TNT using whey as an electron donor: a case study.

    PubMed

    Innemanová, Petra; Velebová, Radka; Filipová, Alena; Čvančarová, Monika; Pokorný, Petr; Němeček, Jan; Cajthaml, Tomáš

    2015-12-25

    Contamination by 2,4,6-trinitrotoluene (TNT), an explosive extensively used by the military, represents a serious environmental problem. In this study, whey has been selected as the most technologically and economically suitable primary substrate for anaerobic in situ biodegradation of TNT. Under laboratory conditions, various additions of whey, molasses, acetate and activated sludge as an inoculant were tested and the process was monitored using numerous chemical analyses including phospholipid fatty acid analysis. The addition of whey resulted in the removal of more than 90% of the TNT in real contaminated soil (7 mg kg(-1) and 12 mg kg(-1) of TNT). The final bioremediation strategy was suggested on the basis of the laboratory results and tested under real conditions at a TNT contaminated site in the Czech Republic. During the pilot test, three repeated injections of whey suspension into the sandy aquifer were performed over a 10-month period. In total, approximately 5m(3) of whey were used. A substantial decrease in the TNT groundwater concentration from the original levels (equalling 1.49 mg l(-1) to 8.58 mg l(-1)) was observed in most of the injection wells, while the concentrations of the TNT biotransformation products were found to be elevated. Pilot-scale application results showed that the anoxic and/or anaerobic conditions in the aquifer were sufficient for TNT bio-reduction by autochthonous microorganisms. Whey application was not accompanied by undesirable effects such as a substantial decrease in the pH or clogging of the wells. The results of the study document the suitability of application of whey to bioremediate TNT contaminated sites in situ. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Fluorescence detection of trace TNT by novel cross-linking electropolymerized films both in vapor and aqueous medium.

    PubMed

    Nie, Heran; Lv, Ying; Yao, Liang; Pan, Yuyu; Zhao, Yang; Li, Peng; Sun, Guannan; Ma, Yuguang; Zhang, Ming

    2014-01-15

    Electropolymerized (EP) films with high fluorescent efficiency are introduced to the detection of trace 2,4,6-trinitrotoluene (TNT). Three electroactive materials TCPC, OCPC and OCz have been synthesized and their EP films have been demonstrated to be sensitive to TNT. Among them, the TCPC EP films have displayed the highest sensitivity to TNT in both vapor and aqueous medium, even in the natural water. It is proposed that the good performances would be caused by the following two factors: first, the cross-linking network of EP films can generate the cavities which benefit the TNT penetration, and remarkably increase the contact area between the EP films and TNT; second, the frontier orbits distribution leads the fast photo-induced electron transfer (PET) from the TCPC EP films to TNT. Our results prove that these EP films are promising TNT sensing candidates and provide a new method to prepare fluorescent porous films. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Electrical properties of 0.4 cm long single walled nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Zhen

    2005-03-01

    Centimeter scale aligned carbon nanotube arrays are grown from nanoparticle/metal catalyst pads[1]. We find the nanotubes grow both with and ``against the wind.'' A metal underlayer provides in-situ electrical contact to these long nanotubes with no post growth processing needed. Using the electrically contacted nanotubes, we study electrical transport of 0.4 cm long nanotubes[2]. Using this data, we are able to determine the resistance of a nanotube as a function of length quantitatively, since the contact resistance is negligible in these long nanotubes. The source drain I-V curves are quantitatively described by a classical, diffusive model. Our measurements show that the outstanding transport properties of nanotubes can be extended to the cm scale and open the door to large scale integrated nanotube circuits with macroscopic dimensions. These are the longest electrically contacted single walled nanotubes measured to date. [1] Zhen Yu, Shengdong Li, Peter J. Burke, ``Synthesis of Aligned Arrays of Millimeter Long, Straight Single-Walled Carbon Nanotubes,'' Chemistry of Materials, 16(18), 3414-3416 (2004). [2] Shengdong Li, Zhen Yu, Christopher Rutherglen, Peter J. Burke, ``Electrical properties of 0.4 cm long single-walled carbon nanotubes'' Nano Letters, 4(10), 2003-2007 (2004).

  20. Analysis of Multiplexed Nanosensor Arrays Based on Near-Infrared Fluorescent Single-Walled Carbon Nanotubes.

    PubMed

    Dong, Juyao; Salem, Daniel P; Sun, Jessica H; Strano, Michael S

    2018-04-24

    The high-throughput, label-free detection of biomolecules remains an important challenge in analytical chemistry with the potential of nanosensors to significantly increase the ability to multiplex such assays. In this work, we develop an optical sensor array, printable from a single-walled carbon nanotube/chitosan ink and functionalized to enable a divalent ion-based proximity quenching mechanism for transducing binding between a capture protein or an antibody with the target analyte. Arrays of 5 × 6, 200 μm near-infrared (nIR) spots at a density of ≈300 spots/cm 2 are conjugated with immunoglobulin-binding proteins (proteins A, G, and L) for the detection of human IgG, mouse IgM, rat IgG2a, and human IgD. Binding kinetics are measured in a parallel, multiplexed fashion from each sensor spot using a custom laser scanning imaging configuration with an nIR photomultiplier tube detector. These arrays are used to examine cross-reactivity, competitive and nonspecific binding of analyte mixtures. We find that protein G and protein L functionalized sensors report selective responses to mouse IgM on the latter, as anticipated. Optically addressable platforms such as the one examined in this work have potential to significantly advance the real-time, multiplexed biomolecular detection of complex mixtures.

  1. Anti-infection activity of nanostructured titanium percutaneous implants with a postoperative infection model

    NASA Astrophysics Data System (ADS)

    Tan, Jing; Li, Yiting; Liu, Zhiyuan; Qu, Shuxin; Lu, Xiong; Wang, Jianxin; Duan, Ke; Weng, Jie; Feng, Bo

    2015-07-01

    The titanium percutaneous implants were widely used in clinic; however, they have an increased risk of infection since they breach the skin barrier. Lack of complete skin integration with the implants can cause infection and implant removal. In this work, three titania nanotubes (TNT) with different diameters, 50 nm (TNT-50), 100 nm (TNT-100) and 150 nm (TNT-150) arrays were prepared on titanium surfaces by anodization, pure titanium (pTi) was used as control. Samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle analysis. The antibacterial efficiency of TNT was evaluated in vitro against Staphylococcus aureus under the visible light. The results indicated that TNT-100 had the highest antibacterial efficiency under the visible light. Subsequently, TNT implants and pTi implants were placed subcutaneously to the dorsum of New Zealand White rabbits, 108 CFU S. aureus was inoculated into the implant sites 4 h after surgery. The TNF-alpha and IL-1alpha were determined using enzyme linked immunoassay (ELISA). TNT implants revealed less inflammatory factor release than pTi implants with or without injected S. aureus liquid. According to the histological results, the TNT implants displayed excellent tissue integration. Whereas, pTi implants were surrounded with fibrotic capsule, and the skin tissue was almost separated from the implant surface. Therefore, the TNT significantly inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. The immersion test in the culture medium suggested that one of causes be probably more proteins adsorbed on TNT than on pTi.

  2. Non-chapped, vertically well aligned titanium dioxide nanotubes fabricated by electrochemical etching

    NASA Astrophysics Data System (ADS)

    Loan Nguyen, Thu; Dieu Thuy Ung, Thi; Liem Nguyen, Quang

    2014-06-01

    This paper reports on the fabrication of non-chapped, vertically well aligned titanium dioxide nanotubes (TONTs) by using electrochemical etching method and further heat treatment. Very highly ordered metallic titanium nanotubes (TNTs) were formed by directly anodizing titanium foil at room temperature in an electrolyte composed of ammonium fluoride (NH4F), ethylene glycol (EG), and water. The morphology of as-formed TNTs is greatly dependent on the applied voltage, NH4F content and etching time. Particularly, we have found two interesting points related to the formation of TNTs: (i) the smooth surface without chaps of the largely etched area was dependent on the crystalline orientation of the titanium foil; and (ii) by increasing the anodizing potential from 15 V to 20 V, the internal diameter of TNT was increased from about 50 nm to 60 nm and the tube density decreased from 403 tubes μm-2 down to 339 tubes μm-2, respectively. For the anodizing duration from 1 h to 5 h, the internal diameter of each TNT was increased from ˜30 nm to 60 nm and the tube density decreased from 496 tubes μm-2 down to 403 tubes μm-2. After annealing at 400 °C in open air for 1 h, the TNTs were transformed into TONTs in anatase structure; further annealing at 600 °C showed the structural transformation from anatase to rutile as determined by Raman scattering spectroscopy.

  3. Ophthalmologial Applications of Carbon Nanotube Nanotechology

    NASA Technical Reports Server (NTRS)

    Loftus, David; Girten, Beverly (Technical Monitor)

    2002-01-01

    The development of an implantable device consisting of an array of carbon nanotubes on a silicon chip for restoration of vision in patients with macular degeneration and other retinal disorders is presented. The use of carbon nanotube bucky paper for retinal cell transplantation is proposed. This paper is in viewgraph form.

  4. Effects of additives on 2,4,6-trinitrotoluene (TNT) removal and its mineralization in aqueous solution by gamma irradiation.

    PubMed

    Lee, Byungjin; Jeong, Seung-Woo

    2009-06-15

    The effects of additives (i.e., methanol, EDTA, mannitol, thiourea, nitrous oxide, oxygen and ozone) on gamma irradiation of 2,4,6-trinitrotoluene (TNT) were investigated to elucidate the initial reaction mechanism of TNT degradation and suggest an practical method for complete by-product removal. All additives, except thiourea, significantly increased the TNT removal efficiency by gamma irradiation. The overall results of the additive experiments implied that the TNT decomposition would be initiated by *OH, e(aq)(-), and HO(2*)/O(2*)(-), and also implied that *H did not have any direct effect on the TNT decomposition. Additions of methanol and nitrous oxide were more effective in TNT removal than the other additives, achieving complete removal of TNT at doses below 20 kGy. Total organic carbon (TOC) of the irradiated solution was analyzed to evaluate the degree of TNT mineralization under the additive conditions. TOC under the nitrous oxide addition was removed rapidly, and complete TNT mineralization was thus achieved at 50 kGy. Methanol addition was very effective in the TNT removal, but it was not effective in reduction in TOC. Trinitrobenzene (TNB), oxalic acid and glyoxalic acid were detected as radiolytic organic by-products, while ammonia and nitrate were detected as radiolytic inorganic by-products. The most efficient TNT removal and its mineralization by gamma irradiation would be achieved by supersaturating the solution with nitrous oxide before irradiation.

  5. Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment.

    PubMed

    Hernandez, Rafael; Zappi, Mark; Kuo, Chiang-Hai

    2004-10-01

    Addition of corrosion promoters, such as sodium and potassium chloride, accelerated TNT degradation during water treatment using zerovalent zinc and iron. It was theorized that corrosion promoters could be used to accelerate electron generation from metallic species, create new reactive sites on the surface of metals during contaminated water treatment, and minimize passivating effects. The surface area normalized pseudo-first-order rate constant for the reaction of zerovalent zinc with TNT in the absence of KCl was 1.364 L x m(-2) x h(-1). In the presence of 0.3 mM and 3 mM KCI, the rate constant increased to 10.5 L x m(-2) x h(-1) and 51.0 L x m(-2) x h(-1), respectively. For the reaction with zerovalent iron and TNT, the rate constant increased from 6.5 (L/m2 x h) in the absence of KCl to 37 L x m(-2) x h(-1) using 3 mM KCl. The results demonstrate that chloride based corrosion promoters enhance the rate of TNT degradation. The in-situ breakage of the oxide layer using corrosion promoters was applied as a treatment to maintain the long-term activity of the metallic species. Zinc maintained a high reactivity toward TNT, and the reactivity of iron increased after 5 treatment cycles using 3 mM KCI. Zinc and iron scanning electron micrographs indicate that TNT degradation rate enhancement is caused by the pitting corrosion mechanism.

  6. Project Tradition and Technology (Project TNT): The Hualapai Bilingual Academic Excellence Program.

    ERIC Educational Resources Information Center

    Reed, Michael D.; And Others

    Project Tradition and Technology (TNT) at Peach Springs Elementary School (Peach Springs, Arizona) is 1 of 12 programs recognized nationally as an outstanding model of bilingual education by the U.S. Department of Education. Project TNT is a process-oriented curriculum development model that identifies the community's needs and expectations for…

  7. The Biodegradation of TNT in Enhanced Soil and Compost Systems

    DTIC Science & Technology

    1978-01-01

    dimethylsulfoxide ( DMSO ) Is substituted for EDA because EDA tends to clog the sprayei . Dr. Chandler’s solvent system No. 1 is used for non-polar separa...material was converted to non- solvent -extractable, water-soluble materials of unknown Identity. These materials may represent the contents of dead... solvent system No. 1 54 2A TLC separation of TNT and derivatives using ChandlerIs solvent system No. 2 55 3A TLC separation of TNT and derivatives using

  8. A transwell assay that excludes exosomes for assessment of tunneling nanotube-mediated intercellular communication.

    PubMed

    Thayanithy, Venugopal; O'Hare, Patrick; Wong, Phillip; Zhao, Xianda; Steer, Clifford J; Subramanian, Subbaya; Lou, Emil

    2017-11-13

    Tunneling nanotubes (TNTs) are naturally-occurring filamentous actin-based membranous extensions that form across a wide spectrum of mammalian cell types to facilitate long-range intercellular communication. Valid assays are needed to accurately assess the downstream effects of TNT-mediated transfer of cellular signals in vitro. We recently reported a modified transwell assay system designed to test the effects of intercellular transfer of a therapeutic oncolytic virus, and viral-activated drugs, between cells via TNTs. The objective of the current study was to demonstrate validation of this in vitro approach as a new method for effectively excluding diffusible forms of long- and close-range intercellular transfer of intracytoplasmic cargo, including exosomes/microvesicles and gap junctions in order to isolate TNT-selective cell communication. We designed several steps to effectively reduce or eliminate diffusion and long-range transfer via these extracellular vesicles, and used Nanoparticle Tracking Analysis to quantify exosomes following implementation of these steps. The experimental approach outlined here effectively reduced exosome trafficking by >95%; further use of heparin to block exosome uptake by putative recipient cells further impeded transfer of these extracellular vesicles. This validated assay incorporates several steps that can be taken to quantifiably control for extracellular vesicles in order to perform studies focused on TNT-selective communication.

  9. Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle.

    PubMed

    Dasary, Samuel S R; Senapati, Dulal; Singh, Anant Kumar; Anjaneyulu, Yerramilli; Yu, Hongtao; Ray, Paresh Chandra

    2010-12-01

    TNT is one of the most commonly used nitro aromatic explosives for landmines of military and terrorist activities. As a result, there is an urgent need for rapid and reliable methods for the detection of trace amount of TNT for screenings in airport, analysis of forensic samples, and environmental analysis. Driven by the need to detect trace amounts of TNT from environmental samples, this article demonstrates a label-free, highly selective, and ultrasensitive para-aminothiophenol (p-ATP) modified gold nanoparticle based dynamic light scattering (DLS) probe for TNT recognition in 100 pico molar (pM) level from ethanol:acetonitile mixture solution. Because of the formation of strong π-donor-acceptor interaction between TNT and p-ATP, para-aminothiophenol attached gold nanoparticles undergo aggregation in the presence of TNT, which changes the DLS intensity tremendously. A detailed mechanism for significant DLS intensity change has been discussed. Our experimental results show that TNT can be detected quickly and accurately without any dye tagging in 100 pM level with excellent discrimination against other nitro compounds.

  10. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs

    PubMed Central

    Brady, Gerald J.; Way, Austin J.; Safron, Nathaniel S.; Evensen, Harold T.; Gopalan, Padma; Arnold, Michael S.

    2016-01-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G0 = 4e2/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm−1, fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm−1, which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm−1 and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies. PMID:27617293

  11. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.

    PubMed

    Brady, Gerald J; Way, Austin J; Safron, Nathaniel S; Evensen, Harold T; Gopalan, Padma; Arnold, Michael S

    2016-09-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G 0 = 4e (2)/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G 0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm(-1), fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G 0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm(-1), which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm(-1) and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies.

  12. Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions.

