Science.gov

Sample records for nanotubes induce oxidative

  1. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells.

    PubMed

    Reddy, Anreddy Rama Narsimha; Reddy, Yellu Narsimha; Krishna, Devarakonda Rama; Himabindu, Vurimindi

    2010-06-04

    The present study was aimed at evaluating the potential toxicity and the general mechanism involved in multi wall carbon nanotubes (MWCNT)-induced cytotoxicity using human embryonic kidney cell line (HEK293) cells. Two multi wall carbon nanotubes (coded as MWCNT1, size: 90-150nm and MWCNT2, size: 60-80nm) used in this study are MWCNT1 (produced by the electric arc method and size of the nanotubes was 90-150nm) and MWCNT2 (produced by the chemical vapor deposition method with size of 60-80nm). To elucidate the possible mechanisms of MWCNT induced cytotoxicity, cell viability, mitochondrial function (MTT assay), cell membrane damage (LDH assay), reduced glutathione (GSH), interleukin-8 (IL-8) and lipid peroxidation levels were quantitatively assessed under carbon nanotubes exposed (48h) conditions. Exposure of different sizes of two carbon nanotubes at dosage levels between 3 and 300mug/ml decreased cell viability in a concentration dependent manner. The IC(50) values (concentration of nanoparticles to induce 50% cell mortality) of two (MWCNT1, MWCNT2) nanoparticles were found as 42.10 and 36.95mug/ml. Exposure of MWCNT (10-100mug/ml) to HEK cells resulted in concentration dependent cell membrane damage (as indicated by the increased levels of LDH), increased production of IL-8, increased TBARS and decreased intracellular glutathione levels. The cytotoxicity and oxidative stress was significantly more in MWCNT2 exposed cells than MWCNT1. In summary, exposure of carbon nanotubes resulted in a concentration dependent cytotoxicity in cultured HEK293 cells that was associated with increased oxidative stress.

  2. Carbon nanotube-induced preparation of vanadium oxide nanorods: Application as a catalyst for the partial oxidation of n-butane

    SciTech Connect

    Chen Xiaowei; Zhu Zhenping; Haevecker, Michael; Su Dangsheng . E-mail: dangsheng@fhi-berlin.mpg.de; Schloegl, Robert

    2007-02-15

    A vanadium oxide-carbon nanotube composite was prepared by solution-based hydrolysis of NH{sub 4}VO{sub 3} in the presence of carbon nanotubes. The carbon nanotubes induce the nucleation of the 1D vanadium oxide nanostructures, with the nuclei growing into long freestanding nanorods. The vanadium oxide nanorods with the lengths up to 20 {mu}m and the widths of 5-15 nm exhibit a well-ordered crystalline structure. Catalytic tests show that the composite with nanostructured vanadium oxide is active for the partial oxidation of n-butane to maleic anhydride at 300 deg. C.

  3. Surviving High-Temperature Calcination: ZrO2 -Induced Hematite Nanotubes for Photoelectrochemical Water Oxidation.

    PubMed

    Li, Chengcheng; Li, Ang; Luo, Zhibin; Zhang, Jijie; Chang, Xiaoxia; Huang, Zhiqi; Wang, Tuo; Gong, Jinlong

    2017-04-03

    Nanotubular Fe2 O3 is a promising photoanode material, and producing morphologies that withstand high-temperature calcination (HTC) is urgently needed to enhance the photoelectrochemical (PEC) performance. This work describes the design and fabrication of Fe2 O3 nanotube arrays that survive HTC for the first time. By introducing a ZrO2 shell on hydrothermal FeOOH nanorods by atomic layer deposition, subsequent high-temperature solid-state reaction converts FeOOH-ZrO2 nanorods to ZrO2 -induced Fe2 O3 nanotubes (Zr-Fe2 O3 NTs). The structural evolution of the hematite nanotubes is systematically explored. As a result of the nanostructuring and shortened charge collection distance, the nanotube photoanode shows a greatly improved PEC water oxidation activity, exhibiting a photocurrent density of 1.5 mA cm(-2) at 1.23 V (vs. reversible hydrogen electrode, RHE), which is the highest among hematite nanotube photoanodes without co-catalysts. Furthermore, a Co-Pi decorated Zr-Fe2 O3 NT photoanode reveals an enhanced onset potential of 0.65 V (vs. RHE) and a photocurrent of 1.87 mA cm(-2) (at 1.23 V vs. RHE).

  4. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    SciTech Connect

    Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Kagan, Valerian E.

    2012-06-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  5. Mechanisms of Multi-walled Carbon Nanotubes-Induced Oxidative Stress and Genotoxicity in Mouse Fibroblast Cells.

    PubMed

    Alarifi, Saud; Ali, Daoud

    2015-01-01

    The extensive production and wide application of carbon nanotubes have made investigations of its toxic potentials necessary. In the present study, we explored the underlying mechanism through which multi-walled carbon nanotubes (MWCNTs) induce toxicity in mouse fibroblast cells (L929). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and neutral red uptake viability assays were used to examine mechanisms of cytotoxicity. Dose and time-dependent cytotoxicity was observed in L929 cells. The MWCNTs significantly increased the generation of reactive oxygen species, lipid peroxidation, superoxide dismutase, and decreased glutathione. It was observed that the MWCNTs induced caspase 3 activity. The highest DNA strand breakage was detected by comet assay at 300 µg/mL of MWCNTs. Thus, the data indicate that MWCNTs induced cytotoxicity and apoptosis in L929 cells via oxidative stress.

  6. Mitochondrial Oxidative Stress and Dysfunction Induced by Single- and Multi-Wall Carbon Nanotubes: A Comparative Study.

    PubMed

    Naserzadeh, Parvaneh; Ghanbary, Fatemeh; Seydi, Enayatollah; Ghasemi, Alireza; Joghataei, Mohammad Taghi; Ashtari, Khadijeh; Akbari, Mohsen

    2017-03-10

    With the ever-increasing use of carbon nanotubes (CNTs) in health-related and engineering applications, the hazardous risks of this material have become a major concern. It is well-known that CNTs accumulate with cytotoxic and genotoxic levels within vital organs. It has also been shown that treating cell cultures with CNTs resulted in cell cycle arrest and increased apoptosis/necrosis. The goal of this pilot study is to perform a comprehensive comparative study on the toxicity of single-wall (SW) and multi-wall (MW) carbon nanotubes in rat skin cells. Our results confirm a dose-dependent toxicity of SWCNT and MWCNT due to the loss of mitochondrial activity, increase in mitochondrial ROS formation and mitochondrial membrane potential (MMP) collapse before mitochondrial swelling. Moreover, disturbance in the oxidative phosphorylation is observed by a decrease in ATP level. These events induced the release of cytochrome c via outer membrane rupture or MPT pore opening and subsequently programmed cell-death of all doses compared to control group. Our results demonstrate that although MWCNT can be very toxic, SWCNT cause more mitochondrial damage to the cells. This article is protected by copyright. All rights reserved.

  7. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  8. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    PubMed Central

    Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Kagan, Valerian E.

    2015-01-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. PMID:22513272

  9. Drawing circuits with carbon nanotubes: scratch-induced graphoepitaxial growth of carbon nanotubes on amorphous silicon oxide substrates.

    PubMed

    Choi, Won Jin; Chung, Yoon Jang; Kim, Yun Ho; Han, Jeongho; Lee, Young-Kook; Kong, Ki-Jeong; Chang, Hyunju; Lee, Young Kuk; Kim, Byoung Gak; Lee, Jeong-O

    2014-06-13

    Controlling the orientations of nanomaterials on arbitrary substrates is crucial for the development of practical applications based on such materials. The aligned epitaxial growth of single-walled carbon nanotubes (SWNTs) on specific crystallographic planes in single crystalline sapphire or quartz has been demonstrated; however, these substrates are unsuitable for large scale electronic device applications and tend to be quite expensive. Here, we report a scalable method based on graphoepitaxy for the aligned growth of SWNTs on conventional SiO₂/Si substrates. The "scratches" generated by polishing were found to feature altered atomic organizations that are similar to the atomic alignments found in vicinal crystalline substrates. The linear and circular scratch lines could promote the oriented growth of SWNTs through the chemical interactions between the C atoms in SWNT and the Si adatoms in the scratches. The method presented has the potential to be used to prepare complex geometrical patterns of SWNTs by 'drawing' circuits using SWNTs without the need for state-of-the-art equipment or complicated lithographic processes.

  10. Single-walled carbon nanotubes induce cell death and transcription of TNF-α in macrophages without affecting nitric oxide production.

    PubMed

    Kim, Kyong Hoon; Yeon, Seung-min; Kim, Hyun Gyung; Lee, Hwanbum; Kim, Sun Kyung; Han, Seung Hyun; Min, Kyung-Jin; Byun, Youngjoo; Lee, Eun Hee; Lee, Kenneth Sung; Yuk, Soon Hong; Ha, Un-Hwan; Jung, Yong Woo

    2014-02-01

    Single-walled carbon nanotubes (SWCNTs) are potent nanomaterials that have diverse shapes and features. The utilization of these molecules for drug delivery is being investigated; thus, it is important to determine whether they alter immune responses against pathogens. In this study, we show that macrophages treated with a mixture of lipopolysaccharide and SWCNTs produced normal levels of nitric oxide and inducible nitric oxide synthase mRNA. However, these treatments induced cell death, presumably via necrosis. In addition, treating cells with SWCNTs induced the expression of tumor necrosis factor-α mRNA, a potent pro-inflammatory cytokine. These results suggest that SWCNTs may influence immune responses, which could result in unexpected effects following their administration for the purpose of drug delivery.

  11. Synthesis of hybrid Zn-Al-In mixed metal oxides/carbon nanotubes composite and enhanced visible-light-induced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lan, Meng; Fan, Guoli; Sun, Wei; Li, Feng

    2013-10-01

    Hybrid nanocomposite of Zn-Al-In mixed metal oxides (ZnAlIn-MMO) and multi-walled carbon nanotubes (CNTs) was synthesized effectively from composite precursor of ternary Zn-Al-In layered double hydroxide (ZnAlIn-LDH) and 1-pyrenebutyric acid-modified CNTs (P-CNTs). The structural, morphological and optical properties of the materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), low temperature nitrogen adsorption-desorption, Raman spectra, and UV-vis diffuse reflectance spectroscopy. The results indicated that ZnAlIn-LDH nanoparticles could be attached closely onto the surface of the P-CNTs through the interfacial interaction, thus resulting in the formation of the remarkably dispersed ZnAlIn-MMO nanoparticles on the surface of the modified nanotubes after calcination. Compared with pristine ZnAlIn-MMO, as-synthesized hybrid ZnAlIn-MMO/P-CNTs had smaller band gap of about 2.08 eV, characteristic of enhanced visible light absorption. Furthermore, ZnAlIn-MMO/P-CNTs exhibited excellent visible-light-induced photodegradation activity toward methylene blue, which was attributable to the efficient separation and transportation of the photogenerated charge carriers originating from the unique heterostructure of such nanocomposite. The present finding provides an approach to fabricate new types of visible-light-induced heteronanostructured photocatalysts.

  12. Silicon Carbide Nanotube Oxidation at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  13. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Abdalla, Ahmed M.; Sahu, Rakesh P.; Wallar, Cameron J.; Chen, Ri; Zhitomirsky, Igor; Puri, Ishwar K.

    2017-02-01

    A novel approach for the fabrication of nickel oxide nanotubes based on multiwalled carbon nanotubes as a sacrificial template is described. Electroless deposition is employed to deposit nickel onto carbon nanotubes. The subsequent annealing of the product in the presence of air oxidizes nickel to nickel oxide, and carbon is released as gaseous carbon dioxide, leaving behind nickel oxide nanotubes. Electron microscopy and elemental mapping confirm the formation of nickel oxide nanotubes. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability for both the nickel-coated carbon nanotubes and the nickel oxide nanotubes. A gravimetric specific capacitance of 245.3 F g-1 and an areal capacitance of 3.28 F cm-2 at a scan rate of 2 mV s-1 is achieved, with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg cm-2.

  14. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application.

    PubMed

    Abdalla, Ahmed M; Sahu, Rakesh P; Wallar, Cameron J; Chen, Ri; Zhitomirsky, Igor; Puri, Ishwar K

    2017-02-17

    A novel approach for the fabrication of nickel oxide nanotubes based on multiwalled carbon nanotubes as a sacrificial template is described. Electroless deposition is employed to deposit nickel onto carbon nanotubes. The subsequent annealing of the product in the presence of air oxidizes nickel to nickel oxide, and carbon is released as gaseous carbon dioxide, leaving behind nickel oxide nanotubes. Electron microscopy and elemental mapping confirm the formation of nickel oxide nanotubes. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability for both the nickel-coated carbon nanotubes and the nickel oxide nanotubes. A gravimetric specific capacitance of 245.3 F g(-1) and  an areal capacitance of 3.28 F cm(-2) at a scan rate of 2 mV s(-1) is achieved, with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg cm(-2).

  15. Carbon Nanotube/Graphene Supercapacitors Containing Manganese Oxide Nanoparticles

    DTIC Science & Technology

    2012-12-01

    Carbon Nanotube/Graphene Supercapacitors Containing Manganese Oxide Nanoparticles by Matthew Ervin, Vinay Raju, Mary Hendrickson, and...Laboratory Adelphi, MD 20783-1197 ARL-TR-6289 December 2012 Carbon Nanotube/Graphene Supercapacitors Containing Manganese Oxide...From - To) October 2011 to September 2012 4. TITLE AND SUBTITLE Carbon Nanotube/Graphene Supercapacitors Containing Manganese Oxide Nanoparticles

  16. Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice

    SciTech Connect

    Shvedova, Anna A.; Arepalli, Sivaram; Castranova, Vincent; Tyurina, Yulia Y.; Oury, Tim D.; Kagan, Valerian E. . E-mail: kagan@pitt.edu

    2007-06-15

    Exposure of mice to single-walled carbon nanotubes (SWCNTs) induces an unusually robust pulmonary inflammatory response with an early onset of fibrosis, which is accompanied by oxidative stress and antioxidant depletion. The role of specific components of the antioxidant protective system, specifically vitamin E, the major lipid-soluble antioxidant, in the SWCNT-induced reactions has not been characterized. We used C57BL/6 mice, maintained on vitamin E-sufficient or vitamin E-deficient diets, to explore and compare the pulmonary inflammatory reactions to aspired SWCNTs. The vitamin E-deficient diet caused a 90-fold depletion of {alpha}-tocopherol in the lung tissue and resulted in a significant decline of other antioxidants (GSH, ascorbate) as well as accumulation of lipid peroxidation products. A greater decrease of pulmonary antioxidants was detected in SWCNT-treated vitamin E-deficient mice as compared to controls. Lowered levels of antioxidants in vitamin E-deficient mice were associated with a higher sensitivity to SWCNT-induced acute inflammation (total number of inflammatory cells, number of polymorphonuclear leukocytes, released LDH, total protein content and levels of pro-inflammatory cytokines, TNF-{alpha} and IL-6) and enhanced profibrotic responses (elevation of TGF-{beta} and collagen deposition). Exposure to SWCNTs markedly shifted the ratio of cleaved to full-length extracellular superoxide dismutase (EC-SOD). Given that pulmonary levels of vitamin E can be manipulated through diet, its effects on SWCNT-induced inflammation may be of practical importance in optimizing protective strategies.

  17. Catalytic systems of cumene oxidation based on multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kobotaeva, N. S.; Skorokhodova, T. S.; Ryabova, N. V.

    2015-03-01

    Catalytic systems for cumene oxidation were prepared on the basis of silver-activated carbon nanotubes. Silver lies on the surface of the carbon nanotubes in the nanocrystalline state and has a size of 15-20 nm. The use of the obtained catalytic systems in cumene oxidation with molecular oxygen allowed a considerable decrease in the oxidation temperature and an increase in selectivity.

  18. Surface oxidation study of single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lebrón-Colón, M.; Meador, M. A.; Lukco, D.; Solá, F.; Santos-Pérez, J.; McCorkle, L. S.

    2011-11-01

    Functionalization of single wall carbon nanotubes (SWCNTs) is desirable to enhance their ability to be incorporated into polymers and enhance their bonding with the matrix. One approach to carbon nanotube functionalization is by oxidation via a strong oxidizing agent or refluxing in strong acids. However, this approach can damage the nanotubes, leading to the introduction of defects and/or shorter nanotubes. Such damage can adversely affect the mechanical, thermal, and electrical properties. A more benign approach to nanotube functionalization has been developed involving photo-oxidation. Chemical analysis by XPS revealed that the oxygen content of the photo-oxidized SWCNTs was 11.3 at.% compared to 6.7 at.% for SWCNTs oxidized by acid treatment. The photo-oxidized SWCNTs produced by this method can be used directly in various polymer matrices or can be further modified by additional chemical reactions.

  19. Platinum–Vanadium Oxide Nanotube Hybrids

    PubMed Central

    2010-01-01

    The present contribution reports on the features of platinum-based systems supported on vanadium oxide nanotubes. The synthesis of nanotubes was carried out using a commercial vanadium pentoxide via hydrothermal route. The nanostructured hybrid materials were prepared by wet impregnation using two different platinum precursors. The formation of platinum nanoparticles was evaluated by applying distinct reduction procedures. All nanostructured samples were essentially analysed by X-ray diffraction and transmission electron microscopy. After reduction, transmission electron microscopy also made it possible to estimate particle size distribution and mean diameter calculations. It could be seen that all reduction procedures did not affect the nanostructure of the supports and that the formation of metallic nanoparticles is quite efficient with an indistinct distribution along the nanotubes. Nevertheless, the reduction procedure determined the diameter, dispersion and shape of the metallic particles. It could be concluded that the use of H2PtCl6 is more suitable and that the use of hydrogen as reducing agent leads to a nanomaterial with unagglomerated round-shaped metallic particles with mean size of 6–7 nm. PMID:20672065

  20. Anodically Grown Titania Nanotube Induced Cytotoxicity has Genotoxic Origins

    PubMed Central

    Mohamed, M. Sheikh; Torabi, Aida; Paulose, Maggie; Kumar, D. Sakthi; Varghese, Oomman K.

    2017-01-01

    Nanoarchitectures of titania (TiO2) have been widely investigated for a number of medical applications including implants and drug delivery. Although titania is extensively used in the food, drug and cosmetic industries, biocompatibility of nanoscale titania is still under careful scrutiny due to the conflicting reports on its interaction with cellular matter. For an accurate insight, we performed in vitro studies on the response of human dermal fibroblast cells toward pristine titania nanotubes fabricated by anodic oxidation. The nanotubes at low concentrations were seen to induce toxicity to the cells, whereas at higher concentrations the cell vitality remained on par with controls. Further investigations revealed an increase in the G0 phase cell population depicting that majority of cells were in the resting rather than active phase. Though the mitochondrial set-up did not exhibit any signs of stress, significantly enhanced reactive oxygen species production in the nuclear compartment was noted. The TiO2 nanotubes were believed to have gained access to the nuclear machinery and caused increased stress leading to genotoxicity. This interesting property of the nanotubes could be utilized to kill cancer cells, especially if the nanotubes are functionalized for a specific target, thus eliminating the need for any chemotherapeutic agents. PMID:28165491

  1. Anodically Grown Titania Nanotube Induced Cytotoxicity has Genotoxic Origins.

    PubMed

    Mohamed, M Sheikh; Torabi, Aida; Paulose, Maggie; Kumar, D Sakthi; Varghese, Oomman K

    2017-02-06

    Nanoarchitectures of titania (TiO2) have been widely investigated for a number of medical applications including implants and drug delivery. Although titania is extensively used in the food, drug and cosmetic industries, biocompatibility of nanoscale titania is still under careful scrutiny due to the conflicting reports on its interaction with cellular matter. For an accurate insight, we performed in vitro studies on the response of human dermal fibroblast cells toward pristine titania nanotubes fabricated by anodic oxidation. The nanotubes at low concentrations were seen to induce toxicity to the cells, whereas at higher concentrations the cell vitality remained on par with controls. Further investigations revealed an increase in the G0 phase cell population depicting that majority of cells were in the resting rather than active phase. Though the mitochondrial set-up did not exhibit any signs of stress, significantly enhanced reactive oxygen species production in the nuclear compartment was noted. The TiO2 nanotubes were believed to have gained access to the nuclear machinery and caused increased stress leading to genotoxicity. This interesting property of the nanotubes could be utilized to kill cancer cells, especially if the nanotubes are functionalized for a specific target, thus eliminating the need for any chemotherapeutic agents.

  2. Anodically Grown Titania Nanotube Induced Cytotoxicity has Genotoxic Origins

    NASA Astrophysics Data System (ADS)

    Mohamed, M. Sheikh; Torabi, Aida; Paulose, Maggie; Kumar, D. Sakthi; Varghese, Oomman K.

    2017-02-01

    Nanoarchitectures of titania (TiO2) have been widely investigated for a number of medical applications including implants and drug delivery. Although titania is extensively used in the food, drug and cosmetic industries, biocompatibility of nanoscale titania is still under careful scrutiny due to the conflicting reports on its interaction with cellular matter. For an accurate insight, we performed in vitro studies on the response of human dermal fibroblast cells toward pristine titania nanotubes fabricated by anodic oxidation. The nanotubes at low concentrations were seen to induce toxicity to the cells, whereas at higher concentrations the cell vitality remained on par with controls. Further investigations revealed an increase in the G0 phase cell population depicting that majority of cells were in the resting rather than active phase. Though the mitochondrial set-up did not exhibit any signs of stress, significantly enhanced reactive oxygen species production in the nuclear compartment was noted. The TiO2 nanotubes were believed to have gained access to the nuclear machinery and caused increased stress leading to genotoxicity. This interesting property of the nanotubes could be utilized to kill cancer cells, especially if the nanotubes are functionalized for a specific target, thus eliminating the need for any chemotherapeutic agents.

  3. Oxidation of Carbon Nanotubes in an Ionizing Environment.

    PubMed

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2016-02-10

    In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.

  4. Oxidative biodegradation of single- and multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Russier, Julie; Ménard-Moyon, Cécilia; Venturelli, Enrica; Gravel, Edmond; Marcolongo, Gabriele; Meneghetti, Moreno; Doris, Eric; Bianco, Alberto

    2011-03-01

    In this study we compare the biodegradation of both single-walled (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) using two different oxidative conditions. In particular, we demonstrate that oxidized multi-walled carbon nanotubes are highly degraded, although not to completeness when treated with horseradish peroxidase (HRP) in the presence of hydrogen peroxide.In this study we compare the biodegradation of both single-walled (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) using two different oxidative conditions. In particular, we demonstrate that oxidized multi-walled carbon nanotubes are highly degraded, although not to completeness when treated with horseradish peroxidase (HRP) in the presence of hydrogen peroxide. Electronic supplementary information (ESI) available: Experimental details, additional TEM images and DLS diagrams. See DOI: 10.1039/c0nr00779j

  5. Electronic properties of functionalized (5,5) beryllium oxide nanotubes.

    PubMed

    Chigo Anota, Ernesto; Cocoletzi, Gregorio Hernández

    2013-05-01

    Using the density functional theory (DFT) we study the structural and electronic properties of functionalized (5,5) chirality single wall beryllium oxide nanotubes (SW-BeONTs), i.e. armchair nanotubes. The nanotube surface and ends are functionalized by the hydroxyl (OH) functional group. Our calculations consider the Hamprecht-Cohen-Tozer-Handy functional in the generalized gradient approximation (HCTH-GGA) to deal with the exchange-correlation energies, and the base function with double polarization (DNP). The geometry optimization of both defects free and with point defects nanotubes is done applying the criterion of minimum energy. Six configurations are considered: The OH oriented toward the Be (on the surface and at the end), toward the O (on the surface and at the end) and placed at the nanotube ends. Simulation results show that the nanotube functionalization takes place at the nanotube ends with the BeO bond displaying hydrogen-like bridge bonds. Moreover the nanotube semiconductor behavior remains unchanged. The polarity is high (it shows a transition from covalent to ionic) favoring solvatation. On the other hand, the work function low value suggests this to be a good candidate for the device fabrication. When the nanotube contains surface point defects the work function is reduced which provides excellent possibilities for the use of this material in the electronic industry.

  6. Defect-induced loading of Pt nanoparticles on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jin; Park, Yong Jin; Ra, Eun Ju; Kim, Ki Kang; An, Kay Hyeok; Lee, Young Hee; Choi, Jae Young; Park, Chan Ho; Doo, Seok Kwang; Park, Min Ho; Yang, Cheol Woong

    2007-01-01

    Carbon nanotubes-supported Pt nanoparticles were loaded using a microwave oven on the defective carbon nanotubes generated by an additional oxidant during acid treatment. The authors' Raman spectra and x-ray diffraction analysis demonstrated that defects created during oxidation and microwave treatment acted as nucleation seeds for Pt adsorption. The generated Pt nanoparticles had the size distributions of 2-3nm and were uniformly distributed on the defects of carbon nanotubes. The authors' density functional calculations showed that the adsorption of Pt atom on the vacancy of nanotube was significantly stronger by s-p hybridization with carbon atoms near the defect site.

  7. Resistive switching in iron-oxide-filled carbon nanotubes.

    PubMed

    Cava, Carlos E; Persson, Clas; Zarbin, Aldo J G; Roman, Lucimara S

    2014-01-07

    Iron-oxide-filled carbon nanotubes exhibit an intriguing charge bipolarization behavior which allows the material to be applied in resistive memory devices. Raman analysis conducted with an electric field applied in situ shows the Kohn anomalies and a strong modification of the electronic properties related to the applied voltage intensity. In addition, the I(D)/I(G) ratio indicated the reversibility of this process. The electrical characterization indicated an electronic transport governed by two main kinds of charge hopping, one between the filling and the nanotube and the other between the nanotube shells.

  8. Thermal oxidation induced degradation of carbon fiber reinforced composites and carbon nanotube sheet enhanced fiber/matrix interface for high temperature aerospace structural applications

    NASA Astrophysics Data System (ADS)

    Haque, Mohammad Hamidul

    epoxy resin has been characterized for hardness and modulus using nanoindentation technique. A significant reduction of oxidation, which is anticipated to eventually translate into improvement in mechanical properties, has been observed as the nanoclay particles have worked as a retarding agent for the oxidation propagation. Carbon nanotube sheet scrolled carbon fiber tows embedded in epoxy matrix have been investigated for interfacial properties using nanoindentation (push-out test), in micro scale, and using tensile testing (pull-out test), in macro scale. A significant increase in interfacial shear strength has been achieved by this unique materials combination.

  9. Passivation oxide controlled selective carbon nanotube growth on metal substrates.

    PubMed

    Bult, J B; Sawyer, W G; Ajayan, P M; Schadler, L S

    2009-02-25

    Vertically aligned arrays of multi-wall carbon nanotubes (MWNT) are grown on Inconel 600, a nickel-based super-alloy. Using x-ray photoelectron spectroscopy (XPS) and chemical vapor deposition (CVD) growth of the MWNTs it is shown that a stable oxidation barrier is required for the stabilization of iron on the substrate and subsequent nanotube growth. This evidence for passivation oxide supported growth of MWNTs was then used to grow MWNTs on patterned oxidized substrates in a selective growth furnace. The unique advantage of this patterned growth on Inconel 600 is found to be the chromia passivation layer's electrical conductivity (measured value of 1.08 micro Omega m), creating the opportunity for low resistivity electrodes made from nanotubes. Inconel substrates with 100 microm long aligned MWNTs are demonstrated to exhibit an average resistance value of 2 Omega.

  10. Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating

    SciTech Connect

    Wang, Jiangwei; Luo, Hao; Liu, Yang; He, Yang; Fan, Feifei; Zhang, Ze; Mao, Scott X.; Wang, Chongmin; Zhu, Ting

    2016-09-14

    The electrochemically-induced mechanical degradation hinders the application of Si anodes in advanced lithium-ion batteries. Hollow structures and surface coatings have been often used to mitigate the degradation of Si-based anodes. However, the structural change and degradation mechanism during lithiation/delithiation of hollow Si structures with coatings remain unclear. Here, we combine in situ TEM experiment and chemomechanical modeling to study the electrochemically induced swelling of amorphous-Si (a-Si) nanotubes with different thicknesses of surface SiOx layers. Surprisingly, we find that no inward expansion occurs at the inner surface during lithiation of a-Si nanotubes with native oxides. In contrast, inward expansion can be induced by increasing the thickness of SiOx on the outer surface. Moreover, both the sandwich lithiation mechanism and two-stage lithiation process in a-Si nanotubes remain unchanged with the increasing thickness of surface coatings. Our chemomechanical modeling reveals the mechanical confinement effects in lithiated a-Si nanotubes with and without SiOx coatings. This work not only provides insights into the degradation of nanotube anodes with surface coatings, but also sheds light onto the optimal design of hollow anodes for high-performance lithium-ion batteries.

  11. Carboxylated single-walled carbon nanotubes induce an inflammatory response in human primary monocytes through oxidative stress and NF-κB activation

    NASA Astrophysics Data System (ADS)

    Ye, Shefang; Zhang, Honggang; Wang, Yifang; Jiao, Fei; Lin, Cuilin; Zhang, Qiqing

    2011-09-01

    A mechanistic understanding of interactions between carbon nanotubes (CNTs) and living systems has become imperative owing to the growing nanomedicine applications and the mounting societal concerns on nanosafety. The addition of different chemical groups leads to a significant change in the properties of CNTs, and the resulting functionalized CNTs are generating great interest in many biological applications, such as biosensors and transporters. This study aimed to assess the toxicity exhibited by carboxylic acid functionalized single-walled CNTs (SWCNTs) (with a diameter of 1-2 nm and mean length of 500 nm) and to elucidate possible molecular mechanisms underlying the biological effects of carboxylated SWCNTs in human primary monocytes. The results demonstrated that carboxylated SWCNTs were cytotoxic, triggering apoptosis and G2/M phase arrest in human primary monocytes. Flow cytometric and confocal microscopic analysis indicated that internalized carboxylated SWCNTs were mainly accumulated in the cytoplasm. Exposure of human primary monocytes to carboxylated SWCNTs led to interleukin-8 (IL-8) and interleukin-6 (IL-6) expression, reactive oxygen species (ROS) production, and nuclear factor-kappa B (NF-κB) activation in human primary monocytes. Pretreatment of human primary monocytes with antioxidants or NF-κB-specific inhibitor before exposure to carboxylated SWCNTs significantly abolished carboxylated SWCNTs-induced IL-8 and IL-6 expression. These results provide novel insights into the carboxylated SWCNTs-mediated chemokine induction and inflammatory responses in vitro.

  12. Tin oxide-carbon nanotube composite for NOx sensing.

    PubMed

    Jang, Dong Mi; Jung, Hyuck; Hoa, Nguyen Duc; Kim, Dojin; Hong, Soon-Ku; Kim, Hyojin

    2012-02-01

    Tin oxide-single wall carbon nanotube (SWCNT) nano composites are synthesized for gas sensor application. The fabrication includes deposition of porous SWCNTs on thermally oxidized SiO2 substrates followed by rheotaxial growth of Sn and thermal oxidation at 300, 400, 500, and 600 degrees C in air. The effects of oxidation temperature on morphology, microstructure, and gas sensing properties are investigated for process optimization. The tin monoxide oxidized at 400 degrees C showed the highest response at the operating temperature of 200 degrees C. Under the optimized test condition, the composite structure showed better response than both structures of SWCNTs and thin film SnO.

  13. Single-walled metal oxide nanotubes and nanotube membranes for molecular separations

    NASA Astrophysics Data System (ADS)

    Kang, Dun-Yen

    Single-walled nanotubes have been considered essential “building-blocks” in nanotechnology and emerging materials for molecular recognition-based applications, such as molecular sensing, catalysis, and separations. Two critical obstacles in the development of functional nanotube-based devices are: (a) the difficulty of creating diverse functionality at the interior surfaces of single-walled nanotubes, and (b) the lack of effective approaches for fabricating scalable technological platforms with nanotube materials. This thesis describes my work addressing key fundamental issues in nanotube science and technology; particularly regarding the synthesis, characterization, and functionalization of single-walled metal oxide nanotubes (SWNTs) (Chapters 2, 3, 4),and approaches for applying SWNTs in scalable separation platforms for potentially achieving high performance (Chapters 5, 6, 7). The above, rather ambitious, objectives were addressed in a step-wise manner in this work. First, I acquired a detailed fundamental understanding of the inner surface properties of aluminosilicate SWNTs (Chapter 2). The investigations included elucidating molecular level details of dehydration and dehydroxylation phenomena in aluminosilicate single-walled nanotubes with a combination of several temperature-dependent solid-state characterization techniques. Critical information from this study enables a number of subsequent processes such as interior modification, molecular transport, and controlled delivery of molecules. In Chapter 3, a successful post-synthesis interior functionalization methodology is discussed, with the appropriately dehydrated or dehydroxylated nanotubes as the starting materials. Through surface reactions involving organosilane precursors and the inner wall of the nanotube, diverse organic entities can be immobilized at the inner surface of aluminosilicate nanotubes and thereby the hydrophilicity and interior surface properties can be tailored. This study was the

  14. Capillarity-induced disassembly of virions in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fan, Xiaobin; Barclay, J. Elaine; Peng, Wenchao; Li, Yang; Li, Xianyu; Zhang, Guoliang; Evans, David J.; Zhang, Fengbao

    2008-04-01

    Studying the transport and fate of viruses through nanochannels is of great importance. By using the nanochannel of a carbon nanotube (CNT) as an ideal model, we evaluated the possibility of capillarity-induced viral transport through a closely fitting nanochannel and explored the mechanisms involved. It is shown both experimentally and theoretically that Cowpea mosaic virus can enter CNTs by capillarity. However, when introduced into a nanotube the protein capsid may disassemble. During the initial capillary filling stage, anomalous needle-shaped high pressure exists in the centre of the nanotube's entrance. This high pressure, combining with the significant negative pressure within the nanotube, may account for the disassembly of the virions.

  15. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.

    PubMed

    Vlasova, Irina I; Vakhrusheva, Tatyana V; Sokolov, Alexey V; Kostevich, Valeria A; Gusev, Alexandr A; Gusev, Sergey A; Melnikova, Viktoriya I; Lobach, Anatolii S

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H(2)O(2) system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes.

  16. "Thermal Stability of Anodic Hafnium Oxide Nanotube Arrays"

    SciTech Connect

    Qiu, Xiaofeng; Howe, Jane Y; Mayer, Harry A; Paranthaman, Mariappan Parans; Tuncer, Enis

    2011-01-01

    Thermal stability of highly ordered Hafnium oxide, HfO2 nanotube arrays prepared through electrochemical anodization approach in the presence of ammonium fluoride is investigated in a temperature range of room temperature to 900 C in flowing Argon atmosphere. The formation of the HfO2 nanotube arrays was monitored by current density transient characteristics during anodization of hafnium metal foil. Morphologies of the as grown and post-annealed HfO2 nanotube arrays were analyzed by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Although monoclinic HfO2 is thermally stable up to 2000K in bulk, the morphology HfO2 nanotube arrays degraded at 900 C. Detailed X-ray photoelectron spectroscopy (XPS) study revealed that the thermal treatment significantly impact the composition and chemical environment of the core elements (Hf, O and F) of HfO2. Possible reasons for the degradation of the nanotube morphology were discussed based on XPS study and possible future improvements were suggested briefly.

  17. NOVEL ZINC OXIDE FUNCTIONALIZED CARBON NANOTUBE CHEMIRESISTOR SENSOR ENHANCED WITH SURFACE O2 PLASMA INDUCED DEFECTS FOR METHANEDETECTION AT SINGLE PPM LEVEL

    EPA Science Inventory

    Novelty/Progress ClaimsThis paper presents a novel functionalized multi-walled carbon nanotubes (MWCNTs) based chemiresistor sensor which can detect methane at 2 ppm concentration level at room temperature with relative resistance change (RRC) of 2%. This is the highest reported ...

  18. A redox-assisted supramolecular assembly of manganese oxide nanotube

    SciTech Connect

    Tao Li; Sun Chenggao; Fan Meilian; Huang Caijuan; Wu Hailong; Chao Zisheng . E-mail: zschao@yahoo.com; Zhai Hesheng . E-mail: hszhai@xmu.edu.cn

    2006-11-09

    In this paper, we report the hydrothermal synthesis of manganese oxide nanotube from an aqueous medium of pH 7, using KMnO{sub 4} and MnCl{sub 2} as inorganic precursors, polyoxyethylene (10) nonyl phenyl ether (TX-10) a surfactant and acetaldehyde an additive. The characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and N{sub 2} adsorption at 77 K (BET) reveals that the synthesized manganese oxide nanotube has a mesopore size of ca. 3.65 nm and a wall thickness of ca. 12 nm, with the wall being composed of microporous crystals of monoclinic manganite. The X-ray photoelectron spectroscopy (XPS) result demonstrates a decrease of the binding energy of the Mn{sup 3+} in the manganese oxide nanotube, which may be related to both the nanotubular morphology and the crystalline pore wall. A mechanism of a redox-assisted supramolecular assembly, regulated by acetaldehyde, is postulated.

  19. Carbon nanotubes/tin oxide nanocomposite-supported Pt catalysts for methanol electro-oxidation.

    PubMed

    Li, Xingwei; Wei, Jiadi; Chai, Yuzheng; Zhang, Shuo

    2015-07-15

    Carbon nanotubes/tin oxide nanocomposite (MWCNTs-SnO2) was obtained via the hydrolysis of SnCl4 in the presence of multi-walled carbon nanotubes (MWCNTs) and subsequent calcinations. And carbon nanotubes/tin oxide nanocomposite-supported Pt catalysts (Pt/MWCNTs-SnO2) were prepared by in-situ liquid phase reduction using H2PtCl6 as a metal precursor. As-prepared catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), and their catalytic performances were evaluated by chronoamperometry (CA) and cyclic voltammetry (CV). Desirable catalytic performance for methanol electro-oxidation was observed with a reduced size and an improved dispersion of Pt catalysts on the MWCNTs-SnO2 nanocomposite. The calcination temperature of MWCNTs-SnO2 nanocomposite was a key factor for controlling the catalytic performance of Pt/MWCNTs-SnO2 catalysts.

  20. Tailoring oxidation of aluminum nanoparticles reinforced with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula; Sharma, Vimal

    2016-05-01

    In this report, the oxidation temperature and reaction enthalpy of Aluminum (Al) nanoparticles has been controlled by reinforcing with carbon nanotubes. The physical mixing method with ultrasonication was employed to synthesize CNT/Al nanocomposite powders. The micro-morphology of nanoconmposite powders has been analysed by scanning electron microscopy, energy dispersive spectroscopy, raman spectroscopy and X-ray diffraction techniques. The oxidation behavior of nanocomposite powders analyzed by thermogravimetry/differential scanning calorimertry showed improvement in the exothermic enthalpy. Largest exothermic enthalpy of-1251J/g was observed for CNT (4 wt%)/Al nanocomposite.

  1. Synthesis of iron oxide nanotubes and their applications in neuroscience and drug delivery

    NASA Astrophysics Data System (ADS)

    Chen, Linfeng; Xie, Jining; Aatre, Kiran R.; Yancey, Justin; Srivatsan, Malathi; Varadan, Vijay K.

    2012-10-01

    This paper reports the synthesis of three types of iron oxide nanotubes, including hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4), and their applications in neuroscience and drug delivery. Two methods, template-assisted thermal decomposition method and hydrothermal method, were used for synthesizing hematite nanotubes, and maghemite nanotubes were obtained from hematite nanotubes by thermal treatment. Template-assisted filtering method was used for synthesizing magnetite nanotubes from ferrofluid. The crystalline, morphology and magnetic properties of the synthesized iron oxide nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM), respectively. The biocompatibility of the synthesized hematite nanotubes was confirmed by the survival and differentiation of PC12 cells in the presence of the hematite nanotubes coupled to nerve growth factor (NGF). The capacity of hematite nanotubes for coupling and leasing NGF was confirmed by cultivating PC12 cells in the presence of NGF-loaded hematite nanotubes. The drug loading and release capabilities of hematite nanotubes were tested by using ibuprofen sodium salt (ISS) as a drug model. Based on the experimental results presented in this paper, it can be concluded that iron oxide nanotubes have good biocompatibility with neurons, could be used in guding neurite growth, and are promising candidates for drug delivery.

  2. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    SciTech Connect

    Vlasova, Irina I.; Vakhrusheva, Tatyana V.; Sokolov, Alexey V.; Kostevich, Valeria A.; Gusev, Alexandr A.; Gusev, Sergey A.; Melnikova, Viktoriya I.; Lobach, Anatolii S.

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  3. Solid Oxide Fuel Cell Seal Glass - BN Nanotubes Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.; Hurst, Janet B.; Garg, Anita

    2005-01-01

    Solid oxide fuel cell seal glass G18 composites reinforced with approx.4 weight percent of BN nanotubes were fabricated via hot pressing. Room temperature strength and fracture toughness of the composite were determined by four-point flexure and single edge V-notch beam methods, respectively. The strength and fracture toughness of the composite were higher by as much as 90% and 35%, respectively, than those of the glass G18. Microscopic examination of the composite fracture surfaces using SEM and TEM showed pullout of the BN nanotubes, similar in feature to fiber-reinforced ceramic matrix composites with weak interfaces. Other mechanical and physical properties of the composite will also be presented.

  4. Observations of carbon nanotube oxidation in an aberration-corrected environmental transmission electron microscope.

    PubMed

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2013-03-26

    We report the first direct study on the oxidation of carbon nanotubes at the resolution of an aberration-corrected environmental transmission electron microscope (ETEM), as we locate and identify changes in the same nanotubes as they undergo oxidation at increasing temperatures in situ in the ETEM. Contrary to earlier reports that CNT oxidation initiates at the end of the tube and proceeds along its length, our findings show that only the outside graphene layer is being removed and, on occasion, the interior inner wall is oxidized, presumably due to oxygen infiltrating into the hollow nanotube through an open end or breaks in the tube. We believe that this work provides the foundation for a greater scientific understanding of the mechanism underlying the nanotube oxidation process, as well as guidelines to manipulate the nanotubes' structure or prevent their oxidation.

  5. Sol-gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces.

    PubMed

    Maho, Anthony; Detriche, Simon; Delhalle, Joseph; Mekhalif, Zineb

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH)2). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger "tantalum capture agent" effect of phosphonic-modified nanotubes during the sol-gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests.

  6. Development of Novel Magnetic Metal Oxide Films and Carbon Nanotube Materials for Magnetic Device Applications

    DTIC Science & Technology

    2015-01-23

    Development of Novel Magnetic Metal Oxide Films and Carbon Nanotube Materials for Magnetic Device Applications Earlier wereport the successful...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Nanomagnetics, carbon nanotubes , multilayer materials, spin...Development of Novel Magnetic Metal Oxide Films and Carbon Nanotube Materials for Magnetic Device Applications Report Title Earlier wereport the

  7. Synthesis and thermal transport studies of nanofluids based on metal decorated photochemically oxidized multiwalled carbon nanotubes.

    PubMed

    Aravind, S S Jyothirmayee; Ramaprabhu, S

    2012-08-01

    Nanoparticle fluid suspensions were prepared using photochemically functionalized multiwalled carbon nanotubes in polar base fluids. Multiwalled carbon nanotubes prepared by catalytic chemical vapour deposition technique have been functionalized by irradiating with ultraviolet light of wavelength 254 nm. The photochemical oxidation of multiwalled carbon nanotubes under UV irradiation introduces oxygen containing functional groups onto the surface of the nanotubes, generating new defects on their structure. Silver nanoparticles have been deposited over multiwalled carbon nanotubes by chemical method. The enhancement in thermal conductivity of the prepared nanofluids using functionalized multiwalled carbon nanotubes and Ag nanoparticles deposited functionalized multiwalled carbon nanotubes with volume fraction, temperature and aspect ratio has been demonstrated. Silver deposited functionalized multiwalled carbon nanotubes based nanofluids in DI water with 0.02% volume fraction exhibit a thermal conductivity enhancement of 9.9% and 47% at room temperature and at 50 degrees C respectively.

  8. Virus-Templated Near-Amorphous Iron Oxide Nanotubes.

    PubMed

    Shah, Sachin N; Khan, Abid A; Espinosa, Ana; Garcia, Miguel A; Nuansing, Wiwat; Ungureanu, Mariana; Heddle, Jonathan G; Chuvilin, Andrey L; Wege, Christina; Bittner, Alexander M

    2016-06-14

    We present a simple synthesis of iron oxide nanotubes, grown under very mild conditions from a solution containing Fe(II) and Fe(III), on rod-shaped tobacco mosaic virus templates. Their well-defined shape and surface chemistry suggest that these robust bionanoparticles are a versatile platform for synthesis of small, thin mineral tubes, which was achieved efficiently. Various characterization tools were used to explore the iron oxide in detail: Electron microscopy (SEM, TEM), magnetometry (SQUID-VSM), diffraction (XRD, TEM-SAED), electron spectroscopies (EELS, EDX, XPS), and X-ray absorption (XANES with EXAFS analysis). They allowed determination of the structure, crystallinity, magnetic properties, and composition of the tubes. The protein surface of the viral templates was crucial to nucleate iron oxide, exhibiting analogies to biomineralization in natural compartments such as ferritin cages.

  9. Synthesis and characterization of anodized titanium-oxide nanotube arrays

    SciTech Connect

    Hu, Michael Z.; Lai, Peng; Bhuiyan, Md S; Tsouris, Costas; Gu, Baohua; Paranthaman, Mariappan Parans; Gabitto, Jorge; Harrison, L. D.

    2009-01-01

    Anodized titanium-oxide containing highly ordered, vertically oriented TiO2 nanotube arrays is a nanomaterial architecture that shows promise for diverse applications. In this paper, an anodization synthesis using HF-free aqueous solution is described. The anodized TiO2 film samples (amorphous, anatase, and rutile) on titanium foils were characterized with scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Additional characterization in terms of photocurrent generated by an anode consisting of a titanium foil coated by TiO2 nanotubes was performed using an electrochemical cell. A platinum cathode was used in the electrochemical cell. Results were analyzed in terms of the efficiency of the current generated, defined as the ratio of the difference between the electrical energy output and the electrical energy input divided by the input radiation energy, with the goal of determining which phase of TiO2 nanotubes leads to more efficient hydrogen production. It was determined that the anatase crystalline structure converts light into current more efficiently and is therefore a better photocatalytic material for hydrogen production via photoelectrochemical splitting of water.

  10. Excellent oxidation endurance of boron nitride nanotube field electron emitters

    SciTech Connect

    Song, Yenan; Song, Yoon-Ho; Milne, William I.; Jin Lee, Cheol

    2014-04-21

    Boron nitride nanotubes (BNNTs) are considered as a promising cold electron emission material owing to their negative electron affinity. BNNT field emitters show excellent oxidation endurance after high temperature thermal annealing of 600 °C in air ambient. There is no damage to the BNNTs after thermal annealing at a temperature of 600 °C and also no degradation of field emission properties. The thermally annealed BNNTs exhibit a high maximum emission current density of 8.39 mA/cm{sup 2} and show very robust emission stability. The BNNTs can be a promising emitter material for field emission devices under harsh oxygen environments.

  11. Analysis of Titanium Oxide Nanotubes System Formation Current

    NASA Astrophysics Data System (ADS)

    Titov, P. L.; Schegoleva, S. A.; Kondrikov, N. B.

    Analysis of formation of highly-ordered titanium oxide nanotubes array at the level of currents is carried out. It has been found that marking impulse possesses fine structure characterized by uncommon behavior. It is a series of small steps alternated by sharp overshoots that can be identified as Levy flights. Attractor obtained from current realizations points at the existence of quasistochastic in terms of phase and strictly periodic mode of partial Levy flights. It corresponds to trigger mode of system behavior with two stable states peculiar to auto-oscillating process.

  12. Nanotubes oxidation temperature controls the height of single-walled carbon nanotube forests on gold micropatterned thin layers.

    PubMed

    Lamberti, Francesco; Agnoli, Stefano; Meneghetti, Moreno; Elvassore, Nicola

    2010-07-06

    We developed a simple methodology for a direct control of the height of carboxylated single-walled carbon nanotube (SWNT) forests. We found that the important step is a good control of the oxidation temperature of the nanotubes. SWNTs oxidation at different temperature was followed by Raman and X-ray photoelectron spectroscopies. Atomic force microscopy images showed that micropatterned self-assembled monolayers forests have average height from 20 to 80 nm using SWNTs oxidized in the temperature ranging from 323 to 303 K, respectively.

  13. Formation of self-organized Zircaloy-4 oxide nanotubes in organic viscous electrolyte via anodization.

    PubMed

    Ali, Ghafar; Park, Yang Jeong; Kim, Hyun Jin; Cho, Sung Oh

    2014-01-01

    This work reports the formation of self-organized Zircaloy-4 (Zr-4) oxide nanotubes in viscous organic ethylene glycol (EG) electrolyte containing a small amount of fluoride salt and deionized (DI) water via an electrochemical anodization. The structure, morphology, and composition of the Zr-4 oxide nanotubes were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), EDX, and XPS. SEM results showed that the length of the nanotubes is approximately 13 μm, and TEM results showed that the inner diameter of the Zr-4 oxide nanotubes is approximately 20 nm with average wall thickness of approximately 7 nm. XRD and selected area electron diffraction pattern (SAED) results confirmed that the as-anodized Zr-4 oxide nanotubes have cubic crystalline structure. Both cubic and monoclinic phases were found after annealing of Zr-4 oxide nanotubes. The tubular structure morphology of Zr-4 oxide nanotubes did not remain intact after annealing which is attributed to the elimination of F species from the annealed nanotubes.

  14. Formation of self-organized Zircaloy-4 oxide nanotubes in organic viscous electrolyte via anodization

    PubMed Central

    2014-01-01

    This work reports the formation of self-organized Zircaloy-4 (Zr-4) oxide nanotubes in viscous organic ethylene glycol (EG) electrolyte containing a small amount of fluoride salt and deionized (DI) water via an electrochemical anodization. The structure, morphology, and composition of the Zr-4 oxide nanotubes were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), EDX, and XPS. SEM results showed that the length of the nanotubes is approximately 13 μm, and TEM results showed that the inner diameter of the Zr-4 oxide nanotubes is approximately 20 nm with average wall thickness of approximately 7 nm. XRD and selected area electron diffraction pattern (SAED) results confirmed that the as-anodized Zr-4 oxide nanotubes have cubic crystalline structure. Both cubic and monoclinic phases were found after annealing of Zr-4 oxide nanotubes. The tubular structure morphology of Zr-4 oxide nanotubes did not remain intact after annealing which is attributed to the elimination of F species from the annealed nanotubes. PMID:25328503

  15. Synthesis of silicon oxide nanowires and nanotubes with cobalt-palladium or palladium catalysts

    NASA Astrophysics Data System (ADS)

    Esterina, Ria; Liu, X. M.; Ross, C. A.; Adeyeye, A. O.; Choi, W. K.

    2012-07-01

    The dewetting behaviors of cobalt (Co), cobalt palladium (CoPd), and palladium (Pd) thin films on oxidized silicon substrates were examined. We observed the formation of craters in the oxide layer and pits in the Si substrate for larger CoPd or Pd catalyst particles and thinner oxide. Nanowires and nanotubes were observed near the Si pits. The nanowires and nanotubes grow via a vapor-solid-solid or vapor-liquid-solid mechanism with the silicon vapor source provided from the substrate. The original Si atoms that form the nanowires or nanotubes were oxidized in situ by the residual oxygen atoms present in the chamber. Some of the nanotubes had a series of embedded sub-catalysts that formed branches from the primary nanotube.

  16. Observations of Carbon Nanotube Oxidation in an Aberration-Corrected, Environmental Transmission Electron Microscope

    PubMed Central

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2013-01-01

    We report the first direct study on the oxidation of carbon nanotubes at the resolution of an aberration-corrected environmental transmission electron microscope (ETEM), as we locate and identify changes in the same nanotubes as they undergo oxidation at increasing temperatures in-situ in the ETEM. Contrary to earlier reports that CNT oxidation initiates at the end of the tube and proceeds along its length, our findings show that only the outside graphene layer is being removed and on occasion, the interior inner wall is oxidized, presumably due to oxygen infiltrating into the hollow nanotube through an open end or breaks in the tube. We believe that this work provides the foundation for much scientific understanding of the mechanism underlying the nanotube oxidation process, as well as guidelines to manipulate their structure or prevent their oxidation. PMID:23360330

  17. Formation and growth mechanisms of single-walled metal oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Yucelen, Gulfem Ipek

    In this thesis, main objectives are to discover the first molecular-level mechanistic framework governing the formation and growth of single-walled metal-oxide nanotubes, apply this framework to demonstrate the engineering of nanotubular materials of controlled dimensions, and to progress towards a quantitative multiscale understanding of nanotube formation. In Chapter 2, the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature, in the formation of single-walled aluminosilicate nanotubes is reported. The structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm, are characterized by electrospray ionization (ESI) mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. DFT calculations revealed the intrinsic curvature of nanoscale intermediates with bonding environments similar to the structure of the final nanotube product. It is shown that curved nano-intermediates form in aqueous synthesis solutions immediately after initial hydrolysis of reactants at 25 °C, disappear from the solution upon heating to 95 °C due to condensation, and finally rearrange to form ordered single-walled aluminosilicate nanotubes. Integration of all results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. Then, in Chapter 3, new molecular-level concepts for constructing nanoscopic metal oxide objects are demonstrated. The diameters of metal oxide nanotubes are shaped with Angstrom-level precision by controlling the shape of nanometer-scale precursors. The subtle relationships between precursor shape and structure and final nanotube curvature are measured (at the molecular level). Anionic ligands (both organic and inorganic) are used to exert fine control over precursor

  18. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg's reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm-1 corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  19. Influence of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE composites

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Somma, Elvira; Valentino, Olga; Simon, George; Neitzert, Heinz-Christoph

    2016-05-01

    Rheological and electrical properties of nanocomposites based on multi-walled carbon nanotubes (MWNTs) and high density polyethylene (HDPE), prepared by melt mixing in a micro-twin screw extruder, have been investigated. The effect of MWNT concentration (0.5 and 2.5 wt %) and nanotube surface treatment (oxidative treatment in a tubular furnace at 500°C for 1 hr in a 95% nitrogen, 5% oxygen atmosphere) has been analyzed. It has been found that the sample conductivity with oxidation of the nanotubes decreases more than 2 orders of magnitude. Scanning electron microscopy showed good adhesion and dispersion of nanotubes in the matrix, independently of the surface treatment. Electrical and rheological measurements revealed that the oxidative treatment, causing some reduction of the MWNT quality, decreases the efficiency of the nanotube matrix interaction.

  20. Formation process of TiO2 nanotube arrays prepared by anodic oxidation method.

    PubMed

    Li, Hongyi; Liu, Man; Wang, Hong; Wu, Junshu; Su, Penglei; Li, Dasheng; Wang, Jinshu

    2013-06-01

    TiO2 nanotube array thin films have great potential in many fields, such as solar cell, photo catalyst, photo-induced cathodic protection for metals and bioactivity. In order to investigate the formation process of the TiO2 nanotube array thin films, the EIS spectrum and current density were measured during the anodic oxidation. The results showed that the formation process could be divided into four stages. The current density decreased sharply at the first stage, and then increased at the second stage, followed by declining and finally remained constant value. In addition, the current density increased with the anodic voltage. The EIS spectrum varied in different stage. The simulated circuit was composed three sections, the first sections indicated the resistance of the electrolyte, the second one gave the double layer structure between the electrolyte and titanium electrode, the third one was a inductive loop, which represented the anions absorbed on the surface of the TiO2 nanotube's wall. The more cations were absorbed, the higher value of the inductive loop would be. The EIS results showed that the value increased with the outer voltage, which means that more cations were absorbed under the higher anodic voltage.

  1. Oxidative unzipping of stacked nitrogen-doped carbon nanotube cups.

    PubMed

    Dong, Haifeng; Zhao, Yong; Tang, Yifan; Burkert, Seth C; Star, Alexander

    2015-05-27

    We demonstrate a facile synthesis of different nanostructures by oxidative unzipping of stacked nitrogen-doped carbon nanotube cups (NCNCs). Depending on the initial number of stacked-cup segments, this method can yield graphene nanosheets (GNSs) or hybrid nanostructures comprised of graphene nanoribbons partially unzipped from a central nanotube core. Due to the stacked-cup structure of as-synthesized NCNCs, preventing complete exposure of graphitic planes, the unzipping mechanism is hindered, resulting in incomplete unzipping; however, individual, separated NCNCs are completely unzipped, yielding individual nitrogen-doped GNSs. Graphene-based materials have been employed as electrocatalysts for many important chemical reactions, and it has been proposed that increasing the reactive edges results in more efficient electrocatalysis. In this paper, we apply these graphene conjugates as electrocatalysts for the oxygen reduction reaction (ORR) to determine how the increase in reactive edges affects the electrocatalytic activity. This investigation introduces a new method for the improvement of ORR electrocatalysts by using nitrogen dopants more effectively, allowing for enhanced ORR performance with lower overall nitrogen content. Additionally, the GNSs were functionalized with gold nanoparticles (GNPs), resulting in a GNS/GNP hybrid, which shows efficient surface-enhanced Raman scattering and expands the scope of its application in advanced device fabrication and biosensing.

  2. Carbon nanotubes and tungsten oxide nanorods: Synthesis and applications

    NASA Astrophysics Data System (ADS)

    Xiao, Bing

    Synthesis and applications of two types of one-dimensional nanomaterials, carbon nanotubes (CNTs) and tungsten oxide nanorods, are investigated in this dissertation. Multi-walled CNTs have been successfully synthesized using two types of chemical vapor deposition (CVD) methods: microwave plasma enhanced CVD and atmospheric pressure thermal CVD. CNTs and their synthesis processes are characterized with various analysis techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and optical emission spectroscopy. Ultra-thin and high quality multi-walled CNTs are discovered in CNT films produced by MPCVD, which exhibit good field emission performance that is found to be dependent on the synthesis conditions, like the growth time and CH4/H2 flow ratio. CNTs grown by thermal CVD have similar field emission performance. Based on silicon surface micromachining techniques and thermal CVD method, a self-aligned method has been developed to fabricate CNT based gated field emitter arrays (FEAs) which demonstrate low turn-on voltage and good emission current. Tungsten oxide nanorods have been synthesized on various tungsten substrates via thermal annealing in argon at atmospheric pressure. Nanorod growth mechanism is proposed based on thermal oxidation of tungsten in gas ambient with a very low partial pressure of oxygen as well as the self-catalytic effect on tungsten surface. The lattice structure and composition of the tungsten oxide nanorods are observed and analyzed using high resolution TEM, selected area electron diffraction (SAD), and energy dispersive X-ray spectroscopy (EDXS). The analysis results reveal that the lattice structure of the tungsten oxide nanorods is closest to that of the monoclinic WO3 crystal. Tungsten oxide nanorods have been successfully grown on tungsten tips for use in scanning tunneling microscope (STM) as probes which readily produce atomic resolution images on sample surface. Nanorod

  3. Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine

    NASA Astrophysics Data System (ADS)

    Wang, Pen-Cheng; Liao, Yu-Chun; Liu, Li-Hung; Lai, Yu-Ling; Lin, Ying-Chang; Hsu, Yao-Jane

    2014-06-01

    We found that the electrical properties of conductive thin films based on non-oxidized carbon nanotubes (CNTs) could be further improved when the CNTs consecutively underwent a mild hydrazine adsorption treatment and then a sufficiently effective thermal desorption treatment. We also found that, after several rounds of vapor-phase hydrazine treatments and baking treatments were applied to an inferior single-CNT field-effect transistor device, the device showed improvement in Ion/Ioff ratio and reduction in the extent of gate-sweeping hysteresis. Our experimental results indicate that, even though hydrazine is a well-known reducing agent, the characteristics of our hydrazine-exposed CNT samples subject to certain treatment conditions could become more graphenic than graphanic, suggesting that the improvement in the electrical and electronic properties of CNT samples could be related to the transient bonding and chemical scavenging of thermally decomposed hydrazine on the surface of CNTs.

  4. Gold-platinum bimetallic nanotubes templated from tellurium nanowires as efficient electrocatalysts for methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Lu, Chenchen; Kong, Wei; Zhang, Huying; Song, Bo; Wang, Zhenghua

    2015-11-01

    In this paper, gold-platinum (Au-Pt) bimetallic nanotubes with different Au/Pt ratio are successfully synthesized through a simple wet-chemical reduction route in which tellurium (Te) nanowires serve as both sacrificial template and reducing agent. The hollow nanostructure of Au-Pt nanotubes is formed due to Kirkendall effect. The as-prepared Au-Pt nanotubes can be applied as catalyst for methanol oxidation reaction, and the results indicate that the Au-Pt nanotubes with an Au/Pt ratio of 1:1 show the best electrochemical catalytic performances. Furthermore, the catalytic activity of the Au-Pt nanotubes is also better than Pt nanotubes and commercial Pt/C catalyst.

  5. Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology

    NASA Astrophysics Data System (ADS)

    Mazov, Ilya; Kuznetsov, Vladimir L.; Simonova, Irina A.; Stadnichenko, Andrey I.; Ishchenko, Arkady V.; Romanenko, Anatoly I.; Tkachev, Evgeniy N.; Anikeeva, Olga B.

    2012-06-01

    Multiwall carbon nanotubes (MWNT) with three medium diameters (20-22, 9-13, and 6-8 nm) and different morphology were chemically oxidized using concentrated nitric acid, mixture of nitric and sulfuric acids ("mélange" solution) and mixture of sulfuric acid and hydrogen peroxide ("piranha" solution). Influence of MWNT type and structure as well as type of oxidizer on the surface composition and structure of nanotubes after oxidation was investigated. Acid-base titration, X-ray photoelectron spectroscopy and thermal gravimetric analysis were used for quantitative and qualitative investigation of surface group composition of initial and oxidized nanotubes. Amount of oxygen-containing groups on the surface of oxidized MWNT depends on the type of initial MWNT. It was found that ratio of different oxygen containing groups is less dependent on the type of oxidizer. Electrophysical properties of initial and oxidized nanotubes were investigated in temperature range 4-293 K and main types of electrical conductivity were determined. It was shown that oxidation results in decrease in electrical conductivity of all samples with simultaneous change in the conductivity mechanism. Dispersive behavior of initial and oxidized nanotubes in different commonly used solvents was investigated. It was shown that oxidation leads to the improvement of sedimentation stability of MWNT in polar solvents.

  6. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  7. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  8. Decarboxylation of oxidized single-wall carbon nanotubes.

    PubMed

    Vieira, H S; Andrada, D M; Mendonça, R; Santos, A P; Martins, M D; Macedo, W A A; Gorgulho, H F; Pimenta, L P S; Moreira, R L; Jorio, A; Pimenta, M A; Furtado, C A

    2007-10-01

    A classical protocol widely used in organic chemistry of aromatic and polyaromatic molecules has been successfully applied in this work for the decarboxylation of oxidized single-wall carbon nanotube (SWNT) to rend C-H SWNT derivatives. SWNT produced by arc discharge method have been oxidized during a purification process using strongly oxidant agents, such as hydrogen peroxide and nitric acid. The decarboxylation of oxidized SWNT has been conduced with copper(I) oxide in a 50:50 solution of N-methylpyrrolidone and quinoline. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and acid-base potentiometric titration analyses were carried out to characterize quali and quantitatively the changes in the chemical environment on the SWNT surface in each step of the purification and the decarboxylation process. Those techniques showed the appearance of mainly carboxylic and phenolic groups after the purification process and the disappearance of the carboxylic groups after the decarboxylation reaction. Fourier transform infrared spectroscopy analysis indicated also the formation of aliphatic and aromatic C-H groups. X-ray photoelectron spectroscopy and potentiometric titration results determined an efficiency higher than 90% for our decarboxylation procedure. The purity and structural quality of the SWNT sample used in the decarboxylation process were evaluated by thermogravimetry and Raman spectroscopy. Thermogravimetric analysis identified a purified sample with approximately 80 wt% of SWNT, in fractions distributed in highly structured SWNTs (25 wt%), with distribution in composition, length and structural quality (35 wt%) and with very defective and short tubes (25 wt%). The damages on the purified SWNT walls were characterized by the Raman scattering analysis.

  9. In vivo detection of magnetic labeled oxidized multi-walled carbon nanotubes by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Li, Ruibin; Wu, Ren'an; Zhao, Liang; Qin, Hongqiang; Wu, Jianlin; Zhang, Jingwen; Bao, Ruyi; Zou, Hanfa

    2014-12-01

    Functionalized carbon nanotubes (f-CNTs) have been widely used in bio-medicine as drug carriers, bio-sensors, imaging agents and tissue engineering additives, which demands better understanding of their in vivo behavior because of the increasing exposure potential to humans. However, there are limited studies to investigate the in vivo biodistribution and elimination of f-CNTs. In this study, superparamagnetic iron oxides (SPIOs) were used to label oxidized multiwalled carbon nanotubes (o-MWCNTs) for in vivo distribution study of o-MWCNTs by magnetic resonance imaging (MRI). SPIO labeled o-MWCNTs ((SPIO)o-MWCNTs) were prepared by a hydrothermal reaction process, and characterized by TEM, XRD and magnetometer. (SPIO)o-MWCNTs exhibited superparamagnetic property, excellent biocompatibility and stability. The intravenously injected (SPIO)o-MWCNTs were observed in liver, kidney and spleen, while the subcutaneously injected (SPIO)o-MWCNTs could be only detected in sub mucosa. Most of the intravenously injected (SPIO)o-MWCNTs could be eliminated from liver, spleen, kidney and sub mucosa on 4 d post injection (P.I.). However, the residual o-MWCNTs could induce 30-40% MRI signal-to-noise ratio changes in these tissues even on 30 d P.I. This in vivo biodistribution and elimination information of o-MWCNTs will greatly facilitate the application of f-CNT based nanoproducts in biomedicine. In addition, the magnetic labeling method provides an approach to investigate the in vivo biodistribution and clearance of other nanomaterials.

  10. In vivo detection of magnetic labeled oxidized multi-walled carbon nanotubes by magnetic resonance imaging.

    PubMed

    Li, Ruibin; Wu, Ren'an; Zhao, Liang; Qin, Hongqiang; Wu, Jianlin; Zhang, Jingwen; Bao, Ruyi; Zou, Hanfa

    2014-12-12

    Functionalized carbon nanotubes (f-CNTs) have been widely used in bio-medicine as drug carriers, bio-sensors, imaging agents and tissue engineering additives, which demands better understanding of their in vivo behavior because of the increasing exposure potential to humans. However, there are limited studies to investigate the in vivo biodistribution and elimination of f-CNTs. In this study, superparamagnetic iron oxides (SPIOs) were used to label oxidized multiwalled carbon nanotubes (o-MWCNTs) for in vivo distribution study of o-MWCNTs by magnetic resonance imaging (MRI). SPIO labeled o-MWCNTs (((SPIO))o-MWCNTs) were prepared by a hydrothermal reaction process, and characterized by TEM, XRD and magnetometer. ((SPIO))o-MWCNTs exhibited superparamagnetic property, excellent biocompatibility and stability. The intravenously injected ((SPIO))o-MWCNTs were observed in liver, kidney and spleen, while the subcutaneously injected ((SPIO))o-MWCNTs could be only detected in sub mucosa. Most of the intravenously injected ((SPIO))o-MWCNTs could be eliminated from liver, spleen, kidney and sub mucosa on 4 d post injection (P.I.). However, the residual o-MWCNTs could induce 30-40% MRI signal-to-noise ratio changes in these tissues even on 30 d P.I. This in vivo biodistribution and elimination information of o-MWCNTs will greatly facilitate the application of f-CNT based nanoproducts in biomedicine. In addition, the magnetic labeling method provides an approach to investigate the in vivo biodistribution and clearance of other nanomaterials.

  11. Nano-oxidation and in situ faradaic current detection using dynamic carbon nanotube probes

    NASA Astrophysics Data System (ADS)

    Kuramochi, H.; Ando, K.; Shikakura, Y.; Yasutake, M.; Tokizaki, T.; Yokoyama, H.

    2004-09-01

    Carbon nanotube-attached atomic force microscope probes were successfully used without nanotube bending to make simultaneous precision nano-oxidation and faradaic current measurements in the dynamic mode. Probe oxidation on H-passivated Si(001) surfaces was carried out by two methods involving vector-scan and raster-scan with a much higher resolution and precision compared to the nanofabrication by standard cantilevers. Faradaic current of the order of a sub-picoampere was detected during nano-oxidation using a carbon nanotube probe, accurately reflecting the subtle difference in the oxidation reaction. The minute current detection through the AFM tip is sensitive enough for the detection of very thin oxides and small-sized features. The dimension of the meniscus during nano-oxidation, which is indispensable for establishing the mechanism model, was evaluated, based on the in situ faradaic current detection and edge broadening.

  12. Nanotubes.

    PubMed

    Rao, C N; Satishkumar, B C; Govindaraj, A; Nath, M

    2001-02-16

    Carbon nanotubes were discovered soon after the successful laboratory synthesis of fullerenes. Since their discovery in 1991, there has been intensive research activity in the area of carbon nanotubes, not only because of their fascinating structural features and properties, but also because of their potential technological applications. There is increasing experimental evidence to show that carbon nanotubes may find use in nanoelectronic devices, displays, and in hydrogen storage. In this article, we discuss various important aspects related to the synthesis, structure, characterization, and mechanism of formation of multi-walled and single-walled carbon nanotubes, followed by a presentation of the important electronic, mechanical, hydrogen storage, and other properties of the nanotubes. Doping, as well as other chemical manipulations with boron and nitrogen, bring about significant changes in the properties of the nanotubes. Carbon nanotubes also serve as useful templates to make other nanostructures. Layered metal chalcogenides, boron nitride, and other materials form nanotubes and provide considerable scope for study.

  13. Oxidative Unzipping and Transformation of High Aspect Ratio Boron Nitride Nanotubes into “White Graphene Oxide” Platelets

    NASA Astrophysics Data System (ADS)

    Nautiyal, Pranjal; Loganathan, Archana; Agrawal, Richa; Boesl, Benjamin; Wang, Chunlei; Agarwal, Arvind

    2016-07-01

    Morphological and chemical transformations in boron nitride nanotubes under high temperature atmospheric conditions is probed in this study. We report atmospheric oxygen induced cleavage of boron nitride nanotubes at temperatures exceeding 750 °C for the first time. Unzipping is then followed by coalescence of these densely clustered multiple uncurled ribbons to form stacks of 2D sheets. FTIR and EDS analysis suggest these 2D platelets to be Boron Nitride Oxide platelets, with analogous structure to Graphene Oxide, and therefore we term them as “White Graphene Oxide” (WGO). However, not all BNNTs deteriorate even at temperatures as high as 1000 °C. This leads to the formation of a hybrid nanomaterial system comprising of 1D BN nanotubes and 2D BN oxide platelets, potentially having advanced high temperature sensing, radiation shielding, mechanical strengthening, electron emission and thermal management applications due to synergistic improvement of multi-plane transport and mechanical properties. This is the first report on transformation of BNNT bundles to a continuous array of White Graphene Oxide nanoplatelet stacks.

  14. Oxidative Unzipping and Transformation of High Aspect Ratio Boron Nitride Nanotubes into “White Graphene Oxide” Platelets

    PubMed Central

    Nautiyal, Pranjal; Loganathan, Archana; Agrawal, Richa; Boesl, Benjamin; Wang, Chunlei; Agarwal, Arvind

    2016-01-01

    Morphological and chemical transformations in boron nitride nanotubes under high temperature atmospheric conditions is probed in this study. We report atmospheric oxygen induced cleavage of boron nitride nanotubes at temperatures exceeding 750 °C for the first time. Unzipping is then followed by coalescence of these densely clustered multiple uncurled ribbons to form stacks of 2D sheets. FTIR and EDS analysis suggest these 2D platelets to be Boron Nitride Oxide platelets, with analogous structure to Graphene Oxide, and therefore we term them as “White Graphene Oxide” (WGO). However, not all BNNTs deteriorate even at temperatures as high as 1000 °C. This leads to the formation of a hybrid nanomaterial system comprising of 1D BN nanotubes and 2D BN oxide platelets, potentially having advanced high temperature sensing, radiation shielding, mechanical strengthening, electron emission and thermal management applications due to synergistic improvement of multi-plane transport and mechanical properties. This is the first report on transformation of BNNT bundles to a continuous array of White Graphene Oxide nanoplatelet stacks. PMID:27388704

  15. Titania nanotubes from weak organic acid electrolyte: fabrication, characterization and oxide film properties.

    PubMed

    Munirathinam, Balakrishnan; Neelakantan, Lakshman

    2015-04-01

    In this study, TiO2 nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5h, 1h, 2h and 3h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600°C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10(5)-10(6)Ωcm(2)) and lower passive current density (10(-7)Acm(-2)) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity.

  16. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    de Sousa, Marcelo; Martinez, Diego Stéfani Teodoro; Alves, Oswaldo Luiz

    2016-06-01

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H2SO4 and HNO3 by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  17. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates

    SciTech Connect

    Kuang Qin; Lin Zhiwei; Lian Wei; Jiang Zhiyuan; Xie Zhaoxiong Huang Rongbin; Zheng Lansun

    2007-04-15

    In this paper, we report a versatile synthetic method of ordered rare-earth metal (RE) oxide nanotubes. RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction (XRD) have been employed to characterize the morphology and composition of the as-prepared nanotubes. It is found that as-prepared RE oxides evolve into bamboo-like nanotubes and entirely hollow nanotubes. A new possible formation mechanism of RE oxide nanotubes in the AAO channels is proposed. These high-quantity RE oxide nanotubes are expected to have promising applications in many areas such as luminescent materials, catalysts, magnets, etc. - Graphical abstract: A versatile synthetic method for the preparation of ordered rare-earth (RE) oxide nanotubes is reported, by which RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates.

  18. Polyoxometalate-modified carbon nanotubes: new catalyst support for methanol electro-oxidation.

    PubMed

    Pan, Dawei; Chen, Jinhua; Tao, Wenyan; Nie, Lihua; Yao, Shouzhuo

    2006-06-20

    A new catalyst support, polyoxometalate-modified carbon nanotubes, is presented in this paper through the chemisorption between polyoxometalate and carbon. Pt and Pt-Ru nanoparticles were electrochemically deposited on polyoxometalate-modified carbon nanotubes electrodes, and their electrocatalytic properties for methanol electro-oxidation are investigated in detail. Due to the unique electrical properties of carbon nanotubes and the excellent redox properties and the high protonic conductivity of polyoxometalate, for the similar deposition charge of Pt and Pt-Ru catalysts, 1.4 times larger exchange current density, 1.5 times higher specific activity, and better cycle stabilities can be obtained at polyoxometalate-modified carbon nanotube electrodes as compared to the electrodes without polyoxometalate modification. These results show that polyoxometalate-modified carbon nanotubes as a new catalyst support have good potential application in direct methanol fuel cells.

  19. Charge transfer induced polarity switching in carbon nanotube transistors.

    PubMed

    Klinke, Christian; Chen, Jia; Afzali, Ali; Avouris, Phaedon

    2005-03-01

    We probed the charge transfer interaction between the amine-containing molecules hydrazine, polyaniline, and aminobutyl phosphonic acid and carbon nanotube field effect transistors (CNTFETs). We successfully converted p-type CNTFETs to n-type and drastically improved the device performance in both the ON- and OFF-transistor states, utilizing hydrazine as dopant. We effectively switched the transistor polarity between p- and n- type by accessing different oxidation states of polyaniline. We also demonstrated the flexibility of modulating the threshold voltage (Vth) of a CNTFET by engineering various charge-accepting and -donating groups in the same molecule.

  20. Electrically induced ambipolar spin vanishments in carbon nanotubes

    PubMed Central

    Matsumoto, D.; Yanagi, K.; Takenobu, T.; Okada, S.; Marumoto, K.

    2015-01-01

    Carbon nanotubes (CNTs) exhibit various excellent properties, such as ballistic transport. However, their electrically induced charge carriers and the relation between their spin states and the ballistic transport have not yet been microscopically investigated because of experimental difficulties. Here we show an electron spin resonance (ESR) study of semiconducting single-walled CNT thin films to investigate their spin states and electrically induced charge carriers using transistor structures under device operation. The field-induced ESR technique is suitable for microscopic investigation because it can directly observe spins in the CNTs. We observed a clear correlation between the ESR decrease and the current increase under high charge density conditions, which directly demonstrated electrically induced ambipolar spin vanishments in the CNTs. The result provides a first clear evidence of antimagnetic interactions between spins of electrically induced charge carriers and vacancies in the CNTs. The ambipolar spin vanishments would contribute the improvement of transport properties of CNTs because of greatly reduced carrier scatterings. PMID:26148487

  1. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition.

    PubMed

    Boehme, Mario; Ionescu, Emanuel; Fu, Ganhua; Ensinger, Wolfgang

    2011-01-01

    Conductive nanotubes consisting of indium tin oxide (ITO) were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs) with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  2. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Song, Peng; Zhang, Xiaoyan; Sun, Mingxuan; Cui, Xiaoli; Lin, Yuehe

    2012-02-01

    Novel nanocomposite films, based on graphene oxide (GO) and TiO2 nanotube arrays, were synthesized by assembling GO on the surface of self-organized TiO2 nanotube arrays through a simple impregnation method. The composite films were characterized with field emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and UV-vis diffuse reflectance spectroscopy. The photoelectrochemical properties of the composite nanotube arrays were investigated under visible light illumination. Remarkably enhanced visible light photoelectrochemical response was observed for the GO decorated TiO2 nanotube composite electrode compared with pristine TiO2 nanotube arrays. The sensitizing effect of GO on the photoelectrochemical response of the TiO2 nanotube arrays was demonstrated and about 15 times enhanced maximum photoconversion efficiency was obtained with the presence of GO. An enhanced photocatalytic activity of the TiO2 nanotube arrays towards the degradation of methyl blue was also demonstrated after modification with GO. The results presented here demonstrate GO to be efficient for the improved utilization of visible light for TiO2 nanotube arrays.

  3. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties.

    PubMed

    Song, Peng; Zhang, Xiaoyan; Sun, Mingxuan; Cui, Xiaoli; Lin, Yuehe

    2012-03-07

    Novel nanocomposite films, based on graphene oxide (GO) and TiO(2) nanotube arrays, were synthesized by assembling GO on the surface of self-organized TiO(2) nanotube arrays through a simple impregnation method. The composite films were characterized with field emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and UV-vis diffuse reflectance spectroscopy. The photoelectrochemical properties of the composite nanotube arrays were investigated under visible light illumination. Remarkably enhanced visible light photoelectrochemical response was observed for the GO decorated TiO(2) nanotube composite electrode compared with pristine TiO(2) nanotube arrays. The sensitizing effect of GO on the photoelectrochemical response of the TiO(2) nanotube arrays was demonstrated and about 15 times enhanced maximum photoconversion efficiency was obtained with the presence of GO. An enhanced photocatalytic activity of the TiO(2) nanotube arrays towards the degradation of methyl blue was also demonstrated after modification with GO. The results presented here demonstrate GO to be efficient for the improved utilization of visible light for TiO(2) nanotube arrays.

  4. Adsorption and desorption of doxorubicin on oxidized carbon nanotubes.

    PubMed

    Wang, Yunxia; Yang, Sheng-Tao; Wang, Yanli; Liu, Yuanfang; Wang, Haifang

    2012-09-01

    Carbon nanotubes (CNTs) show promise as nano-drug carriers. To develop the CNT-based drug delivery systems, drug loading and release are two major issues. In this study, we systematically evaluated the adsorption and desorption of doxorubicin (DOX) on oxidized multi-walled CNTs (O-MWCNTs). Our results indicated that O-MWCNTs possessed a huge adsorption capacity for DOX (9.45×10(3) mg/g). Although the adsorption process was quite slow, the adsorption capacity kept high enough for the therapy while shortening the incubation time to 2h (1.03×10(3) mg/g). The desorption of DOX from O-MWCNTs scarcely occurred while incubated in buffer solution at both pH 7.4 and pH 5.5, however, the lower pH did benefit the desorption. The presence of serum proteins facilitated the desorption of DOX significantly, because these proteins bound strongly to O-MWCNTs resulting in the partial surface of O-MWNCTs being occupied. Moreover, the adsorption time also affected the release of DOX from O-MWCNTs. Shortening the incubation time benefited the release of DOX. The implications to the drug loading and therapeutics of the CNT-based drug delivery systems are discussed.

  5. Zinc Oxide Coated Carbon Nanotubes for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Mohney, Austin; Stollberg, David

    2012-02-01

    Small scale electrical devices depend on bulky batteries that require recharging or replacement. In biomedical monitoring, where sensors could be implanted inside the body, maintenance of batteries presents a problem. It would be beneficial if small scale devices could generate their own power and alleviate their dependence on batteries. Piezoelectric nanogenerators have proven themselves as a viable means for ambient energy harvesting. Piezoelectric materials, such as zinc oxide (ZnO), produce a voltage difference when subjected to mechanical strain. Manipulation of this voltage can allow for the storage of energy to power small scale devices. The objective of this research is to manufacture a piezo-generator that can transduce mechanical vibrations into electrical energy. Carbon nanotubes, selected for their strong, flexible, and conductive properties, are used as a structural backbone for a ZnO piezoelectric coating and a Ag electrode coating. A Schottky diode interface is used to rectify the current output of the device. The devices yielded an average current output of .79 microAmps. SEM imagining was used to characterize the fabrication process. A Keithley 2700 digital multimeter was used to characterize the current output of the devices.

  6. Highly ordered carbon nanotubes based on porous aluminum oxide.

    PubMed

    Pan, H; Gao, H; Lim, S H; Feng, Y P; Lin, J

    2004-11-01

    Highly ordered carbon nanotubes (CNTs) are widely pursued due to their unique properties. Anodic aluminum oxide (AAO) exhibits great possibility for this purpose. Here, CNTs based on AAO templates were produced using acetylene or ethylene as the hydrocarbon sources with or without the presence of Co catalysts. CNTs grown on the Co-embedded AAO samples were normally confined within the nanopores of the AAO template. It was found that C2H4 normally requires 100 degrees C higher pyrolysis temperature than C2H2 under otherwise identical conditions. The pyrolysis temperature is greatly reduced with the presence of Co catalysts. CNTs can grow out of the nanopores if Co particles are present at the bottom of the nanopores, and if the nanopores are short in length or large in diameter. The graphitization of AAO-template grown CNTs was studied by Raman spectroscopy. CNTs produced from ethylene are generally better in graphitization than those from acetylene, and CNTs grown with the presence of Co catalysts deposited at the bottom of nanopores are better than those without Co catalysts or with Co catalysts coated on the entire inner wall of nanopores. The growth temperature is found not to play a critical role in graphitization.

  7. Biological oxidative damage by carbon nanotubes: fingerprint or footprint?

    PubMed

    Hsieh, Shu-Feng; Bello, Dhimiter; Schmidt, Daniel F; Pal, Anoop K; Rogers, Eugene J

    2012-02-01

    Carbon nanotubes (CNTs) have received much attention for performance and toxicity, but vary substantially in terms of impurity type and content, morphology, and surface activity. This study determined the decrease of antioxidant capacity, defined as biological oxidative damage (BOD), of CNTs-exposed serum. The variability in several physicochemical properties of CNTs and their links to BOD elicited in human serum were explored. Tremendous variation in transition metal type and content (104-fold), specific surface area (SSA, nine-fold), and BOD were observed. Mass specific BOD (mBOD) varied from 0.006-0.187 μmol TEU mg(-1), whereas surface area specific BOD (sBOD) varied from 0.068-0.42 μmol TEU m(-2). The sBOD increased in a stepwise fashion from ∼0.1-0.32 μmol TEU m(-2) for tubes with outer diameter less than 10 nm. The mBOD and sBOD may be useful denominators of surface activity and impurity content and assist in designing safer CNTs.

  8. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    PubMed

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  9. Lung macrophages "digest" carbon nanotubes using a superoxide/peroxynitrite oxidative pathway.

    PubMed

    Kagan, Valerian E; Kapralov, Alexandr A; St Croix, Claudette M; Watkins, Simon C; Kisin, Elena R; Kotchey, Gregg P; Balasubramanian, Krishnakumar; Vlasova, Irina I; Yu, Jaesok; Kim, Kang; Seo, Wanji; Mallampalli, Rama K; Star, Alexander; Shvedova, Anna A

    2014-06-24

    In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to "digest" carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung.

  10. Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles

    PubMed Central

    von dem Bussche, Annette; Yi, Xin; Qiu, Yang; Wang, Zhongying; Weston, Paula; Hurt, Robert H.; Kane, Agnes B.; Gao, Huajian

    2016-01-01

    Understanding the behavior of low-dimensional nanomaterials confined in intracellular vesicles has been limited by the resolution of bioimaging techniques and the complex nature of the problem. Recent studies report that long, stiff carbon nanotubes are more cytotoxic than flexible varieties, but the mechanistic link between stiffness and cytotoxicity is not understood. Here we combine analytical modeling, molecular dynamics simulations, and in vitro intracellular imaging methods to reveal 1D carbon nanotube behavior within intracellular vesicles. We show that stiff nanotubes beyond a critical length are compressed by lysosomal membranes causing persistent tip contact with the inner membrane leaflet, leading to lipid extraction, lysosomal permeabilization, release of cathepsin B (a lysosomal protease) into the cytoplasm, and cell death. The precise material parameters needed to activate this unique mechanical pathway of nanomaterials interaction with intracellular vesicles were identified through coupled modeling, simulation, and experimental studies on carbon nanomaterials with wide variation in size, shape, and stiffness, leading to a generalized classification diagram for 1D nanocarbons that distinguishes pathogenic from biocompatible varieties based on a nanomechanical buckling criterion. For a wide variety of other 1D material classes (metal, oxide, polymer), this generalized classification diagram shows a critical threshold in length/width space that represents a transition from biologically soft to stiff, and thus identifies the important subset of all 1D materials with the potential to induce lysosomal permeability by the nanomechanical mechanism under investigation. PMID:27791073

  11. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung.

    PubMed

    Crouzier, D; Follot, S; Gentilhomme, E; Flahaut, E; Arnaud, R; Dabouis, V; Castellarin, C; Debouzy, J C

    2010-06-04

    With the rapid spread of carbon nanotubes (CNTs) applications, the respiratory toxicity of these compounds has attracted the attention of many scientists. Several studies have reported that after lung administration, CNTs could induce granuloma, fibrosis, or inflammation. By comparison with the mechanisms involved with other toxic particles such as asbestos, this effect could be attributed to an increase of oxidative stress. The aim of the present work was to test this hypothesis in vivo. Mice were intranasally instilled with 1.5mg/kg of double walled carbon nanotubes (DWCNTs). Six, 24, or 48h after administration, inflammation and localisation of DWCNTs in lungs were microscopically observed. Local oxidative perturbations were investigated using ESR spin trapping experiments, and systemic inflammation was assessed by measuring the plasma concentration of cytokines TNF-alpha, IL-1alpha, IL-1beta, IL-6, IGF-1, Leptin, G-CSF, and VEGF. Examination of lungs and the elevation of proinflammatory cytokines in the plasma (Leptin and IL-6 at 6h) confirmed the induction of an inflammatory reaction. This inflammatory reaction was accompanied by a decrease in the local oxidative stress. This effect could be attributed to the scavenger capability of pure CNTs.

  12. Influence of electrolyte composition on the formation of mixed oxide nanotube arrays for solar fuel production

    NASA Astrophysics Data System (ADS)

    Deyab, Nourhan M.; Steegstra, Patrick; Hubin, Annick; Delplancke, Marie-Paule; Rahier, Hubert; Allam, Nageh K.

    2015-04-01

    Water splitting using sunlight is an important process for future energy supplies. TiO2 is widely used as photoanode, but has a limited light absorption range. Here, ternary Ti-Mo-Ni mixed oxide nanotube arrays were fabricated via electrochemical anodization of Ti-Mo-Ni alloy in formamide-ethylene glycol-based electrolytes, to extend the absorption range into visible light. The electrolyte composition and anodization time were found crucial in controlling the structural features of the nanotubes. By tuning these parameters, arrays of thin walled (∼9 nm) and ∼8 μm long nanotubes were obtained. In photoelectrochemical water splitting, the mixed oxides showed incident photon conversion efficiency (IPCE) up to 65% for wavelengths from 300 nm to 450 nm. This enhancement in the IPCE of the mixed oxide nanotubes, compared with pure titania, can be related to synergistic effects of Mo and Ni oxides as well as to the unique structural properties of the fabricated mixed oxide nanotubes.

  13. Synthesis of boron nitride nanotubes by an oxide-assisted chemical method

    NASA Astrophysics Data System (ADS)

    Singhal, S. K.; Srivastava, A. K.; Gupta, Anil K.; Chen, Z. G.

    2010-09-01

    We report a new method for the synthesis of boron nitride (BN) nanotubes employing a two-step process in which some oxides have found to catalyze the growth of BN nanotubes. In the first step, a precursor containing B-N-O-Fe/Mg was prepared by ball milling a mixture of B, B2O3, Fe2O3 and MgO (1:7:2:1 mass ratio) in NH3 for 3 h. BN nanotubes (diameter: 20-100 nm) were grown in the second step from this precursor by isothermal annealing at 1,350 °C in NH3 for about 4 h. XRD, SEM and HR-TEM studies elucidated the spindle-like morphology of these nanotubes of hexagonal crystal structure. The Raman spectrum showed the peak broadening and shifts to higher frequency. The present method showed that some oxides assisted the growth of BN nanotubes. A possible reaction mechanism on the formation of BN nanotubes in the presence of these oxides is discussed.

  14. Single-walled carbon nanotubes induce cytotoxicity and DNA damage via reactive oxygen species in human hepatocarcinoma cells.

    PubMed

    Alarifi, Saud; Ali, Daoud; Verma, Ankit; Almajhdi, Fahad N; Al-Qahtani, Ahmed A

    2014-09-01

    Carbon nanotubes (CNTs) are gradually used in various areas including drug delivery, nanomedicine, biosensors, and electronics. The current study aimed to explore the DNA damage and cytotoxicity due to single-walled carbon nanotubes (SWCNTs) on human hepatocarcinoma cells (HepG2). Cellular proliferative assay showed the SWCNTs to exhibit a significant cell death in a dose- and time-dependent manner. However, SWCNTs induced significant intracellular reactive oxygen species (ROS) production and elevated lipid peroxidation, catalase, and superoxide dismutase in the HepG2 cells. SWCNTs also induced significant decrease in GSH and increase caspase-3 activity in HepG2 cells. DNA fragmentation analysis using the alkaline single-cell gel electrophoresis showed that the SWCNTs cause genotoxicity in a dose- and time-dependent manner. Therefore, the study points towards the capability of the SWCNTs to induce oxidative stress resulting cytotoxicity and genomic instability. This study warrants more careful assessment of SWCNTs before their industrial applications.

  15. Nanotube

    SciTech Connect

    LEONARD, FRANCOIS; KIENLE, DIEGO; & STEWART, DEREK

    2007-09-13

    This is a source code to calculate the current-voltage characteristics, the charge distribution and the electrostatic potential in carbon nanotube devices. The code utilizes the non-equilibrium Green's function method, implemented in a tight-binding scheme, to calculate the charge distribution and the energy-dependent transmission function, from which the current or the conductance are obtained. The electrostatic potential is obtained by solving Poisson's equation on a grid with boundary conditions on the electrodes, and at other interfaces. Self-consistency between the charge and the electrostatic potential is achieved using a linear mixing method. Different versions of the code allow the modeling of different types of nanotube devices: Version 1.0: Modeling of carbon nanotube electronic devices with cylindrical symmetry Version 1.1: Modeling of planar carbon nanotube electronic devices Version 1.2: Modeling of photocurrent in carbon nanotube devices

  16. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    PubMed Central

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M.; Gambhir, Sanjeev; Wallace, Gordon G.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g−1, far exceeding spider dragline silk (165 J g−1) and Kevlar (78 J g−1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs. PMID:22337128

  17. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M.; Gambhir, Sanjeev; Wallace, Gordon G.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g-1, far exceeding spider dragline silk (165 J g-1) and Kevlar (78 J g-1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  18. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes.

    PubMed

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M; Gambhir, Sanjeev; Wallace, Gordon G; Kozlov, Mikhail E; Baughman, Ray H; Kim, Seon Jeong

    2012-01-31

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g(-1), far exceeding spider dragline silk (165 J g(-1)) and Kevlar (78 J g(-1)). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  19. Regulatory peptides are susceptible to oxidation by metallic impurities within carbon nanotubes.

    PubMed

    Ambrosi, Adriano; Pumera, Martin

    2010-02-08

    In this article, we show that the redox properties of the regulatory peptide L-glutathione are affected by the presence of nickel oxide impurities within single-walled carbon nanotubes (SWCNTs). Glutathione is a powerful antioxidant that protects cells from oxidative stress by removing free radicals and peroxides. We show that the L-cysteine moiety in L-glutathione is responsible for the susceptibility to oxidation by metallic impurities present in the carbon nanotubes. These results have great significance for assessing the toxicity of carbon-nanotube materials. The SWCNTs were characterized by Raman spectroscopy, high-resolution X-ray photoelectron spectroscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy.

  20. Asbestos and multi-walled carbon nanotubes generate distinct oxidative responses in inflammatory cells

    PubMed Central

    Funahashi, Satomi; Okazaki, Yasumasa; Ito, Daiki; Asakawa, Atsushi; Nagai, Hirotaka; Tajima, Masafumi; Toyokuni, Shinya

    2015-01-01

    Asbestos exposure is considered a social burden by causing mesothelioma. Despite the use of synthetic materials, multi-walled carbon nanotubes (MWCNTs) are similar in dimension to asbestos and produce mesothelioma in animals. The role of inflammatory cells in mesothelial carcinogenesis remains unclear. Here, we evaluated the differences in inflammatory cell responses following exposure to these fibrous materials using a luminometer and L-012 (8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H) dione) to detect reactive oxygen species (ROS). Rat peripheral blood or RAW264.7 cells were used to assess the effects on neutrophils and macrophages, respectively. Crocidolite and amosite induced significant ROS generation by neutrophils with a peak at 10 min, whereas that of chrysotile was ~25% of the crocidolite/amosite response. MWCNTs with different diameters (~15, 50, 115 and 145 nm) and different carcinogenicity did not induce significant ROS in peripheral blood. However, the MWCNTs induced a comparable amount of ROS in RAW264.7 cells to that following asbestos treatment. The peaks for MWCNTs (0.5–1.5 h) were observed earlier than those for asbestos (1–5 h). Apocynin and superoxide dismutase significantly inhibited ROS generation for each fiber, suggesting an involvement of NADPH oxidase and superoxide. Thus, asbestos and MWCNTs induce different oxidative responses in inflammatory cells, indicating the importance of mesothelial cell evaluation for carcinogenesis. PMID:25759516

  1. Multifunctional catalysts based on carbon nanotubes and titanate nanotubes for oxidation of organic compounds in biphasic systems.

    PubMed

    Santos, S R A; Jardim, I S; Bicalho, H A; Binatti, I; Sousa, E M B; Peres, A M; Resende, R R; Lorençon, E

    2016-12-01

    Amphiphilic catalysts composed of carbon nanotubes (CNTs) and titanate nanotubes (TiNTs) have been successfully synthesized by refluxing anatase TiO2 and functionalised CNTs in concentrated NaOH solution. The prepared materials were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis (TGA), and N2 physisorption isotherms. The catalytic activity of the synthesized composites was first evaluated in the oxidation of methyl yellow (MY) using H2O2 as oxidant in a single liquid phase system and in a biphasic water/oil mixture. The results of these experiments indicated that the catalytic activities of nanocomposites were very similar in the single liquid-phase oxidation. However, the modification of TiNTs with CNTs led to a substantially enhanced MY oxidation in the biphasic system. The nanocomposites show excellent interaction with both hydrophilic and hydrophobic compounds and thus stabilise emulsions. Under biphasic conditions, the catalysts can be easily separated and recycled, retaining catalytic activity even after eight runs. Additionally, the hybrid materials show superior catalytic activity and selectivity in the biphasic oxidation of benzyl alcohol with H2O2, as compared to pure TiNTs.

  2. Platinum and Palladium Overlayers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation

    SciTech Connect

    St. John, Samuel; Atkinson, Robert W.; Unocic, Kinga A.; Unocic, Raymond R.; Zawodzinski, Thomas A.; Papandrew, Alexander B.

    2015-10-18

    Templated vapor synthesis and thermal annealing were used to synthesize unsupported metallic Ru nanotubes with Pt or Pd overlayers. By controlling the elemental composition and thickness of these overlayers, we obtain nanostructures with very high alkaline hydrogen oxidation activity. For nanotubes with a nominal atomic composition of Ru0.90Pt0.10 display a surface-specific activity (2.4 mA/cm2) that is 35 times greater than that of pure Ru nanotubes at a 50 mV overpotential and 2.5 times greater than that of pure Pt nanotubes (0.98 mA/cm2). The surface-segregated structure also confers dramatically increased Pt utilization efficiency. We find a platinum-mass-specific activity of 1240 A/gPt for the optimized nanotube versus 280 A/gPt for carbon-supported Pt nanoparticles and 109 A/gPt for monometallic Pt nanotubes. Here, we attribute the enhancement of both area- and platinum-mass-specific activity to the atomic-scale homeomorphism of the nanotube form factor with adlayer-modified polycrystals. Subsurface ligand and bifunctional effects previously observed on segregated, adlayer-modified polycrystals are translated to nanoscale catalysts.

  3. Platinum and Palladium Overlayers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation

    DOE PAGES

    St. John, Samuel; Atkinson, Robert W.; Unocic, Kinga A.; ...

    2015-10-18

    Templated vapor synthesis and thermal annealing were used to synthesize unsupported metallic Ru nanotubes with Pt or Pd overlayers. By controlling the elemental composition and thickness of these overlayers, we obtain nanostructures with very high alkaline hydrogen oxidation activity. For nanotubes with a nominal atomic composition of Ru0.90Pt0.10 display a surface-specific activity (2.4 mA/cm2) that is 35 times greater than that of pure Ru nanotubes at a 50 mV overpotential and 2.5 times greater than that of pure Pt nanotubes (0.98 mA/cm2). The surface-segregated structure also confers dramatically increased Pt utilization efficiency. We find a platinum-mass-specific activity of 1240 A/gPtmore » for the optimized nanotube versus 280 A/gPt for carbon-supported Pt nanoparticles and 109 A/gPt for monometallic Pt nanotubes. Here, we attribute the enhancement of both area- and platinum-mass-specific activity to the atomic-scale homeomorphism of the nanotube form factor with adlayer-modified polycrystals. Subsurface ligand and bifunctional effects previously observed on segregated, adlayer-modified polycrystals are translated to nanoscale catalysts.« less

  4. Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes.

    SciTech Connect

    Viayan, B.; Dimitrijevic, N. M.; Rajh, T.; Gray, K.; Northwestern Univ.

    2010-08-05

    Titania nanotubes having diameters 8 to 12 nm and lengths of 50-300 nm were prepared using a hydrothermal method. Further, the titania nanotubes were calcined over the temperature range 200-800 C in order to enhance their photocatalytic properties by altering their morphology. The calcined titania nanotubes were characterized by using X-ray diffraction and surface area analysis and their morphological features were studied by scanning and transmission electron microscopy. Nanotubes calcined at 400 C showed the maximum extent of photocatalyitc reduction of carbon dioxide to methane, whereas samples calcined at 600 C produced maximum photocatalytic oxidation of acetaldehyde. Electron paramagnetic resonance (EPR) spectroscopy was used to interrogate the effects of nanotube structure on the charge separation and trapping as a function of calcination temperature. EPR results indicated that undercoordinated titania sites are associated with maximum CO{sub 2} reduction occurring in nanotubes calcined at 400 C. Despite the collapse of the nantube structure to form nanorods and the concomitant loss of surface area, the enhanced charge separation associated with increased crystallinity promoted high rates of oxidation of acetaldehyde in titania materials calcined at 600 C. These results illustrate that calcination temperature allows us to tune the morphological and surface features of the titania nanostructures for particular photocatalytic reactions.

  5. Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.

    2010-01-01

    new technique for carbon nanotube oxidation was developed based upon the photo-oxidation of organic compounds. The resulting method is more benign than conventional oxidation approaches and produces single-wall carbon nanotubes (SWCNTs) with higher levels of oxidation. In this procedure, an oxygen saturated suspension of SWNTs in a suitable solvent containing a singlet oxygen sensitizer, such as Rose Bengal, is irradiated with ultraviolet light. The resulting oxidized tubes are recovered by filtering the suspension, followed by washing to remove any adsorbed solvent and sensitizer, and drying in a vacuum oven. Chemical analysis by FT-infrared and x-ray photoelectron spectroscopy revealed that the oxygen content of the photo-oxidized SWCNT was 11.3 atomic % compared to 6.7 atomic % for SWCNT that had been oxidized by standard treatment in refluxing acid. The photo-oxidized SWCNT produced by this method can be used directly in various polymer matrixes, or can be further modified by chemical reactions at the oxygen functional groups and then used as additives. This method may also be suitable for use in oxidation of multiwall carbon nanotubes and graphenes.

  6. Intracellular degradation of functionalized carbon nanotube/iron oxide hybrids is modulated by iron via Nrf2 pathway

    PubMed Central

    Elgrabli, Dan; Dachraoui, Walid; Marmier, Hélène de; Ménard-Moyon, Cécilia; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Alloyeau, Damien; Gazeau, Florence

    2017-01-01

    The in vivo fate and biodegradability of carbon nanotubes is still a matter of debate despite tremendous applications. In this paper we describe a molecular pathway by which macrophages degrade functionalized multi-walled carbon nanotubes (CNTs) designed for biomedical applications and containing, or not, iron oxide nanoparticles in their inner cavity. Electron microscopy and Raman spectroscopy show that intracellularly-induced structural damages appear more rapidly for iron-free CNTs in comparison to iron-loaded ones, suggesting a role of iron in the degradation mechanism. By comparing the molecular responses of macrophages derived from THP1 monocytes to both types of CNTs, we highlight a molecular mechanism regulated by Nrf2/Bach1 signaling pathways to induce CNT degradation via NOX2 complex activation and O2•−, H2O2 and OH• production. CNT exposure activates an oxidative stress-dependent production of iron via Nrf2 nuclear translocation, Ferritin H and Heme oxygenase 1 translation. Conversely, Bach1 was translocated to the nucleus of cells exposed to iron-loaded CNTs to recycle embedded iron. Our results provide new information on the role of oxidative stress, iron metabolism and Nrf2-mediated host defence for regulating CNT fate in macrophages. PMID:28120861

  7. Modified halloysite nanotubes and the alleviation of kidney damage induced by dietary zearalenone in swine.

    PubMed

    Jia, Zhiqiang; Yin, Shutong; Liu, Min; Zhang, Yuanyuan; Gao, Rui; Shi, Baoming; Shan, Anshan; Chen, Zhihui

    2015-01-01

    The aims of this study were, first, to investigate the toxicity of zearalenone (ZEN) through the analysis of biochemical parameters, oxidative stress, pathological changes and inflammatory response in the kidney of gestation sows and offspring; and, second, to evaluate the efficacy of modified halloysite nanotubes (MHNTs) for the alleviation to the adverse effects induced by ZEN. This study focused on the period of organogenesis between days 35 and 70 of gestation, and treatments included (1) a control diet; (2) contaminated grain (50% control corn and 50% mouldy corn); and (3) contaminated grain (50% control corn and 50% mouldy corn) + 1% MHNTs. ZEN treatment significantly increased most of the biochemical parameters and inflammatory cytokines and degenerative changes in the kidney and induced oxidative damage in plasma, whereas the addition of MHNTs in combination with ZEN induced a re-establishment of the biochemical parameters, the plasma oxidative stress enzyme activities and the normal histology of the kidney. Thus, the data strongly suggest that the deleterious effects of ZEN can be significantly diminished by MHNTs.

  8. Electrochemical Deposition of Iron Nanoneedles on Titanium Oxide Nanotubes

    SciTech Connect

    Gan Y. X.; Zhang L.; Gan B.J.

    2011-10-01

    Iron as a catalyst has wide applications for hydrogen generation from ammonia, photodecomposition of organics, and carbon nanotube growth. Tuning the size and shape of iron is meaningful for improving the catalysis efficiency. It is the objective of this work to prepare nanostructured iron with high surface area via electrochemical deposition. Iron nanoneedles were successfully electrodeposited on Ti supported TiO2 nanotube arrays in a chlorine-based electrolyte containing 0.15 M FeCl2 {center_dot} 4H2O and 2.0 M HCl. Transmission electron microscopic analysis reveals that the average length of the nanoneedles is about 200 nm and the thickness is about 10 nm. It has been found that a high overpotential at the cathode made of Ti/TiO2 nanotube arrays is necessary for the formation of the nanoneedles. Cyclic voltammetry test indicates that the electrodeposition of iron nanoneedles is a concentration-limited process.

  9. A general approach towards carbon nanotube and iron oxide coaxial architecture and its lithium storage capability

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Ni, Jiangfeng; Wang, Wencong; Li, Liang

    2015-12-01

    Coaxial architectures consisting of metal oxide and carbon nanotube are promising for many energy applications due to their synergetic interaction. The engineering and development of coaxial structures through a simple approach are highly desirable but remain a challenge. Herein, we present a general and facile ethylene glycol bath approach to fabricate coaxial architectures in which the metal oxide component is sandwiched by carbon nanotube and amorphous carbon. These unique architectures can serve as efficient electrode for lithium storage. The internal carbon nanotube allows rapid electron transport, while the external amorphous carbon acts as flexible buffer to accommodate volume variation upon lithium uptake. When evaluated in lithium cells, the carbon nanotube and iron oxide coaxial material exhibits a remarkable electrochemical lithium storage. It affords a capacity of 1083 mAh g-1 over 60 cycles, and retains 529 mAh g-1 at a high rate of 5 A g-1, drastically outperforming the pure iron oxide counterpart. This facile approach is in principle applicable to constructing other coaxial electrodes, and thus holds great potential in the manipulation of battery materials for lithium storage application.

  10. Supramolecular Assembly of Gold Nanoparticles on Carbon Nanotubes: Application to the Catalytic Oxidation of Hydroxylamines

    PubMed Central

    Shah, Nimesh; Basu, Pallabita; Prakash, Praveen; Donck, Simon; Gravel, Edmond; Namboothiri, Irishi N. N.; Doris, Eric

    2016-01-01

    A supramolecular heterogeneous catalyst was developed by assembly and stabilization of gold nanoparticles on the surface of carbon nanotubes. A layer-by-layer assembly strategy was used and the resulting nanohybrid was involved in the catalytic oxidation of hydroxylamines under mild conditions. The nanohybrid demonstrated high efficiency and selectivity on hydroxylamine substrates. PMID:28344294

  11. Highly water-soluble multi-walled carbon nanotubes amine-functionalized by supercritical water oxidation.

    PubMed

    Chun, Kyoung-Yong; Moon, In-Kyu; Han, Joo-Hee; Do, Seung-Hoe; Lee, Jin-Seo; Jeon, Seong-Yun

    2013-11-07

    Multi-walled carbon nanotubes (MWNTs) have been amine-functionalized by eco-friendly supercritical water oxidation. The facilely functionalized MWNTs have high solubility (~84 mg L(-1)) in water and 78% transmittance at 30-fold dilution. The Tyndall effect is also shown for several liquids.

  12. Catalyst-induced growth of carbon nanotubes on tips of cantilevers and nanowires

    DOEpatents

    Lee, James Weifu; Lowndes, Douglas H.; Merkulov, Vladimir I.; Eres, Gyula; Wei, Yayi; Greenbaum, Elias; Lee, Ida

    2004-06-29

    A method is described for catalyst-induced growth of carbon nanotubes, nanofibers, and other nanostructures on the tips of nanowires, cantilevers, conductive micro/nanometer structures, wafers and the like. The method can be used for production of carbon nanotube-anchored cantilevers that can significantly improve the performance of scaning probe microscopy (AFM, EFM etc). The invention can also be used in many other processes of micro and/or nanofabrication with carbon nanotubes/fibers. Key elements of this invention include: (1) Proper selection of a metal catalyst and programmable pulsed electrolytic deposition of the desired specific catalyst precisely at the tip of a substrate, (2) Catalyst-induced growth of carbon nanotubes/fibers at the catalyst-deposited tips, (3) Control of carbon nanotube/fiber growth pattern by manipulation of tip shape and growth conditions, and (4) Automation for mass production.

  13. Graphene oxide/polyaniline nanostructures: transformation of 2D sheet to 1D nanotube and in situ reduction.

    PubMed

    Rana, Utpal; Malik, Sudip

    2012-11-14

    The formation of unique polyaniline nanotubes has been reported in presence of graphene oxide (GO) which plays crucial dual role as dopant and soft template, simultaneously. GO in nanotubes is in situ reduced to reduced GO with restoration of electrical conductivities and enhanced thermal stabilities.

  14. Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Feng, Yiyu; Wu, Zigang; Fujii, Akihiko; Ozaki, Masanori; Yoshino, Katsumi

    2005-07-01

    Composite film containing titania electrostatically linked to oxidized multiwalled carbon nanotubes (TiO2-s-MWNTs) was prepared from a suspension of TiO2 nanoparticles in soluble carbon nanotubes. The structure of the film was analysed principally by Fourier transform infrared spectroscopy, scanning electron micrography and x-ray diffraction. The optical and electrical characterizations of the film were investigated by UV-vis spectrum, photoluminescence and photoconductivity. The enhancement of photocurrent in the TiO2-s-MWNT film is discussed by taking the photoinduced charge transfer between the MWNT and TiO2 into consideration.

  15. Development of Novel Magnetic Metal Oxide Thin Films and Carbon Nanotube Materials for Potential Device Applications

    DTIC Science & Technology

    2016-05-09

    spin spring materials .”To study this possibility, we extended our investigation to the synthesis of CoFe2O4/CoFe2/CoFe2O4 trilayers under different...09-05-2016 18-May-2011 17-May-2014 Final Report: Development of Novel Magnetic Metal Oxide Thin Films and Carbon Nanotube Materials for Potential...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Nanomagnetics, carbon nanotubes, multilayer materials , spin

  16. Magnetic field induced tailoring of mechanical behavior of fluid filled micro porous carbon nanotube foam

    NASA Astrophysics Data System (ADS)

    Reddy, Siva Kumar; Mukherjee, Anwesha; Misra, Abha

    2014-06-01

    Compressive loading of the carbon nanotube (CNT) has attracted much attention due to its entangled cellular like structure (CNT foam). This report investigates the mechanical behavior of magnetorheological fluid impregnated micro porous CNT foam that has not been realized before at this scale. Compressive behavior of CNT foam is found to greatly depend on the variation in both fluid viscosity as well as magnetic field intensity. Moreover, maximum achieved stress and energy absorption in CNT foam followed a power law behavior with the magnetic field intensity. Magnetic field induced movement of both CNT and iron oxide particles along the field direction is shown to dominate compressive behavior of CNT foam over highly attractive van der Waals forces between individual CNT. Therefore, this study demonstrates a method for tailoring the mechanical behavior of the fluid impregnated CNT foam.

  17. Transient oxidative stress and inflammation after intraperitoneal administration of multiwalled carbon nanotubes functionalized with single strand DNA in rats

    SciTech Connect

    Clichici, Simona; Biris, Alexandru Radu; Tabaran, Flaviu; Filip, Adriana

    2012-03-15

    Multi-walled carbon nanotubes (MWCNTs) are widely used for nanotechnology. Their impact on living organisms is, however, not entirely clarified. Oxidative stress and inflammation seem to be the key mechanisms involved in MWCNTs' cytotoxicity. Until present, pulmonary and skin models were the main tested experimental designs to assess carbon nanotubes' toxicity. The systemic administration of MWCNTs is essential, with respect for future medical applications. Our research is performed on Wistar rats and is focused on the dynamics of oxidative stress parameters in blood and liver and pro-inflammatory cytokines in liver, after single dose (270 mg l{sup −1}) ip administration of MWCNTs (exterior diameter 15–25 nm, interior diameter 10–15 nm, surface 88 m{sup 2} g{sup −1}) functionalized with single strand DNA (ss-DNA). The presence of MWCNTs in blood was assessed by Raman spectroscopy, while in liver histological examination and confocal microscopy were used. It was found that ss-DNA-MWCNTs induce oxidative stress in plasma and liver, with the return of the tested parameters to normal values, 6 h after ip injection of nanotubes, with the exception of reduced glutathione in plasma. The inflammatory cytokines (TNF-α, IL-1β) had a similar pattern of evolution. We also assessed the level of ERK1/2 and the phosphorylation of p65 subunit of NF-kB in liver that had a transient increase and returned to normal at the end of the tested period. Our results demonstrate that ss-DNA-MWCNTs produce oxidative stress and inflammation, but with a transient pattern. Given the fact that antioxidants modify the profile not only for oxidative stress, but also of inflammation, the dynamics of these alterations may be of practical importance for future protective strategies. -- Highlights: ► ss-DNA-MWCNTs ip administration induce oxidative stress in plasma and liver. ► ss-DNA-MWCNTs ip administration determine liver inflammation. ► ERK1/2 and p65 phosphorylated NF-KB increase

  18. Electrophoretic deposition of polyacrylic acid and composite films containing nanotubes and oxide particles.

    PubMed

    Wang, Y; Deen, I; Zhitomirsky, I

    2011-10-15

    Electrophoretic deposition (EPD) method has been developed for the deposition of thin films of polyacrylic acid (PAA). This method allowed the formation of uniform films of controlled thickness on conductive substrates. It was shown that PAA can be used as a common dispersing agent suitable for charging and EPD of various materials, such as multiwalled carbon nanotubes, halloysite nanotubes, MnO(2), NiO, TiO(2) and SiO(2). The feasibility of EPD of composite films containing the nanotubes and oxide particles in a PAA matrix has been demonstrated. The kinetics of deposition and deposition mechanisms were investigated and discussed. The films were studied by thermogravimetric analysis, differential thermal analysis, X-ray diffraction and scanning electron microscopy. The results indicated that film thickness and composition can be varied. Obtained results pave the way for the fabrication of PAA and composite films for biomedical, electrochemical and other applications.

  19. Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels.

    PubMed

    Wang, Xinghao; Qu, Ruijuan; Huang, Qingguo; Wei, Zhongbo; Wang, Zunyao

    2015-03-01

    Experiments were conducted to investigate the effect of three different carbon nanotubes [single-walled carbon nanotubes (SWCNTs), hydroxylated multi-walled carbon nanotubes (OH-MWCNTs), and carboxylated multi-walled carbon nanotubes (COOH-MWCNTs)] on antioxidant parameters and metals accumulation in the liver of Carassius auratus. A semi-static test system was used to expose C. auratus to either a freshwater control, 0.1, or 0.5mg/L CNTs at three pH levels (5.0, 7.25, and 9.0) for 3 and 12 days. The activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), together with the level of glutathione (GSH) and malondialdehyde (MDA) were determined in liver on the 3rd and 12th day. The results showed that there was a significant increase in MDA concentration and SOD activity in fish exposed to CNTs, indicating that CNTs exposure induces an oxidative stress response in fish. According to integrated biomarker response (IBR) index, the effect of these three CNTs on liver can be ordered as SWCNTs>OH-MWCNTs>COOH-MWCNTs and they are more toxic to fish in an alkaline environment. Moreover, the concentrations of catalyst metals (Co, Ni, and Mo) and bioelements (Cu, Fe, Zn, and Se) in liver were changed, depending on the CNTs concentration, the pH level, and the exposure duration. Generally, all CNTs groups showed that catalyst metals could be concentrated significantly into the liver of fish, and changes in hepatic Cu, Zn, Fe, and Se contents are consistent with the activity of antioxidant enzymes.

  20. Photoelectrocatalytic oxidation of aqueous ammonia using TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Zhang, Xiufang; Su, Yan; Yu, Hongtao; Chen, Shuo; Quan, Xie; Yang, Fenglin

    2014-08-01

    The photoelectrocatalytic removal of ammonia in water was investigated using highly ordered TiO2 nanotube arrays as a photoanode. The results showed that the removal efficiency of total ammonia nitrogen (TAN) was closely related to the bias potential applied on TiO2 nanotube photoanode. Even without an adjustment of pH, over 99% of TAN (initial concentration 0.145 mM) was removed in 120 min with a bias potential of 1.0 V. It is important to note that the TAN could be directly oxidized into N2 and NO3--N without accumulation of an intermediate product of NO2--N. Meanwhile, the presence of the chemical scavengers revealed that photogenerated holes were the main oxidative species for the TAN oxidation. This work highlights the potential application of photoelectrocatalysis in the field of aqueous ammonia elimination.

  1. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    PubMed

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment.

  2. The sensor based on oxidized multi-walled carbon nanotubes prepared by electrochemical method and its application

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Yang, L.; Jiang, Q. Y.

    2015-07-01

    The sensor based on oxidized multi-walled carbon nanotubes was prepared by electrochemical method. The behavior of norepinephrine tartrate at the modified electrode was studied. It was demonstrated that modified sensor is a good electrocatalyst for norepinephrine tartrate.

  3. Effect of metal oxide and oxygen on the growth of single-walled carbon nanotubes by electric arc discharge

    NASA Astrophysics Data System (ADS)

    He, Delong; Liu, Yongning; Zhao, Tingkai; Zhu, Jiewu; Yu, Guang

    2008-03-01

    The effect of oxygen on the growth of single-walled carbon nanotubes was studied with Ni-Co alloy powder as catalyst under helium atmosphere of 500 Torr by electric arc discharge. The oxygen included in nickel or (and) cobalt oxides was added in catalyst. The content of oxygen in atmosphere was controlled by changing vacuum degree inside furnace before inputting buffer gas. The examinations of TEM and Raman scattering showed that oxygen in metal oxide as catalyst promotes the nucleation of SWCNT by taking effect on the metal catalyst particles. However, O2 in atmosphere has the role of oxidizing amorphous particles along with nanotubes. When its molar proportion is higher than 0.22 ppm (Parts per million), the carbon nanotubes produced are oxidized and their purity decreases. The diameter of single-walled carbon nanotube obtained under different condition has a narrow distribution around 1.28 nm.

  4. Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs)

    EPA Science Inventory

    Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and the...

  5. Study on the anticorrosion, biocompatibility, and osteoinductivity of tantalum decorated with tantalum oxide nanotube array films.

    PubMed

    Wang, Na; Li, Hongyi; Wang, Jinshu; Chen, Su; Ma, Yuanping; Zhang, Zhenting

    2012-09-26

    With its excellent anticorrosion and biocompatibility, tantalum, as a promising endosseous implant or implant coating, is attracting more and more attention. For improving physicochemical property and biocompatibility, the research of tantalum surface modification has increased. Tantalum oxide (Ta(2)O(5)) nanotube films can be produced on tantalum by controlling the conditions of anodization and annealing. The objective of our present study was to investigate the influence of Ta(2)O(5) nanotube films on pure tantalum properties related with anticorrosion, protein adsorption, and biological function of rabbit bone mesenchymal stem cells (rBMSCs). The polarization curve was measured, the adsorption of bovine serum albumin and fibronectin to Ta(2)O(5) nanotubes was detected, and the morphology and actin cytoskeletons of the rBMSCs were observed via fluorescence microscopy, and the adhesion and proliferation of the rBMSCs, as well as the osteogenic differentiation potential on tantalum specimens, were examined quantificationally by MTT and real-time PCR technology. The results showed that Ta(2)O(5) nanotube films have high anticorrosion capability and can increase the protein adsorption to tantalum and promote the adhesion, proliferation, and differentiation of rBMSCs, as well as the mRNA expression of osteogenic gene such as Osterix, ALP, Collagen-I, and Osteocalcin on tantalum. This study suggests that Ta(2)O(5) nanotube films can improve the anticorrosion, biocompatibility, and osteoinduction of pure tantalum, which provides the theoretical elaboration for development of tantalum endosseous implant or implant coating to a certain extent.

  6. Adsorption mechanism and kinetics of azo dye chemicals on oxide nanotubes: a case study using porous CeO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Wu, Junshu; Wang, Jinshu; Du, Yucheng; Li, Hongyi; Jia, Xinjian

    2016-07-01

    Metal oxide nanotubes are believed to be promising materials with adsorption functionality for water purification due to their synergistic effect of the overall microscale morphology for easy separation and nanoscale surface characters providing enough surface active absorption sites. This work shows the synthesis of uniform hierarchical porous CeO2 nanotubes via nanowire-directed templating method and describes the adsorption behavior of CeO2 nanotubes for a typical azo dye Congo red which has resistance to oxidation and decoloration in natural conditions. Fourier transform infrared spectroscopy spectra provided the evidence that Congo red was successfully coated on the surface of CeO2 nanotubes by both bidentate-type bridge link of Ce4+ cations from sulfonate SO3 - groups and the electrostatic attraction between the protonated surface generated by oxygen vacancies and dissociated sulfonate groups. The adsorption kinetic data fitted well to the pseudo-second-order kinetic equation, whereas the Langmuir isotherm equation exhibited better correlation with the experimental data. The calculated maximum adsorption capacity from the isothermal model was 362.32 mg/g. In addition, the prepared CeO2 nanotubes exhibited good recyclability and reusability as highly efficient adsorbents for Congo red removal after regeneration. These favorable performances enable the obtained CeO2 nanotubes to be promising materials for dye removal from aqueous solution.

  7. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

    PubMed Central

    2012-01-01

    Given the increasing use of carbon nanotubes (CNT) in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT) specifically synthesized following a similar production process (aerosol-assisted CVD), and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects) and chemical (i.e. oxidation) modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized) compared to long (pristine) MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example. PMID:23181604

  8. Carbon nanotubes induced gelation of unmodified hyaluronic acid.

    PubMed

    Zamora-Ledezma, Camilo; Buisson, Lionel; Moulton, Simon E; Wallace, Gordon; Zakri, Cécile; Blanc, Christophe; Anglaret, Eric; Poulin, Philippe

    2013-08-13

    This work reports an experimental study of the kinetics and mechanisms of gelation of carbon nanotubes (CNTs)-hyaluronic acid (HA) mixtures. These materials are of great interest as functional biogels for future medical applications and tissue engineering. We show that CNTs can induce the gelation of noncovalently modified HA in water. This gelation is associated with a dynamical arrest of a liquid crystal phase separation, as shown by small-angle light scattering and polarized optical microscopy. This phenomenon is reminiscent of arrested phase separations in other colloidal systems in the presence of attractive interactions. The gelation time is found to strongly vary with the concentrations of both HA and CNTs. Near-infrared photoluminescence reveals that the CNTs remain individualized both in fluid and in gel states. It is concluded that the attractive forces interplay are likely weak depletion interactions and not strong van der Waals interactions which could promote CNT rebundling, as observed in other biopolymer-CNT mixtures. The present results clarify the remarkable efficiency of CNT at inducing the gelation of HA, by considering that CNTs easily phase separate as liquid crystals because of their giant aspect ratio.

  9. Confinement effects on the crystallization of poly(ethylene oxide) nanotubes.

    PubMed

    Maiz, Jon; Martin, Jaime; Mijangos, Carmen

    2012-08-21

    In this work, we show the effects of nanoconfinement on the crystallization of poly(ethylene oxide) (PEO) nanotubes embedded in anodized aluminum oxide (AAO) templates. The morphological characteristics of the hollow 1D PEO nanostructures were evaluated by scanning electron microscopy (SEM). The crystallization of the PEO nanostructures and bulk was studied with differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The crystallization of PEO nanotubes studied by DSC is strongly influenced by the confinement showing a strong reduction in the crystallization temperature of the polymer. X-ray diffraction (XRD) experiments confirmed the isothermal crystallization results obtained by DSC, and studies carried out at low temperatures showed the absence of crystallites oriented with the extended chains perpendicular to the pore wall within the PEO nanotubes, which has been shown to be the typical crystal orientation for one-dimensional polymer nanostructures. In contrast, only planes oriented 33, 45, and 90° with respect to the plane (120) are arranged parallel to the pore's main axis, indicating preferential crystal growth in the direction of the radial component. Calculations based on classical nucleation theory suggest that heterogeneous nucleation prevails in the bulk PEO whereas for the PEO nanotubes a surface nucleation mechanism is more consistent with the obtained results.

  10. Carbon nanotubes induce secondary structure changes of bovine albumin in aqueous phase.

    PubMed

    Yang, Man; Meng, Jie; Mao, Xiaobo; Yang, Yang; Cheng, Xuelian; Yuan, Hui; Wang, Chen; Xu, Haiyan

    2010-11-01

    Interaction of nanomaterials to protein molecules is one of the most important issues to deeply understand the influences of the nanomaterials upon physiological processes and protein functions. So far most of investigations focused on the protein molecules adsorbed on the nanomaterials surface, less is known about those in the aqueous phase (not absorbed). In this work, luminescent spectroscopy analysis, circular dichroism measurement, atomic force microscopy, matrix-assisted laser desorption/ionization time of flight mass spectrometry, isoelectric focusing and sulfate polyacrylamide gel electrophoresis were used to investigate the influence of oxidized water-soluble multiwalled carbon nanotubes (CNT) dispersing in aqueous solution upon the structures of bovine serum albumin (BSA) through co-incubation. We focused on BSA molecules that stayed in the aqueous phase instead of those adsorbed by CNT. Experimental results show that the fractions of beta-sheet decreased from 33.3% to 29.8% and beta-turn increased from 2% to 5% in reference with native BSA. There was a slight increase of alpha-helix and a slight reduction of random coil. BSA molecules that had been encountered with CNT and were left in the solution formed a loose and flatten morphology on graphite substrates instead of their native tight and round morphology observed by AFM. The value of isoelectric point for BSA after exposed to CNT moved towards to a higher pH position compared with native BSA. All together, it was concluded that the oxidized water-soluble multiwalled carbon nanotubes not only adsorb bovine serum albumin molecules to their surface, but also induces albumin molecules in the aqueous solution undergo secondary structure changes, which lead to a conformation change.

  11. Characterization of flow-induced structures in carbon nanotube suspensions

    NASA Astrophysics Data System (ADS)

    Khalkhal, Fatemeh

    Carbon nanotubes (CNTs) are fibre-like nano-particles with many different applications. Due to their high specific surface area, high electric current density, thermal stability and excellent mechanical properties, they are used to reinforce physical properties of polymer matrices. The macroscopic properties of suspensions are inherited from their properties at micron and sub-micron scales. The suspensions structure can be easily influenced by many parameters such as the extent of external shear forces, the suspension concentration, temperature, the particles specifications, etc. This makes the study of the suspension structure a very challenging task and has been the subject of interest to many researchers. In this thesis, the structure of a model carbon nanotube suspension dispersed in an epoxy is studied by employing a set of rheological methods, scaling and fractal theories and a structural thixotropic model. The effect of flow history on linear viscoelastic properties of suspensions and the evolution of structure upon cessation of shear flow has been studied over a wide range of pre-shearing rates, concentration and temperature. The results of these analyses are as follows. The effect of flow history is more pronounced on the suspensions structure in dilute and semi-dilute concentration regimes. By pre-shearing at low rates, more inter-particle entanglements were induced, which resulted in reduction of rheological percolation thresholds. After cessation of shear flow, for dilute and semi-dilute suspensions, the formed metastable structures were distinguishable by different storage moduli, which were inversely related to the rate of pre-shearing. However, for the concentrated suspensions, the formed metastable structures had an approximately equal storage modulus regardless of the rate of the applied pre-shearing. It was shown that the rate of formation of these metastable structures was enhanced by increasing concentration. Furthermore, the rate of structure

  12. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  13. Synthesis of Ag modified vanadium oxide nanotubes and their antibacterial properties

    SciTech Connect

    Li Jing; Zheng Lifang; Zhang Kaifeng; Feng Xiaoqiang; Su Zhongxing Ma Jiantai

    2008-10-02

    Vanadium oxide nanotubes (VO{sub x}-NTs) modified by highly dispersed Ag nanoparticles have been synthesized via a facile silver-mirror reaction. The crucial factors that affected the preparation of the Ag modified vanadium oxide nanotubes (Ag/VO{sub x}-NTs) have been also studied. The dispersion and structure of Ag nanoparticles in the obtained materials were characterized by transmission electron microscopy (TEM), electron diffraction (ED) and X-ray diffraction (XRD). The results showed the distribution and size of the formed Ag particles were greatly influenced by the concentration of AgNO{sub 3} solution. Typically, Ag nanoparticles were well dispersed on the VO{sub x}-NTs with the size range from 3 to 10 nm. The corresponding antibacterial tests demonstrated the as-synthesized Ag/VO{sub x}-NTs exhibited strong antibacterial activity against Escherichia coli (E. coli)

  14. Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays.

    PubMed

    Allam, Nageh K; Alamgir, Faisal; El-Sayed, Mostafa A

    2010-10-26

    Self-ordered, highly oriented arrays of titanium-niobium-zirconium mixed oxide nanotube films were fabricated by the anodization of Ti(35)Nb(5)Zr alloy in aqueous and formamide electrolytes containing NH(4)F at room temperature. The nanostructure topology was found to depend on the nature of the electrolyte and the applied voltage. Our results demonstrate the possibility to grow mixed oxide nanotube array films possessing several-micrometer-thick layers by a simple and straightforward electrochemical route. The fabricated Ti-Nb-Zr-O nanotubes showed a ∼17.5% increase in the photoelectrochemical water oxidation efficiency as compared to that measured for pure TiO(2) nanotubes under UV illumination (100 mW/cm(2), 320-400 nm, 1 M KOH). This enhancement could be related to a combination of the effect of the thin wall of the fabricated Ti-Nb-Zr-O nanotubes (10 ± 2 nm) and the formation of Zr oxide and Nb oxide layers on the nanotube surface, which seems to slow down the electron-hole recombination in a way similar to that reported for Grätzel solar cells.

  15. UV Induced Oxidation of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde, F. (Inventor); Luecke, Dale E. (Inventor)

    2007-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated at least in part using in situ UV radiation sources. The sources of the oxidizing species include oxygen and/or hydrogen peroxide. The oxygen may be a component of the gaseous stream or added to the gaseous stream, preferably near a UV radiation source, and is converted to ozone by the UV irradiation. The hydrogen peroxide is decomposed through a combination of vaporization and UV irradiation. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50% by volume and increased in concentration in a continuous process preceding vaporization within the flow channel of the gaseous stream and in the presence of the UV radiation sources.

  16. Plasma-induced field emission study of carbon nanotube cathode

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Xia, Liansheng; Zhang, Huang; Liu, Xingguang; Yang, Anmin; Shi, Jinshui; Zhang, Linwen; Liao, Qingliang; Zhang, Yue

    2011-10-01

    An investigation on the plasma-induced field emission (PFE) properties of a large area carbon nanotube (CNT) cathode on a 2 MeV linear induction accelerator injector is presented. Experimental results show that the cathode is able to emit intense electron beams. Intense electron beams of 14.9-127.8A/cm2 are obtained from the cathode. The CNT cathode desorbs gases from the CNTs during the PFE process. The fast cathode plasma expansion affects the diode perveance. The amount of outgassing is estimated to be 0.06-0.49Pa·L, and the ratio of outgassing and electron are roughly calculated to be within the range of 170-350 atoms per electron. The effect of the outgassing is analyzed, and the outgassing mass spectrum of the CNT cathode has been studied during the PFE. There is a significant desorption of CO2, N2(CO), and H2 gases, which plays an important role during the PFE process. All the experiments demonstrate that the outgassing plays an important role in the formation of the cathode plasma. Moreover, the characteristic turn-on time of the CNT cathode was measured to be 39 ns.

  17. Effect of the composition of Ti alloy on the photocatalytic activities of Ti-based oxide nanotube arrays prepared by anodic oxidation

    NASA Astrophysics Data System (ADS)

    Tang, Dingding; Wang, Yixin; Zhao, Yuwei; Yang, Yijia; Zhang, Lieyu; Mao, Xuhui

    2014-11-01

    Three types of Ti-based oxide nanotube arrays are prepared by anodic oxidation of pure Ti and Ti alloys (Ti-0.2Pd and Ti-6Al-4V) in the glycol-2 wt% H2O-0.3 wt% NH4F solution. The nanotube arrays are characterized by a series of techniques, including SEM, TEM, EIS, XRD, EDS, ICP, XPS and UV-vis DRS, to elucidate the effect of alloying elements on the properties of titania nanotube arrays. The results suggest that aluminium and vanadium elements greatly slow down the growth rate and therefore decrease the yield of nanotube arrays. Al and V deteriorate the photoreactivity of the resultant nanotube arrays. The palladium inside the Ti-0.2Pd alloy-derived nanotube arrays cannot be detected by EDS or XPS, but is quantitatively determined by ICP analysis. Incorporation of Pd significantly improves the photocatalytic activity of the resultant titania nanotube arrays powder. The presence of Pd element not only enhances the light absorption, but also facilitates the separation of photogenerated charge carriers. The uniform doping of Pd into the microstructure endows nanotube arrays with resistance to sulphur poison and preferable stability for organic degradation. This study suggests that anodization of Ti alloys, rather than pure Ti metal, allows to produce micron-sized high-performance photocatalysts for environmental and energy applications.

  18. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.

    PubMed

    Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping

    2015-09-07

    Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions.

  19. Single-walled carbon nanotubes (SWCNTs) induce vasodilation in isolated rat aortic rings.

    PubMed

    Gutiérrez-Hernández, J M; Ramirez-Lee, M A; Rosas-Hernandez, H; Salazar-García, S; Maldonado-Ortega, D A; González, F J; Gonzalez, C

    2015-06-01

    Single-walled carbon nanotubes (SWCNTs) are used in biological systems with impact in biomedicine in order to improve diagnostics and treatment of diseases. However, their effects upon the vascular system, are not fully understood. Endothelium and smooth muscle cells (SMC) communicate through release of vasoactive factors as nitric oxide (NO) to maintain vascular tone. The aim of this study was to evaluate the effect of SWCNTs on vascular tone using isolated rat aortic rings, which were exposed to SWCNTs (0.1, 1 and 10 μg/mL) in presence and absence of endothelium. SWCNTs induced vasodilation in both conditions, indicating that this effect was independent on endothelium; moreover that vasodilation was NO-independent, since its blockage with L-NAME did not modify the observed effect. Together, these results indicate that SWCNTs induce vasodilation in the macrovasculature, may be through a direct interaction with SMC rather than endothelium independent of NO production. Further investigation is required to fully understand the mechanisms of action and mediators involved in the signaling pathway induced by SWCNTs on the vascular system.

  20. Synthesis and characterization of transition metal oxide nanotubes for photoelectrochemical hydrogen generation

    NASA Astrophysics Data System (ADS)

    Rangaraju, Raghu Raj

    Two different configurations of photo anodes based on anodic iron oxide were investigated for photo electrochemical water oxidation. Self ordered and vertically oriented array of iron oxide nanotubes was obtained by anodization of pure iron substrate in ethylene glycol based electrolyte containing 0.1 M NH4F + 3 vol% water (EGWF solution) at 50 V for 15 minutes. Annealing of the oxide nanotubes in hydrogen environment at 500 °C for 1 h resulted in predominantly hematite phase. The second type of photo anode was obtained by a two-step anodization procedure. This process resulted in a two- layered oxide structure, a top layer of nano-dendrite morphology and a bottom layer of nanoporous morphology. This electrode configuration combined the better photo catalytic properties of the nano-dendritic iron oxide and better electron transportation behavior of vertically oriented nano-channels. Annealing of these double anodized samples in acetylene environment at 550 °C for 10 minutes resulted in a mixture of maghemite and hematite phases. Photo current densities of 0.74 mA/cm2 at 0.2 VAg/AgCl and 1.8 mA/cm 2 at 0.5 VAg/AgCl were obtained under AM 1.5 illumination in 1 M KOH solution. The double anodized samples showed high photo conductivity and more negative flat band potential (-0.8 VAg/AgCl), which are the properties required for promising photo anode materials. Apart from the above work, mild steel which is 10 times less the cost of Ti is also being tested for its photoelectrochemical properties. TiO2 nanotubes synthesized and annealed in different conditions are compared for their quantum efficiency is also carried out in this work. Quantum efficiency measurements gives more reliable and photocurrent data towards photoelectrochemical applications.

  1. Isothermal Crystallization of Poly(ethylene oxide) / Single Walled Carbon Nanotube Nanocomposites

    NASA Astrophysics Data System (ADS)

    Lorenzo, Arnaldo; Chatterjee, Tirtha; Krishnamoorti, Ramanan

    2011-03-01

    The isothermal crystallization behavior of poly(ethylene oxide)/single walled carbon nanotubes (PEO/SWNT) nanocomposites were studied with a focus on the overall crystallization kinetics and the morphological evolution of PEO using differential scanning calorimetry and in-situ small angle x-ray scattering measurements, respectively. The overall crystallization process of the PEO was strongly affected by lithium dodecyl sulfate (LDS) stabilized carbon nanotubes. Further, analysis of the overall crystallization kinetics showed that the PEO chains were topologically constrained by the presence of LDS with an increased energy barrier associated with nucleation and crystal growth, and the nanotubes further act as a barrier to chain transport or enhance the LDS action on the PEO chains. The energy penalty and diffusional barrier to chain transport in the nanocomposites disrupt the PEO crystal helical conformation. This destabilization leads to formation of thinner crystal lamellae and suggests that the crystallization kinetics is primarily controlled by the growth process. This study is particularly interesting considering the suppression of the PEO crystallinity in presence of small amounts of Lithium ion based surfactant and carbon nanotubes.

  2. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    NASA Astrophysics Data System (ADS)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  3. Studying the buckling and vibration characteristics of single-walled zinc oxide nanotubes using a nanoscale finite element model

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Mirnezhad, M.; Sadeghiyeh, F.

    2013-09-01

    The free vibration and axial buckling of achiral zinc oxide nanotubes (ZnONTs) are studied in this paper based on a three-dimensional finite-element model in which bonds are modeled using beam elements and mass elements are placed at the joints of beams instead of atoms. To determine the mechanical properties of the nanotubes, a linkage is established between molecular mechanics and density functional theory. The fundamental frequency and critical buckling load of ZnONTs with different geometries, chiralities and boundary conditions are calculated. It is shown that zigzag nanotubes are more stable than armchair ones. Investigating the effect of aspect ratio on the critical force shows that longer nanotubes are less stable. Also, it is indicated that increasing the length of the nanotubes will result in decreasing the frequency. Moreover, as the aspect ratio increases, the effect of end conditions diminishes.

  4. Preparation of halloysite nanotube-supported gold nanocomposite for solvent-free oxidation of benzyl alcohol

    PubMed Central

    2014-01-01

    Gold nanoparticles supported on halloysite nanotubes (Au/HNTs) were prepared by a homogeneous deposition-precipitation method. The specific characteristics of the catalyst were characterized in detail, in relation to their performance for solvent-free oxidation of benzyl alcohol. The particular structure of the catalyst resulted in high catalytic activity and stability compared with other supported gold catalysts. The enhanced catalytic activity of the Au/HNTs catalyst was mainly attributed to the presence of a higher amount of oxidized gold species and the tubular structure of the HNTs. PMID:24948899

  5. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB.

    PubMed

    Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon

    2014-07-23

    This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport.

  6. Fabrication Process of Fine Electrodes Using Shadow Mask Evaporation and Tip-Induced Local Oxidation

    NASA Astrophysics Data System (ADS)

    Akai, Tomonori; Abe, Takumi; Ishibashi, Masayoshi; Kato, Midori; Heike, Seiji; Shimomura, Takeshi; Okai, Makoto; Hashizume, Tomihiro; Ito, Kohzo

    2002-07-01

    We report on a simple process for fabricating fine electrodes by using shadow mask evaporation and tip-induced local oxidation. A set of electrodes for four-term resistance measurement has been fabricated. The gap width between the fine electrode was 150 nm and the roughness of the electrode surface was less than 0.5 nm. We were able to use the electrodes to measure the conductivity of a multiwalled carbon nanotube (MWNT).

  7. Single-walled carbon nanotube formation on iron oxide catalysts in diffusion flames

    NASA Astrophysics Data System (ADS)

    Unrau, Chad J.; Axelbaum, Richard L.; Fraundorf, Phil

    2010-08-01

    Single-walled carbon nanotubes (SWCNTs) are shown to grow rapidly on iron oxide catalysts on the fuel side of an inverse ethylene diffusion flame. The pathway of carbon in the flame is controlled by the flame structure, leading to formation of SWCNTs free of polycyclic aromatic hydrocarbons (PAH) or soot. By using a combination of oxygen-enrichment and fuel dilution, fuel oxidation is favored over pyrolysis, PAH growth, and subsequent soot formation. The inverse configuration of the flame prevents burnout of the SWCNTs while providing a long carbon-rich region for nanotube formation. Furthermore, flame structure is used to control oxidation of the catalyst particles. Iron sub-oxide catalysts are highly active toward SWCNT formation while Fe and Fe2O3 catalysts are less active. This can be understood by considering the effects of particle oxidation on the dissociative adsorption of gas-phase hydrocarbons. The optimum catalyst particle composition and flame conditions were determined in near real-time using a scanning mobility particle sizer (SMPS) to measure the catalyst and SWCNT size distributions. In addition, SMPS results were combined with flame velocity measurement to measure SWCNT growth rates. SWCNTs were found to grow at rates of over 100 μm/s.

  8. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction

    NASA Astrophysics Data System (ADS)

    Ma, Ming; Grey, François; Shen, Luming; Urbakh, Michael; Wu, Shuai; Liu, Jefferson Zhe; Liu, Yilun; Zheng, Quanshui

    2015-08-01

    The emergence of the field of nanofluidics in the last decade has led to the development of important applications including water desalination, ultrafiltration and osmotic energy conversion. Most applications make use of carbon nanotubes, boron nitride nanotubes, graphene and graphene oxide. In particular, understanding water transport in carbon nanotubes is key for designing ultrafiltration devices and energy-efficient water filters. However, although theoretical studies based on molecular dynamics simulations have revealed many mechanistic features of water transport at the molecular level, further advances in this direction are limited by the fact that the lowest flow velocities accessible by simulations are orders of magnitude higher than those measured experimentally. Here, we extend molecular dynamics studies of water transport through carbon nanotubes to flow velocities comparable with experimental ones using massive crowd-sourced computing power. We observe previously undetected oscillations in the friction force between water and carbon nanotubes and show that these oscillations result from the coupling between confined water molecules and the longitudinal phonon modes of the nanotube. This coupling can enhance the diffusion of confined water by more than 300%. Our results may serve as a theoretical framework for the design of new devices for more efficient water filtration and osmotic energy conversion devices.

  9. Multi-Walled Carbon Nanotubes as a Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde.

    PubMed

    Wang, Jia; Huang, Rui; Feng, Zhenbao; Liu, Hongyang; Su, Dangsheng

    2016-07-21

    Multi-walled carbon nanotubes (CNTs) were directly used as a sustainable and green catalyst to convert ethanol into acetaldehyde in the presence of molecular oxygen. The C=O groups generated on the nanocarbon surface were demonstrated as active sites for the selective oxidation of ethanol to acetaldehyde. The transformation of disordered carbon debris on the CNT surface to ordered graphitic structures induced by thermal-treatment significantly enhanced the stability of the active C=O groups, and thus the catalytic performance. A high reactivity with approximately 60 % ethanol conversion and 93 % acetaldehyde selectivity was obtained over the optimized CNT catalyst at 270 °C. More importantly, the catalytic performance was quite stable even after 500 h, which is comparable with a supported gold catalyst. The robust catalytic performance displayed the potential application of CNTs in the industrial catalysis field.

  10. Integrated ternary artificial nacre via synergistic toughening of reduced graphene oxide/double-walled carbon nanotubes/poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Gong, Shanshan; Wu, Mengxi; Jiang, Lei; Cheng, Qunfeng

    2016-07-01

    The synergistic toughening effect of building blocks and interface interaction exists in natural materials, such as nacre. Herein, inspired by one-dimensional (1D) nanofibrillar chitin and two-dimensional (2D) calcium carbonate platelets of natural nacre, we have fabricated integrated strong and tough ternary bio-inspired nanocomposites (artificial nacre) successfully via the synergistic effect of 2D reduced graphene oxide (rGO) nanosheets and 1D double-walled carbon nanotubes (DWNTs) and hydrogen bonding cross-linking with polyvinyl alcohol (PVA) matrix. Moreover, the crack mechanics model with crack deflection by 2D rGO nanosheets and crack bridging by 1D DWNTs and PVA chains induces resultant artificial nacre exhibiting excellent fatigue-resistance performance. These outstanding characteristics enable the ternary bioinspired nanocomposites have many promising potential applications, for instance, aerospace, flexible electronics devices and so forth. This synergistic toughening strategy also provides an effective way to assemble robust graphene-based nanocomposites.

  11. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  12. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP).

    PubMed

    Vietti, Giulia; Lison, Dominique; van den Brule, Sybille

    2016-02-29

    Several experimental studies have shown that carbon nanotubes (CNT) can induce respiratory effects, including lung fibrosis. The cellular and molecular events through which these effects develop are, however, not clearly elucidated. The purpose of the present review was to analyze the key events involved in the lung fibrotic reaction induced by CNT and to assess their relationships. We thus address current knowledge and gaps with a view to draft an Adverse Outcome Pathway (AOP) concerning the fibrotic potential of CNT.As for many inhaled particles, CNT can indirectly activate fibroblasts through the release of pro-inflammatory (IL-1β) and pro-fibrotic (PDGF and TGF-β) mediators by inflammatory cells (macrophages and epithelial cells) via the induction of oxidative stress, inflammasome or NF-kB. We also highlight here direct effects of CNT on fibroblasts, which appear as a new mode of toxicity relatively specific for CNT. Direct effects of CNT on fibroblasts include the induction of fibroblast proliferation, differentiation and collagen production via ERK 1/2 or Smad signaling. We also point out the physico-chemical properties of CNT important for their toxicity and the relationship between in vitro and in vivo effects. This knowledge provides evidence to draft an AOP for the fibrogenic activity of CNT, which allows developing simple in vitro models contributing to predict the CNT effects in lung fibrosis, and risk assessment tools for regulatory decision.

  13. Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Zhang, Zhang; Liu, Lifeng; Shimizu, Tomohiro; Senz, Stephan; Gösele, Ulrich

    2010-02-01

    Silicon nanotubes (SiNTs) are compatible with Si-based semiconductor technology. In particular, the small diameters and controllable structure of such nanotubes are remaining challenges. Here we describe a method to fabricate SiNTs intrinsically connected with cobalt silicide ends based on highly ordered anodic aluminum oxide (AAO) templates. Size and growth direction of the SiNTs can be well controlled via the templates. The growth of SiNTs is catalyzed by the Co nanoparticles reduced on the pore walls of the AAO after annealing, with a controllable thickness at a given growth temperature and time. Simultaneously, cobalt silicide forms on the bottom side of the SiNTs.

  14. Lipid oxidation induced oxidative degradation of cereal beta-glucan.

    PubMed

    Wang, Yu-Jie; Mäkelä, Noora; Maina, Ndegwa Henry; Lampi, Anna-Maija; Sontag-Strohm, Tuula

    2016-04-15

    In food systems, lipid oxidation can cause oxidation of other molecules. This research for the first time investigated oxidative degradation of β-glucan induced by lipid oxidation using an oil-in-water emulsion system which simulated a multi-phased aqueous food system containing oil and β-glucan. Lipid oxidation was monitored using peroxide value and hexanal production while β-glucan degradation was evaluated by viscosity and molecular weight measurements. The study showed that while lipid oxidation proceeded, β-glucan degradation occurred. Emulsions containing β-glucan, oil and ferrous ion showed significant viscosity and molecular weight decrease after 1 week of oxidation at room temperature. Elevated temperature (40°C) enhanced the oxidation reactions causing higher viscosity drop. In addition, the presence of β-glucan appeared to retard the hexanal production in lipid oxidation. The study revealed that lipid oxidation may induce the degradation of β-glucan in aqueous food systems where β-glucan and lipids co-exist.

  15. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm

    PubMed Central

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R.; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M.; Mutter, George L.; Ozkan, Mihrimah; Ozkan, Cengiz S.; Demirci, Utkan

    2016-01-01

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1–25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure. PMID:27538480

  16. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm

    NASA Astrophysics Data System (ADS)

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R.; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M.; Mutter, George L.; Ozkan, Mihrimah; Ozkan, Cengiz S.; Demirci, Utkan

    2016-08-01

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1–25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  17. Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells

    NASA Astrophysics Data System (ADS)

    Cveticanin, Jelena; Joksic, Gordana; Leskovac, Andreja; Petrovic, Sandra; Valenta Sobot, Ana; Neskovic, Olivera

    2010-01-01

    Carbon nanotubes are unique one-dimensional macromolecules with promising applications in biology and medicine. Since their toxicity is still under debate, here we present a study investigating the genotoxic properties of purified single wall carbon nanotubes (SWCNTs), multiwall carbon nanotubes (MWCNTs), and amide functionalized purified SWCNTs on cultured human lymphocytes employing cytokinesis block micronucleus assay and enumeration of γH2AX foci as a measure of double strand breaks (DSBs) of the DNA in normal human fibroblasts. SWCNTs induce micronuclei (MN) formation in lymphocytes and decrease the proliferation potential (CBPI) of cells. In a fibroblast cell line the same dose of SWCNTs induces γH2AX foci 2.7-fold higher than in a control. Amide functionalized purified SWCNTs behave differently: they do not disturb the cell proliferation potential of harvested lymphocytes, but induce micronuclei to a higher extent than SWCNTs. When applied on fibroblasts, amide functionalized SWCNTs also induce γH2AX foci, 3.18-fold higher than the control. The cellular effects of MWCNTs display the broad spectrum of clastogenic properties seen as the highest incidence of induced lymphocyte micronuclei and anaphase bridges among nuclei in binucleated cells. Surprisingly, the incidence of induced γH2AX foci was not as high as was expected by the micronucleus test, which indicates that MWCNTs act as clastogen and aneugen agents simultaneously. Biological endpoints investigated in this study indicate a close relationship between the electrochemical properties of carbon nanotubes and observed genotoxicity.

  18. Gate-voltage induced trions in suspended carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yoshida, Masahiro; Popert, Alexander; Kato, Yuichiro K.

    We observe trion emission from suspended carbon nanotubes where carriers are introduced electrostatically using field-effect transistor structures. The trion peak emerges below the E11 emission energy at gate voltages that coincide with the onset of bright exciton quenching. By investigating nanotubes with various chiralities, we verify that the energy separation between the bright exciton peak and the trion peak becomes smaller for larger diameter tubes. Trion binding energies that are significantly larger compared to surfactant-wrapped carbon nanotubes are obtained, and the difference is attributed to the reduced dielectric screening in suspended tubes. Work supported by JSPS (KAKENHI 24340066), the Canon Foundation, the Sasakawa Scientific Research Grant, and MEXT (Photon Frontier Network Program, Nanotechnology Platform). M.Y. is supported by ALPS.

  19. Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension

    SciTech Connect

    Anoop Krishnan, N. M. Ghosh, Debraj

    2014-07-28

    The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation of failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure.

  20. Electron beam induced THz emissions from nanotube array

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Kumar, Pawan

    2016-10-01

    A new scheme of terahertz radiation generation by passing an ultrashort electron bunch over a planar array of nanotube/nanorod across their lengths is proposed and analyzed. The beam pulse exerts a repulsive impulse on the free electron cylinder of each nanorod and displaces them with respect to ion cylinder. After the passage of the pulse, the electron cylinders oscillate at their natural frequency ω p / √{ 2 } (where ω p is the plasma frequency of electrons in each carbon nanotube) acting as phased array dipole antennae, emitting THz radiation.

  1. Raman and electrochemical impedance studies of sol-gel titanium oxide and single walled carbon nanotubes composite films.

    PubMed

    Rincón, M E; Trujillo-Camacho, M E; Miranda-Hernández, M; Cuentas-Gallegos, A K; Orozco, G

    2007-01-01

    Titanium oxide grown by a sol-gel route on single-walled carbon nanotubes was studied by Raman and Electrochemical Impedance techniques and compared with mixtures obtained by mechanical grinding. In spite of the superior dispersion of single-walled carbon nanotubes bundles in sol-gel composites, the lost of the small-diameter carbon nanotubes in the oxidizing sol-gel bath was inferred from their Raman spectra and the lower capacitive current of the voltammograms in 0.1 M H2SO4. We proposed proton electrosorption as the main charge storage mechanism for sol-gel composites, favoured by the hydroxylation and n-type conductivity of the oxide, while electrodes based on mixtures were dominated by double-layer charging, developing some pseudocapacitance with potential cycling due to the reversible oxidation of carbon nanotubes. Comparsion with TiO2/Carbon Blacks composites shows the effective role of single-walled carbon nanotubes as templates to control the mesoporous nature of sol-gel composite electrodes.

  2. Silylesterification of oxidized multi-wall carbon nanotubes by catalyzed dehydrogenative cross-coupling between carboxylic and hydrosilane functions

    NASA Astrophysics Data System (ADS)

    Seffer, J.-F.; Detriche, S.; Nagy, J. B.; Delhalle, J.; Mekhalif, Z.

    2014-06-01

    Surface modification of oxidized carbon nanotubes (O-CNTs) with silicon based anchoring groups (R-SiR3) is a relatively uncommon approach of the CNTs functionalization. Hydrosilane derivatives constitute an attractive subclass of compounds for silanization reactions on the CNTs surface. In this work, we report on the ZnCl2 catalytically controlled reaction (hydrosilane dehydrogenative cross-coupling, DHCC) of fluorinated hydrosilane probes with the carboxylic functions present on the surface of oxidized multi-wall carbon nanotubes. Carbon nanotubes functionalized with essentially alcohol groups are also used to compare the selectivity of zinc chloride toward carboxylic groups. To assess the efficiency of functionalization, X-ray Photoelectron Spectroscopy is used to determine the qualitative and quantitative composition of the different samples. Solubility tests on the oxidized and silanized MWNTs are also carried out in the framework of the Hansen Solubility Parameters (HSP) theory to apprehend at another scale the effect of DHCC.

  3. Oscillation induced worm-like locomotion of carbon nanotubes.

    PubMed

    Cheng, Tung-Wen; Lu, Chieh-Lien; Lai, Yao-Chen; Kuo, Hsin-Fu; Fang, Weileun; Tai, Nyan-Hwa; Hsu, Wen-Kuang

    2010-08-21

    Harmonic oscillation of a doubly clamped single-walled carbon nanotube rope is significantly damped by the resistive force of friction at intertube contacts and the energy transmission rate has been estimated to be lower than that on a metal wire excited at similar frequency and vibrating length by one order of magnitude.

  4. Size-dependent bending modulus of nanotubes induced by the imperfect boundary conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Jin

    2016-12-01

    The size-dependent bending modulus of nanotubes, which was widely observed in most existing three-point bending experiments [e.g., J. Phys. Chem. B 117, 4618–4625 (2013)], has been tacitly assumed to originate from the shear effect. In this paper, taking boron nitride nanotubes as an example, we directly measured the shear effect by molecular dynamics (MD) simulations and found that the shear effect is not the major factor responsible for the observed size-dependent bending modulus of nanotubes. To further explain the size-dependence phenomenon, we abandoned the assumption of perfect boundary conditions (BCs) utilized in the aforementioned experiments and studied the influence of the BCs on the bending modulus of nanotubes based on MD simulations. The results show that the imperfect BCs also make the bending modulus of nanotubes size-dependent. Moreover, the size-dependence phenomenon induced by the imperfect BCs is much more significant than that induced by the shear effect, which suggests that the imperfect BC is a possible physical origin that leads to the strong size-dependence of the bending modulus found in the aforementioned experiments. To capture the physics behind the MD simulation results, a beam model with the general BCs is proposed and found to fit the experimental data very well.

  5. Size-dependent bending modulus of nanotubes induced by the imperfect boundary conditions

    PubMed Central

    Zhang, Jin

    2016-01-01

    The size-dependent bending modulus of nanotubes, which was widely observed in most existing three-point bending experiments [e.g., J. Phys. Chem. B 117, 4618–4625 (2013)], has been tacitly assumed to originate from the shear effect. In this paper, taking boron nitride nanotubes as an example, we directly measured the shear effect by molecular dynamics (MD) simulations and found that the shear effect is not the major factor responsible for the observed size-dependent bending modulus of nanotubes. To further explain the size-dependence phenomenon, we abandoned the assumption of perfect boundary conditions (BCs) utilized in the aforementioned experiments and studied the influence of the BCs on the bending modulus of nanotubes based on MD simulations. The results show that the imperfect BCs also make the bending modulus of nanotubes size-dependent. Moreover, the size-dependence phenomenon induced by the imperfect BCs is much more significant than that induced by the shear effect, which suggests that the imperfect BC is a possible physical origin that leads to the strong size-dependence of the bending modulus found in the aforementioned experiments. To capture the physics behind the MD simulation results, a beam model with the general BCs is proposed and found to fit the experimental data very well. PMID:27941866

  6. [Preparation, characterization of Si doped TiO2 nanotubes and its application in photocatalytic oxidation of VOCs].

    PubMed

    Zou, Xue-Jun; Li, Xin-Yong; Qu, Zhen-Ping; Wang, Jiang-Jiang

    2011-12-01

    The Si-doped TiO2 nanotubes photocatalysts was synthesized by anodic oxidation method, which used Na2SiF6/HF as an electrolyte, and was characterized by means of SEM, XRD, DRS and EDX. TiO2 nanotubes composed of anatase phase and rutile phase, and Si was highly dispersed on the wall of TiO2 nanotubes. The photocatalytic activity of the Si-doped TiO2 nanotubes was investigated for photocatalytic degradation of gaseous toluene. It was found that the photocatalytic activity of Si-doped TiO2 nanotubes, which prepared by 0.03 mol x L x (-1) Na2SiF6/HF and calcined at 400 degrees C for 1 h, was the highest. The conversion of toluene was 60% over the prepared Si doped TiO2 nanotubes under UV light, which was one times higher than that of pure TiO2 nanotubes.

  7. A Comparative Study on Graphene Oxide and Carbon Nanotube Reinforcement of PMMA-Siloxane-Silica Anticorrosive Coatings.

    PubMed

    Harb, Samarah V; Pulcinelli, Sandra H; Santilli, Celso V; Knowles, Kevin M; Hammer, Peter

    2016-06-29

    Carbon nanotubes (CNTs) and graphene oxide (GO) have been used to reinforce PMMA-siloxane-silica nanocomposites considered to be promising candidates for environmentally compliant anticorrosive coatings. The organic-inorganic hybrids were prepared by benzoyl peroxide (BPO)-induced polymerization of methyl methacrylate (MMA) covalently bonded through 3-(trimethoxysilyl)propyl methacrylate (MPTS) to silica domains formed by hydrolytic condensation of tetraethoxysilane (TEOS). Single-walled carbon nanotubes and graphene oxide nanosheets were dispersed by surfactant addition and in a water/ethanol solution, respectively. These were added to PMMA-siloxane-silica hybrids at a carbon (CNT or GO) to silicon (TEOS and MPTS) molar ratio of 0.05% in two different matrices, both prepared at BPO/MMA molar ratios of 0.01 and 0.05. Atomic force microscopy and scanning electron microscopy showed very smooth, homogeneous, and defect-free surfaces of approximately 3-7 μm thick coatings deposited onto A1020 carbon steel by dip coating. Mechanical testing and thermogravimetric analysis confirmed that both additives CNT and GO improved the scratch resistance, adhesion, wear resistance, and thermal stability of PMMA-siloxane-silica coatings. Results of electrochemical impedance spectroscopy in 3.5% NaCl solution, discussed in terms of equivalent circuits, showed that the reinforced hybrid coatings act as a very efficient anticorrosive barrier with an impedance modulus up to 1 GΩ cm(2), approximately 5 orders of magnitude higher than that of bare carbon steel. In the case of GO addition, the high corrosion resistance was maintained for more than 6 months in saline medium. These results suggest that both carbon nanostructures can be used as structural reinforcement agents, improving the thermal and mechanical resistance of high performance anticorrosive PMMA-siloxane-silica coatings and thus extending their application range to abrasive environments.

  8. Preparation and gas sensing property of Ag-supported vanadium oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Jin, Wei; Yan, Shilin; Chen, Wen; Yang, Shuang; Zhao, Chunxia; Dai, Ying

    2014-03-01

    A facile microwave irradiation was used to synthesize Ag nanoparticle supported on vanadium oxide nanotubes (VONTs) in this paper. The VONTs on alumina tube installed with Pt electrodes were tested for gas sensing towards C2H5OH, NH3 and C6H5CH3 gases. Detailed studies showed that the sensing capabilities were greatly enhanced in comparison to those of pure nanotubes. It was found that the Ag nanoparticles supported on VONTs sensing films exhibited a high C2H5OH selectivity compared with NH3 and C6H5CH3 gases. When the sensor is exposed to C2H5OH, the ethanol molecules interact with the preadsorbed oxygen ions on the Ag nanoparticles surface. The ethanol oxidation on the Ag nanoparticles leads to the transfer of electrons into the semiconducting VONTs and this is reflected as the change in conductance of sensor. The presence of Ag nanoparticles on the surface of VONTs serves to enhance the C2H5OH oxidation due to a higher oxygen ion-chemisorption on the conductive Ag nanoparticle surfaces.

  9. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    SciTech Connect

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  10. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE PAGES

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; ...

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  11. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte.

    PubMed

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  12. Removal of Trace Arsenic to Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes.

    PubMed

    Ntim, Susana Addo; Mitra, Somenath

    2011-05-12

    This study presents the removal of trace level arsenic to meet drinking water standards using an iron oxide-multi-walled carbon nanotube (Fe-MWCNT) hybrid as a sorbent. The synthesis was facilitated by the high degree of nanotube functionalization using a microwave assisted process, and a controlled assembly of iron oxide was possible where the MWCNT served as an effective support for the oxide. In the final product, 11 % of the carbon atoms were attached to Fe. The Fe-MWCNT was effective in arsenic removal to below the drinking water standard levels of 10 µg L(-1). The absorption capacity of the composite was 1723 µg g(-1) and 189 µg g(-1) for As(III) and As(V) respectively. The adsorption of As(V) on Fe-MWCNT was faster than that of As(III). The pseudo-second order rate equation was found to effectively describe the kinetics of arsenic adsorption. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models.

  13. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    PubMed Central

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  14. Crosslinked redox polymer enzyme electrodes containing carbon nanotubes for high and stable glucose oxidation current.

    PubMed

    MacAodha, Domhnall; Ferrer, Maria Luisa; Conghaile, Peter Ó; Kavanagh, Paul; Leech, Dónal

    2012-11-14

    Co-immobilisation approaches for preparation of glucose-oxidising films of [Os(2,2'-bipyridine)(2)(poly-vinylimidazole)(10)Cl] and glucose oxidase on glassy carbon electrodes are compared. Electrodes prepared by crosslinking using glutaraldehyde vapour, without and with a NaBH(4) reduction, provide higher glucose oxidation current than those prepared using a well-established diepoxide method. Addition of multi walled carbon nanotubes to the film deposition solutions produces an enhanced glucose oxidation current density of 5 mA cm(-2) at 0.35 V vs. Ag/AgCl, whilst improving the operational stability of the current signal. Carbon nanotube, glutaraldehyde vapour crosslinked, films on electrodes, reduced by NaBH(4), retain 77% of initial catalytic current over 24 hours of continuous amperometric testing in a 37 °C, 50 mM phosphate buffer solution containing 150 mM NaCl and 100 mM glucose. Potential application of this approach to implantable enzymatic biofuel cells is demonstrated by production of glucose oxidation currents, under pseudo-physiological conditions, using mediating films with lower redox potentials.

  15. Density control and wettability enhancement by functionalizing carbon nanotubes with nickel oxide in aluminum-carbon nanotube system.

    PubMed

    Kim, Tae-Hoon; Park, Min-Ho; Song, Kwan-Woo; Bae, Jee-Hwan; Lee, Jae-Wook; Lee, Choong Do; Yang, Cheol-Woong

    2013-11-01

    Excellent mechanical properties of carbon nanotubes (CNTs) make them ideal reinforcements for synthesizing light weight, high strength metal matrix composite. Aluminum is attractive matrix due to its light weight and Al/CNT composites are promising materials for various industrial applications. Powder metallurgy and casting techniques are normally used for bulk fabrications of composites. Casting process which can mass-produce delicate product is more suitable than existing powder metallurgy in view point of application in industries. In CNT-metal matrix composites, however, composite bulk fabrication has been limited because of the large density gap and poor wettability between the metal and CNTs. This study suggests a method for alleviating such problems. It was found that the wettability between aluminum and CNT could be enhanced by functionalizing the CNTs with nickel oxide. This functionalization of CNTs with heavier element also reduces the density gap between the matrix and reinforcements. It is suggested that this method could possibly be used in a casting process to enable mass fabrication of CNT-metal matrix composites.

  16. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition.

    PubMed

    D'Arcy, Julio M; Tran, Henry D; Stieg, Adam Z; Gimzewski, James K; Kaner, Richard B

    2012-05-21

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.

  17. Adsorption of nicotine and tar from the mainstream smoke of cigarettes by oxidized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Zhigang; Zhang, Lisha; Tang, Yiwen; Jia, Zhijie

    2006-02-01

    The adsorption of nicotine and tar from the mainstream smoke (MS) by the filter tips filled respectively with oxidized carbon nanotubes (O-CNTs), activated carbon and zeolite (NaY) has been investigated. O-CNTs show exceptional removal efficiency and their adsorption mechanism is investigated. Capillary condensation of some ingredients from MS in the inner hole of O-CNTs is observed and may be the primary reason for their superior removal efficiency. The effect of O-CNTs mass on the removal efficiencies is also studied and the results show that about 20-30 mg O-CNTs per cigarette can effectively remove most of nicotine and tar.

  18. Binding of human serum albumin to single-walled carbon nanotubes activated neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.

    PubMed

    Lu, Naihao; Li, Jiayu; Tian, Rong; Peng, Yi-Yuan

    2014-06-16

    Previous studies have shown that carboxylated single-walled carbon nanotubes (SWCNTs) can be catalytically biodegraded by hypochlorite (OCl-) and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase (MPO). However, the importance of protein-SWCNT interactions in the biodegradation of SWCNTs was not stressed. Here, we used both experimental and theoretical approaches to investigate the interactions of SWCNTs with human serum albumin (HSA, one of the most abundant proteins in blood circulation) and found that the binding was involved in the electrostatic interactions of positively charged Arg residues of HSA with the carboxyls on the nanotubes, along with the π-π stacking interactions between SWCNTs and aromatic Tyr residues in HSA. Compared with SWCNTs, the binding of HSA could result in a reduced effect for OCl- (or the human MPO system)-induced SWCNTs degradation in vitro. However, the HSA-SWCNT interactions would enhance cellular uptake of nanotubes and stimulate MPO release and OCl- generation in neutrophils, thereby creating the conditions favorable for the degradation of the nanotubes. Upon zymosan stimulation, both SWCNTs and HSA-SWCNTs were significantly biodegraded in neutrophils, and the degree of biodegradation was more for HSA-SWCNTs under these relevant in vivo conditions. Our findings suggest that the binding of HSA may be an important determinant for MPO-mediated SWCNT biodegradation in human inflammatory cells and therefore shed light on the biomedical and biotechnological applications of safe carbon nanotubes by comprehensive preconsideration of their interactions with human serum proteins.

  19. Drug-Induced Oxidative Stress and Toxicity

    PubMed Central

    Deavall, Damian G.; Martin, Elizabeth A.; Horner, Judith M.; Roberts, Ruth

    2012-01-01

    Reactive oxygen species (ROS) are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity. PMID:22919381

  20. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi

    2017-01-01

    Density functional studies on the adsorption behavior of nitrous oxide (N2O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N2O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N2O onto CNT, the horizontal adsorption with Eads = -0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N2O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N2O were investigated. Adsorption of N2O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N2O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N2O sensors.

  1. Single-Walled Carbon Nanotubes Induce Pulmonary and Vascular Response Following Intratracheal Instillation

    EPA Science Inventory

    Carbon-based nanotubes have been shown to induce varying degrees of pulmonary response in rodents influenced by the dose, the extent of agglomeration, the chemistry of the suspension solution, and the functional properties. We hypothesized that low concentrations of non-modified ...

  2. MICROWAVE-INDUCED RAPID CHEMICAL FUNCTIONALIZATION OF SINGLE-WALLED CARBON NANOTUBES (R830901)

    EPA Science Inventory


    Abstract

    The microwave-induced chemical functionalization of single-walled carbon nanotubes (SWNTs) is reported. The major advantage of this high-energy procedure is that it reduced the reaction time to the order of minutes and the number of steps in the reac...

  3. Laser-Shot-Induced Chemical Reactions inside Nanotubes: a TDDFT investigation

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Miyamoto, Yoshiyuki; Rubio, Angel

    2011-03-01

    We present the application of the time-dependent density functional theory (TDDFT) on ultrafast laser pulse which induces dynamics in molecules encapsulated by a nanotube. A strong laser pulse polarized perpendicular to the tube axis induces a giant bond-stretch of an HCl molecule inside both C and BN nanotubes. Depending on the initial orientation of the HCl molecule, the subsequent laser-induced dynamics is different. We also observed a radial motion of the nanotube and vacancies appear on the tube wall when the HCl is perpendicular to tube axis. Furthermore, the disintegration of HCl molecules took place when their molecular axis tilted to tube axis. These simulations are important to analyze light-induced nanochemistry and manipulation of nanostructures encapsulated in organic and inorganic nanotubes. The computational scheme used in present work was a combination of the molecular dynamics and real-time propagation of electron wave functions under presence of strong optical field [2,3]. The energy conservation rule was checked to monitor the numerical stability.

  4. A study of Joule heating-induced breakdown of carbon nanotube interconnects.

    PubMed

    Santini, C A; Vereecken, P M; Volodin, A; Groeseneken, G; De Gendt, S; Haesendonck, C Van

    2011-09-30

    We investigate breakdown of carbon nanotube (CNT) interconnects induced by Joule heating in air and under high vacuum conditions (10(-5) mbar). A CNT with a diameter of 18 nm, which is grown by chemical vapor deposition to connect opposing titanium nitride (TiN) electrodes, is able to carry an electrical power up to 0.6 mW before breaking down under vacuum, with a corresponding maximum current density up to 8 × 10(7) A cm(-2) (compared to 0.16 mW and 2 × 10(7) A cm(-2) in air). Decoration with electrochemically deposited Ni particles allows protection of the CNT interconnect against oxidation and improvement of the heat release through the surrounding environment. A CNT decorated with Ni particles is able to carry an increased electrical power of about 1.5 mW before breaking down under vacuum, with a corresponding maximum current density as high as 1.2 × 10(8) A cm(-2). The Joule heating produced along the current carrying CNT interconnect is able to melt the Ni particles and promotes the formation of titanium carbon nitride which improves the electrical contact between the CNT and the TiN electrodes.

  5. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid.

    PubMed

    Liu, Xudong; Zhang, Yuchao; Li, Jinquan; Wang, Dong; Wu, Yang; Li, Yan; Lu, Zhisong; Yu, Samuel C T; Li, Rui; Yang, Xu

    2014-01-01

    Single-walled carbon nanotubes (SWCNTs) have shown increasing promise in the field of biomedicine, especially in applications related to the nervous system. However, there are limited studies available on the neurotoxicity of SWCNTs used in vivo. In this study, neurobehavioral changes caused by SWCNTs in mice and oxidative stress were investigated. The results of ethological analysis (Morris water maze and open-field test), brain histopathological examination, and assessments of oxidative stress (reactive oxygen species [ROS], malondialdehyde [MDA], and glutathione [GSH]), inflammation (nuclear factor κB, tumor necrosis factor α, interleukin-1β), and apoptosis (cysteine-aspartic acid protease 3) in brains showed that 6.25 and 12.50 mg/kg/day SWCNTs in mice could induce cognitive deficits and decreased locomotor activity, brain histopathological alterations, and increased levels of oxidative stress, inflammation, and apoptosis in mouse brains; however, 3.125 mg/kg/day SWCNTs had zero or minor adverse effects in mice, and these effects were blocked by concurrent administration of ascorbic acid. Down-regulation of oxidative stress, inflammation, and apoptosis were proposed to explain the neuroprotective effects of ascorbic acid. This work suggests SWCNTs could induce cognitive deficits and decreased locomotor activity, and provides a strategy to avoid the adverse effects.

  6. Electrical and optical properties of reduced graphene oxide and multi-walled carbon nanotubes based nanocomposites: A comparative study

    NASA Astrophysics Data System (ADS)

    Goumri, Meryem; Lucas, Bruno; Ratier, Bernard; Baitoul, Mimouna

    2016-10-01

    Graphene and multi-walled carbon nanotubes have attracted interest for a number of potential applications. One of the most actively pursued applications uses graphene and carbon nanotubes as a transparent conducting electrode in solar cells, displays or touch screens. In this work, in situ reduced graphene oxide/Poly (vinyl alcohol) and multi-walled carbon nanotubes/Sodium Dodecyl Sulfate/Poly (vinyl alcohol) composites were prepared by water dispersion and different reduction treatments. Comparative studies were conducted to explore the electrical and optical properties of nanocomposites based on graphene and multi-walled carbon nanotubes. A thermal reduction of graphene oxide was more effective, producing films with sheet resistances as low as 102-103 Ω/square with 80% transmittance for 550 nm light. The percolation threshold of the thermally reduced graphene oxide composites (0.35 vol%) was much lower than that of the chemically reduced graphene oxide composites (0.57 vol%), and than that of the carbon nanotubes composites (0.47 vol%). The Seebeck coefficient of graphene oxide films changes from about 40 μV/K to -30 μV/K after an annealing of three hours at 200 °C. The optical absorption of the nanocomposites showed a high absorbance in near UV regions and the photoluminescence enhancement was achieved at 1 wt% graphene loading, while the carbon nanotubes based composite presents a significant emission at 0.7 wt% followed with a photoluminescence quenching at higher fraction of the nanofillers 1.6 wt% TRGO and 1 wt% MWCNTs.

  7. Flow-induced polymer translocation through a nanopore from a confining nanotube

    NASA Astrophysics Data System (ADS)

    Ding, Mingming; Chen, Qiaoyue; Duan, Xiaozheng; Shi, Tongfei

    2016-05-01

    We study the flow-induced polymer translocation through a nanopore from a confining nanotube, using a hybrid simulation method that couples point particles into a fluctuating lattice-Boltzmann fluid. Our simulation illustrates that the critical velocity flux of the polymer linearly decreases with the decrease in the size of the confining nanotube, which corresponds well with our theoretical analysis based on the blob model of the polymer translocation. Moreover, by decreasing the size of the confining nanotube, we find a significantly favorable capture of the polymer near its ends, as well as a longer translocation time. Our results provide the computational and theoretical support for the development of nanotechnologies based on the ultrafiltration and the single-molecule sequencing.

  8. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

    PubMed Central

    M., Anish Kumar; Jung, Soyoun; Ji, Taeksoo

    2011-01-01

    The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D) structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a) fabrication of biomaterials into nanostructures, (b) alignment of the nanostructures and (c) immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications. PMID:22163892

  9. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-01

    Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  10. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Aziz, Md. Abdul; Shanmugam, Sangaraju

    2017-01-01

    A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm-1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10-9 cm2 min-1) and superior ion selectivity (2.95 × 107 S min cm-3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm-2 current density.

  11. Growth of copper oxide nanocrystals in metallic nanotubes for high performance battery anodes.

    PubMed

    Zhao, Yuxin; Mu, Shanjun; Sun, Wanfu; Liu, Quanzhen; Li, Yanpeng; Yan, Zifeng; Huo, Ziyang; Liang, Wenjie

    2016-12-08

    A rational integration of 1D metallic nanotubes and oxide nanoparticles has been demonstrated as a viable strategy for the production of both highly stable and efficient anodes for lithium ion batteries. We encapsulated copper oxide (CuO) nanoparticles in ultra-long metallic copper nanotubes with engineered interspaces, and explored their electrochemical properties. Such a hierarchical architecture provides three important features: (i) a continuous nanoscale metallic Cu shell to minimize electronic/ionic transmitting impedance; (ii) a unique quasi-one-dimensional structure with a large aspect ratio to reduce self-aggregation; (iii) free space for volume expansion of CuO nanoparticles and stable solid-electrolyte interphase (SEI) formation. The anode materials with such hierarchical structures have high specific capacity (around 600 mA h g(-1) at a current density of 0.1 A g(-1)), excellent cycling stability (over 94% capacity retention after 200 cycles) and superb reversible capacity of 175 mA h g(-1) at a high charging rate of 15 A g(-1).

  12. Magnesium-doped zinc oxide nanorod-nanotube semiconductor/p-silicon heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Caglar, Yasemin; Görgün, Kamuran; Ilican, Saliha; Caglar, Mujdat; Yakuphanoğlu, Fahrettin

    2016-08-01

    Nanostructured zinc oxide material is usable in electronic device applications such as light-emitting diodes, heterojunction diode, sensors, solar cell due to its interesting electrical conductivity and optical properties. Magnesium-doped zinc oxide nanorod (NR)-nanotube (NT) films were grown by microwave-assisted chemical bath deposition to fabricate ZnO-based heterojunction diode. It is found that ZnO hexagonal nanorods turn into hexagonal nanotubes when the Mg doping ratio is increased from 1 to 10 %. The values of the optical band gap for 1 % Mg-doped ZnO NR and 10 % Mg-doped ZnO NT films are found to be 3.14 and 3.22 eV, respectively. The n-ZnO:Mg/p-Si heterojunction diodes were fabricated. The diodes exhibited a rectification behavior with ideality factor higher than unity due to the presence of surface states in the junction and series resistance. The obtained results indicate that Mg doping improves the electrical and optical properties of ZnO.

  13. Protein biosensors based on polymer nanowires, carbon nanotubes and zinc oxide nanorods.

    PubMed

    Anish Kumar, M; Jung, Soyoun; Ji, Taeksoo

    2011-01-01

    The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D) structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a) fabrication of biomaterials into nanostructures, (b) alignment of the nanostructures and (c) immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications.

  14. Atomic layer deposition of aluminum oxide films for carbon nanotube network transistor passivation.

    PubMed

    Grigoras, Kestutis; Zavodchikova, Marina Y; Nasibulin, Albert G; Kauppinen, Esko I; Ermolov, Vladimir; Franssila, Sami

    2011-10-01

    Ultra-thin (2-5 nm thick) aluminum oxide layers were grown on non-functionalized individual single walled carbon nanotubes (SWCNT) and their bundles by atomic layer deposition (ALD) technique in order to investigate the mechanism of the coating process. Transmission electron microscopy (TEM) was used to examine the uniformity and conformality of the coatings grown at different temperatures (80 degrees C or 220 degrees C) and with different precursors for oxidation (water and ozone). We found that bundles of SWCNTs were coated continuously, but at the same time, bare individual nanotubes remained uncoated. The successful coating of bundles was explained by the formation of interstitial pores between the individual SWCNTs constituting the bundle, where the precursor molecules can adhere, initiating the layer growth. Thicker alumina layers (20-35 nm thick) were used for the coating of bottom-gated SWCNT-network based field effect transistors (FETs). ALD layers, grown at different conditions, were found to influence the performance of the SWCNT-network FETs: low temperature ALD layers caused the ambipolarity of the channel and pronounced n-type conduction, whereas high temperature ALD processes resulted in hysteresis suppression in the transfer characteristics of the SWCNT transistors and preserved p-type conduction. Fixed charges in the ALD layer have been considered as the main factor influencing the conduction change of the SWCNT network based transistors.

  15. Phosphate-modified carbon nanotubes in the oxidative dehydrogenation of isopentanes.

    PubMed

    Huang, Rui; Liu, Hong Yang; Zhang, Bing Sen; Sun, Xiao Yan; Liang, Chang Hai; Su, Dang Sheng; Zong, Bao Ning; Rong, Jun Feng

    2014-12-01

    Ketonic/quinonic C=O groups on the surface of a carbon matrix are capable of abstracting hydrogen in C=H bonds from hydrocarbons and enable them to selectively convert into corresponding unsaturated hydrocarbons; this process is the oxidative dehydrogenation (ODH) reaction. However, a variety of inevitable defects or graphene edges and other oxygen-containing groups on the carbon matrix are detrimental to the selective production of alkenes due to their high activity towards overoxidation. Herein, we show that phosphate can not only impede the total oxidation but also cover the selective C=O groups, hence allowing its use as a modulator to defects and oxygen-containing functional groups on the multiwalled carbon nanotubes, regulating the distribution of active sites and related catalytic targets.

  16. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    PubMed

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-07

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere.

  17. Oxidative enzymatic response of white-rot fungi to single-walled carbon nanotubes.

    PubMed

    Berry, Timothy D; Filley, Timothy R; Blanchette, Robert A

    2014-10-01

    Although carbon nanomaterials such as single-walled carbon nanotubes (SWCNT) are becoming increasingly prevalent in manufacturing, there is little knowledge on the environmental fate of these materials. Environmental degradation of SWCNT is hindered by their highly condensed aromatic structure as well as the size and aspect ratio, which prevents intracellular degradation and limits microbial decomposition to extracellular processes such as those catalyzed by oxidative enzymes. This study investigates the peroxidase and laccase enzymatic response of the saprotrophic white-rot fungi Trametes versicolor and Phlebia tremellosa when exposed to SWCNTs of different purity and surface chemistry under different growth conditions. Both unpurified, metal catalyst-rich SWCNT and purified, carboxylated SWCNTs promoted significant changes in the oxidative enzyme activity of the fungi while pristine SWCNT did not. These results suggest that functionalization of purified SWCNT is essential to up regulate enzymes that may be capable of decomposing CNT in the environment.

  18. Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles.

    PubMed

    Wang, Li Shi; Xiao, Ming Wei; Huang, Xin Jian; Wu, Yan Dan

    2009-01-15

    Nanoscaled zinc oxide (ZnO) particles with different amounts are coated on titanate nanotubes (TNTs) by a facile chemical method at room temperature. The characterizations of XPS, TEM, XRD and UV-vis spectra confirm that pure hexagonal wurtzite ZnO nanoparticles with an average size of about 9nm are distributed on the surfaces of TNTs evenly and attached strongly. The photocatalytic activities of the ZnO-TNTs nanocomposite are superior to those of P25, ZnO, TNTs and ZnO-anatase TiO2 (TNP) nanocomposite in the oxidation of rhodamine B under UV light irradiation. A comparison of the photocatalytic activities between different catalysts is discussed. Furthermore, we also find that the ZnO-TNT nanocomposite shows very favorable recycle use potential, because they have a high sedimentation rate and their photocatalytic activity is only slightly decreased even after five times of repeated uses.

  19. Structural changes in iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy.

    PubMed

    Tang, Dai-Ming; Liu, Chang; Yu, Wan-Jing; Zhang, Li-Li; Hou, Peng-Xiang; Li, Jin-Cheng; Li, Feng; Bando, Yoshio; Golberg, Dmitri; Cheng, Hui-Ming

    2014-01-28

    We report a simple, versatile in situ transmission electron microscopy (TEM) approach for investigating the nucleation and growth mechanism of carbon nanotubes (CNTs), by which the composition, phase transition, and physical state of various catalysts can be clearly resolved. In our approach, catalyst nanoparticles (NPs) are placed in a multiwall CNT "tubular furnace" with two open ends, and a high temperature is obtained by Joule heating in the specimen chamber of a TEM. The carbon is supplied by electron irradiation-induced injection of carbon atoms. Comparative studies on the catalytic behavior of traditional iron oxide and recently discovered gold catalysts were performed. It was found that the growth of CNTs from iron oxide involves the reduction of Fe2O3 to Fe3C, nucleation and growth of CNTs from partially liquefied Fe3C, and finally the formation of elemental Fe when the growth stops. In contrast, while changes in shape, size, and orientation were also observed for the fluctuating Au NPs, no chemical reactions or phase transitions occurred during the nucleation of CNTs. These two distinct nucleation and growth processes and mechanisms would be valuable for the structure-controlled growth of CNTs by catalyst design and engineering.

  20. Oxidative Stress Marker and Pregnancy Induced Hypertension

    PubMed Central

    Draganovic, Dragica; Lucic, Nenad; Jojic, Dragica

    2016-01-01

    Background: Pregnancy induced hypertension (PIH) is a state of extremely increased oxidative stress. Hence, research and test of role and significance of oxidative stress in hypertensive disturbance in pregnancy is very important. Aim: Aims of this research were to determine a level of thiobarbituric acid reactive substance (TBARS) as oxidative stress marker in blood of pregnant woman with pregnancy induced hypertension and to analyze correlation of TBARS values with blood pressure values in pregnancy induced hypertensive pregnant women. Patients and methods: Research has been performed at the Clinic of Gynecology and Obstetrics, University Clinical Centre in the Republic of Srpska. It covered 100 pregnant women with hypertension and 100 healthy pregnant women of gestation period from 28 to 40 weeks. Level of TBARS is determined as an equivalent of malondialdehyde standard, in accordance with recommendations by producer (Oxi Select TBARS Analisa Kit). Results: Pregnancy induced hypertension is a state of extremely increased oxidative stress. All pregnant women experiencing hypertension had increased TBARS values in medium value interval over 20 µmol, 66%, whereas in group of healthy pregnant women, only 1% experienced increased TBARS value. Pregnant women with difficult preeclampsia (32%) had high TBARS values, over 40 µmol, and with mild PIH, only 4.9% pregnant women. Conclusion: Pregnant women with pregnancy induced hypertension have extremely increased degree of oxidative stress and lipid peroxidation. TBARS values are in positive correlation with blood pressure values, respectively the highest TBARS value were present in pregnant women with the highest blood pressure values. PMID:28210016

  1. Co-Al mixed metal oxides/carbon nanotubes nanocomposite prepared via a precursor route and enhanced catalytic property

    SciTech Connect

    Fan Guoli; Wang Hui; Xiang Xu; Li Feng

    2013-01-15

    The present work reported the synthesis of Co-Al mixed metal oxides/carbon nanotubes (CoAl-MMO/CNT) nanocomposite from Co-Al layered double hydroxide/CNTs composite precursor (CoAl-LDH/CNT). The materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), low temperature nitrogen adsorption-desorption experiments, thermogravimetric and differential thermal analyses (TG-DTA), Raman spectra and X-ray photoelectron spectroscopy (XPS). The results revealed that in CoAl-MMO/CNT nanocomposite, the nanoparticles of cobalt oxide (CoO) and Co-containing spinel-type complex metal oxides could be well-dispersed on the surface of CNTs, thus forming the heterostructure of CoAl-MMO and CNTs. Furthermore, as-synthesized CoAl-MMO/CNT nanocomposite was utilized as additives for catalytic thermal decomposition of ammonium perchlorate (AP). Compared to those for pure AP and CoAl-MMO, the peak temperature of AP decomposition for CoAl-MMO/CNT was significantly decreased, which is attributed to the novel heterostructure and synergistic effect of multi-component metal oxides of nanocomposite. - Graphical abstract: Hybrid Co-Al mixed metal oxides/carbon nanotubes nanocomposite showed the enhanced catalytic activity in the thermal decomposition of ammonium perchlorate, as compared to carbon nanotubes and pure Co-Al mixed metal oxides. Highlights: Black-Right-Pointing-Pointer Co-Al mixed metal oxides/carbon nanotubes nanocomposite was synthesized. Black-Right-Pointing-Pointer Co-Al mixed metal oxides consisted of cobalt oxide and Co-containing spinels. Black-Right-Pointing-Pointer Nanocomposite exhibited excellent catalytic activity for the decomposition of AP. Black-Right-Pointing-Pointer The superior catalytic property is related to novel heterostructure and composition.

  2. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes.

    PubMed

    Xu, Di; Tan, Xiaoli; Chen, Changlun; Wang, Xiangke

    2008-06-15

    Oxidized multiwalled carbon nanotubes (MWCNTs) were employed as sorbent to study the sorption characteristic of Pb(II) from aqueous solution as a function of contact time, pH, ionic strength, foreign ions, and oxidized MWCNTs' contents under ambient conditions using batch technique. The results indicate that sorption of Pb(II) on oxidized MWCNTs is strongly dependent on pH values, and independent of ionic strength and the type of foreign ions. The removal of Pb(II) to oxidized MWCNTs is rather quickly and the kinetic sorption can be described by a pseudo-second-order model very well. Sorption of Pb(II) is mainly dominated by surface complexation rather than ion exchange. The efficient removal of Pb(II) from aqueous solution is limited at pH 7-10. X-ray photoelectron spectroscopy (XPS) is performed to study the sorption mechanism at a molecular level and thereby to identify the species of the sorption processes. The 3-D relationship of pH, Ceq and q indicates that all the data of Ceq-q lie in a straight line with slope -V/m and intercept C0V/m for the same initial concentration of Pb(II) and same content of oxidized MWCNTs of each experimental data.

  3. Impact of Silicon Nanocrystal Oxidation on the Nonmetallic Growth of Carbon Nanotubes.

    PubMed

    Rocks, Conor; Mitra, Somak; Macias-Montero, Manuel; Maguire, Paul; Svrcek, Vladimir; Levchenko, Igor; Ostrikov, Kostya; Mariotti, Davide

    2016-07-27

    Carbon nanotube (CNT) growth has been demonstrated recently using a number of nonmetallic semiconducting and metal oxide nanoparticles, opening up pathways for direct CNT synthesis from a number of more desirable templates without the need for metallic catalysts. However, CNT growth mechanisms using these nonconventional catalysts has been shown to largely differ and reamins a challenging synthesis route. In this contribution we show CNT growth from partially oxidized silicon nanocrystals (Si NCs) that exhibit quantum confinement effects using a microwave plasma enhanced chemical vapor deposition (PECVD) method. On the basis of solvent and a postsynthesis frgamentation process, we show that oxidation of our Si NCs can be easily controlled. We determine experimentally and explain with theoretical simulations that the Si NCs morphology together with a necessary shell oxide of ∼1 nm is vital to allow for the nonmetallic growth of CNTs. On the basis of chemical analysis post-CNT-growth, we give insight into possible mechanisms for CNT nucleation and growth from our partially oxidized Si NCs. This contribution is of significant importance to the improvement of nonmetallic catalysts for CNT growth and the development of Si NC/CNT interfaces.

  4. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    PubMed Central

    Kayama, Yosuke; Raaz, Uwe; Jagger, Ann; Adam, Matti; Schellinger, Isabel N.; Sakamoto, Masaya; Suzuki, Hirofumi; Toyama, Kensuke; Spin, Joshua M.; Tsao, Philip S.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease. PMID:26512646

  5. Cytotoxicity study of iron oxide nanoparticles, single-wall carbon nanotubes and their complexes applied to MCF7 breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mege, Karine

    Reactive Oxygen Species (ROS) are radicals of great concern to biologists. Their role in several diseases---such as neurodegenerative disease, diabetes, premature aging and cancer---has been intensively investigated during the last decade. Since a major focus in cancer research is to better understand how it is induced and therefore how it can be cured, the study of the cytotoxic effects of ROS production within cancer cells is vital. Nanotechnology is an emerging field of science that promises great improvements in a number of disciplines. Nano medicine is one of its daughter fields. Various nanomaterials are used for diagnosis and disease detection, therapy and medical imaging, and many are already being used in oncology medicine. The two most frequently used nanomaterials in cancer research are Carbon nanotubes (CNTs) and iron oxide nanoparticles (IONPs). They have been proven to play a significant role in the ROS production of various cancer cells. In this context, this thesis emphasizes the need to study the impact of nanoparticles, such as single-walled carbon nanotubes (SWCNTs), iron oxide nanoparticles (IONPs) and their complexes, on a human breast cancer cell line (MCF-7). To date, there have been very few studies assessing the effect on the oxidative stress activity of this cell line using these nanoparticles and their complexes.

  6. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V.

    PubMed

    Butt, Arman; Hamlekhan, Azhang; Patel, Sweetu; Royhman, Dmitry; Sukotjo, Cortino; Mathew, Mathew T; Shokuhfar, Tolou; Takoudis, Christos

    2015-10-01

    Traditionally, titanium oxide (TiO2) nanotubes (TNTs) are anodized on Ti-6Al-4V alloy (Ti-V) surfaces with native TiO2 (amorphous TiO2); subsequent heat treatment of anodized surfaces has been observed to enhance cellular response. As-is bulk Ti-V, however, is often subjected to heat treatment, such as thermal oxidation (TO), to improve its mechanical properties. Thermal oxidation treatment of Ti-V at temperatures greater than 200°C and 400°C initiates the formation of anatase and rutile TiO2, respectively, which can affect TNT formation. This study aims at understanding the TNT formation mechanism on Ti-V surfaces with TO-formed TiO2 compared with that on as-is Ti-V surfaces with native oxide. Thermal oxidation-formed TiO2 can affect TNT formation and surface wettability because TO-formed TiO2 is expected to be part of the TNT structure. Surface characterization was carried out with field emission scanning electron microscopy, energy dispersive x-ray spectroscopy, water contact angle measurements, and white light interferometry. The TNTs were formed on control and 300°C and 600°C TO-treated Ti-V samples, and significant differences in TNT lengths and surface morphology were observed. No difference in elemental composition was found. Thermal oxidation and TO/anodization treatments produced hydrophilic surfaces, while hydrophobic behavior was observed over time (aging) for all samples. Reduced hydrophobic behavior was observed for TO/anodized samples when compared with control, control/anodized, and TO-treated samples. A method for improved surface wettability and TNT morphology is therefore discussed for possible applications in effective osseointegration of dental and orthopedic implants.

  7. Modeling adsorbate-induced property changes of carbon nanotubes.

    PubMed

    Groß, Lynn; Bahlke, Marc Philipp; Steenbock, Torben; Klinke, Christian; Herrmann, Carmen

    2017-05-05

    Because of their potential for chemical functionalization, carbon nanotubes (CNTs) are promising candidates for the development of devices such as nanoscale sensors or transistors with novel gating mechanisms. However, the mechanisms underlying the property changes due to functionalization of CNTs still remain subject to debate. Our goal is to reliably model one possible mechanism for such chemical gating: adsorption directly on the nanotubes. Within a Kohn-Sham density functional theory framework, such systems would ideally be described using periodic boundary conditions. Truncating the tube and saturating the edges in practice often offers a broader selection of approximate exchange-correlation functionals and analysis methods. By comparing the two approaches systematically for NH3 and NO2 adsorbates on semiconducting and metallic CNTs, we find that while structural properties are less sensitive to the details of the model, local properties of the adsorbate may be as sensitive to truncation as they are to the choice of exchange-correlation functional, and are similarly challenging to compute as adsorption energies. This suggests that these adsorbate effects are nonlocal. © 2017 Wiley Periodicals, Inc.

  8. N-doped TiO2 Nanotubes as an Effective Additive to Improve the Catalytic Capability of Methanol Oxidation for Pt/Graphene Nanocomposites

    PubMed Central

    Wang, Xiaohua; Li, Yueming; Liu, Shimin; Zhang, Long

    2016-01-01

    N-doped TiO2 nanotubes have been prepared as additives to improve the catalytic capability of Pt/graphene composites in methanol oxidation reactions. Electrochemical experiments show that the catalytic performance of Pt/graphene composites has been greatly improved by the introduction of N-doped TiO2 nanotubes.

  9. Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Liu, Juewen

    2013-11-01

    Studying interactions between nano-carbons and lipid membranes is important for multiplexed drug delivery, device fabrication and for understanding toxicity. Herein, we report that nanodiamond (ND, sp3 carbon) forms a complex with highly biocompatible zwitterionic liposomes based on hydrogen bonding, which is confirmed by pH-dependent and urea-dependent assays. Despite such weak interaction, the complex is highly stable. Comparisons were made with two sp2 carbons: nanoscale graphene oxide (NGO) and carbon nanotubes (CNTs), where CNT adsorption is the weakest. Adsorption of the nano-carbons does not induce liposome leakage or affect lipid phase transition temperature. Therefore, the potential toxicity of nano-carbons is unlikely to be related to direct membrane damage. ND facilitates cellular uptake of liposomes and co-delivery of negatively charged calcein and positively charged doxorubicin has been demonstrated. ND has the lowest toxicity, while CNTs and NGO are slightly more toxic. The effect of introducing fusogenic lipids and cholesterol was further studied to understand the effect of lipid formulation.Studying interactions between nano-carbons and lipid membranes is important for multiplexed drug delivery, device fabrication and for understanding toxicity. Herein, we report that nanodiamond (ND, sp3 carbon) forms a complex with highly biocompatible zwitterionic liposomes based on hydrogen bonding, which is confirmed by pH-dependent and urea-dependent assays. Despite such weak interaction, the complex is highly stable. Comparisons were made with two sp2 carbons: nanoscale graphene oxide (NGO) and carbon nanotubes (CNTs), where CNT adsorption is the weakest. Adsorption of the nano-carbons does not induce liposome leakage or affect lipid phase transition temperature. Therefore, the potential toxicity of nano-carbons is unlikely to be related to direct membrane damage. ND facilitates cellular uptake of liposomes and co-delivery of negatively charged calcein and

  10. Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-07-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars-van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes.

  11. Atomic scale observation of oxygen delivery during silver–oxygen nanoparticle catalysed oxidation of carbon nanotubes

    PubMed Central

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  12. Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled Carbon Nanotubes.

    PubMed

    Luck, Kyle A; Arnold, Heather N; Shastry, Tejas A; Marks, Tobin J; Hersam, Mark C

    2016-10-10

    Polyfluorenes have achieved noteworthy performance in organic electronic devices, but exhibit undesired green band emission under photo-oxidative conditions that have limited their broad utility in optoelectronic applications. In addition, polyfluorenes are well-known dispersants of single-walled carbon nanotubes (SWCNTs), although the influence of SWCNTs on polyfluorene photo-oxidative stability has not yet been defined. Here we quantitatively explore the photophysical properties of poly[(9,9-bis(3/-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) under photo-oxidative conditions when it is in van der Waals contact with SWCNTs. Photoluminescence spectroscopy tracks the spectral evolution of the polymer emission following ambient ultraviolet (UV) exposure, confirming that PFN exhibits green band emission. In marked contrast, PFN-wrapped SWCNTs possess high spectral stability without green band emission under the same ambient UV exposure conditions. By investigating a series of PFN thin films as a function of SWCNT content, it is shown that SWCNT loadings as low as ~23 wt% suppress photo-oxidative degradation. These findings suggest that PFN-SWCNT composites provide an effective pathway toward utilizing polyfluorenes in organic optoelectronics.

  13. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition.

    PubMed

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  14. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  15. Growth of Single-Walled Carbon Nanotubes by High Melting Point Metal Oxide Catalysts

    NASA Astrophysics Data System (ADS)

    Qian, Yang; Xiang, Rong; An, Hua; Inoue, Taiki; Chiashi, Shohei; Maruyama, Shigeo

    We report on the growth of single-walled carbon nanotubes (SWNTs) from Co oxide catalysts. The concept is using the relatively lower mobility of metal oxide (than metal) to suppress catalyst aggregation at high temperatures. Compared to the SWNTs grown by pre-reduced catalysts, SWNTs grown from oxidized Co catalysts have shown narrower diameter distribution and smaller average diameter. Different growth parameters are discussed regarding the resulting morphology of SWNTs. Transmission electron microscopy (TEM) investigations reveal the information that Co catalysts are transformed to Co3O4 after reduction-calcination process. X-ray photoelectron spectroscopy (XPS) investigations indicate that Co3O4 has decomposed to CoO before growth at a typical growth temperature (800 ºC) in Ar atmosphere. We propose that CoO has higher melting point than Co and thus is more stable during the growth. Our results indicate that besides the bimetallic catalysts, monometallic catalytic system could also be useful in stabilizing the catalysts to grow chirality-specific SWNTs by transforming the relatively low melting point metal catalysts to high melting point metal oxide catalysts. Yang Qian was supported through ``Global Leader Program for Social Design and Management''.

  16. Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes.

    PubMed

    Hayat, Akhtar; Haider, Waqar; Raza, Yousuf; Marty, Jean Louis

    2015-10-01

    A sensitive and selective colorimetric method based on the incorporation of zinc oxide nanoparticles (ZnO NPs) on the surface of carbon nanotubes (CNTs) was shown to posses synergistic peroxidase like activity for the detection of cholesterol. The proposed nanocomposite catalyzed the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) in the presence of hydrogen peroxide (H2O2) to produce a green colored product which can be monitored at 405 nm. H2O2 is the oxidative product of cholesterol in the presence of cholesterol oxidase. Therefore, the oxidation of cholesterol can be quantitatively related to the colorimetric response by combining these two reactions. Under the optimal experimental conditions, the colorimetric response was proportional to the concentration of cholesterol in the range of 0.5-500 nmol/L, with a detection limit of 0.2 nmol/L. The applicability of the proposed assays was demonstrated for the determination of cholesterol in milk powder samples with good recovery results.

  17. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    DOE PAGES

    Zhang, Yijun; Liu, Ming; Peng, Bin; ...

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe2O3with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulatormore » transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.« less

  18. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    SciTech Connect

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe2O3with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  19. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    PubMed Central

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications. PMID:26813143

  20. Wet adhesion of buckypaper produced from oxidized multiwalled carbon nanotubes on soft animal tissue.

    PubMed

    Martinelli, Andrea; Carru, Giovanna A; D'Ilario, Lucio; Caprioli, Fabrizio; Chiaretti, Massimo; Crisante, Fernanda; Francolini, Iolanda; Piozzi, Antonella

    2013-05-22

    Buckypaper (BP) is the general definition of a macroscopic assembly of entangled carbon nanotubes. In this paper, a new property of a BP film produced from oxidized multiwalled carbon nanotubes was investigated. In particular, BP shows to be able to promptly and strongly adhere to animal internal soft and wet tissues, as evaluated by peeling and shear tests. BP adhesion strength is higher than that recorded for a commercial prosthetic fabric (sealed to the tissue by fibrin glue) and comparable with that of other reported optimized nanopatterned surfaces. In order to give an interpretation of the observed behavior, the BP composition, morphology, porosity, water wettability, and mechanical properties were analyzed by AFM, X-ray photoelectron spectroscopy, wicking tests, contact angle, and stress-strain measurements. Although further investigations are needed to assess the biocompatibility and safety of the BP film used in this work, the obtained results pave the way for a possible future use of buckypaper as adhesive tape in abdominal prosthetic surgery. This would allow the substitution of conventional sealants or the reduction in the use of perforating fixation.

  1. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    EPA Science Inventory

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  2. NH2 + implantations induced superior hemocompatibility of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Guo, Meixian; Li, Dejun; Zhao, Mengli; Zhang, Yiteng; Deng, Xiangyun; Geng, Dongsheng; Li, Ruying; Sun, Xueliang; Gu, Hanqing; Wan, Rongxin

    2013-05-01

    NH2 + implantation was performed on multiwalled carbon nanotubes (MWCNTs) prepared by chemical vapor deposition. The hemocompatibility of MWCNTs and NH2 +-implanted MWCNTs was evaluated based on in vitro hemolysis, platelet adhesion, and kinetic-clotting tests. Compared with MWCNTs, NH2 +-implanted MWCNTs displayed more perfect platelets and red blood cells in morphology, lower platelet adhesion rate, lower hemolytic rate, and longer kinetic blood-clotting time. NH2 +-implanted MWCNTs with higher fluency of 1 × 1016 ions/cm2 led to the best thromboresistance, hence desired hemocompatibility. Fourier transfer infrared and X-ray photoelectron spectroscopy analyses showed that NH2 + implantation caused the cleavage of some pendants and the formation of some new N-containing functional groups. These results were responsible for the enhanced hemocompatibility of NH2 +-implanted MWCNTs.

  3. Nitrative DNA damage induced by multi-walled carbon nanotube via endocytosis in human lung epithelial cells

    SciTech Connect

    Guo, Feiye; Ma, Ning; Horibe, Yoshiteru; Kawanishi, Shosuke; Murata, Mariko; Hiraku, Yusuke

    2012-04-15

    Carbon nanotube (CNT) has a promising usage in the field of material science for industrial purposes because of its unique physicochemical property. However, intraperitoneal administration of CNT was reported to cause mesothelioma in experimental animals. Chronic inflammation may contribute to carcinogenesis induced by fibrous materials. 8-Nitroguanine is a mutagenic DNA lesion formed during inflammation and may play a role in CNT-induced carcinogenesis. In this study, we examined 8-nitroguanine formation in A549 human lung alveolar epithelial cells treated with multi-walled CNT (MWCNT) by fluorescent immunocytochemistry. Both MWCNTs with diameter of 20–30 nm (CNT20) and 40–70 nm (CNT40) significantly induced 8-nitroguanine formation at 5 and 10 μg/ml (p < 0.05), which persisted for 24 h, although there was no significant difference in DNA-damaging abilities of these MWCNTs. MWCNTs significantly induced the expression of inducible nitric oxide synthase (iNOS) for 24 h (p < 0.05). MWCNTs also significantly increased the level of nitrite, a hydrolysis product of oxidized NO, in the culture supernatant at 4 and 8 h (p < 0.05). MWCNT-induced 8-nitroguanine formation and iNOS expression were largely suppressed by inhibitors of iNOS (1400 W), nuclear factor-κB (Bay11-7082), actin polymerization (cytochalasin D), caveolae-mediated endocytosis (methyl-β-cyclodextrin, MBCD) and clathrin-mediated endocytosis (monodansylcadaverine, MDC). Electron microscopy revealed that MWCNT was mainly located in vesicular structures in the cytoplasm, and its cellular internalization was reduced by MBCD and MDC. These results suggest that MWCNT is internalized into cells via clathrin- and caveolae-mediated endocytosis, leading to inflammatory reactions including iNOS expression and resulting nitrative DNA damage, which may contribute to carcinogenesis. Highlights: ►Multi-walled carbon nanotube (MWCNT) caused DNA damage in A549 cells. ►MWCNT formed 8-nitroguanine, a DNA lesion

  4. Oxidative treatment, dispersion effect, and simulation of multi-walled carbon nanotubes in aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Kai; Guo, Li-Quan; Chen, Hui

    2017-01-01

    In the present work, the multi-walled carbon nanotubes (MWCNTs) were modified by the treatment with concentrated nitric and sulfuric acid mixture (3: 1 vol/vol). The obtained material was characterized by X-ray diffraction (XRD). The effect of two surfactants, methylcellulose (MC) and cetyltrimethylammonium bromide (CTAB) on dispersing of MWCNTs in aqueous solution was monitored by UV-Vis spectroscopy and transmission electron microscopy (TEM). Also, the dispersing effect of the surfactants was simulated by three-dimensional Monte Carlo method. The results showed that the oxidative treatment leads to purification of the neat MWCNTs, and directly improved their dispersing. The mixture containing both MC and CTAB surfactants has better dispersing effect than individual surfactants. The optimum concentration ratio of MC, CTAB, and MWCNTs was 2: 3: 1. In the simulation model, MWCNTs were dispersed randomly. The simulation results may be helpful for the further research on mechanical and electrical properties of composites reinforced with MWCNTs.

  5. Effect of laser melting on plasma-sprayed aluminum oxide coatings reinforced with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Samant, Anoop; Balani, Kantesh; Dahotre, Narendra B.; Agarwal, Arvind

    2009-03-01

    The effect of laser melting on the microstructure and mechanical properties of plasma-sprayed aluminum oxide composite coating reinforced with 4 wt% multi-walled carbon nanotubes (CNTs) is reported. Laser-melted layer consists of dense, coarse columnar microstructure which is significantly different from plasma-sprayed coating that consists of splats and porosity. CNTs retained their original cylindrical graphitic structure after undergoing laser irradiation. Three dimensional heat flow model has been developed to estimate temperature variation in the laser-melted composite layer. Laser-melted layers show an increase in the microhardness at the expanse of degradation of fracture toughness. Nanoindentation study indicates an increase in the elastic modulus and yield strength of the laser-melted layer which is attributed to dense microstructure with absence of weak-bonding splats and porosity.

  6. Template-Free Synthesis of Ruthenium Oxide Nanotubes for High-Performance Electrochemical Capacitors.

    PubMed

    Kim, Ji-Young; Kim, Kwang-Heon; Kim, Hyun-Kyung; Park, Sang-Hoon; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-08-05

    One-dimensional, hydrous ruthenium oxide nanotubes (RuO2·1.84H2O) have been successfully achieved using a template-free, microwave-hydrothermal process. These were found to be amorphous in nature and have a large specific surface area of 250 m(2)·g(-1), producing a specific and volumetric capacitance of 511 F·g(-1) and 531 F·cm(-3), respectively, at a discharging current density of 0.5 A·g(-1). When used as an electrode material in an electrochemical capacitor or ultracapacitor, they produced a significant improvement in capacitance, rate capability, and cyclability that can be attributed to the hollow nature of tubes allowing greater contact between the active surface of the electrode and the electrolyte.

  7. Nitrative DNA damage induced by multi-walled carbon nanotube via endocytosis in human lung epithelial cells.

    PubMed

    Guo, Feiye; Ma, Ning; Horibe, Yoshiteru; Kawanishi, Shosuke; Murata, Mariko; Hiraku, Yusuke

    2012-04-15

    Carbon nanotube (CNT) has a promising usage in the field of material science for industrial purposes because of its unique physicochemical property. However, intraperitoneal administration of CNT was reported to cause mesothelioma in experimental animals. Chronic inflammation may contribute to carcinogenesis induced by fibrous materials. 8-Nitroguanine is a mutagenic DNA lesion formed during inflammation and may play a role in CNT-induced carcinogenesis. In this study, we examined 8-nitroguanine formation in A549 human lung alveolar epithelial cells treated with multi-walled CNT (MWCNT) by fluorescent immunocytochemistry. Both MWCNTs with diameter of 20-30 nm (CNT20) and 40-70 nm (CNT40) significantly induced 8-nitroguanine formation at 5 and 10 μg/ml (p<0.05), which persisted for 24h, although there was no significant difference in DNA-damaging abilities of these MWCNTs. MWCNTs significantly induced the expression of inducible nitric oxide synthase (iNOS) for 24 h (p<0.05). MWCNTs also significantly increased the level of nitrite, a hydrolysis product of oxidized NO, in the culture supernatant at 4 and 8 h (p<0.05). MWCNT-induced 8-nitroguanine formation and iNOS expression were largely suppressed by inhibitors of iNOS (1400 W), nuclear factor-κB (Bay11-7082), actin polymerization (cytochalasin D), caveolae-mediated endocytosis (methyl-β-cyclodextrin, MBCD) and clathrin-mediated endocytosis (monodansylcadaverine, MDC). Electron microscopy revealed that MWCNT was mainly located in vesicular structures in the cytoplasm, and its cellular internalization was reduced by MBCD and MDC. These results suggest that MWCNT is internalized into cells via clathrin- and caveolae-mediated endocytosis, leading to inflammatory reactions including iNOS expression and resulting nitrative DNA damage, which may contribute to carcinogenesis.

  8. Facile synthesis of water-based aniline oligomer nanowires and their uses in low-cost fabrication of oxide nanotubes in aqueous phase.

    PubMed

    Leng, Wenguang; Chen, Min; Zhou, Shuxue; Wu, Limin

    2013-08-21

    This study reports novel water dispersable organic nanowires based on the assembly of aniline oligomers. Due to their unique properties, these nanowires can be used as templates for fabrication of various kinds of freestanding and open-ended oxide nanotubes.

  9. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation.

    PubMed

    Li, Chen; Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Yang, Jianjun; Jin, Zhensheng

    2016-12-01

    TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special precursor of TiO2, which possess large Brunauer-Emmett-Teller (BET) surface areas and strong ion exchange and adsorption capacity. TAN can transform to a novel TiO2 with a large amount of single-electron-trapped oxygen vacancies (SETOV) during calcination, while their nanotubular structure would be destroyed, and a BET surface area would decrease remarkably. And interestingly, SETOV can lead to a visible light response for this kind of TiO2. Herein, glucose was penetrated into TAN by the vacuum inhalation method, and TAN would dehydrate to anatase TiO2, and glucose would undergo thermolysis completely in the calcination process. As a result, the pure TiO2 nanotubes with visible light response and large BET surface areas were obtained. For further improving the photocatalytic activity, Pd nanoparticles were loaded as the foreign electron traps on TiO2 nanotubes and the photocatalytic oxidation efficiency of propylene was as high as 71 % under visible light irradiation, and the photostability of the catalyst kept over 90 % after 4 cyclic tests.

  10. Iron oxide filled magnetic carbon nanotube-enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process.

    PubMed

    Goh, Wei Jiang; Makam, Venkata S; Hu, Jun; Kang, Lifeng; Zheng, Minrui; Yoong, Sia Lee; Udalagama, Chammika N B; Pastorin, Giorgia

    2012-12-11

    Biofuels are fast advancing as a new research area to provide alternative sources of sustainable and clean energy. Recent advances in nanotechnology have sought to improve the efficiency of biofuel production, enhancing energy security. In this study, we have incorporated iron oxide nanoparticles into single-walled carbon nanotubes (SWCNTs) to produce magnetic single-walled carbon nanotubes (mSWCNTs). Our objective is to bridge both nanotechnology and biofuel production by immobilizing the enzyme, Amyloglucosidase (AMG), onto mSWCNTs using physical adsorption and covalent immobilization, with the aim of recycling the immobilized enzyme, toward useful applications in biofuel production processes. We have demonstrated that the enzyme retains a certain percentage of its catalytic efficiency (up to 40%) in starch prototype biomass hydrolysis when used repeatedly (up to ten cycles) after immobilization on mSWCNTs, since the nanotubes can be easily separated from the reaction mixture using a simple magnet. The enzyme loading, activity, and structural changes after immobilization onto mSWCNTs were also studied. In addition, we have demonstrated that the immobilized enzyme retains its activity when stored at 4 °C for at least one month. These results, combined with the unique intrinsic properties of the nanotubes, pave the way for greater efficiency in carbon nanotube-enzyme bioreactors and reduced capital costs in industrial enzyme systems.

  11. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Yang, Jianjun; Jin, Zhensheng

    2016-05-01

    TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special precursor of TiO2, which possess large Brunauer-Emmett-Teller (BET) surface areas and strong ion exchange and adsorption capacity. TAN can transform to a novel TiO2 with a large amount of single-electron-trapped oxygen vacancies (SETOV) during calcination, while their nanotubular structure would be destroyed, and a BET surface area would decrease remarkably. And interestingly, SETOV can lead to a visible light response for this kind of TiO2. Herein, glucose was penetrated into TAN by the vacuum inhalation method, and TAN would dehydrate to anatase TiO2, and glucose would undergo thermolysis completely in the calcination process. As a result, the pure TiO2 nanotubes with visible light response and large BET surface areas were obtained. For further improving the photocatalytic activity, Pd nanoparticles were loaded as the foreign electron traps on TiO2 nanotubes and the photocatalytic oxidation efficiency of propylene was as high as 71 % under visible light irradiation, and the photostability of the catalyst kept over 90 % after 4 cyclic tests.

  12. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    PubMed Central

    Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra

    2016-01-01

    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells. PMID:27916824

  13. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines.

    PubMed

    Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra

    2016-11-29

    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  14. Synthesis of carbon and zinc oxide nanotubes and their applications in electronic devices

    NASA Astrophysics Data System (ADS)

    Yang, Kaikun

    Nanostructured materials, including single and multiwalled carbon nanotubes (SWCNTs and MWCNTs), zinc oxide (ZnO) nanotubes (NTs) and graphene, have been successfully synthesized using chemical vapor deposition (CVD) or wet chemistry routines, and used to fabricate nanoelectronic and optoelectronic devices, including field effect transistors (FETs) and heterojunction solar cells. Both nanomaterials properties and devices performances have been characterized. Vertically aligned multiwalled carbon nanotubes (VACNTs) have been synthesized using both the pre-deposited iron films and the continuous supply of catalytic species via gas flow in pyrolytic decomposition of hydrocarbons by CVD. High quality VACNTs have been obtained after the optimization of synthesis parameters. Using metal nanoparticles as catalysts, centimeter-long SWCNTs have been synthesized on a silicon wafer with a thin thermal oxide layer. A series of FETs have been fabricated directly on a single SWCNT by inkjet printing of Pd nanoparticles to form both source and drain electrodes. The devices exhibit typical Schottky barrier p-type conductance characteristics. The line density and field mobility of charge carriers, as well as the effect of gate field modulation have been shown to strongly depend on thermal treatment of the SWCNT-FETs, implying the effect of carrier doping and interfacial reconstruction. ZnO NTs have been synthesized in an aqueous solution of zinc nitrate at 60ºC. A novel core-shell growth mechanism was hypothesized to explain the synthesis of ZnO NTs. The crystalline microstructures and optical properties of ZnO NTs upon thermal annealing in air at various temperatures have been examined. Ultraviolet-Visible (UV-Vis) absorption spectra reveal a slightly redshift of the direct band gap upon annealing. Solution structure of regioregular poly(3-hexylthiophene) (RR-P3HT) in toluene has been examined using optical spectroscopy in situ and atomic force microscopy upon casting films on a

  15. Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres.

    PubMed

    Sarma, Biplab; Jurovitzki, Abraham L; Ray, Rupashree S; Smith, York R; Mohanty, Swomitra K; Misra, Mano

    2015-07-03

    The effect of annealing atmosphere on the supercapacitance behavior of iron oxide nanotube (Fe-NT) electrodes has been explored and reported here. Iron oxide nanotubes were synthesized on a pure iron substrate through an electrochemical anodization process in an ethylene glycol solution containing 3% H2O and 0.5 wt.% NH4F. Subsequently, the annealing of the nanotubes was carried out at 500 °C for 2 h in various gas atmospheres such as air, oxygen (O2), nitrogen (N2), and argon (Ar). The morphology and crystal phases evolved after the annealing processes were examined via field emission scanning electron microscopy, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical capacitance properties of the annealed Fe-NT electrodes were evaluated by conducting cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy tests in the Li2SO4 electrolyte. Based on these experiments, it was found that the capacitance of the Fe-NT electrodes annealed in air and O2 atmospheres shows mixed behavior comprising both the electric double layer and pseudocapacitance. However, annealing in N2 and Ar environments resulted in well-defined redox peaks in the CV profiles of the Fe-NT electrodes, which are therefore attributed to the relatively higher pseudonature of the capacitance in these electrodes. Based on the galvanostatic charge-discharge studies, the specific capacitance achieved in the Fe-NT electrode after annealing in Ar was about 300 mF cm(-2), which was about twice the value obtained for N2-annealed Fe-NTs and three times higher than those annealed in air and O2. The experiments also demonstrated excellent cycle stability for the Fe-NT electrodes with 83%-85% capacitance retention, even after many charge-discharge cycles, irrespective of the gas atmospheres used during annealing. The increase in the specific capacitance was discussed in terms of increased oxygen vacancies as a result of the

  16. Reversible oxygen scavenging at room temperature using electrochemically reduced titanium oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Close, Thomas; Tulsyan, Gaurav; Diaz, Carlos A.; Weinstein, Steven J.; Richter, Christiaan

    2015-05-01

    A material capable of rapid, reversible molecular oxygen uptake at room temperature is desirable for gas separation and sensing, for technologies that require oxygen storage and oxygen splitting such as fuel cells (solid-oxide fuel cells in particular) and for catalytic applications that require reduced oxygen species (such as removal of organic pollutants in water and oil-spill remediation). To date, however, the lowest reported temperature for a reversible oxygen uptake material is in the range of 200-300 °C, achieved in the transition metal oxides SrCoOx (ref. 1) and LuFe2O4+x (ref. 2) via thermal cycling. Here, we report rapid and reversible oxygen scavenging by TiO2-x nanotubes at room temperature. The uptake and release of oxygen is accomplished by an electrochemical rather than a standard thermal approach. We measure an oxygen uptake rate as high as 14 mmol O2 g-1 min-1, ˜2,400 times greater than commercial, irreversible oxygen scavengers. Such a fast oxygen uptake at a remarkably low temperature suggests a non-typical mechanistic pathway for the re-oxidation of TiO2-x. Modelling the diffusion of oxygen, we show that a likely pathway involves ‘exceptionally mobile’ interstitial oxygen produced by the oxygen adsorption and decomposition dynamics, recently observed on the surface of anatase.

  17. The decoration of multi-walled carbon nanotubes with nickel oxide nanoparticles using chemical method

    NASA Astrophysics Data System (ADS)

    Sahebian, S.; Zebarjad, S. M.; Vahdati Khaki, J.; Lazzeri, A.

    2016-07-01

    In this paper, nickel oxide (NiO) nanoparticles have been fabricated using wet method and deposited on the surface of multi-walled carbon nanotube (MWCNT). To do so, functional groups were introduced on the surface of MWCNTs by treating with concentrated nitric acid. Nickel oxide nanoparticles were formed on the surface of functionalized MWCNTs by incipient wetness impregnation of nickel nitrate, and the resultant product was calcinated in air atmosphere. Characteristics of the NiO/MWCNT were examined by various techniques, for example, Fourier transform spectroscopy (FTIR), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), and nitrogen adsorption-desorption isothermal as well as vibrating sample magnetometer (VSM). The FTIR spectra showed that carboxyl and hydroxyl functional groups existed on the surface of MWNTs after modification by concentrated nitric acid. The pattern of XRD indicated that MWNTs and nickel oxide nanoparticles coexisted in the NiO/MWCNT sample. The TEM images revealed that the NiO nanoparticles were distributed on the surface of the MWNTs, with the size ranging from 5 to 60 nm. Thermogravimetric analysis proved that NiO content decorated on MWCNTs was 80 and 15 wt%. The results of the Brunauer-Emmett-Teller (BET) data showed that the slight increment in the specific surface areas and porosities in the presence of the NiO nanoparticles on the surface of CNT.

  18. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes.

    PubMed

    Gupta, V K; Agarwal, Shilpi; Saleh, Tawfik A

    2011-03-01

    The adsorption features of multiwall carbon nanotubes (MWCNTs) with the magnetic properties of iron oxides have been combined in a composite to produce a magnetic adsorbent. Composites of MWCNT/nano-iron oxide were prepared, and were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD suggests that the magnetic phase formed is maghemite and/or magnetite. FESEM image shows nano-iron oxides attached to a network of MWCNTs. The adsorption capability of the composites was tested in batch and fixed bed modes. The composites have demonstrated a superior adsorption capability to that of activated carbon. The results also show that the adsorptions of Cr(III) on the composites is strongly dependent on contact time, agitation speed and pH, in the batch mode; and on flow rate and the bed thickness in the fixed bed mode. Along with the high surface area of the MWCNTs, the advantage of the magnetic composite is that it can be used as adsorbent for contaminants in water and can be subsequently controlled and removed from the medium by a simple magnetic process.

  19. Oxidation, defunctionalization and catalyst life cycle of carbon nanotubes: a Raman spectroscopy view.

    PubMed

    Chernyak, Sergei A; Ivanov, Anton S; Maslakov, Konstantin I; Egorov, Alexander V; Shen, Zexiang; Savilov, Serguei S; Lunin, Valery V

    2017-01-18

    Pristine, oxidized and defunctionalized carbon nanotubes (CNTs) were studied by Raman spectroscopy, X-ray diffraction, transmission electron microscopy and low temperature nitrogen adsorption. The Raman spectra of the studied samples in the range of 900-1800 cm(-1) were deconvoluted into five components to reveal the CNT oxidation mechanism. It was found that the oxidation resulted in the reduction of graphite components and ordering of both the structured and defect part of CNTs. Acid treatment also led to different types of disorders in the surface layers of CNTs. Polyene-type, polyphenylene-type and turbostratic fragments were detected as a result of partial exfoliation. Investigation of defunctionalized CNTs showed the ordering of edge carbon atoms as well as the invariability of the total amount of defects. The study of CNTs as supports for Co-based catalysts revealed a simultaneous decrease in the number of defect fragments and increase in the number of edge carbon atoms during catalyst preparation and reduction.

  20. An electrochemical dopamine aptasensor incorporating silver nanoparticle, functionalized carbon nanotubes and graphene oxide for signal amplification.

    PubMed

    Bahrami, Shokoh; Abbasi, Amir Reza; Roushani, Mahmoud; Derikvand, Zohreh; Azadbakht, Azadeh

    2016-10-01

    In this work, immobilization of a dopamine (DA) aptamer was performed at the surface of an amino functionalized silver nanoparticle-carbon nanotube graphene oxide (AgNPs/CNTs/GO) nanocomposite. A 58-mer DA-aptamer was immobilized through the formation of phosphoramidate bonds between the amino group of chitosan and the phosphate group of the aptamer at the 5' end. An AgNPs/CNTs/GO nanocomposite was employed as a highly catalytic label for electrochemical detection of DA based on electrocatalytic activity of the nanocomposite toward hydrogen peroxide (H2O2). Interaction of DA with the aptamer caused conformational changes of the aptamer which, in turn, decreased H2O2 oxidation and reduction peak currents. On the other hand, the presumed folding of the DA-aptamer complexes on the sensing interface inhibited the electrocatalytic activity of AgNPs/CNTs/GO toward H2O2. Sensitive quantitative detection of DA was carried out by monitoring the decrease of differential pulse voltammetric (DPV) responses of AgNPs/CNTs/GO nanocomposite toward H2O2 oxidation. The DPV signal linearly decreased with increased concentration of DA from 3 to 110nmolL(-1) with a detection limit of 700±19.23pmolL(-1). Simple preparation, low operation cost, speed and validity are the decisive factors of this method motivating its application to biosensing investigation.

  1. Induced effects of advanced oxidation processes.

    PubMed

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-07

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  2. Induced effects of advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  3. Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide.

    PubMed

    Wang, Feng; Liu, Juewen

    2013-12-21

    Studying interactions between nano-carbons and lipid membranes is important for multiplexed drug delivery, device fabrication and for understanding toxicity. Herein, we report that nanodiamond (ND, sp(3) carbon) forms a complex with highly biocompatible zwitterionic liposomes based on hydrogen bonding, which is confirmed by pH-dependent and urea-dependent assays. Despite such weak interaction, the complex is highly stable. Comparisons were made with two sp(2) carbons: nanoscale graphene oxide (NGO) and carbon nanotubes (CNTs), where CNT adsorption is the weakest. Adsorption of the nano-carbons does not induce liposome leakage or affect lipid phase transition temperature. Therefore, the potential toxicity of nano-carbons is unlikely to be related to direct membrane damage. ND facilitates cellular uptake of liposomes and co-delivery of negatively charged calcein and positively charged doxorubicin has been demonstrated. ND has the lowest toxicity, while CNTs and NGO are slightly more toxic. The effect of introducing fusogenic lipids and cholesterol was further studied to understand the effect of lipid formulation.

  4. Ab initio study of H2O and water-chain-induced properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Agrawal, B. K.; Singh, V.; Pathak, A.; Srivastava, R.

    2007-05-01

    We perform an ab initio study of the motion of the nano sized water dimer through a single-walled carbon nanotube (SWCNT), the stability of an encapsulated one-dimensional (1D) water chain inside SWCNT, and the H2O -induced structural, energetic, electronic, and optical properties of the SWCNTs. The adsorption of the water molecules is caused by the dispersion forces, i.e., the van der Waals (vdW) interactions. Thus, the role of the vdW interactions in the estimation of the BE for the weakly bound adsorbates cannot be ignored as has been done in several earlier publications. We find that a single H2O molecule or single water dimer or a 1D chain of water dimers is trapped inside the medium-sized (6,6) carbon nanotube placed in vacuum. However, the H2O molecule or water dimer may be transmitted in case the tube is surrounded by water or water vapor at high vapor pressure at high temperatures. On the other hand, a chain of single H2O molecules or more number of the encapsulated H2O molecules is very weakly coupled to the wide (10,10) carbon nanotube and can, thus, easily transmit through the carbon nanotube in agreement with the recent experiments. Further, appreciable adsorption both inside and on the surface of the (10,10) carbon nanotube is predicted in concurrence with the experiments. The small (medium-sized) diameter tubes will adsorb strongly (accommodate) the water molecules outside (inside) the nanotubes. The H2O adsorption converts the conducting small-diameter zigzag (5,0) tube into a semiconductor. Further, the adsorption reduces the band gap of the semiconducting achiral zigzag (10,0) nanotube but increases the band gap of a chiral semiconducting (4,2) tube. The adsorbed H2O molecules increase the electrical conductivity in agreement with the experiment. The overall peak structure in the optical absorption for the pristine tube is not altered significantly by the adsorption except for small alterations in the energy locations and the relative intensities

  5. Electronic Properties of Capped Carbon Nanotubes under an Electric Field: Inhomogeneous Electric-Field Screening Induced by Bond Alternation

    NASA Astrophysics Data System (ADS)

    Yamanaka, Ayaka; Okada, Susumu

    2013-06-01

    We study the electronic properties of capped carbon nanotubes under an electric field by investigating their electrostatic potentials, total energies, and energy gaps under a parallel electric field, based on the density functional theory with effective screening medium method. We find that, in the capped carbon nanotubes, screening against the external electric field strongly depends on local atomic arrangement due to the inhomogeneous charge distribution arising from its bond alternation induced by the pentagonal rings in the cap region. In the case of armchair nanotubes, we find that the relative permittivity and energy gap between the highest occupied and the lowest unoccupied states oscillate in triple periodicity in their units with respect to the length. The electric field induces the charge redistribution in which the charge accumulation and depletion only occur around the pentagonal rings at or vicinity of the top/bottom of the nanotubes.

  6. A general strategy for the preparation of carbon nanotubes and graphene oxide decorated with PdO nanoparticles in water.

    PubMed

    He, Hongkun; Gao, Chao

    2010-07-02

    The preparation of carbon nanotube (CNT)/PdO nanoparticles and graphene oxide (GO)/PdO nanoparticle hybrids via a general aqueous solution strategy is reported. The PdO nanoparticles are generated in situ on the CNTs and GO by a one-step "green" synthetic approach in aqueous Pd(NO(3))(2) solution under ambient conditions without adding any additional chemicals. The production of PdO is confirmed by energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. The morphologies of the resulting CNT/PdO and GO/PdO nanohybrids are characterized by transmission and/or scanning transmission electron microscopy. PdO nanoparticles with an average size of 2-3 nm in diameter are decorated evenly along the surfaces of CNTs and GO. This synthesis strategy is demonstrated to be compatible for 1) CNTs with different modifications, including pristine, oxidized, and polymer-functionalized CNTs; 2) different types of CNTs, including single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and multiwalled carbon nanotubes (MWCNTs); and 3) different shapes of carbon materials, including tubular CNTs and planar GO. The as-prepared CNT/PdO and GO/PdO nanohybrids can be transformed into CNT/Pd and GO/Pd nanohybrids by reduction with NaBH(4), and can then be used as a heterogeneous catalyst in the catalytic reduction of 4-nitrophenol.

  7. Theoretical study on the oxidation of zigzag silicon carbide nanotubes (SiCNTs) by singlet O2

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Liu, Wei; Zhao, Jing-xiang

    2012-11-01

    Singlet O2 produced upon photoexcitation is a very important oxidative reagent. The study on its reaction with nanotube might be useful not only to evaluate the stability of the nanotube upon air exposure and sunlight, but also to modify the properties of the nanotube. Considering the unique properties and wide applications of silicon carbide nanotube (SiCNT), in this paper, we performed extensive density functional theory (DFT) calculations to study the oxidation of a series of zigzag (n,0) SiCNTs (n=6 to 12) by singlet O2. It is found that the reaction process contains two steps, namely, (i) [2+2] cycloaddition of a singlet O2 to the Si-C bond, followed by (ii) the dissociation of the O-O bond, leading to the formation of an epoxide configuration with a highly exothermicity (>4.00 eV). Compared with pure SiCNT, the cycloaddition of singlet O2 on tube leads to the decrease of the band gap, while the formation of the stable epoxy structure render band gap increase. Our results indicate that the SiCNT is more prone to be degraded after exposure to air and sunlight.

  8. Ultrathin-walled Co9S8 nanotube/reduced graphene oxide composite as an efficient electrocatalyst for the reduction of triiodide

    NASA Astrophysics Data System (ADS)

    Yuan, Hong; Jiao, Qingze; Liu, Jia; Liu, Xiufeng; Yang, Haoyi; Zhao, Yun; Wu, Qin; Shi, Daxin; Li, Hansheng

    2016-12-01

    A novel ultrathin-walled Co9S8 nanotube/reduced graphene oxide electrocatalyst, for the first time, is successfully prepared by a simple hydrothermal process coupling with an ion exchange process for the reduction of triiodide in dye-sensitized solar cells (DSSC). Ultrathin-walled Co9S8 nanotubes have an average diameter of 20-30 nm and a wall thickness of 3-4 nm, and the reduced graphene oxide possessing high conductivity is well dispersed in the Co9S8 nanotubes simultaneously, which contributed to the high specific surface area, well exposed active sites and excellent electric conductivity. The electrochemical performances of ultrathin-walled Co9S8 nanotube/reduced graphene oxide are evaluated by the EIS, Tafel polarization and CV measurements, exhibiting the significant improvement of electrocatalytic performance for the triiodide reduction. Optimizing the film thickness of Co9S8 nanotube/reduced graphene oxide counter electrode, the optimum photovoltaic conversion efficiency of 7.58% is obtained, which is even higher than that of the DSSC with Pt counter electrode (7.45%). In addition, the DSSC with Co9S8/reduced graphene oxide electrode exhibits a good repeatability and long-term electrochemical stability. Therefore, the ultrathin-walled Co9S8 nanotube/reduced graphene oxide is a reliable material to replace Pt.

  9. Laser induced single spot oxidation of titanium

    NASA Astrophysics Data System (ADS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  10. Single-walled carbon nanotube sensors for monitoring partial discharge induced dissociation of SF6.

    PubMed

    Jung, Sehun; Choi, Jaeboong; Kim, Youngjin; Lee, Jongchul; Chang, Yongmoo; Baik, Seunghyun

    2009-12-01

    We proposed to use a miniature single-walled carbon nanotube (SWNT) sensor, fabricated by alternating current dielectrophoresis, to detect dissociated and oxidized sulfur hexafluoride (SF6) gas species generated by partial discharge (PD) activity in a concealed chamber such as gas-insulated switchgear (GIS). The SWNT sensor did not react with pure SF6 gas but sensitively responded to the dissociated and oxidized SF6 species. Also, the SWNT sensor could be regenerated by purging with fresh air since the transduction was based on the physisorption of analytes. Therefore, the SWNT sensor is a promising device for the detection of the dissociated and oxidized SF6 species and for the monitoring of the PD activity inside GIS.

  11. Curvature induced L-defects in water conduction in carbon nanotubes.

    PubMed

    Zimmerli, Urs; Gonnet, Pedro G; Walther, Jens H; Koumoutsakos, Petros

    2005-06-01

    We conduct molecular dynamics simulations to study the effect of the curvature induced static dipole moment of small open-ended single-walled carbon nanotubes (CNTs) immersed in water. This dipole moment generates a nonuniform electric field, changing the energy landscape in the CNT and altering the water conduction process. The CNT remains practically filled with water at all times, whereas intermittent filling is observed when the dipole term is not included. In addition, the dipole moment induces a preferential orientation of the water molecules near the end regions of the nanotube, which in turn causes a reorientation of the water chain in the middle of the nanotube. The most prominent feature of this reorientation is an L-defect in the chain of water molecules inside the CNT. The analysis of the water energetics and structural characteristics inside and in the vicinity of the CNT helps to identify the role of the dipole moment and to suggest possible mechanisms for controlled water and proton transport at the nanoscale.

  12. Facile Access to Graphene Oxide from Ferro-Induced Oxidation

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-01

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers’ method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials.

  13. Facile Access to Graphene Oxide from Ferro-Induced Oxidation.

    PubMed

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-28

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers' method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials.

  14. Facile Access to Graphene Oxide from Ferro-Induced Oxidation

    PubMed Central

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-01

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers’ method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials. PMID:26818784

  15. Pressure-induced hard-to-soft transition of a single carbon nanotube

    NASA Astrophysics Data System (ADS)

    Sun, D. Y.; Shu, D. J.; Ji, M.; Liu, Feng; Wang, M.; Gong, X. G.

    2004-10-01

    We demonstrate a hydrostatic pressure-induced hard-to-soft transition of an isolated single wall carbon nanotube, using classical and ab initio constant-pressure molecular-dynamics simulations and continuum elastic theory analysis. At low pressure, the carbon tube is hard. Above a critical pressure, the tube becomes much softer with a decrease of bulk modulus by two orders of magnitude. The hard-to-soft transition is caused by a pressure-induced shape transition of the tube cross section from circular to elliptical.

  16. Induced fermionic current in toroidally compactified spacetimes with applications to cylindrical and toroidal nanotubes

    SciTech Connect

    Bellucci, S.; Saharian, A. A.; Bardeghyan, V. M.

    2010-09-15

    The vacuum expectation value of fermionic current is evaluated for a massive spinor field in spacetimes with an arbitrary number of toroidally compactified spatial dimensions in the presence of a constant gauge field. By using the Abel-Plana type summation formula and the zeta-function technique we present the fermionic current in two different forms. Nontrivial topology of the background spacetime leads to the Aharonov-Bohm effect for the fermionic current induced by the gauge field. The current is a periodic function of the magnetic flux with the period equal to the flux quantum. In the absence of gauge field it vanishes for special cases of untwisted and twisted fields. Applications of general formulas to Kaluza-Klein type models and to cylindrical and toroidal carbon nanotubes are given. In the absence of magnetic flux the total fermionic current in carbon nanotubes vanishes, due to the cancellation of contributions from two different sublattices of the hexagonal lattice of graphene.

  17. Hybrid ternary rice paper-manganese oxide-carbon nanotube nanocomposites for flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan

    2013-10-01

    Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two

  18. Solid deposit-induced high temperature oxidation

    NASA Astrophysics Data System (ADS)

    Jung, Keeyoung

    The present study is aimed at investigating the high temperature oxidation induced by ash deposition from use of alternative fuels. The alloys and coatings being studied are typical of those used in current power generating gas turbines, as well as those that may be used in advanced systems. To achieve this objective, the alloys Rene' N5, GTD 111, and IN 738 as well as these alloys coated with platinum aluminide and CoNiCrAlY were exposed to conditions relevant to corrosion induced by using alternative fuels. The test conditions representative of deposits from use of alternative fuels were selected based upon initial experiments that involved testing the alloy Rene' N5 with a platinum aluminide coating at 750°C, 950°C, and 1150°C in a variety of environments with deposits of CaO, CaSO4, and Na 2SO4. Based upon the results from such tests, a temperature (950°C) and a deposit (CaO) were selected for the further experiments to compare the corrosion characteristics of all of the alloys and coatings. At 950°C with deposits of CaO, which are the selected experimental conditions obtained from the preliminary tests, accelerated cyclic oxidation experiments were performed with all uncoated and coated superalloys in extra dry air and wet ( pH2O = 0.1 atm) air to compare corrosion characteristics of each with one another. Experimental details will be described followed by the presentation of experimental results and discussion. Additionally, uncoated GTD 111 specimens were exposed to different contaminants and moisture level environments to study the effect of contaminant level and water vapor pressure on CaO-induced degradation. Then, CaO deposits were coated on thermal barrier coatings (TBCs) and specimens with TBCs were exposed to the cyclic oxidation environments. The effects of deposits other than CaO, such as Fe2O3 and SiO2, on the oxidation characteristics of the specimens were also investigated. Finally, a mechanism for high temperature oxidation induced by Ca

  19. Dynamic monitoring of membrane nanotubes formation induced by vaccinia virus on a high throughput microfluidic chip

    PubMed Central

    Xiao, Min; Xu, Na; Wang, Cheng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2017-01-01

    Membrane nanotubes (MNTs) are physical connections for intercellular communication and induced by various viruses. However, the formation of vaccinia virus (VACV)-induced MNTs has never been studied. In this report, VACV-induced MNTs formation process was monitored on a microfluidic chip equipped with a series of side chambers, which protected MNTs from fluidic shear stress. MNTs were formed between susceptible cells and be facilitated by VACV infection through three patterns. The formed MNTs varied with cell migration and virus concentration. The length of MNTs was positively correlated with the distance of cell migration. With increasing virus titer, the peak value of the ratio of MNT-carried cell appeared earlier. The immunofluorescence assay indicated that the rearrangement of actin fibers induced by VACV infection may lead to the formation of MNTs. This study presents evidence for the formation of MNTs induced by virus and helps us to understand the relationship between pathogens and MNTs. PMID:28317863

  20. Dynamic monitoring of membrane nanotubes formation induced by vaccinia virus on a high throughput microfluidic chip

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Xu, Na; Wang, Cheng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2017-03-01

    Membrane nanotubes (MNTs) are physical connections for intercellular communication and induced by various viruses. However, the formation of vaccinia virus (VACV)-induced MNTs has never been studied. In this report, VACV-induced MNTs formation process was monitored on a microfluidic chip equipped with a series of side chambers, which protected MNTs from fluidic shear stress. MNTs were formed between susceptible cells and be facilitated by VACV infection through three patterns. The formed MNTs varied with cell migration and virus concentration. The length of MNTs was positively correlated with the distance of cell migration. With increasing virus titer, the peak value of the ratio of MNT-carried cell appeared earlier. The immunofluorescence assay indicated that the rearrangement of actin fibers induced by VACV infection may lead to the formation of MNTs. This study presents evidence for the formation of MNTs induced by virus and helps us to understand the relationship between pathogens and MNTs.

  1. The synergistic effect of the combined thin multi-walled carbon nanotubes and reduced graphene oxides on photothermally actuated shape memory polyurethane composites.

    PubMed

    Yi, Dong Hun; Yoo, Hye Jin; Mahapatra, Sibdas Singha; Kim, Yoong Ahm; Cho, Jae Whan

    2014-10-15

    We evaluated the synergistic effect of the hybrid-type nanocarbon, consisting of 1D thin-walled carbon nanotubes (TWNTs) and 2D reduced graphene oxide (RGO), on the shape memory performance of hyperbranched polyurethane composites. The shape recovery of the resulting composites was activated via a photothermal process using a near-infrared laser. The best laser-induced shape recovery performance was achieved for the composites with a 7/3 of TWNT/RGO ratio and a 1wt.% of nanocarbon content. Such result can be explained by good dispersion of TWNTs and RGO in the hyperbranched polymer as well as three-dimensionally enhanced interconnection between carbon nanotubes and graphenes. The optically active TWNTs with a high optical absorption section exhibited high ability of transferring laser-induced thermal energy to polymer matrix whereas RGO provided a high mechanical property to polymer matrix. The tensile modulus and electrical conductivity of the composites also showed a similar dependence on the TWNT/RGO composition ratio as the photothermal shape recovery. Our study demonstrated an effective conversion from light, thermal to mechanical work by irradiating shape memory polymer composite containing hybrid-type fillers using a near-infrared laser.

  2. Graphitic carbon nitride (g-C3N4) coated titanium oxide nanotube arrays with enhanced photo-electrochemical performance.

    PubMed

    Sun, Mingxuan; Fang, Yalin; Kong, Yuanyuan; Sun, Shanfu; Yu, Zhishui; Umar, Ahmad

    2016-08-09

    Herein, we report the successful formation of graphitic carbon nitride coated titanium oxide nanotube array thin films (g-C3N4/TiO2) via the facile thermal treatment of anodized Ti sheets over melamine. The proportion of C3N4 and TiO2 in the composite can be adjusted by changing the initial addition mass of melamine. The as-prepared samples are characterized by several techniques in order to understand the morphological, structural, compositional and optical properties. UV-vis absorption studies exhibit a remarkable red shift for the g-C3N4/TiO2 thin films as compared to the pristine TiO2 nanotubes. Importantly, the prepared composites exhibit an enhanced photocurrent and photo-potential under both UV-vis and visible light irradiation. Moreover, the observed maximum photo-conversion efficiency of the prepared composites is 1.59 times higher than that of the pristine TiO2 nanotubes. The optical and electrochemical impedance spectra analysis reveals that the better photo-electrochemical performance of the g-C3N4/TiO2 nanotubes is mainly due to the wider light absorption and reduced impedance compared to the bare TiO2 nanotube electrode. The presented work demonstrates a facile and simple method to fabricate g-C3N4/TiO2 nanotubes and clearly revealed that the introduction of g-C3N4 is a new and innovative approach to improve the photocurrent and photo-potential efficiencies of TiO2.

  3. Formation of carbon nanotubes: In situ optical analysis using laser-induced incandescence and laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cau, M.; Dorval, N.; Attal-Trétout, B.; Cochon, J.-L.; Foutel-Richard, A.; Loiseau, A.; Krüger, V.; Tsurikov, M.; Scott, C. D.

    2010-04-01

    Gas-phase production of carbon nanotubes in presence of a metal catalyst with a continuous wave CO2 laser is investigated by combining coherent anti-Stokes Raman scattering (CARS), laser-induced fluorescence (LIF), and laser-induced incandescence (LII). These in situ techniques provide a unique investigation of the different transformation processes of the primarily carbon and metal vapors issued from the vaporization of the target by the laser and the temperature at which these processes occur. Continuous-wave laser provides with stable continuous vaporization conditions very well suited for such in situ investigations. Temperature profiles inside the reactor are known from CARS measurements and flow calculations. Carbon soot, density, and size of carbon aggregates are determined by LII measurements. LIF measurements are used to study the gas phases, namely, C2 and C3 radicals which are the very first steps of carbon recombination, and metal catalysts gas phase. Spectral investigations allow us to discriminate the signal from each species by selecting the correct pair of excitation/detection wavelengths. Spatial distributions of the different species are measured as a function of target composition and temperature. The comparison of LIF and LII signals allow us to correlate the spatial evolution of gas and soot in the scope of the different steps of the nanotube growth already proposed in the literature and to identify the impact of the chemical nature of the catalyst on carbon condensation and nanotube nucleation. Our study presents the first direct evidence of the nanotube onset and that the nucleation proceeds from a dissolution-segregation process from metal particles as assumed in the well-known vapor-liquid-solid model. Comparison of different catalysts reveals that this process is strongly favored when Ni is present.

  4. Magnesium oxide grafted carbon nanotubes based impedimetric genosensor for biomedical application.

    PubMed

    Patel, Manoj Kumar; Ali, Md Azahar; Srivastava, Saurabh; Agrawal, Ved Varun; Ansari, S G; Malhotra, Bansi D

    2013-12-15

    Nanostructured magnesium oxide (size<10nm) grafted carboxyl (COOH) functionalized multi-walled carbon nanotubes (nMgO-cMWCNTs) deposited electrophoretically onto indium tin oxide (ITO) coated glass electrode and have been utilized for Vibrio cholerae detection. Aminated 23 bases single stranded DNA (NH2-ssDNA) probe sequence (O1 gene) of V. cholerae has been covalently functionalized onto nMgO-cMWCNTs/ITO electrode surface using EDC-NHS chemistry. This DNA functionalized MgO grafted cMWCNTs electrode has been characterized using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical techniques. The results of XPS studies reveal that sufficient O-C=O groups present at the nMgO-cMWCNTs surface are utilized for DNA binding. The results of hybridization studies conducted with fragmented target DNA (ftDNA) of V. cholerae using electrochemical impedance spectroscopy (EIS) reveal sensitivity as 3.87 Ω ng(-1) cm(-2), detection limit of ~21.70 ng µL(-1) in the linear range of 100-500 ng µL(-1) and stability of about 120 days. The proposed DNA functionalized nMgO-cMWCNTs nanomatrix provides a novel impedimetric platform for the fabrication of a compact genosensor device for biomedical application.

  5. Folic acid mediated solid lipid nanocarriers loaded with docetaxel and oxidized single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhu, Xiali; Huang, Shengnan; Xie, Yingxia; Zhang, Huijuan; Hou, Lin; Zhang, Yingjie; Huang, Heqing; Shi, Jinjin; Wang, Lei; Zhang, Zhenzhong

    2014-01-01

    Single-walled carbon nanotubes (SWNT) possess high-near-infrared absorption coefficient, large surface area, and have great potential in drug delivery. In this study, we obtained ultrashort oxidized SWNT (OSWNT) using mixed acid oxidation method. Then, docetaxel (DTX) and folic acid (FA) are conjugated with OSWNT via π- π accumulation and amide linkage, respectively. A targeting and photothermal sensitive drug delivery system FA-DTX-OSWNT-SLN was prepared following a microemulsion technique. The size and zeta potential of FA-DTX-OSWNT-SLN were 182.8 ± 2.8 nm and -34.59 ± 1.50 mV, respectively. TEM images indicated that FA-DTX-OSWNT-SLN was spherical and much darker than general solid lipid nanoparticles (SLN). Furthermore, OSWNT may wind round, insert into or be encapsulated into the nanocarriers. Compared with free DTX, FA-DTX-OSWNT-SLN could efficiently cross cell membranes and afford higher antitumor efficacy in MCF-7 cells in vitro. Meanwhile, the combination of near-infrared laser (NIR) irradiation at 808 nm significantly enhanced cell inhibition. In conclusion, FA-DTX-OSWNT-SLN drug delivery system in combination with 808 nm NIR laser irradiation may be promising for targeting and photothermal cancer therapy with multiple mechanisms in future.

  6. Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Shapter, Joseph G.; Yin, Ting; Sun, Rongjin; Cui, Daxiang

    2015-12-01

    An effective one-pot hydrothermal method for in situ filling of multi-wall carbon nanotubes (CNT, diameter of 20-40 nm, length of 30-100 μm) with ultrafine ferroferric oxide (Fe3O4) nanoparticles (8-10 nm) has been demonstrated. The synthesized Fe3O4@CNT exhibited a mesoporous texture with a specific surface area of 109.4 m2 g-1. The loading of CNT, in terms of the weight ratio of Fe3O4 nanoparticles, can reach as high as 66.5 wt%. Compared to the conventional method of using a Al2O3 membrane as template to fill CNT with iron oxides nanoparticles, our strategy is facile, effective, low cost and easy to scale up to large scale production (~1.42 g per one-pot). When evaluated for lithium storage at 1.0 C (1 C = 928 mA g-1), the mesoporous Fe3O4@CNT can retain at 358.9 mAh g-1 after 60 cycles. Even when cycled at high rate of 20 C, high capacity of 275.2 mAh g-1 could still be achieved. At high rate (10 C) and long life cycling (500 cycles), the cells still exhibit a good capacity of 137.5 mAhg-1.

  7. Manganese peroxidase degrades pristine but not surface-oxidized (carboxylated) single-walled carbon nanotubes.

    PubMed

    Zhang, Chengdong; Chen, Wei; Alvarez, Pedro J J

    2014-07-15

    The transformation of engineered nanomaterials in the environment can significantly affect their transport, fate, bioavailability, and toxicity. Little is known about the biotransformation potential of single-walled carbon nanotubes (SWNTs). In this study, we compared the enzymatic transformation of SWNTs and oxidized (carboxylated) SWNTs (O-SWNTs) using three ligninolytic enzymes: lignin peroxidase, manganese peroxidase (MnP), and laccase. Only MnP was capable of transforming SWNTs, as determined by Raman spectroscopy, near-infrared spectroscopy, and transmission electron microscopy. Interestingly, MnP degraded SWNTs but not O-SWNTs. The recalcitrance of O-SWNTs to enzymatic transformation is likely attributable to the binding of Mn2+ by their surface carboxyl groups at the enzyme binding site, which inhibits critical steps in the MnP catalytic cycle (i.e., Mn2+ oxidation and Mn3+ dissociation from the enzyme). Our results suggest that oxygen-containing surface functionalities do not necessarily facilitate the biodegradation of carbonaceous nanomaterials, as is commonly assumed.

  8. Assisted deposition of nano-hydroxyapatite onto exfoliated carbon nanotube oxide scaffolds

    NASA Astrophysics Data System (ADS)

    Zanin, H.; Rosa, C. M. R.; Eliaz, N.; May, P. W.; Marciano, F. R.; Lobo, A. O.

    2015-05-01

    Electrodeposited nano-hydroxyapatite (nHAp) is more similar to biological apatite in terms of microstructure and dimension than apatites prepared by other processes. Reinforcement with carbon nanotubes (CNTs) enhances its mechanical properties and increases adhesion of osteoblasts. Here, we carefully studied nHAp deposited onto vertically aligned multi-walled CNT (VAMWCNT) scaffolds by electrodeposition and soaking in a simulated body fluid (SBF). VAMWCNTs are porous biocompatible scaffolds with nanometric porosity and exceptional mechanical and chemical properties. The VAMWCNT films were prepared on a Ti substrate by a microwave plasma chemical vapour deposition method, and then oxidized and exfoliated by oxygen plasma etching (OPE) to produce graphene oxide (GO) at the VAMWCNT tips. The attachment of oxygen functional groups was found to be crucial for nHAp nucleation during electrodeposition. A thin layer of plate-like and needle-like nHAp with high crystallinity was formed without any need for thermal treatment. This composite (henceforth referred to as nHAp-VAMWCNT-GO) served as the scaffold for in vitro biomineralization when soaked in the SBF, resulting in the formation of both carbonate-rich and carbonate-poor globular-like nHAp. Different steps in the deposition of biological apatite onto VAMWCNT-GO and during the short-term biomineralization process were analysed. Due to their unique structure and properties, such nano-bio-composites may become useful in accelerating in vivo bone regeneration processes.

  9. Oxidized multiwalled carbon nanotubes decorated with silver nanoparticles for fluorometric detection of dimethoate.

    PubMed

    Hsu, Chun-Wei; Lin, Zhong-Yi; Chan, Tzu-Yi; Chiu, Tai-Chia; Hu, Cho-Chun

    2017-06-01

    A novel method for the detection of dimethoate based on the peroxidase-like activity of silver-nanoparticles-modified oxidized multiwalled carbon nanotubes (AgNPs/oxMWCNTs) has been developed. The synthesized AgNPs/oxMWCNTs showed excellent peroxidease-like catalytic activity in hydrogen peroxide-Amplex red (AR) system (AR is oxidized to resorufinat, with the resorufin fluorescence at 584nm being used to monitor the catalytic activity). After dimethoate was added to AgNPs/oxMWCNTs, the interaction between dimethoate and the AgNPs inhibited the catalytic activity of AgNPs/oxMWCNTs. The decrease in fluorescence was used for the detection of dimethoate in the range of 0.01-0.35μgmL(-1) (R(2)=0.998) with a detection limit of 0.003μgmL(-1) (signal/noise=3). This method exhibited good selectivity for the detection of dimethoate even in the presence of high concentration of other pesticides. Consequently, the method was applied to measure the concentration of dimethoate residue in lake water and fruit, thus obtaining satisfactory results.

  10. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare.

    PubMed

    Kumar, Sandeep; Ahlawat, Wandit; Kumar, Rajesh; Dilbaghi, Neeraj

    2015-08-15

    Technological advancements worldwide at rapid pace in the area of materials science and nanotechnology have made it possible to synthesize nanoparticles with desirable properties not exhibited by the bulk material. Among variety of available nanomaterials, graphene, carbon nanotubes, zinc oxide and gold nanopartilces proved to be elite and offered amazing electrochemical biosensing. This encourages us to write a review which highlights the recent achievements in the construction of genosensor, immunosensor and enzymatic biosensor based on the above nanomaterials. Carbon based nanomaterials offers a direct electron transfer between the functionalized nanomaterials and active site of bioreceptor without involvement of any mediator which not only amplifies the signal but also provide label free sensing. Gold shows affinity towards immunological molecules and is most routinely used for immunological sensing. Zinc oxide can easily immobilize proteins and hence offers a large group of enzyme based biosensor. Modification of the working electrode by introduction of these nanomaterials or combination of two/three of above nanomaterials together and forming a nanocomposite reflected the best results with excellent stability, reproducibility and enhanced sensitivity. Highly attractive electrochemical properties and electrocatalytic activity of these elite nanomaterials have facilitated achievement of enhanced signal amplification needed for the construction of ultrasensitive electrochemical affinity biosensors for detection of glucose, cholesterol, Escherichia coli, influenza virus, cancer, human papillomavirus, dopamine, glutamic acid, IgG, IgE, uric acid, ascorbic acid, acetlycholine, cortisol, cytosome, sequence specific DNA and amino acids. Recent researches for bedside biosensors are also discussed.

  11. Stretchable Fiber Supercapacitors with High Volumetric Performance Based on Buckled MnO2 /Oxidized Carbon Nanotube Fiber Electrodes.

    PubMed

    Li, Mingyang; Zu, Mei; Yu, Jinshan; Cheng, Haifeng; Li, Qingwen

    2017-03-01

    A stretchable fiber supercapacitor (SC) based on buckled MnO2 /oxidized carbon nanotube (CNT) fiber electrode is fabricated by a simple prestraining-then-buckling method. The prepared stretchable fiber SC has a specific volumetric capacitance up to 409.4 F cm(-3) , which is 33 times that of the pristine CNT fiber based SC, and shows the outstanding stability and repeatability in performance as a stretchable SC.

  12. Synthesis of few-walled carbon nanotube-Rh nanoparticles by arc discharge: Effect of selective oxidation

    SciTech Connect

    Zhang Yanfeng

    2012-06-15

    Highly crystalline rhodium (Rh) nanoparticles supported on carbon nanotubes were prepared by selective oxidation method. Carbon nanotubes and FeRh nanoparticles were simultaneously generated in hydrogen arc plasma. The as-grown nanomaterials can be purified by heat treatment in open air and by soaking in HCl. X-ray diffraction and selected area electron diffraction results reveal that as-grown FeRh nanoparticles have a typical chemical CsCl-type structure which can be transformed into a face-centered cubic structure by thermal annealing in the purification process. The purification process is selective toward the removal of the amorphous carbon coating the nanoparticles, and transforms Fe to Fe{sub 2}O{sub 3}. Fe{sub 2}O{sub 3} can be easily dissolved in hydrochloric acid, leaving carbon nanotubes-Rh nanoparticles. Rh nanoparticles with diameters of 2-60 nm are deposited uniformly on the surface of the carbon nanotube bundles. This simple and selective chemistry offers a new process for synthesizing and controlling Fe content in carbon nanotube-FeRh nanoparticles. Highlights: Black-Right-Pointing-Pointer High-crystallinity CNTs and FeRh nanoparticles were simultaneously generated in arc plasma. Black-Right-Pointing-Pointer The diameter distribution of CNTs depends on different gases. Black-Right-Pointing-Pointer Heat treatment in open air and soaking in HCl can convert CNTs-FeRh to CNTs-Rh. Black-Right-Pointing-Pointer The selective oxidation mechanisms of metal nanoparticles and carbon materials differ.

  13. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements.

    SciTech Connect

    Peng, B.; Locascio, M.; Zapol, P.; Li, S.; Mielke, S. L.; Schatz, G. C.; Espinosa, H. D.; Northwestern Univ.

    2008-01-01

    The excellent mechanical properties of carbon nanotubes are being exploited in a growing number of applications from ballistic armour to nanoelectronics. However, measurements of these properties have not achieved the values predicted by theory due to a combination of artifacts introduced during sample preparation and inadequate measurements. Here we report multiwalled carbon nanotubes with a mean fracture strength >100 GPa, which exceeds earlier observations by a factor of approximately three. These results are in excellent agreement with quantum-mechanical estimates for nanotubes containing only an occasional vacancy defect, and are {approx}80% of the values expected for defect-free tubes. This performance is made possible by omitting chemical treatments from the sample preparation process, thus avoiding the formation of defects. High-resolution imaging was used to directly determine the number of fractured shells and the chirality of the outer shell. Electron irradiation at 200 keV for 10, 100 and 1,800 s led to improvements in the maximum sustainable loads by factors of 2.4, 7.9 and 11.6 compared with non-irradiated samples of similar diameter. This effect is attributed to crosslinking between the shells. Computer simulations also illustrate the effects of various irradiation-induced crosslinking defects on load sharing between the shells.

  14. Carbon nanotube-based coatings to induce flow enhancement in hydrophilic nanopores

    NASA Astrophysics Data System (ADS)

    Wagemann, Enrique; Walther, J. H.; Zambrano, Harvey A.

    2016-11-01

    With the emergence of the field of nanofluidics, the transport of water in hydrophilic nanopores has attracted intensive research due to its many promising applications. Experiments and simulations have found that flow resistance in hydrophilic nanochannels is much higher than those in macrochannels. Indeed, this might be attributed to significant fluid adsorption on the channel walls and to the effect of the increased surface to volume ratio inherent to the nanoconfinement. Therefore, it is desirable to explore strategies for drag reduction in nanopores. Recently, studies have found that carbon nanotubes (CNTs) feature ultrafast water flow rates which result in flow enhancements of 1 to 5 orders of magnitude compared to Hagen-Poiseuille predictions. In the present study, CNT-based coatings are considered to induce water flow enhancement in silica nanopores with different radius. We conduct atomistic simulations of pressurized water flow inside tubular silica nanopores with and without inner coaxial carbon nanotubes. In particular, we compute water density and velocity profiles, flow enhancement and slip lengths to understand the drag reduction capabilities of single- and multi-walled carbon nanotubes implemented as coating material in silica nanopores. We wish to thank partial funding from CRHIAM and FONDECYT project 11130559, computational support from DTU and NLHPC (Chile).

  15. Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production.

    PubMed

    Fan, Yanli; Su, Feng; Li, Kai; Ke, Caixia; Yan, Yunjun

    2017-03-30

    Superparamagnetic multi-walled carbon nanotubes (mMWCNTs) were prepared by filling multi-walled carbon nanotubes (MWCNTs) with iron oxide, and further modified by linking polyamidoamine (PAMAM) dendrimers (mMWCNTs-PAMAM) on the surface. Then, mMWCNTs-PAMAM was employed as the carrier and successfully immobilized Burkholderia cepacia lipase (BCL) via a covalent method (BCL-mMWCNTs-G3). The maximum activity recovery of the immobilized lipase was 1,716% and the specific activity increased to 77,460 U/g-protein, 17-fold higher than that of the free enzyme. The immobilized lipase displayed significantly enhanced thermostability and pH-resistance, and could efficiently catalyze transesterification to produce biodiesel at a conversion rate of 92.8%. Moreover, it possessed better recycling performance. After 20 cycles of repeated used, it still retained ca. 90% of its original activity, since the carbon nanotube-enzyme conjugates could be easily separated from the reaction mixture by using a magnet. This study provides a new perspective for biotechnological applications by adding a magnetic property to the unique intrinsic properties of nanotubes.

  16. Memory effect of a single-walled carbon nanotube on nitride-oxide structure under various bias conditions.

    SciTech Connect

    Park, H.; Shin, H.; Kim, J. H.; Hong, S.; Xu, J.; Materials Science Division; Brown Univ.; Kookmin Univ.

    2010-01-11

    We report on the memory effect of single-walled carbon nanotubes (SWNTs) placed on a nitride-oxide layer structure designed as a charge storage medium. The conductance of the SWNT was modulated by the injected charge in the nitride-oxide interface and the polarities of injected charges were then detected. A large on/off-state current ratio (>10{sup 4}) was obtained at a small program/erase voltage range (<3 V). We also studied the effect of a half-selected cell on the conductance of the SWNTs to identify the issues with cross-point memory architecture.

  17. Preparation of iron oxide nanoparticles-decorated carbon nanotube using laser ablation in liquid and their antimicrobial activity.

    PubMed

    Khashan, Khawla S; Sulaiman, Ghassan M; Mahdi, Rafal

    2017-02-01

    The antimicrobial activity was investigated for iron oxide IO nanoparticles (NPs)-decorated carbon nanotubes CNT prepared successfully by Nd:YAG-pulsed laser ablation in the liquid process. TEM reveals the composite NP and exhibits semispherical of iron oxide NPs, which aggregate around rolled and unrolled graphene sheet. XRD pattern proved the presence of carbon and different phases of IO NPs. Then, the antibacterial activity of the NPs was examined against different bacteria using nutrient broth and nutrient agar methods, which was enhanced using IO. In addition, the wound-healing activity for the best antibacterial concentration is tested by using animal models successfully.

  18. Ultra-high oxidation resistance of suspended single-wall carbon nanotube bundles grown by an "all-laser" process.

    PubMed

    Yi, J H; Aïssa, B; El, Khakani M A

    2007-10-01

    Single-wall carbon nanotubes (SWCNTs) were laterally grown on SiO2/Si substrates by means of an "all-laser" growth process. Our "all-laser" process stands out by its exclusive use of the same pulsed UV laser, first, to deposit the CoNi nanocatalyst and, second, to grow SWCNTs through the laser ablation of a pure graphite target. The "all-laser" grown SWCNTs generally self-assemble into bundles (5-15 nm-diam.) sprouting from the CoNi nanocatalyst and laterally bridging the 2 microm gap separating adjacent catalysed electrodes (in either "suspended" or "on-substrate" geometries). A comparative study of the oxidation resistance of both suspended and on-substrate SWCNTs was achieved. The "all-laser" grown SWCNTs were subjected to annealing under flowing oxygen at temperatures ranging from 200 to 1100 degrees C. Systematic scanning electron microscopy observations combined with micro-Raman analyses revealed that more than 20% of suspended nanotubes were still stable at temperatures as high as 900 degrees C under flowing O2 while the on-substrate counterpart were completely burnt out at this temperature. Accordingly, the activation energy, as deduced from the Arrhenius plot, of the suspended SWCNTs is found to be as high as approximately 180 kJ mol(-1) (approximately 9 times higher than that of the on-substrate ones). The high quality (almost defect-free) of the nanotubes synthesized by the "all-laser" approach, their protected tips into the embedded CoNi catalyst nanolayer together with their suspended geometry are thought to be responsible for their unprecedented ultra-high oxidation resistance. This opens up new prospects for the use of these suspended nanotubes into nanodevices that have to operate under highly oxidizing environments.

  19. Time-resolved laser-induced incandescence from multiwalled carbon nanotubes in air

    SciTech Connect

    Mitrani, J. M.; Shneider, M. N.

    2015-01-26

    We observed temporal laser-induced incandescence (LII) signals from multiwalled carbon nanotubes(MWCNTs) suspended in ambient air. Unlike previous LII experiments with soot particles, which showed that primary particles with larger diameters cool at slower timescales relative to smaller particles, we observed that thicker MWCNTs with larger outer diameters (ODs) cool at faster timescales relative to thinner MWCNTs with smaller ODs. We suggested a simple explanation of this effect, based on the solution of one-dimensional nonstationary heat conduction equation for the initial non-uniform heating of MWCNTs with ODs greater than the skin depth.

  20. Gravitation-dependent, thermally-induced self-diffraction in carbon nanotube solutions.

    PubMed

    Ji, Wei; Chen, Weizhe; Lim, Sanhua; Lin, Jianyi; Guo, Zhixin

    2006-10-02

    We report the observation of thermally-induced self-diffraction in carbon nanotube (CNT) solutions under the influence of the gravity. We present a theoretical model in which CNTs are assumed to obey the Boltzmman distribution law. Under the approximations of small temperature rise and a very narrow distribution of CNT masses, the model simulation is consistent with the data measured at low laser powers. An immediate application of such a gravitation-dependent characteristic is the optical measurement for molecular weights of CNTs.

  1. Confinement induced binding in noble gas atoms within a BN-doped carbon nanotube

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2015-02-01

    Confinement induced binding interaction patterns for noble gas atoms (Hen/m, Arn, Krn; n = 2, m = 3) atoms inside pristine and -BN doped (3, 3) single walled carbon nanotube (SWCNT) have been studied through density functional theory calculations. The kinetic stability for He dimer and trimer has been investigated at 100 K and 300 K through an ab initio molecular dynamics simulation. The positive role of doping in SWCNT in enhancing the nature of interaction as well as the kinetic stability of the said systems has been found.

  2. Ultrasonic-assisted synthesis of Pd-Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium.

    PubMed

    Yang, Guohai; Zhou, Yazhou; Pan, Horng-Bin; Zhu, Chengzhou; Fu, Shaofang; Wai, Chien M; Du, Dan; Zhu, Jun-Jie; Lin, Yuehe

    2016-01-01

    Herein, a facile ultrasonic-assisted strategy was proposed to fabricate the Pd-Pt alloy/multi-walled carbon nanotubes (Pd-Pt/CNTs) nanocomposites. A good number of Pd-Pt alloy nanoparticles with an average of 3.4 ± 0.5 nm were supported on sidewalls of CNTs with uniform distribution. The composition of the Pd-Pt/CNTs nanocomposites could also be easily controlled, which provided a possible approach for the preparation of other architectures with anticipated properties. The Pd-Pt/CNTs nanocomposites were extensively studied by electron microscopy, induced coupled plasma atomic emission spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, and applied for the ethanol and methanol electro-oxidation reaction in alkaline medium. The electrochemical results indicated that the nanocomposites had better electrocatalytic activities and stabilities, showing promising applications for fuel cells.

  3. Carbon nanotubes induce apoptosis resistance of human lung epithelial cells through FLICE-inhibitory protein.

    PubMed

    Pongrakhananon, Varisa; Luanpitpong, Sudjit; Stueckle, Todd A; Wang, Liying; Nimmannit, Ubonthip; Rojanasakul, Yon

    2015-02-01

    Chronic exposure to single-walled carbon nanotubes (SWCNT) has been reported to induce apoptosis resistance of human lung epithelial cells. As resistance to apoptosis is a foundation of neoplastic transformation and cancer development, we evaluated the apoptosis resistance characteristic of the exposed lung cells to understand the pathogenesis mechanism. Passage control and SWCNT-transformed human lung epithelial cells were treated with known inducers of apoptosis via the intrinsic (antimycin A and CDDP) or extrinsic (FasL and TNF-α) pathway and analyzed for apoptosis by DNA fragmentation, annexin-V expression, and caspase activation assays. Whole-genome microarray was performed to aid the analysis of apoptotic gene signaling network. The SWCNT-transformed cells exhibited defective death receptor pathway in association with cellular FLICE-inhibitory protein (c-FLIP) overexpression. Knockdown or chemical inhibition of c-FLIP abrogated the apoptosis resistance of SWCNT-transformed cells. Whole-genome expression signature analysis confirmed these findings. This study is the first to demonstrate carbon nanotube-induced defective death receptor pathway and the role of c-FLIP in the process.

  4. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction.

    PubMed

    Jang, Jun-Won; Park, Jae-Woo

    2014-05-30

    Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1M Na2SO4 containing 0.5wt% NH4F electrolyte, holding the potential at 20, 40, and 60V for 20min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40V for 20min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H2O2). In case of INT-40V in the presence of H2O2 3%, the first-order rate constant was found to be 1.7×10(-2)min(-1), and 1.2×10(-2)min(-1) with commercial hematite powder. Degradation of cyanide was much less with only H2O2. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  5. Significant Performance Enhancement in Asymmetric Supercapacitors based on Metal Oxides, Carbon nanotubes and Neutral Aqueous Electrolyte

    PubMed Central

    Singh, Arvinder; Chandra, Amreesh

    2015-01-01

    Amongst the materials being investigated for supercapacitor electrodes, carbon based materials are most investigated. However, pure carbon materials suffer from inherent physical processes which limit the maximum specific energy and power that can be achieved in an energy storage device. Therefore, use of carbon-based composites with suitable nano-materials is attaining prominence. The synergistic effect between the pseudocapacitive nanomaterials (high specific energy) and carbon (high specific power) is expected to deliver the desired improvements. We report the fabrication of high capacitance asymmetric supercapacitor based on electrodes of composites of SnO2 and V2O5 with multiwall carbon nanotubes and neutral 0.5 M Li2SO4 aqueous electrolyte. The advantages of the fabricated asymmetric supercapacitors are compared with the results published in the literature. The widened operating voltage window is due to the higher over-potential of electrolyte decomposition and a large difference in the work functions of the used metal oxides. The charge balanced device returns the specific capacitance of ~198 F g−1 with corresponding specific energy of ~89 Wh kg−1 at 1 A g−1. The proposed composite systems have shown great potential in fabricating high performance supercapacitors. PMID:26494197

  6. The electrochemiluminescence of luminol on titania nanotubes functionalised indium tin oxide glass for flow injection analysis.

    PubMed

    Zhao, Qun; Xiao, Changbin; Tu, Yifeng

    2015-10-01

    The titania nanotubes (TiNTs) had been immobilised onto the indium tin oxide (ITO) coated glass to intensify the electrochemiluminescence (ECL) of luminol. The morphology, structure and properties such as specific surface area and transmittance of synthesised TiNTs were characterised. The results indicated that the TiNTs was several hundred nanometres in length with the diameter of 20 nm. In flow injection analysis (FIA) mode, the TiNTs dramatically enhanced the ECL emission of luminol for about 25 multiple, meanwhile decreased the requirement of buffer pH and exciting potential. The ECL emission of luminol on functionalised ITO electrode has sensitive response toward hydrogen peroxide, and extraordinarily responsive toward the antioxidant. Under the optimal conditions, the ECL emission exhibited a linear response within the concentration range from 0.1 mg L(-1) to 30 mg L(-1) and an absolute detection limit of 1.65×10(-10) g of resveratrol. The gross antioxidant activity of blueberry and kiwi were determined with satisfactory recoveries.

  7. Significant Performance Enhancement in Asymmetric Supercapacitors based on Metal Oxides, Carbon nanotubes and Neutral Aqueous Electrolyte.

    PubMed

    Singh, Arvinder; Chandra, Amreesh

    2015-10-23

    Amongst the materials being investigated for supercapacitor electrodes, carbon based materials are most investigated. However, pure carbon materials suffer from inherent physical processes which limit the maximum specific energy and power that can be achieved in an energy storage device. Therefore, use of carbon-based composites with suitable nano-materials is attaining prominence. The synergistic effect between the pseudocapacitive nanomaterials (high specific energy) and carbon (high specific power) is expected to deliver the desired improvements. We report the fabrication of high capacitance asymmetric supercapacitor based on electrodes of composites of SnO2 and V2O5 with multiwall carbon nanotubes and neutral 0.5 M Li2SO4 aqueous electrolyte. The advantages of the fabricated asymmetric supercapacitors are compared with the results published in the literature. The widened operating voltage window is due to the higher over-potential of electrolyte decomposition and a large difference in the work functions of the used metal oxides. The charge balanced device returns the specific capacitance of ~198 F g(-1) with corresponding specific energy of ~89 Wh kg(-1) at 1 A g(-1). The proposed composite systems have shown great potential in fabricating high performance supercapacitors.

  8. Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Song, Ping'an; Liu, Lina; Fu, Shenyuan; Yu, Youming; Jin, Chunde; Wu, Qiang; Zhang, Yan; Li, Qian

    2013-03-01

    The extraordinary properties of carbon nanotubes (CNTs) and graphene stimulate the development of advanced composites. Recently, several studies have reported significant synergies in the mechanical, electrical and thermal conductivity properties of polymer nanocomposites by incorporating their nanohybrids. In this work, we created polypropylene nanocomposites with homogeneous dispersion of CNTs and reduced graphene oxides via a facile polymer-latex-coating plus melt-mixing strategy, and investigated their synergistic effects in their viscoelastic, gas barrier, and flammability properties. Interestingly, the results show remarkable synergies, enhancing their melt modulus and viscosity, O2 barrier, and flame retardancy properties and respectively exhibiting a synergy percentage of 15.9%, 45.3%, and 20.3%. As previously reported, we also observed remarkable synergistic effects in their tensile strength (14.3%) and Young’s modulus (27.1%), electrical conductivity (32.3%) and thermal conductivity (34.6%). These impressive results clearly point towards a new strategy to create advanced materials by adding binary combinations of different types of nanofillers.

  9. Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler.

    PubMed

    Kim, Jin-Young; Kim, TaeYoung; Suk, Ji Won; Chou, Harry; Jang, Ji-Hoon; Lee, Jong Ho; Kholmanov, Iskandar N; Akinwande, Deji; Ruoff, Rodney S

    2014-08-27

    The electrical conductivity and the specific surface area of conductive fillers in conductor-insulator composite films can drastically improve the dielectric performance of those films through changing their polarization density by interfacial polarization. We have made a polymer composite film with a hybrid conductive filler material made of carbon nanotubes grown onto reduced graphene oxide platelets (rG-O/CNT). We report the effect of the rG-O/CNT hybrid filler on the dielectric performance of the composite film. The composite film had a dielectric constant of 32 with a dielectric loss of 0.051 at 0.062 wt% rG-O/CNT filler and 100 Hz, while the neat polymer film gave a dielectric constant of 15 with a dielectric loss of 0.036. This is attributed to the increased electrical conductivity and specific surface area of the rG-O/CNT hybrid filler, which results in an increase in interfacial polarization density between the hybrid filler and the polymer.

  10. Palladium and gold nanotubes as oxygen reduction reaction and alcohol oxidation reaction catalysts in base.

    PubMed

    Alia, Shaun M; Duong, Kathlynne; Liu, Toby; Jensen, Kurt; Yan, Yushan

    2014-06-01

    Palladium (PdNTs) and gold nanotubes (AuNTs) were synthesized by the galvanic displacement of silver nanowires. PdNTs and AuNTs have wall thicknesses of 6 nm, outer diameters of 60 nm, and lengths of 5-10 and 5-20 μm, respectively. Rotating disk electrode experiments showed that the PdNTs and AuNTs have higher area normalized activities for the oxygen reduction reaction (ORR) than conventional nanoparticle catalysts. The PdNTs produced an ORR area activity that was 3.4, 2.2, and 3.7 times greater than that on carbon-supported palladium nanoparticles (Pd/C), bulk polycrystalline palladium, and carbon-supported platinum nanoparticles (Pt/C), respectively. The AuNTs produced an ORR area activity that was 2.3, 9.0, and 2.0 times greater than that on carbon-supported gold nanoparticles (Au/C), bulk polycrystalline gold, and Pt/C, respectively. The PdNTs also had lower onset potentials than Pd/C and Pt/C for the oxidation of methanol (0.236 V), ethanol (0.215 V), and ethylene glycol (0.251 V). In comparison to Pt/C, the PdNTs and AuNTs further demonstrated improved alcohol tolerance during the ORR.

  11. Highly ordered carbon nanotubes based on porous aluminum oxide: fabrication and mechanism.

    PubMed

    Pan, H; Gao, H; Lim, S H; Feng, Y P; Lin, J

    2005-02-01

    Highly ordered carbon nanotubes (CNTs) are wildly pursued due to their unique properties. Anodic aluminum oxide (AAO) exhibits great possibility for this purpose. Here, CNTs based on AAO template were produced using acetylene or ethylene as the hydrocarbon sources with or without the presence of Co catalysts. CNTs grown on the Co-embedded AAO samples were normally confined within the nanopores of the AAO template. It was found that C2H4 normally requires 100 degrees C higher pyrolysis temperature than C2H2 under otherwise identical conditions. The pyrolysis temperature is greatly reduced with the presence of Co catalysts. CNTs can grow out of the nanopores, if Co particles are present at the bottom of the nanopores and if the nanopores are short in length or large in diameter. The graphitization of AAO template grown CNTs was studied by Raman spectroscopy. The CNTs produced from ethylene are generally better in graphitization than those from acetylene, and the CNTs grown with the presence of Co catalysts deposited at the bottom of nanopores are better than those without Co catalysts or with Co catalysts coated on the entire inner wall of nanopores. The growth temperature is found not to play a critical role in graphitization.

  12. Electrochemical activity evaluation of chemically damaged carbon nanotube with palladium nanoparticles for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammad Shamsuddin; Jeon, Seungwon

    2015-05-01

    The carbon nanotube (CNT) has unique electrical and structural properties due to it's sp2 π-conjugative structure that leads to the higher electrocatalysis. The π-conjugative structure, that allows the CNT interact with various compounds and metal nanoparticles (NPs) through π-π electronic interaction. However, the damage of π-conjugative sidewall of CNT that can be hinder the electrocatalytic activity has found. For this study, the CNT, as base material, has been prepared through a conventional acid treatment method up to 15 h; the higher degree of sidewall damage has been observed in last 5 h during treatment period. The short and long term acid treated (denoted as CNT and CNT-COOH, respectively) CNTs have been subsequently fabricated with palladium NPs (denoted as CNT/Pd and CNT-Pd, respectively) and employed as ethanol oxidation reaction (EOR) catalysts. The CNT-Pd displays a poor electrocatalytic performance towards EOR than that of CNT/Pd due to the damage of π-conjugative sidewall. The kinetic parameters including poisoning tolerance have also been hampered by the surface damage. The CNT/Pd (∼3.3 folds) and CNT-Pd (∼1.5 folds) are express higher electrocatalytic activity and poisoning tolerance than that of Pd/C while Pd mass loading remains in the same amount.

  13. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  14. Nitrite Oxidation with Copper-Cobalt Nanoparticles on Carbon Nanotubes Doped Conducting Polymer PEDOT Composite.

    PubMed

    Wang, Junjie; Xu, Guiyun; Wang, Wei; Xu, Shenghao; Luo, Xiliang

    2015-09-01

    Copper-cobalt bimetal nanoparticles (Cu-Co) have been electrochemically prepared on glassy carbon electrodes (GCEs), which were electrodeposited with conducting polymer nanocomposites of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes (CNTs). Owing to their good conductivity, high mechanical strength, and large surface area, the PEDOT/CNTs composites offered excellent substrates for the electrochemical deposition of Cu-Co nanoparticles. As a result of their nanostructure and the synergic effect between Cu and Co, the Cu-Co/PEDOT/CNTs composites exhibited significantly enhanced catalytic activity towards the electrochemical oxidation of nitrite. Under optimized conditions, the nanocomposite-modified electrodes had a fast response time within 2 s and a linear range from 0.5 to 430 μm for the detection of nitrite, with a detection limit of 60 nm. Moreover, the Cu-Co/PEDOT/CNTs composites were highly stable, and the prepared nitrite sensors could retain more than 96 % of their initial response after 30 days.

  15. High Performance Carbon Nanotube Yarn Supercapacitors with a Surface-Oxidized Copper Current Collector.

    PubMed

    Zhang, Daohong; Wu, Yunlong; Li, Ting; Huang, Yin; Zhang, Aiqing; Miao, Menghe

    2015-11-25

    Threadlike linear supercapacitors have demonstrated high potential for constructing fabrics to power electronic textiles (eTextiles). To improve the cyclic electrochemical performance and to produce power fabrics large enough for practical applications, a current collector has been introduced into the linear supercapcitors to transport charges produced by active materials along the length of the supercapacitor with high efficiency. Here, we first screened six candidate metal filaments (Pt, Au, Ag, AuAg, PtCu, and Cu) as current collectors for carbon nanotube (CNT) yarn-based linear supercapacitors. Although all of the metal filaments significantly improved the electrochemical performance of the linear supercapacitor, two supercapacitors constructed from Cu and PtCu filaments, respectively, demonstrate far better electrochemical performance than the other four supercapacitors. Further investigation shows that the surfaces of the two Cu-containing filaments are oxidized by the surrounding polymer electrolyte in the electrode. While the unoxidized core of the Cu-containing filaments remains highly conductive and functions as a current collector, the resulting CuO on the surface is an electrochemically active material. The linear supercapacitor architecture incorporating dual active materials CNT + Cu extends the potential window from 1.0 to 1.4 V, leading to significant improvement to the energy density and power density.

  16. Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor.

    PubMed

    Shi, Peipei; Li, Li; Hua, Li; Qian, Qianqian; Wang, Pengfei; Zhou, Jinyuan; Sun, Gengzhi; Huang, Wei

    2017-01-24

    Solid-state fiber-based supercapacitors have been considered promising energy storage devices for wearable electronics due to their lightweight and amenability to be woven into textiles. Efforts have been made to fabricate a high performance fiber electrode by depositing pseudocapacitive materials on the outer surface of carbonaceous fiber, for example, crystalline manganese oxide/multiwalled carbon nanotubes (MnO2/MWCNTs). However, a key challenge remaining is to achieve high specific capacitance and energy density without compromising the high rate capability and cycling stability. In addition, amorphous MnO2 is actually preferred due to its disordered structure and has been proven to exhibit superior electrochemical performance over the crystalline one. Herein, by incorporating amorphous MnO2 onto a well-aligned MWCNT sheet followed by twisting, we design an amorphous MnO2@MWCNT fiber, in which amorphous MnO2 nanoparticles are distributed in MWCNT fiber uniformly. The proposed structure gives the amorphous MnO2@MWCNT fiber good mechanical reliability, high electrical conductivity, and fast ion-diffusion. Solid-state supercapacitor based on amorphous MnO2@MWCNT fibers exhibits improved energy density, superior rate capability, exceptional cycling stability, and excellent flexibility. This study provides a strategy to design a high performance fiber electrode with microstructure control for wearable energy storage devices.

  17. Silver-decorated orthorhombic nanotubes of lithium vanadium oxide: an impeder of bacterial growth and biofilm.

    PubMed

    Diggikar, Rahul S; Patil, Rajendra H; Kale, Sheetal B; Thombre, Dipalee K; Gade, Wasudeo N; Kulkarni, Milind V; Kale, Bharat B

    2013-09-01

    Reoccurrence of infectious diseases and ability of pathogens to resist antibacterial action has raised enormous challenges which may possibly be confronted by nanotechnology routes. In the present study, uniformly embedded silver nanoparticles in orthorhombic nanotubes of lithium vanadium oxide (LiV2O5/Ag) were explored as an impeder of bacterial growth and biofilm. The LiV2O5/Ag nanocomposites have impeded growth of Gram-positive Bacillus subtilis NCIM 2063 and Gram-negative Escherichia coli NCIM 2931 at 60 to 120 μg/mL. It also impeded the biofilm in Pseudomonas aeruginosa NCIM 2948 at 12.5 to 25 μg/mL. Impedance in the growth and biofilm occurs primarily by direct action of the nanocomposites on the cell surfaces of test organisms as revealed by surface perturbation in scanning electron microscopy. As the metabolic growth and biofilm formation phenomena of pathogens play a central role in progression of pathogenesis, LiV2O5/Ag nanocomposite-based approach is likely to curb the menace of reoccurrence of infectious diseases. Thus, LiV2O5/Ag nanocomposites can be viewed as a promising candidate in biofabrication of biomedical materials.

  18. Vanadium oxide-carbon nanotube composite films characterized by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    He, Qiong; Xu, Xiangdong; Gu, Yu; Wang, Meng; Yao, Jie; Jiang, Yadong; Sun, Minghui; Ao, Tianhong; Lian, Yuxiang; Wang, Fu; Li, Xinrong

    2016-10-01

    Spectroscopic ellipsometry (SE) is utilized to characterize the vanadium oxide (VO x )-single walled carbon nanotube (SWCNT) composite films prepared by sol-gel. Five Tauc-Lorentz oscillators model is employed to describe the dispersions in the optical responses of VO x and VO x -SWCNT thin films. Results reveal that if the SWCNT concentration in the composite film is increased, the refractive index is decreased, while the extinction coefficient is increased. Moreover, higher SWCNT content leads to lower optical band gap (E g) but larger localized state (E e). Interestingly, both E g and E e values reach saturated at a SWCNT content of ~8 wt%. Particularly, the peak transition energies of the 5 Tauc-Lorentz oscillators have been assigned to the specific transitions according to the band structures of VO x . This work reveals the feasibility of investigating the optical properties and microstructures of VO x -SWCNT composite films by SE. These experimental results will be helpful for better understanding the VO x -SWCNT composite films, and promoting future characterizations of other SWCNT-based composites by SE.

  19. Hydroxylation of multi-walled carbon nanotubes: Enhanced biocompatibility through reduction of oxidative stress initiated cell membrane damage, cell cycle arrestment and extrinsic apoptotic pathway.

    PubMed

    Liu, Zhenbao; Liu, Yanfei; Peng, Dongming

    2016-10-01

    Modification of CNTs with hydroxyl group promotes their applications in biomedical area. However, the impact of hydroxylation on their biocompatibility is far from being completely understood. In this study, we carried out a comprehensive evaluation of hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) on the human normal liver L02 cell line, and compared it with that of pristine multi-walled carbon nanotubes (p-MWCNTs). Results demonstrated that compared with p-MWCNTs, MWCNTs-OH induced significantly lower oxidative stress as indicated by the level of intracellular antioxidant glutathione (GSH), subsequently lead to less cell membrane damage as demonstrated by lactate dehydrogenase (LDH) leakage assay, and showed slightly decreased arrestment of cell cycle distribution at G0/G1. More interestingly, MWCNTs-OH exhibited significantly lower tendency to activate caspase-8, a key molecule involved in the extrinsic apoptotic pathway. All these in vitro results demonstrated that hydroxylation of MWCNTs enhanced their biocompatibility compare with p-MWCNTs.

  20. Immobilization of natural anti-oxidants on carbon nanotubes and aging behavior of ultra-high molecular weight polyethylene-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Dintcheva, Nadka Tzankova; Arrigo, Rossella; Gambarotti, Cristian; Guenzi, Monica; Carroccio, Sabrina; Cicogna, Francesca; Filippone, Giovanni

    2014-05-01

    The use of natural antioxidants is an attractive way to formulate nanocomposites with extended durability and with potential applications in bio-medical field. In this work, Vitamin E (VE) in the form of α-tocopherol and Quercetin (Q) are physically immobilized on the outer surface of multi-walled carbon nanotubes (CNTs). Afterward, the CNTs-VE and CNTs-Q are used to formulate thermally stable ultra high molecular weight polyethylene based nanocomposites. The obtained results in the study of the thermo-oxidation behavior suggest a beneficial effect of the natural anti-oxidant carbon nanotubes systems. The unexpected excellent thermo-resistance of the nanocomposites seems to be due to a synergistic effect of the natural anti-oxidant and carbon nanotubes, i.e. strong interaction between CNT surface and anti-oxidant molecules. Particularly, these interactions cause the formation of structural defects onto outer CNT surfaces, which, in turn, increase the CNT radical scavenging activity.

  1. Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol.

    PubMed

    Yang, Shaoxia; Wang, Xingang; Yang, Hongwei; Sun, Yu; Liu, Yunxia

    2012-09-30

    Multi-walled carbon nanotubes (MWCNTs) functionalized by different oxidants (HNO(3)/H(2)SO(4), H(2)O(2), O(3) and air) have been used as catalysts for the wet air oxidation of phenol. To investigate the effect of the oxidation conditions on the structure of the functionalized MWCNTs, various characterization techniques, e.g., scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) have been used. The MWCNTs treated with O(3) and H(2)O(2) show higher amounts of oxygen-containing functional groups and carboxylic acid groups, and a weaker acidic nature, in comparison with those treated with other oxidizing agents. All the functionalized MWCNTs exhibit good activity in the catalytic wet air oxidation (CWAO) of phenol. However, the MWCNTs treated with O(3) show the highest activity with desirable stability in comparison with other functionalized MWCNTs, indicating that the functionalization of carbon nanotubes with O(3) is a very promising strategy in synthesizing efficient catalysts for CWAO.

  2. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    SciTech Connect

    Liang, Shibo; Zhang, Zhiyong Si, Jia; Zhong, Donglai; Peng, Lian-Mao

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2 V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  3. Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells

    PubMed Central

    V, Lakshman Kumar; Ntim, Susana Addo; Sae-Khow, Ornthida; Janardhana, Chelli; Lakshminarayanan, V.; Mitra, Somenath

    2012-01-01

    Microwave induced reactions for immobilizing platinum and palladium nanoparticles on multiwall carbon nanotubes are presented. The resulting hybrid materials were used as catalysts for direct methanol, ethanol and formic acid oxidation in acidic as well as alkaline media. The electrodes are formed by simply mixing the hybrids with graphite paste, thus using a relatively small quantity of the precious metal. We report Tafel slopes and apparent activation energies at different potentials and temperatures. Ethanol electro-oxidation with the palladium hybrid showed an activation energy of 7.64 kJmol−1 which is lower than those observed for other systems. This system is economically attractive because Pd is significantly less expensive than Pt and ethanol is fast evolving as a commercial biofuel. PMID:23118490

  4. Mechanisms of Radiation Induced Effects in Carbon Nanotubes

    DTIC Science & Technology

    2016-10-01

    8725 John J. Kingman Road, MS 6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-17-5 Mechanisms of Radiation-Induced...CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 00-10-2016 Final Oct 5, 2010 - Dec 31, 2015 Mechanisms of...primary outcome of this program, determined using both theory and experiment, has been a complete understanding of the mechanisms of radiation damage

  5. Design of covalently functionalized carbon nanotubes filled with metal oxide nanoparticles for imaging, therapy, and magnetic manipulation.

    PubMed

    Liu, Xiaojie; Marangon, Iris; Melinte, Georgian; Wilhelm, Claire; Ménard-Moyon, Cécilia; Pichon, Benoit P; Ersen, Ovidiu; Aubertin, Kelly; Baaziz, Walid; Pham-Huu, Cuong; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Bégin, Dominique

    2014-11-25

    Nanocomposites combining multiple functionalities in one single nano-object hold great promise for biomedical applications. In this work, carbon nanotubes (CNTs) were filled with ferrite nanoparticles (NPs) to develop the magnetic manipulation of the nanotubes and their theranostic applications. The challenges were both the filling of CNTs with a high amount of magnetic NPs and their functionalization to form biocompatible water suspensions. We propose here a filling process using CNTs as nanoreactors for high-yield in situ growth of ferrite NPs into the inner carbon cavity. At first, NPs were formed inside the nanotubes by thermal decomposition of an iron stearate precursor. A second filling step was then performed with iron or cobalt stearate precursors to enhance the encapsulation yield and block the formed NPs inside the tubes. Water suspensions were then obtained by addition of amino groups via the covalent functionalization of the external surface of the nanotubes. Microstructural and magnetic characterizations confirmed the confinement of NPs into the anisotropic structure of CNTs making them suitable for magnetic manipulations and MRI detection. Interactions of highly water-dispersible CNTs with tumor cells could be modulated by magnetic fields without toxicity, allowing control of their orientation within the cell and inducing submicron magnetic stirring. The magnetic properties were also used to quantify CNTs cellular uptake by measuring the cell magnetophoretic mobility. Finally, the photothermal ablation of tumor cells could be enhanced by magnetic stimulus, harnessing the hybrid properties of NP loaded-CNTs.

  6. Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries

    PubMed Central

    Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Shapter, Joseph G.; Yin, Ting; Sun, Rongjin; Cui, Daxiang

    2015-01-01

    An effective one-pot hydrothermal method for in situ filling of multi-wall carbon nanotubes (CNT, diameter of 20–40 nm, length of 30–100 μm) with ultrafine ferroferric oxide (Fe3O4) nanoparticles (8–10 nm) has been demonstrated. The synthesized Fe3O4@CNT exhibited a mesoporous texture with a specific surface area of 109.4 m2 g−1. The loading of CNT, in terms of the weight ratio of Fe3O4 nanoparticles, can reach as high as 66.5 wt%. Compared to the conventional method of using a Al2O3 membrane as template to fill CNT with iron oxides nanoparticles, our strategy is facile, effective, low cost and easy to scale up to large scale production (~1.42 g per one-pot). When evaluated for lithium storage at 1.0 C (1 C = 928 mA g−1), the mesoporous Fe3O4@CNT can retain at 358.9 mAh g−1 after 60 cycles. Even when cycled at high rate of 20 C, high capacity of 275.2 mAh g−1 could still be achieved. At high rate (10 C) and long life cycling (500 cycles), the cells still exhibit a good capacity of 137.5 mAhg−1. PMID:26631536

  7. High-performance hydrogen production and oxidation electrodes with hydrogenase supported on metallic single-wall carbon nanotube networks.

    PubMed

    Svedružić, Draženka; Blackburn, Jeffrey L; Tenent, Robert C; Rocha, John-David R; Vinzant, Todd B; Heben, Michael J; King, Paul W

    2011-03-30

    We studied the electrocatalytic activity of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaH2ase) immobilized on single-wall carbon nanotube (SWNT) networks. SWNT networks were prepared on carbon cloth by ultrasonic spraying of suspensions with predetermined ratios of metallic and semiconducting nanotubes. Current densities for both proton reduction and hydrogen oxidation electrocatalytic activities were at least 1 order of magnitude higher when hydrogenase was immobilized onto SWNT networks with high metallic tube (m-SWNT) content in comparison to hydrogenase supported on networks with low metallic tube content or when SWNTs were absent. We conclude that the increase in electrocatalytic activities in the presence of SWNTs was mainly due to the m-SWNT fraction and can be attributed to (i) substantial increases in the active electrode surface area, and (ii) improved electronic coupling between CaH2ase redox-active sites and the electrode surface.

  8. Can metal-free silicon-doped hexagonal boron nitride nanosheets and nanotubes exhibit activity toward CO oxidation?

    PubMed

    Lin, Sen; Ye, Xinxin; Huang, Jing

    2015-01-14

    Si-doped hexagonal boron nitride nanosheets (Si-BNNS) and nanotubes (Si-BNNT) have been investigated by first-principle methods. The strong interaction between the silicon atom and the hexagonal boron nitride nanosheet or nanotube with a boron vacancy indicates that such nanocomposites should be very stable. The significant charge transfer from the Si-BNNS substrate to the O2 molecule, which could occupy the antibonding 2π* orbitals of O2, results in the activation of the adsorbed O2. The catalytic activity of the Si-BNNS for CO oxidation is explored and the calculated barrier (0.29 eV) of the reaction CO + O2→ CO2 + O is much lower than those on the traditional noble metals. This opens a new avenue to fabricate low cost and high activity boron nitride-based metal-free catalysts.

  9. Investigation of the H2S poisoning process for sensing composite material based on carbon nanotubes and metal oxides

    PubMed Central

    Duan, Yichen; Pirolli, Laurent; Teplyakov, Andrew V.

    2016-01-01

    The poisoning of H2S sensing material based on the mixture of acid-treated carbon nanotubes, CuO and SnO2 was investigated by exposing the material to high doses of H2S (1% in volume) and following the changes spectroscopically. The presence of metal sulfides (CuS and SnS2), sulfates and thiols was confirmed on the surface of this material as the result of H2S poisoning. Further study revealed that leaving this material in air for extended period of time led to reoxidation of metal sulfides back to metal oxides. The formation of thiols and sulfates directly on carbon nanotubes is not reversible under these conditions; however, the extent of the overall surface reaction in this case is substantially lower than that for the composite material. PMID:27812240

  10. Electrochemical functionalization of vertically aligned carbon nanotube arrays with molybdenum oxides for the development of a surface-charge-controlled sensor

    NASA Astrophysics Data System (ADS)

    Ye, Jian-Shan; Wen, Ying; Wei-DeZhang; Cui, Hui Fang; Xu, Guo Qin; Sheu, Fwu-Shan

    2006-08-01

    The modification of inorganic polymeric oxides at the surface of carbon nanotubes is of paramount importance for developing new sensors. In this study, molybdenum oxide (MoOx) film was electrodeposited on the surface of multi-walled carbon nanotubes (MWNTs) by cycling the potential between +0.20 and -0.80 V (versus 3 M KCl-Ag|AgCl) in Na2MoO4 solution. The MoOx-modified nanotube (MoOx/MWNT) electrode displays well-defined redox transitions in 5 mM H2SO4 or in phosphate buffer solution (PBS), which can be attributed to the reductive formation and the re-oxidation of hydrogen molybdenum oxides. X-ray photoelectron spectra (XPS) showed that the deposited MoOx films are mainly Mo6+ complexes. Both MWNT and MoOx/MWNT electrodes have ideal reversibility in 5 mM K3[Fe(CN)6] in 1 M KCl as supporting electrolytes at all sweep rates (0.02-1.00 V s-1) by cyclic voltammetry. The negatively charged surface of MoOx/MWNTs can further attract molecular cations such as Ru(NH3)63+. The MoOx/MWNT electrode exhibited electrocatalytic ability towards the reduction of bromate due to high surface area and the fast electron transfer rate of nanotubes. Thus, electrochemical modification of inorganic polymeric oxides on the carbon nanotube provides a simple method for the preparation of novel sensors.

  11. Self-Supported PtAuP Alloy Nanotube Arrays with Enhanced Activity and Stability for Methanol Electro-Oxidation.

    PubMed

    Zhang, Lili; Ding, Liang-Xin; Chen, Hongbin; Li, Dongdong; Wang, Suqing; Wang, Haihui

    2017-02-21

    Inhibiting CO formation can more directly address the problem of CO poisoning during methanol electro-oxidation. In this study, 1D self-supported porous PtAuP alloy nanotube arrays (ANTAs) are synthesized via a facile electro-codeposition approach and present enhanced activity and improved resistance to CO poisoning through inhibiting CO formation (non-CO pathway) during the methanol oxidation reaction in acidic medium. This well-controlled Pt-/transition metal-/nonmetal ternary nanostructure exhibits a specific electroactivity twice as great as that of PtAu alloy nanotube arrays and Pt/C. At the same time, PtAuP ANTAs show a higher ratio of forward peak current density (If ) to backward peak current density (Ib ) (2.34) than PtAu ANTAs (1.27) and Pt/C (0.78). The prominent If /Ib value of PtAuP ANTAs indicates that most of the intermediate species are electro-oxidized to carbon dioxide in the forward scan, which highlights the high electroactivity for methanol electro-oxidation.

  12. Adsorption of Toluene and Paraxylene from Aqueous Solution Using Pure and Iron Oxide Impregnated Carbon Nanotubes: Kinetics and Isotherms Study

    PubMed Central

    Abbas, Aamir; Ihsanullah; Al-Baghli, Nadhir A. H.

    2017-01-01

    Multiwall carbon nanotubes (CNTs) and iron oxide impregnated carbon nanotubes (CNTs-iron oxide) were investigated for the adsorption of hazardous toluene and paraxylene (p-xylene) from aqueous solution. Pure CNTs were impregnated with iron oxides nanoparticles using wet impregnation technique. Various characterization techniques including thermogravimetric analysis, scanning electron microscopy, elemental dispersion spectroscopy, X-ray diffraction, and nitrogen adsorption analysis were used to study the thermal degradation, surface morphology, purity, and surface area of the materials. Batch adsorption experiments show that iron oxide impregnated CNTs have higher degree of removal of p-xylene (i.e., 90%) compared with toluene (i.e., 70%), for soaking time 2 h, with pollutant initial concentration 100 ppm, at pH 6 and shaking speed of 200 rpm at 25°C. Pseudo-second-order model provides better fitting for the toluene and p-xylene adsorption. Langmuir and Freundlich isotherm models demonstrate good fitting for the adsorption data of toluene and p-xylene. PMID:28386208

  13. Ion channel mimetic membranes and silica nanotubes prepared from porous aluminum oxide templates

    NASA Astrophysics Data System (ADS)

    Mitchell, David Tanner

    Chapter 1 provides background information on the template synthesis of nanomaterials. The template synthesis method is examined with special attention to the use of membranes containing monodisperse cylindrical pores as templates. Several examples of the utility of template-synthesized nanomaterials are given. The production of one type of template membrane, nanopore alumina, is reviewed. Reviews of sol-gel and silane chemistry are also provided. In Chapter 2, a sol-gel template synthesis process is used to produce silica nanotubes within the pores of alumina templates. The nanotubes can be modified using a variety of chemistries, typically via a silanization process. Because the nanotubes are formed in a template, the interior and exterior surface can be modified independently. Modified nanotubes can be used for drug detoxification or as extractants for the removal of metal ions. The nanotube surface can also be biotinylated, which causes binding to avidinated surfaces. Composite microtubes of silica and various polymers are also prepared. Additionally, Au nanowires are shown to assemble with colloidal Au particles using dithiols as linkers. Chapter 3 describes the attachment of proteins onto template-synthesized silica nanotubes. The proteins are covalently linked via an aldehyde silane bridge that binds to pendant primary amino moieties on the protein. Protein-modified nanotubes function as highly specific extractants. Avidin-modified nanotubes extract biotin-coated Au nanoparticles from solution with high extraction efficiency. Immunoprotein-modified nanotubes extract the corresponding antibody from solution with high specificity. Antibody-modified nanotubes extract one enantiomer from a racemic mix. Enzymes, including drug detoxification enzymes, were also attached to the nanotubes and were shown to retain their catalytic activity. Immunoproteins on the outside of nanotubes can be used to direct nanotube binding, creating specific labeling agents. Chapter 4

  14. Charge-induced anisotropic distortions of semiconducting and metallic carbon nanotubes.

    PubMed

    Gartstein, Yu N; Zakhidov, A A; Baughman, R H

    2002-07-22

    To accommodate extra electrons or holes injected into a single-wall carbon nanotube, carbon-carbon bonds adjust their lengths. Resulting changes in carbon-nanotube length as a function of charge injection provide the basis for electromechanical actuators. We show that a key mechanism at low injection levels, modulation of electron kinetic energy, provides nanotube deformations that are both anisotropic and strongly dependent on nanotube structure. Nanotubes can exhibit both expansion and contraction, as well as nonmonotonic size changes. The magnitude of the actuation response of semiconducting carbon nanotubes may be substantially larger than that of graphite.

  15. Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods.

    PubMed

    Fulati, Alimujiang; Ali, Syed M Usman; Riaz, Muhammad; Amin, Gul; Nur, Omer; Willander, Magnus

    2009-01-01

    ZnO nanotubes and nanorods grown on gold thin film were used to create pH sensor devices. The developed ZnO nanotube and nanorod pH sensors display good reproducibility, repeatability and long-term stability and exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl reference electrode over a large dynamic pH range. We found the ZnO nanotubes provide sensitivity as high as twice that of the ZnO nanorods, which can be ascribed to the fact that small dimensional ZnO nanotubes have a higher level of surface and subsurface oxygen vacancies and provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods, thus affording the ZnO nanotube pH sensor a higher sensitivity. Experimental results indicate ZnO nanotubes can be used in pH sensor applications with improved performance. Moreover, the ZnO nanotube arrays may find potential application as a novel material for measurements of intracellular biochemical species within single living cells.

  16. Interelectrode bridging of carbon nanotube fibrous assembly induced by gas discharge breakdown

    NASA Astrophysics Data System (ADS)

    Sato, Hideki; Mizushima, Yuuki; Komatsu, Yusuke

    2017-01-01

    In this work, we demonstrate a fibrous assembly of carbon nanotubes (CNTs) induced by a gas discharge breakdown that bridge the distance between two planar electrodes. To achieve this, we placed the two planar electrodes, one of which was covered with a CNT film, in a chamber; a vacuum pump was used to evacuate the air from the chamber and replace it with inert gas. By then applying a voltage between the electrodes, we induced a discharge breakdown between them. This caused the CNTs coated on the electrode surface to detach and form fibrous assemblies. The assemblies elongated and reached the opposite electrode, thereby creating bridges between the electrodes. These bridges formed when the gas pressure was greater than ca. 1.0 × 103 Pa and in combination with the occurrence of a spark discharge. At lower pressures, a glow discharge occurred, and no bridge formation was observed, indicating that the discharge mode is critical for the bridge formation.

  17. Charge trapping in aligned single-walled carbon nanotube arrays induced by ionizing radiation exposure

    SciTech Connect

    Esqueda, Ivan S.; Cress, Cory D.; Che, Yuchi; Cao, Yu; Zhou, Chongwu

    2014-02-07

    The effects of near-interfacial trapping induced by ionizing radiation exposure of aligned single-walled carbon nanotube (SWCNT) arrays are investigated via measurements of gate hysteresis in the transfer characteristics of aligned SWCNT field-effect transistors. Gate hysteresis is attributed to charge injection (i.e., trapping) from the SWCNTs into radiation-induced traps in regions near the SWCNT/dielectric interface. Self-consistent calculations of surface-potential, carrier density, and trapped charge are used to describe hysteresis as a function of ionizing radiation exposure. Hysteresis width (h) and its dependence on gate sweep range are investigated analytically. The effects of non-uniform trap energy distributions on the relationship between hysteresis, gate sweep range, and total ionizing dose are demonstrated with simulations and verified experimentally.

  18. Rotating-Electric-Field-Induced Carbon-Nanotube-Based Nanomotor in Water: A Molecular Dynamics Study.

    PubMed

    Rahman, Md Mushfiqur; Chowdhury, Mokter Mahmud; Alam, Md Kawsar

    2017-03-29

    Using molecular dynamics simulations, it is shown that a carbon nanotube (CNT) suspended in water and subjected to a rotating electric field of proper magnitude and angular speed can be rotated with the aid of water dipole orientations. Based on this principle, a rotational nanomotor structure is designed and the system is simulated in water. Use of the fast responsiveness of electric-field-induced CNT orientation in water is employed and its operation at ultrahigh-speed (over 10(11) r.p.m.) is shown. To explain the basic mechanism, the behavior of the rotational actuation, originated from the water dipole orientation, is also analyzed . The proposed nanomotor is capable of rotating an attached load (such as CNT) at a precise angle as well as nanogear-based complex structures. The findings suggest potential way of using the electric-field-induced CNT rotation in a polarizable fluids as a novel tool to operate nanodevices and systems.

  19. Second harmonic generation in carbon nanotubes induced by transversal electrostatic field.

    PubMed

    Trolle, Mads Lund; Pedersen, Thomas Garm

    2013-08-14

    Carbon nanotubes (CNTs) of armchair and zigzag type contain an inversion centre, and are thus intrinsically unable to generate dipole even-order nonlinearities, such as second harmonic generation (SHG). Breaking the inversion symmetry by application of an external voltage transversal to the CNT axis will, however, induce a second harmonic response. Similarly, additional non-vanishing second harmonic tensor elements will be induced in chiral tubes already displaying an intrinsic response. Many geometries realizing such a setup can be envisaged, e.g., an experimental gate setup or deposition of CNTs on, or integration in, strongly polarized host media, perhaps facilitating a tunable second harmonic response. In this work, we calculate the SHG signal from CNTs under transversally applied electric fields based on a tight-binding model.

  20. Non uniform shrinkages of double-walled carbon nanotube as induced by electron beam irradiation

    SciTech Connect

    Zhu, Xianfang Li, Lunxiong; Gong, Huimin; Yang, Lan; Sun, Chenghua

    2014-09-01

    Electron beam-induced nanoinstabilities of pristine double-walled carbon nanotubes (DWCNTs) of two different configurations, one fixed at both ends and another fixed at only one end, were in-situ investigated in transmission electron microscope at room temperature. It was observed that the DWCNT fixed at both ends shrank in its diameter uniformly. Meanwhile, the DWCNT fixed at only one end intriguingly shrank preferentially from its free cap end along its axial direction whereas its diameter shrinkage was offset. A mechanism of “diffusion” along with “evaporation” at room temperature which is driven by the nanocurvature of the DWCNTs, and the athermal activation induced by the electron beam was proposed to elucidate the observed phenomena. The effect of the interlayer interaction of the DWCNTs was also discussed.

  1. First-Principles Simulations of Chemical Reactions in an HCl Molecule Embedded inside a C or BN Nanotube Induced by Ultrafast Laser Pulses

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki; Zhang, