Sample records for nanotubes baytubes approach

  1. Investigations on the antiretroviral activity of carbon nanotubes using computational molecular approach.

    PubMed

    Krishnaraj, R Navanietha; Chandran, Saravanan; Pal, Parimal; Berchmans, Sheela

    2014-01-01

    Carbon nanotubes are the interesting class of materials with wide range of applications. They have excellent physical, chemical and electrical properties. Numerous reports were made on the antiviral activities of carbon nanotubes. However the mechanism of antiviral action is still in infancy. Herein we report, our recent novel findings on the molecular interactions of carbon nanotubes with the three key target proteins of HIV using computational chemistry approach. Armchair, chiral and zigzag CNTs were modeled and used as ligands for the interaction studies. The structure of the key proteins involved in HIV mediated infection namely HIV- Vpr, Nef and Gag proteins were collected from the PDB database. The docking studies were performed to quantify the interaction of the CNT with the three different disease targets. Results showed that the carbon nanotubes had high binding affinity to these proteins which confirms the antagonistic molecular interaction of carbon nanotubes to the disease targets. The modeled armchair carbon nanotubes had the binding affinities of -12.4 Kcal/mole, -20 Kcal/mole and -11.7 Kcal/mole with the Vpr, Nef and Gag proteins of HIV. Chiral CNTs also had the maximum affinity of -16.4 Kcal/mole to Nef. The binding affinity of chiral CNTs to Vpr and Gag was found to be -10.9 Kcal/mole and -10.3 Kcal/mole respectively. The zigzag CNTs had the binding affinity of -11.1 Kcal/mole with Vpr, -18.3 Kcal/mole with Nef and -10.9 with Gag respectively. The strong molecular interactions suggest the efficacy of CNTs for targeting the HIV mediated retroviral infections.

  2. A new route of synthesizing perovskite nanotubes by templating approach

    NASA Astrophysics Data System (ADS)

    Habiballah, Anisah Shafiqah; Osman, Nafisah; Jani, Abdul Mutalib Md

    2017-09-01

    A perovskite oxide for example Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) has attracted growing attention due to its high catalytic activity and mixed ionic/electronic conductivity. Recent research of BSCF is more comprehensively based on a remarkable trajectory of innovation, in particular with regards to the synthesis of perovskite structures in one-dimensional (1-D) nanometric scales as they promote not only to increase an active electrode area for the oxygen reduction reaction, but also allow the tailoring of electrode's architecture. Nevertheless, achieving the desired 1-D structure by a conventional method such as hydrothermal, solvothermal, or sonochemical are far from satisfactory. Herein, the aim of this work is to synthesize the BSCF perovskite nanotubes via soft templating approach, particularly using anodic aluminium oxide (AAO) as a template, focusing on the morphology, composition and structural properties were demonstrated. After the AAO template was anodized at 80 V, the fabricated template was clamped between apair of spectroscopic cells containing BSCF sol and deionized water (with a hole of both sides) for 24 hours. After that, the sample was removed from the cells followed by heat treatment process. The FESEM images showed that BSCF nanotubes were successfully achieved, with the diameter of the nanotubes' approximately 80 nm. The EDX result also confirmed the nominal stoichiometry of Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Meanwhile, the XRD pattern confirmed a single crystalline phase of BSCF nanotubes was successfully obtained and congruent to a cubic perovskite structure of BSCF. Possible formation mechanism,as well as the schematic illustration of BSCF nanotubes inside the template was also discussed in this paper.

  3. Temperature dependence of strain energy and thermodynamic properties of V2 O5 -based single-walled nanotubes: Zone-folding approach.

    PubMed

    Porsev, Vitaly V; Bandura, Andrei V; Evarestov, Robert A

    2016-06-15

    A zone-folding approach is applied to estimate the thermodynamic properties of V2 O5 -based nanotubes. The results obtained are compared with those from the direct calculations. It is shown that the zone-folding approximation allows an accurate estimation of nanotube thermodynamic properties and gives a gain in computation time compared to their direct calculations. Both approaches show that temperature effects do not change the relative stability of V2 O5 free layers and nanotubes derived from the α- and γ-phase. The internal energy thermal contributions into the strain energy of nanotubes are small and can be ignored. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.

    2002-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT) with various orientations with respect to the bulk material coordinates. A nanotube, the local polymer adjacent to the nanotube, and the nanotube/polymer interface have been modeled as an equivalent-continuum fiber by using an equivalent-continuum modeling method. The equivalent-continuum fiber accounts for the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composite. As an example, the proposed approach is used for the constitutive modeling of a SWNT/LaRC-SI (with a PmPV interface) composite system, with aligned nanotubes, three-dimensionally randomly oriented nanotubes, and nanotubes oriented with varying degrees of axisymmetry. It is shown that the Young s modulus is highly dependent on the SWNT orientation distribution.

  5. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.

    PubMed

    Cao, Xuan; Chen, Haitian; Gu, Xiaofei; Liu, Bilu; Wang, Wenli; Cao, Yu; Wu, Fanqi; Zhou, Chongwu

    2014-12-23

    Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.

  6. Carbon Nanotube Purification and Functionalization

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Mintz, Eric; Smalley, Richard E.; Meador, Michael A.

    2003-01-01

    Carbon nanotubes have the potential to significantly enhance the mechanical, thermal, and electrical properties of polymers. However, dispersion of carbon nanotubes in a polymer matrix is hindered by the electrostatic forces that cause them to agglomerate. Chemical modification of the nanotubes is necessary to minimize these electrostatic forces and promote adhesion between the nanotubes and the polymer matrix. In a collaborative research program between Clark Atlanta University, Rice University, and NASA Glenn Research Center several approaches are being explored to chemically modify carbon nanotubes. The results of this research will be presented.

  7. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.

  8. Carbon Nanotubes for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Files, Brad; Yowell, Leonard

    2003-01-01

    Single-wall carbon nanotubes offer the promise of a new class of revolutionary materials for space applications. The Carbon Nanotube Project at NASA Johnson Space Center has been actively researching this new technology by investigating nanotube production methods (arc, laser, and HiPCO) and gaining a comprehensive understanding of raw and purified material using a wide range of characterization techniques. After production and purification, single wall carbon nanotubes are processed into composites for the enhancement of mechanical, electrical, and thermal properties. This "cradle-to-grave" approach to nanotube composites has given our team unique insights into the impact of post-production processing and dispersion on the resulting material properties. We are applying our experience and lessons-learned to developing new approaches toward nanotube material characterization, structural composite fabrication, and are also making advances in developing thermal management materials and electrically conductive materials in various polymer-nanotube systems. Some initial work has also been conducted with the goal of using carbon nanotubes in the creation of new ceramic materials for high temperature applications in thermal protection systems. Human space flight applications such as advanced life support and fuel cell technologies are also being investigated. This discussion will focus on the variety of applications under investigation.

  9. High pressure Raman spectroscopy of single-walled carbon nanotubes: Effect of chemical environment on individual nanotubes and the nanotube bundle

    NASA Astrophysics Data System (ADS)

    Proctor, John E.; Halsall, Matthew P.; Ghandour, Ahmad; Dunstan, David J.

    2006-12-01

    The pressure-induced tangential mode Raman peak shifts for single-walled carbon nanotubes (SWNTs) have been studied using a variety of different solvents as hydrostatic pressure-transmitting media. The variation in the nanotube response to hydrostatic pressure with different pressure transmitting media is evidence that the common solvents used are able to penetrate the interstitial spaces in the nanotube bundle. With hexane, we find the surprising result that the individual nanotubes appear unaffected by hydrostatic pressures (i.e. a flat Raman response) up to 0.7 GPa. Qualitatively similar results have been obtained with butanol. Following the approach of Amer et al. [J. Chem. Phys. 121 (2004) 2752], we speculate that this is due to the inability of SWNTs to adsorb some solvents onto their surface at lower pressures. We also find that the role of cohesive energy density in the solvent nanotube interaction is more complex than previously thought.

  10. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube shapes, sizes, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/LaRC-SI (with a PmPV interface) composite systems, one with aligned SWNTs and the other with three-dimensionally randomly oriented SWNTs. The Young's modulus and shear modulus have been calculated for the two systems for various nanotube lengths and volume fractions.

  11. Single walled boron nitride nanotube-based biosensor: an atomistic finite element modelling approach.

    PubMed

    Panchal, Mitesh B; Upadhyay, Sanjay H

    2014-09-01

    The unprecedented dynamic characteristics of nanoelectromechanical systems make them suitable for nanoscale mass sensing applications. Owing to superior biocompatibility, boron nitride nanotubes (BNNTs) are being increasingly used for such applications. In this study, the feasibility of single walled BNNT (SWBNNT)-based bio-sensor has been explored. Molecular structural mechanics-based finite element (FE) modelling approach has been used to analyse the dynamic behaviour of SWBNNT-based biosensors. The application of an SWBNNT-based mass sensing for zeptogram level of mass has been reported. Also, the effect of size of the nanotube in terms of length as well as different chiral atomic structures of SWBNNT has been analysed for their sensitivity analysis. The vibrational behaviour of SWBNNT has been analysed for higher-order modes of vibrations to identify the intermediate landing position of biological object of zeptogram scale. The present molecular structural mechanics-based FE modelling approach is found to be very effectual to incorporate different chiralities of the atomic structures. Also, different boundary conditions can be effectively simulated using the present approach to analyse the dynamic behaviour of the SWBNNT-based mass sensor. The presented study has explored the potential of SWBNNT, as a nanobiosensor having the capability of zeptogram level mass sensing.

  12. An innovative approach to synthesize highly-ordered TiO2 nanotubes.

    PubMed

    Isimjan, Tayirjan T; Yang, D Q; Rohani, Sohrab; Ray, Ajay K

    2011-02-01

    An innovative route to prepare highly-ordered and dimensionally controlled TiO2 nanotubes has been proposed using a mild sonication method. The nanotube arrays were prepared by the anodization of titanium in an electrolyte containing 3% NH4F and 5% H2O in glycerol. It is demonstrated that the TiO2 nanostructures has two layers: the top layer is TiO2 nanowire and underneath is well-ordered TiO2 nanotubes. The top layer can easily fall off and form nanowires bundles by implementing a mild sonication after a short annealing time. We found that the dimensions of the TiO2 nanotubes were only dependent on the anodizing condition. The proposed technique may be extended to fabricate reproducible well-ordered TiO2 nanotubes with large area on other metals.

  13. Constitutive Modeling of Crosslinked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Frankland, S. J. V.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2004-01-01

    A non-linear, continuum-based constitutive model is developed for carbon nanotube materials in which bundles of aligned carbon nanotubes have varying amounts of crosslinks between the nanotubes. The model accounts for the non-linear elastic constitutive behavior of the material in terms of strain, and is developed using a thermodynamic energy approach. The model is used to examine the effect of the crosslinking on the overall mechanical properties of variations of the crosslinked carbon nanotube material with varying degrees of crosslinking. It is shown that the presence of the crosslinks has significant effects on the mechanical properties of the carbon nanotube materials. An increase in the transverse shear properties is observed when the nanotubes are crosslinked. However, this increase is accompanied by a decrease in axial mechanical properties of the nanotube material upon crosslinking.

  14. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2004-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  15. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2001-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  16. Carbon nanotube macroelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to

  17. On the continuum mechanics approach for the analysis of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chaudhry, M. S.; Czekanski, A.

    2016-04-01

    Today carbon nanotubes have found various applications in structural, thermal and almost every field of engineering. Carbon nanotubes provide great strength, stiffness resilience properties. Evaluating the structural behavior of nanoscale materials is an important task. In order to understand the materialistic behavior of nanotubes, atomistic models provide a basis for continuum mechanics modelling. Although the properties of bulk materials are consistent with the size and depends mainly on the material but the properties when we are in Nano-range, continuously change with the size. Such models start from the modelling of interatomic interaction. Modelling and simulation has advantage of cost saving when compared with the experiments. So in this project our aim is to use a continuum mechanics model of carbon nanotubes from atomistic perspective and analyses some structural behaviors of nanotubes. It is generally recognized that mechanical properties of nanotubes are dependent upon their structural details. The properties of nanotubes vary with the varying with the interatomic distance, angular orientation, radius of the tube and many such parameters. Based on such models one can analyses the variation of young's modulus, strength, deformation behavior, vibration behavior and thermal behavior. In this study some of the structural behaviors of the nanotubes are analyzed with the help of continuum mechanics models. Using the properties derived from the molecular mechanics model a Finite Element Analysis of carbon nanotubes is performed and results are verified. This study provides the insight on continuum mechanics modelling of nanotubes and hence the scope to study the effect of various parameters on some structural behavior of nanotubes.

  18. Quantitative theory of diffraction by cylindrical scroll nanotubes.

    PubMed

    Khadiev, Azat; Khalitov, Zufar

    2018-05-01

    A quantitative theory of Fraunhofer diffraction by right- and left-handed multiwalled cylindrical scroll nanotubes is developed on the basis of the kinematical approach. The proposed theory is mainly dedicated to structural studies of individual nanotubes by the selected-area electron diffraction technique. Strong and diffuse reflections of the scroll nanotube were studied and explicit formulas that govern relations between the direct and reciprocal lattice of the scroll nanotube are achieved.

  19. Single-crystal gallium nitride nanotubes.

    PubMed

    Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng; Lee, Sangkwon; Yan, Haoquan; Choi, Heon-Jin; Yang, Peidong

    2003-04-10

    Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an 'epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200 nm and wall thicknesses of 5-50 nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

  20. Sacrificial template method of fabricating a nanotube

    DOEpatents

    Yang, Peidong [Berkeley, CA; He, Rongrui [Berkeley, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yi-Ying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA

    2007-05-01

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  1. Improved Process for Fabricating Carbon Nanotube Probes

    NASA Technical Reports Server (NTRS)

    Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; Han, Jie

    2003-01-01

    An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure.

  2. Magnetic nanotubes

    DOEpatents

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  3. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  4. Ambipolar behavior and thermoelectric properties of WS2 nanotubes

    NASA Astrophysics Data System (ADS)

    Yomogida, Yohei; Kawai, Hideki; Sugahara, Mitsunari; Okada, Ryotaro; Yanagi, Kazuhiro

    WS2 nanotubes are rolled multi-walled nanotubes made by a layered material, tungsten disulfides Since the discovery by Tenne et al in 1992, various physical properties have been revealed. Theoretical studies have suggested their distinct electronic properties from those of two dimensional sheet, such as one-dimensional electronic strucutures with sharp van Hove singularities and chiralitiy depended electronic structures. Their fibril structures enable us to make their random network films, however, the films are not conducting, and thus have not been used for electronic applications. Here we demonstrate that carrier injections on the WS2 networks by an electrolyte gating approach could make the networks as a semiconducting channel. We clarified the Raman characteristics of WS2 nanotubes networks under electrolyte gating, and confirmed capability of electron and hole injections. We revealed ambipolar behaviors of the WS2 nanotube networks in field effect transistor setups with electrolyte gating. In additio, we demosntrate N-type and P-type control of thermoelectric properties of WS2 nanotubes by electrolyte gating.The power factor of the WS2 nanotubes almost approached to that of the single crystalline WS2 flakes, suggesting good potential for thermoelectric applications..

  5. Electrical conductivity of nanocomposites based on carbon nanotubes: a 3D multiscale modeling approach

    NASA Astrophysics Data System (ADS)

    Grabowski, Krzysztof; Zbyrad, Paulina; Staszewski, Wieslaw J.; Uhl, Tadeusz; Wiatr, Kazimierz; Packo, Pawel

    2016-04-01

    Remarkable electrical properties of carbon nanotubes (CNT) have lead to increased interest in studying CNT- based devices. Many of current researches are devoted to using all kinds of carbon nanomaterials in the con- struction of sensory elements. One of the most common applications is the development of high performance, large scale sensors. Due to the remarkable conductivity of CNT's such devices represent very high sensitivity. However, there are no sufficient tools for studying and designing such sensors. The main objective of this paper is to develop and validate a multiscale numerical model for a carbon nanotubes based sensor. The device utilises the change of electrical conductivity of a nanocomposite material under applied deformation. The nanocomposite consists of a number of CNTs dispersed in polymer matrix. The paper is devoted to the analysis of the impact of spatial distribution of carbon nanotubes in polymer matrix on electrical conductivity of the sensor. One of key elements is also to examine the impact of strain on electric charge ow in such anisotropic composite structures. In the following work a multiscale electro-mechanical model for CNT - based nanocomposites is proposed. The model comprises of two length scales, namely the meso- and the macro-scale for mechanical and electrical domains. The approach allows for evaluation of macro-scale mechanical response of a strain sensor. Electrical properties of polymeric material with certain CNT fractions were derived considering electrical properties of CNTs, their contact and the tunnelling effect.

  6. First-principles modeling of hafnia-based nanotubes.

    PubMed

    Evarestov, Robert A; Bandura, Andrei V; Porsev, Vitaly V; Kovalenko, Alexey V

    2017-09-15

    Hybrid density functional theory calculations were performed for the first time on structure, stability, phonon frequencies, and thermodynamic functions of hafnia-based single-wall nanotubes. The nanotubes were rolled up from the thin free layers of cubic and tetragonal phases of HfO 2 . It was shown that the most stable HfO 2 single-wall nanotubes can be obtained from hexagonal (111) layer of the cubic phase. Phonon frequencies have been calculated for different HfO 2 nanolayers and nanotubes to prove the local stability and to find the thermal contributions to their thermodynamic functions. The role of phonons in stability of nanotubes seems to be negligible for the internal energy and noticeable for the Helmholtz free energy. Zone folding approach has been applied to estimate the connection between phonon modes of the layer and nanotubes and to approximate the nanotube thermodynamic properties. It is found that the zone-folding approximation is sufficiently accurate for heat capacity, but less accurate for entropy. The comparison has been done between the properties of TiO 2 , ZrO 2 , and HfO 2 . © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Filled carbon nanotubes in biomedical imaging and drug delivery.

    PubMed

    Martincic, Markus; Tobias, Gerard

    2015-04-01

    Carbon nanotubes have been advocated as promising candidates in the biomedical field in the areas of diagnosis and therapy. In terms of drug delivery, the use of carbon nanotubes can overcome some limitations of 'free' drugs by improving the formulation of poorly water-soluble drugs, allowing targeted delivery and even enabling the co-delivery of two or more drugs for combination therapy. Two different approaches are currently being explored for the delivery of diagnostic and therapeutic agents by carbon nanotubes, namely attachment of the payload to the external sidewalls or encapsulation into the inner cavities. Although less explored, the latter confers additional stability to the chosen diagnostic or therapeutic agents, and leaves the backbone structure of the nanotubes available for its functionalization with dispersing and targeting moieties. Several drug delivery systems and diagnostic agents have been developed in the last years employing the inner tubular cavities of carbon nanotubes. The research discussed in this review focuses on the use of carbon nanotubes that contain in their interior drug molecules and diagnosis-related compounds. The approaches employed for the development of such nanoscale vehicles along with targeting and releasing strategies are discussed. The encapsulation of both biomedical contrast agents and drugs inside carbon nanotubes is further expanding the possibilities to allow an early diagnosis and treatment of diseases.

  8. Multiscale Modeling of Carbon Nanotube-Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.

    Epoxy-composites are widely used in the aerospace industry. In order to improve upon stiffness and thermal conductivity; carbon nanotube additives to epoxies are being explored. This dissertation presents multiscale modeling techniques to study the engineering properties of single walled carbon nanotube (SWNT)-epoxy nanocomposites, consisting of pristine and covalently functionalized systems. Using Molecular Dynamics (MD), thermomechanical properties were calculated for a representative polymer unit cell. Finite Element (FE) and orientation distribution function (ODF) based methods were used in a multiscale framework to obtain macroscale properties. An epoxy network was built using the dendrimer growth approach. The epoxy model was verified by matching the experimental glass transition temperature, density, and dilatation. MD, via the constant valence force field (CVFF), was used to explore the mechanical and dilatometric effects of adding pristine and functionalized SWNTs to epoxy. Full stiffness matrices and linear coefficient of thermal expansion vectors were obtained. The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for the various nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. To obtain continuum-scale elastic properties from the MD data, multiscale modeling was considered to give better control over the volume fraction of nanotubes, and investigate the effects of nanotube alignment. Two methods were considered; an FE based method, and an ODF based method. The FE method probabilistically assigned elastic properties of elements from the MD lattice results based on the desired volume fraction and alignment of the nanotubes. For the ODF method, a distribution function was generated based on the desired amount of nanotube alignment

  9. Helicity-dependent single-walled carbon nanotube alignment on graphite for helical angle and handedness recognition

    PubMed Central

    Chen, Yabin; Shen, Ziyong; Xu, Ziwei; Hu, Yue; Xu, Haitao; Wang, Sheng; Guo, Xiaolei; Zhang, Yanfeng; Peng, Lianmao; Ding, Feng; Liu, Zhongfan; Zhang, Jin

    2013-01-01

    Aligned single-walled carbon nanotube arrays provide a great potential for the carbon-based nanodevices and circuit integration. Aligning single-walled carbon nanotubes with selected helicities and identifying their helical structures remain a daunting issue. The widely used gas-directed and surface-directed growth modes generally suffer the drawbacks of mixed and unknown helicities of the aligned single-walled carbon nanotubes. Here we develop a rational approach to anchor the single-walled carbon nanotubes on graphite surfaces, on which the orientation of each single-walled carbon nanotube sensitively depends on its helical angle and handedness. This approach can be exploited to conveniently measure both the helical angle and handedness of the single-walled carbon nanotube simultaneously at a low cost. In addition, by combining with the resonant Raman spectroscopy, the (n,m) index of anchored single-walled carbon nanotube can be further determined from the (d,θ) plot, and the assigned (n,m) values by this approach are validated by both the electronic transition energy Eii measurement and nanodevice application. PMID:23892334

  10. Inorganic nanotubes.

    PubMed

    Tenne, Reshef; Rao, C N R

    2004-10-15

    Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS(2), will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.

  11. Functionalization of vertically aligned carbon nanotubes.

    PubMed

    Van Hooijdonk, Eloise; Bittencourt, Carla; Snyders, Rony; Colomer, Jean-François

    2013-01-01

    This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  12. Functionalization of vertically aligned carbon nanotubes

    PubMed Central

    Snyders, Rony; Colomer, Jean-François

    2013-01-01

    Summary This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs. PMID:23504581

  13. Effective Hamiltonian approach to bright and dark excitons in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Choi, Sangkook; Deslippe, Jack; Louie, Steven G.

    2009-03-01

    Recently, excitons in single-walled carbon nanotubes (SWCNTs) have generated great research interest due to the large binding energies and unique screening properties associated with one-dimensional (1D) materials. Considerable progress in their theoretical understanding has been achieved by studies employing the ab initio GW-Bethe-Salpeter equation methodology. For example, the presence of bright and dark excitons with binding energies of a large fraction of an eV has been predicted and subsequently verified by experiment. Some of these results have also been quantitatively reproduced by recent model calculations using a spatially dependent screened Coulomb interaction between the excited electron and hole, an approach that would be useful for studying large diameter and chiral nanotubes with many atoms per unit cell. However, this previous model neglects the degeneracy of the band states and hence the dark excitons. We present an extension of this exciton model for the SWCNT, incorporating the screened Coulomb interaction as well as state degeneracy, to understand and compute the characteristics of the bright and dark excitons, such as the bright and dark level splittings. Supported by NSF #DMR07-05941, DOE #De-AC02-05CH11231 and computational resources from Teragrid and NERSC.

  14. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  15. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  16. Effects of high energy electrons on the properties of polyethylene / multiwalled carbon nanotubes composites: Comparison of as-grown and oxygen-functionalised MWCNT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, B., E-mail: krause-beate@ipfdd.de, E-mail: poe@ipfdd.de, E-mail: gohs@ipfdd.de; Pötschke, P., E-mail: krause-beate@ipfdd.de, E-mail: poe@ipfdd.de, E-mail: gohs@ipfdd.de; Gohs, U., E-mail: krause-beate@ipfdd.de, E-mail: poe@ipfdd.de, E-mail: gohs@ipfdd.de

    2014-05-15

    Polymer modification with high energy electrons (EB) is well established in different applications for many years. It is used for crosslinking, curing, degrading, grafting of polymeric materials and polymerisation of monomers. In contrast to this traditional method, electron induced reactive processing (EIReP) combines the polymer modification with high energy electrons and the melt mixing process. This novel reactive method was used to prepare polymer blends and composites. In this study, both methods were used for the preparation of polyethylene (PE)/ multiwalled carbon nanotubes (MWCNT) composites in the presence of a coupling agent. The influence of MWCNT and type of electronmore » treatment on the gel content, the thermal conductivity, rheological, and electrical properties was investigated whereby as-grown and oxidised MWCNT were used. In the presence of a coupling agent and at an absorbed dose of 40 kGy, the gel content increased from 57 % for the pure PE to 74 % or 88 % by the addition of as-grown (Baytubes® C150P) or oxidised MWCNT, respectively. In comparison to the composites containing the as-grown MWCNTs, the use of the oxidised MWCNTs led to higher melt viscosity and higher storage modulus due to higher yield of filler polymer couplings. The melt viscosity increased due to the addition of MWCNT and crosslinking of PE. The thermal conductivity increased to about 150 % and showed no dependence on the kind of MWCNT and the type of electron treatment. In contrast, the lowest value of electrical volume resistivity was found for the non-irradiated samples and after state of the art electron treatment without any influence of the type of MWCNT. In the case of EIReP, the volume resistivity increased by 2 (as-grown MWCNT) or 3 decades (oxidised MWCNT) depending on the process parameters.« less

  17. Phonon spectra, electronic, and thermodynamic properties of WS2 nanotubes.

    PubMed

    Evarestov, Robert A; Bandura, Andrei V; Porsev, Vitaly V; Kovalenko, Alexey V

    2017-11-15

    Hybrid density functional theory calculations are performed for the first time on the phonon dispersion and thermodynamic properties of WS 2 -based single-wall nanotubes. Symmetry analysis is presented for phonon modes in nanotubes using the standard (crystallographic) factorization for line groups. Symmetry and the number of infra-red and Raman active modes in achiral WS 2 nanotubes are given for armchair and zigzag chiralities. It is demonstrated that a number of infrared and Raman active modes is independent on the nanotube diameter. The zone-folding approach is applied to find out an impact of curvature on electron and phonon band structure of nanotubes rolled up from the monolayer. Phonon frequencies obtained both for layers and nanotubes are used to compute the thermal contributions to their thermodynamic functions. The temperature dependences of energy, entropy, and heat capacity of nanotubes are estimated with respect to those of the monolayer. The role of phonons in the stability estimation of nanotubes is discussed based on Helmholtz free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Indium telluride nanotubes: Solvothermal synthesis, growth mechanism, and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Liyan; Yan, Shancheng, E-mail: yansc@njupt.edu.cn; School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046

    2014-03-15

    A convenient solvothermal approach was applied for the first time to synthesize In{sub 2}Te{sub 3} nanotubes. The morphology of the resultant nanotubes was studied by scanning electron microscopy and transmission electron microscopy. Nanotubes with a relatively uniform diameter of around 500 nm, tube wall thickness of 50–100 nm, and average length of tens of microns were obtained. X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to study the crystal structures, composition, and optical properties of the products. To understand the growth mechanism of the In{sub 2}Te{sub 3} nanotubes, we studied the influences of temperature, reaction time, and polyvinylpyrrolidonemore » (PVP) and ethylene diamine (EDA) dosages on the final products. Based on the experimental results, a possible growth mechanism of In{sub 2}Te{sub 3} nanotubes was proposed. In this mechanism, TeO{sub 3}{sup −2} is first reduced to allow nucleation. Circumferential edges of these nucleated molecules attract further deposition, and nanotubes finally grow rapidly along the c-axis and relatively slowly along the circumferential direction. The surface area of the products was determined by BET and found to be 137.85 m{sup 2} g{sup −1}. This large surface area indicates that the nanotubes may be suitable for gas sensing and hydrogen storage applications. The nanotubes also showed broad light detection ranging from 300 nm to 1100 nm, which covers the UV–visible–NIR regions. Such excellent optical properties indicate that In{sub 2}Te{sub 3} nanotubes may enable significant advancements in new photodetection and photosensing applications. -- Graphical abstract: A convenient solvothermal approach was applied to synthesize In{sub 2}Te{sub 3} nanotubes, which has not been reported in the literature for our knowledge. Surface area of this material is 137.85 m{sup 2} g{sup −1} from the BET testing, and such a high value makes it probably suitable for gas sensing

  19. Nanotube Sensors

    NASA Technical Reports Server (NTRS)

    McEuen, Paul L.

    2002-01-01

    Under this project, we explored the feasibility of utilizing carbon nanotubes in sensing applications. The grant primarily supported a graduate student, who worked on a number of aspects of the electrical properties of carbon nanotubes in collaboration with other researchers in my group. The two major research accomplishments are described below. The first accomplishment is the demonstration that solution carbon nanotube transistors functioned well in an electrolyte environment. This was important for two reasons. First, it allowed us to explore the ultimate limits of nanotube electronic performance by using the electrolyte as a highly effective gate, with a dielectric constant of approximately 80 and an effective insulator thickness of approximately 1 nm. Second, it showed that nanotubes function well under biologically relevant conditions (salty water) and therefore offer great promise as biological sensors. The second accomplishment was the demonstration that a voltage pulse applied to an AFM tip could be used to electrically cut carbon nanotubes. We also showed that a carefully applied pulse could also 'nick' a nanotube, creating a tunnel barrier without completely breaking the tube. Nicking was employed to make, for example, a quantum dot within a nanotube.

  20. Approaching Piezoelectric Response of Pb-Piezoelectrics in Hydrothermally Synthesized Bi0.5(Na1- xK x)0.5TiO3 Nanotubes.

    PubMed

    Ghasemian, Mohammad Bagher; Rawal, Aditya; Liu, Yun; Wang, Danyang

    2018-06-20

    A large piezoelectric coefficient of 76 pm/V along the diameter direction, approaching that of lead-based piezoelectrics, is observed in hydrothermally synthesized Pb-free Bi 0.5 (Na 0.8 K 0.2 ) 0.5 TiO 3 nanotubes. The 30-50 nm diameter nanotubes are formed through a scrolling and wrapping mechanism without the need of a surfactant or template. A molar ratio of KOH/NaOH = 0.5 for the mineralizers yields the Na/K ratio of ∼0.8:0.2, corresponding to an orthorhombic-tetragonal (O-T) phase boundary composition. X-ray diffraction patterns along with transmission electron microscopy analysis ascertain the coexistence of orthorhombic and tetragonal phases with (110) and (001) orientations along the nanotube length direction, respectively. 23 Na NMR spectroscopy confirms the higher degree of disorder in Bi 0.5 (Na 1- x K x ) 0.5 TiO 3 nanotubes with O-T phase coexistence. These findings present a significant advance toward the application of Pb-free piezoelectric materials.

  1. Functional materials based on carbon nanotubes: Carbon nanotube actuators and noncovalent carbon nanotube modification

    NASA Astrophysics Data System (ADS)

    Fifield, Leonard S.

    Carbon nanotubes have attractive inherent properties that encourage the development of new functional materials and devices based on them. The use of single wall carbon nanotubes as electromechanical actuators takes advantage of the high mechanical strength, surface area and electrical conductivity intrinsic to these molecules. The work presented here investigates the mechanisms that have been discovered for actuation of carbon nanotube paper: electrostatic, quantum chemical charge injection, pneumatic and viscoelastic. A home-built apparatus for the measurement of actuation strain is developed and utilized in the investigation. An optical fiber switch, the first demonstrated macro-scale device based on the actuation of carbon nanotubes, is described and its performance evaluated. Also presented here is a new general process designed to modify the surface of carbon nanotubes in a non-covalent, non-destructive way. This method can be used to impart new functionalities to carbon nanotube samples for a variety of applications including sensing, solar energy conversion and chemical separation. The process described involves the achievement of large degrees of graphitic surface coverage with polycyclic aromatic hydrocarbons through the use of supercritical fluids. These molecules are bifunctional agents that anchor a desired chemical group to the aromatic surface of the carbon nanotubes without adversely disrupting the conjugated backbone that gives rise the attractive electronic and physical properties of the nanotubes. Both the nanotube functionalization work and the actuator work presented here emphasize how an understanding and control of nanoscale structure and phenomena can be of vital importance in achieving desired performance for active materials. Opportunities for new devices with improved function over current state-of-the-art can be envisioned and anticipated based on this understanding and control.

  2. Structural resolution of inorganic nanotubes with complex stoichiometry.

    PubMed

    Monet, Geoffrey; Amara, Mohamed S; Rouzière, Stéphan; Paineau, Erwan; Chai, Ziwei; Elliott, Joshua D; Poli, Emiliano; Liu, Li-Min; Teobaldi, Gilberto; Launois, Pascale

    2018-05-23

    Determination of the atomic structure of inorganic single-walled nanotubes with complex stoichiometry remains elusive due to the too many atomic coordinates to be fitted with respect to X-ray diffractograms inherently exhibiting rather broad features. Here we introduce a methodology to reduce the number of fitted variables and enable resolution of the atomic structure for inorganic nanotubes with complex stoichiometry. We apply it to recently synthesized methylated aluminosilicate and aluminogermanate imogolite nanotubes of nominal composition (OH) 3 Al 2 O 3 Si(Ge)CH 3 . Fitting of X-ray scattering diagrams, supported by Density Functional Theory simulations, reveals an unexpected rolling mode for these systems. The transferability of the approach opens up for improved understanding of structure-property relationships of inorganic nanotubes to the benefit of fundamental and applicative research in these systems.

  3. Vertically aligned multiwalled carbon nanotubes as electronic interconnects

    NASA Astrophysics Data System (ADS)

    Gopee, Vimal Chandra

    The drive for miniaturisation of electronic circuits provides new materials challenges for the electronics industry. Indeed, the continued downscaling of transistor dimensions, described by Moore’s Law, has led to a race to find suitable replacements for current interconnect materials to replace copper. Carbon nanotubes have been studied as a suitable replacement for copper due to its superior electrical, thermal and mechanical properties. One of the advantages of using carbon nanotubes is their high current carrying capacity which has been demonstrated to be three orders of magnitude greater than that of copper. Most approaches in the implementation of carbon nanotubes have so far focused on the growth in vias which limits their application. In this work, a process is described for the transfer of carbon nanotubes to substrates allowing their use for more varied applications. Arrays of vertically aligned multiwalled carbon nanotubes were synthesised by photo-thermal chemical vapour deposition with high growth rates. Raman spectroscopy was used to show that the synthesised carbon nanotubes were of high quality. The carbon nanotubes were exposed to an oxygen plasma and the nature of the functional groups present was determined using X-ray photoelectron spectroscopy. Functional groups, such as carboxyl, carbonyl and hydroxyl groups, were found to be present on the surface of the multiwalled carbon nanotubes after the functionalisation process. The multiwalled carbon nanotubes were metallised after the functionalisation process using magnetron sputtering. Two materials, solder and sintered silver, were chosen to bind carbon nanotubes to substrates so as to enable their transfer and also to make electrical contact. The wettability of solder to carbon nanotubes was investigated and it was demonstrated that both functionalisation and metallisation were required in order for solder to bond with the carbon nanotubes. Similarly, functionalisation followed by metallisation

  4. Coulomb explosion: a novel approach to separate single-walled carbon nanotubes from their bundle.

    PubMed

    Liu, Guangtong; Zhao, Yuanchun; Zheng, Kaihong; Liu, Zheng; Ma, Wenjun; Ren, Yan; Xie, Sishen; Sun, Lianfeng

    2009-01-01

    A novel approach based on Coulomb explosion has been developed to separate single-walled carbon nanotubes (SWNTs) from their bundle. With this technique, we can readily separate a bundle of SWNTs into smaller bundles with uniform diameter as well as some individual SWNTs. The separated SWNTs have a typical length of several microns and form a nanotree at one end of the original bundle. More importantly, this separating procedure involves no surfactant and includes only one-step physical process. The separation method offers great conveniences for the subsequent individual SWNT or multiterminal SWNTs device fabrication and their physical properties studies.

  5. Control of Effluent Gases from Solid Waste Processing Using Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Cinke, Martin; Wignarajab, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is the release of effluent gases and contaminants that are in gaseous formed from the processes. A number of other gases, in particular NO(x), SO2, NH3, Hydrocarbons (e.g. CH4) do present hazards to the crew in space habitats. Reduction of mass, power, volume and resupply can be achieved by using catalyst impregnated carbon nanotubes as compared to other catalytic systems. The development and characterization of an innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches. This is due to the ability to direct the selective uptake of gaseous species based on their controllable pore size, high adsorptive capacity and the effectiveness of carbon nanotubes as catalyst supports for gaseous conversion. For example, SWNTs have high adsorptive capacity for NO and the adsorbed NO can be decomposed to N2 and O2 . Experimental results showing the decomposition of NO on metal impregnated carbon nanotubes is presented. Equivalent System Mass (ESM) comparisons are made of the existing TCCS systems with the carbon nanotube technology for removing NO(x). The potential for methane decomposition using carbon nanotubes catalysts is also discussed.

  6. Switching and Rectification in Carbon-Nanotube Junctions

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Andriotis, Antonis N.; Menon, Madhu; Chernozatonskii, Leonid

    2003-01-01

    Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification.

  7. Finite element investigation of temperature dependence of elastic properties of carbon nanotube reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Ahmadi, Masoud; Ansari, Reza; Rouhi, Saeed

    2017-11-01

    This paper aims to investigate the elastic modulus of the polypropylene matrix reinforced by carbon nanotubes at different temperatures. To this end, the finite element approach is employed. The nanotubes with different volume fractions and aspect ratios (the ratio of length to diameter) are embedded in the polymer matrix. Besides, random and regular algorithms are utilized to disperse carbon nanotubes in the matrix. It is seen that as the pure polypropylene, the elastic modulus of carbon nanotube reinforced polypropylene decreases by increasing the temperature. It is also observed that when the carbon nanotubes are dispersed parallelly and the load is applied along the nanotube directions, the largest improvement in the elastic modulus of the nanotube/polypropylene nanocomposites is obtained.

  8. Pathogen identification using peptide nanotube biosensors and impedance AFM

    NASA Astrophysics Data System (ADS)

    Maccuspie, Robert I.

    Pathogen identification at highly sensitive levels is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. Toward that end, a new method for biosensing utilizing fluorescent antibody nanotubes is proposed. Fundamental studies on the self-assembly of these peptide nanotubes are performed, as are applications of aligning these nanotubes on surfaces. As biosensors, these nanotubes incorporate recognition units with antibodies at their ends and fluorescent signaling units at their sidewalls. When viral pathogens were mixed with these antibody nanotubes in solution, the nanotubes rapidly aggregated around the viruses. The size of the aggregates increased as the concentration of viruses increased, as detected by flow cytometry on the order of attomolar concentrations by changes in fluorescence and light scattering intensities. This enabled determination of the concentrations of viruses at trace levels (102 to 106 pfu/mL) within 30 minutes from the receipt of samples to the final quantitative data analysis, as demonstrated on Adenovirus, Herpes Simplex Virus, Influenza, and Vaccinia virus. As another separate approach, impedance AFM is used to study the electrical properties of individual viruses and nanoparticles used as model systems. The design, development, and implementation of the impedance AFM for an Asylum Research platform is described, as well as its application towards studying the impedance of individual nanoparticles as a model system for understanding the fundamental science of how the life cycle of a virus affects its electrical properties. In combination, these approaches fill a pressing need to quantify viruses both rapidly and sensitively.

  9. Composition Based Strategies for Controlling Radii in Lipid Nanotubes

    PubMed Central

    Kurczy, Michael E.; Mellander, Lisa J.; Najafinobar, Neda; Cans, Ann-Sofie

    2014-01-01

    Nature routinely carries out small-scale chemistry within lipid bound cells and organelles. Liposome–lipid nanotube networks are being developed by many researchers in attempt to imitate these membrane enclosed environments, with the goal to perform small-scale chemical studies. These systems are well characterized in terms of the diameter of the giant unilamellar vesicles they are constructed from and the length of the nanotubes connecting them. Here we evaluate two methods based on intrinsic curvature for adjusting the diameter of the nanotube, an aspect of the network that has not previously been controllable. This was done by altering the lipid composition of the network membrane with two different approaches. In the first, the composition of the membrane was altered via lipid incubation of exogenous lipids; either with the addition of the low intrinsic curvature lipid soy phosphatidylcholine (soy-PC) or the high intrinsic curvature lipid soy phosphatidylethanolamine (soy-PE). In the second approach, exogenous lipids were added to the total lipid composition during liposome formation. Here we show that for both lipid augmentation methods, we observed a decrease in nanotube diameter following soy-PE additions but no significant change in size following the addition of soy-PC. Our results demonstrate that the effect of soy-PE on nanotube diameter is independent of the method of addition and suggests that high curvature soy-PE molecules facilitate tube membrane curvature. PMID:24392077

  10. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    PubMed

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  11. Efficient suppression of nanograss during porous anodic TiO2 nanotubes growth

    NASA Astrophysics Data System (ADS)

    Gui, Qunfang; Yu, Dongliang; Li, Dongdong; Song, Ye; Zhu, Xufei; Cao, Liu; Zhang, Shaoyu; Ma, Weihua; You, Shiyu

    2014-09-01

    When Ti foil was anodized in fluoride-containing electrolyte for a long time, undesired etching-induced "nanograss" would inevitably generate on the top of porous anodic TiO2 nanotubes (PATNTs). The nanograss will hinder the ions transport and in turn yield depressed (photo) electrochemical performance. In order to obtain nanograss-free nanotubes, a modified three-step anodization and two-layer nanostructure of PATNTs were designed to avoid the nanograss. The first layer (L1) nanotubes were obtained by the conventional two-step anodization. After washing and drying processes, the third-step anodization was carried out with the presence of L1 nanotubes. The L1 nanotubes, serving as a sacrificed layer, was etched and transformed into nanograss, while the ultralong nanotubes (L2) were maintained underneath the L1. The bi-layer nanostructure of the nanograss/nanotubes (L1/L2) was then ultrasonically rinsed in deionized water to remove the nanograss (L1 layer). Then much longer nanotubes (L2 layer) with intact nanotube mouths could be obtained. Using this novel approach, the ultralong nanotubes without nanograss can be rationally controlled by adjusting the anodizing times of two layers.

  12. Duality of two pairs of double-walled nanotubes consisting of S=1 and S=3/2 spins probed by means of a quantum simulation approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhaosen; Ian, Hou

    2017-01-01

    Using a quantum simulation approach, we investigate in the present work the spontaneous magnetic properties of two pairs of double-walled cylindrical nanotubes consisting of different spins. Our simulated magnetic and thermodynamic properties for each pair of them are precisely identical, exhibiting a fascinating property of the nature world and demonstrating the correctness of our simulation approach. The second pair of nanotubes are frustrated, two magnetic phases of distinct spin configurations appear in the low temperature region, but only the inner layer consisting of small spins is frustrated evidently, its magnetization is considerably suppressed in the high temperature phase. Moreover, the nanosystems exhibit typical Ising-like behavior due to the uniaxial anisotropy along the z-direction, and evident finite-size effects as well.

  13. Heteroporphyrin nanotubes and composites

    DOEpatents

    Shelnutt, John A.; Medforth, Craig J.; Wang, Zhongchun

    2006-11-07

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  14. Heteroporphyrin nanotubes and composites

    DOEpatents

    Shelnutt, John A [Tijeras, NM; Medforth, Craig J [Winters, CA; Wang, Zhongchun [Albuquerque, NM

    2007-05-29

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  15. Relevance of octanol-water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes.

    PubMed

    Petersen, Elijah J; Huang, Qingguo; Weber, Walter J

    2010-05-01

    Many potential applications of carbon nanotubes (CNTs) require various physicochemical modifications prior to use, suggesting that nanotubes having varied properties may pose risks in ecosystems. A means for estimating bioaccumulation potentials of variously modified CNTs for incorporation in predictive fate models would be highly valuable. An approach commonly used for sparingly soluble organic contaminants, and previously suggested for use as well with carbonaceous nanomaterials, involves measurement of their octanol-water partitioning coefficient (KOW) values. To test the applicability of this approach, a methodology was developed to measure apparent octanol-water distribution behaviors for purified multi-walled carbon nanotubes and those acid treated. Substantial differences in apparent distribution coefficients between the two types of CNTs were observed, but these differences did not influence accumulation by either earthworms (Eisenia foetida) or oligochaetes (Lumbriculus variegatus), both of which showed minimal nanotube uptake for both types of nanotubes. The results suggest that traditional distribution behavior-based KOW approaches are likely not appropriate for predicting CNT bioaccumulation. Copyright (c) 2010 SETAC.

  16. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.

    PubMed

    Dong, Lifeng

    2009-11-18

    A series of electron microscopy characterizations demonstrate that single-stranded deoxyribonucleic acid (ssDNA) can bind to nanotube surfaces and disperse bundled single-walled carbon nanotubes (SWCNTs) into individual tubes. The ssDNA molecules on the nanotube surfaces demonstrate various morphologies, such as aggregated clusters and spiral wrapping around a nanotube with different pitches and spaces, indicating that the morphology of the SWCNT/DNA hybrids is not related solely to the base sequence of the ssDNA or the chirality or the diameter of the nanotubes. In addition to serving as a non-covalent dispersion agent, the ssDNA molecules bonded to the nanotube surface can provide addresses for localizing Pt(II) complexes along the nanotubes. The Pt nanoparticles obtained by a reduction of the Pt2+-DNA adducts are crystals with a size of < or =1-2 nm. These results expand our understanding of the interactions between ssDNA and SWCNTs and provide an efficient approach for positioning Pt and other metal particles, with uniform sizes and without aggregations, along the nanotube surfaces for applications in direct ethanol/methanol fuel cells and nanoscale electronics.

  17. Multiwalled Carbon Nanotubes at the Interface of Pickering Emulsions.

    PubMed

    Briggs, Nicholas M; Weston, Javen S; Li, Brian; Venkataramani, Deepika; Aichele, Clint P; Harwell, Jeffrey H; Crossley, Steven P

    2015-12-08

    Carbon nanotubes exhibit very unique properties in biphasic systems. Their interparticle attraction leads to reduced droplet coalescence rates and corresponding improvements in emulsion stability. Here we use covalent and noncovalent techniques to modify the hydrophilicity of multiwalled carbon nanotubes (MWCNTs) and study their resulting behavior at an oil-water interface. By using both paraffin wax/water and dodecane/water systems, the thickness of the layer of MWNTs at the interface and resulting emulsion stability are shown to vary significantly with the approach used to modify the MWNTs. Increased hydrophilicity of the MWNTs shifts the emulsions from water-in-oil to oil-in-water. The stability of the emulsion is found to correlate with the thickness of nanotubes populating the oil-water interface and relative strength of the carbon nanotube network. The addition of a surfactant decreases the thickness of nanotubes at the interface and enhances the overall interfacial area stabilized at the expense of increased droplet coalescence rates. To the best of our knowledge, this is the first time the interfacial thickness of modified carbon nanotubes has been quantified and correlated to emulsion stability.

  18. Nanotube phonon waveguide

    DOEpatents

    Chang, Chih-Wei; Zettl, Alexander K.

    2013-10-29

    Disclosed are methods and devices in which certain types of nanotubes (e.g., carbon nanotubes and boron nitride nanotubes conduct heat with high efficiency and are therefore useful in electronic-type devices.

  19. Production and Characterization of Carbon Nanotubes and Nanotube-Based Composites

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel; Arepalli, Sivaram; Holmes, William; Gorelik, Olga; Files, Brad; Scott, Carl; Santos, Beatrice; Mayeaux, Brian; Victor, Joe

    1999-01-01

    The Nobel Prize winning discovery of the Buckuball (C60) in 1985 at Rice University by a group including Dr. Richard Smalley led to the whole new class of carbon allotropes including fullerenes and nanotubes. Especially interesting from many viewpoints are single-walled carbon nanotubes, which structurally are like a single graphitic sheet wrapped around a cylinder and capped at the ends. This cylinders have diameter as small as 0.5 - 2 nm (1/100,000th the diameter of a human hair) and are as long as 0.1 - 1 mm. Nanotubes are really individual molecules and believed to be defect-free, leading to high tensile strength despite their low density. Additionally, these fibers exhibit electrical conductivity as high as copper, thermal conductivity as high as diamond, strength 100 times higher than steel at one-sixth the weight, and high strain to failure. Thus it is believed that developments in the field of nanotechnology will lead to stronger and lighter composite materials for next generation spacecraft. Lack of a bulk method of production is the primary reason nanotubes are not used widely today. Toward this goal JSC nanotube team is exploring three distinct production techniques: laser ablation, arc discharge and chemical vapor deposition (CVD, in collaboration with Rice University). In laser ablation technique high-power laser impinges on the piece of carbon containing small amount of catalyst, and nanotubes self-assemble from the resulting carbon vapor. In arc generator similar vapor is created in arc discharge between carbon electrodes with catalyst. In CVD method nanotubes grow at much lower temperature on small catalyst particles from carbon-containing feedstock gas (methane or carbon monoxide). As of now, laser ablation produces cleanest material, but mass yield is rather small. Arc discharge produces grams of material, but purity is low. CVD technique is still in baby steps, but preliminary results look promising, as well as perspective of scaling the process

  20. Peptide and protein-based nanotubes for nanobiotechnology.

    PubMed

    Petrov, Anna; Audette, Gerald F

    2012-01-01

    The development of biologically relevant nanosystems such as biomolecular probes and sensors requires systems that effectively interface specific biochemical environments with abiotic architectures. The most widely studied nanomaterial, carbon nanotubes, has proven challenging in their adaptation for biomedical applications despite their numerous advantageous physical and electrochemical properties. On the other hand, development of bionanosystems through adaptation of existing biological systems has several advantages including their adaptability through modern recombinant DNA strategies. Indeed, the use of peptides, proteins and protein assemblies as nanotubes, scaffolds, and nanowires has shown much promise as a bottom-up approach to the development of novel bionanosystems. We highlight several unique peptide and protein systems that generate protein nanotubes (PNTs) that are being explored for the development of biosensors, probes, bionanowires, and drug delivery systems. Copyright © 2012 Wiley Periodicals, Inc.

  1. An Artificial Intelligence Approach for Modeling and Prediction of Water Diffusion Inside a Carbon Nanotube

    PubMed Central

    2009-01-01

    Modeling of water flow in carbon nanotubes is still a challenge for the classic models of fluid dynamics. In this investigation, an adaptive-network-based fuzzy inference system (ANFIS) is presented to solve this problem. The proposed ANFIS approach can construct an input–output mapping based on both human knowledge in the form of fuzzy if-then rules and stipulated input–output data pairs. Good performance of the designed ANFIS ensures its capability as a promising tool for modeling and prediction of fluid flow at nanoscale where the continuum models of fluid dynamics tend to break down. PMID:20596382

  2. An Artificial Intelligence Approach for Modeling and Prediction of Water Diffusion Inside a Carbon Nanotube.

    PubMed

    Ahadian, Samad; Kawazoe, Yoshiyuki

    2009-06-04

    Modeling of water flow in carbon nanotubes is still a challenge for the classic models of fluid dynamics. In this investigation, an adaptive-network-based fuzzy inference system (ANFIS) is presented to solve this problem. The proposed ANFIS approach can construct an input-output mapping based on both human knowledge in the form of fuzzy if-then rules and stipulated input-output data pairs. Good performance of the designed ANFIS ensures its capability as a promising tool for modeling and prediction of fluid flow at nanoscale where the continuum models of fluid dynamics tend to break down.

  3. Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors.

    PubMed

    Ye, Changhui; Meng, Guowen; Jiang, Zhi; Wang, Yinhai; Wang, Guozhong; Zhang, Lide

    2002-12-25

    Synthesis of Bi2S3 nanotubes from rolling of the quasi-two-dimensional (2-D) layered precursor represents new progress in the synthetic approach and adds new members to the present inorganic fullerene family. These nanotubes display multiwalled structures that resemble that of a multiwalled carbon nanotube. The successful synthesis of Bi2S3 nanotubes highlights the feasibility of inorganic fullerene-like structures from other chemicals that possess layered crystalline structures, not only the well-known 2-D family, but possibly also those quasi-2-D members.

  4. Excited State Dynamics in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki

    2004-03-01

    Carbon nanotube, one of the most promising materials for nano-technology, still suffers from its imperfection in crystalline structure that will make performance of nanotube behind theoretical limit. From the first-principles simulations, I propose efficient methods to overcome the imperfection. I show that photo-induced ion dynamics can (1) identify defects in nanotubes, (2) stabilize defected nanotubes, and (3) purify contaminated nanotubes. All of these methods can be alternative to conventional heat treatments and will be important techniques for realizing nanotube-devices. Ion dynamics under electronic excitation has been simulated with use of the computer code FPSEID (First-Principles Simulation tool for Electron Ion Dynamics) [1], which combines the time-dependent density functional method [2] to classical molecular dynamics. This very challenging approach is time-consuming but can automatically treat the level alternation of differently occupied states, and can observe initiation of non-adiabatic decay of excitation. The time-dependent Kohn-Sham equation has been solved by using the Suzuki-Trotter split operator method [3], which is a numerically stable method being suitable for plane wave basis, non-local pseudopotentials, and parallel computing. This work has been done in collaboration with Prof. Angel Rubio, Prof. David Tomanek, Dr. Savas Berber and Mina Yoon. Most of present calculations have been done by using the SX5 Vector-Parallel system in the NEC Fuchu-plant, and the Earth Simulator in Yokohama Japan. [1] O. Sugino and Y. Miyamoto, Phys. Rev. B59, 2579 (1999); ibid, B66 089901(E) (2001) [2] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). [3] M. Suzuki, J. Phys. Soc. Jpn. 61, L3015 (1992).

  5. Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.

    PubMed

    Bandura, A V; Evarestov, R A; Lukyanov, S I

    2014-07-28

    A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.

  6. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    DOE PAGES

    Han, Catherine Y.; Xiao, Zhi-Li; Wang, H. Hau; ...

    2009-01-01

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbonmore » nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.« less

  7. Marine fouling release silicone/carbon nanotube nanocomposite coatings: on the importance of the nanotube dispersion state.

    PubMed

    Beigbeder, Alexandre; Mincheva, Rosica; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Claes, Michael; Dubois, Philippe

    2010-05-01

    The present work reports on the influence of the dispersion quality of multiwall carbon nanotubes (MWCNTs) in a silicone matrix on the marine fouling-release performance of the resulting nanocomposite coatings. A first set of coatings filled with different nanofiller contents was prepared by the dilution of a silicone/MWCNTs masterbatch within a hydrosilylation-curing polydimethylsiloxane resin. The fouling-release properties of the nanocomposite coatings were studied through laboratory assays with the marine alga (seaweed) Ulva, a common fouling species. As reported previously (see Ref. [19]), the addition of a small (0.05%) amount of carbon nanotubes substantially improves the fouling-release properties of the silicone matrix. This paper shows that this improvement is dependent on the amount of filler, with a maximum obtained with 0.1 wt% of multiwall carbon nanotubes (MWCNTs). The method of dispersion of carbon nanotubes in the silicone matrix is also shown to significantly (p = 0.05) influence the fouling-release properties of the coatings. Dispersing 0.1% MWCNTs using the masterbatch approach yielded coatings with circa 40% improved fouling-release properties over those where MWCNTs were dispersed directly in the polymeric matrix. This improvement is directly related to the state of nanofiller dispersion within the cross-linked silicone coating.

  8. Flame Synthesis of Single- and Multi-Walled Carbon Nanotubes and Nanofibers

    NASA Technical Reports Server (NTRS)

    VanderWal, R. L.; Ticich, Thomas M.

    2001-01-01

    Metal-catalyzed carbon nanotubes are highly sought for a diverse range of applications that include nanoelectronics, battery electrode material, catalysis, hydrogen storage media and reinforcing agents in polymer composites. These latter applications will require vast quantities of nanotubes at competitive prices to be economically feasible. Moreover, reinforcing applications may not require ultrahigh purity nanotubes. Indeed, functionalization of nanotubes to facilitate interfacial bonding within composites will naturally introduce defects into the tube walls, lessening their tensile strength. Current methods of aerosol synthesis of carbon nanotubes include laser ablation of composite targets of carbon and catalyst metal within high temperature furnaces and decomposition of a organometallics in hydrocarbons mixtures within a tube furnace. Common to each approach is the generation of particles in the presence of the reactive hydrocarbon species at elevated temperatures. In the laser-ablation approach, the situation is even more dynamic in that particles and nanotubes are borne during the transient cooling phase of the laser-induced plasma for which the temperature far exceeds that of the surrounding hot gases within the furnace process tube. A shared limitation is that more efficient methods of nanoparticle synthesis are not readily incorporated into these approaches. In contrast, combustion can quite naturally create nanomaterials such as carbon black. Flame synthesis is well known for its commercial scalability and energy efficiency. However, flames do present a complex chemical environment with steep gradients in temperature and species concentrations. Moreover, reaction times are limited within buoyant driven flows to tens of milliseconds. Therein microgravity can greatly lessen temperature and spatial gradients while allowing independent control of flame residence times. In preparation for defining the microgravity experiments, the work presented here focuses

  9. Working Toward Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pavel; Gorelik, Olga; Hadjiev, Victor G.; Scott, Carl D.; Files, Bradley S.

    2001-01-01

    One of the most attractive applications of single-wall carbon nanotubes (SWNT) is found in the area of structural materials. Nanotubes have a unique combination of high strength, modulus, and elongation to failure, and therefore have potential to significantly enhance the mechanical properties of today's composites. This is especially attractive for the aerospace industry looking for any chance to save weight. This is why NASA has chosen to tackle this difficult application of SWNT. Nanotube properties differ significantly from that of conventional carbon fibers, and a whole new set of problems, including adhesion and dispersion in the adhesive polymer matrix, must be resolved in order to engineer superior composite materials. From recent work on a variety of applications it is obvious that the wide range of research in nanotubes will lead to advances in physics, chemistry, and engineering. However, the possibility of ultralightweight structures is what causes dreamers to really get excited. One of the important issues in composite engineering is aspect ratio of the fibers, since it affects load transfer in composites. Nanotube length was a gray area for years, since they are formed in bundles, making it impossible to monitor individual nanotube length. Even though bundles are observed to be tens and hundreds of microns long, they can be built of relatively short tubes weakly bound by Van der Waals forces. Nanotube length can be affected by subsequent purification and ultrasound processing, which has been necessary in order to disperse nanotubes and introduce them into a polymer matrix. Some calculations show that nanotubes with 10(exp 5) aspect ratio may be necessary to achieve good load transfer. We show here that nanotubes produced in our laser system are as much as tens of microns long and get cut into lengths of hundreds of nanometers during ultrasound processing. Nanotube length was measured by AFM on pristine nanotube specimens as well, as after sonication

  10. Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.; Wincheski, Russell A.; Park, Cheol

    2008-01-01

    Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.

  11. Progress Toward Sequestering Carbon Nanotubes in PmPV

    NASA Technical Reports Server (NTRS)

    Bley, Richard A.

    2009-01-01

    Sequestration of single-walled carbon nanotubes (SWNTs) in molecules of poly(m-phenylenevinylene-co-2,5-diocty-loxy-p-phenylenevinylene) [PmPV] is a candidate means of promoting dissolution of single-walled carbon nanotubes (SWNTs) into epoxies for making strong, lightweight epoxy-matrix/carbon-fiber composite materials. Bare SWNTs cannot be incorporated because they are not soluble in epoxies. In the present approach, one exploits the tendency of PmPV molecules to wrap themselves around SWNTs without chemically bonding to them.

  12. Carbon nanotube nanoelectrode arrays

    DOEpatents

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  13. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays.

    PubMed

    Zhang, Jialu; Fu, Yue; Wang, Chuan; Chen, Po-Chiang; Liu, Zhiwei; Wei, Wei; Wu, Chao; Thompson, Mark E; Zhou, Chongwu

    2011-11-09

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Preseparated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components, such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics.

  14. Separated Carbon Nanotube Macroelectronics for Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Fu, Yue; Zhang, Jialu; Wang, Chuan; Chen, Pochiang; Zhou, Chongwu

    2012-02-01

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Pre-separated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics.

  15. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  16. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  17. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes.

    PubMed

    Hu, Zhaoying; Comeras, Jose Miguel M Lobez; Park, Hongsik; Tang, Jianshi; Afzali, Ali; Tulevski, George S; Hannon, James B; Liehr, Michael; Han, Shu-Jen

    2016-06-01

    Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.

  18. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hu, Zhaoying; Comeras, Jose Miguel M. Lobez; Park, Hongsik; Tang, Jianshi; Afzali, Ali; Tulevski, George S.; Hannon, James B.; Liehr, Michael; Han, Shu-Jen

    2016-06-01

    Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.

  19. Functionalization of carbon nanotubes: Characterization, modeling and composite applications

    NASA Astrophysics Data System (ADS)

    Wang, Shiren

    Carbon nanotubes have demonstrated exceptional mechanical, thermal and electrical properties, and are regarded as one of the most promising reinforcement materials for the next generation of high performance structural and multifunctional composites. However, to date, most application attempts have been hindered by several technical roadblocks, such as poor dispersion and weak interfacial bonding. In this dissertation, several innovative functionalization methods were proposed, studied to overcome these technical issues in order to realize the full potential of nanotubes as reinforcement. These functionalization methods included precision sectioning of nanotubes using an ultra-microtome, electron-beam irradiation, amino and epoxide group grafting. The characterization results of atomic force microscope, transmission electronic microscope and Raman suggested that aligned carbon nanotubes can be precisely sectioned with controlled length and minimum sidewall damage. This study also designed and demonstrated new covalent functionalization approaches through unique epoxy-grafting and one-step amino-grafting, which have potential of scale-up for composite applications. In addition, the dissertation also successfully tailored the structure and properties of the thin nanotube film through electron beam irradiation. Significant improvement of both mechanical and electrical conducting properties of the irradiated nanotube films or buckypapers was achieved. All these methods demonstrated effectiveness in improving dispersion and interfacial bonding in the epoxy resin, resulting in considerable improvements in composite mechanical properties. Modeling of functionalization methods also provided further understanding and offered the reasonable explanations of SWNTs length distribution as well as carbon nanostructure transformation upon electron-beam irradiation. Both experimental and modeling results provide important foundations for the further comprehensively investigation of

  20. Efficient Transfer Doping of Carbon Nanotube Forests by MoO3.

    PubMed

    Esconjauregui, Santiago; D'Arsié, Lorenzo; Guo, Yuzheng; Yang, Junwei; Sugime, Hisashi; Caneva, Sabina; Cepek, Cinzia; Robertson, John

    2015-10-27

    We dope nanotube forests using evaporated MoO3 and observe the forest resistivity to decrease by 2 orders of magnitude, reaching values as low as ∼5 × 10(-5) Ωcm, thus approaching that of copper. Using in situ photoemission spectroscopy, we determine the minimum necessary MoO3 thickness to dope a forest and study the underlying doping mechanism. Homogenous coating and tube compaction emerge as key factors for decreasing the forest resistivity. When all nanotubes are fully coated with MoO3 and packed, conduction channels are created both inside the nanotubes and on the outside oxide layer. This is supported by density functional theory calculations, which show a shift of the Fermi energy of the nanotubes and the conversion of the oxide into a layer of metallic character. MoO3 doping removes the need for chirality control during nanotube growth and represents a step forward toward the use of forests in next-generation electronics and in power cables or conductive polymers.

  1. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  2. Carbon Nanotube Thermoelectric Coolers

    DTIC Science & Technology

    2015-02-06

    project, we studied other approaches to highly efficient thermoelectric energy transformation using nanotube and monoatomic materials . This...and implementing advanced semiconducting materials with large thermal conductance Λ. In this respect, carbon-based low-dimensional materials like...with a material which Λph is very low whereas the electron part, Λe, is high. Here decimating the phonon part of heat conductance is accomplished by

  3. High frequency nanotube oscillator

    DOEpatents

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  4. A carbon nanotube based ammonia sensor on cotton textile

    NASA Astrophysics Data System (ADS)

    Han, Jin-Woo; Kim, Beomseok; Li, Jing; Meyyappan, M.

    2013-05-01

    A single-wall carbon nanotube (CNT) based ammonia (NH3) sensor was implemented on a cotton yarn. Two types of sensors were fabricated: Au/sensing CNT/Au and conducting/sensing/conducting all CNT structures. Two perpendicular Au wires were designed to contact CNT-cotton yarn for metal-CNT sensor, whereas nanotubes were used for the electrode as well as sensing material for the all CNT sensor. The resistance shift of the CNT network upon NH3 was monitored in a chemiresistor approach. The CNT-cotton yarn sensors exhibited uniformity and repeatability. Furthermore, the sensors displayed good mechanical robustness against bending. The present approach can be utilized for low-cost smart textile applications.

  5. Boron nitride nanotube-based biosensing of various bacterium/viruses: continuum modelling-based simulation approach.

    PubMed

    Panchal, Mitesh B; Upadhyay, Sanjay H

    2014-09-01

    In this study, the feasibility of single walled boron nitride nanotube (SWBNNT)-based biosensors has been ensured considering the continuum modelling-based simulation approach, for mass-based detection of various bacterium/viruses. Various types of bacterium or viruses have been taken into consideration at the free-end of the cantilevered configuration of the SWBNNT, as a biosensor. Resonant frequency shift-based analysis has been performed with the adsorption of various bacterium/viruses considered as additional mass to the SWBNNT-based sensor system. The continuum mechanics-based analytical approach, considering effective wall thickness has been considered to validate the finite element method (FEM)-based simulation results, based on continuum volume-based modelling of the SWBNNT. As a systematic analysis approach, the FEM-based simulation results are found in excellent agreement with the analytical results, to analyse the SWBNNTs for their wide range of applications such as nanoresonators, biosensors, gas-sensors, transducers and so on. The obtained results suggest that by using the SWBNNT of smaller size the sensitivity of the sensor system can be enhanced and detection of the bacterium/virus having mass of 4.28 × 10⁻²⁴ kg can be effectively performed.

  6. Integrating Carbon Nanotubes For Atomic Force Microscopy Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi; Cassell, Alan M.; Liu, Hongbing; Han, Jie; Meyyappan, Meyya

    2004-01-01

    Carbon nanotube (CNT) related nanostructures possess remarkable electrical, mechanical, and thermal properties. To produce these nanostructures for real world applications, a large-scale controlled growth of carbon nanotubes is crucial for the integration and fabrication of nanodevices and nanosensors. We have taken the approach of integrating nanopatterning and nanomaterials synthesis with traditional silicon micro fabrication techniques. This integration requires a catalyst or nanomaterial protection scheme. In this paper, we report our recent work on fabricating wafer-scale carbon nanotube AFM cantilever probe tips. We will address the design and fabrication considerations in detail, and present the preliminary scanning probe test results. This work may serve as an example of rational design, fabrication, and integration of nanomaterials for advanced nanodevice and nanosensor applications.

  7. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  8. Reinforced Carbon Nanotubes.

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  9. Controlled growth of gold nanocrystals on biogenic As-S nanotubes by galvanic displacement

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Chen, Wilfred; Myung, Nosang V.

    2018-02-01

    Traditional methods for fabricating nanoscale arrays are usually based on lithographic techniques while alternative new approaches rely on the use of nanoscale templates made of synthetic or biological materials. Here, gold (Au) nanocrystals were grown on the surface of the microbiologically formed As-S nanotubes through the process of galvanic displacement. The size and organization of the synthesized Au nanocrystals were affected by the pH dependent speciation of HAuCl4 precursors as well as the initial ratio of As-S/HAuCl4. We found that as pH increased, the Au nanocrystals grown on As-S nanotubes had smaller sizes but were more likely to assemble in one-dimension along the nanotubes. At a proper initial ratio of As-S/HAuCl4, Au nanotubes were formed at pH 6.0. The mechanism of Au nanostructures formation and the synthesis process at different pHs were proposed. The resulting Au nanoparticle/As-S nanotube and Au nanotube/As-S nanotube hetero-structures may provide important properties to be used for novel nano-electronic devices.

  10. Superacid-Surfactant Exchange: Enabling Nondestructive Dispersion of Full-Length Carbon Nanotubes in Water.

    PubMed

    Wang, Peng; Kim, Mijin; Peng, Zhiwei; Sun, Chuan-Fu; Mok, Jasper; Lieberman, Anna; Wang, YuHuang

    2017-09-26

    Attaining aqueous solutions of individual, long single-walled carbon nanotubes is a critical first step for harnessing the extraordinary properties of these materials. However, the widely used ultrasonication-ultracentrifugation approach and its variants inadvertently cut the nanotubes into short pieces. The process is also time-consuming and difficult to scale. Here we present an unexpectedly simple solution to this decade-old challenge by directly neutralizing a nanotube-chlorosulfonic acid solution in the presence of sodium deoxycholate. This straightforward superacid-surfactant exchange eliminates the need for both ultrasonication and ultracentrifugation altogether, allowing aqueous solutions of individual nanotubes to be prepared within minutes and preserving the full length of the nanotubes. We found that the average length of the processed nanotubes is more than 350% longer than sonicated controls, with a significant fraction approaching ∼9 μm, a length that is limited by only the raw material. The nondestructive nature is manifested by an extremely low density of defects, bright and homogeneous photoluminescence in the near-infrared, and ultrahigh electrical conductivity in transparent thin films (130 Ω/sq at 83% transmittance), which well exceeds that of indium tin oxide. Furthermore, we demonstrate that our method is fully compatible with established techniques for sorting nanotubes by their electronic structures and can also be readily applied to graphene. This surprisingly simple method thus enables nondestructive aqueous solution processing of high-quality carbon nanomaterials at large-scale and low-cost with the potential for a wide range of fundamental studies and applications, including, for example, transparent conductors, near-infrared imaging, and high-performance electronics.

  11. The Toxicology of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Donaldson, Ken; Poland, Craig; Duffin, Rodger; Bonner, James

    2012-06-01

    1. Carbon nanotube structure, synthesis and applications C. Singh and W. Song; 2. The aerodynamic behaviour and pulmonary deposition of carbon nanotubes A. Buckley, R. Smith and R Maynard; 3. Utilising the concept of the biologically effective dose to define the particle and fibre hazards of carbon nanotubes K. Donaldson, R. Duffin, F. Murphy and C. Poland; 4. CNT, biopersistence and the fibre paradigm D. Warheit and M. DeLorme; 5. Length-dependent retention of fibres in the pleural space C. Poland, F. Murphy and K. Donaldson; 6. Experimental carcinogenicity of carbon nanotubes in the context of other fibres K. Unfried; 7. Fate and effects of carbon nanotubes following inhalation J. Ryman-Rasmussen, M. Andersen and J. Bonner; 8. Responses to pulmonary exposure to carbon nanotubes V. Castranova and R. Mercer; 9. Genotoxicity of carbon nanotubes R. Schins, C. Albrecht, K. Gerloff and D. van Berlo; 10. Carbon nanotube-cellular interactions; macrophages, epithelial and mesothelial cells V. Stone, M. Boyles, A. Kermanizadeh, J. Varet and H. Johnston; 11. Systemic health effects of carbon nanotubes following inhalation J. McDonald; 12. Dosimetry and metrology of carbon nanotubes L. Tran, L. MacCalman and R. Aitken; Index.

  12. Novel bamboo structured TiO2 nanotubes for energy storage/production applications

    NASA Astrophysics Data System (ADS)

    Samuel, J. J.; Beh, K. P.; Cheong, Y. L.; Yusuf, W. A. A.; Yam, F. K.

    2018-04-01

    Nanostructured TiO2 received much attention owing to its high surface-to-volume ratio, which can be advantageous in energy storage and production applications. However, the increase in energy consumption at present and possibly the foreseeable future has demanded energy storage and production devices of even higher performance. A direct approach would be manipulating the physical aspects of TiO2 nanostructures, particularly, nanotubes. In this work, dual voltage anodization system has been implemented to fabricate bamboo shaped TiO2 nanotubes, which offers even greater surface area. This unique nanostructure would be used in Dye Sensitized Solar Cell (DSSC) fabrication and its performance will be evaluated and compared along other forms of TiO2 nanotubes. The results showed that bamboo shaped nanotubes indeed are superior morphologically, with an increase of efficiency of 107% at 1.130% efficiency when compared to smooth walled nanotubes at 0.546% efficiency.

  13. Modeling the Effects of Interfacial Characteristics on Gas Permeation Behavior of Nanotube-Mixed Matrix Membranes.

    PubMed

    Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad

    2017-10-25

    Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.

  14. Modeling of Interfacial Modification Effects on Thermal Conductivity of Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2006-01-01

    The effect of functionalization of carbon nanotubes on the thermal conductivity of nanocomposites has been studied using a multi-scale modeling approach. These results predict that grafting linear hydrocarbon chains to the surface of a single wall carbon nanotube with covalent chemical bonds should result in a significant increase in the thermal conductivity of these nanocomposites. This is due to the decrease in the interfacial thermal (Kapitza) resistance between the single wall carbon nanotube and the surrounding polymer matrix upon chemical functionalization. The nanocomposites studied here consist of single wall carbon nanotubes in a bulk poly(ethylene vinyl acetate) matrix. The nanotubes are functionalized by end-grafting linear hydrocarbon chains of varying length to the surface of the nanotube. The effect which this functionalization has on the interfacial thermal resistance is studied by molecular dynamics simulation. Interfacial thermal resistance values are calculated for a range of chemical grafting densities and with several chain lengths. These results are subsequently used in an analytical model to predict the resulting effect on the bulk thermal conductivity of the nanocomposite.

  15. Carbon Nanotube Conditioning: Ab Initio Simulations of the Effect of Interwall Interaction, Defects And Doping on the Electronic Properties of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Castillo, Matias Soto

    Using carbon nanotubes for electrical conduction applications at the macroscale has been shown to be a difficult task for some time now, mainly, due to defects and impurities present, and lack of uniform electronic properties in synthesized carbon nanotube bundles. Some researchers have suggested that growing only metallic armchair nanotubes and arranging them with an ideal contact length could lead to the ultimate electrical conductivity; however, such recipe presents too high of a cost to pay. A different route is to learn to manage the defects, impurities, and the electronic properties of carbon nanotubes present in bundles grown by current state-of-the-art reactors, so that the electrical conduction of a bundle or even wire may be enhanced. In our work, we have used first-principles density functional theory calculations to study the effect of interwall interaction, defects and doping on the electronic structure of metallic, semi-metal and semiconducting single- and double-walled carbon nanotubes in order to gain a clear picture of their properties. The electronic band gap for a range of zigzag single-walled carbon nanotubes with chiral indices (5,0) - (30,0) was obtained. Their properties were used as a stepping stone in the study of the interwall interaction in double-walled carbon nanotubes, from which it was found that the electronic band gap depends on the type of inner and outer tubes, average diameter, and interwall distance. The effect of vacancy defects was also studied for a range of single-walled carbon nanotubes. It was found that the electronic band gap is reduced for the entire range of zigzag carbon nanotubes, even at vacancy defects concentrations of less than 1%. Finally, interaction potentials obtained via first-principles calculations were generalized by developing mathematical models for the purpose of running simulations at a larger length scale using molecular dynamics of the adsorption doping of diatomic iodine. An ideal adsorption site

  16. Investigation of carboxylation of carbon nanotube in the adsorption of anti-cancer drug: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Hesabi, Maryam; Behjatmanesh-Ardakani, Reza

    2018-01-01

    Nowadays, an important process applied in the design of novel composite materials and drug delivery fields is the carboxylation of carbon nanotubes. In this work, we study the interaction of the anti-cancer drug hydroxyurea with carboxyl-functionalized zigzag carbon nanotubes (CNTs) by employing the method of the density functional theory (DFT) at B3LYP and CAM-B3LYP levels in gas and solvent phases. The results show that all complexes are energetically favorable, especially in the aqueous phase. The enthalpy energy values are negative in all cases, which indicate their exothermic adsorption nature. The presence of sbnd COOH groups would create enough free space on the nanotube surface for the adsorption between interacting atoms. Thus, these can increase the activity of CNTs. Data indicates that adsorption is dependent on the carboxyl sites of the nanotube as well as on the sites of the drug. Furthermore, the hydrogen-bonding interactions between drug and sbnd COOH-CNTs play an important role for the different kinds of adsorption observed.

  17. Carbon nanotube filters

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  18. Carbon nanotube filters.

    PubMed

    Srivastava, A; Srivastava, O N; Talapatra, S; Vajtai, R; Ajayan, P M

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus ( approximately 25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  19. In silico assembly and nanomechanical characterization of carbon nanotube buckypaper.

    PubMed

    Cranford, Steven W; Buehler, Markus J

    2010-07-02

    Carbon nanotube sheets or films, also known as 'buckypaper', have been proposed for use in actuating, structural and filtration systems, based in part on their unique and robust mechanical properties. Computational modeling of such a fibrous nanostructure is hindered by both the random arrangement of the constituent elements as well as the time- and length-scales accessible to atomistic level molecular dynamics modeling. Here we present a novel in silico assembly procedure based on a coarse-grain model of carbon nanotubes, used to attain a representative mesoscopic buckypaper model that circumvents the need for probabilistic approaches. By variation in assembly parameters, including the initial nanotube density and ratio of nanotube type (single- and double-walled), the porosity of the resulting buckypaper can be varied threefold, from approximately 0.3 to 0.9. Further, through simulation of nanoindentation, the Young's modulus is shown to be tunable through manipulation of nanotube type and density over a range of approximately 0.2-3.1 GPa, in good agreement with experimental findings of the modulus of assembled carbon nanotube films. In addition to carbon nanotubes, the coarse-grain model and assembly process can be adapted for other fibrous nanostructures such as electrospun polymeric composites, high performance nonwoven ballistic materials, or fibrous protein aggregates, facilitating the development and characterization of novel nanomaterials and composites as well as the analysis of biological materials such as protein fiber films and bulk structures.

  20. In silico assembly and nanomechanical characterization of carbon nanotube buckypaper

    NASA Astrophysics Data System (ADS)

    Cranford, Steven W.; Buehler, Markus J.

    2010-07-01

    Carbon nanotube sheets or films, also known as 'buckypaper', have been proposed for use in actuating, structural and filtration systems, based in part on their unique and robust mechanical properties. Computational modeling of such a fibrous nanostructure is hindered by both the random arrangement of the constituent elements as well as the time- and length-scales accessible to atomistic level molecular dynamics modeling. Here we present a novel in silico assembly procedure based on a coarse-grain model of carbon nanotubes, used to attain a representative mesoscopic buckypaper model that circumvents the need for probabilistic approaches. By variation in assembly parameters, including the initial nanotube density and ratio of nanotube type (single- and double-walled), the porosity of the resulting buckypaper can be varied threefold, from approximately 0.3 to 0.9. Further, through simulation of nanoindentation, the Young's modulus is shown to be tunable through manipulation of nanotube type and density over a range of approximately 0.2-3.1 GPa, in good agreement with experimental findings of the modulus of assembled carbon nanotube films. In addition to carbon nanotubes, the coarse-grain model and assembly process can be adapted for other fibrous nanostructures such as electrospun polymeric composites, high performance nonwoven ballistic materials, or fibrous protein aggregates, facilitating the development and characterization of novel nanomaterials and composites as well as the analysis of biological materials such as protein fiber films and bulk structures.

  1. Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays

    NASA Technical Reports Server (NTRS)

    Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.

    2004-01-01

    We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.

  2. Flexible symmetric supercapacitors based on vertical TiO2 and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chien, C. J.; Chang, Pai-Chun; Lu, Jia G.

    2010-03-01

    Highly conducting and porous carbon nanotubes are widely used as electrodes in double-layer-effect supercapacitors. In this presentation, vertical TiO2 nanotube array is fabricated by anodization process and used as supercapacitor electrode utilizing its compact density, high surface area and porous structure. By spin coating carbon nanotube networks on vertical TiO2 nanotube array as electrodes with 1M H2SO4 electrolyte in between, the specific capacitance can be enhanced by 30% compared to using pure carbon nanotube network alone because of the combination of double layer effect and redox reaction from metal oxide materials. Based on cyclic voltammetry and galvanostatic charge-discharge measurements, this type of hybrid electrode has proven to be suitable for high performance supercapacitor application and maintain desirable cycling stability. The electrochemical impedance spectroscopy technique shows that the electrode has good electrical conductivity. Furthermore, we will discuss the prospect of extending this energy storage approach in flexible electronics.

  3. Purification of carbon nanotubes via selective heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A.; Wilson, William L.; Jin, Sung Hun

    The present invention provides methods for purifying a layer of carbon nanotubes comprising providing a precursor layer of substantially aligned carbon nanotubes supported by a substrate, wherein the precursor layer comprises a mixture of first carbon nanotubes and second carbon nanotubes; selectively heating the first carbon nanotubes; and separating the first carbon nanotubes from the second carbon nanotubes, thereby generating a purified layer of carbon nanotubes. Devices benefiting from enhanced electrical properties enabled by the purified layer of carbon nanotubes are also described.

  4. Inkjet Printing of Carbon Nanotubes

    PubMed Central

    Tortorich, Ryan P.; Choi, Jin-Woo

    2013-01-01

    In an attempt to give a brief introduction to carbon nanotube inkjet printing, this review paper discusses the issues that come along with preparing and printing carbon nanotube ink. Carbon nanotube inkjet printing is relatively new, but it has great potential for broad applications in flexible and printable electronics, transparent electrodes, electronic sensors, and so on due to its low cost and the extraordinary properties of carbon nanotubes. In addition to the formulation of carbon nanotube ink and its printing technologies, recent progress and achievements of carbon nanotube inkjet printing are reviewed in detail with brief discussion on the future outlook of the technology. PMID:28348344

  5. Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes.

    PubMed

    Sadowska, K; Stolarczyk, K; Biernat, J F; Roberts, K P; Rogalski, J; Bilewicz, R

    2010-11-01

    Single-walled carbon nanotubes (SWCNTs) were covalently modified with a redox mediator derived from 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and implemented in the construction of electrodes for biocatalytic oxygen reduction. The procedure is based on: covalent bonding of mediator to nanotubes, placing the nanotubes directly on the carbon electrode surface and covering the nanostructured electrode with a Nafion film containing laccase as the biocatalyst. The modified electrode is stable and the problem of mediator (ABTS) leaking from the film is eliminated by binding it covalently to the nanotubes. Three different synthetic approaches were used to obtain ABTS-modified carbon nanotubes. Nanotubes were modified at ends/defect sites or on the nanotube sidewalls and characterized by Raman spectroscopy, TGA and electrochemistry. The accessibility of differently located ABTS units by the laccase active center and mediation of electron transfer were studied by cyclic voltammetry. The surface concentrations of ABTS groups electrically connected with the electrode were compared for each of the electrodes based on the charges of the voltammetric peaks recorded in the deaerated solution. The nanotube modification procedure giving the best parameters of the catalytic process was selected. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid

    NASA Astrophysics Data System (ADS)

    Bahaadini, Reza; Hosseini, Mohammad; Jamali, Behnam

    2018-01-01

    In this paper, divergence and flutter instabilities of supported piezoelectric nanotubes containing flowing fluid are investigated. To take the size effects into account, the nonlocal elasticity theory is implemented in conjunction with the Euler-Bernoulli beam theory incorporating surface stress effects. The Knudsen number is applied to investigate the slip boundary conditions between the flow and wall of nanotube. The nonlocal governing equations of nanotube are obtained using Newtonian method, including the influence of piezoelectric voltage, surface effects, Knudsen number and nonlocal parameter. Applying Galerkin approach to transform resulting equations into a set of eigenvalue equations under the simple-simple (S-S) and clamped-clamped (C-C) boundary conditions. The effects of the piezoelectric voltage, surface effects, Knudsen number, nonlocal parameter and boundary conditions on the divergence and flutter boundaries of nanotubes are discussed. It is observed that the fluid-conveying nanotubes with both ends supported lose their stability by divergence first and then by flutter with increase in fluid velocity. Results indicate the importance of using piezoelectric voltage, nonlocal parameter and Knudsen number in decrease of critical flow velocities of system. Moreover, the surface effects have a significant role on the eigenfrequencies and critical fluid velocity.

  7. CMOS-based carbon nanotube pass-transistor logic integrated circuits

    PubMed Central

    Ding, Li; Zhang, Zhiyong; Liang, Shibo; Pei, Tian; Wang, Sheng; Li, Yan; Zhou, Weiwei; Liu, Jie; Peng, Lian-Mao

    2012-01-01

    Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based on a pass-transistor logic configuration, rather than a complementary metal-oxide semiconductor configuration. Logic gates are constructed on individual carbon nanotubes via a doping-free approach and with a single power supply at voltages as low as 0.4 V. The pass-transistor logic configurarion provides a significant simplification of the carbon nanotube-based circuit design, a higher potential circuit speed and a significant reduction in power consumption. In particular, a full adder, which requires a total of 28 field-effect transistors to construct in the usual complementary metal-oxide semiconductor circuit, uses only three pairs of n- and p-field-effect transistors in the pass-transistor logic configuration. PMID:22334080

  8. Gallium nitride nanotube lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; ...

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  9. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes.

    PubMed

    Cruz-Silva, Eduardo; Cullen, David A; Gu, Lin; Romo-Herrera, Jose Manuel; Muñoz-Sandoval, Emilio; López-Urías, Florentino; Sumpter, Bobby G; Meunier, Vincent; Charlier, Jean-Christophe; Smith, David J; Terrones, Humberto; Terrones, Mauricio

    2008-03-01

    Arrays of multiwalled carbon nanotubes doped with phosphorus (P) and nitrogen (N) are synthesized using a solution of ferrocene, triphenyl-phosphine, and benzylamine in conjunction with spray pyrolysis. We demonstrate that iron phosphide (Fe(3)P) nanoparticles act as catalysts during nanotube growth, leading to the formation of novel PN-doped multiwalled carbon nanotubes. The samples were examined by high resolution electron microscopy and microanalysis techniques, and their chemical stability was explored by means of thermogravimetric analysis in the presence of oxygen. The PN-doped structures reveal important morphology and chemical changes when compared to N-doped nanotubes. These types of heterodoped nanotubes are predicted to offer many new opportunities in the fabrication of fast-response chemical sensors.

  10. Applications of Quantum Chemistry to the Study of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    2005-01-01

    For several years, scientists at NASA Ames have been studying the properties of carbon nanotubes using various experimental and computational methods. In this talk, I will compare different strategies for using quantum chemistry calculations to describe the electronic structure, deformation and chemical functionalization of single wall carbon nanotubes (SWNT) and the physisorption of small molecules on nanotube surfaces. The SWNT can be treated as an infinite (periodic) or finite length carbon cylinder or as a polycyclic aromatic hydrocarbon (PAH) molecule with an imposed curvature maintained by external constraints (as if it were cut out of the SWNT surface). Calculations are carried out using DFT and MP2 methods and a variety of atomic orbital basis sets from minimal (STO-3G) to valence triple zeta. The optimal approach is based on the particular SWNT property of interest. Examples to be discussed include: nanotube fluorination and other functionalization reactions; coating of nanotubes by water vapor and low-molecular weight organic molecules; and the nature of the interface between SWNT and liquids such as water and amines. In many cases, the quantum chemistry calculations are used to parameterize or validate force fields for molecular dynamics simulations. The results of these calculations have helped explain experimental data and contributed to the design of novel materials and sensors based on carbon nanotubes. Some of this research is described in the following papers:

  11. Carbon nanotube active-matrix backplanes for conformal electronics and sensors.

    PubMed

    Takahashi, Toshitake; Takei, Kuniharu; Gillies, Andrew G; Fearing, Ronald S; Javey, Ali

    2011-12-14

    In this paper, we report a promising approach for fabricating large-scale flexible and stretchable electronics using a semiconductor-enriched carbon nanotube solution. Uniform semiconducting nanotube networks with superb electrical properties (mobility of ∼20 cm2 V(-1) s(-1) and ION/IOFF of ∼10(4)) are obtained on polyimide substrates. The substrate is made stretchable by laser cutting a honeycomb mesh structure, which combined with nanotube-network transistors enables highly robust conformal electronic devices with minimal device-to-device stochastic variations. The utility of this device concept is demonstrated by fabricating an active-matrix backplane (12×8 pixels, physical size of 6×4 cm2) for pressure mapping using a pressure sensitive rubber as the sensor element.

  12. Magnetic nanotubes for drug delivery

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Kumar, Prashanth S.; Varadan, Vijay K.

    2017-04-01

    Magnetic nanotubes hold the potential for neuroscience applications because of their capability to deliver chemicals or biomolecules and the feasibility of controlling the orientation or movement of these magnetic nanotubes by an external magnetic field thus facilitating directed growth of neurites. Therefore, we sought to investigate the effects of laminin treated magnetic nanotubes and external alternating magnetic fields on the growth of dorsal root ganglion (DRG) neurons in cell culture. Magnetic nanotubes were synthesized by a hydrothermal method and characterized to confirm their hollow structure, the hematite and maghemite phases, and the magnetic properties. DRG neurons were cultured in the presence of magnetic nanotubes under alternating magnetic fields. Electron microscopy showed a close interaction between magnetic nanotubes and the growing neurites Phase contrast microscopy revealed live growing neurons suggesting that the combination of the presence of magnetic nanotubes and the alternating magnetic field were tolerated by DRG neurons. The synergistic effect, from both laminin treated magnetic nanotubes and the applied magnetic fields on survival, growth and electrical activity of the DRG neurons are currently being investigated.

  13. Quantum transport properties of carbon nanotube field-effect transistors with electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2007-11-01

    We investigated the electron-phonon coupling effects on the electronic transport properties of metallic (5,5)- and semiconducting (10,0)-carbon nanotube devices. We calculated the conductance and mobility of the carbon nanotubes with micron-order lengths at room temperature, using the time-dependent wave-packet approach based on the Kubo-Greenwood formula within a tight-binding approximation. We investigated the scattering effects of both longitudinal acoustic and optical phonon modes on the transport properties. The electron-optical phonon coupling decreases the conductance around the Fermi energy for the metallic carbon nanotubes, while the conductance of semiconductor nanotubes is decreased around the band edges by the acoustic phonons. Furthermore, we studied the Schottky-barrier effects on the mobility of the semiconducting carbon nanotube field-effect transistors for various gate voltages. We clarified how the electron mobilities of the devices are changed by the acoustic phonon.

  14. Nanoscale plasma chemistry enables fast, size-selective nanotube nucleation.

    PubMed

    Ostrikov, Kostya Ken; Mehdipour, Hamid

    2012-03-07

    The possibility of fast, narrow-size/chirality nucleation of thin single-walled carbon nanotubes (SWCNTs) at low, device-tolerant process temperatures in a plasma-enhanced chemical vapor deposition (CVD) is demonstrated using multiphase, multiscale numerical experiments. These effects are due to the unique nanoscale reactive plasma chemistry (NRPC) on the surfaces and within Au catalyst nanoparticles. The computed three-dimensional process parameter maps link the nanotube incubation times and the relative differences between the incubation times of SWCNTs of different sizes/chiralities to the main plasma- and precursor gas-specific parameters and explain recent experimental observations. It is shown that the unique NRPC leads not only to much faster nucleation of thin nanotubes at much lower process temperatures, but also to better selectivity between the incubation times of SWCNTs with different sizes and chiralities, compared to thermal CVD. These results are used to propose a time-programmed kinetic approach based on fast-responding plasmas which control the size-selective, narrow-chirality nucleation and growth of thin SWCNTs. This approach is generic and can be used for other nanostructure and materials systems. © 2012 American Chemical Society

  15. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas [Denver, CO; Raffaelle, Ryne P [Honeoye Falls, NY; Landi, Brian J [Rochester, NY; Heben, Michael J [Denver, CO

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  16. Mechanical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Salvetat, J.-P.; Bonard, J.-M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L.

    A variety of outstanding experimental results on the elucidation of the elastic properties of carbon nanotubes are fast appearing. These are based mainly on the techniques of high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) to determine the Young's moduli of single-wall nanotube bundles and multi-walled nanotubes, prepared by a number of methods. These results are confirming the theoretical predictions that carbon nanotubes have high strength plus extraordinary flexibility and resilience. As well as summarising the most notable achievements of theory and experiment in the last few years, this paper explains the properties of nanotubes in the wider context of materials science and highlights the contribution of our research group in this rapidly expanding field. A deeper understanding of the relationship between the structural order of the nanotubes and their mechanical properties will be necessary for the development of carbon-nanotube-based composites. Our research to date illustrates a qualitative relationship between the Young's modulus of a nanotube and the amount of disorder in the atomic structure of the walls. Other exciting results indicate that composites will benefit from the exceptional mechanical properties of carbon nanotubes, but that the major outstanding problem of load transfer efficiency must be overcome before suitable engineering materials can be produced.

  17. Supported lipid bilayer/carbon nanotube hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose M.; Craighead, Harold G.; McEuen, Paul L.

    2007-03-01

    Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecules can diffuse freely across the nanotube, a membrane-bound protein (tetanus toxin) sees the nanotube as a barrier. Moreover, the size of the barrier depends on the diameter of the nanotube-with larger nanotubes presenting bigger obstacles to diffusion. We then demonstrate detection of protein binding (streptavidin) to the supported lipid bilayer using the nanotube transistor as a charge sensor. This system can be used as a platform to examine the interactions of single molecules with carbon nanotubes and has many potential applications for the study of molecular recognition and other biological processes occurring at cell membranes.

  18. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors.

    PubMed

    Chen, Haitian; Cao, Yu; Zhang, Jialu; Zhou, Chongwu

    2014-06-13

    Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however, realizing sophisticated macroelectronics operating in complementary mode has been challenging due to the difficulty in making n-type carbon nanotube transistors and p-type metal oxide transistors. Here we report a hybrid integration of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors to achieve large-scale (>1,000 transistors for 501-stage ring oscillators) complementary macroelectronic circuits on both rigid and flexible substrates. This approach of hybrid integration allows us to combine the strength of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors, and offers high device yield and low device variation. Based on this approach, we report the successful demonstration of various logic gates (inverter, NAND and NOR gates), ring oscillators (from 51 stages to 501 stages) and dynamic logic circuits (dynamic inverter, NAND and NOR gates).

  19. Synthesis and Characterization of Polydiacetylene Films and Nanotubes

    PubMed Central

    Gatebe, Erastus; Herron, Hayley; Zakeri, Rashid; Rajasekaran, Pradeep Ramiah; Aouadi, Samir; Kohli, Punit

    2009-01-01

    We report here the synthesis and characterization of polydiacetylene (PDA) films and nanotubes using layer-by-layer (LBL) chemistry. 10,12-Docosadiyndioic acid (DCDA) monomer was self-assembled on flat surfaces and inside of nanoporous alumina templates. UV irradiation of DCDA provided polymerized-DCDA (PDCDA) films and nanotubes. We have used zirconium-carboxylate interlayer chemistry to synthesize PDCDA multilayers on flat surfaces and in nanoporous template. PDCDA multilayers were characterized using optical (UV–vis, fluorescence, ellipsometry, FTIR) spectroscopies, ionic current–voltage (I–V) analysis, and scanning electron microscopy. Ellipsometry, FTIR, electronic absorption and emission spectroscopies showed a uniform DCDA deposition at each deposition cycle. Our optical spectroscopic analysis indicates that carboxylate-zirconium interlinking chemistry is robust. To explain the disorganization in the alkyl portion of PDCDA multilayer films, we propose carboxylate-zirconium interlinkages act as “locks” in between PDCDA layers which restrict the movement of alkyl portion in the films. Because of this locking, the induced-stresses in the polymer chains can not be efficiently relieved. Our ionic resistance data from I–V analysis correlate well with calculated resistance at smaller number of PDCDA layers but significantly deviated for thicker PDCDA nanotubes. These differences were attributed to ion-blocking because some of the PDCDA nanotubes were totally closed and the nonohmic and permselective ionic behaviors when the diameter of the pores approaches the double-layer thickness of the solution inside of the nanotubes. PMID:18823090

  20. Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,

  1. The synthesis of silica nanotubes through chlorosilanization of single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Wu; Shen, Hsin-Hui

    2010-09-01

    We demonstrate that single wall carbon nanotubes (SWCNTs) can be coated by a layer of silica through the reaction between chlorosilane and acid-treated SWCNTs. The presence of carboxylic acid groups in the SWCNTs provides the active sites where chlorosilane can be anchored to form the silica coating. Silica nanotubes with diameters ranging from 5 to 23 nm were synthesized after the calcination of silica coated SWCNTs at 900 °C in air. It was found that the presence of SWCNT templates and carboxylic acid groups on the SWCNTs' surface is essential to the formation of silica nanotubes. Furthermore, the dependence of the inner diameters of the silica nanotubes on the diameters of bundled or isolated SWCNTs was observed. This novel technique can be applied to the synthesis of other oxide nanotubes if a precursor such as TiCl4 or ZrCl4 is used.

  2. Water Adsorption on Clean and Defective Anatase TiO2 (001) Nanotube Surfaces: A Surface Science Approach.

    PubMed

    Kenmoe, Stephane; Lisovski, Oleg; Piskunov, Sergei; Bocharov, Dmitry; Zhukovskii, Yuri F; Spohr, Eckhard

    2018-05-31

    We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO 2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH - group and an NH 2 + cationic site on the surface.

  3. Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Martinez, Amos; Al Araimi, Mohammed; Dmitriev, Artemiy; Lutsyk, Petro; Li, Shen; Mou, Chengbo; Rozhin, Alexey; Sumetsky, Misha; Turitsyn, Sergei

    2017-12-01

    The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors) and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50%) and poor saturable to non-saturable absorption ratios (typically above 1:5). In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%), and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.

  4. Mass Transport Through Carbon Nanotube-Polystyrene Bundles

    NASA Astrophysics Data System (ADS)

    Lin, Rongzhou; Tran, Tuan

    2016-05-01

    Carbon nanotubes have been widely used as test channels to study nanofluidic transport, which has been found to have distinctive properties compared to transport of fluids in macroscopic channels. A long-standing challenge in the study of mass transport through carbon nanotubes (CNTs) is the determination of flow enhancement. Various experimental investigations have been conducted to measure the flow rate through CNTs, mainly based on either vertically aligned CNT membranes or individual CNTs. Here, we proposed an alternative approach that can be used to quantify the mass transport through CNTs. This is a simple method relying on the use of carbon nanotube-polystyrene bundles, which are made of CNTs pulled out from a vertically aligned CNT array and glued together by polystyrene. We experimentally showed by using fluorescent tagging that the composite bundles allowed measureable and selective mass transport through CNTs. This type of composite bundle may be useful in various CNT research areas as they are simple to fabricate, less likely to form macroscopic cracks, and offer a high density of CNT pores while maintaining the aligned morphology of CNTs.

  5. Templated Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  6. Buckling of Carbon Nanotube-Reinforced Polymer Laminated Composite Materials Subjected to Axial Compression and Shear Loadings

    NASA Technical Reports Server (NTRS)

    Riddick, J. C.; Gates, T. S.; Frankland, S.-J. V.

    2005-01-01

    A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linking of intrinsic, nanoscale-material definitions to finite scale-structural properties is achieved via a hierarchical approach in which the elastic properties of the reinforced layers are predicted by an equivalent continuum modeling technique. Solutions for infinitely long symmetrically laminated nanotube-reinforced laminates with simply-supported or clamped edges subjected to axial compression and shear loadings are presented. The study focuses on the influence of nanotube volume fraction, length, orientation, and functionalization on finite-scale laminate response. Results indicate that for the selected laminate configurations considered in this study, angle-ply laminates composed of aligned, non-functionalized carbon nanotube-reinforced lamina exhibit the greatest buckling resistance with 1% nanotube volume fraction of 450 nm uniformly-distributed carbon nanotubes. In addition, hybrid laminates were considered by varying either the volume fraction or nanotube length through-the-thickness of a quasi-isotropic laminate. The ratio of buckling load-to-nanotube weight percent for the hybrid laminates considered indicate the potential for increasing the buckling efficiency of nanotube-reinforced laminates by optimizing nanotube size and proportion with respect to laminate configuration.

  7. Superhydrogels of nanotubes capable of capturing heavy-metal ions.

    PubMed

    Song, Shasha; Wang, Haiqiao; Song, Aixin; Hao, Jingcheng

    2014-01-01

    Self-assembly regulated by hydrogen bonds was successfully achieved in the system of lithocholic acid (LCA) mixed with three organic amines, ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA), in aqueous solutions. The mixtures of DEA/LCA exhibit supergelation capability and the hydrogels consist of plenty of network nanotubes with uniform diameters of about 60 nm determined by cryogenic TEM. Interestingly, the sample with the same concentration in a system of EA and LCA is a birefringent solution, in which spherical vesicles and can be transformed into nanotubes as the amount of LCA increases. The formation of hydrogels could be driven by the delicate balance of diverse noncovalent interactions, including electrostatic interactions, hydrophobic interactions, steric effects, van der Waals forces, and mainly hydrogen bonds. The mechanism of self-assembly from spherical bilayer vesicles into nanotubes was proposed. The dried hydrogels with nanotubes were explored to exhibit the excellent capability for capturing heavy-metal ions, for example, Cu(2+), Co(2+), Ni(2+), Pb(2+), and Hg(2+). The superhydrogels of nanotubes from the self-assembly of low-molecular-weight gelators mainly regulated by hydrogen bonds used for the removal of heavy-metal ions is simple, green, and high efficiency, and provide a strategic approach to removing heavy-metal ions from industrial sewage. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Tunable carbon nanotube-tungsten carbide nanoparticles heterostructures by vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Min; Guo, Hongyan; Ge, Changchun

    2014-05-14

    A simple, versatile route for the synthesis of carbon nanotube (CNT)-tungsten carbide nanoparticles heterostructures was set up via vapor deposition process. For the first time, amorphous CNTs (α-CNTs) were used to immobilized tungsten carbide nanoparticles. By adjusting the synthesis and annealing temperature, α-CNTs/amorphous tungsten carbide, α-CNTs/W{sub 2}C, and CNTs/W{sub 2}C/WC heterostructures were prepared. This approach provides an efficient method to attach other metal carbides and other nanoparticles to carbon nanotubes with tunable properties.

  9. Nanotube-assisted protein deactivation

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Punyani, Supriya; Bale, Shyam Sundhar; Yang, Hoichang; Borca-Tasciuc, Theodorian; Kane, Ravi S.

    2008-01-01

    Conjugating proteins onto carbon nanotubes has numerous applications in biosensing, imaging and cellular delivery. However, remotely controlling the activity of proteins in these conjugates has never been demonstrated. Here we show that upon near-infrared irradiation, carbon nanotubes mediate the selective deactivation of proteins in situ by photochemical effects. We designed nanotube-peptide conjugates to selectively destroy the anthrax toxin, and also optically transparent coatings that can self-clean following either visible or near-infrared irradiation. Nanotube-assisted protein deactivation may be broadly applicable to the selective destruction of pathogens and cells, and will have applications ranging from antifouling coatings to functional proteomics.

  10. Specific features of low-frequency vibrational dynamics and low-temperature heat capacity of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Avramenko, M. V.; Roshal, S. B.

    2016-05-01

    A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.

  11. Investigating the Effect of Carbon Nanotube Diameter and Wall Number in Carbon Nanotube/Silicon Heterojunction Solar Cells

    PubMed Central

    Grace, Tom; Yu, LePing; Gibson, Christopher; Tune, Daniel; Alturaif, Huda; Al Othman, Zeid; Shapter, Joseph

    2016-01-01

    Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in this study yielded cells with higher open circuit voltages. It was also determined that post fabrication treatments applied to the nanotube films have a lesser effect on multi-walled nanotubes than on the other two types. PMID:28344309

  12. Multilevel, multicomponent microarchitectures of vertically-aligned carbon nanotubes for diverse applications.

    PubMed

    Qu, Liangti; Vaia, Rich A; Dai, Liming

    2011-02-22

    A simple multiple contact transfer technique has been developed for controllable fabrication of multilevel, multicomponent microarchitectures of vertically aligned carbon nanotubes (VA-CNTs). Three dimensional (3-D) multicomponent micropatterns of aligned single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs) have been fabricated, which can be used to develop a newly designed touch sensor with reversible electrical responses for potential applications in electronic devices, as demonstrated in this study. The demonstrated dependence of light diffraction on structural transfiguration of the resultant CNT micropattern also indicates their potential for optical devices. Further introduction of various components with specific properties (e.g., ZnO nanorods) into the CNT micropatterns enabled us to tailor such surface characteristics as wettability and light response. Owing to the highly generic nature of the multiple contact transfer strategy, the methodology developed here could provide a general approach for interposing a large variety of multicomponent elements (e.g., nanotubes, nanorods/wires, photonic crystals, etc.) onto a single chip for multifunctional device applications.

  13. Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering.

    PubMed

    Newman, Peter; Minett, Andrew; Ellis-Behnke, Rutledge; Zreiqat, Hala

    2013-11-01

    The extracellular environment which supports cell life is composed of a hierarchy of maintenance, force and regulatory systems which integrate from the nano- through to macroscale. For this reason, strategies to recreate cell supporting environments have been investigating the use of nanocomposite biomaterials. Here, we review the use of carbon nanotubes as part of a bottom-up approach for use in bone tissue engineering. We evaluate the properties of carbon nanotubes in the context of synthetic tissue substrates and contrast them with the nanoscale features of the extracellular environment. Key studies are evaluated with an emphasis on understanding the mechanisms through which carbon nanotubes interact with biological systems. This includes an examination of how the different properties of carbon nanotubes affect tissue growth, how these properties and variation to them might be leveraged in regenerative tissue therapies and how impurities or contaminates affect their toxicity and biological interaction. In this comprehensive review, the authors describe the status and potential applications of carbon nanotubes in bone tissue engineering. © 2013.

  14. Controlling the mechanics and nanotopography of biocompatible scaffolds through dielectrophoresis with carbon nanotubes.

    PubMed

    Lu, Yu-Lun; Cheng, Chao-Min; LeDuc, Philip R; Ho, Mon-Shu

    2008-08-01

    Creating a biocompatible carbon-nanotube polymer scaffold is an area that has a number of potential applications. Herein, a dielectrophoretic approach was pursued to integrate carbon nanotubes into a polymeric material for fabricating a nanoscale composite scaffold with increased and controllable mechanical strength. The adhesion force, which combines the surface energy of the sample and the interfacial energy between the tip and sample, was estimated to be 55.39 +/- 6.72 nN away from the center of the protrusions at a distance of 0.5 microm while being 24.01 +/- 4.45 nN at the center. The adhesion force for the center of the cavities was 42.47 +/- 6.91 and 88.21 +/- 15.05 nN at 0.5 microm away from the center. NIH 3T3 fibroblast cells were then utilized to test the cellular biocompatibility of this multiwalled carbon nanotubes (MWCNTs) film. Cells were cultured on the surface and then their attachment, spreading, and proliferation behaviors were observed. This nanotube-polymer scaffolding approach has a wide range of potential applications including in complex device fabrication as well as in developing biomimetic and tissue engineering scaffolds, and artificial organs.

  15. Acute toxicity of functionalized single wall carbon nanotubes: A biochemical, histopathologic and proteomics approach.

    PubMed

    Ahmadi, Homa; Ramezani, Mohammad; Yazdian-Robati, Rezvan; Behnam, Behzad; Razavi Azarkhiavi, Kamal; Hashem Nia, Azadeh; Mokhtarzadeh, Ahad; Matbou Riahi, Maryam; Razavi, Bibi Marjan; Abnous, Khalil

    2017-09-25

    Recently carbon nanotubes (CNTs) showed promising potentials in different biomedical applications but their safe use in humans and probable toxicities are still challenging. The aim of this study was to determine the acute toxicity of functionalized single walled carbon nanotubes (SWCNTs). In this project, PEGylated and Tween functionalized SWCNTs were prepared. BALB/c mice were randomly divided into nine groups, including PEGylated SWCNTs (75,150μg/mouse) and PEG, Tween80 suspended SWCNTs, Tween 80 and a control group (intact mice). One or 7 days after intravenous injection, the mice were killed and serum and livers were collected. The oxidative stress markers, biochemical and histopathological changes were studied. Subsequently, proteomics approach was used to investigate the alterations of protein expression profiles in the liver. Results showed that there were not any significant differences in malondealdehyde (MDA), glutathione (GSH) levels and biochemical enzymes (ALT and AST) between groups, while the histopathological observations of livers showed some injuries. The results of proteomics analysis revealed indolethylamine N-Methyltransferase (INMT), glycine N-Methyltransferase (GNMT), selenium binding protein (Selenbp), thioredoxin peroxidase (TPx), TNF receptor associated protein 1(Trap1), peroxiredoxin-6 (Prdx6), electron transport flavoprotein (Etf-α), regucalcin (Rgn) and ATP5b proteins were differentially expressed in functionalized SWCNTs groups. Western blot analyses confirmed that the changes in Prdx6 were consistent with 2-DE gel analysis. In summary, acute toxicological study on two functionalized SWCNTs did not show any significant toxicity at selected doses. Proteomics analysis also showed that following exposure to functionalized SWCNTs, the expression of some proteins with antioxidant activity and detoxifying properties were increased in liver tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. CVD Growth of Carbon Nanotubes: Structure, Catalyst, and Growth

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance

    2003-01-01

    Carbon nanotubes (CNTs) exhibit extraordinary mechanical and unique electronic properties and hence have been receiving much attention in recent years for their potential in nanoelectronics, field emission devices, scanning probes, high strength composites and many more applications. Catalytic decomposition of hydrocarbon feedstock with the aid of supported transition metal catalysts - also known as chemical vapor deposition (CVD) - has become popular to produce single-walled and multi-walled nanotubes (SWNTs, MWNTs) and multiwalled nanofibers (MWNFs). The ability to grow CNTs on patterned substrates and in vertically aligned arrays, and the simplicity of the process, has made CVD growth of CNTs an attractive approach.

  17. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  18. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA

    2010-06-29

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  19. Nanotube resonator devices

    DOEpatents

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  20. Investigation of phase diagrams for cylindrical Ising nanotube using cellular automata

    NASA Astrophysics Data System (ADS)

    Astaraki, M.; Ghaemi, M.; Afzali, K.

    2018-05-01

    Recent developments in the field of applied nanoscience and nanotechnology have heightened the need for categorizing various characteristics of nanostructures. In this regard, this paper establishes a novel method to investigate magnetic properties (phase diagram and spontaneous magnetization) of a cylindrical Ising nanotube. Using a two-layer Ising model and the core-shell concept, the interactions within nanotube has been modelled. In the model, both ferromagnetic and antiferromagnetic cases have been considered. Furthermore, the effect of nanotube's length on the critical temperature is investigated. The model has been simulated using cellular automata approach and phase diagrams were constructed for different values of inter- and intra-layer couplings. For the antiferromagnetic case, the possibility of existence of compensation point is observed.

  1. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong [Berkeley, CA; He, Rongrui [El Cerrito, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yiying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA

    2008-04-08

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  2. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yiying; Li, Deyu; Majumdar, Arun

    2010-01-10

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  3. Polymer composites containing nanotubes

    NASA Technical Reports Server (NTRS)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  4. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life.

    PubMed

    Xiao, Lifen; Cao, Yuliang; Xiao, Jie; Schwenzer, Birgit; Engelhard, Mark H; Saraf, Laxmikant V; Nie, Zimin; Exarhos, Gregory J; Liu, Jun

    2012-03-02

    A novel vulcanized polyaniline nanotube/sulfur composite was prepared successfully via an in situ vulcanization process by heating a mixture of polyaniline nanotube and sulfur at 280 °C. The electrode could retain a discharge capacity of 837 mAh g(-1) after 100 cycles at a 0.1 C rate and manifested 76% capacity retention up to 500 cycles at a 1 C rate. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Pyrolytic Carbon Coatings on Aligned Carbon Nanotube Assemblies and Fabrication of Advanced Carbon Nanotube/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Faraji, Shaghayegh

    Chemical vapor deposition (CVD) is a technique used to create a pyrolytic carbon (PyC) matrix around fibrous preforms in carbon/carbon (C/C) composites. Due to difficulties in producing three-dimensional carbon nanotube (CNT) assemblies, use of nanotubes in CVD fabricated CNT/C composites is limited. This dissertation describes efforts to: 1) Study the microstructure of PyC deposited on CNTs in order to understand the effect of microstructure and morphology of carbon coatings on graphitization behavior of CNT/PyC composites. This understanding helped to suggest a new approach for controlled radial growth of CNTs. 2) Evaluate the properties of CNT/PyC structures as a novel form of CNT assemblies with resilient, anisotropic and tunable properties. PyC was deposited on aligned sheets of nanotubes, drawn from spinnable CNT arras, using CVD of acetylene gas. At longer deposition times, the microstructure of PyC changed from laminar turbostratic carbon to a disordered carbon. For samples with short PyC deposition times (up to 30 minutes), deposited carbon layer rearranged during graphitization treatment and resulted in a crystalline structure where the coating and original tube walls could not be easily differentiated. In contrast, in samples with longer carbon deposition durations, carbon layers close to the surface of the coating remained disordered even after graphitization thermal treatment. Understanding the effect of PyC microstructure transition on graphitization behavior of CNT/PyC composites was used to develop a new method for controlled radial growth of CNTs. Carbon coated aligned CNT sheets were graphitized after each short (20 minutes) carbon deposition cycle. This prevented development of disorder carbon during subsequent PyC deposition cycles. Using cyclic-graphitization method, thick PyC coating layers were successfully graphitized into a crystalline structure that could not be differentiated from the original nanotube walls. This resulted into radial

  6. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  7. In situ study of single-walled carbon nanotube growth in an environmental scanning electron microscope.

    PubMed

    Mehedi, H-A; Ravaux, J; Tahir, S; Podor, R; Jourdain, V

    2016-12-16

    Monitoring individual single-walled carbon nanotubes (SWCNTs) during their growth is a highly sought-after goal in view of understanding the processes involved in the nucleation, elongation and termination which ultimately control the diameter and chiral selectivity. Here, we report on the first truly in situ observations of SWCNT growth in an environmental scanning electron microscope (ESEM). The CNT growth from lithographically patterned catalysts was investigated as a function of the catalyst type (Fe, Co or Ni), temperature, type of precursor (ethanol or acetylene), gas phase composition and pressure, and pretreatment conditions, and we report on the most appropriate conditions for SWCNT growth in ESEM conditions. We show that this approach allows the observation at the submicron scale of the different steps of the nanotube synthesis including the catalyst reduction, the growth and percolation of the nanotube network, and the deposition of individual nanotubes grown in the gas phase on the substrate. Despite these obvious advantages, we identified a few limitations which will need to be tackled for fully taking advantage of the approach, for instance for monitoring the growth of individual SWCNTs by ESEM, including the short lifetime of the catalyst nanoparticles, the preference for kite growth (by opposition to surface growth) and the influence of the electron beam on the nanotube growth.

  8. Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles

    USGS Publications Warehouse

    Agnihotri, S.; Mota, J.P.B.; Rostam-Abadi, M.; Rood, M.J.

    2006-01-01

    Bundle morphology and adsorptive contributions from nanotubes and impurities are studied both experimentally and by simulation using a computer-aided methodology, which employs a small physisorbed probe molecule to explore the porosity of nanotube samples. Grand canonical Monte Carlo simulation of nitrogen adsorption on localized sites of a bundle is carried out to predict adsorption in its accessible internal pore volume and on its external surface as a function of tube diameter. External adsorption is split into the contributions from the clean surface of the outermost nanotubes of the bundle and from the surface of the impurities. The site-specific isotherms are then combined into a global isotherm for a given sample using knowledge of its tube-diameter distribution obtained by Raman spectroscopy. The structural parameters of the sample, such as the fraction of open-ended nanotubes and the contributions from impurities and nanotube bundles to total external surface area, are determined by fitting the experimental nitrogen adsorption data to the simulated isotherm. The degree of closure between experimental and calculated adsorption isotherms for samples manufactured by two different methods, to provide different nanotube morphology and contamination level, further strengthens the validity and resulting interpretations based on the proposed approach. The average number of nanotubes per bundle and average bundle size, within a sample, are also quantified. The proposed method allows for extrapolation of adsorption properties to conditions where the purification process is 100% effective at removing all impurities and opening access to all intrabundle adsorption sites. ?? 2006 Elsevier Ltd. All rights reserved.

  9. Advanced carbon nanotubes functionalization

    NASA Astrophysics Data System (ADS)

    Setaro, A.

    2017-10-01

    Similar to graphene, carbon nanotubes are materials made of pure carbon in its sp2 form. Their extended conjugated π-network provides them with remarkable quantum optoelectronic properties. Frustratingly, it also brings drawbacks. The π-π stacking interaction makes as-produced tubes bundle together, blurring all their quantum properties. Functionalization aims at modifying and protecting the tubes while hindering π-π stacking. Several functionalization strategies have been developed to circumvent this limitation in order for nanotubes applications to thrive. In this review, we summarize the different approaches established so far, emphasizing the balance between functionalization efficacy and the preservation of the tubes’ properties. Much attention will be given to a functionalization strategy overcoming the covalent-noncovalent dichotomy and to the implementation of two advanced functionalization schemes: (a) conjugation with molecular switches, to yield hybrid nanosystems with chemo-physical properties that can be tuned in a controlled and reversible way, and; (b) plasmonic nanosystems, whose ability to concentrate and enhance the electromagnetic fields can be taken advantage of to enhance the optical response of the tubes.

  10. Method for nano-pumping using carbon nanotubes

    DOEpatents

    Insepov, Zeke [Darien, IL; Hassanein, Ahmed [Bolingbrook, IL

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  11. Modeling of a carbon nanotube ultracapacitor.

    PubMed

    Orphanou, Antonis; Yamada, Toshishige; Yang, Cary Y

    2012-03-09

    The modeling of carbon nanotube ultracapacitor (CNU) performance based on the simulation of electrolyte ion motion between the cathode and the anode is described. Using a molecular dynamics (MD) approach, the equilibrium positions of the electrode charges interacting through the Coulomb potential are determined, which in turn yield the equipotential surface and electric field associated with the capacitor. With an applied ac voltage, the current is computed based on the nanotube and electrolyte particle distribution and interaction, resulting in the frequency-dependent impedance Z(ω). From the current and impedance profiles, the Nyquist and cyclic voltammetry (CV) plots are then extracted. The results of these calculations compare well with existing experimental data. A lumped-element equivalent circuit for the CNU is proposed and the impedance computed from this circuit correlates well with the simulated and measured impedances.

  12. Fabrication of titanium dioxide nanotube arrays using organic electrolytes

    NASA Astrophysics Data System (ADS)

    Yoriya, Sorachon

    to ~2 microm. In comparison to DMSO electrolyte, the electrochemical anodization rates are relatively slower in DEG electrolyte; as a result, the nanotube length is typically less than 10 microm. Pore size of nanotubes grown in DEG has been extended from 150 nm up to approximately 400 nm. The approach to pore widening could be achieved by using a specific condition of low HF concentration and prolonged anodization time. The study of evolution of nanotubes grown in DEG electrolytes showed that a fibrous layer was formed in the early growth stages and then was chemically and gradually removed after a long duration, leaving behind the nanotubes with large pore size. In DEG electrolyte, the closer spacing between Ti and Pt electrodes resulted in the larger nanotube morphological parameters due to the enhanced electrode kinetics facilitating the electrode reactions. Furthermore, this dissertation showed possibilities to crystallize the titania nanotube array films at room temperature via anodization in either DMSO or DEG electrolytes. The partially crystallized films could be achieved specifically in the optimum slow growth process conditions. Due to partial crystallization of the as-anodized samples, the high temperature annealing study revealed that the temperatures of phase transformation are 260 ºC and 430°C for respectively amorphous to anatase and anatase to rutile, which are accounted as the lowest phase transformation temperatures reported to date (2010). Finally, the photoelectrochemical properties of the DMSO fabricated nanotubes were investigated. The maximum photocurrent density of ~ 11 mA cm--2 was achieved by using the 46-microm long nanotube array sample with completely open pores, and photoconversion efficiencies of 5.425 % (+/- 0.087) (under UV light) and 0.197 % (+/- 0.001) (under solar spectrum AM 1.5) have been demonstrated. Biomedical applications of the DEG fabricated nanotube arrays films such as blood clotting, hemocompatibility, and drug

  13. Telescopic nanotube device for hot nanolithography

    DOEpatents

    Popescu, Adrian; Woods, Lilia M

    2014-12-30

    A device for maintaining a constant tip-surface distance for producing nanolithography patterns on a surface using a telescopic nanotube for hot nanolithography. An outer nanotube is attached to an AFM cantilever opposite a support end. An inner nanotube is telescopically disposed within the outer nanotube. The tip of the inner nanotube is heated to a sufficiently high temperature and brought in the vicinity of the surface. Heat is transmitted to the surface for thermal imprinting. Because the inner tube moves telescopically along the outer nanotube axis, a tip-surface distance is maintained constant due to the vdW force interaction, which in turn eliminates the need of an active feedback loop.

  14. Transport diffusion in deformed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Jiamei; Chen, Peirong; Zheng, Dongqin; Zhong, Weirong

    2018-03-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the transport diffusion of gas in deformed carbon nanotubes. Perfect carbon nanotube and various deformed carbon nanotubes are modeled as transport channels. It is found that the transport diffusion coefficient of gas does not change in twisted carbon nanotubes, but changes in XY-distortion, Z-distortion and local defect carbon nanotubes comparing with that of the perfect carbon nanotube. Furthermore, the change of transport diffusion coefficient is found to be associated with the deformation factor. The relationship between transport diffusion coefficient and temperature is also discussed in this paper. Our results may contribute to understanding the mechanism of molecular transport in nano-channel.

  15. Characterization and modeling of viscoelastic behavior of carbon nanotube reinforced polymers: The influence of interphase and nanotube morphology

    NASA Astrophysics Data System (ADS)

    Liu, Hua

    The addition of nanoparticles into polymer materials has been observed to dramatically change the mechanical, thermal, electrical, and diffusion properties of the host polymers, promising a novel class of polymer matrix composite materials with superior properties and added functionalities that are ideal candidates in many applications, including aerospace, automobile, medical devices, and sporting goods. Understanding the behavior and underlying mechanisms of these polymer nanocomposites is critical. The research work presented in this dissertation represents one of the initial efforts in the long journey pursuing the ultimate understanding of nanoparticle reinforced polymer systems. Particular focal points are experimental evaluation and the development of appropriate modeling methods to capture the influence of the interphase on the overall viscoelastic behavior of carbon nanotube reinforced polymer nanocomposites. The first portion of this dissertation study investigates the viscoelastic behavior of MWCNT based PMMA nanocomposites, which complements our previous study of SWCNT/PMMA systems to confirm functionalization of nanotubes as an effective way to manipulate the interaction between nanotube and polymers and control the properties of the interphase region forming around the nanotubes and consequently change the overall performance of nanotube based polymer nanocomposites. In the second portion of this dissertation, we present a novel hybrid numerical-analytical modeling method that is capable of predicting viscoelastic behavior of multiphase polymer nanocomposites, in which the nanoscopic fillers can assume complex configurations. By combining the finite element technique and a micromechanical approach (particularly, the Mori-Tanaka method) with local phase properties, this method operates at low computational cost and effectively accounts for the influence of the interphase as well as in situ nanoparticle morphology. This modeling method is implemented

  16. Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: A computational approach

    NASA Astrophysics Data System (ADS)

    Ribeiro, M. S.; Pascoini, A. L.; Knupp, W. G.; Camps, I.

    2017-12-01

    Carbon nanotubes (CNTs) have important electronic, mechanical and optical properties. These features may be different when comparing a pristine nanotube with other presenting its surface functionalized. These changes can be explored in areas of research and application, such as construction of nanodevices that act as sensors and filters. Following this idea, in the current work, we present the results from a systematic study of CNT's surface functionalized with hydroxyl and carboxyl groups. Using the entropy as selection criterion, we filtered a library of 10k stochastically generated complexes for each functional concentration (5, 10, 15, 20 and 25%). The structurally related parameters (root-mean-square deviation, entropy, and volume/area) have a monotonic relationship with functionalization concentration. Differently, the electronic parameters (frontier molecular orbital energies, electronic gap, molecular hardness, and electrophilicity index) present and oscillatory behavior. For a set of concentrations, the nanotubes present spin polarized properties that can be used in spintronics.

  17. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.

  18. Electric field-assisted deposition of nanowires on carbon nanotubes for nanoelectronics and sensor applications.

    PubMed

    Sivakumar, Kousik; Panchapakesan, Balaji

    2005-02-01

    Manipulation and control of matter at the nanoscale and atomic scale levels are crucial for the success of nanoscale sensors and actuators. The ability to control and synthesize multilayer structures using carbon nanotubes that will enable the building of electronic devices within a nanotube is still in its infancy. In this paper, we present results on selective electric field-assisted deposition of metals on carbon nanotubes realizing metallic nanowire structures. Silver and platinum nanowires have been fabricated using this approach for their applications in chemical sensing as catalytic materials to sniff toxic agents and in the area of biomedical nanotechnology for construction of artificial muscles. Electric field-assisted deposition allows the deposition of metals with a high degree of selectivity on carbon nanotubes by manipulating the charges on the surface of the nanotubes and forming electrostatic double-layer supercapacitors. Deposition of metals primarily occurred due to electrochemical reduction, electrophoresis, and electro-osmosis inside the walls of the nanotube. SEM and TEM investigations revealed silver and platinum nanowires between 10 nm and 100 nm in diameter. The present technique is versatile and enables the fabrication of a host of different types of metallic and semiconducting nanowires using carbon nanotube templates for nanoelectronics and a myriad of sensor applications.

  19. Light-activated nanotube-porphyrin conjugates as effective antiviral agents

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; Douaisi, Marc P.; Mondal, Dhananjoy; Kane, Ravi S.

    2012-03-01

    Porphyrins have been used for photodynamic therapy (PDT) against a wide range of targets like bacteria, viruses and tumor cells. In this work, we report porphyrin-conjugated multi-walled carbon nanotubes (NT-P) as potent antiviral agents. Specifically, we used Protoporphyrin IX (PPIX), which we attached to acid-functionalized multi-walled carbon nanotubes (MWNTs). We decided to use carbon nanotubes as scaffolds because of their ease of recovery from a solution through filtration. In the presence of visible light, NT-P was found to significantly reduce the ability of Influenza A virus to infect mammalian cells. NT-P may be used effectively against influenza viruses with little or no chance of them developing resistance to the treatment. Furthermore, NT-P can be easily recovered through filtration which offers a facile strategy to reuse the active porphyrin moiety to its fullest extent. Thus NT-P conjugates represent a new approach for preparing ex vivo reusable antiviral agents.

  20. Exploring the novel donor-nanotube archetype as an efficient third-order nonlinear optical material: asymmetric open-shell carbon nanotubes.

    PubMed

    Muhammad, Shabbir; Nakano, Masayoshi; Al-Sehemi, Abdullah G; Irfan, Ahmad; Chaudhry, Aijaz Rasool; Tonami, Takayoshi; Ito, Soichi; Kishi, Ryohei; Kitagawa, Yasutaka

    2018-06-06

    Contrary to the enormous number of previous studies on carbon nanotubes (CNTs), herein, we realized the origin of the intrinsic open-shell diradical character and second hyperpolarizability γ using a broken symmetry approach. This study was inspired by our recent findings (S. Muhammad, et al., Nanoscale, 2016, 8, 17998 and Nakano, et al., J. Phys. Chem. C, 2016, 120, 1193). We performed structural modifications through a unique asymmetric donor-nanotube framework, which led to a novel paradigm of modified CNTs with tunable open-shell diradical character and remarkably superior NLO response properties. Interestingly, asymmetry and diradical character were found to be the crucial factors to modulate the second hyperpolarizability γ. We initially performed a comparative analysis of the diradical characters and γ amplitudes of boron nitride nanotubes (BNNTs) and CNTs possessing significant ionic characters and covalent characters, respectively. The basic findings for these simple configurations were further extended to the donor-acceptor CNT paradigm, which finally led to excellent asymmetric donor-CNT configurations with remarkably larger γ amplitudes. Furthermore, among the CNTs, finite length zigzag CNT(6,0)3 were modified with different donor-acceptor configurations. Interestingly, for the first time, unique donor-nanotube configurations [1,4-(NH2)2CNT-(6,0)3 and 1,4-(NH2)2CNT-(6,0)5] were found; they showed significantly robust γ amplitudes as large as 2519 × 103 and 4090 × 103 a.u. at the LC-UBLYP(μ = 0.33)/6-31G* level of theory. Additionally, several molecular level insights have been obtained for these novel donor-nanotube configurations using their odd electron densities, molecular electrostatic maps, densities of states and γ density analyses to highlight the realization of these novel materials for highly efficient optical and NLO applications.

  1. Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Du, Ning; Zhang, Hui; Yu, Jingxue; Qi, Yue; Yang, Deren

    2011-02-01

    This paper reports the synthesis of carbon-coated SnO2 (SnO2-C) nanotubes through a simple glucose hydrothermal and subsequent carbonization approach by using Sn nanorods as sacrificial templates. The as-synthesized SnO2-C nanotubes have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure SnO2 nanotubes. The hollow nanostructure, together with the carbon matrix which has good buffering effect and high electronic conductivity, can be responsible for the improved cyclic performance.

  2. Thermodynamic Approach to Enhanced Dispersion and Physical Properties in a Carbon Nanotube/Polypeptide Nanocomposite

    NASA Technical Reports Server (NTRS)

    Lovell, Conrad S.; Wise, Kristopher E.; Kim, Jae-Woo; Lillehei, Peter T.; Harrison, Joycelyn S.; Park, Cheol

    2009-01-01

    A high molecular weight synthetic polypeptide has been designed which exhibits favorable interactions with single wall carbon nanotubes (SWCNTs). The enthalpic and entropic penalties of mixing between these two molecules are reduced due to the polypeptide's aromatic sidechains and helical secondary structure, respectively. These enhanced interactions result in a well dispersed SWCNT/Poly (L-Leucine-ran-L-Phenylalanine) nanocomposite with enhanced mechanical and electrical properties using only shear mixing and sonication. At 0.5 wt% loading of SWCNT filler, the nanocomposite exhibits simultaneous increases in the Young's modulus, failure strain, and toughness of 8%, 120%, and 144%, respectively. At one kHz, the same nanotube loading level also enhances the dielectric constant from 2.95 to 22.81, while increasing the conductivity by four orders of magnitude.

  3. Investigation of growth dynamics of carbon nanotubes

    PubMed Central

    2017-01-01

    The synthesis of single-walled carbon nanotubes (SWCNTs) with defined properties is required for both fundamental investigations and practical applications. The revealing and thorough understanding of the growth mechanism of SWCNTs is the key to the synthesis of nanotubes with required properties. This paper reviews the current status of the research on the investigation of growth dynamics of carbon nanotubes. The review starts with the consideration of the peculiarities of the growth mechanism of carbon nanotubes. The physical and chemical states of the catalyst during the nanotube growth are discussed. The chirality selective growth of nanotubes is described. The main part of the review is dedicated to the analysis and systematization of the reported results on the investigation of growth dynamics of nanotubes. The studies on the revealing of the dependence of the growth rate of nanotubes on the synthesis parameters are reviewed. The correlation between the lifetime of catalyst and growth rate of nanotubes is discussed. The reports on the calculation of the activation energy of the nanotube growth are summarized. Finally, the growth properties of inner tubes inside SWCNTs are considered. PMID:28503394

  4. Progress toward Making Epoxy/Carbon-Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Tiano, Thomas; Roylance, Margaret; Gassner, John; Kyle, William

    2008-01-01

    A modicum of progress has been made in an effort to exploit single-walled carbon nanotubes as fibers in epoxy-matrix/fiber composite materials. Two main obstacles to such use of carbon nanotubes are the following: (1) bare nanotubes are not soluble in epoxy resins and so they tend to agglomerate instead of becoming dispersed as desired; and (2) because of lack of affinity between nanotubes and epoxy matrices, there is insufficient transfer of mechanical loads between the nanotubes and the matrices. Part of the effort reported here was oriented toward (1) functionalization of single-walled carbon nanotubes with methyl methacrylate (MMA) to increase their dispersability in epoxy resins and increase transfer of mechanical loads and (2) ultrasonic dispersion of the functionalized nanotubes in tetrahydrofuran, which was used as an auxiliary solvent to aid in dispersing the functionalized nanotubes into a epoxy resin. In another part of this effort, poly(styrene sulfonic acid) was used as the dispersant and water as the auxiliary solvent. In one experiment, the strength of composite of epoxy with MMA-functionalized-nanotubes was found to be 29 percent greater than that of a similar composite of epoxy with the same proportion of untreated nanotubes.

  5. Combining Portable Raman Probes with Nanotubes for Theranostic Applications

    PubMed Central

    Bhirde, Ashwinkumar A.; Liu, Gang; Jin, Albert; Iglesias-Bartolome, Ramiro; Sousa, Alioscka A.; Leapman, Richard D.; Gutkind, J. Silvio; Lee, Seulki; Chen, Xiaoyuan

    2011-01-01

    Recently portable Raman probes have emerged along with a variety of applications, including carbon nanotube (CNT) characterization. Aqueous dispersed CNTs have shown promise for biomedical applications such as drug/gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in 2D monolayers of cancer cells and in 3D spheroids using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purposes: as a CNT detector and as an irradiating laser source. Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) were dispersed aqueously using a lipid-polymer (LP) coating, which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNT and MWCNT aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP-dispersed SWCNTs and MWCNTs was observed using confocal microscopy, and fluorescein isothiocyanate (FITC)-nanotube conjugates were found to be internalized by ovarian cancer cells by using Z-stack fluorescence confocal imaging. Biocompatibility of SWCNTs and MWCNTs was assessed using a cell viability MTT assay, which showed that the nanotube dispersions did not hinder the proliferation of ovarian cancer cells at the dosage tested. Ovarian cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in 2D layers of cancer cells and in 3D environments using the portable Raman probe. An apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay carried out after laser irradiation confirmed that cell death occurred only in the presence of nanotube dispersions. We show for the first time that both SWCNTs and MWCNTs can be selectively irradiated and detected in cancer cells using a simple

  6. Combining portable Raman probes with nanotubes for theranostic applications.

    PubMed

    Bhirde, Ashwinkumar A; Liu, Gang; Jin, Albert; Iglesias-Bartolome, Ramiro; Sousa, Alioscka A; Leapman, Richard D; Gutkind, J Silvio; Lee, Seulki; Chen, Xiaoyuan

    2011-01-01

    Recently portable Raman probes have emerged along with a variety of applications, including carbon nanotube (CNT) characterization. Aqueous dispersed CNTs have shown promise for biomedical applications such as drug/gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in 2D monolayers of cancer cells and in 3D spheroids using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purposes: as a CNT detector and as an irradiating laser source. Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) were dispersed aqueously using a lipid-polymer (LP) coating, which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNT and MWCNT aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP-dispersed SWCNTs and MWCNTs was observed using confocal microscopy, and fluorescein isothiocyanate (FITC)-nanotube conjugates were found to be internalized by ovarian cancer cells by using Z-stack fluorescence confocal imaging. Biocompatibility of SWCNTs and MWCNTs was assessed using a cell viability MTT assay, which showed that the nanotube dispersions did not hinder the proliferation of ovarian cancer cells at the dosage tested. Ovarian cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in 2D layers of cancer cells and in 3D environments using the portable Raman probe. An apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay carried out after laser irradiation confirmed that cell death occurred only in the presence of nanotube dispersions. We show for the first time that both SWCNTs and MWCNTs can be selectively irradiated and detected in cancer cells using a simple

  7. Electron beam detection of a Nanotube Scanning Force Microscope.

    PubMed

    Siria, Alessandro; Niguès, Antoine

    2017-09-14

    Atomic Force Microscopy (AFM) allows to probe matter at atomic scale by measuring the perturbation of a nanomechanical oscillator induced by near-field interaction forces. The quest to improve sensitivity and resolution of AFM forced the introduction of a new class of resonators with dimensions at the nanometer scale. In this context, nanotubes are the ultimate mechanical oscillators because of their one dimensional nature, small mass and almost perfect crystallinity. Coupled to the possibility of functionalisation, these properties make them the perfect candidates as ultra sensitive, on-demand force sensors. However their dimensions make the measurement of the mechanical properties a challenging task in particular when working in cavity free geometry at ambient temperature. By using a focused electron beam, we show that the mechanical response of nanotubes can be quantitatively measured while approaching to a surface sample. By coupling electron beam detection of individual nanotubes with a custom AFM we image the surface topography of a sample by continuously measuring the mechanical properties of the nanoresonators. The combination of very small size and mass together with the high resolution of the electron beam detection method offers unprecedented opportunities for the development of a new class of nanotube-based scanning force microscopy.

  8. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    PubMed

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  9. Supported Lipid Bilayer/Carbon Nanotube Hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose; Craighead, Harold; McEuen, Paul

    2007-03-01

    We form supported lipid bilayers on single-walled carbon nanotubes and use this hybrid structure to probe the properties of lipid membranes and their functional constituents. We first demonstrate membrane continuity and lipid diffusion over the nanotube. A membrane-bound tetanus toxin protein, on the other hand, sees the nanotube as a diffusion barrier whose strength depends on the diameter of the nanotube. Finally, we present results on the electrical detection of specific binding of streptavidin to biotinylated lipids with nanotube field effect transistors. Possible techniques to extract dynamic information about the protein binding events will also be discussed.

  10. Bio-inspired photon detection using chromophore/nanotube hybrids (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Léonard, François

    2017-05-01

    The human eye is an exquisite optical system with the ability to detect individual photons at room temperature. However, the complexity of this system, optimized over millions of years, has been difficult to reproduce using synthetic techniques. Here we discuss a bio-inspired approach for photon detection based on chromophore/nanotube hybrids, where the chromophore plays a similar role to the retinal molecule in the human eye, and the signal transduction is provided by electronic transport in the carbon nanotube. In this presentation, I will present the concept and discuss our progress in realizing this type of photodetection mechanism.

  11. High Coverages of Hydrogen on a (10,0) Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)

    2001-01-01

    The binding energy of H to a (10,0) carbon nanotube is calculated at 24, 50, and 100% coverage. Several different bonding configurations are considered for the 50% coverage case. Using the ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) approach, the average C-H bond energy for the most stable 50% coverage and for the 100% coverage are 57.3 and 38.6 kcal/mol, respectively. Considering the size of the bond energy of H2, these values suggest that it will be difficult to achieve 100% atomic H coverage on a (10,0) nanotube.

  12. Application of zone-folding approach to the first-principles estimation of thermodynamic properties of carbon and ZrS2 -based nanotubes.

    PubMed

    Bandura, Andrei V; Porsev, Vitaly V; Evarestov, Robert A

    2016-03-15

    A zone-folding (ZF) approach is applied for the estimation of the phonon contributions to thermodynamic properties of carbon-and ZrS2 -based nanotubes (NTs) of hexagonal morphology with different chiralities. The results obtained are compared with those from the direct calculation of the thermodynamic properties of NTs using PBE0 hybrid exchange-correlation functional. The phonon contribution to the stability of NTs proved to be negligible for the internal energy and small for the Helmholtz free energy. It is found that the ZF approach allows us an accurate estimation of phonon contributions to internal energy, but slightly overestimates the phonon contributions to entropy. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Plasticity and Kinky Chemistry of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Dzegilenko, Fedor

    2000-01-01

    Since their discovery in 1991, carbon nanotubes have been the subject of intense research interest based on early predictions of their unique mechanical, electronic, and chemical properties. Materials with the predicted unique properties of carbon nanotubes are of great interest for use in future generations of aerospace vehicles. For their structural properties, carbon nanotubes could be used as reinforcing fibers in ultralight multifunctional composites. For their electronic properties, carbon nanotubes offer the potential of very high-speed, low-power computing elements, high-density data storage, and unique sensors. In a continuing effort to model and predict the properties of carbon nanotubes, Ames accomplished three significant results during FY99. First, accurate values of the nanomechanics and plasticity of carbon nanotubes based on quantum molecular dynamics simulations were computed. Second, the concept of mechanical deformation catalyzed-kinky-chemistry as a means to control local chemistry of nanotubes was discovered. Third, the ease of nano-indentation of silicon surfaces with carbon nanotubes was established. The elastic response and plastic failure mechanisms of single-wall nanotubes were investigated by means of quantum molecular dynamics simulations.

  14. Transparent conducting oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Nagpal, Prashant

    2014-09-01

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current-voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10-4 Ωcm at T = 300 K (compared to 6.5 × 10-1 Ωcm for nominally undoped nanotubes) to 2.2 × 10-4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm-1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples.

  15. Carbon Nanotubes in Biology and Medicine: In vitro and in vivo Detection, Imaging and Drug Delivery

    PubMed Central

    Liu, Zhuang; Tabakman, Scott; Welsher, Kevin; Dai, Hongjie

    2010-01-01

    Carbon nanotubes exhibit many unique intrinsic physical and chemical properties and have been intensively explored for biological and biomedical applications in the past few years. In this comprehensive review, we summarize the main results from our and other groups in this field and clarify that surface functionalization is critical to the behavior of carbon nanotubes in biological systems. Ultrasensitive detection of biological species with carbon nanotubes can be realized after surface passivation to inhibit the non-specific binding of biomolecules on the hydrophobic nanotube surface. Electrical nanosensors based on nanotubes provide a label-free approach to biological detection. Surface-enhanced Raman spectroscopy of carbon nanotubes opens up a method of protein microarray with detection sensitivity down to 1 fmol/L. In vitro and in vivo toxicity studies reveal that highly water soluble and serum stable nanotubes are biocompatible, nontoxic, and potentially useful for biomedical applications. In vivo biodistributions vary with the functionalization and possibly also size of nanotubes, with a tendency to accumulate in the reticuloendothelial system (RES), including the liver and spleen, after intravenous administration. If well functionalized, nanotubes may be excreted mainly through the biliary pathway in feces. Carbon nanotube-based drug delivery has shown promise in various In vitro and in vivo experiments including delivery of small interfering RNA (siRNA), paclitaxel and doxorubicin. Moreover, single-walled carbon nanotubes with various interesting intrinsic optical properties have been used as novel photoluminescence, Raman, and photoacoustic contrast agents for imaging of cells and animals. Further multidisciplinary explorations in this field may bring new opportunities in the realm of biomedicine. PMID:20174481

  16. Carbon Nanotube Based Flexible Supercapacitors

    DTIC Science & Technology

    2011-04-01

    Carbon Nanotube Based Flexible Supercapacitors by Christopher M. Anton and Matthew H. Ervin ARL-TR-5522 April 2011...Carbon Nanotube Based Flexible Supercapacitors Christopher M. Anton and Matthew H. Ervin Sensors and Electron Devices Directorate, ARL...September 2010 4. TITLE AND SUBTITLE Carbon Nanotube Based Flexible Supercapacitors 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  17. Thermoplastic/Nanotube Composite Fibers

    NASA Astrophysics Data System (ADS)

    Haggenmueller, Reto; Fischer, John; Winey, Karen

    2000-03-01

    A combination of solvent casting and melt mixing methods are used to compound selected thermoplastics with single-wall carbon nanotubes. Subsequently, melt extrusion is used to form thermoplastic-nanotube composite fibers. The structural characteristics are investigated by electron microscopy and x-ray scattering methods. In addition the electrical, thermal and mechanical properties were measured. Correlations are sought between the viscoelastic properties of the compounded materials, the nanotube loading and elongation ratio after spinning, and the properties of the resultant fibers.

  18. Carbon Nanotubes for Space Applications

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya

    2000-01-01

    The potential of nanotube technology for NASA missions is significant and is properly recognized by NASA management. Ames has done much pioneering research in the last five years on carbon nanotube growth, characterization, atomic force microscopy, sensor development and computational nanotechnology. NASA Johnson Space Center has focused on laser ablation production of nanotubes and composites development. These in-house efforts, along with strategic collaboration with academia and industry, are geared towards meeting the agency's mission requirements. This viewgraph presentation (including an explanation for each slide) outlines the research focus for Ames nanotechnology, including details on carbon nanotubes' properties, applications, and synthesis.

  19. Fabricating Copper Nanotubes by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  20. Fabrication of enzyme-immobilized halloysite nanotubes for affinity enrichment of lipase inhibitors from complex mixtures.

    PubMed

    Wang, Haibo; Zhao, Xiaoping; Wang, Shufang; Tao, Shan; Ai, Ni; Wang, Yi

    2015-05-01

    Lipase is the key enzyme for catalyzing triglyceride hydrolysis in vivo, and lipase inhibitors have been used in the management of obesity. We present the first report on the use of lipase-adsorbed halloysite nanotubes as an efficient medium for the selective enrichment of lipase inhibitors from natural products. A simple and rapid approach was proposed to fabricate lipase-adsorbed nanotubes through electrostatic interaction. Results showed that more than 85% lipase was adsorbed into nanotubes in 90 min, and approximately 80% of the catalytic activity was maintained compared with free lipase. The specificity and reproducibility of the proposed approach were validated by screening a known lipase inhibitor (i.e., orlistat) from a mixture that contains active and inactive compounds. Moreover, we applied this approach with high performance liquid chromatography-mass spectrometry technique to screen lipase inhibitors from the Magnoliae cortex extract, a medicinal plant used for treating obesity. Two novel biphenyl-type natural lipase inhibitors magnotriol A and magnaldehyde B were identified, and their IC50 values were determined as 213.03 and 96.96 μM, respectively. The ligand-enzyme interactions of magnaldehyde B were further investigated by molecular docking. Our findings proved that enzyme-adsorbed nanotube could be used as a feasible and selective affinity medium for the rapid screening of enzyme inhibitors from complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Attachment of Single Multiwall WS2 Nanotubes and Single WO3-x Nanowhiskers to a Probe

    NASA Astrophysics Data System (ADS)

    Ashiri, I.; Gartsman, K.; Cohen, S. R.; Tenne, R.

    2003-10-01

    WS2 nanotubes were the first inorganic fullerene-like (IF) structures to be synthesized. Although the physical properties of IF were not fully studied it seems that the WS2 nanotubes can be suitable for applications in the nanoscale range. An approach toward nanofabrication is simulated in this study. High resolution scanning electron microscope equipped with micromanipulator was used to attach single multiwall WS2 nanotubes and single WO3-x nanowhiskers to a probe, which is an atomic force microscope (AFM) silicon tip in the present case. The imaging capabilities of this nanotube or nanowhisker tip were tested in the AFM. The WO3-x nanowhisker tip was found to be stable, but it has a low lateral resolution (100nm). The WS2 nanotube tips were found to be stable only when its length was smaller than 1 μm. The fabrication technique of WS2 nanotube tip and WO3-x nanowhisker tip was found to be controllable and reliable and it can probably be used to various applications as well as for preparation of single nanotubes samples for measurements, like mechanical or optical probes.

  2. Metallic Electrode: Semiconducting Nanotube Junction Model

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryon (Technical Monitor)

    2001-01-01

    A model is proposed for two observed current-voltage (I-V) patterns in an experiment with a scanning tunneling microscope tip and a carbon nanotube [Collins et al., Science 278, 100 ('97)]. We claim that there are two contact modes for a tip (metal) -nanotube semi conductor) junction depending whether the alignment of the metal and semiconductor band structure is (1) variable (vacuum-gap) or (2) fixed (touching) with V. With the tip grounded, the tunneling case in (1) would produce large dI/dV with V > 0, small dI/dV with V < 0, and I = 0 near V = 0 for an either n- or p-nanotube. However, the Schottky mechanism in (2) would result in forward current with V < 0 for an n-nanotube, while with V > 0 for an p-nanotube. The two observed I-V patterns are thus entirely explained by a tip-nanotube contact of the two types, where the nanotube must be n-type. We apply this picture to the source-drain I-V characteristics in a long nanotube-channel field-effect-transistor (Zhou et al., Appl. Phys. Lett. 76, 1597 ('00)], and show that two independent metal-semiconductor junctions connected in series are responsible for the observed behavior.

  3. EDITORIAL: Focus on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau, P Umek, K Hernadi, P Marcoux, B Lukic, Cs Mikó, M Milas, R Gaál and L Forró Transitional behaviour in the transformation from active end

  4. Environmental Electrometry with Luminescent Carbon Nanotubes.

    PubMed

    Noé, Jonathan C; Nutz, Manuel; Reschauer, Jonathan; Morell, Nicolas; Tsioutsios, Ioannis; Reserbat-Plantey, Antoine; Watanabe, Kenji; Taniguchi, Takashi; Bachtold, Adrian; Högele, Alexander

    2018-06-25

    We demonstrate that localized excitons in luminescent carbon nanotubes can be utilized to study electrostatic fluctuations in the nanotube environment with sensitivity down to the elementary charge. By monitoring the temporal evolution of the cryogenic photoluminescence from individual carbon nanotubes grown on silicon oxide and hexagonal boron nitride, we characterize the dynamics of charge trap defects for both dielectric supports. We find a one order of magnitude reduction in the photoluminescence spectral wandering for nanotubes on extended atomically flat terraces of hexagonal boron nitride. For nanotubes on hexagonal boron nitride with pronounced spectral fluctuations, our analysis suggests proximity to terrace ridges where charge fluctuators agglomerate to exhibit areal densities exceeding those of silicon oxide. Our results establish carbon nanotubes as sensitive probes of environmental charge fluctuations and highlight their potential for applications in electrometric nanodevices with all-optical readout.

  5. Purification of Carbon Nanotubes: Alternative Methods

    NASA Technical Reports Server (NTRS)

    Files, Bradley; Scott, Carl; Gorelik, Olga; Nikolaev, Pasha; Hulse, Lou; Arepalli, Sivaram

    2000-01-01

    Traditional carbon nanotube purification process involves nitric acid refluxing and cross flow filtration using surfactant TritonX. This is believed to result in damage to nanotubes and surfactant residue on nanotube surface. Alternative purification procedures involving solvent extraction, thermal zone refining and nitric acid refiuxing are used in the current study. The effect of duration and type of solvent to dissolve impurities including fullerenes and P ACs (polyaromatic compounds) are monitored by nuclear magnetic reasonance, high performance liquid chromatography, and thermogravimetric analysis. Thermal zone refining yielded sample areas rich in nanotubes as seen by scanning electric microscopy. Refluxing in boiling nitric acid seem to improve the nanotube content. Different procedural steps are needed to purify samples produced by laser process compared to arc process. These alternative methods of nanotube purification will be presented along with results from supporting analytical techniques.

  6. Boron Nitride Nanotubes-Reinforced Glass Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam; Hurst, Janet B.; Choi, Sung R.

    2005-01-01

    Boron nitride nanotubes of significant lengths were synthesized by reaction of boron with nitrogen. Barium calcium aluminosilicate glass composites reinforced with 4 weight percent of BN nanotubes were fabricated by hot pressing. Ambient-temperature flexure strength and fracture toughness of the glass-BN nanotube composites were determined. The strength and fracture toughness of the composite were higher by as much as 90 and 35 percent, respectively, than those of the unreinforced glass. Microscopic examination of the composite fracture surfaces showed pullout of the BN nanotubes. The preliminary results on the processing and improvement in mechanical properties of BN nanotube reinforced glass matrix composites are being reported here for the first time.

  7. Free vibration analysis of single-walled boron nitride nanotubes based on a computational mechanics framework

    NASA Astrophysics Data System (ADS)

    Yan, J. W.; Tong, L. H.; Xiang, Ping

    2017-12-01

    Free vibration behaviors of single-walled boron nitride nanotubes are investigated using a computational mechanics approach. Tersoff-Brenner potential is used to reflect atomic interaction between boron and nitrogen atoms. The higher-order Cauchy-Born rule is employed to establish the constitutive relationship for single-walled boron nitride nanotubes on the basis of higher-order gradient continuum theory. It bridges the gaps between the nanoscale lattice structures with a continuum body. A mesh-free modeling framework is constructed, using the moving Kriging interpolation which automatically satisfies the higher-order continuity, to implement numerical simulation in order to match the higher-order constitutive model. In comparison with conventional atomistic simulation methods, the established atomistic-continuum multi-scale approach possesses advantages in tackling atomic structures with high-accuracy and high-efficiency. Free vibration characteristics of single-walled boron nitride nanotubes with different boundary conditions, tube chiralities, lengths and radii are examined in case studies. In this research, it is pointed out that a critical radius exists for the evaluation of fundamental vibration frequencies of boron nitride nanotubes; opposite trends can be observed prior to and beyond the critical radius. Simulation results are presented and discussed.

  8. Macrokinetics of carbon nanotubes synthesis by the chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Rukhov, Artem; Dyachkova, Tatyana; Tugolukov, Evgeny; Besperstova, Galina

    2017-11-01

    A new approach to studying and developing basic processes which take place on the surface of a metal catalyst during the thermal decomposition of carbonaceous substances in the carbon nanotubes synthesis by the chemical vapor deposition method was proposed. In addition, an analysis was made of the interrelationships between these thermal, diffusion, hydrodynamic and other synthesis processes. A strong effect of the catalyst regeneration stage on the stage of nanotube formation has been shown. Based on the developed approach, a mathematical model was elaborated. Comparison of the calculation and the experiment carried out with the NiO-MgO catalyst at propane flow rate of 50 mL/min (standard conditions) and ethanol flow rate 0.3 mL/min (liq.) has revealed a discrepancy of less than 10%.

  9. Nanomanufacturing of 2D Transition Metal Dichalcogenide Materials Using Self-Assembled DNA Nanotubes.

    PubMed

    Choi, Jungwook; Chen, Haorong; Li, Feiran; Yang, Lingming; Kim, Steve S; Naik, Rajesh R; Ye, Peide D; Choi, Jong Hyun

    2015-11-04

    2D transition metal dichalcogenides (TMDCs) are nanomanufactured using a generalized strategy with self-assembled DNA nanotubes. DNA nanotubes of various lengths serve as lithographic etch masks for the dry etching of TMDCs. The nanostructured TMDCs are studied by atomic force microscopy, photoluminescence, and Raman spectroscopy. This parallel approach can be used to manufacture 2D TMDC nanostructures of arbitrary geometries with molecular-scale precision. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Boron nitride nanotubes and nanosheets.

    PubMed

    Golberg, Dmitri; Bando, Yoshio; Huang, Yang; Terao, Takeshi; Mitome, Masanori; Tang, Chengchun; Zhi, Chunyi

    2010-06-22

    Hexagonal boron nitride (h-BN) is a layered material with a graphite-like structure in which planar networks of BN hexagons are regularly stacked. As the structural analogue of a carbon nanotube (CNT), a BN nanotube (BNNT) was first predicted in 1994; since then, it has become one of the most intriguing non-carbon nanotubes. Compared with metallic or semiconducting CNTs, a BNNT is an electrical insulator with a band gap of ca. 5 eV, basically independent of tube geometry. In addition, BNNTs possess a high chemical stability, excellent mechanical properties, and high thermal conductivity. The same advantages are likely applicable to a graphene analogue-a monatomic layer of a hexagonal BN. Such unique properties make BN nanotubes and nanosheets a promising nanomaterial in a variety of potential fields such as optoelectronic nanodevices, functional composites, hydrogen accumulators, electrically insulating substrates perfectly matching the CNT, and graphene lattices. This review gives an introduction to the rich BN nanotube/nanosheet field, including the latest achievements in the synthesis, structural analyses, and property evaluations, and presents the purpose and significance of this direction in the light of the general nanotube/nanosheet developments.

  11. Thermodynamic Approach to Boron Nitride Nanotube Solubility and Dispersion

    NASA Technical Reports Server (NTRS)

    Tiano, A. L.; Gibbons, L.; Tsui, M.; Applin, S. I.; Silva, R.; Park, C.; Fay, C. C.

    2016-01-01

    Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(exp 1/2) for delta d, delta p, and delta h, respectively, with a calculated Hildebrand parameter of 21.8 MPa)exp 1/2).

  12. Thermodynamic approach to boron nitride nanotube solubility and dispersion.

    PubMed

    Tiano, A L; Gibbons, L; Tsui, M; Applin, S I; Silva, R; Park, C; Fay, C C

    2016-02-21

    Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(1/2) for δd, δp, and δh, respectively, with a calculated Hildebrand parameter of 21.8 MPa(1/2).

  13. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    de Sousa, Marcelo; Martinez, Diego Stéfani Teodoro; Alves, Oswaldo Luiz

    2016-06-01

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H2SO4 and HNO3 by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  14. Method of making carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei; Liu, Jun

    2006-03-14

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  15. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical bio-sensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  16. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Li, J.; Ye, Q.; Koehne, J.; Chen, H.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical biosensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  17. Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity

    NASA Astrophysics Data System (ADS)

    Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.

    2016-10-01

    Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.

  18. Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes.

    PubMed

    Wang, Chuan; Ryu, Koungmin; Badmaev, Alexander; Zhang, Jialu; Zhou, Chongwu

    2011-02-22

    Complementary metal-oxide semiconductor (CMOS) operation is very desirable for logic circuit applications as it offers rail-to-rail swing, larger noise margin, and small static power consumption. However, it remains to be a challenging task for nanotube-based devices. Here in this paper, we report our progress on metal contact engineering for n-type nanotube transistors and CMOS integrated circuits using aligned carbon nanotubes. By using Pd as source/drain contacts for p-type transistors, small work function metal Gd as source/drain contacts for n-type transistors, and evaporated SiO(2) as a passivation layer, we have achieved n-type transistor, PN diode, and integrated CMOS inverter with an air-stable operation. Compared with other nanotube n-doping techniques, such as potassium doping, PEI doping, hydrazine doping, etc., using low work function metal contacts for n-type nanotube devices is not only air stable but also integrated circuit fabrication compatible. Moreover, our aligned nanotube platform for CMOS integrated circuits shows significant advantage over the previously reported individual nanotube platforms with respect to scalability and reproducibility and suggests a practical and realistic approach for nanotube-based CMOS integrated circuit applications.

  19. High-Yield Synthesis and Optical Properties of Carbon Nanotube Porins

    DOE PAGES

    Tunuguntla, Ramya H.; Chen, Xi; Belliveau, Allison; ...

    2017-01-18

    Carbon nanotube porins (CNTPs) are a convenient membrane-based model system for studying nanofluidic transport that replicates a number of key structural features of biological membrane channels. We present a generalized approach for CNTP synthesis using sonochemistry-assisted segmenting of carbon nanotubes. Prolonged tip sonication in the presence of lipid molecules debundles and fragments long carbon nanotube aggregates into stable and water-soluble individual CNTPs with lengths in the range 5–20 nm. We discuss the main parameters that determine the efficiency and the yield of this process, describe the optimized conditions for high-yield CNTP synthesis, and demonstrate that this methodology can be adaptedmore » for synthesis of CNTPs of different diameters. We also present the optical properties of CNTPs and show that a combination of Raman and UV–vis–NIR spectroscopy can be used to monitor the quality of the CNTP synthesis. Altogether, CNTPs represent a versatile nanopore building block for creating higher-order functional biomimetic materials.« less

  20. Carbon Nanotube Based Molecular Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  1. Gallium-mediated growth of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pan, Zheng Wei; Dai, Sheng; Beach, David B.; Evans, Neal D.; Lowndes, Douglas H.

    2003-03-01

    Liquid gallium was used as a viable and effective solvent and template for high-yield growth of multiwall carbon nanotubes. The gallium-mediated nanotubes thus obtained differ morphologically from nanotubes obtained by using transition metals as catalysts. The nanotubes have a pin-like morphology, generally composed of an oval-shaped tip filled with liquid gallium and a tapered hollow body. The inner diameter of the tube is so large that the inner/outer diameter ratio is usually larger than 0.9. The tubes are naturally opened at both ends. These gallium-filled nanotubes may be used as a nanothermometer in the temperature range of 30 to 550 °C. This study opens an interesting route for carbon nanotube synthesis.

  2. Quantum fluctuations increase the self-diffusive motion of para-hydrogen in narrow carbon nanotubes.

    PubMed

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P; Furmaniak, Sylwester

    2011-05-28

    Quantum fluctuations significantly increase the self-diffusive motion of para-hydrogen adsorbed in narrow carbon nanotubes at 30 K comparing to its classical counterpart. Rigorous Feynman's path integral calculations reveal that self-diffusive motion of para-hydrogen in a narrow (6,6) carbon nanotube at 30 K and pore densities below ∼29 mmol cm(-3) is one order of magnitude faster than the classical counterpart. We find that the zero-point energy and tunneling significantly smoothed out the free energy landscape of para-hydrogen molecules adsorbed in a narrow (6,6) carbon nanotube. This promotes a delocalization of the confined para-hydrogen at 30 K (i.e., population of unclassical paths due to quantum effects). Contrary the self-diffusive motion of classical para-hydrogen molecules in a narrow (6,6) carbon nanotube at 30 K is very slow. This is because classical para-hydrogen molecules undergo highly correlated movement when their collision diameter approached the carbon nanotube size (i.e., anomalous diffusion in quasi-one dimensional pores). On the basis of current results we predict that narrow single-walled carbon nanotubes are promising nanoporous molecular sieves being able to separate para-hydrogen molecules from mixtures of classical particles at cryogenic temperatures. This journal is © the Owner Societies 2011

  3. Carbon Nanotubes: On the Origin of Helicity

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Avetik

    2015-03-01

    The mechanism of helicity formation of carbon nanotubes still remains elusive that hinders their applications. Current explanations mainly rely on the planar interrelationship between the structure of nanotube and corresponding facet of catalyst in 2D geometry that could amend the structure of grown carbon layer, specifically due to the epitaxial interaction. Yet, the structure of carbon nanotube and circumference of the rims assume involvement of more than one facet i.e. it is 3D problem. By aiming this problem we find that the nanotube nucleation is initiated by cap formation via evolving of graphene embryo across the adjacent facets of catalyst particle. As a result the graphene embryos incorporate in their hexagonic network various polygons to accommodate the curved 3D geometry that initiates cap formation following by elongation of the circumferential rims. Based on these results, also on the census of nanotube caps and the fact that given cap fit only one nanotube wall, we consider carbon cap responsible for the helicity of carbon nanotube. This understanding could provide new avenues towards engineering particles to explicitly accommodate certain helicities via exploitation of the angular distribution of catalyst adjacent facets. Our recent progresses in production of carbon nanotubes, nanotube reinforced composites and their potential applications also will be presented.

  4. The effect of dry shear aligning of nanotube thin films on the photovoltaic performance of carbon nanotube-silicon solar cells.

    PubMed

    Stolz, Benedikt W; Tune, Daniel D; Flavel, Benjamin S

    2016-01-01

    Recent results in the field of carbon nanotube-silicon solar cells have suggested that the best performance is obtained when the nanotube film provides good coverage of the silicon surface and when the nanotubes in the film are aligned parallel to the surface. The recently developed process of dry shear aligning - in which shear force is applied to the surface of carbon nanotube thin films in the dry state, has been shown to yield nanotube films that are very flat and in which the surface nanotubes are very well aligned in the direction of shear. It is thus reasonable to expect that nanotube films subjected to dry shear aligning should outperform otherwise identical films formed by other processes. In this work, the fabrication and characterisation of carbon nanotube-silicon solar cells using such films is reported, and the photovoltaic performance of devices produced with and without dry shear aligning is compared.

  5. Bandgap oscillation in quasiperiodic (BN)xCy nanotubes

    NASA Astrophysics Data System (ADS)

    Freitas, A.; Bezerra, C. G.; Azevedo, S.; Machado, L. D.; Pedreira, D. O.

    2016-12-01

    In the present contribution, we apply first-principles calculations to study the effects of quasiperiodic disorder on the physical properties of BN and C nanotubes. We take BN nanotubes (BNNTs) and C nanotubes (CNTs) as building blocks and construct quasiperiodic BNxCy nanotubes according to the Fibonacci sequence. We studied armchair and zigzag nanotubes of varying diameters. Our results demonstrate that the energy gap oscillates as a function of the n-generation index of the Fibonacci sequence. Moreover, we show that the choice of the BNNTs and CNTs may lead to a quasiperiodic BNxCy nanotube presenting an adjustable energy gap. We obtained a variety of quasiperiodic nanotubes with energy gaps ranging from 0.29 eV to 1.06 eV, which may be of interest for specific technological applications. Finally, it is also demonstrated that the specific heat of the quasiperiodic zigzag and armchair nanotubes presents an oscillatory behavior in the low temperature regime, and that this behavior depends on the curvature of the nanotube.

  6. Nanotube Production and Applications at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel; Files, Bradley; Arepalli, Sivaram; Scott, Carl; Holmes, William; Nicholson, Leonard S. (Technical Monitor)

    2000-01-01

    Promise of applications of carbon nanotubes has led to an intense effort at NASA/JSC, especially in the area of nanotube composites. Using the extraordinary mechanical strength of nanotubes, NASA hopes to design this revolutionary lightweight material for use in aerospace applications. Current research focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical applications. In pursuit of these goals, we have set up both laser and arc production processes for nanotubes. An in-depth diagnostic study of the plasma plume in front of the laser target has been studied to try to determine nanotube growth mechanisms. Complementary studies of characterization of nanotube product have added to knowledge of growth conditions. Results of our preliminary experiments in incorporating nanotubes into composites will be presented. Morphology and mechanical properties of the nanotubes composites will be discussed.

  7. Process for derivatizing carbon nanotubes with diazonium species

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  8. Synthesis of Carbon Nanotubes Using Sol Gel Route

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Tarek

    2002-12-01

    Since 1990, carbon nanotubes were discovered and they have been the object of intense scientific study ever since. A carbon nanotube is a honeycomb lattice rolled into a cylinder. The diameter of a carbon nanotube is of nanometer size and the length is in the range of micrometer. Many of the extraordinary properties attributed to nanotubes, such as tensile strength and thermal stability, have inspired predictions of microscopic robots, dent-resistant car bodies and earthquake-resistant buildings. The first products to use nanotubes were electrical. Some General Motors cars already include plastic parts to which nanotubes were added; such plastic can be electrified during painting so that the paint will stick more readily. Two nanotube-based lighting and display products are well on their way to market. In the long term, perhaps the most valuable applications will take further advantage of nanotubes' unique electronic properties. Carbon nanotubes can in principle play the same role as silicon does in electronic circuits, but at a molecular scale where silicon and other standard semiconductors cease to work. There are several routes to synthesize carbon nanotubes; laser vaporization, carbon arc and vapor growth. We have applied a different route using sol gel chemistry to obtain carbon nanotubes. This work is patent-pending.

  9. Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.

    2010-01-01

    new technique for carbon nanotube oxidation was developed based upon the photo-oxidation of organic compounds. The resulting method is more benign than conventional oxidation approaches and produces single-wall carbon nanotubes (SWCNTs) with higher levels of oxidation. In this procedure, an oxygen saturated suspension of SWNTs in a suitable solvent containing a singlet oxygen sensitizer, such as Rose Bengal, is irradiated with ultraviolet light. The resulting oxidized tubes are recovered by filtering the suspension, followed by washing to remove any adsorbed solvent and sensitizer, and drying in a vacuum oven. Chemical analysis by FT-infrared and x-ray photoelectron spectroscopy revealed that the oxygen content of the photo-oxidized SWCNT was 11.3 atomic % compared to 6.7 atomic % for SWCNT that had been oxidized by standard treatment in refluxing acid. The photo-oxidized SWCNT produced by this method can be used directly in various polymer matrixes, or can be further modified by chemical reactions at the oxygen functional groups and then used as additives. This method may also be suitable for use in oxidation of multiwall carbon nanotubes and graphenes.

  10. Halloysite clay nanotubes for controlled release of protective agents.

    PubMed

    Lvov, Yuri M; Shchukin, Dmitry G; Möhwald, Helmuth; Price, Ronald R

    2008-05-01

    Halloysite aluminosilicate nanotubes with a 15 nm lumen, 50 nm external diameter, and length of 800 +/- 300 nm have been developed as an entrapment system for loading, storage, and controlled release of anticorrosion agents and biocides. Fundamental research to enable the control of release rates from hours to months is being undertaken. By variation of internal fluidic properties, the formation of nanoshells over the nanotubes and by creation of smart caps at the tube ends it is possible to develop further means of controlling the rate of release. Anticorrosive halloysite coatings are in development and a self-healing approach has been developed for repair mechanisms through response activation to external impacts. In this Perspective, applications of halloysite as nanometer-scale containers are discussed, including the use of halloysite tubes as drug releasing agents, as biomimetic reaction vessels, and as additives in biocide and protective coatings. Halloysite nanotubes are available in thousands of tons, and remain sophisticated and novel natural nanomaterials which can be used for the loading of agents for metal and plastic anticorrosion and biocide protection.

  11. Vibrational Modes of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Eklund, Peter; Bandow, Shunji

    1996-03-01

    We report results of vibrational spectroscopic studies of single and multiwall carbon nanotubes generated by carbon arc discharges. The carbonaceous material obtained is processed using surfactants and centrifugation to increase the concentration of nanotubes in the sample. Transmission and high resolution scanning electron microscopy (TEM and HRSEM) were used to observe the progress in the sample purification. Raman and IR spectra were collected at various stages as well. In this way, we have been able to separate the contributions to the Raman and IR spectra from carbon materials other than the nanotubes (i.e., carbon nanospheres, amorphous carbon ). The results of the Raman measurements on single wall and multiwall nanotubes are compared to previous experimental work, and the IR modes of single wall nanotubes are presented for the first time. The experimental results will be compared to theory. This work done in collaboration with Dr. Shunji Bandow, Institute for Molecular Science, Myodaiji, Okazaki, 444, Japan

  12. Deconvoluting hepatic processing of carbon nanotubes

    DOE PAGES

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; ...

    2016-07-29

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearancemore » of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. Lastly, the pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.« less

  13. Deconvoluting hepatic processing of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J. Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L. J.; Ulmert, Hans David S.; Brea, Elliott J.; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A.; McDevitt, Michael R.

    2016-07-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.

  14. Deconvoluting hepatic processing of carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearancemore » of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. Lastly, the pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.« less

  15. Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine.

    PubMed

    Samadishadlou, Mehrdad; Farshbaf, Masoud; Annabi, Nasim; Kavetskyy, Taras; Khalilov, Rovshan; Saghfi, Siamak; Akbarzadeh, Abolfazl; Mousavi, Sepideh

    2017-10-18

    Magnetic carbon nanotubes (MCNTs) have been widely studied for their potential applications in medicine, diagnosis, cell biology, analytical chemistry, and environmental technology. Introduction of MCNTs paved the way for the emergence of new approaches in nanobiotechnology and biomedicine as a result of their multifarious properties embedded within either the carbon nanotubes (CNTs) or magnetic parts. Numerous preparation techniques exists for functionalizing CNTs with magnetic nanoparticles, and these versatile strategies lay the ground for the generation of novel and versatile systems which are applicable to many industries and biological areas. Here, we review and discuss the recent papers dealing with MCNTs and their application in biomedical and industrial fields.

  16. DNA Nanotubes for NMR Structure Determination of Membrane Proteins

    PubMed Central

    Bellot, Gaëtan; McClintock, Mark A.; Chou, James J; Shih, William M.

    2013-01-01

    Structure determination of integral membrane proteins by solution NMR represents one of the most important challenges of structural biology. A Residual-Dipolar-Coupling-based refinement approach can be used to solve the structure of membrane proteins up to 40 kDa in size, however, a weak-alignment medium that is detergent-resistant is required. Previously, availability of media suitable for weak alignment of membrane proteins was severely limited. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400nm-long six-helix bundles each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, towards collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes via counter ions and small DNA binding molecules. This detergent-resistant liquid-crystal media offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility, and structural programmability. Production of sufficient nanotubes for 4–5 NMR experiments can be completed in one week by a single individual. PMID:23518667

  17. Liquid crystal cells with built-in CdSe nanotubes for chromogenic smart emission devices.

    PubMed

    Lin, Tsung Ju; Chen, Chin-Chang; Cheng, Soofin; Chen, Yang Fang

    2008-01-21

    A simple and general approach for controlling optical anisotropy of nanostructured semiconductors is reported. Our design involves the fabrication of liquid crystal devices with built-in semiconductor nanotubes. Quite interestingly, it is found that semiconductor nanotubes can be well aligned along the orientation of liquid crystals molecules automatically, resulting in a very large emission anisotropy with the degree of polarization up to 72%. This intriguing result manifests a way to obtain well aligned semiconductor nanotubes and the emission anisotropy can be easily manipulated by an external bias. The ability to well control the emission anisotropy should open up new opportunities for nanostructured semiconductors, including optical filters, polarized light emitting diodes, flat panel displays, and many other chromogenic smart devices.

  18. Analysis of Carbon Nanotube Field-Effect-Transistors (FETs)

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    1999-01-01

    This five page presentation is grouped into 11 numbered viewgraphs, most of which contain one or more diagrams. Some of the diagrams are accompanied by captions, including: 2) Nanotube FET by Delft, IBM; 3) Nanotube FET/Standard MOSFET; 5) Saturation with carrier-carrier; 7) Electronic properties of carbon nanotube; 8) Theoretical nanotube FET characteristics; 11) Summary: Delft and IBM nanotube FET analysis.

  19. Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents

    NASA Astrophysics Data System (ADS)

    Li, Ming; Brant, Jonathan A.

    2018-02-01

    Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.

  20. Nanotubes from Inorganic Materials

    NASA Astrophysics Data System (ADS)

    Tenne, Reshef; Zettl, Alex K.

    The inorganic analogs of carbon fullerenes and nanotubes, like MoS2 and BN, are reviewed. It is argued that nanoparticles of 2D layered compounds are inherently unstable in the planar configuration and prefer to form closed cage structures. The progress in the synthesis of these nanomaterials, and, in particular, the large-scale synthesis of BN, WS2 and V2O5 nanotubes, are described. Some of the electronic, optical and mechanical properties of these nanostructures are reviewed. The red-shift of the energy gap with shrinking nanotube diameter is discussed as well as the suggestion that zigzag nanotubes exhibit a direct gap rather than an indirect gap, as is prevalent in many of the bulk 2D materials. Some potential applications of these nanomaterials are presented as well, most importantly the superior tribological properties of WS2 and MoS2 nested fullerene-like structures (onions).

  1. Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas.

    PubMed

    Volotskova, O; Levchenko, I; Shashurin, A; Raitses, Y; Ostrikov, K; Keidar, M

    2010-10-01

    The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.

  2. Method for producing carbon nanotubes

    DOEpatents

    Phillips, Jonathan [Santa Fe, NM; Perry, William L [Jemez Springs, NM; Chen, Chun-Ku [Albuquerque, NM

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  3. Carbon Nanotube Tower-Based Supercapacitor

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  4. Preparation and properties of single-walled nanotubes filled with inorganic compounds

    NASA Astrophysics Data System (ADS)

    Eliseev, Andrei A.; Kharlamova, M. V.; Chernysheva, M. V.; Lukashin, Alexey V.; Tretyakov, Yuri D.; Kumskov, A. S.; Kiselev, N. A.

    2009-09-01

    The state-of-the-art methods for filling single-walled carbon nanotubes (SWNTs) are analyzed systematically. In situ and ex situ approaches for filling SWNTs are addressed. They are based on both intercalation of inorganic substances from the gas phase, solution or melts inside SWNTs and the formation of nanocrystals inside the channels as a result of chemical reactions. A comparative evaluation of these methods is performed, and major requirements for successful formation of '1D-crystal@SWNT' nanocomposites are formulated. The functional properties of the intercalated single-walled nanotubes and their possible applications in modern nanotechnologies are discussed.

  5. Nanoscale welding of multi-walled carbon nanotubes by 1064 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Yuan, Yanping; Liu, Zhi; Zhang, Kaihu; Han, Weina; Chen, Jimin

    2018-07-01

    This study proposes an efficient approach which uses 1064 nm continuous fiber laser to achieve nanoscale welding of crossed multi-walled carbon nanotubes (MWCNTs). By changing the irradiation time, different quality of nanoscale welding is obtained. The morphology changes are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The experiments demonstrate that better quality of MWCNTs nanoscale welding after 3 s irradiation can be obtained. It is found that new graphene layers between crossed nanotubes induced by laser make the nanoscale welding achieved due to the absorption of laser energy.

  6. Synthesis, characterisation and applications of coiled carbon nanotubes.

    PubMed

    Hanus, Monica J; Harris, Andrew T

    2010-04-01

    Coiled carbon nanotubes are helical carbon structures formed when heptagonal and pentagonal rings are inserted into the hexagonal backbone of a 'straight' nanotube. Coiled carbon nanotubes have been reported with both regular and irregular helical structures. In this work the structure, growth mechanism(s), synthesis, properties and potential applications of coiled carbon nanotubes are reviewed. Published data suggests that coiled carbon nanotube synthesis occurs due to nonuniform extrusion of carbon from a catalyst surface. To date, coiled carbon nanotubes have been synthesised using catalyst modification techniques including: (i) the addition of S or P containing compounds during synthesis; (ii) the use of binary or ternary metal catalysts; (iii) the use of microwaves to create a local temperature gradient around individual catalyst particles and; (iv) the use of pH control during catalyst preparation. In most instances coiled carbon nanotubes are produced as a by-product; high yield and/or large-scale synthesis of coiled carbon nanotubes remains problematic. The qualitative analysis of coiled carbon nanotubes is currently hindered by the absence of specific characterisation data in the literature, e.g., oxidation profiles measured by thermogravimetric analysis and Raman spectra of pure coiled carbon nanotube samples.

  7. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.

    PubMed

    Fu, Qiang; Liu, Jie

    2005-07-21

    A method to fabricate integrated single-walled carbon nanotube/microfluidic devices was developed. This simple process could be used to directly prepare nanotube thin film transistors within the microfluidic channel and to register SWNT devices with the microfludic channel without the need of an additional alignment step. The microfluidic device was designed to have several inlets that deliver multiple liquid flows to a single main channel. The location and width of each flow in the main channel could be controlled by the relative flow rates. This capability enabled us to study the effect of the location and the coverage area of the liquid flow that contained charged molecules on the conduction of the nanotube devices, providing important information on the sensing mechanism of carbon nanotube sensors. The results showed that in a sensor based on a nanotube thin film field effect transistor, the sensing signal came from target molecules absorbed on or around the nanotubes. The effect from adsorption on metal electrodes was weak.

  8. Method for separating single-wall carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Hauge, Robert H. (Inventor); Kittrell, W. Carter (Inventor); Sivarajan, Ramesh (Inventor); Bachilo, Sergei M. (Inventor); Weisman, R. Bruce (Inventor); Smalley, Richard E. (Inventor); Strano, Michael S. (Inventor)

    2006-01-01

    The invention relates to a process for sorting and separating a mixture of (n, m) type single-wall carbon nanotubes according to (n, m) type. A mixture of (n, m) type single-wall carbon nanotubes is suspended such that the single-wall carbon nanotubes are individually dispersed. The nanotube suspension can be done in a surfactant-water solution and the surfactant surrounding the nanotubes keeps the nanotube isolated and from aggregating with other nanotubes. The nanotube suspension is acidified to protonate a fraction of the nanotubes. An electric field is applied and the protonated nanotubes migrate in the electric fields at different rates dependent on their (n, m) type. Fractions of nanotubes are collected at different fractionation times. The process of protonation, applying an electric field, and fractionation is repeated at increasingly higher pH to separated the (n, m) nanotube mixture into individual (n, m) nanotube fractions. The separation enables new electronic devices requiring selected (n, m) nanotube types.

  9. Long conducting polymer nanonecklaces with a `beads-on-a-string' morphology: DNA nanotube-template synthesis and electrical properties

    NASA Astrophysics Data System (ADS)

    Chen, Guofang; Mao, Chengde

    2016-05-01

    Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties.Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01603k

  10. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures.

    PubMed

    Pauluhn, Jürgen

    2010-01-01

    Wistar rats were nose-only exposed to multiwalled carbon nanotubes (MWCNT, Baytubes) in a subchronic 13-week inhalation study. The focus of study was on respiratory tract and systemic toxicity, including analysis of MWCNT biokinetics in the lungs and lung-associated lymph nodes (LALNs). The time course and concentration dependence of pulmonary effects were examined by bronchoalveolar lavage (BAL) and histopathology up to 6 months postexposure. Particular emphasis was directed to the comparative characterization of MWCNT structures prior to and after micronization and dry powder dispersion into inhalation chambers. These determinations were complemented by additional analyses in digested BAL cells. Animals were exposed on 6 h/day, 5 days per week for 13 consecutive weeks to 0, 0.1, 0.4, 1.5, and 6 mg/m(3). The subchronic exposure to respirable solid aerosols of MWCNT was tolerated without effects suggestive of systemic toxicity. Kinetic analyses demonstrated a markedly delayed clearance of MWCNT from lungs at overload conditions. Translocation into LALNs occurred at 1.5 and 6 mg/m(3) and required at least 13 weeks of study to become detectable. At these exposure levels, the lung and LALN weights were significantly increased. Sustained elevations in BAL polymorphonuclear neutrophils and soluble collagen occurred at these concentrations with borderline effects at 0.4 mg/m(3). Histopathology revealed principal exposure-related lesions at 0.4 mg/m(3) and above in the upper respiratory tract (goblet cell hyper- and/or metaplasia, eosinophilic globules, and focal turbinate remodeling) and the lower respiratory tract (inflammatory changes in the bronchioloalveolar region and increased interstitial collagen staining). Granulomatous changes and a time-dependent increase of a bronchioloalveolar hyperplasia occurred at 6 mg/m(3). All end points examined were unremarkable at 0.1 mg/m(3) (no-observed-adverse-effect-level). In summary, this study demonstrates that the induced

  11. Wrinkling and folding of nanotube-polymer bilayers

    NASA Astrophysics Data System (ADS)

    Semler, Matthew R.; Harris, John M.; Hobbie, Erik K.

    2014-07-01

    The influence of a polymer capping layer on the deformation of purified single-wall carbon nanotube (SWCNT) networks is analyzed through the wrinkling of compressed SWCNT-polymer bilayers on polydimethylsiloxane. The films exhibit both wrinkling and folding under compression and we extract the elastoplastic response using conventional two-plate buckling schemes. The formation of a diffuse interpenetrating nanotube-polymer interface has a dramatic effect on the nanotube layer modulus for both metallic and semiconducting species. In contrast to the usual percolation exhibited by the pure SWCNT films, the capped films show a crossover from "composite" behavior (the modulus of the SWCNT film is enhanced by the polymer) to "plasticized" behavior (the modulus of the SWCNT film is reduced by the polymer) as the SWCNT film thickness increases. For almost all thicknesses, however, the polymer enhances the yield strain of the nanotube network. Conductivity measurements on identical films suggest that the polymer has a modest effect on charge transport, which we interpret as a strain-induced polymer penetration of interfacial nanotube contacts. We use scaling, Flory-Huggins theory, and independently determined nanotube-nanotube and nanotube-polymer Hamaker constants to model the response.

  12. Erratum: Correction to: Rapid and controllable perforation of carbon nanotubes by microwave radiation

    NASA Astrophysics Data System (ADS)

    Ojaghi, Neda; Mokhtarifar, Maryam; Sabaghian, Zahra; Arab, Hamed; Maghrebi, Morteza; Baniadam, Majid

    2018-06-01

    This study presents a new controlled approach to deep perforation of millimeter-long carbon nanotube arrays (CNTAs) by fast oxidative cutting. The approach is based on decorating CNTAs with silver (Ag) nanoparticles, followed by heating Ag-decorated CNTAs with microwave radiation (2.48 GHz, 300 W).

  13. Carbon nanotube coatings as chemical absorbers

    DOEpatents

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  14. Membrane-targeted self-assembling cyclic peptide nanotubes.

    PubMed

    Rodríguez-Vázquez, Nuria; Ozores, H Lionel; Guerra, Arcadio; González-Freire, Eva; Fuertes, Alberto; Panciera, Michele; Priegue, Juan M; Outeiral, Juan; Montenegro, Javier; Garcia-Fandino, Rebeca; Amorin, Manuel; Granja, Juan R

    2014-01-01

    Peptide nanotubes are novel supramolecular nanobiomaterials that have a tubular structure. The stacking of cyclic components is one of the most promising strategies amongst the methods described in recent years for the preparation of nanotubes. This strategy allows precise control of the nanotube surface properties and the dimensions of the tube diameter. In addition, the incorporation of 3- aminocycloalkanecarboxylic acid residues in the nanotube-forming peptides allows control of the internal properties of the supramolecular tube. The research aimed at the application of membrane-interacting self-assembled cyclic peptide nanotubes (SCPNs) is summarized in this review. The cyclic peptides are designed to interact with phospholipid bilayers to induce nanotube formation. The properties and orientation of the nanotube can be tuned by tailoring the peptide sequence. Hydrophobic peptides form transmembrane pores with a hydrophilic orifice, the nature of which has been exploited to transport ions and small molecules efficiently. These synthetic ion channels are selective for alkali metal ions (Na(+), K(+) or Cs(+)) over divalent cations (Ca(2+)) or anions (Cl(-)). Unfortunately, selectivity was not achieved within the series of alkali metal ions, for which ion transport rates followed the diffusion rates in water. Amphipathic peptides form nanotubes that lie parallel to the membrane. Interestingly, nanotube formation takes place preferentially on the surface of bacterial membranes, thus making these materials suitable for the development of new antimicrobial agents.

  15. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    PubMed Central

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M.; Gambhir, Sanjeev; Wallace, Gordon G.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g−1, far exceeding spider dragline silk (165 J g−1) and Kevlar (78 J g−1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs. PMID:22337128

  16. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes.

    PubMed

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M; Gambhir, Sanjeev; Wallace, Gordon G; Kozlov, Mikhail E; Baughman, Ray H; Kim, Seon Jeong

    2012-01-31

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g(-1), far exceeding spider dragline silk (165 J g(-1)) and Kevlar (78 J g(-1)). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  17. Gears Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  18. A three-dimensional microelectrode array composed of vertically aligned ultra-dense carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Nick, C.; Yadav, S.; Joshi, R.; Schneider, J. J.; Thielemann, C.

    2015-07-01

    Electrodes based on carbon nanotubes are a promising approach to manufacture highly sensitive sensors with a low limit of signal detection and a high signal-to-noise ratio. This is achieved by dramatically increasing the electrochemical active surface area without increasing the overall geometrical dimensions. Typically, carbon nanotube electrodes are nearly planar and composed of randomly distributed carbon nanotube networks having a limited surface gain for a specific geometrical surface area. To overcome this limitation, we have introduced vertically aligned carbon nanotube (VACNT) networks as electrodes, which are arranged in a microelectrode pattern of 60 single electrodes. Each microelectrode features a very high aspect ratio of more than 300 and thus a dramatically increased surface area. These microelectrodes composed of VACNT networks display dramatically decreased impedance over the entire frequency range compared to planar microelectrodes caused by the enormous capacity increase. This is experimentally verified by electrochemical impedance spectroscopy and cyclic voltammetry.

  19. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array

    NASA Astrophysics Data System (ADS)

    Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun

    2012-02-01

    A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies.A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11532h

  20. High-resolution Raman microscopy of curled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ko, Hyunhyub; Pikus, Yuri; Jiang, Chaoyang; Jauss, Andrea; Hollricher, Olaf; Tsukruk, Vladimir V.

    2004-09-01

    Patterned carbon nanotube assemblies with bent nanotube bundles were investigated with combined atomic force microscopy and confocal Raman imaging spectroscopy to identify conditions of carbon nanotubes in the bent state. We showed that the tangential G mode on Raman spectra systematically shifts downward upon nanotube bending as was predicted earlier. This lower frequency shift is attributed to the tensile stress, which results in the loosening of C -C bonds in the outer nanotube walls.

  1. Formation of Carbon Nanotubes in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2001-01-01

    Even though nanotube science has become one of the worlds most rapidly advancing areas of research, very little is known about the processes involved in nanotube synthesis. To study the formation of carbon nanotubes in an environment unhindered by the buoyancy induced flows generated by the high temperatures necessary to vaporize carbon and grow nanotubes, we have designed a miniature carbon arc apparatus that can produce carbon nanotubes under microgravity conditions. During the first phase of this project, we designed, built, and successfully tested the mini carbon arc in both 1g and 2.2 sec drop tower microgravity conditions. We have demonstrated that microgravity can eliminate the strong convective flows from the carbon arc and we have successfully produced single-walled carbon nanotubes in microgravity. We believe that microgravity processing will allow us to better understand the nanotube formation process and eventually allow us to grow nanotubes that are superior to ground-based production.

  2. Modeling Ballistic Current Flow in Carbon Nanotube Wires

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Experiments have shown carbon nanotubes (CNT) to be almost perfect conductors at small applied biases. The features of the CNT band structure, large velocity of the crossing subbands and the small number of modes that an electron close to the band center / Fermi energy can scatter into, are the reasons for the near perfect small bias conductance. We show that the CNT band structure does not help at large applied biases - electrons injected into the non crossing subbands can either be Bragg reflected or undergo Zener-type tunneling. This limits the current carrying capacity of CNT. We point out that the current carrying capacity of semiconductor quantum wires in the ballistic limit is different, owing to its band structure. The second aspect addressed is the relationship of nanotube chirality in determining the physics of metal-nanotube coupling. We show that a metallic-zigzag nanotube couples better than an armchair nanotube to a metal contact. This arises because in the case of armchair nanotubes, while the pi band couples well, the pi* band does not couple well to the metal. In the case of zigzag nanotube both crossing modes couple reasonably well to the metal. Many factors such as the role of curvature, strain and defects will play a role in determining the suitability of nanotubes as nanowires. From the limited view point of metal-nanotube coupling, we feel that metallic-zigzag nanotubes are preferable to armchair nanotubes.

  3. Crystallization of TiO2 Nanotubes by In Situ Heating TEM

    PubMed Central

    Casu, Alberto; Lamberti, Andrea

    2018-01-01

    The thermally-induced crystallization of anodically grown TiO2 amorphous nanotubes has been studied so far under ambient pressure conditions by techniques such as differential scanning calorimetry and in situ X-ray diffraction, then looking at the overall response of several thousands of nanotubes in a carpet arrangement. Here we report a study of this phenomenon based on an in situ transmission electron microscopy approach that uses a twofold strategy. First, a group of some tens of TiO2 amorphous nanotubes was heated looking at their electron diffraction pattern change versus temperature, in order to determine both the initial temperature of crystallization and the corresponding crystalline phases. Second, the experiment was repeated on groups of few nanotubes, imaging their structural evolution in the direct space by spherical aberration-corrected high resolution transmission electron microscopy. These studies showed that, differently from what happens under ambient pressure conditions, under the microscope’s high vacuum (p < 10−5 Pa) the crystallization of TiO2 amorphous nanotubes starts from local small seeds of rutile and brookite, which then grow up with the increasing temperature. Besides, the crystallization started at different temperatures, namely 450 and 380 °C, when the in situ heating was performed irradiating the sample with electron beam energy of 120 or 300 keV, respectively. This difference is due to atomic knock-on effects induced by the electron beam with diverse energy. PMID:29342894

  4. EDITORIAL: Focus on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents <;A article="1367-2630/5/1/117">Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau

  5. Control of the Diameter and Chiral Angle Distributions during Production of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel

    2009-01-01

    Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.) Especially fascinating is the possibility of quantum conductors that require metallic armchair nanotubes. However, as produced SWCNT samples are polydisperse, with many (n,m) types present and typical approx.1:2 metal/semiconductor ratio. Nanotube nucleation models predict that armchair nuclei are energetically preferential due to formation of partial triple bonds along the armchair edge. However, nuclei can not reach any meaningful thermal equilibrium in a rapidly expanding and cooling plume of carbon clusters, leading to polydispersity. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The carbon vapor plume cooling rate was either increased by change in the oven temperature (expansion into colder gas), or decreased via "warm-up" with a laser pulse at the moment of nucleation. The effect of oven temperature and "warm-up" on nanotube type population was studied via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that reduced temperatures leads to smaller average diameters, progressively narrower diameter distributions, and some preference toward armchair structures. "Warm-up" shifts nanotube population towards arm-chair structures as well, but the effect is small. Possible improvement of the "warm-up" approach to produce armchair SWCNTs will be discussed. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) population. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.

  6. Process for separating metallic from semiconducting single-walled carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor)

    2008-01-01

    A method for separating semiconducting single-walled carbon nanotubes from metallic single-walled carbon nanotubes is disclosed. The method utilizes separation agents that preferentially associate with semiconducting nanotubes due to the electrical nature of the nanotubes. The separation agents are those that have a planar orientation, .pi.-electrons available for association with the surface of the nanotubes, and also include a soluble portion of the molecule. Following preferential association of the separation agent with the semiconducting nanotubes, the agent/nanotubes complex is soluble and can be solubilized with the solution enriched in semiconducting nanotubes while the residual solid is enriched in metallic nanotubes.

  7. Tunable multiwalled nanotube resonator

    DOEpatents

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  8. Tunable multiwalled nanotube resonator

    DOEpatents

    Zettl, Alex K [Kensington, CA; Jensen, Kenneth J [Berkeley, CA; Girit, Caglar [Albany, CA; Mickelson, William E [San Francisco, CA; Grossman, Jeffrey C [Berkeley, CA

    2011-03-29

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  9. Single photon generation through exciton-exciton annihilation in air-suspended carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ishii, Akihiro; Uda, Takushi; Kato, Yuichiro K.

    Carbon nanotubes have great potential for single photon sources as they have stable exciton states even at room temperature and their emission wavelengths cover the telecommunication bands. In recent years, single photon emission from carbon nanotubes has been achieved by creating localized states of excitons. In contrast to such an approach, here we utilize mobile excitons and show that single photons can be generated in air-suspended carbon nanotubes, where exciton diffusion length is as long as several hundred nanometers and exciton-exciton annihilation is efficient. We perform photoluminescence microscopy on as-grown air-suspended carbon nanotubes in order to determine their chirality and suspended length. Photon correlation measurements are performed on nanotube emission at room temperature using a Hanbury-Brown-Twiss setup with InGaAs/InP single photon detectors. We observe antibunching with a clear excitation power dependence, where we obtain g (2) (0) value less than 0.5 at low excitation powers, indicating single photon generation. We show such g (2) (0) data with different chiralities and suspended lengths, and the effects of exciton diffusion on single photon generation processes are discussed. Work supported by KAKENHI (26610080, 16H05962), The Canon Foundation, and MEXT (Photon Frontier Network Program, Nanotechnology Platform). A.I. is supported by MERIT and JSPS Research Fellowship, and T.U. is supported by ALPS.

  10. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  11. Thermal degradation of TiO2 nanotubes on titanium

    NASA Astrophysics Data System (ADS)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2014-10-01

    The objective of this research was to study thermal degradation behavior of TiO2 nanotubes on titanium (Ti). TiO2 nanotubes were grown via anodization method on commercially pure Ti (Cp-Ti) discs using two different electrolytes, 1 vol. % HF in deionized (DI) water and 1 vol. % HF + 0.5 wt. % NH4F + 10 vol. % DI water in ethylene glycol, to obtain nanotubes with two different lengths, 300 nm and 950 nm keeping the nanotube diameter constant at 100 ± 20 nm. As grown TiO2 nanotubes were subjected to heat treatment to understand thermal degradation as a function of both temperature and hold time. The signs of degradation were observed mainly when amorphous nanotubes started to crystallize, however the crystallization temperature varied based on TiO2 nanotubes length and anodizing condition. Overall, 300 nm nanotubes were thermally stable at least up to 400 °C for 12 h, while the 950 nm long nanotubes show signs of degradation from 400 °C for 6 h only. Clearly, length of nanotubes, heat treatment temperature as well as hold times show influence toward degradation kinetics of TiO2 nanotubes on titanium.

  12. Carbon nanotube heat-exchange systems

    DOEpatents

    Hendricks, Terry Joseph; Heben, Michael J.

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  13. Homogenization Models for Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Muc, A.; Jamróz, M.

    2004-03-01

    Two homogenization models for evaluating Young's modulus of nanocomposites reinforced with single-walled and multi-walled carbon nanotubes are presented. The first model is based on a physical description taking into account the interatomic interaction and nanotube geometry. The elementary cell, here a nanotube with a surrounding resin layer, is treated as a homogeneous body — a material continuum. The second model, similar to a phenomenological engineering one, is obtained by combining the law of mixture with the Cox mechanical model. This model describes the stress distribution along stretched short fibers surrounded by a resin matrix. The similarities between composite materials reinforced with short fibers and nanotubes are elucidated. The results obtained are compared with those for classical microcomposites to demonstrate the advantages and disadvantages of both the composite materials.

  14. Massive radius-dependent flow slippage in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-09-01

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter.

  15. Massive radius-dependent flow slippage in carbon nanotubes.

    PubMed

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-09-08

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter.

  16. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.

    PubMed

    Pugliese, P; Conde, M M; Rovere, M; Gallo, P

    2017-11-16

    A very recent experimental paper importantly and unexpectedly showed that water in carbon nanotubes is already in the solid ordered phase at the temperature where bulk water boils. The water models used so far in literature for molecular dynamics simulations in carbon nanotubes show freezing temperatures lower than the experiments. We present here results from molecular dynamics simulations of water inside single walled carbon nanotubes using an extremely realistic model for both liquid and icy water, the TIP4P/ICE. The water behavior inside nanotubes of different diameters has been studied upon cooling along the isobars at ambient pressure starting from temperatures where water is in a liquid state. We studied the liquid/solid transition, and we observed freezing temperatures higher than in bulk water and that depend on the diameter of the nanotube. The maximum freezing temperature found is 390 K, which is in remarkable agreement with the recent experimental measurements. We have also analyzed the ice structure called "ice nanotube" that water forms inside the single walled carbon nanotubes when it freezes. The ice forms observed are in agreement with previous results obtained with different water models. A novel finding, a partial proton ordering, is evidenced in our ice nanotubes at finite temperature.

  17. Conductance Oscillations in Squashed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Mehrez, H.; Anantram, M. P.; Svizhenko, A.

    2003-01-01

    A combination of molecular dynamics and electrical conductance calculations are used to probe the electromechanical properties of squashed metallic carbon nanotubes. We find that the conductance and bandgap of armchair nanotubes show oscillations upon squashing. The physical origin of these oscillations is attributed to interaction of carbon atoms with a fourth neighbor. Squashing of armchair and zigzag nanotubes ultimately leads to metallic behavior.

  18. Composite Reinforcement using Boron Nitride Nanotubes

    DTIC Science & Technology

    2014-05-09

    while retaining the nanotube structure. This project involves the use of computational quantum chemistry to study interactions of aluminium (Al...small clusters of 1–4 metal atoms. The effect of varying the radius of the nanotubes and the size of aluminium and titanium clusters was considered...15. SUBJECT TERMS Boron Nitride Nanotubes, composite materials, Aluminum Alloys , Titanium Alloy , Theoretical Chemistry 16. SECURITY

  19. Nitrotyrosine adsorption on carbon nanotube: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Majidi, R.; Karami, A. R.

    2014-05-01

    We have studied the effect of nitrotyrosine on electronic properties of different single-wall carbon nanotubes by density functional theory. Optimal adsorption configurations of nitrotyrosine adsorbed on carbon nanotube have been determined by calculation of adsorption energy. Adsorption energies indicate that nitrotyrosine is chemisorbed on carbon nanotubes. It is found that the nitrotyrosine adsorption modifies the electronic properties of the semiconducting carbon nanotubes significantly and these nanotubes become n-type semiconductors, while the effect of nitrotyrosine on metallic carbon nanotubes is not considerable and these nanotubes remain metallic. Results clarify sensitivity of carbon nanotubes to nitrotyrosine adsorption and suggest the possibility of using carbon nanotubes as biosensor for nitrotyrosine detection.

  20. Structural and surface property characterization of titanium dioxide nanotubes for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Shokuhfar, Tolou

    This research focused on the to modification of the surface structure of titanium implants with nanostructured morphology of TiO2 nanotubes and studied the interaction of nanotubes with osteoblast cells to understand the parameters that affect the cell growth. The electrical, mechanical, and structural properties of TiO2 nanotubes were characterized to establish a better understanding on the properties of such nanoscale morphological structures. To achieve the objectives of this research work I transformed the titanium and its alloys, either in bulk sheet form, bulk machined form, or thin film deposited on another substrate into a surface of titania nanotubes using a low cost and environmentally friendly process. The process requires only a simple electrolyte, low cost electrode, and a DC power supply. With this simple approach of scalable nanofabrication, a typical result is nanotubes that are each approximately 100nm in diameter and have a wall thickness of about 20nm. By changing the fabrication parameters, independent nanotubes can be fabricated with open volume between them. Titanium in this form is termed onedimensional since electron transport is narrowly confined along the length of the nanotube. My Ph.D. accomplishments have successfully shown that osteoblast cells, the cells that are the precursors to bone, have a strong tendency to attach to the inside and outside of the titanium nanotubes onto which they are grown using their filopodia -- cell's foot used for locomotion -- anchored to titanium nanotubes. In fact it was shown that the cell prefers to find many anchoring sites. These sites are critical for cell locomotion during the first several weeks of maturity and upon calcification as a strongly anchored bone cell. In addition I have shown that such a surface has a greater cell density than a smooth titanium surface. My work also developed a process that uses a focused and controllably rastered ion beam as a nano-scalpel to cut away sections of the

  1. Polymer-mediated tunneling transport between carbon nanotubes in nanocomposites.

    PubMed

    Derosa, Pedro A; Michalak, Tyler

    2014-05-01

    Electron transport in nanocomposites has attracted a good deal of attention for some time now; furthermore, the ability to control its characteristics is a necessary step in the design of multifunctional materials. When conductive nanostructures (for example carbon nanotubes) are inserted in a non-conductive matrix, electron transport below the percolation threshold is dominated by tunneling and thus the conductive characteristics of the composite depends heavily on the characteristics of the tunneling currents between nanoinserts. A parameter-free approach to study tunneling transport between carbon nanotubes across a polymer matrix is presented. The calculation is done with a combination of Density Functional Theory and Green functions (an approach heavily used in molecular electronics) which is shown here to be effective in this non-resonant transport condition. The results show that the method can effectively capture the effect of a dielectric layer in tunneling transport. The current is found to exponentially decrease with the size of the gap for both vacuum and polymer, and that the polymer layer lowers the tunneling barrier enhancing tunneling conduction. For a polyacrylonitrile matrix, a four-fold decrease in the tunneling constant, compared to tunneling in vacuum, is observed, a result that is consistent with available information. The method is very versatile as any DFT functional (or any other quantum mechanics method) can be used and thus the most accurate method for each particular system can be chosen. Furthermore as more methods become available, the calculations can be revised and improved. This approach can be used to design functional materials for fine-tunning the tunneling transport, for instance, the effect of modifying the nanoinsert-matrix interface (for example, by adding functional groups to carbon nanotubes) can be captured and the comparative performance of each interface predicted by simulation.

  2. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Cinke, Martin; Li, Jing; Chen, Bin; Wignarajah, Kanapathipillai; Pisharody, Suresh A.; Fisher, John W.; Delzeit, Lance; Meyyappan, Meyya; Partridge, Harry; Clark, Kimberlee

    2003-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Highly purified metal-impregnated carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake gaseous species based both on the nanotube s controlled pore size, high surface area, and ordered chemical structure that allows functionalization and on the nanotube s effectiveness as a catalyst support material for toxic contaminants removal. We present results on the purification of single walled carbon nanotubes (SWCNT) and efforts at metal impregnation of the SWCNT's.

  3. Inorganic nanotubes and electro-fluidic devices fabricated therefrom

    DOEpatents

    Yang, Peidong [Kensington, CA; Majumdar, Arunava [Orinda, CA; Fan, Rong [Pasadena, CA; Karnik, Rohit [Cambridge, MA

    2011-03-01

    Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or bio-chemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.

  4. DNA nanotubes for NMR structure determination of membrane proteins.

    PubMed

    Bellot, Gaëtan; McClintock, Mark A; Chou, James J; Shih, William M

    2013-04-01

    Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling-based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this you need a weak-alignment medium that is detergent-resistant and it has thus far been difficult to obtain such a medium suitable for weak alignment of membrane proteins. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400-nm-long six-helix bundles, each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, toward collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes using counter ions and small DNA-binding molecules. This detergent-resistant liquid-crystal medium offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility and structural programmability. Production of sufficient nanotubes for four or five NMR experiments can be completed in 1 week by a single individual.

  5. Synthesis of neodymium hydroxide nanotubes and nanorods by soft chemical process.

    PubMed

    Shi, Weidong; Yu, Jiangbo; Wang, Haishui; Yang, Jianhui; Zhang, Hongjie

    2006-08-01

    A facile soft chemical approach using cetyltrimethylammonium bromide (CTAB) as template is successfully designed for synthesis of neodymium hydroxide nanotubes. These nanotubes have an average outer diameter around 20 nm, inner diameter around 2 nm, and length ranging from 100 to 120 nm, high BET surface area of 495.71 m(2) g(-1). We also find that neodymium hydroxide nanorods would be obtained when CTAB absented in reaction system. The Nd(OH)3 nanorods might act as precursors that are converted into Nd2O3 nanorods through dehydration at 550 degrees C. The nanorods could exhibit upconversion emission characteristic under excitation of 591 nm at room temperature.

  6. Band Structure and Contact Resistance of Carbon Nanotubes Deformed by a Metal Contact.

    PubMed

    Hafizi, Roohollah; Tersoff, Jerry; Perebeinos, Vasili

    2017-11-17

    Capillary and van der Waals forces cause nanotubes to deform or even collapse under metal contacts. Using ab initio band structure calculations, we find that these deformations reduce the band gap by as much as 30%, while fully collapsed nanotubes become metallic. Moreover, degeneracy lifting due to the broken axial symmetry, and wave functions mismatch between the fully collapsed and the round portions of a CNT, lead to a 3 times higher contact resistance. The latter we demonstrate by contact resistance calculations within the tight-binding approach.

  7. Synthesis and property of novel MnO2@polypyrrole coaxial nanotubes as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yao, Wei; Zhou, Hui; Lu, Yun

    2013-11-01

    Novel MnO2@polypyrrole (PPy) coaxial nanotubes have been prepared via a simple and green approach without any surfactant and additional oxidant. Under the acidic condition, MnO2 nanotubes act as both template and oxidant to initiate the polymerization of pyrrole monomers on its fresh-activated surface. Fourier transform infrared spectra (FT-IR), X-ray diffraction patterns (XRD), thermo-gravimetric analysis data (TG) and X-ray photoelectron spectra (XPS) suggest the formation of composite structure of MnO2@PPy. Also, FESEM and TEM images intuitively confirm that the PPy shell is coated uniformly on the surface of MnO2 nanotubes. Adjusting the concentrations of sulfuric acid or adding oxidant can modulate the morphology of the products accordingly. Due to the synergic effect between MnO2 core and PPy shell, the MnO2@PPy coaxial nanotubes possess better rate capability, larger specific capacitance of 380 F g-1, doubling the specific capacitance of MnO2 nanotubes, and good capacitance retention of 90% for its initial capacitance after 1000 cycles.

  8. Single-walled carbon nanotube, multi-walled carbon nanotube and Fe2O3 nanoparticles induced mitochondria mediated apoptosis in melanoma cells.

    PubMed

    Naserzadeh, Parvaneh; Ansari Esfeh, Fatemeh; Kaviani, Mahboubeh; Ashtari, Khadijeh; Kheirbakhsh, Raheleh; Salimi, Ahmad; Pourahmad, Jalal

    2018-06-01

    Nanomaterials (NM) exhibit novel anticancer properties. The toxicity of three nanoparticles that are currently being produced in high tonnage including single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT) and Fe 2 O 3 nanoparticles, were compared with normal and melanoma cells. All tested nanoparticles induced selective toxicity and caspase 3 activation through mitochondria pathway in melanoma cells and mitochondria cause the generating of reactive oxygen species (ROS), mitochondrial membrane potential decline (MMP collapse), mitochondria swelling, and cytochrome c release. The pretreatment of butylated hydroxytoluene (BHT), a cell-permeable antioxidant and cyclosporine A (Cs. A), a mitochondrial permeability transition (MPT), pore sealing agent decreased cytotoxicity, caspase 3 activation, ROS generation, and mitochondrial damages induced by SWCNT, MWCNT, and IONPs. Our promising results provide a potential approach for the future therapeutic use of SWCNT, MWCNT, and IONPs in melanoma through mitochondrial targeting.

  9. Controlled preparation of carbon nanotube-iron oxide nanoparticle hybrid materials by a modified wet impregnation method

    NASA Astrophysics Data System (ADS)

    Tsoufis, Τheodoros; Douvalis, Alexios P.; Lekka, Christina E.; Trikalitis, Pantelis N.; Bakas, Thomas; Gournis, Dimitrios

    2013-09-01

    We report a novel, simple, versatile, and reproducible approach for the in situ synthesis of iron oxide nanoparticles (NP) on the surface of carbon nanotubes (CNT). Chemically functionalized single- or multi-wall CNT were used as nanotemplates for the synthesis of a range of very small (<10 nm) ferrimagnetic and/or anti-ferromagnetic iron oxide NP on their surface. For the synthesis of the hybrid materials, we employed for the first time a modified wet impregnation method involving the adsorption of ferric cations (as nanoparticle's precursor) on the functionalized nanotube surface and the subsequent interaction with acetic acid vapors followed by calcination at 400 °C under different atmospheres (air, argon, and oxygen). X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy, and magnetization measurements were used to study in-detail the morphology, size, and type of crystalline phases in the resulting hybrid materials. In addition, Raman measurements were used to monitor possible structural changes of the nanotubes during the synthetic approach. The experimental results were further supported by density functional theory calculations. These calculations were also used to disclose, how the type of the carbon nanotube template affects the nature and the size of the resulting NP in the final hybrids.

  10. Nanotubes in Nanoelectronics: Transport, Growth and Modeling

    NASA Technical Reports Server (NTRS)

    Anantram, M.; Delzeit, Lance; Cassell, Alan; Han, Jie; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Carbon nanotube (CNT) baud nanotechnology appears to be promising for future Theoretical analysis and results for the ballistic current carrying capacity of nanotube wires am presented. Aspects of metal-nanotube coupling are examined. Results am also presented for chemical vapor deposition of CNT from hydrocarbon feedstock.

  11. Arrays of Bundles of Carbon Nanotubes as Field Emitters

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bronkowski, Michael

    2007-01-01

    Experiments have shown that with suitable choices of critical dimensions, planar arrays of bundles of carbon nanotubes (see figure) can serve as high-current-density field emitter (cold-cathode) electron sources. Whereas some hot-cathode electron sources must be operated at supply potentials of thousands of volts, these cold-cathode sources generate comparable current densities when operated at tens of volts. Consequently, arrays of bundles of carbon nanotubes might prove useful as cold-cathode sources in miniature, lightweight electron-beam devices (e.g., nanoklystrons) soon to be developed. Prior to the experiments, all reported efforts to develop carbon-nanotube-based field-emission sources had yielded low current densities from a few hundred microamperes to a few hundred milliamperes per square centimeter. An electrostatic screening effect, in which taller nanotubes screen the shorter ones from participating in field emission, was conjectured to be what restricts the emission of electrons to such low levels. It was further conjectured that the screening effect could be reduced and thus emission levels increased by increasing the spacing between nanotubes to at least by a factor of one to two times the height of the nanotubes. While this change might increase the emission from individual nanotubes, it would decrease the number of nanotubes per unit area and thereby reduce the total possible emission current. Therefore, to maximize the area-averaged current density, it would be necessary to find an optimum combination of nanotube spacing and nanotube height. The present concept of using an array of bundles of nanotubes arises partly from the concept of optimizing the spacing and height of field emitters. It also arises partly from the idea that single nanotubes may have short lifetimes as field emitters, whereas bundles of nanotubes could afford redundancy so that the loss of a single nanotube would not significantly reduce the overall field emission.

  12. Method of manufacturing carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M. (Inventor); Leidecker, Henning W. (Inventor); Frazier, Jeffrey (Inventor)

    2004-01-01

    A process for manufacturing carbon nanotubes, including a step of inducing electrical current through a carbon anode and a carbon cathode under conditions effective to produce the carbon nanotubes, wherein the carbon cathode is larger than the carbon anode. Preferably, a welder is used to induce the electrical current via an arc welding process. Preferably, an exhaust hood is placed on the anode, and the process does not require a closed or pressurized chamber. The process provides high-quality, single-walled carbon nanotubes, while eliminating the need for a metal catalyst.

  13. Carbon nanotubes as vaccine scaffolds

    PubMed Central

    Scheinberg, David A.; McDevitt, Michael R.; Dao, Tao; Mulvey, Justin J.; Feinberg, Evan; Alidori, Simone

    2013-01-01

    Carbon nanotubes display characteristics that are potentially useful in their development as scaffolds for vaccine compositions. These features include stability in vivo, lack of intrinsic immunogenicity, low toxicity, and the ability to be appended with multiple copies of antigens. In addition, the particulate nature of carbon nanotubes and their unusual properties of rapid entry into antigen-presenting cells, such as dendritic cells, make them especially useful as carriers of antigens. Early attempts demonstrating carbon nanotube-based vaccines can be used in both infectious disease settings and cancer are promising. PMID:23899863

  14. Review of hydrogen storage in inorganic fullerene-like nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wu, F.

    Following the discovery of carbon nanotubes, inorganic fullerene-like nanotubes such as WS2-MoS2, NbS2, TiS2, and BN were reported. Inorganic (non-carbon) nanotubes constitute an important class of nanomaterials with interesting properties and potential applications. As known, efficient hydrogen storage is one key problem in the development of a hydrogen energy system. Hydrogen storage using carbon nanostructures is scientifically interesting and challenging. It thus would be worthwhile to look into hydrogen storage in inorganic nanotubes because the van der Waals gaps between the nanotube layers are potential candidates for hydrogen uptake. Furthermore, the inorganic nanotubes combine two elements, which is different from the pure carbon nanotubes. These may show a novel hydrogen adsorption-desorption mechanism. The present review provides a brief study of hydrogen adsorption on MoS2, TiS2, and BN nanotubes.

  15. Graphene and carbon nanotubes: synthesis, characterization and applications for beyond silicon electronics

    NASA Astrophysics Data System (ADS)

    Gomez de Arco, Lewis Mortimer

    Graphene and carbon nanotubes have outstanding electrical and thermal conductivity. These characteristics make them exciting materials with high potential to replace silicon and surpass its performance in the next generation of semiconductors devices, such devices ought to be considerably smaller and faster than the ones used in present technology. Despite of the excellent electrical and thermal conduction properties of graphene and carbon nanotubes, the advance of nanoelectronics based on them has been hampered due to fundamental limitations of the current synthesis and integration technologies of these carbon nanomaterials. Therefore, there is a strong need to do research at fundamental and applicative levels to help find the roadmap that these materials need to follow, in order to become a real alternative for silicon in future technologies. This dissertation present our approach to overcome some of the most critical problems that hinder the implementation of graphene and carbon nanotubes as important components in real-life macro and nanoelectronic devices. Towards this end, we systematically studied synthesis methods for scalable, high quality graphene and evaluated our large-scale synthesized graphene as transparent electrodes in functional energy conversion devices. In addition, we explored scalable methods to obtain carbon nanotube field-effect transistors with only semiconductor nanotube channels and studied the substrate influence on the structure and metal to semiconductor ratio of aligned nanotubes. Although we have successfully tackled some of the most important challenges of the above-mentioned one- and two-dimensional carbon nanostructures, more remains to be done to integrate them as functional components in electronic devices to reach the goal of transferring them from the laboratory to the manufacturing industry, and ultimately to the society. In chapter 1, a general introduction to carbon nanomaterials is presented, followed by a more focused

  16. Functionalized boron nitride nanotubes

    DOEpatents

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  17. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.

    2002-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.

  18. Low-Temperature Plasma Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun; Meyyappan, M.

    2004-01-01

    A low-temperature plasma process has been devised for attaching specified molecular groups to carbon nanotubes in order to impart desired chemical and/or physical properties to the nanotubes for specific applications. Unlike carbon-nanotube- functionalization processes reported heretofore, this process does not involve the use of wet chemicals, does not involve exposure of the nanotubes to high temperatures, and generates very little chemical residue. In addition, this process can be carried out in a relatively simple apparatus and can readily be scaled up to mass production.

  19. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  20. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  1. Continuum study on the oscillatory characteristics of carbon nanocones inside single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Sadeghi, F.; Darvizeh, M.

    2016-02-01

    This article aims to present a comprehensive study on the oscillatory behavior of concentric carbon nanocones (CNCs) inside carbon nanotubes (CNTs) using a continuum approach. To this end, the optimum radius of nanotube for which the nanocone lies on the tube axis is determined based on the distribution of suction energy. Using the Runge-Kutta numerical integration scheme, the equation of motion is solved numerically to attain the time history of displacement and velocity of nanocone. It is observed that the oscillation of nanocone occurs with respect to its axial equilibrium distance which moves further away from the middle axis of nanotube as the number of pentagons increases. A novel semi-analytical expression as a function of geometrical parameters, initial conditions and cone vertex direction is also proposed for the precise evaluation of oscillation frequency. With respect to the proposed frequency expression, a detailed parametric study is conducted to get an insight into the effects of number of pentagons, cone vertex direction and initial conditions on the oscillatory behavior of CNC-CNT oscillators. It is found that nanocones with more pentagons generate greater maximum frequencies inside nanotubes. Furthermore, it is shown that higher maximum frequencies can be achieved if the nanocone enters the nanotube from base.

  2. Semiconductor Nanowires and Nanotubes for Energy Conversion

    NASA Astrophysics Data System (ADS)

    Fardy, Melissa Anne

    In recent years semiconductor nanowires and nanotubes have garnered increased attention for their unique properties. With their nanoscale dimensions comes high surface area and quantum confinement, promising enhancements in a wide range of applications. 1-dimensional nanostructures are especially attractive for energy conversion applications where photons, phonons, and electrons come into play. Since the bohr exciton radius and phonon and electron mean free paths are on the same length scales as nanowire diameters, optical, thermal, and electrical properties can be tuned by simple nanowire size adjustments. In addition, the high surface area inherent to nanowires and nanotubes lends them towards efficient charge separation and superior catalytic performance. In thermoelectric power generation, the nanoscale wire diameter can effectively scatter phonons, promoting reductions in thermal conductivity and enhancements in the thermoelectric figure of merit. To that end, single-crystalline arrays of PbS, PbSe, and PbTe nanowires have been synthesized by a chemical vapor transport approach. The electrical and thermal transport properties of the nanowires were characterized to investigate their potential as thermoelectric materials. Compared to bulk, the lead chalcogenide nanowires exhibit reduced thermal conductivity below 100 K by up to 3 orders of magnitude, suggesting that they may be promising thermoelectric materials. Smaller diameters and increased surface roughness are expected to give additional enhancements. The solution-phase synthesis of PbSe nanowires via oriented attachment of nanoparticles enables facile surface engineering and diameter control. Branched PbSe nanowires synthesized by this approach showed near degenerately doped charge carrier concentrations. Compared to the bulk, the PbSe nanowires exhibited a similar Seebeck coefficient and a significant reduction in thermal conductivity in the temperature range 20 K to 300 K. Thermal annealing of the Pb

  3. A Biomimetic Structural Health Monitoring Approach Using Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-07-01

    A self-sensing nanocomposite material has been developed to track the presence of damage in complex composite structures. Multiwalled carbon nanotubes are integrated with polymer matrix to develop a novel bonding material with sensing capabilities. The changes of the piezoresistance in the presence of damage are used to monitor the condition of bonded joints, where the usual bonding material is replaced by the self-sensing nanocomposite. The feasibility of this concept is investigated through experiments conducted on single-lap joints subject to monotonic tensile loading conditions. The results show that the self-sensing nanocomposite is sensitive to crack propagation within the matrix material. An acoustic emission-based sensing technique has been used to validate these results and shows good correlation with damage growth. A digital image correlation system is used to measure the shear strain field in the joint area.

  4. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin (Inventor); Smith, Michael W. (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  5. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W [Newport News, VA; Jordan, Kevin [Newport News, VA; Park, Cheol [Yorktown, VA

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  6. Measurement Challenges for Carbon Nanotube Material

    NASA Technical Reports Server (NTRS)

    Sosa, Edward; Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Yowell, Leonard

    2006-01-01

    The advances in large scale applications of carbon nanotubes demand a reliable supply of raw and processed materials. It is imperative to have a consistent quality control of these nanomaterials to distinguish material inconsistency from the modifications induced by processing of nanotubes for any application. NASA Johnson Space Center realized this need five years back and started a program to standardize the characterization methods. The JSC team conducted two workshops (2003 and 2005) in collaboration with NIST focusing on purity and dispersion measurement issues of carbon nanotubes [1]. In 2004, the NASA-JSC protocol was developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA [2]. This protocol is routinely used by several researchers across the world as a first step in characterizing raw and purified carbon nanotubes. A suggested practice guide consisting of detailed chapters on TGA, Raman, electron microscopy and NIR absorption is in the final stages and is undergoing revisions with input from the nanotube community [3]. The possible addition of other techniques such as XPS, and ICP to the existing protocol will be presented. Recent activities at ANSI and ISO towards implementing these protocols as nanotube characterization standards will be discussed.

  7. Microscopic model of superconductivity in carbon nanotubes.

    PubMed

    González, J

    2002-02-18

    We propose the model of a manifold of one-dimensional interacting electron systems to account for the superconductivity observed in ropes of nanotubes. We rely on the strong suppression of single-particle hopping between neighboring nanotubes in a disordered rope and conclude that the tunneling takes place in pairs of electrons, which are formed within each nanotube due to the existence of large superconducting correlations. Our estimate of the transition temperature is consistent with the values that have been measured experimentally in ropes with about 100 metallic nanotubes.

  8. Growing Aligned Carbon Nanotubes for Interconnections in ICs

    NASA Technical Reports Server (NTRS)

    Li, Jun; Ye, Qi; Cassell, Alan; Ng, Hou Tee; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2005-01-01

    A process for growing multiwalled carbon nanotubes anchored at specified locations and aligned along specified directions has been invented. Typically, one would grow a number of the nanotubes oriented perpendicularly to a silicon integrated-circuit (IC) substrate, starting from (and anchored on) patterned catalytic spots on the substrate. Such arrays of perpendicular carbon nanotubes could be used as electrical interconnections between levels of multilevel ICs. The process (see Figure 1) begins with the formation of a layer, a few hundred nanometers thick, of a compatible electrically insulating material (e.g., SiO(x) or Si(y)N(z) on the silicon substrate. A patterned film of a suitable electrical conductor (Al, Mo, Cr, Ti, Ta, Pt, Ir, or doped Si), having a thickness between 1 nm and 2 m, is deposited on the insulating layer to form the IC conductor pattern. Next, a catalytic material (usually, Ni, Fe, or Co) is deposited to a thickness between 1 and 30 nm on the spots from which it is desired to grow carbon nanotubes. The carbon nanotubes are grown by plasma-enhanced chemical vapor deposition (PECVD). Unlike the matted and tangled carbon nanotubes grown by thermal CVD, the carbon nanotubes grown by PECVD are perpendicular and freestanding because an electric field perpendicular to the substrate is used in PECVD. Next, the free space between the carbon nanotubes is filled with SiO2 by means of CVD from tetraethylorthosilicate (TEOS), thereby forming an array of carbon nanotubes embedded in SiO2. Chemical mechanical polishing (CMP) is then performed to remove excess SiO2 and form a flat-top surface in which the outer ends of the carbon nanotubes are exposed. Optionally, depending on the application, metal lines to connect selected ends of carbon nanotubes may be deposited on the top surface. The top part of Figure 2 is a scanning electron micrograph (SEM) of carbon nanotubes grown, as described above, on catalytic spots of about 100 nm diameter patterned by

  9. Unified equivalent circuit model for carbon nanotube-based nanocomposites.

    PubMed

    Zhao, Chaoyang; Yuan, Weifeng; Zhao, Yangzhou; Hu, Ning; Gu, Bin; Liu, Haidong; Alamusi

    2018-07-27

    Carbon nanotubes form a complex network in nanocomposites. In the network, the configuration of the nanotubes is various. A carbon nanotube may be curled or straight, and it may be parallel or crossed to another. As a result, carbon nanotube-based composites exhibit integrated characteristics of inductor, capacitor and resistor. In this work, it is hypothesised that carbon nanotube-based composites all adhere to a RLC interior circuit. To verify the hypothesis, three different composites, viz multi-walled carbon nanotube/polyvinylidene fluoride (MWCNT/PVDF), multi-walled carbon nanotube/epoxy (MWCNT/EP), multi-walled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) were fabricated and tested. The resistances and the dielectric loss tangent (tanδ) of the materials were measured in direct and alternating currents. The measurement shows that the value of tanδ is highly affected by the volume fraction of MWCNT in the composites. The experimental results prove that the proposed RLC equivalent circuit model can fully describe the electrical properties of the MWCNT network in nanocomposites. The RLC model provides a new route to detect the inductance and capacitance of carbon nanotubes. Moreover, the model also indicates that the carbon nanotube-based composite films may be used to develop wireless strain sensors.

  10. Novel Nanotube Manufacturing Streamlines Production

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Nanotubes have novel qualities that make them uniquely qualified for a plethora of uses, including applications in electronics, optics, and other scientific and industrial fields. The NASA process for creating these nanostructures involves using helium arc welding to vaporize an amorphous carbon rod and then form nanotubes by depositing the vapor onto a water-cooled carbon cathode, which then yields bundles, or ropes, of single-walled nanotubes at a rate of 2 grams per hour using a single setup. This eliminates costs associated with the use of metal catalysts, including the cost of product purification, resulting in a relatively inexpensive, high-quality, very pure end product. While managing to be less expensive, safer, and simpler, the process also increases the quality of the nanotubes. Goddard's Innovative Partnerships Program (IPP) Office promoted the technology, and in 2005, Boise-based Idaho Space Materials Inc. (ISM) was formed and applied for a nonexclusive license for the single-walled carbon nanotube (SWCNT) manufacturing technology. ISM commercialized its products, and the inexpensive, robust nanotubes are now in the hands of the scientists who will create the next generation of composite polymers, metals, and ceramics that will impact the way we live. In fact, researchers are examining ways for these newfound materials to be used in the manufacture of transistors and fuel cells, large screen televisions, ultra-sensitive sensors, high-resolution atomic force microscopy probes, supercapacitors, transparent conducting films, drug carriers, catalysts, and advanced composite materials, to name just a few of the myriad technologies to benefit.

  11. Selective Functionalization of Carbon Nanotubes: Part II

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Khare, Bishun

    2010-01-01

    An alternative method of low-temperature plasma functionalization of carbon nanotubes provides for the simultaneous attachment of molecular groups of multiple (typically two or three) different species or different mixtures of species to carbon nanotubes at different locations within the same apparatus. This method is based on similar principles, and involves the use of mostly the same basic apparatus, as those of the methods described in "Low-Temperature Plasma Functionalization of Carbon Nanotubes" (ARC-14661-1), NASA Tech Briefs, Vol. 28, No. 5 (May 2004), page 45. The figure schematically depicts the basic apparatus used in the aforementioned method, with emphasis on features that distinguish the present alternative method from the other. In this method, one exploits the fact that the composition of the deposition plasma changes as the plasma flows from its source in the precursor chamber toward the nanotubes in the target chamber. As a result, carbon nanotubes mounted in the target chamber at different flow distances (d1, d2, d3 . . .) from the precursor chamber become functionalized with different species or different mixtures of species. In one series of experiments to demonstrate this method, N2 was used as the precursor gas. After the functionalization process, the carbon nanotubes from three different positions in the target chamber were examined by Fourier-transform infrared spectroscopy to identify the molecular groups that had become attached. On carbon nanotubes from d1 = 1 cm, the attached molecular groups were found to be predominantly C-N and C=N. On carbon nanotubes from d2 = 2.5 cm, the attached molecular groups were found to be predominantly C-(NH)2 and/or C=NH2. (The H2 was believed to originate as residual hydrogen present in the nanotubes.) On carbon nanotubes from d3 = 7 cm no functionalization could be detected - perhaps, it was conjectured, because this distance is downstream of the plasma source, all of the free ions and free radicals of

  12. Electrical properties of 0.4 cm long single walled nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Zhen

    2005-03-01

    Centimeter scale aligned carbon nanotube arrays are grown from nanoparticle/metal catalyst pads[1]. We find the nanotubes grow both with and ``against the wind.'' A metal underlayer provides in-situ electrical contact to these long nanotubes with no post growth processing needed. Using the electrically contacted nanotubes, we study electrical transport of 0.4 cm long nanotubes[2]. Using this data, we are able to determine the resistance of a nanotube as a function of length quantitatively, since the contact resistance is negligible in these long nanotubes. The source drain I-V curves are quantitatively described by a classical, diffusive model. Our measurements show that the outstanding transport properties of nanotubes can be extended to the cm scale and open the door to large scale integrated nanotube circuits with macroscopic dimensions. These are the longest electrically contacted single walled nanotubes measured to date. [1] Zhen Yu, Shengdong Li, Peter J. Burke, ``Synthesis of Aligned Arrays of Millimeter Long, Straight Single-Walled Carbon Nanotubes,'' Chemistry of Materials, 16(18), 3414-3416 (2004). [2] Shengdong Li, Zhen Yu, Christopher Rutherglen, Peter J. Burke, ``Electrical properties of 0.4 cm long single-walled carbon nanotubes'' Nano Letters, 4(10), 2003-2007 (2004).

  13. Anti-fouling response of gold-carbon nanotubes composite for enhanced ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Sai Siddhardha, R. S.; Anupam Kumar, Manne; Lakshminarayanan, V.; Ramamurthy, Sai Sathish

    2014-12-01

    We report the synthesis of gold carbon nanotubes composite through a one-pot surfactant free approach and its utility for ethanol electrooxidation reaction (EOR). The method involves the application of laser ablation for nanoparticle synthesis and simultaneous assembly of these on carbon nanotubes. The catalyst has been characterized by field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX) and UV-vis spectroscopic techniques. A systematic study of gold carbon nanotubes modified carbon paste electrode for EOR has been pursued. The kinetic study revealed the excellent stability of the modified electrode even after 200 cycles of EOR and with an Arrhenius energy as low as ∼28 kJ mol-1. Tafel slopes that are the measure of electrode activity have been monitored as a function of temperature of the electrolyte. The results indicate that despite an increase in the reaction rate with temperature, the electrode surface has not been significantly passivated by carbonaceous species produced at high temperatures.

  14. Carbon nanotubes significance in Darcy-Forchheimer flow

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rafique, Kiran; Muhammad, Taseer; Alsaedi, Ahmed; Ayub, Muhammad

    2018-03-01

    The present article examines Darcy-Forchheimer flow of water-based carbon nanotubes. Flow is induced due to a curved stretchable surface. Heat transfer mechanism is analyzed in presence of convective heating process. Xue model of nanofluid is employed to study the characteristics of both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Results for both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are achieved and compared. Appropriate transformations correspond to strong nonlinear ordinary differential system. Optimal homotopy analysis method (OHAM) is used for the solution development of the resulting system. The contributions of different sundry variables on the velocity and temperature are studied. Further the skin friction coefficient and local Nusselt number are analyzed graphically for both SWCNTs and MWCNTs cases.

  15. Effects of single-walled carbon nanotubes on lysozyme gelation.

    PubMed

    Tardani, Franco; La Mesa, Camillo

    2014-09-01

    The possibility to disperse carbon nanotubes in biocompatible matrices has got substantial interest from the scientific community. Along this research line, the inclusion of single walled carbon nanotubes in lysozyme-based hydrogels was investigated. Experiments were performed at different nanotube/lysozyme weight ratios. Carbon nanotubes were dispersed in protein solutions, in conditions suitable for thermal gelation. The state of the dispersions was determined before and after thermal treatment. Rheology, dynamic light scattering and different microscopies investigated the effect that carbon nanotubes exert on gelation. The gelation kinetics and changes in gelation temperature were determined. The effect of carbon and lysozyme content on the gel properties was, therefore, determined. At fixed lysozyme content, moderate amounts of carbon nanotubes do not disturb the properties of hydrogel composites. At moderately high volume fractions in carbon nanotubes, the gels become continuous in both lysozyme and nanotubes. This is because percolating networks are presumably formed. Support to the above statements comes by rheology. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Cytotoxicity Assessment of Some Carbon Nanotubes and Related Carbon Nanoparticle Aggregates and the Implications for Anthropogenic Carbon Nanotube Aggregates in the Environment

    PubMed Central

    Murr, L. E.; Garza, K. M.; Soto, K. F.; Carrasco, A.; Powell, T. G.; Ramirez, D. A.; Guerrero, P. A.; Lopez, D. A.; Venzor, J.

    2005-01-01

    Nanotechnology and nanomaterials have become the new frontier world-wide over the past few years and prospects for the production and novel uses of large quantities of carbon nanotubes in particular are becoming an increasing reality. Correspondingly, the potential health risks for these and other nanoparticulate materials have been of considerable concern. Toxicological studies, while sparse, have been concerned with virtually uncharacterized, single wall carbon nanotubes, and the conclusions have been conflicting and uncertain. In this research we performed viability assays on a murine lung macrophage cell line to assess the comparative cytotoxicity of commercial, single wall carbon nanotubes (ropes) and two different multiwall carbon nanotube samples; utilizing chrysotile asbestos nanotubes and black carbon nanoaggregates as toxicity standards. These nanotube materials were completely characterized by transmission electron microscopy and observed to be aggregates ranging from 1 to 2 μm in mean diameter, with closed ends. The cytotoxicity data indicated a strong concentration relationship and toxicity for all the carbon nanotube materials relative to the asbestos nanotubes and black carbon. A commercial multiwall carbon nanotube aggregate exhibiting this significant cell response was observed to be identical in structure to multiwall carbon nanotube aggregates demonstrated to be ubiquitous in the environment, and especially in indoor environments, where natural gas or propane cooking stoves exist. Correspondingly, preliminary epidemiological data, although sparse, indicate a correlation between asthma incidence or classification, and exposure to gas stoves. These results suggest a number of novel epidemiological and etiological avenues for asthma triggers and related respiratory or other environmental health effects, especially since indoor number concentrations for multiwall carbon nanotube aggregates is at least 10 times the outdoor concentration, and

  17. Carbon nanotubes in hyperthermia therapy

    PubMed Central

    Singh, Ravi; Torti, Suzy V.

    2013-01-01

    Thermal tumor ablation therapies are being developed with a variety of nanomaterials, including single-and multiwalled carbon nanotubes. Carbon nanotubes (CNTs) have attracted interest due to their potential for simultaneous imaging and therapy. In this review, we highlight in vivo applications of carbon nanotube-mediated thermal therapy (CNMTT) and examine the rationale for use of this treatment in recurrent tumors or those resistant to conventional cancer therapies. Additionally, we discuss strategies to localize and enhance the cancer selectivity of this treatment and briefly examine issues relating the toxicity and long term fate of CNTs. PMID:23933617

  18. NASA Innovation Builds Better Nanotubes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Nanotailor Inc., based in Austin, Texas, licensed Goddard Space Flight Center's unique single-walled carbon nanotube (SWCNT) fabrication process with plans to make high-quality, low-cost SWCNTs available commercially. Carbon nanotubes are being used in a wide variety of applications, and NASA's improved production method will increase their applicability in medicine, microelectronics, advanced materials, and molecular containment. Nanotailor built and tested a prototype based on Goddard's process, and is using this technique to lower the cost and improve the integrity of nanotubes, offering a better product for use in biomaterials, advanced materials, space exploration, highway and building construction, and many other applications.

  19. Nanotube structures, methods of making nanotube structures, and methods of accessing intracellular space

    DOEpatents

    VanDersarl, Jules J.; Xu, Alexander M.; Melosh, Nicholas A.; Tayebi, Noureddine

    2016-02-23

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to methods of making a structure including nanotubes, a structure including nanotubes, methods of delivering a fluid to a cell, methods of removing a fluid to a cell, methods of accessing intracellular space, and the like.

  20. FTIR spectroscopy of multiwalled carbon nanotubes: a simple approach to study the nitrogen doping.

    PubMed

    Misra, Abha; Tyagi, Pawan K; Rai, Padmnabh; Misra, D S

    2007-06-01

    The nitrogen doped multiwalled carbon nanotubes (MWNTs) were synthesized by microwave plasma chemical vapor deposition (MPCVD) technique. In this paper, we report the results of FTIR, Raman, and TGA studies to confirm the presence of N-doping inside carbon nanotubes. Fourier transform infrared (FTIR) studies were carried out in the range 400-4000 cm(-1) to study the attachment of nitrogen impurities on carbon nanotubes. FTIR spectra of the virgin sample of MWNTs show dominant peaks which are corresponding to Si-O, C-N, N-CH3, CNT, C-O, and C-Hx, respectively. The Si-O peak has its origin in silicon substrate whereas the other peaks are due to the precursor gases present in the gas mixture. The peaks are sharp and highly intense showing the chemisorption nature of the dipole bond. The intensity of the peaks due to N-CH3, C-N, and C-H reduces after annealing. It is interesting to note that these peaks vanish on annealing at high temperature (900 degrees C). The presence of C-N peak may imply the doping of the MWNTs with N in substitution mode. The position of this intense peak is in agreement with the reported peak in carbon nitride samples prepared by plasma CVD process, since the Raman modes are also expected to be delocalized over both carbon and nitrogen sites it was found that the intensity ratio of the D and G peaks, I(D)/I(G), varies as a function of ammonia concentration. The TGA measurements, carried out under argon flow, show that the dominant weight loss of the sample occurs in the temperature range 400-600 degrees C corresponding to the removal of the impurities and amorphous carbon.

  1. Self-assembly of a nanotube from a black phosphorus nanoribbon on a string of fullerenes at low temperature.

    PubMed

    Cai, Kun; Shi, Jiao; Liu, Ling-Nan; Qin, Qing-Hua

    2017-09-13

    A string of fullerenes is used for generating a nanotube by self-assembly of a black phosphorus (BP) nanoribbon at a temperature of 8 K. Among the fullerenes in the string, there are at least two fixed fullerenes placed along the edge of the BP ribbon for keeping its configuration stability during winding. By way of molecular dynamics simulations, it is found that successful generation of a BP nanotube depends on the bending stiffness of the ribbon and the attraction between the fullerenes and the ribbon. When the attraction is strong enough, the two edges (along the zigzag direction) of the BP ribbon will be able to bond covalently to form a nanotube. By the molecular dynamics approach, the maximum width of the BP ribbon capable of forming a nanotube with a perfect length is investigated in three typical models. The maximum width of the BP ribbon becomes larger with the string containing more fullerenes. This finding reveals a way to control the width of the BP ribbon which forms a nanotube. It provides guidance for fabricating a BP nanotube with a specified length, the same as to the width of the ribbon.

  2. Massive radius-dependent flow slippage in carbon nanotubes

    PubMed Central

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-01-01

    Simulations and measurements have established that water moves through carbon nanotubes with exceptionally high rates due to nearly frictionless interfaces1–4. These observations have stimulated interest in nanotube-based membranes for applications that range from desalination to nano-filtration and energy harvesting5–10, yet the exact water transport mechanisms inside the nanotubes and at the water-carbon interface continue to be controversially discussed11,12 because existing theories fail to provide a satisfying explanation for the limited number of experimental results available to date13. This is because even though controlled and systematic studies have explored transport through individual nanotubes8,9,14–7, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube11. Here we show that the pressure-driven flow rate across individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes (CNT), and no slippage in boron-nitride nanotubes (BNNT) that are crystallographically similar to CNTs but differ electronically. This pronounced contrast between the two systems must originate from subtle differences in atomic-scale details of their solid-liquid interfaces, strikingly illustrating that nanofluidics is the frontier where the continuum picture of fluid mechanics confronts the atomic nature of matter. PMID:27604947

  3. Carbon nanotube based hybrid nanostructures: Synthesis and applications

    NASA Astrophysics Data System (ADS)

    Ou, Fung Suong

    Hybrid nanostructures are fascinating materials for their promising applications in future nanoelectronics, electrical interconnects and energy storage devices. Practical ways of connecting individual carbon nanotubes to metal contacts for their use as interconnects and in electronic devices have been challenging. In this thesis, carbon nanotube based hybrids that combine the best properties of carbon nanotubes and metal nanowires have been fabricated. The electrical properties and Raman spectra of the hybrid nanowires are also studied. This thesis will focus on our recent results in the development of carbon nanotube hybrids for various applications. Various hybrid structures of multiwalled carbon nanotubes and metal nanowires can be fabricated using a combination of electrodeposition and chemical vapor deposition techniques. Controlled fabrication of multi-segmented structures will be studied. Several novel applications of these structures, for example, as electrodes in ultra-high power supercapacitors, multi-functional smart materials are also studied. The thesis will also highlight the development of carbon nanotube hybrids based smart materials. Hybrid nanowires with hydrophobic carbon nanotube tails and hydrophilic metal nanowire heads, allows for the assembly of spheres in solution. The design and manipulation of these carbon nanotube hybrids based smart structures for various novel applications will be discussed. Such new class of carbon nanotube hybrids surfactants are likely to lead as new tools in various fields such as microfluidics or water purification. In addition, we will also look at other variations of hybrid nanostructures fabricated from our method.

  4. Carbon Nanotube Array for Infrared Detection

    DTIC Science & Technology

    2008-12-05

    ctron Transport Charact eri stic s of a Carbon nanotub es/S i He terodimensional He tero structure." Materials Research Society, Spring meeting (2008). 3...From - To) 05-12-2008 Final 27 09 2006-26 09 2008 4 . TITLE AND SUBTITLE 5a . CONTRACT NUMBER Carbon Nanotube Array for Infrared Detection 5b...Distribution is unlimited 13 . SUPPLEMENTARY NOTES 14 . ABSTRACT We explore the basic science issues and device potential of our carbon nanotube-silicon (CNT

  5. Covalent enzyme immobilization onto carbon nanotubes using a membrane reactor

    NASA Astrophysics Data System (ADS)

    Voicu, Stefan Ioan; Nechifor, Aurelia Cristina; Gales, Ovidiu; Nechifor, Gheorghe

    2011-05-01

    Composite porous polysulfone-carbon nanotubes membranes were prepared by dispersing carbon nanotubes into a polysulfone solution followed by the membrane formation by phase inversion-immersion precipitation technique. The carbon nanotubes with amino groups on surface were functionalized with different enzymes (carbonic anhydrase, invertase, diastase) using cyanuric chloride as linker between enzyme and carbon nanotube. The composite membrane was used as a membrane reactor for a better dispersion of carbon nanotubes and access to reaction centers. The membrane also facilitates the transport of enzymes to active carbon nanotubes centers for functionalization (amino groups). The functionalized carbon nanotubes are isolated by dissolving the membranes after the end of reaction. Carbon nanotubes with covalent immobilized enzymes are used for biosensors fabrications. The obtained membranes were characterized by Scanning Electron Microscopy, Thermal analysis, FT-IR Spectroscopy, Nuclear Magnetic Resonance, and functionalized carbon nanotubes were characterized by FT-IR spectroscopy.

  6. Filling carbon nanotubes with particles.

    PubMed

    Kim, Byong M; Qian, Shizhi; Bau, Haim H

    2005-05-01

    The filling of carbon nanotubes (CNTs) with fluorescent particles was studied experimentally and theoretically. The fluorescent signals emitted by the particles were visible through the walls of the nanotubes, and the particles inside the tubes were observable with an electron microscope. Taking advantage of the template-grown carbon nanotubes' transparency to fluorescent light, we measured the filling rate of the tubes with particles at room conditions. Liquids such as ethylene glycol, water, and ethylene glycol/water mixtures, laden with 50 nm diameter fluorescent particles, were brought into contact with 500 nm diameter CNTs. The liquid and the particles' transport were observed, respectively, with optical and fluorescence microscopy. The CNTs were filled controllably with particles by the complementary action of capillary forces and the evaporation of the liquid. The experimental results were compared and favorably agreed with theoretical predictions. This is the first report on fluorescence studies of particle transport in carbon nanotubes.

  7. Carbon nanotubes: engineering biomedical applications.

    PubMed

    Gomez-Gualdrón, Diego A; Burgos, Juan C; Yu, Jiamei; Balbuena, Perla B

    2011-01-01

    Carbon nanotubes (CNTs) are cylinder-shaped allotropic forms of carbon, most widely produced under chemical vapor deposition. They possess astounding chemical, electronic, mechanical, and optical properties. Being among the most promising materials in nanotechnology, they are also likely to revolutionize medicine. Among other biomedical applications, after proper functionalization carbon nanotubes can be transformed into sophisticated biosensing and biocompatible drug-delivery systems, for specific targeting and elimination of tumor cells. This chapter provides an introduction to the chemical and electronic structure and properties of single-walled carbon nanotubes, followed by a description of the main synthesis and post-synthesis methods. These sections allow the reader to become familiar with the specific characteristics of these materials and the manner in which these properties may be dependent on the specific synthesis and post-synthesis processes. The chapter ends with a review of the current biomedical applications of carbon nanotubes, highlighting successes and challenges. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Overview on the Surface Functionalization Mechanism and Determination of Surface Functional Groups of Plasma Treated Carbon Nanotubes.

    PubMed

    Saka, Cafer

    2018-01-02

    The use of carbon materials for many applications is due to the unique diversity of structures and properties ranging from chemical bonds between the carbon atoms of the materials to nanostructures, crystallite alignment, and microstructures. Carbon nanotubes and other nanoscale carbonaceous materials draw much attention due to their physical and chemical properties, such as high strength, high resistance to corrosion, electrical and thermal conductivity, stability and a qualified adsorbent. Carbon-based nanomaterials, which have a relatively large specific area and layered structure, can be used as an adsorbent for efficient removal of organic and inorganic contaminants. However, one of the biggest obstacles to the development of carbon-based nanomaterials adsorbents is insolubility and the lack of functional groups on the surface. There are several approaches to introduce functional groups on carbon nanotubes. One of these approaches, plasma applications, now has an important place in the creation of surface functional groups as a flexible, fast, and environmentally friendly method. This review focuses on recent information concerning the surface functionalization and modification of plasma treated carbon nanotube. This review considers the surface properties, advantages, and disadvantages of plasma-applied carbon nanotubes. It also examines the reaction mechanisms involved in the functional groups on the surface.

  9. Optimization of Designs for Nanotube-based Scanning Probes

    NASA Technical Reports Server (NTRS)

    Harik, V. M.; Gates, T. S.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Optimization of designs for nanotube-based scanning probes, which may be used for high-resolution characterization of nanostructured materials, is examined. Continuum models to analyze the nanotube deformations are proposed to help guide selection of the optimum probe. The limitations on the use of these models that must be accounted for before applying to any design problem are presented. These limitations stem from the underlying assumptions and the expected range of nanotube loading, end conditions, and geometry. Once the limitations are accounted for, the key model parameters along with the appropriate classification of nanotube structures may serve as a basis for the design optimization of nanotube-based probe tips.

  10. Ultra High Energy Density Cathodes with Carbon Nanotubes

    DTIC Science & Technology

    2013-12-10

    a) Carbon nanotube paper coated with NCA cathode composite for testing as positive electrode in Li-ion battery (b) Comparison of NCA specific...received and purified CNT electrodes coated with NCA cathode composite. (b) Discharge capacities as a function of rate and cycle for NCA on Al and...thickness increases. The first approach was to cast SOA NCA cathode composites onto CNT current collectors using an adjustable blade coater. The

  11. Boron Nitride Nanotubes for Engineering Applications

    NASA Technical Reports Server (NTRS)

    Hurst, Janet; Hull, David; Gorican, Daniel

    2005-01-01

    Boron nitride nanotubes (BNNT) are of significant interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted wide attention. Both materials have potentially unique and important properties for structural and electronic applications. However of even more consequence than their similarities may be the complementary differences between carbon and boron nitride nanotubes While BNNT possess a very high modulus similar to CNT, they also possess superior chemical and thermal stability. Additionally, BNNT have more uniform electronic properties, with a uniform band gap of 5.5 eV while CNT vary from semi-conductive to highly conductive behavior. Boron nitride nanotubes have been synthesized both in the literature and at NASA Glenn Research Center, by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistent large scale production of a reliable product has proven difficult. Progress in the reproducible synthesis of 1-2 gram sized batches of boron nitride nanotubes will be discussed as well as potential uses for this unique material.

  12. Chemical reactions confined within carbon nanotubes.

    PubMed

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  13. New High Aspect-Ratio Titania Nanotubes

    NASA Astrophysics Data System (ADS)

    Panaitescu, Eugen; Richter, Christiaan; Menon, Latika

    2007-03-01

    Titanium oxide nanotubes show great promise in photocatalytic, gas sensing, biological, and other applications. Techniques for the fabrication of titania nanotubes include electrodeposition in polymer molds starting from alumina templates, anodization of titanium in fluoride containing solutions, and hydrothermal treatment of nano- and micropowders. We have developed a new synthesis route for the production of new ultra-high aspect-ratio (over 1000:1) titania nanotubes by anodization in chloride containing acid solutions. The fabrication process occurs rapidly, in a fraction of the time when compared with other methods such as anodization in the highly toxic fluoride-containing electrolytes. We have demonstrated nanotubes with diameters as small as 25 nm, and lengths of up to 50 μm, and we have produced them with varying carbon content through the addition of organic acids in the electrolyte. This opens up new possibilities for many advanced applications of such nanotubes. Various synthesis conditions (pH, chloride content, electrolyte nature), and their influence on morphology, composition, and crystalline structure will be presented. Preliminary results on photocatalytic and transmission properties will also be discussed.

  14. Different Technical Applications of Carbon Nanotubes.

    PubMed

    Abdalla, S; Al-Marzouki, F; Al-Ghamdi, Ahmed A; Abdel-Daiem, A

    2015-12-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  15. Formation and growth mechanisms of single-walled metal oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Yucelen, Gulfem Ipek

    In this thesis, main objectives are to discover the first molecular-level mechanistic framework governing the formation and growth of single-walled metal-oxide nanotubes, apply this framework to demonstrate the engineering of nanotubular materials of controlled dimensions, and to progress towards a quantitative multiscale understanding of nanotube formation. In Chapter 2, the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature, in the formation of single-walled aluminosilicate nanotubes is reported. The structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm, are characterized by electrospray ionization (ESI) mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. DFT calculations revealed the intrinsic curvature of nanoscale intermediates with bonding environments similar to the structure of the final nanotube product. It is shown that curved nano-intermediates form in aqueous synthesis solutions immediately after initial hydrolysis of reactants at 25 °C, disappear from the solution upon heating to 95 °C due to condensation, and finally rearrange to form ordered single-walled aluminosilicate nanotubes. Integration of all results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. Then, in Chapter 3, new molecular-level concepts for constructing nanoscopic metal oxide objects are demonstrated. The diameters of metal oxide nanotubes are shaped with Angstrom-level precision by controlling the shape of nanometer-scale precursors. The subtle relationships between precursor shape and structure and final nanotube curvature are measured (at the molecular level). Anionic ligands (both organic and inorganic) are used to exert fine control over precursor

  16. Lagrangian Approach to Jet Mixing and Optimization of the Reactor for Production of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Povitsky, Alex; Salas, Manuel D.

    2001-01-01

    This study was motivated by an attempt to optimize the High Pressure carbon oxide (HiPco) process for the production of carbon nanotubes from gaseous carbon oxide, The goal is to achieve rapid and uniform heating of catalyst particles by an optimal arrangement of jets. A mixed Eulerian and Lagrangian approach is implemented to track the temperature of catalyst particles along their trajectories as a function of time. The FLUENT CFD software with second-order upwind approximation of convective terms and an algebraic multigrid-based solver is used. The poor performance of the original reactor configuration is explained in terms of features of particle trajectories. The trajectories most exposed to the hot jets appear to be the most problematic for heating because they either bend towards the cold jet interior or rotate upwind of the mixing zone. To reduce undesirable slow and/or oscillatory heating of catalyst particles, a reactor configuration with three central jets is proposed and the optimal location of the central and peripheral nozzles is determined.

  17. CARBON NANOTUBES IN MICROWAVE ENVIRONMENT-IGNITION AND RECONSTRUCTION

    EPA Science Inventory

    The unusual property of single-walled carbon nanotubes (SWNT), multi-wall (MWNT) nanotubes and Buckminsterfullerene (C-60) is observed upon exposure to microwave-assisted ignition. Carbon nanotubes known for a range of mechanical and electronic properties because of their unique...

  18. Vertically aligned BCN nanotubes with high capacitance.

    PubMed

    Iyyamperumal, Eswaramoorthi; Wang, Shuangyin; Dai, Liming

    2012-06-26

    Using a chemical vapor deposition method, we have synthesized vertically aligned BCN nanotubes (VA-BCNs) on a Ni-Fe-coated SiO(2)/Si substrate from a melamine diborate precursor. The effects of pyrolysis conditions on the morphology and thermal property of grown nanotubes, as well as the nanostructure and composition of an individual BCN nanotube, were systematically studied. It was found that nitrogen atoms are bonded to carbons in both graphitic and pyridinic forms and that the resultant VA-BCNs grown at 1000 °C show the highest specific capacitance (321.0 F/g) with an excellent rate capability and high durability with respect to nonaligned BCN (167.3 F/g) and undoped multiwalled carbon nanotubes (117.3 F/g) due to synergetic effects arising from the combined co-doping of B and N in CNTs and the well-aligned nanotube structure.

  19. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    NASA Technical Reports Server (NTRS)

    Schmidt, Howard K. (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor); Rauwald, Urs (Inventor); Kittrell, W. Carter (Inventor); Ziegler, Kirk J. (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  20. Thermodynamics on Soluble Carbon Nanotubes: How Do DNA Molecules Replace Surfactants on Carbon Nanotubes?

    PubMed Central

    Kato, Yuichi; Inoue, Ayaka; Niidome, Yasuro; Nakashima, Naotoshi

    2012-01-01

    Here we represent thermodynamics on soluble carbon nanotubes that enables deep understanding the interactions between single-walled carbon nanotubes (SWNTs) and molecules. We selected sodium cholate and single-stranded cytosine oligo-DNAs (dCn (n = 4, 5, 6, 7, 8, 10, 15, and 20)), both of which are typical SWNT solubilizers, and successfully determined thermodynamic properties (ΔG, ΔH and ΔS values) for the exchange reactions of sodium cholate on four different chiralities of SWNTs ((n,m) = (6,5), (7,5), (10,2), and (8,6)) for the DNAs. Typical results contain i) the dC5 exhibited an exothermic exchange, whereas the dC6, 8, 10, 15, and 20 materials exhibited endothermic exchanges, and ii) the energetics of the dC4 and dC7 exchanges depended on the associated chiral indices and could be endothermic or exothermic. The presented method is general and is applicable to any molecule that interacts with nanotubes. The study opens a way for science of carbon nanotube thermodynamics. PMID:23066502

  1. Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures.

    PubMed

    Wang, Pengwei; Zhao, Tianyi; Bian, Ruixin; Wang, Guangyan; Liu, Huan

    2017-12-26

    Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.

  2. GaS multi-walled nanotubes from the lamellar precursor

    NASA Astrophysics Data System (ADS)

    Hu, P. A.; Liu, Y. Q.; Fu, L.; Cao, L. C.; Zhu, D. B.

    2005-04-01

    Inorganic fullerene-like (IF) nanotubes constructed from layered metal chalcogenides are of particular significance because of their excellent physical properties and potential application in wide fields. But very few previous studies were focused on the IF nanotubes of layered III-VI semiconductor. Therefore we investigate the preparation, structure and photoluminescence (PL) properties of GaS nanotube (an important III-VI semiconductor IF nanotube). A simple method is introduced to prepare GaS multi-walled nanotubes for the first time by annealing the natural lamellar precursor in Ar. The reaction temperature is crucial for the formation of nanotube. A suitable temperature range is 500-850 °C. Bulk quantities of GaS nanotubes with diameters of 30-150 nm and lengths up to ten micrometers were produced. Some of these nanotubes show corrugated and interlinked structure and form many segments, demonstrating a bamboo-like structure. As compared to bulk materials, the obvious distinction of the products in PL spectra at liquid nitrogen temperature of 77 K was due to the structure variety.

  3. Local gate control in carbon nanotube quantum devices

    NASA Astrophysics Data System (ADS)

    Biercuk, Michael Jordan

    This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single

  4. Dispersions of Carbon nanotubes in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  5. Massive radius-dependent flow slippage in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Siria, Alessandro; Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Bocquet, Lydéric

    2016-11-01

    Nanofluidics is the frontier where the continuum picture of fluid mechanics confronts the atomic nature of matter. Recent reports indicate that carbon nanotubes exhibit exceptional water transport properties due to nearly frictionless interfaces and this has stimulated interest in nanotube-based membranes for desalination, nano-filtration, and energy harvesting. However, the fundamental mechanisms of water transport inside nanotubes and at water-carbon interfaces remain controversial, as existing theories fail to provide a satisfying explanation for the limited experimental results. We report a study of water jets emerging from single nanotubes made of carbon and boron-nitride materials. Our experiments reveal extensive and radius-dependent surface slippage in carbon nanotubes (CNT). In stark contrast, boron-nitride nanotubes (BNNT), which are crystallographically similar to CNTs but electronically different, exhibit no slippage. This shows that slippage originates in subtle atomic-scale details of the solid-liquid interface. ERC StG - NanoSOFT.

  6. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: Synthesis of nanotubes, surface characterization, and bond strength.

    PubMed

    Dos Santos, Angélica Feltrin; Sandes de Lucena, Fernanda; Sanches Borges, Ana Flávia; Lisboa-Filho, Paulo Noronha; Furuse, Adilson Yoshio

    2018-04-05

    Despite numerous advantages such as high strength, the bond of yttria-stabilized zirconia polycrystal (Y-TZP) to tooth structure requires improvement. The purpose of this in vitro study was to evaluate the incorporation of TiO 2 nanotubes into zirconia surfaces and the bond strength of resin cement to the modified ceramic. TiO 2 nanotubes were produced by alkaline synthesis, mixed with isopropyl alcohol (50 wt%) and applied on presintered zirconia disks. The ceramics were sintered, and the surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS) analysis. For bond strength, the following 6 groups (n=16) were evaluated: without TiO 2 and Single Bond Universal; with TiO 2 nanotubes and Single Bond Universal; without TiO 2 nanotubes and Z-prime; with TiO 2 nanotubes and Z-prime; without TiO 2 and Signum Zirconia Bond; with TiO 2 and Signum Zirconia Bond. After sintering, resin cement cylinders, diameter of 1.40 mm and 1 mm in height, were prepared and polymerized for 20 seconds. Specimens were stored in water at 37°C for 30 days and submitted to a shear test. Data were analyzed by 2-way ANOVA and Tukey honest significant difference (α=.05) tests. EDS analysis confirmed that nanoagglomerates were composed of TiO 2 . The shear bond strength showed statistically significant differences among bonding agents (P<.001). No significant differences were found with the application of nanotubes, regardless of the group analyzed (P=.682). The interaction among the bonding agent factors and addition of nanotubes was significant (P=.025). Nanotubes can be incorporated into zirconia surfaces. However, this incorporation did not improve bond strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. BX CY NZ nanotubes and nanoparticles

    DOEpatents

    Cohen, Marvin Lou; Zettl, Alexander Karlwalter

    2001-01-01

    The invention provides crystalline nanoscale particles and tubes made from a variety of stoichiometries of B.sub.x C.sub.y N.sub.z where x, y, and z indicate a relative amount of each element compared to the others and where no more than one of x, y, or z are zero for a single stoichiometry. The nanotubes and nanoparticles are useful as miniature electronic components, such as wires, coils, schotky barriers, diodes, etc. The nanotubes and nanoparticles are also useful as coating that will protect an item from detection by electromagnetic monitoring techniques like radar. The nanotubes and nanoparticles are additionally useful for their mechanical properties, being comparable in strength and stiffness to the best graphite fibers or carbon nanotubes. The inventive nanoparticles are useful in lubricants and composites.

  8. Soluble organic nanotubes for catalytic systems

    NASA Astrophysics Data System (ADS)

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-01

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core-shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the ‘confined effect’ and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  9. Soluble organic nanotubes for catalytic systems.

    PubMed

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-18

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core–shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the 'confined effect' and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  10. Oriented nanotube electrodes for lithium ion batteries and supercapacitors

    DOEpatents

    Frank, Arthur J.; Zhu, Kai; Wang, Qing

    2013-03-05

    An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

  11. Probing Photosensitization by Functionalized Carbon Nanotubes

    EPA Science Inventory

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  12. Computational Nanomechanics of Carbon Nanotubes and Composites

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.

  13. Correlated Electrons in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Odintsov, Arkadi A.; Yoshioka, Hideo

    Single-wall carbon nanotubes are almost ideal systems for the investigation of exotic many-body effects due to non-Fermi liquid behavior of interacting electrons in one dimension. Recent theoretical and experimental results are reviewed with a focus on electron correlations. Starting from a microscopic lattice model we derive an effective phase Hamiltonian for conducting single-wall nanotubes with arbitrary chirality. The parameters of the Hamiltonian show very weak dependence on the chiral angle, which makes the low-energy physics of conducting nanotubes universal. The temperature-dependent resistivity and frequency-dependent optical conductivity of nanotubes with impurities are evaluated within the Luttinger-like model. Localization effects are studied. In particular, we found that intra-valley and inter-valley electron scattering can not coexist at low energies. Low-energy properties of clean nanotubes are studied beyond the Luttinger liquid approximation. The strongest Mott-like electron instability occurs at half filling. In the Mott insulating phase electrons at different atomic sublattices form characteristic bound states. The energy gaps occur in all modes of elementary excitations and estimate at 0.01-0.1 eV. We finally discuss observability of the Mott insulating phase in transport experiments. The accent is made on the charge transfer from external electrodes which results in a deviation of the electron density from half-filling.

  14. New nanotube synthesis strategy--application of sodium nanotubes formed inside anodic aluminium oxide as a reactive template.

    PubMed

    Wang, Lung-Shen; Lee, Chi-Young; Chiu, Hsin-Tien

    2003-08-07

    Formation of Na nanotubes inside the channels of anodic aluminium oxide (AAO) membranes has been achieved by decomposing NaH thermally on AAO. The as-produced material, Na@AAO, is applied as a reactive template to prepare other tubular materials. Reacting Na@AAO with gaseous C6Cl6 generates carbon nanotubes (ca. 250 nm, wall thickness of 20 nm, tube length of 60 microm) inside the AAO channels. Highly aligned bundles of nearly amorphous carbon nanotubes are isolated after AAO is removed.

  15. Polymerization initated at sidewalls of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  16. Assessment of chemically separated carbon nanotubes for nanoelectronics.

    PubMed

    Zhang, Li; Zaric, Sasa; Tu, Xiaomin; Wang, Xinran; Zhao, Wei; Dai, Hongjie

    2008-02-27

    It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that

  17. Diamond-Coated Carbon Nanotubes for Efficient Field Emission

    NASA Technical Reports Server (NTRS)

    Dimitrijevic, Stevan; Withers, James C.

    2005-01-01

    Field-emission cathodes containing arrays of carbon nanotubes coated with diamond or diamondlike carbon (DLC) are undergoing development. Multiwalled carbon nanotubes have been shown to perform well as electron field emitters. The idea underlying the present development is that by coating carbon nanotubes with wideband- gap materials like diamond or DLC, one could reduce effective work functions, thereby reducing threshold electric-field levels for field emission of electrons and, hence, improving cathode performance. To demonstrate feasibility, experimental cathodes were fabricated by (1) covering metal bases with carbon nanotubes bound to the bases by an electrically conductive binder and (2) coating the nanotubes, variously, with diamond or DLC by plasma-assisted chemical vapor deposition. In tests, the threshold electric-field levels for emission of electrons were reduced by as much as 40 percent, relative to those of uncoated- nanotube cathodes. Coating with diamond or DLC could also make field emission-cathodes operate more stably by helping to prevent evaporation of carbon from nanotubes in the event of overheating of the cathodes. Cathodes of this type are expected to be useful principally as electron sources for cathode-ray tubes and flat-panel displays.

  18. A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities

    PubMed Central

    2012-01-01

    We report a simple chemical conversion and cation exchange technique to realize the synthesis of Sb2S3 nanotubes at a low temperature of 90°C. The successful chemical conversion from ZnS nanotubes to Sb2S3 ones benefits from the large difference in solubility between ZnS and Sb2S3. The as-grown Sb2S3 nanotubes have been transformed from a weak crystallization to a polycrystalline structure via successive annealing. In addition to the detailed structural, morphological, and optical investigation of the yielded Sb2S3 nanotubes before and after annealing, we have shown high photocatalytic activities of Sb2S3 nanotubes for methyl orange degradation under visible light irradiation. This approach offers an effective control of the composition and structure of Sb2S3 nanomaterials, facilitates the production at a relatively low reaction temperature without the need of organics, templates, or crystal seeds, and can be extended to the synthesis of hollow structures with various compositions and shapes for unique properties. PMID:22448960

  19. Composites of multi-walled carbon nanotubes with polypropylene and thermoplastic olefin blends prepared by melt compounding

    NASA Astrophysics Data System (ADS)

    Petrie, Kyle G.

    Composites of multi-walled carbon nanotubes (MWCNTs) with polypropylene (PP) and thermoplastic olefins (TPOs) were prepared by melt compounding. Two non-covalent functionalization methods were employed to improve nanotube dispersion and the resulting composite properties are reported. The first functionalization approach involved partial coating of the surface of the nanotubes with a hyperbranched polyethylene (HBPE). MWCNT functionalization with HBPE was only moderately successful in breaking up the large aggregates that formed upon melt mixing with PP. In spite of the formation of large aggregates, the samples were conductive above a percolation threshold of 7.3 wt%. MWCNT functionalization did not disrupt the electrical conductivity of the nanotubes. The composite strength was improved with addition of nanotubes, but ductility was severely compromised because of the existence of aggregates. The second method involved PP matrix functionalization with aromatic moieties capable of pi-pi interaction with MWCNT sidewalls. Various microscopy techniques revealed the addition of only 25 wt% of PP-g-pyridine (Py) to the neat PP was capable of drastically reducing nanotube aggregate size and amount. Raman spectroscopy confirmed improved polymer/nanotube interaction with the PP-g-Py matrix. Electrical percolation threshold was obtained at a MWCNT loading of approximately 1.2 wt%. Electrical conductivity on the order of 10 -2 S/m was achieved, suggesting possible use in semi-conducting applications. Composite strength was improved upon addition of MWCNTs. The matrix functionalization with Py resulted in a significant improvement in composite ductility when filled with MWCNTs in comparison to its maleic anhydride (MA) counterpart. Preliminary investigations suggest that the use of alternating current (AC) electric fields may be effective in aligning nanotubes in PP to reduce the filler loading required for electrical percolation. Composites containing MWCNT within PP

  20. Synthesis of Boron Nitride Nanotubes for Engineering Applications

    NASA Technical Reports Server (NTRS)

    Hurst, Janet; Hull, David; Gorican, Dan

    2005-01-01

    Boron Nitride nanotubes (BNNT) are of interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted large amounts of attention. Both materials have potentially unique and significant properties which may have important structural and electronic applications in the future. However of even more interest than their similarities may be the differences between carbon and boron nanotubes. Whilt boron nitride nanotubes possess a very high modulus similaar to CNT, they are also more chemically and thermally inert. Additionally BNNT possess more uniform electronic properties, having a uniform band gap of approximately 5.5 eV while CNT vary from semi-conductin to conductor behavior. Boron Nitride nanotubes have been synthesized by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistently producing a reliable product has proven difficult. Progress in synthesis of 1-2 gram sized batches of Boron Nitride nanotubes will be discussed as well as potential uses for this unique material.

  1. Preparation and characterization of biocompatible magnetic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shan, Yan; Chen, Kezheng; Yu, Xuegang; Gao, Lian

    2010-11-01

    Magnetic carbon nanotubes consisting of multi-wall carbon nanotubes (MWNTs) core and Fe3O4 shell were successfully prepared by in situ thermal decomposition of Fe(acac)3 or FeCl3 or Fe(CO)5 in 2-pyrrolidone containing acid treated MWNTs at 240 °C with the protection of nitrogen gas. The samples were characterized by TEM, XRD, SEAD, XPS and superconducting quantum interference device. Also, their biocompatibility was compared with naked carbon nanotubes. The results showed that after coated with Fe3O4 nanoparticles, the obtained magnetic carbon nanotubes show superparamagnetic characteristic at room temperature, and their blocking temperature is about 80 K. The magnetic properties of the nanotubes are relevant to the content of magnetic particles, increasing content of magnetic nanoparticles leads to higher blocking temperature and saturation magnetization. The results of antimicrobial activities to bacterial cells (Escherichia coli) showed that the MWNTs have antimicrobial activity, while the magnetic nanotubes are biocompatible even with a higher concentration than that of MWNTs.

  2. Graphene-carbon nanotube hybrid materials and use as electrodes

    DOEpatents

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  3. Ecological Uptake and Depuration of Carbon Nanotubes by Lumbriculus variegatus

    PubMed Central

    Petersen, Elijah J.; Huang, Qingguo; Weber, Walter J.

    2008-01-01

    Background Carbon nanotubes represent a class of nanomaterials having broad application potentials and documented cellular uptake and ecotoxicological effects that raise the possibility that they may bioaccumulate in living organisms. Objectives Radioactively labeled nanotubes were synthesized using a novel methane chemical vapor deposition procedure. Single-walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes (MWNTs), and pyrene were spiked to sediment samples, and the respective uptake and depuration of these nanotubes and pyrene were assessed by the oligochaete, Lumbriculus variegatus. Results 14C-labeled carbon nanotubes were developed for these experiments to overcome significant previous limitations for quantifying nanotube materials in environmental and biological media. Biota-sediment accumulation factors for SWNTs and MWNTs were observed to be almost an order of magnitude lower than those for pyrene, a four-ringed polycyclic aromatic hydrocarbon (PAH). The depuration behaviors of the oligochaete suggested that the nanotubes detected in these organisms were associated with sediments remaining in the organism guts and not absorbed into cellular tissues as was the pyrene. The results suggest that, unlike PAHs, purified carbon nanotubes do not readily absorb into organism tissues. PMID:18414633

  4. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors.

    PubMed

    Gopalsamy, Karthikeyan; Xu, Zhen; Zheng, Bingna; Huang, Tieqi; Kou, Liang; Zhao, Xiaoli; Gao, Chao

    2014-08-07

    Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm(-2) (for a single electrode) and 17.3 mF cm(-2) (for the whole device) at 0.1 mA cm(-2), respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics.

  5. Methods of Functionalization of Carbon Nanotubes by Photooxidation

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel (Inventor); Meador, Michael A. (Inventor)

    2016-01-01

    A method of photooxidizing carbon nanotubes, such as single-walled and multi-walled carbon nanotubes. The nanotubes are purified and dispersed in a solvent, such as n-methyl pyrrolidinone or dimethylformamide. A singlet oxygen sensitizer like Rose Bengal is added to the solution. Oxygen gas is continuously supplied while irradiating the solution while irradiating the solution with ultraviolet light to produce singlet oxygen to oxidize the single-walled carbon nanotubes. Advantageously, the method significantly increases the level of oxidation compared with prior art methods.

  6. Carbon nanotubes filled partially or completely with nickel

    NASA Astrophysics Data System (ADS)

    Liang, C. H.; Meng, G. W.; Zhang, L. D.; Shen, N. F.; Zhang, X. Y.

    2000-09-01

    We report the catalytic synthesis of carbon nanotubes filled with Ni by chemical vapor deposition over the Raney-Ni catalyst. Straight and two types of bamboo-shaped carbon nanotubes have been discovered under TEM. Further investigation with TEM shows that an obvious tendency exists, i.e. the straight nanotube encapsulating Ni completely; as for the compartments of bamboo-shaped nanotube, either every one filled with a small Ni particle or only the end is capped with a needle-shaped Ni, which suggests different growth mechanism.

  7. Wire-shaped perovskite solar cell based on TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan; Kulkarni, Sneha A.; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K.; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-01

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

  8. Thermionic Emission of Single-Wall Carbon Nanotubes Measured

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2004-01-01

    Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.

  9. Electronic properties of functionalized (5,5) beryllium oxide nanotubes.

    PubMed

    Chigo Anota, Ernesto; Cocoletzi, Gregorio Hernández

    2013-05-01

    Using the density functional theory (DFT) we study the structural and electronic properties of functionalized (5,5) chirality single wall beryllium oxide nanotubes (SW-BeONTs), i.e. armchair nanotubes. The nanotube surface and ends are functionalized by the hydroxyl (OH) functional group. Our calculations consider the Hamprecht-Cohen-Tozer-Handy functional in the generalized gradient approximation (HCTH-GGA) to deal with the exchange-correlation energies, and the base function with double polarization (DNP). The geometry optimization of both defects free and with point defects nanotubes is done applying the criterion of minimum energy. Six configurations are considered: The OH oriented toward the Be (on the surface and at the end), toward the O (on the surface and at the end) and placed at the nanotube ends. Simulation results show that the nanotube functionalization takes place at the nanotube ends with the BeO bond displaying hydrogen-like bridge bonds. Moreover the nanotube semiconductor behavior remains unchanged. The polarity is high (it shows a transition from covalent to ionic) favoring solvatation. On the other hand, the work function low value suggests this to be a good candidate for the device fabrication. When the nanotube contains surface point defects the work function is reduced which provides excellent possibilities for the use of this material in the electronic industry. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Methods for producing reinforced carbon nanotubes

    DOEpatents

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  11. Carbon Nanotube Material Quality Assessment

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard; Arepalli, Sivaram; Sosa, Edward; Niolaev, Pavel; Gorelik, Olga

    2006-01-01

    The nanomaterial activities at NASA Johnson Space Center focus on carbon nanotube production, characterization and their applications for aerospace systems. Single wall carbon nanotubes are produced by arc and laser methods. Characterization of the nanotube material is performed using the NASA JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. A possible addition of other techniques such as XPS, and ICP to the existing protocol will be discussed. Changes in the quality of the material collected in different regions of the arc and laser production chambers is assessed using the original JSC protocol. The observed variations indicate different growth conditions in different regions of the production chambers.

  12. Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

    NASA Technical Reports Server (NTRS)

    Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.

    2013-01-01

    Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.

  13. Applications of Tunable TiO2 Nanotubes as Nanotemplate and Photovoltaic Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongdong; Chang, Pai-Chun; Chien, Chung-Jen

    2010-10-26

    Highly ordered anodic titanium oxide (ATO) TiO{sub 2} nanotube film has been synthesized via a typical two-step anodization method. Following a reductive doping approach, metallic materials (copper and nickel) can be efficiently electrodeposited into the nanotubes. This versatile process yields reproducible tubular structures in ATO membranes, because of the conductive nature of crystallized TiO{sub 2}, yielding promising potential for nanotemplate applications. In this paper, we present a dye-sensitized solar cell constructed by employing such ATO films. It is observed that the reductive doping treatment can also enhance the solar cell’s short current density and fill factor, resulting in an improvedmore » energy conversion efficiency.« less

  14. Ion Separation using a Y-Junction Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyun; Sinnott, Susan; Aluru, Narayana

    2005-11-01

    Using molecular dynamics simulations, we show that a Y-junction carbon nanotube can be used to separate potassium and chloride ions from a KCl solution. The system consists of a KCl solution chamber connected to an (8,8) carbon nanotube, which acts as the stem. Two carbon nanotube branches of sizes (5,5) and (6,6) are connected to the (8,8) nanotube forming the Y-junction. Uncharged (5,5) and (6,6) carbon nanotubes show close to zero occupancy for transport of potassium and chloride ions. By functionalizing a (5,5) carbon nanotube with a negative charge, we show that we can selectively transport potassium ions. Similarly, by functionalizing a (6,6) carbon nanotube with a positive charge, we can selectively transport chloride ions. By performing molecular dynamics simulations on the entire system comprising the two branches, stem and the KCl solution chamber, we show that perfect ion separation is observed when (5,5) and (6,6) nanotubes are charged with σw,(5,5)=-0.181 C/m^2 and σw,(6,6)=+0.143 C/m^2, respectively, whereas for the system with σw,(5,5)=-0.168 C/m^2 and σw,(6,6)=+0.131 C/m^2 the separation is not perfect because of the formation of ion pairs. We discuss the formation and control of ion pairing, which is a common phenomenon in confined nanochannels.

  15. Electrochemical Characterization of Carbon Nanotubes for Fuel Cell MEA's

    NASA Technical Reports Server (NTRS)

    Panagaris, Jael; Loyselle, Patricia

    2004-01-01

    Single-walled and multi-walled carbon nanotubes from different sources have been evaluated before and after sonication to identify structural differences and evaluate electrochemical performance. Raman spectral analysis and cyclic voltammetry in situ with QCM were the principle means of evaluating the tubes. The raman data indicates that sonication in toluene modifies the structural properties of the nanotubes. Sonication also affects the electrochemical performance of single-walled nanotubes and the multi-walled tubes differently. The characterization of different types of carbon nanotubes leads up to identifying a potential candidate for incorporating carbon nanotubes for fuel cell MEA structures.

  16. Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites

    DOEpatents

    Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN

    2010-07-27

    Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.

  17. On the vibrational characteristics of single- and double-walled carbon nanotubes containing ice nanotube in aqueous environment

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.; Ameri, A.

    2015-10-01

    The properties and behavior of carbon nanotubes (CNTs) in aqueous environment due to their considerable potential applications in nanobiotechnology and designing nanobiosensors have attracted the attention of researchers. In this study, molecular dynamics simulations are carried out to investigate the vibrational characteristics of single- and double-walled CNTs containing ice nanotubes (a new phase of ice) in vacuum and aqueous environments. The results demonstrate that formation of ice nanotubes inside the CNTs reduces the natural frequency of pure CNTs. Moreover, it is demonstrated that increasing the number of walls considerably reduces the sensitivity of frequency to the presence of ice nanotube inside CNT. Additionally, it is shown that increasing the length decreases the effect of ice nanotube on reducing the frequency. The calculation of natural frequency of CNTs in aqueous media demonstrates that the interaction of CNTs with water molecules considerably reduces the natural frequency up to 50 %. Finally, it is demonstrated that in the case of CNTs with one free end in aqueous environment, the CNT does not vibrate in its first mode, and its frequency is between the frequencies of first and second modes of vibration.

  18. Carbon Nanotube Underwater Acoustic Thermophone

    DTIC Science & Technology

    2016-09-23

    Attorney Docket No. 300009 1 of 8 A CARBON NANOTUBE UNDERWATER ACOUSTIC THERMOPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The...the Invention [0003] The present invention is an acoustically transparent carbon nanotube thermophone. (2) Description of the Prior Art [0004...Traditional acoustic transduction typically begins with the generation of electrical excitation pulsed through an amplifier into an electro- acoustic

  19. Multi-walled boron nitride nanotubes as self-excited launchers.

    PubMed

    Li, Yifan; Zhou, Yi; Wu, Yan; Huang, Chengchi; Wang, Long; Zhou, Xuyan; Zhao, Zhenyang; Li, Hui

    2017-07-27

    A self-excited launcher consisting of multi-walled boron nitride nanotubes (BNNTs) has been investigated using molecular dynamics simulation. The results show that, after a period of high frequency oscillation, the innermost BNNT can be spontaneously ejected along its central axis at a relatively fast speed. The launching is caused by the energy transfer between the nanotubes and without absorbing energy from the external environment. Most self-excited launchers could launch their innermost nanotube, although an inappropriate structure of the nanotubes contributes to a blocked or failed launch. In addition, a launch angle corrector and a nanotube receiver associated with a self-excited launcher are also manufactured to precisely control the launch angle and distance of the BNNTs. This study provides the possibility to fabricate and design self-excited launchers using multi-walled nanotubes.

  20. A Thermal Model for Carbon Nanotube Interconnects

    PubMed Central

    Mohsin, Kaji Muhammad; Srivastava, Ashok; Sharma, Ashwani K.; Mayberry, Clay

    2013-01-01

    In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI) interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT) interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters. PMID:28348333

  1. On Certain Topological Indices of Boron Triangular Nanotubes

    NASA Astrophysics Data System (ADS)

    Aslam, Adnan; Ahmad, Safyan; Gao, Wei

    2017-08-01

    The topological index gives information about the whole structure of a chemical graph, especially degree-based topological indices that are very useful. Boron triangular nanotubes are now replacing usual carbon nanotubes due to their excellent properties. We have computed general Randić (Rα), first Zagreb (M1) and second Zagreb (M2), atom-bond connectivity (ABC), and geometric-arithmetic (GA) indices of boron triangular nanotubes. Also, we have computed the fourth version of atom-bond connectivity (ABC4) and the fifth version of geometric-arithmetic (GA5) indices of boron triangular nanotubes.

  2. Single Wall Nanotube Type-Specific Functionalization and Separation

    NASA Technical Reports Server (NTRS)

    Boul, Peter; Nikolaev, Pavel; Sosa, Edward; Arepalli, Sivaram; Yowell, Leonard

    2008-01-01

    Metallic single-wall carbon nanotubes were selectively solubilized in THF and separated from semiconducting nanotubes. Once separated, the functionalized metallic tubes were de-functionalized to restore their metallic band structure. Absorption and Raman spectroscopy of the enriched samples support conclusions of the enrichment of nanotube samples by metallic type. A scalable method for enriching nanotube conductive type has been developed. Raman and UV-Vis data indicate SWCNT reaction with dodecylbenzenediazonium results in metallic enrichment. It is expected that further refinement of this techniques will lead to more dramatic separations of types and diameters.

  3. Carbon-Nanotube-Carpet Heat-Transfer Pads

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cruden, Brett A.; Cassel, Alan M.

    2006-01-01

    Microscopic thermal-contact pads that include carpet-like arrays of carbon nanotubes have been invented for dissipating heat generated in integrated circuits and similarly sized single electronic components. The need for these or other innovative thermal-contact pads arises because the requisite high thermal conductances cannot be realized by scaling conventional macroscopic thermal-contact pads down to microscopic sizes. Overcoming limitations of conventional thermal-contact materials and components, the carbon-nanotube thermal-contact pads offer the high thermal conductivities needed to accommodate the high local thermal power densities of modern electronic circuits, without need for large clamping pressures, extreme smoothness of surfaces in contact, or gap-filling materials (e.g., thermally conductive greases) to ensure adequate thermal contact. Moreover, unlike some conventional thermal-contact components, these pads are reusable. The figure depicts a typical pad according to the invention, in contact with a rough surface on an electronic component that is to be cooled. Through reversible bending and buckling of carbon nanotubes at asperities on the rough surface, the pad yields sufficiently, under relatively low contact pressure, that thermal contact is distributed to many locations on the surface to be cooled, including valleys where contact would not ordinarily occur in conventional clamping of rigid surfaces. Hence, the effective thermal-contact area is greater than that achievable through scaling down of a macroscopic thermal-contact pad. The extremely high longitudinal thermal conductivities of the carbon nanotubes are utilized to conduct heat away from potential hot spots on the surface to be cooled. The fibers protrude from a layer of a filler material (Cu, Ag, Au, or metal-particle- filled gels), which provides both mechanical support to maintain the carbon nanotubes in alignment and thermal conductivity to enhance the diffusion of concentrated heat

  4. Photoluminescent properties of electrochemically synthetized ZnO nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracia Jiménez, J.M.

    ZnO nanotubes were prepared by a sequential combination of electrochemical deposition, chemical attack and regeneration. ZnO nanocolumns were initially electrodeposited on conductive substrates and then converted into nanotubes by a process involving chemical etching and subsequent regrowth. The morphology of these ZnO nanocolumns and derived nanotubes was monitored by Scanning Electron Microscopy and their optical properties was studied by photoluminescence spectroscopy. Photoluminescence were measured as a function of temperature, from 6 to 300 K, for both nanocolumns and nanotubes. In order to study the behaviour of induced intrinsic defect all ZnO films were annealed in air at 400 °C andmore » their photoluminescent properties were also registered before and after annealing. The behaviour of photoluminescence is explained taking into account the contribution of different point defects. A band energy diagram related to intrinsic defects was proposed to describe the behaviour of photoluminescence spectra. - Highlights: •ZnO nanotubes were obtained after etching and regrowth of electrodeposited ZnO films. •Photoluminescence spectra contain two parts involving excitonic and defects transitions. •Annealing produces a blue shift in the PL peaks in both ZnO nanocolumns and nanotubes. •Etching causes a blue shift in PL peaks due to confinement effect in nanotubes walls.« less

  5. Wave propagation of carbon nanotubes embedded in an elastic medium

    NASA Astrophysics Data System (ADS)

    Natsuki, Toshiaki; Hayashi, Takuya; Endo, Morinobu

    2005-02-01

    This paper presents analytical models of wave propagation in single- and double-walled carbon nanotubes, as well as nanotubes embedded in an elastic matrix. The nanotube structures are treated within the multilayer thin shell approximation with the elastic properties taken to be those of the graphene sheet. The double-walled nanotubes are coupled together through the van der Waals force between the inner and outer nanotubes. For carbon nanotubes embedded in an elastic matrix, the surrounding elastic medium can be described by a Winkler model. Tube wave propagation of both symmetrical and asymmetrical modes can be analyzed based on the present elastic continuum model. It is found that the asymmetrical wave behavior of single- and double-walled nanotubes is significantly different. The behavior is also different from that in the surrounding elastic medium.

  6. Large-area fluidic assembly of single-walled carbon nanotubes through dip-coating and directional evaporation

    NASA Astrophysics Data System (ADS)

    Kim, Pilnam; Kang, Tae June

    2017-12-01

    We present a simple and scalable fluidic-assembly approach, in which bundles of single-walled carbon nanotubes (SWCNTs) are selectively aligned and deposited by directionally controlled dip-coating and solvent evaporation processes. The patterned surface with alternating regions of hydrophobic polydimethyl siloxane (PDMS) (height 100 nm) strips and hydrophilic SiO2 substrate was withdrawn vertically at a constant speed ( 3 mm/min) from a solution bath containing SWCNTs ( 0.1 mg/ml), allowing for directional evaporation and subsequent selective deposition of nanotube bundles along the edges of horizontally aligned PDMS strips. In addition, the fluidic assembly was applied to fabricate a field effect transistor (FET) with highly oriented SWCNTs, which demonstrate significantly higher current density as well as high turn-off ratio (T/O ratio 100) as compared to that with randomly distributed carbon nanotube bundles (T/O ratio <10).

  7. Carbon Nanotubes for Space Photovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Efstathiadis, Harry; Haldar, Pradeep; Landi, Brian J.; Denno, Patrick L.; DiLeo, Roberta A.; VanDerveer, William; Raffaelle, Ryne P.

    2007-01-01

    Carbon nanotubes (CNTs) can be envisioned as an individual graphene sheet rolled into a seamless cylinder (single-walled, SWNT), or concentric sheets as in the case of a multi-walled carbon nanotube (MWNT) (1). The role-up vector will determine the hexagonal arrangement and "chirality" of the graphene sheet, which will establish the nanotube to be metallic or semiconducting. The optoelectronic properties will depend directly on this chiral angle and the diameter of the SWNT, with semiconductor types exhibiting a band gap energy (2). Characteristic of MWNTs are the concentric graphene layers spaced 0.34 nm apart, with diameters from 10-200 nm and lengths up to hundreds of microns (2). In the case of SWNTs, the diameters range from 0.4 - 2 nm and lengths have been reported up to 1.5 cm (3). SWNTs have the distinguishable property of "bundling" together due to van der Waal's attractions to form "ropes." A comparison of these different structural types is shown in Figure 1. The use of SWNTS in space photovoltaic (PV) applications is attractive for a variety of reasons. Carbon nanotubes as a class of materials exhibit unprecedented optical, electrical, mechanical properties, with the added benefit of being nanoscale in size which fosters ideal interaction in nanomaterial-based devices like polymeric solar cells. The optical bandgap of semiconducting SWNTs can be varied from approx. 0.4 - 1.5 eV, with this property being inversely proportional to the nanotube diameter. Recent work at GE Global Research has shown where a single nanotube device can behave as an "ideal" pn diode (5). The SWNT was bridged over a SiO2 channel between Mo contacts and exhibited an ideality factor of 1, based on a fit of the current-voltage data using the diode equation. The measured PV efficiency under a 0.8 eV monochromatic illumination showed a power conversion efficiency of 0.2 %. However, the projected efficiency of these junctions is estimated to be > 5 %, especially when one considers the

  8. Y{sub 2}O{sub 3}:Yb/Er nanotubes: Layer-by-layer assembly on carbon-nanotube templates and their upconversion luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Weishi; Shen, Jianfeng; Wan, Lei

    2012-11-15

    Graphical abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer assembly on carbon nanotubes templates followed by a subsequent heat treatment process. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm. Display Omitted Highlights: ► Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized. ► CNTs were used as templates for Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► LBL assembly and calcination were used for preparation of Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► The as-preparedmore » Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission. -- Abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer (LBL) assembly on carbon nanotubes (CNTs) templates followed by a subsequent heat treatment process. The crystal structure, element analysis, morphology and upconversion luminescence properties were characterized. XRD results demonstrate that the diffraction peaks of the samples calcinated at 800 °C or above can be indexed to the pure cubic phase of Y{sub 2}O{sub 3}. SEM images indicate that a large quantity of uniform and rough nanotubes with diameters of about 30–60 nm can be observed. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm, which have potential applications in such fields as nanoscale devices, molecular catalysts, nanobiotechnology, photonics and optoelectronics.« less

  9. Metal-doped single-walled carbon nanotubes and production thereof

    DOEpatents

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  10. Carbon Nanotubes for Supercapacitor

    PubMed Central

    2010-01-01

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage. PMID:20672061

  11. Methods Reduce Cost, Enhance Quality of Nanotubes

    NASA Technical Reports Server (NTRS)

    2009-01-01

    For all the challenges posed by the microgravity conditions of space, weight is actually one of the more significant problems NASA faces in the development of the next generation of U.S. space vehicles. For the Agency s Constellation Program, engineers at NASA centers are designing and testing new vessels as safe, practical, and cost-effective means of space travel following the eventual retirement of the space shuttle. Program components like the Orion Crew Exploration Vehicle, intended to carry astronauts to the International Space Station and the Moon, must be designed to specific weight requirements to manage fuel consumption and match launch rocket capabilities; Orion s gross liftoff weight target is about 63,789 pounds. Future space vehicles will require even greater attention to lightweight construction to help conserve fuel for long-range missions to Mars and beyond. In order to reduce spacecraft weight without sacrificing structural integrity, NASA is pursuing the development of materials that promise to revolutionize not only spacecraft construction, but also a host of potential applications on Earth. Single-walled carbon nanotubes are one material of particular interest. These tubular, single-layer carbon molecules - 100,000 of them braided together would be no thicker than a human hair - display a range of remarkable characteristics. Possessing greater tensile strength than steel at a fraction of the weight, the nanotubes are efficient heat conductors with metallic or semiconductor electrical properties depending on their diameter and chirality (the pattern of each nanotube s hexagonal lattice structure). All of these properties make the nanotubes an appealing material for spacecraft construction, with the potential for nanotube composites to reduce spacecraft weight by 50 percent or more. The nanotubes may also feature in a number of other space exploration applications, including life support, energy storage, and sensor technologies. NASA s various

  12. Carbon nanotube-ceramic nanocomposites: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Clark, Michael David

    Ceramic materials are widely used in modern society for a variety of applications including fuel cell electrolytes, bio-medical implants, and jet turbines. However, ceramics are inherently brittle making them excellent candidates for mechanical reinforcement. In this work, the feasibility of dispersing multi-walled carbon nanotubes into a silicon carbide matrix for mechanical property enhancement is explored. Prior to dispersing, nanotubes were purified using an optimized, three step methodology that incorporates oxidative treatment, acid sonication, and thermal annealing rendering near-superhydrophobic behavior in synthesized thin films. Alkyl functionalized nanotube dispersability was characterized in various solvents. Dispersability was contingent on fostering polar interactions between the functionalized nanotubes and solvent despite the purely dispersive nature of the aliphatic chains. Interpretation of these results yielded values of 45.6 +/- 1.2, 0.78 +/- 0.04, and 2 4 +/- 0.9 mJ/m2 for the Lifshitz-van der Waals, electron acceptor and electron donor surface energy components respectively. Aqueous nanotube dispersions were prepared using a number of surfactants to examine surfactant concentration and pH effects on nanotube dispersability. Increasing surfactant concentrations resulted in a solubility plateau, which was independent of the surfactant's critical micelle concentration. Deviations from neutral pH demonstrated negligible influence on non-ionic surfactant adsorption while, ionic surfactants showed substantial pH dependent behavior. These results were explained in the context of nanotube surface ionization and Debye length variation. Successful MWNT dispersion into a silicon carbide based matrix is reported by in-situ ceramic formation using two routes; sol-gel chemistry and pre-ceramic polymeric precursor workup. For the former, nanotube dispersion was assisted by PluronicRTM surfactants. Pyrolytic treatment and consolidation of formed powders

  13. Carbon-Nanotube Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Wong, Eric; Schlecht, Erich; Hunt, Brian; Siegel, Peter

    2006-01-01

    Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter-wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter-wave sensors for more than 50 years. For state-of-the-art Schottky diodes used as detectors at frequencies above a few hundred gigahertz, the inherent parasitic capacitances associated with their semiconductor junction areas and the resistances associated with low electron mobilities limit achievable sensitivity. The performance of such a detector falls off approximately exponentially with frequency above 500 GHz. Moreover, when used as frequency multipliers for generating signals, state-of-the-art solid-state Schottky diodes exhibit extremely low efficiencies, generally putting out only micro-watts of power at frequencies up to 1.5 THz. The shortcomings of the state-of-the-art solid-state Schottky diodes can be overcome by exploiting the unique electronic properties of semiconducting carbon nanotubes. A single-walled carbon nanotube can be metallic or semiconducting, depending on its chirality, and exhibits high electron mobility (recently reported to be approx.= 2x10(exp 5)sq cm/V-s) and low parasitic capacitance. Because of the narrowness of nanotubes, Schottky diodes based on carbon nanotubes have ultra-small junction areas (of the order of a few square nanometers) and consequent junction capacitances of the order of 10(exp -18) F, which translates to cutoff frequency >5 THz. Because the turn-on power levels of these devices are very low (of the order of nano-watts), the input power levels needed for pumping local oscillators containing these devices should be lower than those needed for local oscillators containing state-of-the-art solid

  14. A facile self-assembly approach to prepare palladium/carbon nanotubes catalyst for the electro-oxidation of ethanol

    NASA Astrophysics Data System (ADS)

    Wen, Cuilian; Zhang, Xinyuan; Wei, Ying; Zhang, Teng; Chen, Changxin

    2018-02-01

    A facile self-assembly approach is reported to prepare palladium/carbon nanotubes (Pd/CNTs) catalyst for the electro-oxidation of ethanol. In this method, the Pd-oleate/CNTs was decomposed into the Pd/CNTs at an optimal temperature of 195 °C in air, in which no inert gas is needed for the thermal decomposition process due to the low temperature used and the decomposed products are also environmental friendly. The prepared Pd/CNTs catalyst has a high metallic Pd0 content and the Pd particles in the catalyst are disperse, uniform-sized with an average size of ˜2.1 nm, and evenly distributed on the CNTs. By employing our strategy, the problems including the exfoliation of the metal particles from the CNTs and the aggregation of the metal particles can be solved. Comparing with the commercial Pd/C one, the prepared Pd/CNTs catalyst exhibits a much higher electrochemical activity and stability for the electro-oxidation of ethanol in the direct ethanol fuel cells.

  15. Peptide nanotube-modified electrodes for enzyme-biosensor applications.

    PubMed

    Yemini, Miri; Reches, Meital; Gazit, Ehud; Rishpon, Judith

    2005-08-15

    The fabrication and notably improved performance of composite electrodes based on modified self-assembled diphenylalanine peptide nanotubes is described. Peptide nanotubes were attached to gold electrodes, and we studied the resulting electrochemical behavior using cyclic voltammetry and chronoamperometry. The peptide nanotube-based electrodes demonstrated a direct and unmediated response to hydrogen peroxide and NADH at a potential of +0.4 V (vs SCE). This biosensor enables a sensitive determination of glucose by monitoring the hydrogen peroxide produced by an enzymatic reaction between the glucose oxidase attached to the peptide nanotubes and glucose. In addition, the marked electrocatalytic activity toward NADH enabled a sensitive detection of ethanol using ethanol dehydrogenase and NAD+. The peptide nanotube-based amperometric biosensor provides a potential new tool for sensitive biosensors and biomolecular diagnostics.

  16. High-Field Quasiballistic Transport in Short Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Javey, Ali; Guo, Jing; Paulsson, Magnus; Wang, Qian; Mann, David; Lundstrom, Mark; Dai, Hongjie

    2004-03-01

    Single walled carbon nanotubes with Pd Ohmic contacts and lengths ranging from several microns down to 10nm are investigated by electron transport experiments and theory. The mean-free path (MFP) for acoustic phonon scattering is estimated to be lap˜300 nm, and that for optical phonon scattering is lop˜15 nm. Transport through very short (˜10 nm) nanotubes is free of significant acoustic and optical phonon scattering and thus ballistic and quasiballistic at the low- and high-bias voltage limits, respectively. High currents of up to 70 μA can flow through a short nanotube. Possible mechanisms for the eventual electrical breakdown of short nanotubes at high fields are discussed. The results presented here have important implications to high performance nanotube transistors and interconnects.

  17. Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Kaul, Anupama B. (Inventor)

    2013-01-01

    A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.

  18. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers

    PubMed Central

    2016-01-01

    We present an optimized approach for the deposition of Al2O3 (as a model secondary material) coating into high aspect ratio (≈180) anodic TiO2 nanotube layers using the atomic layer deposition (ALD) process. In order to study the influence of the diffusion of the Al2O3 precursors on the resulting coating thickness, ALD processes with different exposure times (i.e., 0.5, 2, 5, and 10 s) of the trimethylaluminum (TMA) precursor were performed. Uniform coating of the nanotube interiors was achieved with longer exposure times (5 and 10 s), as verified by detailed scanning electron microscopy analysis. Quartz crystal microbalance measurements were used to monitor the deposition process and its particular features due to the tube diameter gradient. Finally, theoretical calculations were performed to calculate the minimum precursor exposure time to attain uniform coating. Theoretical values on the diffusion regime matched with the experimental results and helped to obtain valuable information for further optimization of ALD coating processes. The presented approach provides a straightforward solution toward the development of many novel devices, based on a high surface area interface between TiO2 nanotubes and a secondary material (such as Al2O3). PMID:27643411

  19. Method of making carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  20. Structure and dynamics of water inside hydrophobic and hydrophilic nanotubes

    NASA Astrophysics Data System (ADS)

    Köhler, Mateus Henrique; Bordin, José Rafael; da Silva, Leandro B.; Barbosa, Marcia C.

    2018-01-01

    We have used Molecular Dynamics simulations to investigate the structure and dynamics of TIP4P/2005 water confined inside nanotubes. The nanotubes have distinct sizes and were built with hydrophilic or hydrophobic sites, and we compare the water behavior inside each nanotube. Our results shows that the structure and dynamics are strongly influenced by polarity inside narrow nanotubes, where water layers were observed, and the influence is negligible for wider nanotubes, where the water has a bulk-like density profile. As well, we show that water at low density can have a smaller diffusion inside nanotubes than water at higher densities. This result is a consequence of water diffusion anomaly.

  1. Dispersible shortened boron nitride nanotubes with improved molecule-loading capacity.

    PubMed

    Zhi, Chunyi; Hanagata, Nobutaka; Bando, Yoshio; Golberg, Dmitri

    2011-09-05

    The oxidation process of boron nitride nanotubes was thoroughly investigated, and a slow oxidation characteristic was clearly revealed. Subsequently, the controllable oxidation process was utilized to break the sturdy structure of the boron nitride nanotubes to fabricate shortened nanotubes. The shortened boron nitride nanotubes were found to possess good solubility in water and many organic solvents. Further experiments demonstrated remarkably improved molecule-loading capacity of the shortened boron nitride nanotubes. These dispersible shortened boron nitride nanotubes might have the potential to be developed as effective delivery systems for various molecules, which may find applications in bio-related fields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Suspended Carbon Nanotubes for Humidity Sensing

    PubMed Central

    Arunachalam, Shivaram; Gupta, Anubha A.; Izquierdo, Ricardo

    2018-01-01

    A room temperature microfabrication technique using SU8, an epoxy-based highly functional photoresist as a sacrificial layer, is developed to obtain suspended aligned carbon nanotube beams. The humidity-sensing characteristics of aligned suspended single-walled carbon nanotube films are studied. A comparative study between suspended and non-suspended architectures is done by recording the resistance change in the nanotubes under humidity. For the tests, the humidity was varied from 15% to 98% RH. A comparative study between suspended and non-suspended devices shows that the response and recovery times of the suspended devices was found to be almost 3 times shorter than the non-suspended devices. The suspended devices also showed minimal hysteresis even after 10 humidity cycles, and also exhibit enhanced sensitivity. Repeatability tests were performed by subjecting the sensors to continuous humidification cycles. All tests reported here have been performed using pristine non-functionalized nanotubes. PMID:29786661

  3. Suspended Carbon Nanotubes for Humidity Sensing.

    PubMed

    Arunachalam, Shivaram; Gupta, Anubha A; Izquierdo, Ricardo; Nabki, Frederic

    2018-05-22

    A room temperature microfabrication technique using SU8, an epoxy-based highly functional photoresist as a sacrificial layer, is developed to obtain suspended aligned carbon nanotube beams. The humidity-sensing characteristics of aligned suspended single-walled carbon nanotube films are studied. A comparative study between suspended and non-suspended architectures is done by recording the resistance change in the nanotubes under humidity. For the tests, the humidity was varied from 15% to 98% RH. A comparative study between suspended and non-suspended devices shows that the response and recovery times of the suspended devices was found to be almost 3 times shorter than the non-suspended devices. The suspended devices also showed minimal hysteresis even after 10 humidity cycles, and also exhibit enhanced sensitivity. Repeatability tests were performed by subjecting the sensors to continuous humidification cycles. All tests reported here have been performed using pristine non-functionalized nanotubes.

  4. Spectroscopic properties and STM images of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rubio, A.

    We present a theoretical study of the role of the local environment in the electronic properties of carbon nanotubes: isolated single- and multi-wall nanotubes, nanotube ropes, tubes supported on gold and cut to finite length. Interaction with the substrate or with other tubes does not alter the scanning tunneling microscopy patterns (STM) observed for isolated tubes. A finite-length nanotube shows standing-wave patterns that can be completely characterized by a set of four different three-dimensional shapes. These patterns are understood in terms of a simple π-electron tight-binding (TB) model. STM-topographic images of topological defects ani (pentagon/heptagon pair) and tube caps have also been studied. In both cases the image obtained depends on the sign of the applied voltage and can be described in terms of the previous catalog of STM images (interference between electronic waves scattered by the defect). We have also computed the electronic density of states for isolated tubes with different chiralities and radii, confirming a correlation between the peak structure in the DOS and nanotube diameter. However, the metallic plateau in the DOS also depends on the nanotube chirality. Furthermore the conduction an valence band structures are not fully symmetrical to one another. This anisotropy shows up in the DOS and indicates the limitations of the π-TB model in describing spectroscopic data. In contrast to STM images, here the interaction with the substrate does modify the energy levels of the nanotube. We observe opening of small pseudogaps around the Fermi level and broadening of the sharp van Hove singularities of the isolated single-walled nanotubes that can be used to extract useful information about the tube structure and bonding. The combination of STM and spectroscopic studies provides a new way to address the electronic and structural properties of carbon and composite nanotubes.

  5. β-armchair antimony nanotube: Structure, stability and electronic properties

    NASA Astrophysics Data System (ADS)

    Singh, Shilpa; Gupta, Sanjeev K.; Sonvane, Yogesh; Gajjar, P. N.

    2018-05-01

    In the present work, we have used density functional theory (DFT) to investigate the structure, stability and electronic properties of β-armchair antimony nanotube (ASbNT). We have calculated formation energy and found that β-armchair antimony nanotube (ASbNT) is energetically less stable than β-antimonene. The result shows that β-ASbNT of higher diameter are more stable than nanotubes of lower diameter while electronic band structure shows semiconducting nature of these nanotubes.

  6. Plasma CVD of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Cruden, B.; Hash, D.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Carbon nanotubes(CNT) exhibit remarkable mechanical and unique electronic properties and thus have created excitement in the research community about their potential in electronics, computing, sensor and structural applications. Realization of these applications critically depends on the ability to control the properties(such as diameter, chirality) as well purity. We have investigated CNT growth using an inductively coupled plasma(ICP) process using hydrocarbon feedstock. The catalyst required for nanotube growth consists of thin sputtered layers of aluminum and iron(10 nm each) and aligned carbon nanotubes have been obtained. Optical emission diagnostics as well as a plasma modeling effort have been undertaken to understand growth mechanisms. This presentation will discuss growth characteristics under various pressure, power and feedgas compositions and our understanding from modeling and diagnostics.

  7. Computational Nanotechnology of Nanotubes, Composites, and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, D.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This viewgraph presentation addresses carbon nanotubes, their mechanical and thermal properties, and their structure, as well as possible miniature devices which may be assembled in the future from carbon nanotubes.

  8. Mechanics of Carbon Nanotubes and their Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, K. J.; Srivastava, Deepak; Tang, Harry (Technical Monitor)

    2002-01-01

    Contents include the folloving: carbon nanotube (CNT): structures, application of carbon nanotubes, simulation method, Elastic properties of carbon nanotubes, yield strain of CNT, yielding under tensile stress, yielding: strain-rate and temperature dependence, yield strain under tension, yielding at realistic conditions, nano fibers, polymer CNT composite, force field, density dependency on temperature, diffusion coefficients, young modulus, and conclusions.

  9. Characterization of Carbon Nanotube Reinforced Nickel

    NASA Technical Reports Server (NTRS)

    Gill, Hansel; Hudson, Steve; Bhat, Biliyar; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Carbon nanotubes are cylindrical molecules composed of carbon atoms in a regular hexagonal arrangement. If nanotubes can be uniformly dispersed in a supporting matrix to form structural materials, the resulting structures could be significantly lighter and stronger than current aerospace materials. Work is currently being done to develop an electrolyte-based self-assembly process that produces a Carbon Nanotube/Nickel composite material with high specific strength. This process is expected to produce a lightweight metal matrix composite material, which maintains it's thermal and electrical conductivities, and is potentially suitable for applications such as advanced structures, space based optics, and cryogenic tanks.

  10. Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects.

    PubMed

    Harik, Vasyl Michael

    2017-05-05

    A review of in vivo and in vitro toxicological studies of the potential toxic effects of carbon nanotubes is presented along with the analysis of experimental data and a hypothesis about the nanotube-asbestos similarity. Developments of the structure-activity paradigm have been reviewed along with the size effects and the classification of carbon nanotubes into eleven distinct classes (e.g., the high aspect ratio nanotubes, thick multi-wall nanotubes and short nanotubes). Scaling analysis of similarities between different classes of carbon nanotubes and asbestos fibers in the context of their potential toxicity and the efficiency of phagocytosis has been reviewed. The potential toxic effects of carbon nanotubes have been characterized by their normalized length, their aspect ratio and other parameters related to their inhalability, engulfment by macrophages and the effectiveness of phagocytosis. Geometric scaling parameters and the classification of carbon nanotubes are used to develop an updated parametric map for the extrapolation of the potential toxic effects resulting from the inhalation of long and short carbon nanotubes. An updated parametric map has been applied to the evaluation of the efficiency of phagocytosis involving distinct classes of carbon nanotubes. A critical value of an important nondimensional parameter characterizing the efficiency of phagocytosis for different nanotubes is presented along with its macrophage-based normalization. The present evaluation of the potential toxicological effects of the high aspect ratio carbon nanotubes is found to be in the agreement with other available studies and earlier scaling analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Selective positioning and integration of individual single-walled carbon nanotubes.

    PubMed

    Jiao, Liying; Xian, Xiaojun; Wu, Zhongyun; Zhang, Jin; Liu, Zhongfan

    2009-01-01

    We present a general selective positioning and integration technique for fabricating single-walled carbon nanotube (SWNT) circuits with preselected individual SWNTs as building blocks by utilizing poly(methyl methacrylate) (PMMA) thin film as a macroscopically handlable mediator. The transparency and marker-replicating capability of PMMA mediator allow the selective placement of chirality-specific nanotubes onto predesigned patterned surfaces with a resolution of ca. 1 mum. This technique is compatible with multiple operations and p-n conversion by chemical doping, which enables the construction of complex and logic circuits. As demonstrations of building SWNTs circuits, we fabricated a field effect inverter, a 2 x 2 all-SWNT crossbar field effect transistor (FET), and flexible FETs on plastic with this technique. This selective positioning approach can also be extended to construct purpose-directed architecture with various nanoscale building blocks.

  12. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment.

    PubMed

    Sanginario, Alessandro; Miccoli, Beatrice; Demarchi, Danilo

    2017-02-15

    Despite the current progresses of modern medicine, the resistance of malignant tumors to present medical treatments points to the necessity of developing new therapeutic approaches. In recent years, numerous studies have focused their attention on the promising use of nanomaterials, like iron oxide nanowires, zinc oxide or mesoporous silica nanoparticles, for cancer and metastasis treatment with the advantage of operating directly at the bio-molecular scale. Among them, carbon nanotubes emerged as valid candidates not only for drug delivery, but also as a valuable tool in cancer imaging and physical ablation. Nevertheless, deep investigations about carbon nanotubes' potential bio-compatibility and cytotoxicity limits should be also critically addressed. In the present review, after introducing carbon nanotubes and their promising advantages and drawbacks for fighting cancer, we want to focus on the numerous and different ways in which they can assist to reach this goal. Specifically, we report on how they can be used not only for drug delivery purposes, but also as a powerful ally to develop effective contrast agents for tumors' medical or photodynamic imaging, to perform direct physical ablation of metastasis, as well as gene therapy.

  13. Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Savic, Ivana; Mingo, Natalio; Stewart, Derek

    2009-03-01

    We present first principles studies which determine dominant effects limiting the heat conduction in isotope-disordered boron nitride and carbon nanotubes [1]. Using an ab initio atomistic Green's function approach, we demonstrate that localization cannot be observed in the thermal conductivity measurements [1], and that diffusive scattering is the dominant mechanism which reduces the thermal conductivity [2]. We also give concrete predictions of the magnitude of the isotope effect on the thermal conductivities of carbon and boron nitride single-walled nanotubes [2]. We furthermore show that intershell scattering is not the main limiting mechanism for the heat flow through multi-walled boron nitride nanotubes [1], and that heat conduction restricted to a few shells leads to the low thermal conductivities experimentally measured [1]. We consequently successfully compare the results of our calculations [3] with the experimental measurements [1]. [1] C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901. [2] I. Savic, N. Mingo, D. A. Stewart, Phys. Rev. Lett. 2008, 101, 165502. [3] I. Savic, D. A. Stewart, N. Mingo, to be published.

  14. Preparation of aligned nanotube membranes for water and gas separation applications

    DOEpatents

    Lulevich, Valentin; Bakajin, Olgica; Klare, Jennifer E.; Noy, Aleksandr

    2016-01-05

    Fabrication methods for selective membranes that include aligned nanotubes can advantageously include a mechanical polishing step. The nanotubes have their ends closed off during the step of infiltrating a polymer precursor around the nanotubes. This prevents polymer precursor from flowing into the nanotubes. The polishing step is performed after the polymer matrix is formed, and can open up the ends of the nanotubes.

  15. The Enhancement of Composite Scarf Joint Interface Strength Through Carbon Nanotube Reinforcement

    DTIC Science & Technology

    2007-06-01

    includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT ) with varying length, purity, and concentration levels along the...OF PAGES 106 14. SUBJECT TERMS Carbon Nanotubes, CNT, SWCNT, MWCNT , Bamboo, Polymer Composite, Joint Strength Enhancement, Reinforcement 16...variables concerning the carbon nanotube application. The testing includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT

  16. Fatigue characteristics of carbon nanotube blocks under compression

    NASA Astrophysics Data System (ADS)

    Suhr, J.; Ci, L.; Victor, P.; Ajayan, P. M.

    2008-03-01

    In this paper we investigate the mechanical response from repeated high compressive strains on freestanding, long, vertically aligned multiwalled carbon nanotube membranes and show that the arrays of nanotubes under compression behave very similar to soft tissue and exhibit viscoelastic behavior. Under compressive cyclic loading, the mechanical response of nanotube blocks shows initial preconditioning and hysteresis characteristic of viscoeleastic materials. Furthermore, no fatigue failure is observed even at high strain amplitudes up to half million cycles. The outstanding fatigue life and extraordinary soft tissue-like mechanical behavior suggest that properly engineered carbon nanotube structures could mimic artificial muscles.

  17. A Tester for Carbon Nanotube Mode Lockers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Yamashita, Shinji

    2007-05-01

    We propose and demonstrate a tester for laser pulsating operation of carbon nanotubes employing a circulator with the extra degree of freedom of the second port to access diversified nanotube samples. The nanotubes are deposited onto the end facet of a dummy optical fiber by spray method that guarantees simple sample loading along with the minimized perturbation of optimized laser cavity condition. Resultant optical spectra, autocorrelation traces and pulse train of the laser outputs with qualified samples are presented.

  18. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  19. Negative effect of nanoconfinement on water transport across nanotube membranes

    NASA Astrophysics Data System (ADS)

    Zhao, Kuiwen; Wu, Huiying; Han, Baosan

    2017-10-01

    Nanoconfinement environments are commonly considered advantageous for ultrafast water flow across nanotube membranes. This study illustrates that nanoconfinement has a negative effect on water transport across nanotube membranes based on molecular dynamics simulations. Although water viscosity and the friction coefficient evidently decrease because of nanoconfinement, water molecular flux and flow velocity across carbon nanotubes decrease sharply with the pore size of nanotubes. The enhancement of water flow across nanotubes induced by the decreased friction coefficient and water viscosity is markedly less prominent than the negative effect induced by the increased flow barrier as the nanotube size decreases. The decrease in water flow velocity with the pore size of nanotubes indicates that nanoconfinement is not essential for the ultrafast flow phenomenon. In addition, the relationship between flow velocity and water viscosity at different temperatures is investigated at different temperatures. The results indicate that flow velocity is inversely proportional to viscosity for nanotubes with a pore diameter above 1 nm, thereby indicating that viscosity is still an effective parameter for describing the effect of temperature on the fluid transport at the nanoscale.

  20. Inhaled Carbon Nanotubes Reach the Sub-Pleural Tissue in Mice

    PubMed Central

    Ryman-Rasmussen, Jessica P.; Cesta, Mark F.; Brody, Arnold R.; Shipley-Phillips, Jeanette K.; Everitt, Jeffrey; Tewksbury, Earl W.; Moss, Owen R.; Wong, Brian A.; Dodd, Darol E.; Andersen, Melvin E.; Bonner, James C.

    2009-01-01

    Summary Carbon nanotubes have fibre-like shape1 and stimulate inflammation at the surface of the peritoneum when injected into the abdominal cavity of mice2, raising concerns that inhaled nanotubes3 may cause pleural fibrosis and/or mesothelioma4. Here we show that multi-walled carbon nanotubes reach the sub-pleura in mice after a single inhalation exposure of 30 mg/m3 for 6 hours. Nanotubes were embedded in the sub-pleural wall and within sub-pleural macrophages. Mononuclear cell aggregates on the pleural surface increased in number and size after 1 day and nanotube-containing macrophages were observed within these foci. Sub-pleural fibrosis increased after 2 and 6 weeks following inhalation. None of these effects were seen in mice that inhaled carbon black nanoparticles or a lower dose of nanotubes (1 mg/m3). This work advances a growing literature on pulmonary toxicology of nanotubes5 and suggests that minimizing inhalation of nanotubes during handling is prudent until further long term assessments are conducted. PMID:19893520

  1. Rotational actuator of motor based on carbon nanotubes

    DOEpatents

    Zettl, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.

    2008-11-18

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  2. Rotational actuator or motor based on carbon nanotubes

    DOEpatents

    Zetti, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.

    2006-05-30

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  3. Oxidation of Carbon Nanotubes in an Ionizing Environment.

    PubMed

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2016-02-10

    In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.

  4. Titanate nanotubes sensitized with silver nanoparticles: Synthesis, characterization and in-situ pollutants photodegradation

    NASA Astrophysics Data System (ADS)

    Barrocas, B.; Nunes, C. D.; Carvalho, M. L.; Monteiro, O. C.

    2016-11-01

    In this work, titanate nanotubes were modified with silver nanoparticles to produce new nanocomposite materials with enhanced photocatalytic activity for phenol removal. The TNTs were produced using a hydrothermal approach and, after being submitted to an Ag+ exchange process, metallic Ag nanoparticles were obtained over the nanotubes surface. The prepared materials were structural, morphological and optical characterized by X-ray powder diffraction, micro X-ray fluorescence, transmission electron microscopy, diffused reflectance spectroscopy and X-ray photoelectron spectroscopy. The characterization results indicate that Ag+ was immobilized not only in the nanotubes external surface but mainly in the TiO6 interlayers space. The application of this new nanocomposite material on photocatalytic degradation of pollutants was investigated. First, the evaluation of hydroxyl radical formation, using the terephthalic acid as a probe was studied. The photocatalytic activity of the sensitized materials for phenol degradation was afterwards evaluated. The results show that the nanocomposite sample is the best catalyst, achieving 98.0% photodegradation efficiency of a 0.2 mM phenol solution within 20 min under UV-vis radiation. The reusability of the prepared samples as photocatalysts was evaluated in four successive degradation assays, using fresh phenol solutions. The sensitized sample demonstrated excellent catalytic reusability ability, without loss of photochemical stability. The structural and morphological characterization during these experiments revealed no modifications on the nanotubes morphology but a continuous increase on the Ag nanoparticles, in number and size, with the irradiation time. A mechanism for this continuous growth of the Ag nanoparticles, together with the phenol catalytic photodegradation, over the nanotubes surface, is proposed and discussed.

  5. Coupling of Carbon Nanotubes to Metallic Contacts

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Datta, S.; Xue, Yong-Xiang; Govindan, T. R. (Technical Monitor)

    1999-01-01

    The modeling of carbon nanotube-metal contacts is important from both basic and applied view points. For many applications, it is important to design contacts such that the transmission is dictated by intrinsic properties of the nanotube rather than by details of the contact. In this paper, we calculate the electron transmission probability from a nanotube to a free electron metal, which is side-contacted. If the metal-nanotube interface is sufficiently ordered, we find that k-vector conservation plays an important role in determining the coupling, with the physics depending on the area of contact, tube diameter, and chirality. The main results of this paper are: (1) conductance scales with contact length, a phenomena that has been observed in experiments and (2) in the case of uniform coupling between metal and nanotube, the threshold value of the metal Fermi wave vector (below which coupling is insignificant) depends on chirality. Disorder and small phase coherence length relax the need for k-vector conservation, thereby making the coupling stronger.

  6. Fabrication and characterization of vertically aligned carbon-nanotube membranes

    NASA Astrophysics Data System (ADS)

    Castellano, Richard; Akin, Cevat; Purri, Matt; Shan, Jerry; Kim, Sangil; Fornasiero, Francesco

    2015-11-01

    Membranes having vertically-aligned carbon-nanotube (VACNT) pores offer promise as highly efficient and permeable membranes for use as breathable thin films, or in filtration and separation applications, among others. However, current membrane-fabrication techniques utilizing chemical-vapor-deposition-grown VACNT arrays are costly and difficult to scale up. We have developed a solution-based, electric-field-assisted approach as a cost-effective and scalable method to produce large-area VACNT membranes. Nanotubes are dispersed in a liquid polymer, and aligned and electrodeposited with the aid of an electric field prior to crosslinking the polymer to create VACNT membranes. We experimentally examine the electrodeposition process, focusing on parameters including the electric field, composition of the solution, and CNT functionalization that can affect the nanotube number density in the resulting membrane. We characterize the CNT pore size and number density and investigate the transport properties of the membrane. Size-exclusion tests are used to check for defects and infer the pore size of the VACNT membranes. Dry-gas membrane permeability is measured with a pressurized nitrogen-flow system, while moisture-vapor-transfer rate is measured with the ASTM-E96 upright-cup test. We discuss the measured transport properties of the solution-based, electric-field-fabricated VACNT membranes in reference to their application as breathable thin films. We would like to acknowledge DTRA for their funding and support of our research.

  7. Modifying the electronic and optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kinder, Jesse M.

    The intrinsic electronic and optical properties of carbon nanotubes make them promising candidates for circuit elements and LEDs in nanoscale devices. However, applied fields and interactions with the environment can modify these intrinsic properties. This dissertation is a theoretical study of perturbations to an ideal carbon nanotube. It illustrates how transport and optical properties of carbon nanotubes can be adversely affected or intentionally modified by the local environment. The dissertation is divided into three parts. Part I analyzes the effect of a transverse electric field on the single-electron energy spectrum of semiconducting carbon nanotubes. Part II analyzes the effect of the local environment on selection rules and decay pathways relevant to dark excitons. Part III is a series of 26 appendices. Two different models for a transverse electric field are introduced in Part I. The first is a uniform field perpendicular to the nanotube axis. This model suggests the field has little effect on the band gap until it exceeds a critical value that can be tuned with strain or a magnetic field. The second model is a transverse field localized to a small region along the nanotube axis. The field creates a pair of exponentially localized bound states but has no effect on the band gap for particle transport. Part II explores the physics of dark excitons in carbon nanotubes. Two model calculations illustrate the effect of the local environment on allowed optical transitions and nonradiative recombination pathways. The first model illustrates the role of inversion symmetry in the optical spectrum. Broken inversion symmetry may explain low-lying peaks in the exciton spectrum of boron nitride nanotubes and localized photoemission around impurities and interfaces in carbon nanotubes. The second model in Part II suggests that free charge carriers can mediate an efficient nonradiative decay process for dark excitons in carbon nanotubes. The appendices in Part III

  8. A study of vibrating nanotubes with additional adsorbed masses

    NASA Astrophysics Data System (ADS)

    Adler, Joan; Adler, Omri

    2017-11-01

    We describe calculations of the electronic density surrounding strained nanotubes. These are then used to estimate the nanotube wall width. This width is an essential parameter for the analysis of the nanotube vibrations. By studying the effect of additional adsorbed molecules on the nanotubes’ vibrations and their frequency changes we can deduce the molecules’ mass. Our calculations show that the strain does not greatly affect the nanotube width, but the vibrations change sufficiently for the mass to be detected.

  9. Teslaphoresis of Carbon Nanotubes.

    PubMed

    Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul

    2016-04-26

    This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale.

  10. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.

    PubMed

    Singh, Ravi; Pantarotto, Davide; McCarthy, David; Chaloin, Olivier; Hoebeke, Johan; Partidos, Charalambos D; Briand, Jean-Paul; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas

    2005-03-30

    Carbon nanotubes (CNTs) constitute a class of nanomaterials that possess characteristics suitable for a variety of possible applications. Their compatibility with aqueous environments has been made possible by the chemical functionalization of their surface, allowing for exploration of their interactions with biological components including mammalian cells. Functionalized CNTs (f-CNTs) are being intensively explored in advanced biotechnological applications ranging from molecular biosensors to cellular growth substrates. We have been exploring the potential of f-CNTs as delivery vehicles of biologically active molecules in view of possible biomedical applications, including vaccination and gene delivery. Recently we reported the capability of ammonium-functionalized single-walled CNTs to penetrate human and murine cells and facilitate the delivery of plasmid DNA leading to expression of marker genes. To optimize f-CNTs as gene delivery vehicles, it is essential to characterize their interactions with DNA. In the present report, we study the interactions of three types of f-CNTs, ammonium-functionalized single-walled and multiwalled carbon nanotubes (SWNT-NH3+; MWNT-NH3+), and lysine-functionalized single-walled carbon nanotubes (SWNT-Lys-NH3+), with plasmid DNA. Nanotube-DNA complexes were analyzed by scanning electron microscopy, surface plasmon resonance, PicoGreen dye exclusion, and agarose gel shift assay. The results indicate that all three types of cationic carbon nanotubes are able to condense DNA to varying degrees, indicating that both nanotube surface area and charge density are critical parameters that determine the interaction and electrostatic complex formation between f-CNTs with DNA. All three different f-CNT types in this study exhibited upregulation of marker gene expression over naked DNA using a mammalian (human) cell line. Differences in the levels of gene expression were correlated with the structural and biophysical data obtained for the f

  11. Intra- and inter-shell Kondo effects in carbon nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Krychowski, Damian; Lipiński, Stanisław

    2018-01-01

    The linear response transport properties of carbon nanotube quantum dot in the strongly correlated regime are discussed. The finite-U mean field slave boson approach is used to study many-body effects. Magnetic field can rebuilt Kondo correlations, which are destroyed by the effect of spin-orbit interaction or valley mixing. Apart from the field induced revivals of SU(2) Kondo effects of different types: spin, valley or spin-valley, also more exotic phenomena appear, such as SU(3) Kondo effect. Threefold degeneracy occurs due to the effective intervalley exchange induced by short-range part of Coulomb interaction or due to the intershell mixing. In narrow gap nanotubes the full spin-orbital degeneracy might be recovered in the absence of magnetic field opening the condition for a formation of SU(4) Kondo resonance.

  12. Carbon nanotubes from synthesis to in vivo biomedical applications.

    PubMed

    Sajid, Muhammad Imran; Jamshaid, Usama; Jamshaid, Talha; Zafar, Nadiah; Fessi, H; Elaissari, Abdelhamid

    2016-03-30

    Owing to their unique and interesting properties, extensive research round the globe has been carried out on carbon nanotubes and carbon nanotubes based systems to investigate their practical usefulness in biomedical applications. The results from these studies demonstrate a great promise in their use in targeted drug delivery systems, diagnostic techniques and in bio-analytical applications. Although, carbon nanotubes possess quite interesting properties, which make them potential candidates in the biomedical science, but they also have some inherent properties which arise great concern regarding their biosafety. In this comprehensive review, we have discussed different aspects of carbon nanotubes and carbon nanotube based systems related to biomedical applications. In the beginning, a short historical account of these tiny yet powerful particles is given followed by discussion regarding their types, properties, methods of synthesis, large scale production method, purification techniques and characterization aspects of carbon nanotubes. In the second part of the review, the functionalization of carbon nanotubes is reviewed in detail, which is not only important to make them biocompatible and stable in biological systems but also render them a great property of loading various biomolecules, diagnostic and therapeutic moieties resulting in diversified applications. In the final part of the review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes including administration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account about the potential biomedical applications has been given followed by insights into the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Selective functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  14. Underwater Acoustic Carbon Nanotube Thermophone

    DTIC Science & Technology

    2016-09-23

    temperature radiation by the carbon nanotube material chip. [0033] Furthermore, the wooden spacers 20 provide heat insulation between the carbon nanotube...based on an energy conversion of heat to sound. (2) Description of the Prior Art [0004] The principle of thermal acoustic transduction is that when...alternating current is passed through a comparatively thin transducer; periodic heating takes place in the conductor following variations in current

  15. In Situ Formation of Carbon Nanotubes Encapsulated within Boron Nitride Nanotubes via Electron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenal, Raul; Lopez-Bezanilla, Alejandro

    2014-07-25

    We report experimental evidence of the formation by in situ electron-irradiation of single-walled carbon nanotubes (C NT) confined within boron nitride nanotubes (BN-NT). The electron radiation stemming from the microscope supplies the energy required by the amorphous carbonaceous structures to crystallize in a tubular form in a catalyst free procedure, at room temperature and high vacuum. The structural defects resulting from the interaction of the shapeless carbon with the BN nanotube are corrected in a self-healing process throughout the crystallinization. Structural changes developed during the irradiation process such as defects formation and evolution, shrinkage, and shortness of the BN-NT weremore » in situ monitored. The outer BN wall provides a protective and insulating shell against environmental Perturbations to the inner C-NT without affecting their electronic properties, as demonstrated by first principles calculations.« less

  16. Iron oxide nanotubes synthesized via template-based electrodeposition

    NASA Astrophysics Data System (ADS)

    Lim, Jin-Hee; Min, Seong-Gi; Malkinski, Leszek; Wiley, John B.

    2014-04-01

    Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K.Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition

  17. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  18. Carbon nanotube chemistry and assembly for electronic devices

    NASA Astrophysics Data System (ADS)

    Derycke, Vincent; Auvray, Stéphane; Borghetti, Julien; Chung, Chia-Ling; Lefèvre, Roland; Lopez-Bezanilla, Alejandro; Nguyen, Khoa; Robert, Gaël; Schmidt, Gregory; Anghel, Costin; Chimot, Nicolas; Lyonnais, Sébastien; Streiff, Stéphane; Campidelli, Stéphane; Chenevier, Pascale; Filoramo, Arianna; Goffman, Marcelo F.; Goux-Capes, Laurence; Latil, Sylvain; Blase, Xavier; Triozon, François; Roche, Stephan; Bourgoin, Jean-Philippe

    2009-05-01

    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties; (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes (this route being particularly relevant for gas- and bio-sensors, opto-electronic devices and energy sources); and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we review our recent results concerning nanotube chemistry and assembly and their use to develop electronic devices. In particular, we present carbon nanotube field effect transistors and their chemical optimization, high frequency nanotube transistors, nanotube-based opto-electronic devices with memory capabilities and nanotube-based nano-electromechanical systems (NEMS). The impact of chemical functionalization on the electronic properties of CNTs is analyzed on the basis of theoretical calculations. To cite this article: V. Derycke et al., C. R. Physique 10 (2009).

  19. Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells

    NASA Technical Reports Server (NTRS)

    Shvedova, Anna A.; Castranova, Vincent; Kisin, Elena R.; Schwegler-Berry, Diane; Murray, Ashley R.; Gandelsman, Vadim Z.; Maynard, Andrew; Baron, Paul

    2003-01-01

    Carbon nanotubes are new members of carbon allotropes similar to fullerenes and graphite. Because of their unique electrical, mechanical, and thermal properties, carbon nanotubes are important for novel applications in the electronics, aerospace, and computer industries. Exposure to graphite and carbon materials has been associated with increased incidence of skin diseases, such as carbon fiber dermatitis, hyperkeratosis, and naevi. We investigated adverse effects of single-wall carbon nanotubes (SWCNT) using a cell culture of immortalized human epidermal keratinocytes (HaCaT). After 18 h of exposure of HaCaT to SWCNT, oxidative stress and cellular toxicity were indicated by formation of free radicals, accumulation of peroxidative products, antioxidant depletion, and loss of cell viability. Exposure to SWCNT also resulted in ultrastructural and morphological changes in cultured skin cells. These data indicate that dermal exposure to unrefined SWCNT may lead to dermal toxicity due to accelerated oxidative stress in the skin of exposed workers.

  20. Growth of nanotubes and chemical sensor applications

    NASA Astrophysics Data System (ADS)

    Hone, James; Kim, Philip; Huang, X. M. H.; Chandra, B.; Caldwell, R.; Small, J.; Hong, B. H.; Someya, T.; Huang, L.; O'Brien, S.; Nuckolls, Colin P.

    2004-12-01

    We have used a number of methods to grow long aligned single-walled carbon nanotubes. Geometries include individual long tubes, dense parallel arrays, and long freely suspended nanotubes. We have fabricated a variety of devices for applications such as multiprobe resistance measurement and high-current field effect transistors. In addition, we have measured conductance of single-walled semiconducting carbon nanotubes in field-effect transistor geometry and investigated the device response to water and alcoholic vapors. We observe significant changes in FET drain current when the device is exposed to various kinds of different solvent. These responses are reversible and reproducible over many cycles of vapor exposure. Our experiments demonstrate that carbon nanotube FETs are sensitive to a wide range of solvent vapors at concentrations in the ppm range.

  1. In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation

    PubMed Central

    Wang, Zheng; Sun, Yan; Wang, Dongzhou; Liu, Hong; Boughton, Robert I

    2013-01-01

    A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants. PMID:23966780

  2. First-principles calculations of CdS-based nanolayers and nanotubes

    NASA Astrophysics Data System (ADS)

    Bandura, A. V.; Kuruch, D. D.; Evarestov, R. A.

    2018-05-01

    The first-principles simulations using hybrid exchange-correlation density functional and localized atomic basis set were performed to investigate the properties of CdS nanolayers and nanotubes constructed from wurtzite and zinc blende phases. Different types of cylindrical and facetted nanotubes have been considered. The new classification of the facetted nanotubes is proposed. The stability of CdS nanotubes has been analyzed using formation and strain energies. Obtained results show that facetted tubes are favorable as compared to the most of cylindrical ones. Nevertheless, the cylindrical nanotubes generated from the layers with experimentally proved freestanding existence, also have a chance to be synthesized. Preliminary calculation of facetted nanotubes constructed from the zinc blende phase gives evidence for their possible using in the photocatalytic decomposition of water.

  3. Green and facile approach for enhancing the inherent magnetic properties of carbon nanotubes for water treatment applications.

    PubMed

    Ateia, Mohamed; Koch, Christian; Jelavić, Stanislav; Hirt, Ann; Quinson, Jonathan; Yoshimura, Chihiro; Johnson, Matthew

    2017-01-01

    Current methods for preparing magnetic composites with carbon nanotubes (MCNT) commonly include extensive use of treatment with strong acids and result in massive losses of carbon nanotubes (CNTs). In this study we explore the potential of taking advantage of the inherent magnetic properties associated with the metal (alloy or oxide) incorporated in CNTs during their production. The as-received CNTs are refined by applying a permanent magnet to a suspension of CNTs to separate the high-magnetic fraction; the low-magnetic fraction is discarded with the solvent. The collected MCNTs were characterized by a suite of 10 diffraction and spectroscopic techniques. A key discovery is that metallic nano-clusters of Fe and/or Ni located in the interior cavities of the nanotubes give MCNTs their ferromagnetic character. After refinement using our method, the MCNTs show saturation magnetizations up to 10 times that of the as-received materials. In addition, we demonstrate the ability of these MCNTs to repeatedly remove atrazine from water in a cycle of dispersion into a water sample, adsorption of the atrazine onto the MCNTs, collection by magnetic attraction and regeneration by ethanol. The resulting MCNTs show high adsorption capacities (> 40 mg-atrazine/g), high magnetic response, and straightforward regeneration. The method presented here is simpler, faster, and substantially reduces chemical waste relative to current techniques and the resulting MCNTs are promising adsorbents for organic/chemical contaminants in environmental waters.

  4. Green and facile approach for enhancing the inherent magnetic properties of carbon nanotubes for water treatment applications

    PubMed Central

    Jelavić, Stanislav; Hirt, Ann; Quinson, Jonathan; Yoshimura, Chihiro; Johnson, Matthew

    2017-01-01

    Current methods for preparing magnetic composites with carbon nanotubes (MCNT) commonly include extensive use of treatment with strong acids and result in massive losses of carbon nanotubes (CNTs). In this study we explore the potential of taking advantage of the inherent magnetic properties associated with the metal (alloy or oxide) incorporated in CNTs during their production. The as-received CNTs are refined by applying a permanent magnet to a suspension of CNTs to separate the high-magnetic fraction; the low-magnetic fraction is discarded with the solvent. The collected MCNTs were characterized by a suite of 10 diffraction and spectroscopic techniques. A key discovery is that metallic nano-clusters of Fe and/or Ni located in the interior cavities of the nanotubes give MCNTs their ferromagnetic character. After refinement using our method, the MCNTs show saturation magnetizations up to 10 times that of the as-received materials. In addition, we demonstrate the ability of these MCNTs to repeatedly remove atrazine from water in a cycle of dispersion into a water sample, adsorption of the atrazine onto the MCNTs, collection by magnetic attraction and regeneration by ethanol. The resulting MCNTs show high adsorption capacities (> 40 mg-atrazine/g), high magnetic response, and straightforward regeneration. The method presented here is simpler, faster, and substantially reduces chemical waste relative to current techniques and the resulting MCNTs are promising adsorbents for organic/chemical contaminants in environmental waters. PMID:28708835

  5. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    NASA Technical Reports Server (NTRS)

    Bahr, Jeffrey L. (Inventor); Tour, James M. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  6. Influence of quantum effects on the parameters of a cold cathode with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Kolesnikova, A. S.; Slepchenkov, M. M.

    2016-01-01

    We consider the effect of an external electric field on the parameters of a cold cathode on carbon nanotubes using the quantum-mechanical approach to the description of the interaction of the field with the atomic structure of nanoemitters. It is established for the first time that an increase in the length of the emitting edge of the tube in a field of 10-11 V/nm increases the field emission current of electrons by 3-10%. It is found that in a field of 11 V/nm and higher, atoms of the upper edge of a carbon nanotube are detached with the subsequent destruction of the atomic core.

  7. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  8. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  9. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  10. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  11. Capillarity-induced disassembly of virions in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fan, Xiaobin; Barclay, J. Elaine; Peng, Wenchao; Li, Yang; Li, Xianyu; Zhang, Guoliang; Evans, David J.; Zhang, Fengbao

    2008-04-01

    Studying the transport and fate of viruses through nanochannels is of great importance. By using the nanochannel of a carbon nanotube (CNT) as an ideal model, we evaluated the possibility of capillarity-induced viral transport through a closely fitting nanochannel and explored the mechanisms involved. It is shown both experimentally and theoretically that Cowpea mosaic virus can enter CNTs by capillarity. However, when introduced into a nanotube the protein capsid may disassemble. During the initial capillary filling stage, anomalous needle-shaped high pressure exists in the centre of the nanotube's entrance. This high pressure, combining with the significant negative pressure within the nanotube, may account for the disassembly of the virions.

  12. Approximate Solutions for a Self-Folding Problem of Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Mikata

    2006-08-22

    This paper treats approximate solutions for a self-folding problem of carbon nanotubes. It has been observed in the molecular dynamics calculations [1] that a carbon nanotube with a large aspect ratio can self-fold due to van der Waals force between the parts of the same carbon nanotube. The main issue in the self-folding problem is to determine the minimum threshold length of the carbon nanotube at which it becomes possible for the carbon nanotube to self-fold due to the van der Waals force. An approximate mathematical model based on the force method is constructed for the self-folding problem of carbonmore » nanotubes, and it is solved exactly as an elastica problem using elliptic functions. Additionally, three other mathematical models are constructed based on the energy method. As a particular example, the lower and upper estimates for the critical threshold (minimum) length are determined based on both methods for the (5,5) armchair carbon nanotube.« less

  13. Supercritical fluid attachment of palladium nanoparticles on aligned carbon nanotubes.

    PubMed

    Ye, Xiang-Rong; Lin, Yuehe; Wai, Chien M; Talbot, Jan B; Jin, Sungho

    2005-06-01

    Nanocomposite materials consisting of Pd nanoparticles deposited on aligned multi-walled carbon nanotubes have been fabricated through hydrogen reduction of palladium-beta-diketone precursor in supercritical carbon dioxide. The supercritical fluid processing allowed deposition of high-density Pd nanoparticles (approximately 5-10 nm) on both as-grown (unfunctionalized) and functionalized (using HNO3 oxidation) nanotubes. However, the wet processing for functionalization results in pre-agglomerated, bundle-shaped nanotubes, thus significantly reducing the effective surface area for Pd particle deposition, although the bundling provides more secure, lock-in-place positioning of nanotubes and Pd catalyst particles. The nanotube bundling is substantially mitigated by Pd nanoparticle deposition on the unfunctionalized and geometrically separated nanotubes, which provides much higher catalyst surface area. Such nanocomposite materials utilizing geometrically secured and aligned nanotubes can be useful for providing much enhanced catalytic activities to chemical and electrochemical reactions (e.g., fuel cell reactions), and eliminate the need for tedious catalyst recovery process after the reaction is completed.

  14. Selection of Single-Walled Carbon Nanotube with Narrow Diameter Distribution by Using a PPE PPV Copolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Kelly A; Chen, Yusheng; Malkovskiy, Andrey

    2012-01-01

    Electronic and mechanic properties of single-walled carbon nanotubes (SWNTs) are uniquely dependent on the tube's chiralities and diameters. Isolation of different type SWNTs remains one of the fundamental and challenging issues in nanotube science. Herein, we demonstrate that SWNTs can be effectively enriched to a narrow diameter range by sequential treatment of the HiPco sample with nitric acid and a {pi}-conjugated copolymer poly(phenyleneethynylene) (PPE)-co-poly(phenylenevinylene) (PPV). On the basis of Raman, fluorescence, and microscopic evidence, the nitric acid is found to selectively remove the SWNTs of small diameter. The polymer not only effectively dispersed carbon nanotubes but also exhibited a goodmore » selectivity toward a few SWNTs. The reported approach thus offers a new methodology to isolate SWNTs, which has the potential to operate in a relatively large scale.« less

  15. Ophthalmologial Applications of Carbon Nanotube Nanotechology

    NASA Technical Reports Server (NTRS)

    Loftus, David; Girten, Beverly (Technical Monitor)

    2002-01-01

    The development of an implantable device consisting of an array of carbon nanotubes on a silicon chip for restoration of vision in patients with macular degeneration and other retinal disorders is presented. The use of carbon nanotube bucky paper for retinal cell transplantation is proposed. This paper is in viewgraph form.

  16. Electron diffraction and microscopy study of nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Deniz, Hakan

    Carbon nanotubes have many excellent properties that are strongly influenced by their atomic structure. The realization of the ultimate potential of carbon nanotubes in technological applications necessitates a precise control of the structure of as-grown nanotubes as well as the identification of their atomic structures. Transmission electron microscopy (TEM) is a technique that can deliver this by combining the high resolution imaging and electron diffraction simultaneously. In this study, a new catalyst system (the Co/Si) was investigated in the production of single-walled carbon nanotubes (SWNTs) by laser ablation. It was discovered that the Co/Si mixture as a catalyst was as successful as the Ni/Co in the synthesis of SWNTs. The isolated individual SWNTs were examined by using nanobeam electron diffraction for the structure identification and it was found that carbon nanotubes grown by this catalyst mixture tend to be slightly more metallic. The electron diffraction technique has been refined to establish a new methodology to determine the chirality of each shell in a carbon nanotube and it has been applied to determine the atomic structure of double-walled carbon nanotubes (DWNT), few-walled carbon nanotubes (FWNT) and multi-walled carbon nanotubes (MWNT). We observed that there is no strong correlation in the structure of two adjacent shells in DWNTs. Several FWNTs and MWNTs have been examined by our new electron diffraction method to determine their atomic structures and to test the efficiency and the reliability of this method for structure identification. We now suggest that a carbon nanotube of up to 25 shells can be studied and the chirality of each shell can be identified by this new technique. The guidelines for the automation of such procedure have been laid down and explained in this work. The atomic structure of tungsten disulfide (WS2) nanotubes was studied by using the methods developed for the structure determination of carbon nanotubes. The WS2

  17. Synthesis, Characterization, and Modeling of Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Herzog, M. N.; Odegard, G. M.; Gates, T. S.; Fay, C. C.

    2004-01-01

    Synthesis, mechanical testing, and modeling have been performed for carbon nanotube based materials. Tests using nanoindentation indicated a six-fold enhancement in the storage modulus when comparing the base material (no nanotubes) to the composite that contained 5.3 wt% of nanotubes. To understand how crosslinking the nanotubes may further alter the stiffness, a model of the system was constructed using nanotubes crosslinked with a variable stiffness tether (VST). The model predicted that for a composite with 5 wt% nanotubes at random orientations, crosslinked with the VST, the bulk Young's modulus was reduced by 30% compared to the noncrosslinked equivalent.

  18. Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites.

    PubMed

    Tan, Wei; Twomey, John; Guo, Dongjie; Madhavan, Krishna; Li, Min

    2010-06-01

    Collagen I is an essential structural and mechanical building block of various tissues, and it is often used as tissue-engineering scaffolds. However, collagen-based constructs reconstituted in vitro often lacks robust fiber structure, mechanical stability, and molecule binding capability. To enhance these performances, the present study developed 3-D collagen-nanotube composite constructs with two types of functionalized carbon nanotubes, carboxylated nanotubes and covalently functionalized nanotubes (CFNTs). The influences of nanotube functionalization and loading concentration on the collagen fiber structure, mechanical property, biocompatibility, and molecule binding were examined. Results revealed that surface modification and loading concentration of nanotubes determined the interactions between nanotubes and collagen fibrils, thus altering the structure and property of nanotube-collagen composites. Scanning electron microscopy and confocal microscopy revealed that the incorporation of CFNT in collagen-based constructs was an effective means of restructuring collagen fibrils because CFNT strongly bound to collagen molecules inducing the formation of larger fibril bundles. However, increased nanotube loading concentration caused the formation of denser fibril network and larger aggregates. Static stress-strain tests under compression showed that the addition of nanotube into collagen-based constructs did not significantly increase static compressive moduli. Creep/recovery testing under compression revealed that CFNT-collagen constructs showed improved mechanical stability under continuous loading. Testing with endothelial cells showed that biocompatibility was highly dependent on nanotube loading concentration. At a low loading level, CFNT-collagen showed higher endothelial coverage than the other tested constructs or materials. Additionally, CFNT-collagen showed capability of binding to other biomolecules to enhance the construct functionality. In conclusion

  19. Carbon nanotube fiber spun from wetted ribbon

    DOEpatents

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  20. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  1. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  2. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  3. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  4. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  5. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  6. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  7. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  8. Unveiling Stability Criteria of DNA-Carbon Nanotubes Constructs by Scanning Tunneling Microscopy and Computational Modeling

    DOE PAGES

    Kilina, Svetlana; Yarotski, Dzmitry A.; Talin, A. Alec; ...

    2011-01-01

    We present a combined approach that relies on computational simulations and scanning tunneling microscopy (STM) measurements to reveal morphological properties and stability criteria of carbon nanotube-DNA (CNT-DNA) constructs. Application of STM allows direct observation of very stable CNT-DNA hybrid structures with the well-defined DNA wrapping angle of 63.4 ° and a coiling period of 3.3 nm. Using force field simulations, we determine how the DNA-CNT binding energy depends on the sequence and binding geometry of a single strand DNA. This dependence allows us to quantitatively characterize the stability of a hybrid structure with an optimal π-stacking between DNA nucleotides and themore » tube surface and better interpret STM data. Our simulations clearly demonstrate the existence of a very stable DNA binding geometry for (6,5) CNT as evidenced by the presence of a well-defined minimum in the binding energy as a function of an angle between DNA strand and the nanotube chiral vector. This novel approach demonstrates the feasibility of CNT-DNA geometry studies with subnanometer resolution and paves the way towards complete characterization of the structural and electronic properties of drug-delivering systems based on DNA-CNT hybrids as a function of DNA sequence and a nanotube chirality.« less

  9. Carbon nanotubes enhanced the lead toxicity on the freshwater fish

    NASA Astrophysics Data System (ADS)

    Martinez, D. S. T.; Alves, O. L.; Barbieri, E.

    2013-04-01

    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO3-MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO3-treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO3-MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO3-MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.

  10. Carbon Nanotube Devices for GHz to THz Applications

    NASA Astrophysics Data System (ADS)

    Burke, Peter

    2005-03-01

    In this talk I will present an overview of the high-frequency applications of carbon nanotubes, one realization of nano-electronic devices, and where the challenges and opportunities lie in this new field. Specifically, I will first discuss the passive RF circuit models of one-dimensional nanostructures as interconnects[1]. Next, I will discuss circuit models of the ac performance of active 1d transistor structures, leading to the prediction that THz cutoff frequencies should be possible[2]. We recently demonstrated the operation of nanotube transistors at 2.6 GHz[3]. Third, I discuss the radiation properties of 1d wires, which could form antennas linking the nanoworld to the macroworld[4]. This could completely remove the requirements for lithographically defined contacts to nanotube and nanowire devices, one of the greatest unsolved problems in nanotechnology. [1] P.J. Burke "An RF Circuit Model for Carbon Nanotubes" IEEE Transactions on Nanotechnology 2(1), 55-58 (2003). [2] P.J. Burke, ``AC Performance of Nanoelectronics: Towards a Ballistic THz Nanotube Transistor'' Solid State Electronics, 48(10), 1981-1986 (2004). [3] Shengdong Li, Zhen Yu, Sheng-Fen Yeng, W.C. Tang, Peter J. Burke, ``Carbon Nanotube Transistor Operation at 2.6 GHz'' Nano Letters, 4(4), 753-756 (2004). [4] Peter J. Burke, Shengdong Li, Zhen Yu ''Quantitative theory of nanowire and nanotube antenna performance,'' http://xxx.lanl.gov/abs/cond-mat/0408418cond-mat/0408418 (2004).

  11. Process for making polymers comprising derivatized carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The present invention incorporates new processes for blending derivatized carbon nanotubes into polymer matrices to create new polymer/composite materials. When modified with suitable chemical groups using diazonium chemistry, the nanotubes can be made chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as mechanical strength) to the properties of the composite material as a whole. To achieve this, the derivatized (modified) carbon nanotubes are physically blended with the polymeric material, and/or, if desired, allowed to react at ambient or elevated temperature. These methods can be utilized to append functionalities to the nanotubes that will further covalently bond to the host polymer matrix, or directly between two tubes themselves. Furthermore, the nanotubes can be used as a generator of polymer growth, wherein the nanotubes are derivatized with a functional group that is an active part of a polymerization process, which would also result in a composite material in which the carbon nanotubes are chemically involved.

  12. Multi Objective Optimization of Multi Wall Carbon Nanotube Based Nanogrinding Wheel Using Grey Relational and Regression Analysis

    NASA Astrophysics Data System (ADS)

    Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy

    2016-07-01

    Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.

  13. Stillinger-Weber potential for elastic and fracture properties in graphene and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hossain, M. Z.; Hao, T.; Silverman, B.

    2018-02-01

    This paper presents a new framework for determining the Stillinger-Weber (SW) potential parameters for modeling fracture in graphene and carbon nanotubes. In addition to fitting the equilibrium material properties, the approach allows fitting the potential to the forcing behavior as well as the mechanical strength of the solid, without requiring ad hoc modification of the nearest-neighbor interactions for avoiding artificial stiffening of the lattice at larger deformation. Consistent with the first-principles results, the potential shows the Young’s modulus of graphene to be isotropic under symmetry-preserving and symmetry-breaking deformation conditions. It also shows the Young’s modulus of carbon nanotubes to be diameter-dependent under symmetry-breaking loading conditions. The potential addresses the key deficiency of existing empirical potentials in reproducing experimentally observed glass-like brittle fracture in graphene and carbon nanotubes. In simulating the entire deformation process leading to fracture, the SW-potential costs several factors less computational time compared to the state-of-the-art interatomic potentials that enables exploration of the fracture processes in large atomistic systems which are inaccessible otherwise.

  14. Molecular Origin of the Self-Assembly of Lanreotide into Nanotubes: A Mutational Approach☆

    PubMed Central

    Valéry, Céline; Pouget, Emilie; Pandit, Anjali; Verbavatz, Jean-Marc; Bordes, Luc; Boisdé, Isabelle; Cherif-Cheikh, Roland; Artzner, Franck; Paternostre, Maité

    2008-01-01

    Lanreotide, a synthetic, therapeutic octapeptide analog of somatostatin, self-assembles in water into perfectly hollow and monodisperse (24-nm wide) nanotubes. Lanreotide is a cyclic octapeptide that contains three aromatic residues. The molecular packing of the peptide in the walls of a nanotube has recently been characterized, indicating four hierarchical levels of organization. This is a fascinating example of spontaneous self-organization, very similar to the formation of the gas vesicle walls of Halobacterium halobium. However, this unique peptide self-assembly raises important questions about its molecular origin. We adopted a directed mutation approach to determine the molecular parameters driving the formation of such a remarkable peptide architecture. We have modified the conformation by opening the cycle and by changing the conformation of a Lys residue, and we have also mutated the aromatic side chains of the peptide. We show that three parameters are essential for the formation of lanreotide nanotubes: i), the specificity of two of the three aromatic side chains, ii), the spatial arrangement of the hydrophilic and hydrophobic residues, and iii), the aromatic side chain in the β-turn of the molecule. When these molecular characteristics are modified, either the peptides lose their self-assembling capability or they form less-ordered architectures, such as amyloid fibers and curved lamellae. Thus we have determined key elements of the molecular origins of lanreotide nanotube formation. PMID:17993497

  15. Proton Damage Effects on Carbon Nanotube Field-Effect Transistors

    DTIC Science & Technology

    2014-06-19

    PROTON DAMAGE EFFECTS ON CARBON NANOTUBE FIELD-EFFECT TRANSISTORS THESIS Evan R. Kemp, Ctr...United States. AFIT-ENP-T-14-J-39 PROTON DAMAGE EFFECTS ON CARBON NANOTUBE FIELD-EFFECT TRANSISTORS THESIS Presented to...PROTON DAMAGE EFFECTS ON CARBON NANOTUBE FIELD-EFFECT TRANSISTORS Evan R. Kemp, BS Ctr, USAF Approved: // Signed

  16. Differentiating Left- and Right-Handed Carbon Nanotubes by DNA.

    PubMed

    Ao, Geyou; Streit, Jason K; Fagan, Jeffrey A; Zheng, Ming

    2016-12-28

    New structural characteristics emerge when solid-state crystals are constructed in lower dimensions. This is exemplified by single-wall carbon nanotubes, which exhibit a degree of freedom in handedness and a multitude of helicities that give rise to three distinct types of electronic structures: metals, quasi-metals, and semiconductors. Here we report the use of intrinsically chiral single-stranded DNA to achieve simultaneous handedness and helicity control for all three types of nanotubes. We apply polymer aqueous two-phase systems to select special DNA-wrapped carbon nanotubes, each of which we argue must have an ordered DNA structure that binds to a nanotube of defined handedness and helicity and resembles a well-folded biomacromolecule with innate stereoselectivity. We have screened over 300 short single-stranded DNA sequences with palindrome symmetry, leading to the selection of more than 20 distinct carbon nanotube structures that have defined helicity and handedness and cover the entire chiral angle range and all three electronic types. The mechanism of handedness selection is illustrated by a DNA sequence that adopts two distinct folds on a pair of (6,5) nanotube enantiomers, rendering them large differences in fluorescence intensity and chemical reactivity. This result establishes a first example of functionally distinguishable left- and right-handed carbon nanotubes. Taken together, our work demonstrates highly efficient enantiomer differentiation by DNA and offers a first comprehensive solution to achieve simultaneous handedness and helicity control for all three electronic types of carbon nanotubes.

  17. Differentiating Left- and Right-handed Carbon Nanotubes by DNA

    NASA Astrophysics Data System (ADS)

    Zheng, Ming

    New structural characteristics emerge when solid-state crystals are constructed in lower dimensions. This is exemplified by single-wall carbon nanotubes, which exhibit a degree of freedom in handedness, and a multitude of helicity that gives rise to three distinct types of electronic structures - metals, quasi-metals, and semiconductors. Here, we report the use of intrinsically chiral single-stranded DNA to achieve simultaneous handedness and helicity control for all three types of nanotubes. We apply polymer aqueous two-phase systems to select special DNA-wrapped carbon nanotubes, each of which we argue must have an ordered DNA structure bound to a nanotube of defined handedness and helicity, resembling a well-folded biomacromolecule with innate stereo-selectivity. We have screened over 300 short single-stranded DNA sequences with palindrome symmetry, leading to the selection of more than 20 distinct carbon nanotube structures that have defined helicity and handedness and cover the entire chiral angle range and all three electronic types. The mechanism of handedness selection is illustrated by a DNA sequence that adopts two distinct folds on a pair of (6,5) nanotube enantiomers, respectively, rendering them large differences in fluorescence intensity and chemical reactivity. This result establishes a first example of functionally distinguishable left- and right-handed carbon nanotubes. Taken together, our work demonstrates highly efficient enantiomer differentiation by DNA, and offers a first comprehensive solution to achieve simultaneous handedness and helicity control for all three electronic types of carbon nanotubes. .

  18. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions

    PubMed Central

    2012-01-01

    The preparation of nanofluids is very important to their thermophysical properties. Nanofluids with the same nanoparticles and base fluids can behave differently due to different nanofluid preparation methods. The agglomerate sizes in nanofluids can significantly impact the thermal conductivity and viscosity of nanofluids and lead to a different heat transfer performance. Ultrasonication is a common way to break up agglomerates and promote dispersion of nanoparticles into base fluids. However, research reports of sonication effects on nanofluid properties are limited in the open literature. In this work, sonication effects on thermal conductivity and viscosity of carbon nanotubes (0.5 wt%) in an ethylene glycol-based nanofluid are investigated. The corresponding effects on the agglomerate sizes and the carbon nanotube lengths are observed. It is found that with an increased sonication time/energy, the thermal conductivity of the nanofluids increases nonlinearly, with the maximum enhancement of 23% at sonication time of 1,355 min. However, the viscosity of nanofluids increases to the maximum at sonication time of 40 min, then decreases, finally approaching the viscosity of the pure base fluid at a sonication time of 1,355 min. It is also observed that the sonication process not only reduces the agglomerate sizes but also decreases the length of carbon nanotubes. Over the current experimental range, the reduction in agglomerate size is more significant than the reduction of the carbon nanotube length. Hence, the maximum thermal conductivity enhancement and minimum viscosity increase are obtained using a lengthy sonication, which may have implications on application. PMID:22333487

  19. Calculation of Non-Bonded Forces Due to Sliding of Bundled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Bandorawalla, T.; Gates, T. S.

    2003-01-01

    An important consideration for load transfer in bundles of single-walled carbon nanotubes is the nonbonded (van der Waals) forces between the nanotubes and their effect on axial sliding of the nanotubes relative to each other. In this research, the non-bonded forces in a bundle of seven hexagonally packed (10,10) single-walled carbon nanotubes are represented as an axial force applied to the central nanotube. A simple model, based on momentum balance, is developed to describe the velocity response of the central nanotube to the applied force. The model is verified by comparing its velocity predictions with molecular dynamics simulations that were performed on the bundle with different force histories applied to the central nanotube. The model was found to quantitatively predict the nanotube velocities obtained from the molecular dynamics simulations. Both the model and the simulations predict a threshold force at which the nanotube releases from the bundle. This force converts to a shear yield strength of 10.5-11.0 MPa for (10,10) nanotubes in a bundle.

  20. Fabrication of Titania Nanotubes for Gas Sensing Applications

    NASA Astrophysics Data System (ADS)

    Dzilal, A. A.; Muti, M. N.; John, O. D.

    2010-03-01

    Detection of hydrogen is needed for industrial process control and medical applications where presence of hydrogen indicates different type of health problems. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to fabricate good quality titania nanotubes suitable for hydrogen sensing applications. The fabrication method used is anodizing method. The anodizing parameters namely the voltage, time duration, concentration of hydrofluoric acid in water, separation between the electrodes and the ambient temperature are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes. The highly ordered porous titania nanotubes produced by this method are in tabular shape and have good uniformity and alignment over large areas. From the investigation done, certain set of anodizing parameters have been found to produce good quality titania nanotubes with diameter ranges from 47 nm to 94 nm.

  1. Band gap scaling laws in group IV nanotubes.

    PubMed

    Wang, Chongze; Fu, Xiaonan; Guo, Yangyang; Guo, Zhengxiao; Xia, Congxin; Jia, Yu

    2017-03-17

    By using the first-principles calculations, the band gap properties of nanotubes formed by group IV elements have been investigated systemically. Our results reveal that for armchair nanotubes, the energy gaps at K points in the Brillouin zone decrease as 1/r scaling law with the radii (r) increasing, while they are scaled by -1/r 2  + C at Γ points, here, C is a constant. Further studies show that such scaling law of K points is independent of both the chiral vector and the type of elements. Therefore, the band gaps of nanotubes for a given radius can be determined by these scaling laws easily. Interestingly, we also predict the existence of indirect band gap for both germanium and tin nanotubes. Our new findings provide an efficient way to determine the band gaps of group IV element nanotubes by knowing the radii, as well as to facilitate the design of functional nanodevices.

  2. Computational Nanotechnology of Materials, Devices, and Machines: Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Kwak, Dolhan (Technical Monitor)

    2000-01-01

    The mechanics and chemistry of carbon nanotubes have relevance for their numerous electronic applications. Mechanical deformations such as bending and twisting affect the nanotube's conductive properties, and at the same time they possess high strength and elasticity. Two principal techniques were utilized including the analysis of large scale classical molecular dynamics on a shared memory architecture machine and a quantum molecular dynamics methodology. In carbon based electronics, nanotubes are used as molecular wires with topological defects which are mediated through various means. Nanotubes can be connected to form junctions.

  3. Local Gate Control of a Carbon Nanotube Double Quantum Dot

    DTIC Science & Technology

    2016-04-04

    Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...computation. Carbon nanotubes have been considered lead- ing candidates for nanoscale electronic applica- tions (1, 2). Previous measurements of nano- tube...electronics have shown electron confine- ment (quantum dot) effects such as single- electron charging and energy-level quantization (3–5). Nanotube

  4. Carbon nanotube: the inside story.

    PubMed

    Ando, Yoshinori

    2010-06-01

    Carbon nanotubes (CNTs) were serendipitously discovered as a byproduct of fullerenes by direct current (DC) arc discharge; and today this is the most-wanted material in the nanotechnology research. In this brief review, I begin with the history of the discovery of CNTs and focus on CNTs produced by arc discharge in hydrogen atmosphere, which is little explored outside my laboratory. DC arc discharge evaporation of pure graphite rod in pure hydrogen gas results in multi-walled carbon nanotubes (MWCNTs) of high crystallinity in the cathode deposit. As-grown MWCNTs have very narrow inner diameter. Raman spectra of these MWCNTs show high-intensity G-band, unusual high-frequency radial breathing mode at 570 cm(-1), and a new characteristic peak near 1850 cm(-1). Exciting carbon nanowires (CNWs), consisting of a linear carbon chain in the center of MWCNTs are also produced. Arc evaporation of graphite rod containing metal catalysts results in single-wall carbon nanotubes (SWCNTs) in the whole chamber like macroscopic webs. Two kinds of arc method have been developed to produce SWCNTs: Arc plasma jet (APJ) and Ferrum-Hydrogen (FH) arc methods. Some new purification methods for as-produced SWCNTs are reviewed. Finally, double-walled carbon nanotubes (DWCNTs) are also described.

  5. Boron Nitride Nanotubes Synthesized by Pressurized Reactive Milling Process

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    2004-01-01

    Nanotubes, because of their very high strength, are attractive as reinforcement materials for ceramic matrix composites (CMCs). Recently there has been considerable interest in developing and applying carbon nanotubes for both electronic and structural applications. Although carbon nanotubes can be used to reinforce composites, they oxidize at high temperatures and, therefore, may not be suitable for ceramic composites. Boron nitride, because it has a higher oxidation resistance than carbon, could be a potential reinforcement material for ceramic composites. Although boron nitride nanotubes (BNnT) are known to be structurally similar to carbon nanotubes, they have not undergone the same extensive scrutiny that carbon nanotubes have experienced in recent years. This has been due to the difficulty in synthesizing this material rather than lack of interest in the material. We expect that BNnTs will maintain the high strength of carbon nanotubes while offering superior performance for the high-temperature and/or corrosive applications of interest to NASA. At the NASA Glenn Research of preparing BN-nTs were investigated and compared. These include the arc jet process, the reactive milling process, and chemical vapor deposition. The most successful was a pressurized reactive milling process that synthesizes BN-nTs of reasonable quantities.

  6. Physical and Electronic Isolation of Carbon Nanotube Conductors

    NASA Technical Reports Server (NTRS)

    OKeeffe, James; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Multi-walled nanotubes are proposed as a method to electrically and physically isolate nanoscale conductors from their surroundings. We use tight binding (TB) and density functional theory (DFT) to simulate the effects of an external electric field on multi-wall nanotubes. Two categories of multi-wall nanotube are investigated, those with metallic and semiconducting outer shells. In the metallic case, simulations show that the outer wall effectively screens the inner core from an applied electric field. This offers the ability to reduce crosstalk between nanotube conductors. A semiconducting outer shell is found not to perturb an electric field incident on the inner core, thereby providing physical isolation while allowing the tube to remain electrically coupled to its surroundings.

  7. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.

    PubMed

    Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed

    2012-08-24

    We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

  8. Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: nanotubes enhance pesticide ecotoxicity.

    PubMed

    Campos-Garcia, Janaína; Martinez, Diego Stéfani T; Alves, Oswaldo L; Leonardo, Antônio Fernando Gervásio; Barbieri, Edison

    2015-01-01

    The interactions of carbon nanotubes with pesticides, such as carbofuran, classical contaminants (e.g., pesticides, polyaromatic hydrocarbons, heavy metals, and dyes) and emerging contaminants, including endocrine disruptors, are critical components of the environmental risks of this important class of carbon-based nanomaterials. In this work, we studied the modulation of acute carbofuran toxicity to the freshwater fish Nile tilapia (Oreochromis niloticus) by nitric acid treated multiwalled carbon nanotubes, termed HNO3-MWCNT. Nitric acid oxidation is a common chemical method employed for the purification, functionalisation and aqueous dispersion of carbon nanotubes. HNO3-MWCNT were not toxic to Nile tilapia at concentrations ranging from 0.1 to 3.0 mg/L for exposure times of up to 96 h. After 24, 48, 72 and 96 h, the LC50 values of carbofuran were 4.0, 3.2, 3.0 and 2.4 mg/mL, respectively. To evaluate the influence of carbofuran-nanotube interactions on ecotoxicity, we exposed the Nile tilapia to different concentrations of carbofuran mixed together with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, and 96 h of exposure, the LC50 values of carbofuran plus nanotubes were 3.7, 1.6, 0.7 and 0.5 mg/L, respectively. These results demonstrate that HNO3-MWCNT potentiate the acute toxicity of carbofuran, leading to a more than five-fold increase in the LC50 values. Furthermore, the exposure of Nile tilapia to carbofuran plus nanotubes led to decreases in both oxygen consumption and swimming capacity compared to the control. These findings indicate that carbon nanotubes could act as pesticide carriers affecting fish survival, metabolism and behaviour. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Inorganic nanotubes and fullerene-like nanoparticles.

    PubMed

    Tenne, R

    2006-11-01

    Although graphite, with its anisotropic two-dimensional lattice, is the stable form of carbon under ambient conditions, on nanometre length scales it forms zero- and one-dimensional structures, namely fullerenes and nanotubes, respectively. This virtue is not limited to carbon and, in recent years, fullerene-like structures and nanotubes have been made from numerous compounds with layered two-dimensional structures. Furthermore, crystalline and polycrystalline nanotubes of pure elements and compounds with quasi-isotropic (three-dimensional) unit cells have also been synthesized, usually by making use of solid templates. These findings open up vast opportunities for the synthesis and study of new kinds of nanostructures with properties that may differ significantly from the corresponding bulk materials. Various potential applications have been proposed for the inorganic nanotubes and the fullerene-like phases. Fullerene-like nanoparticles have been shown to exhibit excellent solid lubrication behaviour, suggesting many applications in, for example, the automotive and aerospace industries, home appliances, and recently for medical technology. Various other potential applications, in catalysis, rechargeable batteries, drug delivery, solar cells and electronics have also been proposed.

  10. Inorganic nanotubes and fullerene-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Tenne, R.

    2006-11-01

    Although graphite, with its anisotropic two-dimensional lattice, is the stable form of carbon under ambient conditions, on nanometre length scales it forms zero- and one-dimensional structures, namely fullerenes and nanotubes, respectively. This virtue is not limited to carbon and, in recent years, fullerene-like structures and nanotubes have been made from numerous compounds with layered two-dimensional structures. Furthermore, crystalline and polycrystalline nanotubes of pure elements and compounds with quasi-isotropic (three-dimensional) unit cells have also been synthesized, usually by making use of solid templates. These findings open up vast opportunities for the synthesis and study of new kinds of nanostructures with properties that may differ significantly from the corresponding bulk materials. Various potential applications have been proposed for the inorganic nanotubes and the fullerene-like phases. Fullerene-like nanoparticles have been shown to exhibit excellent solid lubrication behaviour, suggesting many applications in, for example, the automotive and aerospace industries, home appliances, and recently for medical technology. Various other potential applications, in catalysis, rechargeable batteries, drug delivery, solar cells and electronics have also been proposed.

  11. Multi-Scale Modeling of a Graphite-Epoxy-Nanotube System

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Riddick, J. C.; Gates, T. S.

    2005-01-01

    A multi-scale method is utilized to determine some of the constitutive properties of a three component graphite-epoxy-nanotube system. This system is of interest because carbon nanotubes have been proposed as stiffening and toughening agents in the interlaminar regions of carbon fiber/epoxy laminates. The multi-scale method uses molecular dynamics simulation and equivalent-continuum modeling to compute three of the elastic constants of the graphite-epoxy-nanotube system: C11, C22, and C33. The 1-direction is along the nanotube axis, and the graphene sheets lie in the 1-2 plane. It was found that the C11 is only 4% larger than the C22. The nanotube therefore does have a small, but positive effect on the constitutive properties in the interlaminar region.

  12. Targeted self-assembly of functionalized carbon nanotubes on tumors

    DOEpatents

    Scheinberg, David A.; McDevitt, Michael R.; Villa, Carlos H.; Mulvey, J. Justin

    2018-05-22

    Provided herein are methods for delivering a molecule in situ to a cell and for treating a cancer via the in situ delivery. The methods comprise contacting or administering to the cell, as two separate components, a morpholino oligonucleotide comprising a targeting moiety followed by a single wall nanotube construct comprising second morpholino oligonucleotides complementary to the first morpholino oligonucleotides and one or both of a therapeutic or diagnostic payload molecule linked to the single wall nanotube construct. Upon self-assembly of a single wall nanotube complex via hybridization of the first morpholino and second complementary morpholino oligonucleotides at the cell, the payload molecule is delivered. Also provided is the two component self-assembly single wall nanotube system and the single wall nanotube construct comprising the second component.

  13. Blowing Carbon Nanotubes to Carbon Nanobulbs

    NASA Astrophysics Data System (ADS)

    Su, D. S.; Zhu, Z. P.; Lu, Y.; Schlögl, R.; Weinberg, G.; Liu, Z. Y.

    2004-09-01

    We report the blowing of multi-walled carbon nanotubes into carbon nanobulbs. This is realized in a unique tube growth environment generated by explosive decomposition of picric acid mixed with nickel formate. The carbon spherical bulbs are characterized by large dimensions (up to 900 nm), thin walls (around 10 nm), and fully hollow cores. The walls are in graphitic structure of sp2 hybridized carbons. Bulb-tube assemblies are found as intermediate derivatives of blowing. A joint action of the filled high-pressure gases and the structural defects in the carbon nanotubes is responsible to the formation of the carbon nanobulbs. Our finding may indicate the possibility to engineer the carbon nanotubes to the designed nanostructures.

  14. PECVD Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    McAninch, Ian; Arnold, James O. (Technical Monitor)

    2001-01-01

    Plasma enhanced chemical vapor deposition (PECVD), using inductively coupled plasma, has been used to grow carbon nanotubes (CNTs) and graphitic carbon fibers (GCF) on substrates sputtered with aluminum and iron catalyst. The capacitive plasma's power has been shown to cause a transition from nanotubes to nanofibers, depending on the strength of the plasma. The temperature, placement, and other factors have been shown to affect the height and density of the tube and fiber growth.

  15. Coarse-grained molecular dynamics simulation of water diffusion in the presence of carbon nanotubes.

    PubMed

    Lado Touriño, Isabel; Naranjo, Arisbel Cerpa; Negri, Viviana; Cerdán, Sebastián; Ballesteros, Paloma

    2015-11-01

    Computational modeling of the translational diffusion of water molecules in anisotropic environments entails vital relevance to understand correctly the information contained in the magnetic resonance images weighted in diffusion (DWI) and of the diffusion tensor images (DTI). In the present work we investigated the validity, strengths and weaknesses of a coarse-grained (CG) model based on the MARTINI force field to simulate water diffusion in a medium containing carbon nanotubes (CNTs) as models of anisotropic water diffusion behavior. We show that water diffusion outside the nanotubes follows Ficḱs law, while water diffusion inside the nanotubes is not described by a Ficḱs behavior. We report on the influence on water diffusion of various parameters such as length and concentration of CNTs, comparing the CG results with those obtained from the more accurate classic force field calculation, like the all-atom approach. Calculated water diffusion coefficients decreased in the presence of nanotubes in a concentration dependent manner. We also observed smaller water diffusion coefficients for longer CNTs. Using the CG methodology we were able to demonstrate anisotropic diffusion of water inside the nanotube scaffold, but we could not prove anisotropy in the surrounding medium, suggesting that grouping several water molecules in a single diffusing unit may affect the diffusional anisotropy calculated. The methodologies investigated in this work represent a first step towards the study of more complex models, including anisotropic cohorts of CNTs or even neuronal axons, with reasonable savings in computation time. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Barreiro, Amelia; Rurali, Riccardo; Hernández, Eduardo R.; Moser, Joel; Pichler, Thomas; Forró, László; Bachtold, Adrian

    2008-05-01

    An important issue in nanoelectromechanical systems is developing small electrically driven motors. We report on an artificial nanofabricated motor in which one short carbon nanotube moves relative to another coaxial nanotube. A cargo is attached to an ablated outer wall of a multiwalled carbon nanotube that can rotate and/or translate along the inner nanotube. The motion is actuated by imposing a thermal gradient along the nanotube, which allows for subnanometer displacements, as opposed to an electromigration or random walk effect.

  17. Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods

    PubMed Central

    Fulati, Alimujiang; Ali, Syed M.Usman; Riaz, Muhammad; Amin, Gul; Nur, Omer; Willander, Magnus

    2009-01-01

    ZnO nanotubes and nanorods grown on gold thin film were used to create pH sensor devices. The developed ZnO nanotube and nanorod pH sensors display good reproducibility, repeatability and long-term stability and exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl reference electrode over a large dynamic pH range. We found the ZnO nanotubes provide sensitivity as high as twice that of the ZnO nanorods, which can be ascribed to the fact that small dimensional ZnO nanotubes have a higher level of surface and subsurface oxygen vacancies and provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods, thus affording the ZnO nanotube pH sensor a higher sensitivity. Experimental results indicate ZnO nanotubes can be used in pH sensor applications with improved performance. Moreover, the ZnO nanotube arrays may find potential application as a novel material for measurements of intracellular biochemical species within single living cells. PMID:22291545

  18. A bioscaffolding strategy for hierarchical zeolites with a nanotube-trimodal network.

    PubMed

    Li, Guannan; Huang, Haibo; Yu, Bowen; Wang, Yun; Tao, Jiawei; Wei, Yingxu; Li, Shougui; Liu, Zhongmin; Xu, Yan; Xu, Ruren

    2016-02-01

    Hierarchical zeolite monoliths with multimodal porosity are of paramount importance as they open up new horizons for advanced applications. So far, hierarchical zeolites based on nanotube scaffolds have never been reported. Inspired by the organization of biominerals, we have developed a novel precursor scaffolding-solid phase crystallization strategy for hierarchical zeolites with a unique nanotube scaffolding architecture and nanotube-trimodal network, where biomolecular self-assembly (BSA) provides a scaffolding blueprint. By vapor-treating Sil-1 seeded precursor scaffolds, zeolite MFI nanotube scaffolds are self-generated, during which evolution phenomena such as segmented voids and solid bridges are observed, in agreement with the Kirkendall effect in a solid-phase crystallization system. The nanotube walls are made of intergrown single crystals rendering good mechanical stability. The inner diameter of the nanotube is tunable between 30 and 90 nm by varying the thickness of the precursor layers. Macropores enclosed by cross-linked nanotubes can be modulated by the choice of BSA. Narrow mesopores are formed by intergrown nanocrystals. Hierarchical ZSM-5 monoliths with nanotube (90 nm), micropore (0.55 nm), mesopore (2 nm) and macropore (700 nm) exhibit superior catalytic performance in the methanol-to-hydrocarbon (MTH) conversion compared to conventional ZSM-5. BSA remains intact after crystallization, allowing a higher level of organization and functionalization of the zeolite nanotube scaffolds. The current work may afford a versatile strategy for hierarchical zeolite monoliths with nanotube scaffolding architectures and a nanotube-multimodal network leading to self-supporting and active zeolite catalysts, and for applications beyond.

  19. Plasma nanocoating of thiophene onto MoS2 nanotubes

    NASA Astrophysics Data System (ADS)

    Türkaslan, Banu Esencan; Dikmen, Sibel; Öksüz, Lütfi; Öksüz, Aysegul Uygun

    2015-12-01

    MoS2 nanotubes were coated with conductive polymer thiophene by atmospheric pressure radio-frequency (RF) glow discharge. MoS2 nanotubes were prepared by thermal decomposition of hexadecylamine (HDA) intercalated laminar MoS2 precursor on anodized aluminum oxide template and the thiophene was polymerized directly on surface of these nanotubes as in situ by plasma method. The effect of plasma power on PTh/MoS2 nanocomposite properties has been investigated by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM and EDX), and X-ray diffraction spectroscopy (XRD). The presence of PTh bands in the FTIR spectra of PTh/MoS2 nanotube nanocomposites corresponding XRD results indicates that the polythiophene coating onto MoS2 nanotube. The chemical structure of PTh is not changed when the plasma power of discharge differ from 117 to 360 W. SEM images of nanocomposites show that when the discharge power is increased between 117 and 360 W the average diameter of PTh/MoS2 nanotube nanocomposites are changed and the structure become more uniformly.

  20. Multi-Wall Carbon Nanotubes for Flow-Induced Voltage Generation (Preprint)

    DTIC Science & Technology

    2006-08-01

    flow sensors with a large dynamic range. The present work investigates voltage generation properties of multi-walled carbon nanotubes ( MWCNT ) as a...wall carbon nanotubes, has been generated from our perpendicularly-aligned MWCNT in an aqueous solution of 1 M NaCl at a relatively low flow velocity of...generation properties of multi-walled carbon nanotubes ( MWCNT ) as a function of the relative orientation of the nanotube array with respect to the flow

  1. Electron Damage Effects on Carbon Nanotube Thin Films

    DTIC Science & Technology

    2013-03-01

    ELECTRON DAMAGE EFFECTS ON CARBON NANOTUBE THIN FILMS THESIS Jeremy S. Best, Captain, USMC AFIT-ENP-13-M-37 DEPARTMENT OF THE AIR FORCE AIR...Government and is not subject to copyright protection in the United States. AFIT-ENP-13-M-37 ELECTRON DAMAGE EFFECTS ON CARBON NANOTUBE THIN FILMS...M-37 ELECTRON DAMAGE EFFECTS ON CARBON NANOTUBE THIN FILMS Jeremy S. Best, BS Aerospace Engineering Captain, USMC Approved: Dr. John McClory

  2. Propagation of three-dimensional bipolar ultrashort electromagnetic pulses in an inhomogeneous array of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fedorov, Eduard G.; Zhukov, Alexander V.; Bouffanais, Roland; Timashkov, Alexander P.; Malomed, Boris A.; Leblond, Hervé; Mihalache, Dumitru; Rosanov, Nikolay N.; Belonenko, Mikhail B.

    2018-04-01

    We study the propagation of three-dimensional (3D) bipolar ultrashort electromagnetic pulses in an inhomogeneous array of semiconductor carbon nanotubes. The heterogeneity is represented by a planar region with an increased concentration of conduction electrons. The evolution of the electromagnetic field and electron concentration in the sample are governed by the Maxwell's equations and continuity equation. In particular, nonuniformity of the electromagnetic field along the axis of the nanotubes is taken into account. We demonstrate that depending on values of the parameters of the electromagnetic pulse approaching the region with the higher electron concentration, the pulse is either reflected from the region or passes it. Specifically, our simulations demonstrate that after interacting with the higher-concentration area, the pulse can propagate steadily, without significant spreading. The possibility of such ultrashort electromagnetic pulses propagating in arrays of carbon nanotubes over distances significantly exceeding characteristic dimensions of the pulses makes it possible to consider them as 3D solitons.

  3. Wetting behavior of nonpolar nanotubes in simple dipolar liquids for varying nanotube diameter and solute-solvent interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Malay Kumar; Chandra, Amalendu, E-mail: amalen@iitk.ac.in

    2015-01-21

    Atomistic simulations of model nonpolar nanotubes in a Stockmayer liquid are carried out for varying nanotube diameter and nanotube-solvent interactions to investigate solvophobic interactions in generic dipolar solvents. We have considered model armchair type single-walled nonpolar nanotubes with increasing radii from (5,5) to (12,12). The interactions between solute and solvent molecules are modeled by the well-known Lennard-Jones and repulsive Weeks-Chandler-Andersen potentials. We have investigated the density profiles and microscopic arrangement of Stockmayer molecules, orientational profiles of their dipole vectors, time dependence of their occupation, and also the translational and rotational motion of solvent molecules in confined environments of the cylindricalmore » nanopores and also in their external peripheral regions. The present results of structural and dynamical properties of Stockmayer molecules inside and near atomistically rough nonpolar surfaces including their wetting and dewetting behavior for varying interactions provide a more generic picture of solvophobic effects experienced by simple dipolar liquids without any specific interactions such as hydrogen bonds.« less

  4. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery.

    PubMed

    Newland, B; Taplan, C; Pette, D; Friedrichs, J; Steinhart, M; Wang, W; Voit, B; Seib, F P; Werner, C

    2018-05-10

    Nanotubes are emerging as promising materials for healthcare applications but the selection of clinically relevant starting materials for their synthesis remains largely unexplored. Here we present, for the first time, the synthesis of poly(ethylene glycol) (PEG) based nanotubes via the photopolymerization of poly(ethylene glycol) diacrylate and other diacrylate derivatives within the pores of anodized aluminum oxide templates. Template-assisted synthesis allowed the manufacture of a diverse set of polymeric nanotubes with tunable physical characteristics including diameter (∼200-400 nm) and stiffness (405-902 kPa). PEG nanotubes were subjected to cytotoxicty assessment in cell lines and primary stem cells and showed excellent cytocompatability (IC50 > 120 μg ml-1). Nanotubes were readily drug loaded but released the majority of the drug over 5 days. Direct administration of drug loaded nanotubes to human orthotopic breast tumors substantially reduced tumor growth and metastasis and outperformed i.v. administration at the equivalent dose. Overall, this nanotube templating platform is emerging as a facile route for the manufacture of poly(ethylene glycol) nanotubes.

  5. Carbon nanotube conditioning: ab initio simulations of the effect of defects and doping on the electronic properties of carbon nanotube systems.

    NASA Astrophysics Data System (ADS)

    Soto, Matias; Barrera, Enrique

    Using carbon nanotubes for electrical conduction applications at the macroscale has proven to be a difficult task, mainly, due to defects and impurities present, and lack of uniform electronic properties in synthesized carbon nanotube bundles. Some researchers have suggested that growing only metallic armchair nanotubes and arranging them with an ideal contact length could lead to the ultimate electrical conductivity; however, such recipe presents too high of a cost to pay. A different route and the topic of this work is to learn to manage the defects, impurities, and the electronic properties of carbon nanotubes present, so that the electrical conduction of a bundle or even wire may be enhanced. We used density functional theory calculations to study the effect of defects and doping on the electronic structure of metallic, semi-metal and semiconducting carbon nanotubes in order to gain a clear picture of their properties. Additionally, using dopants to increase the conductance across a junction between two carbon nanotubes was studied for different configurations. Finally, interaction potentials obtained via first-principles calculations were generalized by developing mathematical models for the purpose of running simulations at a larger length scale using molecular dynamics. Partial funding was received from CONACyT Scholarship 314419.

  6. Single-molecule electrocatalysis by single-walled carbon nanotubes.

    PubMed

    Xu, Weilin; Shen, Hao; Kim, Yoon Ji; Zhou, Xiaochun; Liu, Guokun; Park, Jiwoong; Chen, Peng

    2009-12-01

    We report a single-molecule fluorescence study of electrocatalysis by single-walled carbon nanotubes (SWNTs) at single-reaction resolution. Applying super-resolution optical imaging, we find that the electrocatalysis occurs at discrete, nanometer-dimension sites on SWNTs. Single-molecule kinetic analysis leads to an electrocatalytic mechanism, allowing quantification of the reactivity and heterogeneity of individual reactive sites. Combined with conductivity measurements, this approach will be powerful to interrogate how the electronic structure of SWNTs affects the electrocatalytic interfacial charge transfer, a process fundamental to photoelectrochemical cells.

  7. Diameter-dependent wetting of tungsten disulfide nanotubes

    PubMed Central

    Goldbart, Ohad; Cohen, Sidney R.; Kaplan-Ashiri, Ifat; Glazyrina, Polina; Wagner, H. Daniel; Enyashin, Andrey; Tenne, Reshef

    2016-01-01

    The simple process of a liquid wetting a solid surface is controlled by a plethora of factors—surface texture, liquid droplet size and shape, energetics of both liquid and solid surfaces, as well as their interface. Studying these events at the nanoscale provides insights into the molecular basis of wetting. Nanotube wetting studies are particularly challenging due to their unique shape and small size. Nonetheless, the success of nanotubes, particularly inorganic ones, as fillers in composite materials makes it essential to understand how common liquids wet them. Here, we present a comprehensive wetting study of individual tungsten disulfide nanotubes by water. We reveal the nature of interaction at the inert outer wall and show that remarkably high wetting forces are attained on small, open-ended nanotubes due to capillary aspiration into the hollow core. This study provides a theoretical and experimental paradigm for this intricate problem. PMID:27856759

  8. Intrinsic Chirality Origination in Carbon Nanotubes.

    PubMed

    Pierce, Neal; Chen, Gugang; P Rajukumar, Lakshmy; Chou, Nam Hawn; Koh, Ai Leen; Sinclair, Robert; Maruyama, Shigeo; Terrones, Mauricio; Harutyunyan, Avetik R

    2017-10-24

    Elucidating the origin of carbon nanotube chirality is key for realizing their untapped potential. Currently, prevalent theories suggest that catalyst structure originates chirality via an epitaxial relationship. Here we studied chirality abundances of carbon nanotubes grown on floating liquid Ga droplets, which excludes the influence of catalyst features, and compared them with abundances grown on solid Ru nanoparticles. Results of growth on liquid droplets bolsters the intrinsic preference of carbon nuclei toward certain chiralities. Specifically, the abundance of the (11,1)/χ = 4.31° tube can reach up to 95% relative to (9,4)/χ = 17.48°, although they have exactly the same diameter, (9.156 Å). However, the comparative abundances for the pair, (19,3)/χ = 7.2° and (17,6)/χ = 14.5°, with bigger diameter, (16.405 Å), fluctuate depending on synthesis temperature. The abundances of the same pairs of tubes grown on floating solid polyhedral Ru nanoparticles show completely different trends. Analysis of abundances in relation to nucleation probability, represented by a product of the Zeldovich factor and the deviation interval of a growing nuclei from equilibrium critical size, explain the findings. We suggest that the chirality in the nanotube in general is a result of interplay between intrinsic preference of carbon cluster and induction by catalyst structure. This finding can help to build the comprehensive theory of nanotube growth and offers a prospect for chirality-preferential synthesis of carbon nanotubes by the exploitation of liquid catalyst droplets.

  9. Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review.

    PubMed

    Herrero-Latorre, C; Barciela-García, J; García-Martín, S; Peña-Crecente, R M; Otárola-Jiménez, J

    2015-09-10

    Magnetic solid-phase extraction (M-SPE) is a procedure based on the use of magnetic sorbents for the separation and preconcentration of different organic and inorganic analytes from large sample volumes. The magnetic sorbent is added to the sample solution and the target analyte is adsorbed onto the surface of the magnetic sorbent particles (M-SPs). Analyte-M-SPs are separated from the sample solution by applying an external magnetic field and, after elution with the appropriate solvent, the recovered analyte is analyzed. This approach has several advantages over traditional solid phase extraction as it avoids time-consuming and tedious on-column SPE procedures and it provides a rapid and simple analyte separation that avoids the need for centrifugation or filtration steps. As a consequence, in the past few years a great deal of research has been focused on M-SPE, including the development of new sorbents and novel automation strategies. In recent years, the use of magnetic carbon nanotubes (M-CNTs) as a sorption substrate in M-SPE has become an active area of research. These materials have exceptional mechanical, electrical, optical and magnetic properties and they also have an extremely large surface area and varied possibilities for functionalization. This review covers the synthesis of M-CNTs and the different approaches for the use of these compounds in M-SPE. The performance, general characteristics and applications of M-SPE based on magnetic carbon nanotubes for organic and inorganic analysis have been evaluated on the basis of more than 110 references. Finally, some important challenges with respect the use of magnetic carbon nanotubes in M-SPE are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Titania carbon nanotube composites for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Pyrgiotakis, Georgios

    Photocatalytic composites have been used for the past few decades in a wide range of applications. The most common application is the purification of air and water by removing toxic compounds. There is limited use however towards biocidal applications. Despite their high efficiency, photocatalytic materials are not comparable to the effectiveness of conventional biocidal compounds such as chlorine and alcoholic disinfectants. On the other hand, nearly a decade ago with the discovery of the carbon nanotubes a new vibrant scientific field emerged. Nanotubes are unique structures of carbon that posse amazing electrical, mechanical and thermal properties. In this research carbon nanotubes are used as photocatalytic enhancers. They were coated with anatase titania to form a composite material. Two different types of nanotubes (metallic versus non-metallic) were used and the photocatalytic activity was measured. The metallic tubes demonstrated exceptional photocatalytic properties, while non-metallic tubes had low photocatalytic efficiency. The reason for that difference was investigated and was the major focus of this research. The research concluded that the reasons for the high efficiency of the carbon nanotubes were (i) the metallic nature of the tubes and (ii) the possible bond between the titania coating and the underlying graphite layers (C-O-Ti). Since both composites had the same indications regarding the C-O-Ti bond, the metallic nature of the carbon nanotubes is believed to be the most dominant factor contributing to the enhancement of the photocatalysis. The composite material may have other potential applications such as for sensing and photovoltaic uses.

  11. On prilled Nanotubes-in-Microgel Oral Systems for protein delivery.

    PubMed

    de Kruif, Jan Kendall; Ledergerber, Gisela; Garofalo, Carla; Fasler-Kan, Elizaveta; Kuentz, Martin

    2016-04-01

    Newly discovered active macromolecules are highly promising for therapy, but poor bioavailability hinders their oral use. Microencapsulation approaches, such as protein prilling into microspheres, may enable protection from gastrointestinal (GI) enzymatic degradation. This would increase bioavailability mainly for local delivery to GI lumen or mucosa. This work's purpose was to design a novel architecture, namely a Nanotubes-in-Microgel Oral System, by prilling for protein delivery. Halloysite nanotubes (HNT) were selected as orally acceptable clay particles and their lumen was enlarged by alkaline etching. This chemical modification increased the luminal volume to a mean of 216.3 μL g(-1) (+40.8%). After loading albumin as model drug, the HNT were entrapped in microgels by prilling. The formation of Nanoparticles-in-Microsphere Oral System (NiMOS) yielded entrapment efficiencies up to 63.2%. NiMOS shape was spherical to toroidal, with a diameter smaller than 320 μm. Release profiles depended largely on the employed system and HNT type. Protein stability was determined throughout prilling and after in vitro enzymatic degradation. Prilling did not harm protein structure, and NiMOS demonstrated higher enzymatic protection than pure nanotubes or microgels, since up to 82% of BSA remained unscathed after in vitro digestion. Therefore, prilled NiMOS was shown to be a promising and flexible multi-compartment system for oral (local) macromolecular delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Intercellular nanotubes: insights from imaging studies and beyond

    PubMed Central

    Hurtig, Johan; Chiu, Daniel T.; Önfelt, Björn

    2017-01-01

    Cell-cell communication is critical to the development, maintenance, and function of multicellular organisms. Classical mechanisms for intercellular communication include secretion of molecules into the extracellular space and transport of small molecules through gap junctions. Recent reports suggest that cells also can communicate over long distances via a network of transient intercellular nanotubes. Such nanotubes have been shown to mediate intercellular transfer of organelles as well as membrane components and cytoplasmic molecules. Moreover, intercellular nanotubes have been observed in vivo and have been shown to enhance the transmission of pathogens such as human immunodeficiency virus (HIV)-1 and prions in vitro. These studies indicate that intercellular nanotubes may play a role both in normal physiology and in disease. PMID:20166114

  13. Responsive Block Copolymer and Gold Nanoparticle Hybrid Nanotubes.

    NASA Astrophysics Data System (ADS)

    Chang, Sehoon; Singamaneni, Srikanth; Young, Seth; Tsukruk, Vladimir

    2009-03-01

    We demonstrate the facile fabrication of responsive polymer and metal nanoparticle composite nanotube structures. The nanotubes are comprised of responsive block copolymer, polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP), and gold nanoparticles. PS-b-P2VP nanotubes were fabricated using porous alumina template and in situ reduction of the gold nanoparticles in P2VP domains. Owing to the pH sensitive nature of P2VP (anionic polymer with a pKa of 3.8), the nanotubes exhibit a dramatic change in topology in response to the changes in the external pH. Furthermore, the gold nanoparticles in the responsive block exhibit a reversible aggregation, causing a reversible change in optical properties such as absorption.

  14. THz generation by laser coupling to carbon nanotube array

    NASA Astrophysics Data System (ADS)

    Malik, Rakhee; Uma, R.

    2018-01-01

    A viable scheme of THz radiation generation by beating of two lasers ( ω1 , k→ 1 ; ω2 , k→ 2 ) in a nanotube array, mounted on a dielectric substrate, is proposed and studied. The free electrons of the nanotubes acquire a large oscillatory velocity and experience a beat frequency ponderomotive force that turns nanotubes into oscillating dipole antennae emitting THz radiation. The THz power peaks in directions where a phase difference between fields due to successive nanotubes is integral multiple of 2 π . The THz power is large when the beat frequency equals ωp/√{2 } (where ωp is the electron plasma frequency) and surface plasmon resonance occurs. For our set of laser and carbon nanotube parameters, the generated THz is about 0.1 kW for CO2 laser power of 10 GW and pulse length of a few picoseconds.

  15. Nanoscale Etching and Indentation of Silicon Surfaces with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fedor N.; Srivastava, Deepak; Saini, Subhash

    1998-01-01

    The possibility of nanolithography of silicon and germanium surfaces with bare carbon nanotube tips of scanning probe microscopy devices is considered with large scale classical molecular dynamics (MD) simulations employing Tersoff's reactive many-body potential for heteroatomic C/Si/Ge system. Lithography plays a key role in semiconductor manufacturing, and it is expected that future molecular and quantum electronic devices will be fabricated with nanolithographic and nanodeposition techniques. Carbon nanotubes, rolled up sheets of graphene made of carbon, are excellent candidates for use in nanolithography because they are extremely strong along axial direction and yet extremely elastic along radial direction. In the simulations, the interaction of a carbon nanotube tip with silicon surfaces is explored in two regimes. In the first scenario, the nanotubes barely touch the surface, while in the second they are pushed into the surface to make "nano holes". The first - gentle scenario mimics the nanotube-surface chemical reaction induced by the vertical mechanical manipulation of the nanotube. The second -digging - scenario intends to study the indentation profiles. The following results are reported in the two cases. In the first regime, depending on the surface impact site, two major outcomes outcomes are the selective removal of either a single surface atom or a surface dimer off the silicon surface. In the second regime, the indentation of a silicon substrate by the nanotube is observed. Upon the nanotube withdrawal, several surface silicon atoms are adsorbed at the tip of the nanotube causing significant rearrangements of atoms comprising the surface layer of the silicon substrate. The results are explained in terms of relative strength of C-C, C-Si, and Si-Si bonds. The proposed method is very robust and does not require applied voltage between the nanotube tips and the surface. The implications of the reported controllable etching and hole-creating for

  16. Anchorage of γ-Al 2O 3 nanoparticles on nitrogen-doped multiwalled carbon nanotubes

    DOE PAGES

    Rodríguez-Pulido, A.; Martínez-Gutiérrez, H.; Calderon-Polania, G. A.; ...

    2016-06-07

    Nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) have been decorated with γ-Al 2O 3 nanoparticles by a novel method. This process involved a wet chemical approach in conjunction with thermal treatment. During the particle anchoring process, individual CNx-MWNT nanotubes agglomerated into bundles, resulting in arrays of aligned CNx-MWNT coated with γ-Al 2O 3. Extensive characterization of the resulting γ-Al 2O 3/CNx-MWNT bundles was performed using a range of electron microscopy imaging and microanalytical techniques. In conclusion, a possible mechanism explaining the nanobundle alignment is described, and possible applications of these materials for the fabrication of ceramic composites using CNx-MWNTs are briefly discussed.

  17. Electrochemical biosensors for biocontaminant detection consisting of carbon nanotubes, platinum nanoparticles, dendrimers, and enzymes.

    PubMed

    Siriviriyanun, Ampornphan; Imae, Toyoko; Nagatani, Naoki

    2013-12-15

    The presented approach provides the advanced development of effective, rapid, and versatile electrochemical sensors for a small amount of analytes on potential, cheap, and disposable printed chips. The electrocatalytic activity of this biosensor revealed the feasible detection of hydrogen peroxide at low potential (~0.09 V) and the detection of a biocontaminant inhibitor (organophosphorus pesticide) in a wide range of concentrations. This efficiency comes from the chemical immobilization of catalysts (Pt nanoparticles) and electron transfer-enlarging materials (carbon nanotubes) on an electrode. Especially, dendrimers raise the stable conjugation of enzymes (acetylcholinesterase/choline oxidase/peroxidase) as well as nanoparticles and carbon nanotubes on an electrode. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Assessment of the adsorption mechanism of Flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: An alternative theoretical approach based on DFT and MD

    NASA Astrophysics Data System (ADS)

    Kamel, Maedeh; Raissi, Heidar; Morsali, Ali; Shahabi, Mahnaz

    2018-03-01

    In the present work, we have studied the drug delivery performance of the functionalized (5, 5) single-walled carbon nanotube with a carboxylic acid group for Flutamide anticancer drug in the gas phase as well as water solution by means of density functional theory calculations. The obtained results confirmed the energetic stability of the optimized geometries and revealed that the nature of drug adsorption on the functionalized carbon nanotube is physical. Our computations showed that the hydrogen bonding between active sites of Flutamide molecule and the carboxyl functional group of the nanotube plays a vital role in the stabilization of the considered configurations. The natural bond orbital analysis suggested that the functionalized nanotube plays the role of an electron donor and Flutamide molecule acts as an electron acceptor at the investigated complexes. In addition, molecular dynamics simulation is also utilized to investigate the effect of functionalized carbon nanotube chirality on the dynamic process of drug molecule adsorption on the nanotube surface. Simulation results demonstrated that drug molecules are strongly adsorbed on the functionalized nanotube surface with (10,5) chirality, as reflected by the most negative van der Waals interaction energy and a high number of hydrogen bonds between the functionalized nanotube and drug molecules.

  19. A biosensor for hydrogen peroxide detection based on electronic properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Majidi, Roya

    2013-01-01

    Density functional theory has been used to study the effect of hydrogen peroxide on the electronic properties of single walled carbon nanotubes. The metallic and semiconducting carbon nanotubes have been considered in the presence of different number of hydrogen peroxide. The results indicate that hydrogen peroxide has no significant effect on the metallic nanotube and these nanotubes remain to be metallic. In contrast, the electronic properties of the semiconducting nanotubes are so sensitive to hydrogen peroxide. The energy band gap of these nanotubes is decreased by increasing the number of hydrogen peroxide. The electronic sensivity of the carbon nanotubes to hydrogen peroxide opens new insights into developing biosensors based on the single walled carbon nanotubes.

  20. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain

    NASA Astrophysics Data System (ADS)

    Godin, Antoine G.; Varela, Juan A.; Gao, Zhenghong; Danné, Noémie; Dupuis, Julien P.; Lounis, Brahim; Groc, Laurent; Cognet, Laurent

    2017-03-01

    The brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep, development and aging and is probably altered in neuropsychiatric and degenerative diseases, as inferred from electron microscopy and macroscopic biophysical investigations. Here we show an approach to directly observe the local ECS structures and rheology in brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes into rat cerebroventricles and follow the near-infrared emission of individual nanotubes as they diffuse inside the ECS for tens of minutes in acute slices. Because of the interplay between the nanotube geometry and the ECS local environment, we can extract information about the dimensions and local viscosity of the ECS. We find a striking diversity of ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by chemically altering the extracellular matrix of the brains of live animals before nanotube injection, we reveal that the rheological properties of the ECS are affected, but these alterations are local and inhomogeneous at the nanoscale.