    PubMed

    Wang, Chao; Fuller, Mark E; Schaefer, Charles; Caplan, Jeffrey L; Jin, Yan

    2012-05-30

    2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are common contaminants around active military firing ranges. Dissolution of these compounds is usually the first step prior to their spreading in subsurface environments. Nevertheless, dissolution of individual TNT, RDX, and HMX under continuous flow conditions has not been well investigated. This study applied spectral confocal microscopy to observe and quantify the dissolution of TNT, RDX, and HMX (<100 μm crystals) in micromodel channels. Dissolution models were developed to describe the changes of their radii, surface areas, volumes, and specific surface areas as a function of time. Results indicated that a model incorporating a resistance term that accounts for the surface area in direct contact with the channel surfaces (and hence, was not exposed to the flowing water) described the dissolution processes well. The model without the resistance term, however, could not capture the observed data at the late stage of TNT dissolution. The model-fitted mass transfer coefficients were in agreement with the previous reports. The study highlights the importance of including the resistance term in the dissolution model and illustrates the utility of the newly developed spectral imaging method for quantification of mass transfer of TNT, RDX, and HMX. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The controlled release of simvastatin from TiO2 nanotubes to promote osteoblast differentiation and inhibit osteoclast resorption

    NASA Astrophysics Data System (ADS)

    Lai, Min; Jin, Ziyang; Yang, Xinyi; Wang, Huaying; Xu, Kui

    2017-02-01

    The aim of this study was to fabricate a novel drug-releasing bioactive platform that has excellent potential for improving osteoblast differentiation and inhibiting osteoclast resorption. TiO2 nanotubes (TNTs) with an outer diameter of around 70 nm were prepared by an anodization method. TNTs were filled with simvastatin (SV) and then coated using chitosan/gelatin multilayers (TNT-SV-LBL). The successful fabrication of TNT-SV-LBL substrates was confirmed by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement, respectively. The in vitro release behavior of simvastatin from TNT-SV-LBL substrates showed a sustained release as compared to the uncoated group. Osteoblasts adhering to TNT-SV-LBL substrates attached well and displayed significantly higher (p < 0.01) cell viability compared with the other substrates. More importantly, osteoblasts grown on TNT-SV-LBL substrates displayed a statistically significant (p < 0.01 or p < 0.05) increase in protein production levels of alkaline phosphatase (ALP), osteocalcin (OC) and mRNA expression of runt related transcription factor 2 (Runx2), ALP, collagen type I (Col I), osteopontin (OPN), OC and osteoprotegerin (OPG) compared to the other groups after 4, 7 and 14 days of culture, respectively. Additionally, multinuclear osteoclastic differentiation of RAW264.7 cells grown on TNT-SV-LBL substrates was inhibited as confirmed by tartrate-resistant acid phosphatase (TRAP) analysis. These results demonstrated that bio-functionalized substrates with SV and chitosan/gelatin multilayers have great potential for improving osteoblast differentiation, as well as inhibiting osteoclast formation. Therefore, these advanced surface and chemical capabilities make this substrate well suited for the development of a drug-releasing Ti implant for bone regeneration.

  14. Self-Consistent Physical Properties of Carbon Nanotubes in Composite Materials

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Frankland, S. J. V.; Hubert, P.; Saether, E.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    A set of relationships is developed for selected physical properties of single-walled carbon nanotubes (SWCN) and their hexagonal arrays as a function of nanotube size in terms of the chiral vector integer pair, (n,m). Properties include density, principal Young's modulus, and specific Young's modulus. Relationships between weight fraction and volume fraction of SWCN and their arrays are developed for polymeric mixtures.

  15. Towards TiO2 nanotubes modified by WO3 species: influence of ex situ crystallization of precursor on the photocatalytic activities of WO3/TiO2 composites

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Dong, Bohua; Su, Ge; Gao, Rongjie; Liu, Wei; Song, Liang; Cao, Lixin

    2015-09-01

    TiO2 nanotubes (TNT) crystallized at different temperatures were loaded with WO3 hydrate through the reaction between (NH4)6W7O24·6H2O and an aqueous solution of HCl. The photocatalytic activities of nanocomposites firstly increase and then decrease as a function of the crystallized temperature of the TNT precursor. The structural, morphologic and optical properties of WO3/TiO2 nanocomposites were also investigated in this study. The samples, initially anatase titania (573 K-773 K), presented phase transition to rutile titania at 873 K. With the crystallized temperature increasing, an evolution of samples morphology changing from nanotube-like structure to nanorod-like structure was observed. Meanwhile, the absorption edge of samples exhibited a red shift, and correspondingly their band gap decreased. Consistent with x-ray diffraction diffractograms, the existence of rutile titania as an impurity in the precursor TNT, crystallized at higher than 873 K, depressed photocatalytic activity evidently. As a result, the degradation rate of methyl orange (MO) increased with the samples crystallinity firstly, and then reduced due to the appearance of rutile titania. In our experimental conditions, the optimal photocatalytic activity was achieved for the sample crystalized at 773 K. Its degradation rate could reach 98.76% after 90 min UV light irradiation.

  16. Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters

    PubMed Central

    Bocharov, Grigory S.; Eletskii, Alexander V.

    2013-01-01

    Theoretical problems arising in connection with development and operation of electron field emitters on the basis of carbon nanotubes are reviewed. The physical aspects of electron field emission that underlie the unique emission properties of carbon nanotubes (CNTs) are considered. Physical effects and phenomena affecting the emission characteristics of CNT cathodes are analyzed. Effects given particular attention include: the electric field amplification near a CNT tip with taking into account the shape of the tip, the deviation from the vertical orientation of nanotubes and electrical field-induced alignment of those; electric field screening by neighboring nanotubes; statistical spread of the parameters of the individual CNTs comprising the cathode; the thermal effects resulting in degradation of nanotubes during emission. Simultaneous consideration of the above-listed effects permitted the development of the optimization procedure for CNT array in terms of the maximum reachable emission current density. In accordance with this procedure, the optimum inter-tube distance in the array depends on the region of the external voltage applied. The phenomenon of self-misalignment of nanotubes in an array has been predicted and analyzed in terms of the recent experiments performed. A mechanism of degradation of CNT-based electron field emitters has been analyzed consisting of the bombardment of the emitters by ions formed as a result of electron impact ionization of the residual gas molecules. PMID:28348342

  17. Assessment of the TNT- and AMPA-Induced Changes in Vegetation Morphology and Bio-physical Properties

    NASA Astrophysics Data System (ADS)

    Campbell, P. K.; Middleton, E.; Corp, L.

    2009-12-01

    Currently, there is no satisfactory method for locating unexploded ordinance or to mitigate the environmental impacts of leaked TNT. Non-exploded TNT-containing land mines deployed during military training exercises eventually leak TNT into the soils, where it is partially degraded into nitrate and toluene, a carcinogen. Environmental stresses alter plant physiology, affecting photosynthesis as well as the production of protective chemicals such as phenolic compounds which fluoresce in the blue/green spectrum. Changes in the fluorescence and reflectance spectral signatures of vegetation occur concurrently with the changes in plant vigor and chemical constituents. Thus, monitoring of vegetation vigor based on fluorescence and reflectance measurements could provide the means for detecting contamination from trinitrotoluene (TNT), a common compound contained in land mines. The goal of this study was to evaluate the capability of fluorescence sensing systems to remotely detect the presence of TNT-related compounds sequestered in vegetation growing on TNT contaminated soils. Using instrumentation and methodologies that utilize reflectance and actively induced fluorescence associated with “stead-state” emissions, we conducted experiments on four experimental species - two of which have the C4 photosynthetic pathway and two of which have the more common C3 pathway. The experimental plants were grown outdoors in 2 gallon pots in a 75:25 mixture of white quartz sand and perlite, with planted pots placed in larger pots to retain water and TNT solution added. Plants were randomly assigned to treatments for twice weekly applications of 0, 10, and 20 μl/l TNT solutions [doses ~30 μl/l are toxic] and watered daily as necessary. Our findings, using ChlF spectra, indicate statistically significant differences between TNT treated and control samples in the blue and green regions. Maximum treatment separation was achieved using 280Ex and measuring emissions in the blue

  18. Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives.

    PubMed

    Ma, Yingxin; Wang, Leyu

    2014-03-01

    This paper reports a rapid, sensitive, and selective nanosensor for the detection of 2,4,6-trinitrotoluene (TNT) in the mixture aqueous solution of nitroaromatics independent of immunoassay or molecularly imprinted technology and complicated instruments. Despite many strategies including immunoassay and molecularly imprinted technologies been successfully developed for the detection of TNT, it is not easy to differentiate TNT from 2,4,6-trinitrophenol (TNP) due to their very similar chemical structures and properties. In this work, the amine functionalized NaYF4:Yb(3+)/Er(3+) upconversion luminescence nanoparticles (UCNPs) whose excitation (980 nm) and emission (543 nm) wavelength were far from the absorbance bands of other usual interference nitroaromatics including 2,4-dinitrotoluene (DNT), nitrobenzene (NB), and especially TNP, were utilized as the luminescent nanosensors for TNT luminescence detection. To make these UCNPs highly water stable and render the charge transfer from UCNPs to TNT easier, amino groups were introduced onto the surface of the UCNPs by coating a polymer layer of ethylene glycol dimethacrylate (EGDMA) hybridized with 3-aminopropyltriethoxysilane (APTS). After binding with TNT through amino groups on the UCNPs, the naked eye visible green upconversion luminescence of the UCNPs was dramatically quenched and thus a sensitive UC luminescence nanosensor was developed for TNT detection. However, other nitroaromatics including TNP, DNT, and NB have no influence on the green UC luminescence and thus no influence on the TNT detection. The luminescence intensity is negatively proportional to the concentration of TNT in the range of 0.01-9.0 µg/mL with the 3σ limit of detection (LOD) of 9.7 ng/mL. The present studies provide a novel and facile strategy to fabricate the upconversion luminescence sensors with highly selective recognition ability in aqueous media and are desirable for label free analysis of TNT in mixed solution independent of

  19. Vertically-aligned BCN Nanotube Arrays with Superior Performance in Electrochemical capacitors

    PubMed Central

    Zhou, Junshuang; Li, Na; Gao, Faming; Zhao, Yufeng; Hou, Li; Xu, Ziming

    2014-01-01

    Electrochemical capacitors (EC) have received tremendous interest due to their high potential to satisfy the urgent demand in many advanced applications. The development of new electrode materials is considered to be the most promising approach to enhance the EC performance substantially. Herein, we present a high-capacity capacitor material based on vertically-aligned BC2N nanotube arrays (VA-BC2NNTAs) synthesized by low temperature solvothermal route. The obtained VA-BC2NNTAs display the good aligned nonbuckled tubular structure, which could indeed advantageously enhance capacitor performance. VA-BC2NNTAs exhibit an extremely high specific capacitance, 547 Fg−1, which is about 2–6 times larger than that of the presently available carbon-based materials. Meanwhile, VA-BC2NNTAs maintain an excellent rate capability and high durability. All these characteristics endow VA-BC2NNTAs an alternative promising candidate for an efficient electrode material for electrochemical capacitors (EC). PMID:25124300

  20. Carbon-Nanotube-Based Electrodes for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, M.

    2008-01-01

    A nanotube array based on vertically aligned nanotubes or carbon nanofibers has been invented for use in localized electrical stimulation and recording of electrical responses in selected regions of an animal body, especially including the brain. There are numerous established, emerging, and potential applications for localized electrical stimulation and/or recording, including treatment of Parkinson s disease, Tourette s syndrome, and chronic pain, and research on electrochemical effects involved in neurotransmission. Carbon-nanotube-based electrodes offer potential advantages over metal macroelectrodes (having diameters of the order of a millimeter) and microelectrodes (having various diameters ranging down to tens of microns) heretofore used in such applications. These advantages include the following: a) Stimuli and responses could be localized at finer scales of spatial and temporal resolution, which is at subcellular level, with fewer disturbances to, and less interference from, adjacent regions. b) There would be less risk of hemorrhage on implantation because nano-electrode-based probe tips could be configured to be less traumatic. c) Being more biocompatible than are metal electrodes, carbon-nanotube-based electrodes and arrays would be more suitable for long-term or permanent implantation. d) Unlike macro- and microelectrodes, a nano-electrode could penetrate a cell membrane with minimal disruption. Thus, for example, a nanoelectrode could be used to generate an action potential inside a neuron or in proximity of an active neuron zone. Such stimulation may be much more effective than is extra- or intracellular stimulation via a macro- or microelectrode. e) The large surface area of an array at a micron-scale footprint of non-insulated nanoelectrodes coated with a suitable electrochemically active material containing redox ingredients would make it possible to obtain a pseudocapacitance large enough to dissipate a relatively large amount of electric charge

  1. Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces

    DOEpatents

    Hauge, Robert H [Houston, TX; Xu, Ya-Qiong [Houston, TX; Shan, Hongwei [Houston, TX; Nicholas, Nolan Walker [South Charleston, WV; Kim, Myung Jong [Houston, TX; Schmidt, Howard K [Cypress, TX; Kittrell, W Carter [Houston, TX

    2012-02-28

    A new and useful nanotube growth substrate conditioning processes is herein disclosed that allows the growth of vertical arrays of carbon nanotubes where the average diameter of the nanotubes can be selected and/or controlled as compared to the prior art.

  2. Interesting properties of ferroelectric Pb(Zr0.5Ti0.5)O3 nanotube array embedded in matrix medium

    NASA Astrophysics Data System (ADS)

    Adhikari, Rajendra; Fu, Huaxiang

    2013-07-01

    Finite-temperature first-principles based simulations are used to determine the structural and polarization properties of ferroelectric Pb(Zr0.5Ti0.5)O3 (PZT) nanotube array embedded in matrix medium of different ferroelectric strengths. Various interesting properties are found, including (i) that the system can behave either 3D-like, or 2D-like, or 1D-like; and (ii) the existence of an unusual structural phase in which 180° stripe domain coexists with vortex. Furthermore, we show in PZT tube array that a vortex phase can spontaneously transform into a ferroelectric phase of polarization by temperature alone, without applying external electric fields. Microscopic insights for understanding these properties are provided.

  3. Demonstration of four immunoassay formats using the array biosensor

    NASA Technical Reports Server (NTRS)

    Sapsford, Kim E.; Charles, Paul T.; Patterson, Charles H Jr; Ligler, Frances S.

    2002-01-01

    The ability of a fluorescence-based array biosensor to measure and quantify the binding of an antigen to an immobilized antibody has been demonstrated using the four different immunoassay formats: direct, competitive, displacement, and sandwich. A patterned array of antibodies specific for 2,4,6-trinitrotoluene (TNT) immobilized onto the surface of a planar waveguide and used to measure signals from different antigen concentrations simultaneously. For direct, competitive, and displacement assays, which are one-step assays, measurements were obtained in real time. Dose-response curves were calculated for all four assay formats, demonstrating the array biosensor's ability to quantify the amount of antigen present in solution.

  4. Physicochemical characterisation and investigation of the bonding mechanisms of API-titanate nanotube composites as new drug carrier systems.

    PubMed

    Sipos, Barbara; Pintye-Hódi, Klára; Kónya, Zoltán; Kelemen, András; Regdon, Géza; Sovány, Tamás

    2017-02-25

    Titanate nanotube (TNT) has recently been explored as a new carrier material for active pharmaceutical ingredients (API). The aim of the present work was to reveal the physicochemical properties of API-TNT composites, focusing on the interactions between the TNTs and the incorporated APIs. Drugs belonging to different Biopharmaceutical Classification System (BCS) classes were loaded into TNTs: diltiazem hydrochloride (BCS I.), diclofenac sodium (BCS II.), atenolol (BCS III.) and hydrochlorothiazide (BCS IV.). Experimental results demonstrated that it is feasible for spiral cross-sectioned titanate nanotubes to carry drugs and maintain their bioactivity. The structural properties of the composites were characterized by a range of analytical techniques, including FT-IR, DSC, TG-MS, etc. The interactions between APIs and TNTs were identified as electrostatic attractions, mainly dominated by hydrogen bonds. Based on the results, it can be stated that the strength of the association depends on the hydrogen donor strength of the API. The drug release of incorporated APIs was evaluated from compressed tablets and compared to that of pure APIs. Differences noticed in the dissolution profiles due to incorporation showed a correlation with the strength of interactions between the APIs and the TNTs observed in the above analytical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Genotoxicity and potential carcinogenicity of 2,4,6-TNT trinitrotoluene: structural and toxicological considerations.

    PubMed

    Bolt, Hermann M; Degen, Gisela H; Dorn, Susanne B; Plöttner, Sabine; Harth, Volker

    2006-01-01

    Environmental contamination with 2,4,6-TNT (trinitrotoluene) represents a worldwide problem. Concern for carcinogenicity can be derived from chemically related compounds, especially the dinitrotoluenes. In the metabolism of TNT, the reductive routes are preponderant. The main urinary metabolites of TNT are 4-amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene. In humans exposed to TNT, the formation of hemoglobin adducts of the amino-dinitrotoluenes is in general concordance with the ratio of urinary excretion. The variations in quantities of excreted metabolites among the different occupational cohorts studied are likely explained by the different routes of exposure to TNT, including dermal uptake. Most studies show that urinary excretion of the amino-dinitrotoluenes (4-amino-dinitrotoluene plus 2-amino-dinitrotoluene) in a range of 1 to 10 mg L(-1) (5-50 microM) are not uncommon--for instance in persons employed with the disposal of military waste. Trinitotoluene is mutagenic in Salmonella typhimurium strains TA98 and TA100, with and without exogenous metabolic activation. Mutagenic activity has been found in urine from workers who were occupationally exposed to TNT. An unpublished 2-year study was reported in 1984 by the IIT Research Institute, Chicago, IL. Fischer 344 rats were fed diets containing 0.4, 2.0, 10, or 50 mg/kg TNT per day. In the urinary bladder, hyperplasia (12 of 47 animals p < .01) and carcinoma (11 of 47 animals, p < .05) were observed at significant levels in high-dose (50 mg kg(-1)) females and in one or two females, respectively, at 10 mg kg(-1). Taking all the available evidence together, the appropriate precautions should be taken.

  6. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  7. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong [Berkeley, CA; He, Rongrui [El Cerrito, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yiying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA

    2008-04-08

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  8. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yiying; Li, Deyu; Majumdar, Arun

    2010-01-10

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  9. Honey bees (Apis mellifera) as explosives detectors: exploring proboscis extension reflex conditioned response to trinitrotolulene (TNT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-mccabe, Kirsten J; Wingo, Robert M; Haarmann, Timothy K

    We examined honey bee's associative learning response to conditioning with trinitrotolulene (TNT) vapor concentrations generated at three temperatures and their ability to be reconditioned after a 24 h period. We used classical conditioning of the proboscis extension (PER) in honey bees using TNT vapors as the conditioned stimulus and sucrose as the unconditioned stimulus. We conducted fifteen experimental trials with an explosives vapor generator set at 43 C, 25 C and 5 C, producing three concentrations of explosives (1070 ppt, 57 ppt, and 11 ppt). Our objective was to test the honey bee's ability to exhibit a conditioned response tomore » TNT vapors at all three concentrations by comparing the mean percentage of honey bees successfully exhibiting a conditioned response within each temperature group. Furthermore, we conducted eight experimental trials to test the honey bee's ability to retain their ability to exhibit a conditioned response to TNT after 24h period by comparing the mean percentage of honey bees with a conditioned response TNT on the first day compared to the percentage of honey bees with a conditioned response to TNT on the second day. Results indicate that there was no significant difference between the mean percentage of honey bees with a conditioned response to TNT vapors between three temperature groups. There was a significant difference between the percentage of honey bees exhibiting conditioned response on the first day of training compared to the percentage of honey bees exhibiting conditioned response 24 h after training. Our experimental results indicate that honey bees can be trained to exhibit a conditioned response to a range of TNT concentrations via PER However, it appears that the honey bee's ability to retain the conditioned response to TNT vapors after 24h significantly decreases.« less

  10. Growing Aligned Carbon Nanotubes for Interconnections in ICs

    NASA Technical Reports Server (NTRS)

    Li, Jun; Ye, Qi; Cassell, Alan; Ng, Hou Tee; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2005-01-01

    A process for growing multiwalled carbon nanotubes anchored at specified locations and aligned along specified directions has been invented. Typically, one would grow a number of the nanotubes oriented perpendicularly to a silicon integrated-circuit (IC) substrate, starting from (and anchored on) patterned catalytic spots on the substrate. Such arrays of perpendicular carbon nanotubes could be used as electrical interconnections between levels of multilevel ICs. The process (see Figure 1) begins with the formation of a layer, a few hundred nanometers thick, of a compatible electrically insulating material (e.g., SiO(x) or Si(y)N(z) on the silicon substrate. A patterned film of a suitable electrical conductor (Al, Mo, Cr, Ti, Ta, Pt, Ir, or doped Si), having a thickness between 1 nm and 2 m, is deposited on the insulating layer to form the IC conductor pattern. Next, a catalytic material (usually, Ni, Fe, or Co) is deposited to a thickness between 1 and 30 nm on the spots from which it is desired to grow carbon nanotubes. The carbon nanotubes are grown by plasma-enhanced chemical vapor deposition (PECVD). Unlike the matted and tangled carbon nanotubes grown by thermal CVD, the carbon nanotubes grown by PECVD are perpendicular and freestanding because an electric field perpendicular to the substrate is used in PECVD. Next, the free space between the carbon nanotubes is filled with SiO2 by means of CVD from tetraethylorthosilicate (TEOS), thereby forming an array of carbon nanotubes embedded in SiO2. Chemical mechanical polishing (CMP) is then performed to remove excess SiO2 and form a flat-top surface in which the outer ends of the carbon nanotubes are exposed. Optionally, depending on the application, metal lines to connect selected ends of carbon nanotubes may be deposited on the top surface. The top part of Figure 2 is a scanning electron micrograph (SEM) of carbon nanotubes grown, as described above, on catalytic spots of about 100 nm diameter patterned by

  11. Fabrication of uniformly dispersed Ag nanoparticles loaded TiO{sub 2} nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Junhui; Zhang, Shengsen; Wang, Hongjuan

    2014-12-15

    Graphical abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method, which exhibited the enhanced photoelectrochemical and photocatalytic performances under visible-light irradiation due to the more effective separation of photo-generated electron–hole pairs and faster interfacial charge transfer. - Highlights: • Highly dispersed Ag nanoparticles (NPs) are successfully prepared by polyol method. • Ag NPs are uniformly loaded on the surface of the TiO{sub 2} nanotube arrays (NTs). • Ag/TiO{sub 2}-NTs exhibit the enhanced photocatalytic activity under visible-light. • The enhanced photocurrent ismore » explained by electrochemical impedance spectroscopy. - Abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method. The as-prepared Ag/TiO{sub 2}-NTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–vis diffusion reflectance spectroscopy. Photoelectrochemical behaviors were investigated via photocurrent response and electrochemical impedance spectroscopy (EIS). Photocatalytic activity of Ag/TiO{sub 2}-NTs was evaluated by degradation of acid orange II under visible light irradiation. The results showed that photocatalytic efficiency of Ag/TiO{sub 2}-NTs is more than 5 times higher than that of pure TiO{sub 2} NTs. Comparing with the electrochemical deposition method, the photocatalytic activity of Ag/TiO{sub 2}-NTs prepared by polyol method has been obviously increased.« less

  12. Exopolymer biosynthesis and proteomic changes of Pseudomonas sp. HK-6 under stress of TNT (2,4,6-trinitrotoluene).

    PubMed

    Lee, Bheong-Uk; Park, Sung-Chul; Cho, Yun-Seok; Oh, Kye-Heon

    2008-11-01

    Scanning electron microscopy revealed pores and wrinkles on the surface of Pseudomonas sp. HK-6 cells grown in Luria Bertani (LB) medium containing 0.5 mM TNT (2,4,6-trinitrotoluene). Exopolymer connections were also observed on the wild-type HK-6 cells but not on the algA mutant cells. In addition, the amount of exopolymer from HK strain increased from 90 to 210 microg/mL under TNT stress, whereas the algA mutant produced approximately 30 microg/mL, and its exopolymer production was little increased by TNT stress. These results indicate that TNT stress induced exopolymer production with alginate as a major component. The algA mutant degraded TNT more slowly than the wild-type HK-6 strain. HK-6 was able to completely degrade 0.5 mM TNT within 8 days, whereas algA mutant only achieved approximately 40% within the same time period. Even after 20 days, no more than 80% of TNT was degraded. According to analyses of proteomes of HK-6 and algA mutant cells grown under TNT stress or no stress, several proteins (KinB, AlgB, Alg8, and AlgL) in alginate biosynthesis were only highly induced by both strains under TNT stress. Interestingly, two stress-shock proteins (SSPs), GroEL and RpoH, were more highly expressed in the algA mutant than the HK-6 strain. The algA mutant was rendered more vulnerable to environmental stress and had reduced ability to metabolize TNT in the absence of alginate synthesis.

  13. NMR Studies on the Aqueous Phase Photochemical Degradation of TNT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorn, Kevin A.; Cox, Larry G.

    2008-04-06

    Aqueous phase photochemical degradation of 2,4,6-trinitrotoluene (TNT) is an important pathway in several environments, including washout lagoon soils, impact craters from partially detonated munitions that fill with rain or groundwater, and shallow marine environments containing unexploded munitions that have corroded. Knowledge of the degradation products is necessary for compliance issues on military firing ranges and formerly used defense sites. Previous laboratory studies have indicated that UV irradiation of aqueous TNT solutions results in a multicomponent product mixture, including polymerization compounds, that has been only partially resolved by mass spectrometric analyses. This study illustrates how a combination of solid and liquidmore » state 1H, 13C, and 15N NMR spectroscopy, including two dimensional analyses, provides complementary information on the total product mixture from aqueous photolysis of TNT, and the effect of reaction conditions. Among the degradation products detected were amine, amide, azoxy, azo, and carboxylic acid compounds.« less

  14. Carbon Nanotube Tower-Based Supercapacitor

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  15. Uptake and biotransformation of 2,4,6-trinitrotoluene (TNT) by microplantlet suspension culture of the marine red macroalga Portieria hornemannii.

    PubMed

    Cruz-Uribe, Octavio; Rorrer, Gregory L

    2006-02-20

    Microplantlets of the marine red macroalga Portieria hornemannii efficiently removed the explosive compound 2,4,6-trinitrotoluene (TNT) from seawater. Photosynthetic, axenic microplantlets (1.2 g FW/L) were challenged with enriched seawater medium containing dissolved TNT at concentrations of 1.0, 10, and 50 mg/L. At 22 degrees C and initial TNT concentrations of 10 mg/L or less, TNT removal from seawater was 100% within 72 h, and the first-order rate constant for TNT removal ranged from 0.025 to 0.037 L/gFW h under both illuminated conditions (153 microE/m(2)s, 14:10 LD photoperiod) and dark conditions. Two immediate products of TNT biotransformation, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dintrotoluene, were identified in the liquid culture medium, with a maximum material balance recovery of 29 mole%. Only trace levels of these products and residual TNT were found within the fresh cell biomass. Removal of TNT by P. hornemannii microplantlets at initial concentrations of 1.0 or 10 mg/L did not affect the respiration rate. At an initial TNT concentration of 10 mg/L, net photosynthesis decreased towards zero, commensurate with the removal of dissolved TNT from seawater, whereas at an initial TNT concentration of 1.0 mg/L, the net photosynthesis rate was not affected. Copyright 2005 Wiley Periodicals, Inc.

  16. Transport of explosives I: TNT in soil and its equilibrium vapor

    NASA Astrophysics Data System (ADS)

    Baez, Bibiana; Correa, Sandra N.; Hernandez-Rivera, Samuel P.; de Jesus, Maritza; Castro, Miguel E.; Mina, Nairmen; Briano, Julio G.

    2004-09-01

    Landmine detection is an important task for military operations and for humanitarian demining. Conventional methods for landmine detection involve measurements of physical properties. Several of these methods fail on the detection of modern mines with plastic enclosures. Methods based on the detection signature explosives chemicals such as TNT and DNT are specific to landmines and explosive devices. However, such methods involve the measurements of the vapor trace, which can be deceiving of the actual mine location because of the complex transport phenomena that occur in the soil neighboring the buried landmine. We report on the results of the study of the explosives subject to similar environmental conditions as the actual mines. Soil samples containing TNT were used to study the effects of aging, temperature and moisture under controlled conditions. The soil used in the investigation was Ottawa sand. A JEOL GCMate II gas chromatograph +/- mass spectrometer coupled to a Tunable Electron Energy Monochromator (TEEM-GC/MS) was used to develop the method of analysis of explosives under enhanced detection conditions. Simultaneously, a GC with micro cell 63Ni, Electron Capture Detector (μECD) was used for analysis of TNT in sand. Both techniques were coupled with Solid-Phase Micro Extraction (SPME) methodology to collect TNT doped sand samples. The experiments were done in both, headspace and immersion modes of SPME for sampling of explosives. In the headspace experiments it was possible to detect appreciable TNT vapors as early as 1 hour after of preparing the samples, even at room temperature (20 °C). In the immersion experiments, I-SPME technique allowed for the detection of concentrations as low as 0.010 mg of explosive per kilogram of soil.

  17. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays

    NASA Astrophysics Data System (ADS)

    Landry, Markita Patricia; Ando, Hiroki; Chen, Allen Y.; Cao, Jicong; Kottadiel, Vishal Isaac; Chio, Linda; Yang, Darwin; Dong, Juyao; Lu, Timothy K.; Strano, Michael S.

    2017-05-01

    A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.

  18. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    PubMed

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  19. Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula.

    PubMed

    d'Erfurth, Isabelle; Cosson, Viviane; Eschstruth, Alexis; Lucas, Helene; Kondorosi, Adam; Ratet, P

    2003-04-01

    The tobacco element, Tnt1, is one of the few active retrotransposons in plants. Its transposition is activated during protoplast culture in tobacco and tissue culture in the heterologous host Arabidopsis thaliana. Here, we report its transposition in the R108 line of Medicago truncatula during the early steps of the in vitro transformation-regeneration process. Two hundred and twenty-five primary transformants containing Tnt1 were obtained. Among them, 11.2% contained only transposed copies of the element, indicating that Tnt1 transposed very early and efficiently during the in vitro transformation process, possibly even before the T-DNA integration. The average number of insertions per transgenic line was estimated to be about 15. These insertions were stable in the progeny and could be separated by segregation. Inspection of the sequences flanking the insertion sites revealed that Tnt1 had no insertion site specificity and often inserted in genes (one out of three insertions). Thus, our work demonstrates the functioning of an efficient transposable element in leguminous plants. These results indicate that Tnt1 can be used as a powerful tool for insertion mutagenesis in M. truncatula.

  20. Mutagenic activity and metabolites in the urine of workers exposed to trinitrotoluene (TNT).

    PubMed Central

    Ahlborg, G; Einistö, P; Sorsa, M

    1988-01-01

    Urine samples taken after work and after a free weekend from 50 workers employed in various activities in a chemical plant manufacturing explosives were analysed. On the basis of hygienic surveys, the subjects were divided into three categories of exposure to trinitrotoluene (TNT). The urine analyses consisted of gas chromatographic identification of TNT and its two metabolites, 4-ADNT and 2-ADNT, and a determination of the mutagenic activity. Two frame shift detector strains of Salmonella typhimurium were used, TA 98 and TA 98 NR, the latter being deficient in endogenous nitroreductase activity. On the basis of previous results on TNT mutagenicity, no exogeneous metabolic system was used to test the urine concentrates. Both tester strains showed that the mean urinary mutagenic activity was higher in the after work samples than in post weekend samples from the same subjects, showing that bacterial nitroreductase activity was not significantly responsible for the mutagenicity, although the response was higher with strain TA 98 than with TA 98 NR. The interindividual variation in urine mutagenicity was high, however, and the difference between the two sampling times was statistically significant (p less than 0.05) only for the high exposed group (workers in trotyl foundry and sieve house). Correlation between urinary mutagenicity and concentration of TNT in urine was poor; correlation was significant only with the urinary concentration of 4-ADNT. The correlation between urinary TNT and both metabolites was good (p less than 0.001). These results suggest that analysis of 4-ADNT in urine would be a sufficient biological measure for controlling exposure to TNT. PMID:3378017

  1. Femtosecond laser modification of an array of vertically aligned carbon nanotubes intercalated with Fe phase nanoparticles

    PubMed Central

    2013-01-01

    Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed. PMID:24004518

  2. Femtosecond laser modification of an array of vertically aligned carbon nanotubes intercalated with Fe phase nanoparticles.

    PubMed

    Labunov, Vladimir; Prudnikava, Alena; Bushuk, Serguei; Filatov, Serguei; Shulitski, Boris; Tay, Beng Kang; Shaman, Yury; Basaev, Alexander

    2013-09-03

    Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed.

  3. Treatment of 2,4,6-trinitrotoluene (TNT) red water by vacuum distillation.

    PubMed

    Zhao, Quanlin; Ye, Zhengfang; Zhang, Mohe

    2010-08-01

    2,4,6-Trinitrotoluene (TNT) red water from Chinese explosive industry was treated by vacuum distillation. The water quality before and after distillation was evaluated using high performance liquid chromatograph, UV-vis spectroscopy, Gas Chromatography/Mass Spectroscopy (GC/MS) and other physical and chemical analyses. The acute toxicity of TNT red water and its distillate was evaluated by determining the luminescence inhibition of Vibrio qinghaiensis sp. Nov. The results showed that the parameters except pH of the distillate met the criterion specified by the Chinese discharge standard for water pollutants from ordnance industry. Distillation removed chemical oxygen demand almost completely and the chrominance was reduced from 100,000 degrees to 17 degrees . The concentrations of 2,4-dinitrotoluene-3-sulfonate and 2,4-dinitrotoluene-5-sulfonate decreased from 20 x 10(3) and 31 x 10(3)mg L(-1) to 1.3 and 1.8 mg L(-1), respectively. GC/MS results showed that most of the organic components of TNT red water can be removed by distillation. The acute toxicity of water sample after distillation reduced 96%, compared with that of unprocessed TNT red water. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    DOE PAGES

    Han, Catherine Y.; Xiao, Zhi-Li; Wang, H. Hau; ...

    2009-01-01

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbonmore » nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.« less

  5. Aerobic biodegradation of 2,4,6-trinitrotoluene (TNT) by Bacillus cereus isolated from contaminated soil.

    PubMed

    Mercimek, H Aysun; Dincer, Sadık; Guzeldag, Gulcihan; Ozsavli, Aysenur; Matyar, Fatih

    2013-10-01

    In this study, biological degradation of 2,4,6-trinitrotoluene (TNT) which is very highly toxic environmentally and an explosive in nitroaromatic character was researched in minimal medium by Bacillus cereus isolated from North Atlantic Treaty Organization (NATO) TNT-contaminated soils. In contrast to most previous studies, the capability of this bacteria to transform in liquid medium containing TNT was investigated. During degradation, treatment of TNT was followed by high-performance liquid chromatography (HPLC) and achievement of degradation was calculated as percentage. At an initial concentration of 50 and 75 mg L(-1), TNT was degraded respectively 68 % and 77 % in 96 h. It transformed into 2,4-dinitrotoluene and 4-aminodinitrotoluene derivates, which could be detected as intermediate metabolites by using thin-layer chromatography and gas chromatography-mass spectrometry analyses. Release of nitrite and nitrate ions were searched by spectrophotometric analyses. Depending upon Meisenheimer complex, while nitrite production was observed, nitrate was detected in none of the cultures. Results of our study propose which environmental pollutant can be removed by using microorganisms that are indigenous to the contaminated site.

  6. Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells.

    PubMed

    Sun, Lidong; Zhang, Sam; Sun, Xiaowei; He, Xiaodong

    2010-07-01

    Highly ordered TiO2 nanotube arrays are superior photoanodes for dye-sensitized solar cells (DSSCs) due to reduced intertube connections, vectorial electron transport, suppressed electron recombination, and enhanced light scattering. Performance of the cells is greatly affected by tube geometry, such as wall thickness, length, inner diameter and intertube spacing. In this paper, effect of geometry on the photovoltaic characteristics of DSSCs is reviewed. The nanotube wall has to be thick enough for a space charge layer to form for faster electron transportation and reduced recombination. When the tube wall is too thin to support the space charge layer, electron transport in the nanotubes will be hindered and reduced to that similar in a typical nanoparticle photoanode, and recombination will easily take place. Length of the nanotubes also plays a role: longer tube length is desired because of more dye loading, however, tube length longer than the electron diffusion length results in low collecting efficiency, which in turn, results in low short-circuit current density and thus low overall conversion efficiency. The tube inner diameter (pore size) affects the conversion efficiency through effective surface area, i.e., larger pore size gives rise to smaller surface area for dye adsorption, which results in low short-circuit current density under the same light soaking. Another issue that may seriously affect the conversion efficiency is whether each of the tube stands alone (free from connecting to the neighboring tubes) to facilitate infiltration of dye and fully use the outer surface area.

  7. Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; Bronikowski, Michael; Luong, Edward; Manohara, Harish

    2008-01-01

    A continuing effort to develop carbon-nanotube-based field emitters (cold cathodes) as high-current-density electron sources has yielded an optimized device design and a fabrication scheme to implement the design. One major element of the device design is to use a planar array of bundles of carbon nanotubes as the field-emission tips and to optimize the critical dimensions of the array (principally, heights of bundles and distances between them) to obtain high area-averaged current density and high reliability over a long operational lifetime a concept that was discussed in more detail in Arrays of Bundles of Carbon Nanotubes as Field Emitters (NPO-40817), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 58. Another major element of the design is to configure the gate electrodes (anodes used to extract, accelerate, and/or focus electrons) as a ring that overhangs a recess wherein the bundles of nanotubes are located, such that by virtue of the proximity between the ring and the bundles, a relatively low applied potential suffices to generate the large electric field needed for emission of electrons.

  8. Coupling of 2,4,6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta.

    PubMed

    Nyanhongo, Gibson S; Couto, Susana Rodríguez; Guebitz, Georg M

    2006-06-01

    During degradation of trinitrotoluene (TNT) by Trametes modesta, addition of humic monomers prevented the accumulation of all major stable TNT metabolites (aminodinitrotoluenes [AMDNT]) by at least 92% in the presence of 200 mM ferulic acid and guaiacol. Acute toxicity tests with individual TNT metabolites and in T. modesta cultures supplemented with 200 microM TNT demonstrated that the TNT biodegradation process lead to less toxic metabolites. Toxicity decreased in the order TNT>4-HADNT (4-hydroxylaminodinitrotoluene)>2-HADNT>2,6-DNT (2,6-dinitrotoluene)>2',2',6,6-azoxytetranitrotoluene>4-AMDNT>2-AMDNT>2,4-diamninonitrotoluene (2,4-DAMNT) while 2,4-DNT and 2,6-DAMNT were the least toxic. Ferulic acid is the best candidate for immobilization TNT biodegradation metabolites since it prevented the accumulation of AMDNTs in cultures during TNT biodegradation and its products were less toxic. All humic monomers were very effective in immobilizing 2-HADNT [100%], 4-HADNT [100%] and 2,2,6,6-azoxytetranitrotoluene [100%]. Two distinct laccase isoenzymes (LTM1 and LTM2) potentially involved in immobilization of TNT degradation products were purified to electrophoretic homogeneity. LTM1 and LTM2 have molecular weights of 77.6 and 52.5 kDa, are 18% and 24% glycosylated, have pI values of 3.6 and 4.2, respectively. Both enzymes oxidized all the typical laccase substrates tested. LTM1 showed highest kinetic constants (K(m)=0.03 microM; K(cat)=8.8 4x 10(7)s(-1)) with syringaldazine as substrate.

  9. The Surface Interface Characteristics of Vertically Aligned Carbon Nanotube and Graphitic Carbon Fiber Arrays Grown by Thermal and Plasma Enhanced Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.

    2002-01-01

    The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.

  10. Broadband Light Collection Efficiency Enhancement of Carbon Nanotube Excitons Coupled to Metallo-Dielectric Antenna Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayan, Kamran; Rabut, Claire; Kong, Xiaoqing

    The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) upmore » to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.« less

  11. Incorporation of 2,4,6-trinitrotoluene (TNT) transforming bacteria into explosive formulations.

    PubMed

    Nyanhongo, G S; Aichernig, N; Ortner, M; Steiner, Walter; Guebitz, G M

    2009-06-15

    Pseudomonas putida GG04 and Bacillus SF have been successfully incorporated into an explosive formulation to enhance biotransformation of TNT residues and/or explosives which fail to detonate due to technical faults. The incorporation of the microorganisms into the explosive did not affect the quality of the explosive (5 years storage) in terms of detonation velocity while complete biotransformation of TNT moieties upon transfer in liquid media was observed after 5 days. The incorporated microorganisms reduced TNT sequentially leading to the formation of hydroxylaminodinitrotoluenes (HADNT), 4-amino-2,6-dinitrotoluenes; 2-amino-4,6-dinitrotoluenes, different azoxy compounds; 2,6-diaminonitrotoluenes (2,4-DAMNT) and 2,4-diaminonitrotoluenes (2,6-DAMNT). However, the accumulation of AMDNT and DAMNT (major dead-end metabolites) was effectively prevented by incorporating guaiacol and catechol during the biotransformation process.

  12. Controllable Synthesis of TiO2@Fe2O3 Core-Shell Nanotube Arrays with Double-Wall Coating as Superb Lithium-Ion Battery Anodes

    PubMed Central

    Zhong, Yan; Ma, Yifan; Guo, Qiubo; Liu, Jiaqi; Wang, Yadong; Yang, Mei; Xia, Hui

    2017-01-01

    Highlighted by the safe operation and stable performances, titanium oxides (TiO2) are deemed as promising candidates for next generation lithium-ion batteries (LIBs). However, the pervasively low capacity is casting shadow on desirable electrochemical behaviors and obscuring their practical applications. In this work, we reported a unique template-assisted and two-step atomic layer deposition (ALD) method to achieve TiO2@Fe2O3 core-shell nanotube arrays with hollow interior and double-wall coating. The as-prepared architecture combines both merits of the high specific capacity of Fe2O3 and structural stability of TiO2 backbone. Owing to the nanotubular structural advantages integrating facile strain relaxation as well as rapid ion and electron transport, the TiO2@Fe2O3 nanotube arrays with a high mass loading of Fe2O3 attained desirable capacity of ~520 mA h g−1, exhibiting both good rate capability under uprated current density of 10 A g−1 and especially enhanced cycle stability (~450 mA h g−1 after 600 cycles), outclassing most reported TiO2@metal oxide composites. The results not only provide a new avenue for hybrid core-shell nanotube formation, but also offer an insight for rational design of advanced electrode materials for LIBs. PMID:28098237

  13. Self-organized TiO2 nanotube arrays in the photocatalytic degradation of methylene blue under UV light irradiation

    NASA Astrophysics Data System (ADS)

    Chung, Eun Hyuk; Baek, Seong Rim; Yu, Seong Mi; Kim, Jong Pil; Hong, Tae Eun; Kim, Hyun Gyu; Bae, Jong-Seong; Jeong, Euh Duck; Khan, F. Nawaz; Jung, Ok-sang

    2015-04-01

    Nanostructured titanium dioxide (NTiO2) is known to possess efficient photocatalytic activity and to have diverse applications in many fields due to its chemical stability, high surface area/volume ratio, high transmittance, and high refractive index in the visible and the near-ultraviolet regions. These facts prompted us to develop TiO2 nanotube (TiO2 NT) arrays through electrochemical anodic oxidation involving different electrolytes comprised of phosphoric acid — hydrofluoric acid aqueous systems by varying the voltage and the time. The annealing temperature of the nanotubes, TiO2 NTs, were varied to modify the surface morphology and were characterized by using X-ray diffraction and scanning electron microscopy. Scanning electron microscopy and X-ray diffraction results showed that the samples had uniform morphologies and good crystalline structures of the anatase phase at lower annealing temperatures and of the rutile phase at higher annealing temperatures. A secondary-ion mass-spectrometry analysis was used to investigate the surface atoms and to conduct a depth profile analysis of the TiO2 NTs. The efficiency of the photocatalytic activity of the TiO2 NT arrays in degrading methylene blue (MB) was investigated under UV-Vis light irradiation. The maximum photocatalytic activity was achieved for the samples with lower annealing temperatures due to their being in the anatase phase and having a higher surface area and a smaller crystal size, which play important roles in the degradation of organic pollutants.

  14. Organic pollutants removal from 2,4,6-trinitrotoluene (TNT) red water using low cost activated coke.

    PubMed

    Zhang, Mohe; Zhao, Quanlin; Ye, Zhengfang

    2011-01-01

    We treated 2,4,6-trinitrotoluene (TNT) red water from the Chinese explosive industry with activated coke (AC) from lignite. Since the composition of TNT red water was very complicated, chemical oxygen demand (COD) was used as the index for evaluating treatment efficiency. This study focused on sorption kinetics and equilibrium sorption isotherms of AC for the removal of COD from TNT red water, and the changes of water quality before and after adsorption were evaluated using high performance liquid chromatography, UV-Vis spectra and gas chromatography/mass spectroscopy. The results showed that the sorption kinetics of COD removal from TNT red water onto AC fitted well with the pseudo second-order model. The adsorption process was an exothermic and physical process. The sorption isotherm was in good agreement with Redlich-Peterson isotherm. At the conditions of initial pH = 6.28, 20 degrees C and 3 hr of agitation, under 160 g/L AC, 64.8% of COD was removed. The removal efficiencies of 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO3-) and 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO3-) were 80.5% and 84.3%, respectively. After adsorption, the acute toxicity of TNT red water reduced greatly, compared with that of unprocessed TNT red water.

  15. Multi-Wall Carbon Nanotubes for Flow-Induced Voltage Generation (Preprint)

    DTIC Science & Technology

    2006-08-01

    flow sensors with a large dynamic range. The present work investigates voltage generation properties of multi-walled carbon nanotubes ( MWCNT ) as a...wall carbon nanotubes, has been generated from our perpendicularly-aligned MWCNT in an aqueous solution of 1 M NaCl at a relatively low flow velocity of...generation properties of multi-walled carbon nanotubes ( MWCNT ) as a function of the relative orientation of the nanotube array with respect to the flow

  16. Mineralization of 2,4,6-Trinitrotoleune (TNT) in Coastal Waters and Sediments

    DTIC Science & Technology

    2006-08-21

    subtropical latitudes (Hawaii, Puerto Rico, and the Bahamas ) have very low amounts of particles and CDOM, thus the photic zone may extend much deeper and...There have also been some recent efforts to model the effect of TNT phytoremediation on natural ecosystems (Schoenmuth and Pestemer 2004, Ouyang et al...be most important in determining the suitability of a plant species for TNT phytoremediation (Adamia et al. 2006). In addition to the

  17. The Highly Robust Electrical Interconnects and Ultrasensitive Biosensors Based on Embedded Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cassell, Alan; Koehne, Jessica; Chen, Hua; Ng, Hou Tee; Ye, Qi; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2003-01-01

    We report on our recent breakthroughs in two different applications using well-aligned carbon nanotube (CNT) arrays on Si chips, including (1) a novel processing solution for highly robust electrical interconnects in integrated circuit manufacturing, and (2) the development of ultrasensitive electrochemical DNA sensors. Both of them rely on the invention of a bottom-up fabrication scheme which includes six steps, including: (a) lithographic patterning, (b) depositing bottom conducting contacts, (c) depositing metal catalysts, (d) CNT growth by plasma enhanced chemical vapor deposition (PECVD), (e) dielectric gap-filling, and (f) chemical mechanical polishing (CMP). Such processes produce a stable planarized surface with only the open end of CNTs exposed, whch can be further processed or modified for different applications. By depositing patterned top contacts, the CNT can serve as vertical interconnects between the two conducting layers. This method is fundamentally different fiom current damascene processes and avoids problems associated with etching and filling of high aspect ratio holes at nanoscales. In addition, multiwalled CNTs (MWCNTs) are highly robust and can carry a current density of 10(exp 9) A/square centimeters without degradation. It has great potential to help extending the current Si technology. The embedded MWCNT array without the top contact layer can be also used as a nanoelectrode array in electrochemical biosensors. The cell time-constant and sensitivity can be dramatically improved. By functionalizing the tube ends with specific oligonucleotide probes, specific DNA targets can be detected with electrochemical methods down to subattomoles.

  18. Sacrificial template method of fabricating a nanotube

    DOEpatents

    Yang, Peidong [Berkeley, CA; He, Rongrui [Berkeley, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yi-Ying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA

    2007-05-01

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  19. Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO2 nanotube arrays.

    PubMed

    Wang, He-Xuan; Zhu, Li-Nan; Guo, Fu-Qiao

    2018-06-23

    Atrazine, one of the most widespread herbicides in the world, is considered as an environmental estrogen and has potential carcinogenicity. In this study, atrazine was degraded on boron-fluorine co-doped TiO 2 nanotube arrays (B, F-TiO 2 NTAs), which had similar morphology with the pristine TiO 2 NTAs. The structure and morphology of TiO 2 nanotube samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-visible diffuse reflectance spectroscopy (DRS). It showed that the decoration of fluorine and boron made both the absorption in the visible region enhanced and the band edge absorption shifted. The efficiency of atrazine degradation by B, F-TiO 2 NTAs through photoelectrocatalysis was investigated by current, solution pH, and electrolyte concentration, respectively. The atrazine removal rate reached 76% through photoelectrocatalytic reaction by B, F-TiO 2 NTAs, which was 46% higher than that under the photocatalysis process. Moreover, the maximum degradation rate was achieved at pH of 6 in 0.01 M of Na 2 SO 4 electrolyte solution under a current of 0.02 A and visible light for 2 h in the presence of B, F-TiO 2 NTAs. These results showed that B, F-TiO 2 NTAs exhibit remarkable photoelectrocatalytic activity in degradation of atrazine.

  20. Nanotubular topography enhances the bioactivity of titanium implants.

    PubMed

    Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan

    2017-08-01

    Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Disorder engineering of undoped TiO2 nanotube arrays for highly efficient solar-driven oxygen evolution.

    PubMed

    Salari, M; Aboutalebi, S H; Aghassi, A; Wagner, P; Mozer, A J; Wallace, G G

    2015-02-28

    The trade-off between performance and complexity of the device manufacturing process should be balanced to enable the economic harvest of solar energy. Here, we demonstrate a conceptual, yet practical and well-regulated strategy to achieve efficient solar photocatalytic activity in TiO2 through controlled phase transformation and disorder engineering in the surface layers of TiO2 nanotubes. This approach enabled us to fine-tune the bandgap structure of undoped TiO2 according to our needs while simultaneously obtaining robust separation of photo-excited charge carriers. Introduction of specific surface defects also assisted in utilization of the visible part of sunlight to split water molecules for the production of oxygen. The strategy proposed here can serve as a guideline to overcome the practical limitation in the realization of efficient, non-toxic, chemically stable photoelectrochemical systems with high catalytic activity at neutral pH under visible illumination conditions. We also successfully incorporated TiO2 nanotube arrays (TNTAs) with free-based porphyrin affording a pathway with an overall 140% enhanced efficiency, an oxygen evolution rate of 436 μL h(-1) and faradic efficiencies over 100%.

  2. A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering

    PubMed Central

    Holthoff, Ellen L.; Stratis-Cullum, Dimitra N.; Hankus, Mikella E.

    2011-01-01

    We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs) with surface enhanced Raman scattering (SERS). The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT). Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3) × 10−5 M for TNT and a 3 μM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest. PMID:22163761

  3. Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass.

    PubMed

    Chen, Wei-Ting; Manivannan, Karthikeyan; Yu, Chia-Chi; Chu, Jinn P; Chen, Jem-Kun

    2018-01-18

    The concurrent attachment and detachment movements of geckos on virtually any type of surface via their foot pads have inspired us to develop a thermal device with numerous arrangements of a multi-layer thin film together with electrodes that can help modify the temperature of the surface via application of a voltage. A sequential fabrication process was employed on a large-scale integration to generate well-defined contact hole arrays of photoresist for use as templates on the electrode-based device. The photoresist templates were then subjected to sputter deposition of the metallic glass Zr 55 Cu 30 Al 10 Ni 5 . Consequently, a metallic glass nanotube (MGNT) array having a nominal wall thickness of 100 nm was obtained after removal of the photoresist template. When a water droplet was placed on the MGNT array, close nanochambers of metallic glass were formed. By applying voltage, the surface was heated to increase the pressure inside the nanochambers; this generated an expanding force that raised the droplet; thus, the static water contact angle (SWCA) was increased. In contrast, a sucking force was generated during surface cooling, which decreased the SWCA. Our fabrication strategy exploits the MGNT array surface as nanosuckers, which can mimic the climbing aptitude of geckos as they attach to (>10 N m -2 ) and detach from (0.26 N m -2 ) surfaces at 0.5 and 3 V of applied voltage, respectively. Thus, the climbing aptitude of geckos can be mimicked by employing the processing strategy presented herein for the development of artificial foot pads.

  4. TNT equivalency study for space shuttle (EOS). Volume 1: Management summary report

    NASA Technical Reports Server (NTRS)

    Wolfe, R. R.

    1971-01-01

    The existing TNT equivalency criterion for LO2/LH2 propellant is reevaluated. It addresses the static, on-pad phase of the space shuttle launch operations and was performed to determine whether the use of a TNT equivalency criterion lower than that presently used (60%) could be substantiated. The large quantity of propellant on-board the space shuttle, 4 million pounds, was considered of prime importance to the study. A qualitative failure analysis of the space shuttle (EOS) on the launch pad was made because it was concluded that available test data on the explosive yield of LO2/LH2 propellant was insufficient to support a reduction in the present TNT equivalency value, considering the large quantity of propellant used in the space shuttle. The failure analysis had two objectives. The first was to determine whether a failure resulting in the total release of propellant could occur. The second was to determine whether, if such a failure did occur, ignition could be delayed long enough to allow the degree of propellant mixing required to produce an explosion of 60% TNT equivalency since the explosive yield of this propellant is directly related to the quantities of LH2 and LO2 mixed at the time of the explosion.

  5. Design of hybrid two-dimensional and three-dimensional nanostructured arrays for electronic and sensing applications

    NASA Astrophysics Data System (ADS)

    Ko, Hyunhyub

    This dissertation presents the design of organic/inorganic hybrid 2D and 3D nanostructured arrays via controlled assembly of nanoscale building blocks. Two representative nanoscale building blocks such as carbon nanotubes (one-dimension) and metal nanoparticles (zero-dimension) are the core materials for the study of solution-based assembly of nanostructured arrays. The electrical, mechanical, and optical properties of the assembled nanostructure arrays have been investigated for future device applications. We successfully demonstrated the prospective use of assembled nanostructure arrays for electronic and sensing applications by designing flexible carbon nanotube nanomembranes as mechanical sensors, highly-oriented carbon nanotubes arrays for thin-film transistors, and gold nanoparticle arrays for SERS chemical sensors. In first section, we fabricated highly ordered carbon nanotube (CNT) arrays by tilted drop-casting or dip-coating of CNT solution on silicon substrates functionalized with micropatterned self-assembled monolayers. We further exploited the electronic performance of thin-film transistors based on highly-oriented, densely packed CNT micropatterns and showed that the carrier mobility is largely improved compared to randomly oriented CNTs. The prospective use of Raman-active CNTs for potential mechanical sensors has been investigated by studying the mechano-optical properties of flexible carbon nanotube nanomembranes, which contain freely-suspended carbon nanotube array encapsulated into ultrathin (<50 nm) layer-by-layer (LbL) polymer multilayers. In second section, we fabricated 3D nano-canal arrays of porous alumina membranes decorated with gold nanoparticles for prospective SERS sensors. We showed extraordinary SERS enhancement and suggested that the high performance is associated with the combined effects of Raman-active hot spots of nanoparticle aggregates and the optical waveguide properties of nano-canals. We demonstrated the ability of this

  6. Confinement of hydrogen at high pressure in carbon nanotubes

    DOEpatents

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  7. Carbon nanotube fiber spun from wetted ribbon

    DOEpatents

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  8. Electrochemically Reduced Graphene Oxide on Well-Aligned Titanium Dioxide Nanotube Arrays for Betavoltaic Enhancement.

    PubMed

    Chen, Changsong; Wang, Na; Zhou, Peng; San, Haisheng; Wang, Kaiying; Chen, Xuyuan

    2016-09-21

    We report a novel betavoltaic device with significant conversion efficiency by using electrochemically reduced graphene oxide (ERGO) on TiO2 nanotube arrays (TNTAs) for enhancing the absorption of beta radiation as well as the transportation of carriers. ERGO on TNTAs (G-TNTAs) were prepared by electrochemical anodization and subsequently cyclic voltammetry techniques. A 10 mCi of (63)Ni/Ni source was assembled to G-TNTAs to form the sandwich-type betavoltaic devices (Ni/(63)Ni/G-TNTAs/Ti). By I-V measurements, the optimum betavoltaic device exhibits a significant effective energy conversion efficiency of 26.55% with an open-circuit voltage of 2.38 V and a short-circuit current of 14.69 nAcm(-2). The experimental results indicate that G-TNTAs are a high-potential nanocomposite for developing betavoltaic batteries.

  9. Parameter optimization for Ag-coated TiO2 nanotube arrays as recyclable SERS substrates

    NASA Astrophysics Data System (ADS)

    Sun, Yuyang; Yang, Lulu; Liao, Fan; Dang, Qian; Shao, Mingwang

    2018-06-01

    The Ag-coated titanium dioxide nanotube arrays (Ag-coated TNTs) are obtained via the deposition of Ag nanoparticles on the two-step anodized TNTs. The wall thickness of TNTs is modulated via finite difference time domain simulation to get the favorable electromagnetic field for surface enhanced Raman scattering (SERS). Ag-coated TNTs with optimal wall thickness of 20 nm were employed as the SERS substrates to detect 2-mercaptobenzoxazole, which show superior detection sensitivity and uniformity. In addition, due to the photocatalysis of TNTs, the SERS substrates could clean themselves and be repeatedly used by photo-degradation of target molecules under the ultra-violet irradiation. The Ag-coated TNTs are a kind of bifunctional SERS substrates which can produce high-quality SERS signals and reuse to reduce the cost.

  10. Effect of biostimulants on 2,4,6-trinitrotoluene (TNT) degradation and bacterial community composition in contaminated aquifer sediment enrichments.

    PubMed

    Fahrenfeld, Nicole; Zoeckler, Jeffrey; Widdowson, Mark A; Pruden, Amy

    2013-04-01

    2,4,6-Trinitrotoluene (TNT) is a toxic and persistent explosive compound occurring as a contaminant at numerous sites worldwide. Knowledge of the microbial dynamics driving TNT biodegradation is limited, particularly in native aquifer sediments where it poses a threat to water resources. The purpose of this study was to quantify the effect of organic amendments on anaerobic TNT biodegradation rate and pathway in an enrichment culture obtained from historically contaminated aquifer sediment and to compare the bacterial community dynamics. TNT readily biodegraded in all microcosms, with the highest biodegradation rate obtained under the lactate amended condition followed by ethanol amended and naturally occurring organic matter (extracted from site sediment) amended conditions. Although a reductive pathway of TNT degradation was observed across all conditions, denaturing gradient gel electrophoresis (DGGE) analysis revealed distinct bacterial community compositions. In all microcosms, Gram-negative γ- or β-Proteobacteria and Gram-positive Negativicutes or Clostridia were observed. A Pseudomonas sp. in particular was observed to be stimulated under all conditions. According to non-metric multidimensional scaling analysis of DGGE profiles, the microcosm communities were most similar to heavily TNT-contaminated field site sediment, relative to moderately and uncontaminated sediments, suggesting that TNT contamination itself is a major driver of microbial community structure. Overall these results provide a new line of evidence of the key bacteria driving TNT degradation in aquifer sediments and their dynamics in response to organic carbon amendment, supporting this approach as a promising technology for stimulating in situ TNT bioremediation in the subsurface.

  11. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE (TNT) BY A PLANT-ASSOCIATED FUNGUS FUSARIUM OXYSPORUM

    EPA Science Inventory

    The capability of a plant-associated fungus, Fusarium oxyvorum, to transform TNT in liquid cultures was investigated. TNT was transformed into 2-amino-4, 6-dinitrotoluene (2-A-DNT), 4-amino-2, 6-dinitrotoluene (4-A- DNT), and 2, 4-diamino-6-nitrotoluene (2, 4-DAT) via 2- and 4-hy...

  12. Single-crystal gallium nitride nanotubes.

    PubMed

    Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng; Lee, Sangkwon; Yan, Haoquan; Choi, Heon-Jin; Yang, Peidong

    2003-04-10

    Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an 'epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200 nm and wall thicknesses of 5-50 nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

  13. A facile one-step electrochemical strategy of doping iron, nitrogen, and fluorine into titania nanotube arrays with enhanced visible light photoactivity.

    PubMed

    Hua, Zulin; Dai, Zhangyan; Bai, Xue; Ye, Zhengfang; Gu, Haixin; Huang, Xin

    2015-08-15

    Highly ordered iron, nitrogen, and fluorine tri-doped TiO2 (Fe, (N, F)-TiO2) nanotube arrays were successfully synthesized by a facile one-step electrochemical method in an NH4F electrolyte containing Fe ions. The morphology, structure, composition, and photoelectrochemical property of the as-prepared nanotube arrays were characterized by various methods. The photoactivities of the samples were evaluated by the degradation of phenol in an aqueous solution under visible light. Tri-doped TiO2 showed higher photoactivities than undoped TiO2 under visible light. The optimum Fe(3+) doping amount at 0.005M exhibited the highest photoactivity and exceeded that of undoped TiO2 by a factor of 20 times under visible light. The formation of N 2p level near the valence band (VB) contributed to visible light absorption. Doping fluorine and appropriate Fe(3+) ions reduced the photogenerated electrons-holes recombination rate and enhanced visible light photoactivity. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results indicated the presence of synergistic effects in Fe, N, and F tri-doped TiO2, which enhanced visible light photoactivity. The Fe, (N, F)-TiO2 photocatalyst exhibited high stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Fatigue characteristics of carbon nanotube blocks under compression

    NASA Astrophysics Data System (ADS)

    Suhr, J.; Ci, L.; Victor, P.; Ajayan, P. M.

    2008-03-01

    In this paper we investigate the mechanical response from repeated high compressive strains on freestanding, long, vertically aligned multiwalled carbon nanotube membranes and show that the arrays of nanotubes under compression behave very similar to soft tissue and exhibit viscoelastic behavior. Under compressive cyclic loading, the mechanical response of nanotube blocks shows initial preconditioning and hysteresis characteristic of viscoeleastic materials. Furthermore, no fatigue failure is observed even at high strain amplitudes up to half million cycles. The outstanding fatigue life and extraordinary soft tissue-like mechanical behavior suggest that properly engineered carbon nanotube structures could mimic artificial muscles.

  15. Absorption spectroscopic and FTIR studies on EDA complexes between TNT (2,4,6-trinitrotoluene) with amines in DMSO and determination of the vertical electron affinity of TNT.

    PubMed

    Sharma, S P; Lahiri, S C

    2008-06-01

    TNT (2,4,6-trinitrotoluene) formed deep red 1:1 CT complexes with chromogenic agents like isopropylamine, ethylenediamine, bis(3-aminopropyl)amine and tetraethylenepentamine in DMSO. The complexes were also observed in solvents like methanol, acetone, etc. when the amines were present in large excess. The isopropylamine, complex showed three absorption peaks (at 378, 532 and 629 nm) whereas higher amines showed four peaks (at 370, 463, 532 and 629 nm). The peak at 463 nm vanished rapidly. The peak of the complexes near 530 nm required about 8-10 min to develop and the complexes were stable for about an hour but the peak slowly shifted towards 500 nm and the complexes were found to be stable for more than 24 h. The evidence of complex formation was obtained from distinct spots in HPTLC plates and from the shifts in frequencies and formation of new peaks in FTIR spectra. The peaks near 460 nm (transient) and 530 nm may be due to Janovsky reaction but could not be established. The extinction coefficients of the complexes were determined directly which enabled the accurate determination of the association constants KDA with TNT and amines in stoichiometric ratios. The results were verified using iterative method. The quantification of TNT was made using epsilon value of the complex with ethylenediamine. The vertical electron affinity (EA) of TNT was calculated using the method suggested by Mulliken.

  16. Explosive detonation causes an increase in soil porosity leading to increased TNT transformation.

    PubMed

    Yu, Holly A; Nic Daeid, Niamh; Dawson, Lorna A; DeTata, David A; Lewis, Simon W

    2017-01-01

    Explosives are a common soil contaminant at a range of sites, including explosives manufacturing plants and areas associated with landmine detonations. As many explosives are toxic and may cause adverse environmental effects, a large body of research has targeted the remediation of explosives residues in soil. Studies in this area have largely involved spiking 'pristine' soils using explosives solutions. Here we investigate the fate of explosives present in soils following an actual detonation process and compare this to the fate of explosives spiked into 'pristine' undetonated soils. We also assess the effects of the detonations on the physical properties of the soils. Our scanning electron microscopy analyses reveal that detonations result in newly-fractured planes within the soil aggregates, and novel micro Computed Tomography analyses of the soils reveal, for the first time, the effect of the detonations on the internal architecture of the soils. We demonstrate that detonations cause an increase in soil porosity, and this correlates to an increased rate of TNT transformation and loss within the detonated soils, compared to spiked pristine soils. We propose that this increased TNT transformation is due to an increased bioavailability of the TNT within the now more porous post-detonation soils, making the TNT more easily accessible by soil-borne bacteria for potential biodegradation. This new discovery potentially exposes novel remediation methods for explosive contaminated soils where actual detonation of the soil significantly promotes subsequent TNT degradation. This work also suggests previously unexplored ramifications associated with high energy soil disruption.

  17. Explosive detonation causes an increase in soil porosity leading to increased TNT transformation

    PubMed Central

    Yu, Holly A.; Nic Daeid, Niamh; Dawson, Lorna A.; DeTata, David A.; Lewis, Simon W.

    2017-01-01

    Explosives are a common soil contaminant at a range of sites, including explosives manufacturing plants and areas associated with landmine detonations. As many explosives are toxic and may cause adverse environmental effects, a large body of research has targeted the remediation of explosives residues in soil. Studies in this area have largely involved spiking ‘pristine’ soils using explosives solutions. Here we investigate the fate of explosives present in soils following an actual detonation process and compare this to the fate of explosives spiked into ‘pristine’ undetonated soils. We also assess the effects of the detonations on the physical properties of the soils. Our scanning electron microscopy analyses reveal that detonations result in newly-fractured planes within the soil aggregates, and novel micro Computed Tomography analyses of the soils reveal, for the first time, the effect of the detonations on the internal architecture of the soils. We demonstrate that detonations cause an increase in soil porosity, and this correlates to an increased rate of TNT transformation and loss within the detonated soils, compared to spiked pristine soils. We propose that this increased TNT transformation is due to an increased bioavailability of the TNT within the now more porous post-detonation soils, making the TNT more easily accessible by soil-borne bacteria for potential biodegradation. This new discovery potentially exposes novel remediation methods for explosive contaminated soils where actual detonation of the soil significantly promotes subsequent TNT degradation. This work also suggests previously unexplored ramifications associated with high energy soil disruption. PMID:29281650

  18. Thermal decomposition and kinetic evaluation of decanted 2,4,6-trinitrotoluene (TNT) for reutilization as composite material

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Hussain, A.; Malik, A. Q.

    2016-08-01

    Use of energetic materials has long been considered for only military purposes. However, it is very recent that their practical applications in wide range of commercial fields such as mining, road building, under water blasting and rocket propulsion system have been considered. About 5mg of 2,4,6-trinitrotoluene (TNT) in serviceable (Svc) as well as unserviceable (Unsvc) form were used for their thermal decomposition and kinetic parameters investigation. Thermogravimetric/ differential thermal analysis (TG/DTA), X-ray diffraction (XRD) and Scanning electron microscope (SEM) were used to characterize two types of TNT. Arrhenius kinetic parameters like activation energy (E) and enthalpy (AH) of both TNT samples were determined using TG curves with the help of Horowitz and Metzger method. Simultaneously, thermal decomposition range was evaluated from DTA curves. Distinct diffraction peaks showing crystalline nature were obtained from XRD analysis. SEM results indicated that Unsvc TNT contained a variety of defects like cracks and porosity. Similarly, it is observed that thermal as well as kinetic behavior of both TNT samples vary to a great extent. Likewise, a prominent change in the activation energies (E) of both samples is observed. This in-depth study provides a way forward in finding solutions for the safe reutilization of decanted TNT.

  19. Carbon-Nanotube-Carpet Heat-Transfer Pads

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cruden, Brett A.; Cassel, Alan M.

    2006-01-01

    Microscopic thermal-contact pads that include carpet-like arrays of carbon nanotubes have been invented for dissipating heat generated in integrated circuits and similarly sized single electronic components. The need for these or other innovative thermal-contact pads arises because the requisite high thermal conductances cannot be realized by scaling conventional macroscopic thermal-contact pads down to microscopic sizes. Overcoming limitations of conventional thermal-contact materials and components, the carbon-nanotube thermal-contact pads offer the high thermal conductivities needed to accommodate the high local thermal power densities of modern electronic circuits, without need for large clamping pressures, extreme smoothness of surfaces in contact, or gap-filling materials (e.g., thermally conductive greases) to ensure adequate thermal contact. Moreover, unlike some conventional thermal-contact components, these pads are reusable. The figure depicts a typical pad according to the invention, in contact with a rough surface on an electronic component that is to be cooled. Through reversible bending and buckling of carbon nanotubes at asperities on the rough surface, the pad yields sufficiently, under relatively low contact pressure, that thermal contact is distributed to many locations on the surface to be cooled, including valleys where contact would not ordinarily occur in conventional clamping of rigid surfaces. Hence, the effective thermal-contact area is greater than that achievable through scaling down of a macroscopic thermal-contact pad. The extremely high longitudinal thermal conductivities of the carbon nanotubes are utilized to conduct heat away from potential hot spots on the surface to be cooled. The fibers protrude from a layer of a filler material (Cu, Ag, Au, or metal-particle- filled gels), which provides both mechanical support to maintain the carbon nanotubes in alignment and thermal conductivity to enhance the diffusion of concentrated heat

  20. Hierarchical multifunctional composites by conformally coating aligned carbon nanotube arrays with conducting polymer.

    PubMed

    Vaddiraju, Sreeram; Cebeci, Hülya; Gleason, Karen K; Wardle, Brian L

    2009-11-01

    A novel method for the fabrication of carbon nanotube (CNT)-conducting polymer composites is demonstrated by conformally coating extremely high aspect ratio vertically aligned-CNT (A-CNT) arrays with conducting polymer via oxidative chemical vapor deposition (oCVD). A mechanical densification technique is employed that allows the spacing of the A-CNTs to be controlled, yielding a range of inter-CNT distances between 20 and 70 nm. Using this morphology control, oCVD is shown to conformally coat 8-nm-diameter CNTs having array heights up to 1 mm (an aspect ratio of 10(5)) at all inter-CNT spacings. Three phase CNT-conducting polymer nanocomposites are then fabricated by introducing an insulating epoxy via capillary-driven wetting. CNT morphology is maintained during processing, allowing quantification of direction-dependent (nonisotropic) composite properties. Electrical conductivity occurs primarily along the CNT axial direction, such that the conformal conducting polymer has little effect on the activation energy required for charge conduction. In contrast, the conducting polymer coating enhanced the conductivity in the radial direction by lowering the activation energy required for the creation of mobile charge carriers, in agreement with variable-range-hopping models. The fabrication strategy introduced here can be used to create many multifunctional materials and devices (e.g., direction-tailorable hydrophobic and highly conducting materials), including a new four-phase advanced fiber composite architecture.

  1. Comparative analysis of 2,4,6-trinitrotoluene (TNT)-induced cellular responses and proteomes in Pseudomonas sp. HK-6 in two types of media.

    PubMed

    Cho, Yun-Seok; Lee, Bheong-Uk; Kahng, Hyung-Yeel; Oh, Kye-Heon

    2009-04-01

    TNT-induced cellular responses and proteomes in Pseudomonas sp. HK-6 were comparatively analyzed in two different media: basal salts (BS) and Luria broth (LB). HK-6 cells could not degrade more than 0.5 mM TNT with BS medium, while in LB medium, they exhibited the enhanced capability to degrade as much as 3.0 mM TNT. Analysis of total cellular fatty acids in HK-6 cells suggested that the relative abundance of several saturated or unsaturated fatty acids is altered under TNT-mediated stress conditions. Scanning electron microscopy showed the presence of perforations, irregular rod formations, and wrinkled extracellular surfaces in cells under TNT stress. Proteomic analysis of soluble protein fractions from HK-6 cultures grown with TNT as a substrate revealed 11 protein spots induced by TNT. Among these, seven proteins (including Alg8, AlgB, NirB, and the AhpC/Tsa family) were detected only in LB medium containing TNT. The proteins AspS, Tsf, and assimilatory nitrate reductase were increasingly expressed only in BS medium containing TNT. The protein dGTPase was found to be induced and expressed when cells were grown in either type of TNT-containing media. These results provide a better understanding of the cytotoxicity and survival mechanism used by Pseudomonas sp. HK-6 when placed under TNT stress conditions.

  2. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film

    PubMed Central

    Qiu, Lin; Wang, Xiaotian; Su, Guoping; Tang, Dawei; Zheng, Xinghua; Zhu, Jie; Wang, Zhiguo; Norris, Pamela M.; Bradford, Philip D.; Zhu, Yuntian

    2016-01-01

    It has been more than a decade since the thermal conductivity of vertically aligned carbon nanotube (VACNT) arrays was reported possible to exceed that of the best thermal greases or phase change materials by an order of magnitude. Despite tremendous prospects as a thermal interface material (TIM), results were discouraging for practical applications. The primary reason is the large thermal contact resistance between the CNT tips and the heat sink. Here we report a simultaneous sevenfold increase in in-plane thermal conductivity and a fourfold reduction in the thermal contact resistance at the flexible CNT-SiO2 coated heat sink interface by coupling the CNTs with orderly physical overlapping along the horizontal direction through an engineering approach (shear pressing). The removal of empty space rapidly increases the density of transport channels, and the replacement of the fine CNT tips with their cylindrical surface insures intimate contact at CNT-SiO2 interface. Our results suggest horizontally aligned CNT arrays exhibit remarkably enhanced in-plane thermal conductivity and reduced out-of-plane thermal conductivity and thermal contact resistance. This novel structure makes CNT film promising for applications in chip-level heat dissipation. Besides TIM, it also provides for a solution to anisotropic heat spreader which is significant for eliminating hot spots. PMID:26880221

  3. Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren

    2015-10-01

    High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg-1), a high power density (27.5 kW kg-1) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and

  4. Polypyrrole/titanium oxide nanotube arrays composites as an active material for supercapacitors.

    PubMed

    Kim, Min Seok; Park, Jong Hyeok

    2011-05-01

    The authors present the first reported use of vertically oriented titanium oxide nanotube/polypyrrole (PPy) nanocomposites to increase the specific capacitance of TiO2 based energy storage devices. To increase their electrical storage capacity, titanium oxide nanotubes were coated with PPy and their morphologies were characterized. The incorporation of PPy increased the specific capacitance of the titanium oxide nanotube based supercapacitor system, due to their increased surface area and additional pseudo-capacitance.

  5. Production of vertical arrays of small diameter single-walled carbon nanotubes

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  6. Transformations of TNT and related aminotoluenes in groundwater aquifer slurries under different electron-accepting conditions

    USGS Publications Warehouse

    Krumholz, L.R.; Li, J.; Clarkson, W.W.; Wilber, G.G.; Suflita, J.M.

    1997-01-01

    The transport and fate of pollutants is often governed by both their tendency to sorb as well as their susceptibility to biodegradation. We have evaluated these parameters for 2,4,6-trinitrotoluene (TNT) and several biodegradation products. Slurries of aquifer sediment and groundwater depleted TNT at rates of 27, 7.7 and 5.9 μM day−1 under methanogenic, sulfate-reducing and nitrate-reducing conditions, respectively. Abiotic losses of TNT were determined in autoclaved controls. Abiotic TNT loss and subsequent transformation of the products was also observed. These transformations were especially important during the first step in the reduction of TNT. Subsequent abiotic reactions could account for all of the transformations observed in bottles which were initially nitrate-reducing. Other controls removed TNT reduction products at much slower rates than slurries containing live organisms. 2-Amino-4,6-dinitrotoluene was produced in all slurries but disappeared in methanogenic and in sulfate-reducing slurries within several weeks. This compound was converted to 2,4-diamino-6-nitrotoluene in all slurries with subsequent removal of the latter from methanogenic and sulfate-reducing slurries, while it persisted in autoclaved controls and in the nitrate-reducing slurries. Aquifer slurries incubated with either 2,4- or 2,6-diaminotoluene showed losses of these compounds relative to autoclaved controls under nitrate-reducing conditions but not under sulfate-reducing or methanogenic conditions. These latter compounds are important as reduced intermediates in the biodegradation of dinitrotoluenes and as industrial chemicals. In experiments to examine sorption, exposure to landfill sediment resulted in losses of approximately 15% of diaminotoluene isomers and 25% of aminodinitrotoluene isomers from initial solution concentrations within 24 h. Isotherms confirmed that the diaminotoluenes were least strongly sorbed and the amino-dinitrotoluenes most strongly sorbed to this

  7. An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA.

    PubMed

    Thomas, K A; Valenzuela, N M; Gjertson, D; Mulder, A; Fishbein, M C; Parry, G C; Panicker, S; Reed, E F

    2015-08-01

    Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab')2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro. © 2015 The Authors. American Journal of Transplantation Published by Wiley Periodicals, Inc.

  8. An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA

    PubMed Central

    Thomas, K A; Valenzuela, N M; Gjertson, D; Mulder, A; Fishbein, M C; Parry, G C; Panicker, S; Reed, E F

    2015-01-01

    Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab′)2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro. PMID:25904443

  9. One-Step Formation of WO3-Loaded TiO2 Nanotubes Composite Film for High Photocatalytic Performance

    PubMed Central

    Lee, Wai Hong; Lai, Chin Wei; Abd Hamid, Sharifah Bee

    2015-01-01

    High aspect ratio of WO3-loaded TiO2 nanotube arrays have been successfully synthesized using the electrochemical anodization method in an ethylene glycol electrolyte containing 0.5 wt% ammonium fluoride in a range of applied voltage of 10–40 V for 30 min. The novelty of this research works in the one-step formation of WO3-loaded TiO2 nanotube arrays composite film by using tungsten as the cathode material instead of the conventionally used platinum electrode. As compared with platinum, tungsten metal has lower stability, forming dissolved ions (W6+) in the electrolyte. The W6+ ions then move towards the titanium foil and form a coherent deposit on titanium foil. By controlling the oxidation rate and chemical dissolution rate of TiO2 during the electrochemical anodization, the nanotubular structure of TiO2 film could be achieved. In the present study, nanotube arrays were characterized using FESEM, EDAX, XRD, as well as Raman spectroscopy. Based on the results obtained, nanotube arrays with average pore diameter of up to 74 nm and length of 1.6 µm were produced. EDAX confirmed the presence of tungsten element within the nanotube arrays which varied in content from 1.06 at% to 3.29 at%. The photocatalytic activity of the nanotube arrays was then investigated using methyl orange degradation under TUV 96W UV-B Germicidal light irradiation. The nanotube with the highest aspect ratio, geometric surface area factor and at% of tungsten exhibited the highest photocatalytic activity due to more photo-induced electron-hole pairs generated by the larger surface area and because WO3 improves charge separation, reduces charge carrier recombination and increases charge carrier lifetime via accumulation of electrons and holes in the two different metal oxide semiconductor components.

  10. Investigation of anodic TiO2 nanotube composition with high spatial resolution AES and ToF SIMS

    NASA Astrophysics Data System (ADS)

    Dronov, Alexey; Gavrilin, Ilya; Kirilenko, Elena; Dronova, Daria; Gavrilov, Sergey

    2018-03-01

    High resolution Scanning Auger Electron Spectroscopy (AES) and Time-of-Flight Secondary Ion Mass-Spectrometry (ToF SIMS) were used to investigate structure and elemental composition variation of both across an array of TiO2 nanotubes (NTs) and single tube of an array. The TiO2 NT array was grown by anodic oxidation of Ti foil in fluorine-containing ethylene glycol electrolyte. It was found that the studied anodic TiO2 nanotubes have a layered structure with rather sharp interfaces. The differences in AES depth profiling results of a single tube with the focused primary electron beam (point analysis) and over an area of 75 μm in diameter of a nanotube array with the defocused primary electron beam are discussed. Depth profiling by ToF SIMS was carried out over approximately the same size of a nanotube array to determine possible ionic fragments in the structure. The analysis results show that the combination of both mentioned methods is useful for a detailed analysis of nanostructures with complex morphology and multi-layered nature.

  11. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.

    PubMed

    Xu, Shoufang; Lu, Hongzhi

    2016-11-15

    A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Thermionic Emission of Single-Wall Carbon Nanotubes Measured

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2004-01-01

    Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.

  13. Dissolution of a new explosive formulation containing TNT and HMX: comparison with octol.

    PubMed

    Monteil-Rivera, Fanny; Deschamps, Stéphane; Ampleman, Guy; Thiboutot, Sonia; Hawari, Jalal

    2010-02-15

    GIM (Greener Insensitive Material) is a new explosive formulation made of HMX (51.5%), TNT (40.7%), and a binder, ETPE (7.8%), which is currently investigated by the Canadian Department of National Defense for a wider use by the Army. In the present study, dissolution of GIM in water was measured and compared to the dissolution of octol (HMX/TNT: 70/30). Although the presence of ETPE did not prevent completely TNT and HMX from dissolving, GIM appeared to dissolve more slowly than octol. The ETPE was shown to prevent the formulation particles from collapsing and to retard the dissolution of both TNT and HMX by limiting their exposure to water. In both octol and GIM, the dissolution rate of the particles was governed by the compound(s) that are slower to dissolve, i.e. HMX in octol, and HMX and ETPE in GIM. A model based on Fick's diffusion law allowed fitting well the dissolution data of octol but was less appropriate to fit the data of GIM likely due to a physical rearrangement of the solid upon dissolution. The present findings demonstrate that ETPE in GIM decreases the risks of explosives leakage from particles of the new formulation and should facilitate the collecting of non-exploded GIM particles in training sites.

  14. Flexible symmetric supercapacitors based on vertical TiO2 and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chien, C. J.; Chang, Pai-Chun; Lu, Jia G.

    2010-03-01

    Highly conducting and porous carbon nanotubes are widely used as electrodes in double-layer-effect supercapacitors. In this presentation, vertical TiO2 nanotube array is fabricated by anodization process and used as supercapacitor electrode utilizing its compact density, high surface area and porous structure. By spin coating carbon nanotube networks on vertical TiO2 nanotube array as electrodes with 1M H2SO4 electrolyte in between, the specific capacitance can be enhanced by 30% compared to using pure carbon nanotube network alone because of the combination of double layer effect and redox reaction from metal oxide materials. Based on cyclic voltammetry and galvanostatic charge-discharge measurements, this type of hybrid electrode has proven to be suitable for high performance supercapacitor application and maintain desirable cycling stability. The electrochemical impedance spectroscopy technique shows that the electrode has good electrical conductivity. Furthermore, we will discuss the prospect of extending this energy storage approach in flexible electronics.

  15. Pseudorabies Virus US3-Induced Tunneling Nanotubes Contain Stabilized Microtubules, Interact with Neighboring Cells via Cadherins, and Allow Intercellular Molecular Communication

    PubMed Central

    Jansens, Robert J. J.; Van den Broeck, Wim; De Pelsmaeker, Steffi; Lamote, Jochen A. S.; Van Waesberghe, Cliff; Couck, Liesbeth

    2017-01-01

    ABSTRACT Tunneling nanotubes (TNTs) are long bridge-like structures that connect eukaryotic cells and mediate intercellular communication. We found earlier that the conserved alphaherpesvirus US3 protein kinase induces long cell projections that contact distant cells and promote intercellular virus spread. In this report, we show that the US3-induced cell projections constitute TNTs. In addition, we report that US3-induced TNTs mediate intercellular transport of information (e.g., green fluorescent protein [GFP]) in the absence of other viral proteins. US3-induced TNTs are remarkably stable compared to most TNTs described in the literature. In line with this, US3-induced TNTs were found to contain stabilized (acetylated and detyrosinated) microtubules. Transmission electron microscopy showed that virus particles are individually transported in membrane-bound vesicles in US3-induced TNTs and are released along the TNT and at the contact area between a TNT and the adjacent cell. Contact between US3-induced TNTs and acceptor cells is very stable, which correlated with a marked enrichment in adherens junction components beta-catenin and E-cadherin at the contact area. These data provide new structural insights into US3-induced TNTs and how they may contribute to intercellular communication and alphaherpesvirus spread. IMPORTANCE Tunneling nanotubes (TNT) represent an important and yet still poorly understood mode of long-distance intercellular communication. We and others reported earlier that the conserved alphaherpesvirus US3 protein kinase induces long cellular protrusions in infected and transfected cells. Here, we show that US3-induced cell projections constitute TNTs, based on structural properties and transport of biomolecules. In addition, we report on different particular characteristics of US3-induced TNTs that help to explain their remarkable stability compared to physiological TNTs. In addition, transmission electron microscopy assays indicate that, in

  16. Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays

    PubMed Central

    Huh, Yun Suk; Erickson, David

    2009-01-01

    Here we present an optofluidic surface enhanced Raman spectroscopy (SERS) device for on-chip detection of vasopressin using an aptamer based binding assay. To create the SERS-active substrate, densely packed, 200 nm diameter, metal nanotube arrays were fabricated using an anodized alumina nanoporous membrane as a template for shadow evaporation. We explore the use of both single layer Au structures and multilayer Au/Ag/Au structures and also demonstrate a facile technique for integrating the membranes with all polydimethylsiloxane (PDMS) microfluidic devices. Using the integrated device, we demonstrate a linear response in the main detection peak intensity to solution phase concentration and a limit of detection on the order of 5.2 μU/mL. This low limit of detection is obtained with device containing the multilayer SERS substrate which we show exhibits a stronger Raman enhancement while maintaining biocompatibility and ease or surface reactivity with the capture probe. PMID:19857952

  17. Leaching of contaminated leaves following uptake and phytoremediation of RDX, HMX, and TNT by poplar.

    PubMed

    Yoon, Jong Moon; Van Aken, Benoit; Schnoor, Jerald L

    2006-01-01

    The uptake and fate of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by hybrid poplars in hydroponic systems were compared and exposed leaves were leached with water to simulate potential exposure pathways from groundwater in the field. TNT was removed from solution more quickly than nitramine explosives. Most of radioactivity remained in root tissues for 14C-TNT, but in leaves for 14C-RDX and 14C-HMX. Radiolabel recovery for TNT and HMX was over 94%, but that of RDX decreased over time, suggesting a loss of volatile products. A considerable fraction (45.5%) of radioactivity taken up by whole plants exposed to 14C-HMX was released into deionized water, mostly as parent compound after 5 d of leaching. About a quarter (24.0%) and 1.2% were leached for RDX and TNT, respectively, mostly as transformed products. Leached radioactivity from roots was insignificant in all cases (< 2%). This is the first report in which small amounts of transformation products of RDX leach from dried leaves following uptake by poplars. Such behavior for HMX was reported earlier and is reconfirmed here. All three compounds differ substantially in their fate and transport during the leaching process.

  18. Frequency dependent ac transport of films of close-packed carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Endo, A.; Katsumoto, S.; Matsuda, K.; Norimatsu, W.; Kusunoki, M.

    2018-03-01

    We have measured low-temperature ac impedance of films of closely-packed, highly-aligned carbon nanotubes prepared by thermal decomposition of silicon carbide wafers. The measurement was performed on films with the thickness (the length of the nanotubes) ranging from 6.5 to 65 nm. We found that the impedance rapidly decreases with the frequency. This can be interpreted as resulting from the electric transport via capacitive coupling between adjacent nanotubes. We also found numbers of sharp spikes superposed on frequency vs. impedance curves, which presumably represent resonant frequencies seen in the calculated conductivity of random capacitance networks. Capacitive coupling between the nanotubes was reduced by the magnetic field perpendicular to the films at 8.2 mK, resulting in the transition from negative to positive magnetoresistance with an increase of the frequency.

  19. Role of soil organic carbon and colloids in sorption and transport of TNT, RDX and HMX in training range soils.

    PubMed

    Sharma, Prasesh; Mayes, Melanie A; Tang, Guoping

    2013-08-01

    Contamination of soils and groundwater by munitions compounds (MCs) is of significant concern at many U.S. Department of Defense sites. Soils were collected from operational training ranges in Maryland (APG), Massachusetts (MMR-B and MMR-E) and Washington (JBLM) and sorption and transport studies were conducted to investigate the effects of soil organic carbon (OC) and textural clay content on fate of dissolved MCs (TNT, RDX, HMX). Sorption experiments showed higher distribution coefficients [TNT:42-68 L kg(-1), RDX:6.9-8.7 L kg(-1) and HMX:2.6-3.1 L kg(-1)] in OC rich soils (JBLM, MMR-E) compared to clay rich soils (MMR-B and APG) [TNT:19-21 L kg(-1), RDX:2.5-3.4 L kg(-1), HMX:0.9-1.2 L kg(-1)]. In column experiments, breakthrough of MCs was faster in MMR-B and APG compared to MMR-E and JBLM soils. Among TNT, RDX and HMX, breakthrough was fastest for RDX followed by HMX and TNT for all columns. Defining the colloidal fraction as the difference between unfiltered samples and samples filtered with a 3 kDa filter, ~36%, ~15% and ~9% of TNT, RDX and HMX were found in the colloidal fraction in the solutions from sorption experiments, and around 20% of TNT in the effluent from the transport experiments. Results demonstrate that OC rich soils may enhance sorption and delay transport of TNT, RDX and HMX compared to clay-rich soils. Further, transport of TNT may be associated with soil colloid mobilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples.

    PubMed

    Alizadeh, Taher; Zare, Mashaalah; Ganjali, Mohamad Reza; Norouzi, Parviz; Tavana, Babak

    2010-01-15

    A high selective voltammetric sensor for 2,4,6-trinitrotoluene (TNT) was introduced. TNT selective MIP and non-imprinted polymer (NIP) were synthesized and then used for carbon paste (CP) electrode preparation. The MIP, incorporated in the carbon paste electrode, functioned as selectively recognition element and pre-concentrator agent for TNT determination. The prepared electrode was used for TNT measurement by the three steps procedure, including analyte extraction in the electrode, electrode washing and electrochemical measurement of TNT. The MIP-CP electrode showed very high recognition ability in comparison to NIP-CP. It was shown that electrode washing after TNT extraction led to enhanced selectivity. The response of square wave voltammetry for TNT determination by proposed electrode was higher than that of differential pulse voltammetry. Some parameters affecting sensor response were optimized and then a calibration curve plotted. A dynamic linear range of 5x10(-9) to 1x10(-6) mol l(-1) was obtained. The detection limit of the sensor was calculated equal to 1.5x10(-9) mol l(-1). This sensor was used successfully for TNT determination in different water and soil samples. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Interactions of 2,4,6-trinitrotoluene (TNT) with xenobiotic biotransformation system in European eel Anguilla anguilla (Linnaeus, 1758).

    PubMed

    Della Torre, Camilla; Corsi, Ilaria; Arukwe, Augustine; Valoti, Massimo; Focardi, Silvano

    2008-11-01

    The aim of the present study was to investigate the interaction of 2,4,6-trinitrotoluene (TNT) with liver biotransformation enzymes in European eel Anguilla anguilla (Linnaeus, 1758). Eels were exposed to 0.5, 1 and 2.5mg/l nominal concentrations of TNT for 6 and 24h. Modulation of CYP1A1, UDPGT and GST genes was investigated by real-time PCR. Total CYP450 content, NADPH cytochrome c reductase activity, CYP1A and CYP2B-like activities, such as EROD, MROD and BROD, as well as GST and UDPGT activities, were measured by biochemical assays. An in vitro study was performed on EROD in order to evaluate catalytic modulation by TNT. No modulation of the CYP1A1 gene or protein was observed in TNT-exposed eels. On the other hand, a significant decline of EROD and MROD activities was observed in vivo. An increase in NADPH cyt c reductase, and phase II enzymes (UDPGT and GST) were observed at both gene expression and activity levels. The overall results indicated that TNT is a potential competitive inhibitor of CYP1A activities. A TNT metabolic pathway involving NADPH cyt c reductase and phase II enzymes is also suggested.

  2. Carbon nanotube transistors scaled to a 40-nanometer footprint.

    PubMed

    Cao, Qing; Tersoff, Jerry; Farmer, Damon B; Zhu, Yu; Han, Shu-Jen

    2017-06-30

    The International Technology Roadmap for Semiconductors challenges the device research community to reduce the transistor footprint containing all components to 40 nanometers within the next decade. We report on a p-channel transistor scaled to such an extremely small dimension. Built on one semiconducting carbon nanotube, it occupies less than half the space of leading silicon technologies, while delivering a significantly higher pitch-normalized current density-above 0.9 milliampere per micrometer at a low supply voltage of 0.5 volts with a subthreshold swing of 85 millivolts per decade. Furthermore, we show transistors with the same small footprint built on actual high-density arrays of such nanotubes that deliver higher current than that of the best-competing silicon devices under the same overdrive, without any normalization. We achieve this using low-resistance end-bonded contacts, a high-purity semiconducting carbon nanotube source, and self-assembly to pack nanotubes into full surface-coverage aligned arrays. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Mammalian Toxicological Evaluation of TNT Wastewaters. Volume II. Acute and Subacute Mammalian Toxicity of TNT and LAP Mixture

    DTIC Science & Technology

    1979-06-01

    different species of fish and four Invertebrate species. 17 Irradiated mixtures (with >50% TNT degradation) were invariably less toxic than the...statistically. Moreover, a marked lymphocytosis was apparent at this level. Some parameters, especially the RBC, Hgb, and/or Hct, were significantly...on treatment after 13 weeks had lymphocytosis , the males that continued on study but were allowed 4 weeks of recovery had a slight granulocytosis

  4. Electron attachment to trinitrotoluene (TNT) embedded in He droplets: complete freezing of dissociation intermediates in an extended range of electron energies.

    PubMed

    Mauracher, Andreas; Schöbel, Harald; Ferreira da Silva, Filipe; Edtbauer, Achim; Mitterdorfer, Christian; Denifl, Stephan; Märk, Tilmann D; Illenberger, Eugen; Scheier, Paul

    2009-10-01

    Electron attachment to the explosive trinitrotoluene (TNT) embedded in Helium droplets (TNT@He) generates the non-decomposed complexes (TNT)(n)(-), but no fragment ions in the entire energy range 0-12 eV. This strongly contrasts the behavior of single TNT molecules in the gas phase at ambient temperatures, where electron capture leads to a variety of different fragmentation products via different dissociative electron attachment (DEA) reactions. Single TNT molecules decompose by attachment of an electron at virtually no extra energy reflecting the explosive nature of the compound. The complete freezing of dissociation intermediates in TNT embedded in the droplet is explained by the particular mechanisms of DEA in nitrobenzenes, which is characterized by complex rearrangement processes in the transient negative ion (TNI) prior to decomposition. These mechanisms provide the condition for effective energy withdrawal from the TNI into the dissipative environment thereby completely suppressing its decomposition.

  5. Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.

    PubMed

    Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua

    2018-03-27

    We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.

  6. Sub-GeV dark matter detection with electron recoils in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cavoto, G.; Luchetta, F.; Polosa, A. D.

    2018-01-01

    Directional detection of Dark Matter particles (DM) in the MeV mass range could be accomplished by studying electron recoils in large arrays of parallel carbon nanotubes. In a scattering process with a lattice electron, a DM particle might transfer sufficient energy to eject it from the nanotube surface. An external electric field is added to drive the electron from the open ends of the array to the detection region. The anisotropic response of this detection scheme, as a function of the orientation of the target with respect to the DM wind, is calculated, and it is concluded that no direct measurement of the electron ejection angle is needed to explore significant regions of the light DM exclusion plot. A compact sensor, in which the cathode element is substituted with a dense array of parallel carbon nanotubes, could serve as the basic detection unit.

  7. Dye-sensitized solar cells employing doubly or singly open-ended TiO2 nanotube arrays: structural geometry and charge transport.

    PubMed

    Choi, Jongmin; Song, Seulki; Kang, Gyeongho; Park, Taiho

    2014-09-10

    We systematically investigated the charge transport properties of doubly or singly open-ended TiO2 nanotube arrays (DNT and SNT, respectively) for their utility as electrodes in dye-sensitized solar cells (DSCs). The SNT or DNT arrays were transferred in a bottom-up (B-up) or top-up (T-up) configuration onto a fluorine-doped tin oxide (FTO) substrate onto which had been deposited a 2 μm thick TiO2 nanoparticle (NP) interlayer. This process yielded four types of DSCs prepared with SNTs (B-up or T-up) or DNT (B-up or T-up). The photovoltaic performances of these DSCs were analyzed by measuring the dependence of the charge transport on the DSC geometry. High resolution scanning electron microscopy techniques were used to characterize the electrode cross sections, and electrochemical impedance spectroscopy was used to characterize the electrical connection at the interface between the NT array and the TiO2 NP interlayer. We examined the effects of decorating the DNT or SNT arrays with small NPs (sNP@DNT and sNP@SNT, respectively) in an effort to increase the extent of dye loading. The DNT arrays decorated with small NPs performed better than the decorated SNT arrays, most likely because the Ti(OH)4 precursor solution flowed freely into the array through the open ends of the NTs in the DNT case but not in the SNT case. The sNP@DNT-based DSC exhibited a better PCE (10%) compared to the sNP@SNT-based DSCs (6.8%) because the electrolyte solution flow was not restricted, direct electron transport though the NT arrays was possible, the electrical connection at the interface between the NT array and the TiO2 NP interlayer was good, and the array provided efficient light harvesting.

  8. P-Doped NiCo2S4 nanotubes as battery-type electrodes for high-performance asymmetric supercapacitors.

    PubMed

    Lin, Jinghuang; Wang, Yiheng; Zheng, Xiaohang; Liang, Haoyan; Jia, Henan; Qi, Junlei; Cao, Jian; Tu, Jinchun; Fei, Weidong; Feng, Jicai

    2018-06-19

    NiCo2S4 is a promising electrode material for supercapacitors, due to its rich redox reactions and intrinsically high conductivity. Unfortunately, in most cases, NiCo2S4-based electrodes often suffer from low specific capacitance, low rate capability and fast capacitance fading. Herein, we have rationally designed P-doped NiCo2S4 nanotube arrays to improve the electrochemical performance through a phosphidation reaction. Characterization results demonstrate that the P element is successfully doped into NiCo2S4 nanotube arrays. Electrochemical results demonstrate that P-doped NiCo2S4 nanotube arrays exhibit better electrochemical performance than pristine NiCo2S4, e.g. higher specific capacitance (8.03 F cm-2 at 2 mA cm-2), good cycling stability (87.5% capacitance retention after 5000 cycles), and lower charge transfer resistance. More importantly, we also assemble an asymmetric supercapacitor using P-doped NiCo2S4 nanotube arrays and activated carbon on carbon cloth, which delivers a maximum energy density of 42.1 W h kg-1 at a power density of 750 W kg-1. These results demonstrate that the as-fabricated P-doped NiCo2S4 nanotube arrays on carbon cloth show great potential as a battery-type electrode for high-performance supercapacitors.

  9. Synthesis of Millimeter-Scale Carbon Nanotube Arrays and Their Applications on Electrochemical Supercapacitors

    NASA Astrophysics Data System (ADS)

    Cui, Xinwei

    This research is aimed at synthesizing millimeter-scale carbon nanotube arrays (CNTA) by conventional chemical vapor deposition (CCVD) and water-assisted chemical vapor deposition (WACVD) methods, and exploring their application as catalyst supports for electrochemical supercapacitors. The growth mechanism and growth kinetics of CNTA under different conditions were systematically investigated to understand the relationship among physical characteristics of catalyst particles, growth parameters, and carbon nanotube (CNT) structures within CNTAs. Multiwalled CNT (MWCNT) array growth demonstrates lengthening and thickening stages in CCVD and WACVD. In CCVD, the lengthening and thickening were found to be competitive. By investigating catalyst particles after different pretreatment conditions, it has been found that inter-particle spacing plays a significant role in influencing CNTA height, CNT diameter and wall number. In WACVD, a long linear lengthening stage has been found. CNT wall number remains constant and catalysts preserve the activity in this stage, while MWCNTs thicken substantially and catalysts deactivate following the previously proposed radioactive decay model in the thickening stage of WACVD. Water was also shown to preserve the catalyst activity by significantly inhibiting catalyst-induced and gas phase-induced thickening processes in WACVD. Mn3O4 nanoparticles were successfully deposited and uniformly distributed within millimeter-long CNTAs by dip-casting method from non-aqueous solutions. After modification with Mn3O4 nanoparticles, CNTAs have been changed from hydrophobic to hydrophilic without their alignment and integrity being destroyed. The hydrophilic Mn 3O4/CNTA composite electrodes present ideal capacitive behavior with high reversibility. This opens up a new route of utilizing ultra-long CNTAs, based on which a scalable and cost-effective method was developed to fabricate composite electrodes using millimeter-long CNTAs. To improve the

  10. Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation.

    PubMed

    Wang, An-Liang; He, Xu-Jun; Lu, Xue-Feng; Xu, Han; Tong, Ye-Xiang; Li, Gao-Ren

    2015-03-16

    PdCo nanotube arrays (NTAs) supported on carbon fiber cloth (CFC) (PdCo NTAs/CFC) are presented as high-performance flexible electrocatalysts for ethanol oxidation. The fabricated flexible PdCo NTAs/CFC exhibits significantly improved electrocatalytic activity and durability compared with Pd NTAs/CFC and commercial Pd/C catalysts. Most importantly, the PdCo NTAs/CFC shows excellent flexibility and the high electrocatalytic performance remains almost constant under the different distorted states, such as normal, bending, and twisting states. This work shows the first example of Pd-based alloy NTAs supported on CFC as high-performance flexible electrocatalysts for ethanol oxidation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fate and transport of TNT, RDX, and HMX in streambed sediments: Implications for riverbank filtration.

    PubMed

    Zheng, Weixi; Lichwa, Joseph; D'Alessio, Matteo; Ray, Chittaranjan

    2009-08-01

    Riverbank filtration (RBF) refers to the process of capturing surface water passing through the river-sediment-aquifer system by using a collection technique such as a well or an infiltration gallery. RBF removes nearly all suspended and a large number of dissolved contaminants from the surface water. Therefore, it can function as an effective pretreatment process in drinking-water production. TNT (2,4,6-trinitrotoluene), RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), and HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) are three military explosive chemicals that are considered of concern to human health when present in source waters. This study is to evaluate the ability of the filtration media in RBF systems to remove these chemicals. The results from an anoxic batch test showed that all three chemicals will degrade while passing through streambed sediments. The pseudo first-order degradation-rate constants for TNT, RDX, and HMX were measured to be 0.33, 0.055, and 0.033d(-1), respectively. Under aerobic conditions only TNT showed significant degradation. Results from a model RBF system showed that the mobility of the three chemical contaminants in streambed sediments was in the order: HMX>RDX>TNT. The results suggest that RBF is capable of removing TNT and RDX but HMX levels may continue to be of concern-especially when collector wells use laterals running directly beneath the stream or riverbed.

  12. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion.

    PubMed

    Zhou, Yixuan; E, Yiwen; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-14

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  13. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion

    NASA Astrophysics Data System (ADS)

    Zhou, Yixuan; Yiwen, E.; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-01

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  14. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems and initial assessment of material interaction with plant genetic material. Validation of the metabolic fate of munitions materials (TNT, RDX) in mature crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellows, R.J.; Harvey, S.D.; Cataldo, D.A.

    1995-09-01

    The goals of this effort were to confirm and expand data related to the behavior and impacts of munitions residues upon human food chain components. Plant species employed included corn (Zea mays), alfalfa (Medicago sativa). spinach (Spinacea oleraceae), and carrot (Daucus carota). Plants were grown from seed to maturity (70 to 120 days) in a low-fertility soil (Burbank) amended with either {sup 14}C-TNT or {sup 14}C-RDX at which time they were harvested and analyzed for munitions uptake, partitioning, and chemical form of the munition or munition-metabolite. All four of the plant species used in this study accumulated the {sup 14}C-TNT-more » and RDX-derived label. The carrot, alfalfa, and corn demonstrated a higher percentage of label retained in the roots (62, 73, and 83% respectively). The spinach contained less activity in its root (36%) but also contained the highest TNT specific activity observed (>4600 jig TNT equivalents/g dry wt.). The specific uptake values of RDX for the spinach and alfalfa were comparable to those previously reported for wheat and bean (314 to 590 {mu}g RDX-equivalents/g dry wt. respectively). An exception to this may be the carrot where the specific activity was found to exceed 4200 {mu}g RDX-equivalents/g dry wt. in the shoot. The total accumulation of TNT by the plants ranged from 1.24% for the spinach to 2.34% for the carrot. The RDX plants ranging from 15% for the spinach to 37% for the carrot. There was no identifiable TNT or amino dinitrotoluene (ADNT) isomers present in the plants however, the parent RDX compound was found at significant levels in the shoot of alfalfa (> 1 80 {mu}g/g) and corn (>18 {mu}g/g).« less

  15. Arrays of carbon nanoscrolls as deep subwavelength magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Yannopapas, Vassilios; Tzavala, Marilena; Tsetseris, Leonidas

    2013-10-01

    We demonstrate theoretically that an array of carbon nanoscrolls acts as a hyperbolic magnetic metamaterial in the terahertz regime with genuine subwavelength operation corresponding to a wavelength-to-structure ratio of about 200. Due to the low sheet resistance of graphene, the electromagnetic losses in an array of carbon nanoscrolls are almost negligible, offering a very sharp magnetic resonance of extreme positive and negative values of the effective magnetic permeability. The latter property leads to superior imaging properties for arrays of carbon nanoscrolls which can operate as magnetic endoscopes in the terahertz range where magnetic materials are scarce. Our optical modeling is supplemented with ab initio density functional calculations of the self-winding of a single layer of graphene onto a carbon nanotube so as to form a carbon nanoscroll. The latter process is viewed as a means to realize ordered arrays of carbon nanoscrolls in the laboratory based on arrays of aligned carbon nanotubes which are now routinely fabricated.

  16. Effective approach to strengthening TiO2 nanotube arrays by using double or triple reinforcements

    NASA Astrophysics Data System (ADS)

    Sun, Mengwei; Yu, Dongliang; Lu, Linfeng; Ma, Weihua; Song, Ye; Zhu, Xufei

    2015-08-01

    Porous anodic TiO2 nanotube arrays (TNTAs) are fragile and also susceptible to be damaged during physical manipulation. Few studies have involved the improvement of the poor interfacial adhesion of TNTAs to the Ti substrate. Here, the poor adhesion of TNTAs was dramatically improved by appending an additional compact layer (ACL) formed at the interface between TNTAs and the Ti substrate. The adhesion of TNTAs with single-ACL increased with the increase of the ACL thickness. Furthermore, the reinforced TNTAs with double-ACL and triple-ACL have been successfully developed for the first time. The experimental results indicated that the critical load of the TNTAs with triple-ACL is roughly 5.8 times higher than that of the untreated TNTAs. The present results may be helpful to assemble less brittle and large area TNTAs for extensive applications.

  17. Growth of nanotubes and chemical sensor applications

    NASA Astrophysics Data System (ADS)

    Hone, James; Kim, Philip; Huang, X. M. H.; Chandra, B.; Caldwell, R.; Small, J.; Hong, B. H.; Someya, T.; Huang, L.; O'Brien, S.; Nuckolls, Colin P.

    2004-12-01

    We have used a number of methods to grow long aligned single-walled carbon nanotubes. Geometries include individual long tubes, dense parallel arrays, and long freely suspended nanotubes. We have fabricated a variety of devices for applications such as multiprobe resistance measurement and high-current field effect transistors. In addition, we have measured conductance of single-walled semiconducting carbon nanotubes in field-effect transistor geometry and investigated the device response to water and alcoholic vapors. We observe significant changes in FET drain current when the device is exposed to various kinds of different solvent. These responses are reversible and reproducible over many cycles of vapor exposure. Our experiments demonstrate that carbon nanotube FETs are sensitive to a wide range of solvent vapors at concentrations in the ppm range.

  18. Wafer-scale, massively parallel carbon nanotube arrays for realizing field effect transistors with current density exceeding silicon and gallium arsenide

    NASA Astrophysics Data System (ADS)

    Arnold, Michael

    Calculations have indicated that aligned arrays of semiconducting carbon nanotubes (CNTs) promise to outperform conventional semiconducting materials in short-channel, aggressively scaled field effect transistors (FETs) like those used in semiconductor logic and high frequency amplifier technologies. These calculations have been based on extrapolation of measurements of FETs based on one CNT, in which ballistic transport approaching the quantum conductance limit of 2Go = 4e2/h has been achieved. However, constraints in CNT sorting, processing, alignment, and contacts give rise to non-idealities when CNTs are implemented in densely-packed parallel arrays, which has resulted in a conductance per CNT far from 2Go. The consequence has been that it has been very difficult to create high performance CNT array FETs, and CNT array FETs have not outperformed but rather underperformed channel materials such as Si by 6 x or more. Here, we report nearly ballistic CNT array FETs at a density of 50 CNTs um-1, created via CNT sorting, wafer-scale alignment and assembly, and treatment. The on-state conductance in the arrays is as high as 0.46 Go per CNT, and the conductance of the arrays reaches 1.7 mS um-1, which is 7 x higher than previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density reaches 900 uA um-1 and is similar to or exceeds that of Si FETs when compared at equivalent gate oxide thickness, off-state current density, and channel length. The on-state current density exceeds that of GaAs FETs, as well. This leap in CNT FET array performance is a significant advance towards the exploitation of CNTs in high-performance semiconductor electronics technologies.

  19. Tracing the Cycling and Fate of the Explosive 2,4,6-Trinitrotoluene in Coastal Marine Systems with a Stable Isotopic Tracer, (15)N-[TNT].

    PubMed

    Smith, Richard W; Vlahos, Penny; Böhlke, J K; Ariyarathna, Thivanka; Ballentine, Mark; Cooper, Christopher; Fallis, Stephen; Groshens, Thomas J; Tobias, Craig

    2015-10-20

    2,4,6-Trinitrotoluene (TNT) has been used as a military explosive for over a hundred years. Contamination concerns have arisen as a result of manufacturing and use on a large scale; however, despite decades of work addressing TNT contamination in the environment, its fate in marine ecosystems is not fully resolved. Here we examine the cycling and fate of TNT in the coastal marine systems by spiking a marine mesocosm containing seawater, sediments, and macrobiota with isotopically labeled TNT ((15)N-[TNT]), simultaneously monitoring removal, transformation, mineralization, sorption, and biological uptake over a period of 16 days. TNT degradation was rapid, and we observed accumulation of reduced transformation products dissolved in the water column and in pore waters, sorbed to sediments and suspended particulate matter (SPM), and in the tissues of macrobiota. Bulk δ(15)N analysis of sediments, SPM, and tissues revealed large quantities of (15)N beyond that accounted for in identifiable derivatives. TNT-derived N was also found in the dissolved inorganic N (DIN) pool. Using multivariate statistical analysis and a (15)N mass balance approach, we identify the major transformation pathways of TNT, including the deamination of reduced TNT derivatives, potentially promoted by sorption to SPM and oxic surface sediments.

  20. Tracing the cycling and fate of the explosive 2,4,6-trinitrotoluene in coastal marine systems with a stable isotopic tracer, 15N-[TNT

    USGS Publications Warehouse

    Smith, Richard W.; Vlahos, Penny; Böhlke, John Karl; Ariyarathna, Thivanka; Ballentine, Mark; Cooper, Christopher; Fallis, Stephen; Groshens, Thomas J.; Tobias, Craig

    2015-01-01

    2,4,6-Trinitrotoluene (TNT) has been used as a military explosive for over a hundred years. Contamination concerns have arisen as a result of manufacturing and use on a large scale; however, despite decades of work addressing TNT contamination in the environment, its fate in marine ecosystems is not fully resolved. Here we examine the cycling and fate of TNT in the coastal marine systems by spiking a marine mesocosm containing seawater, sediments, and macrobiota with isotopically labeled TNT (15N-[TNT]), simultaneously monitoring removal, transformation, mineralization, sorption, and biological uptake over a period of 16 days. TNT degradation was rapid, and we observed accumulation of reduced transformation products dissolved in the water column and in pore waters, sorbed to sediments and suspended particulate matter (SPM), and in the tissues of macrobiota. Bulk δ15N analysis of sediments, SPM, and tissues revealed large quantities of 15N beyond that accounted for in identifiable derivatives. TNT-derived N was also found in the dissolved inorganic N (DIN) pool. Using multivariate statistical analysis and a 15N mass balance approach, we identify the major transformation pathways of TNT, including the deamination of reduced TNT derivatives, potentially promoted by sorption to SPM and oxic surface sediments.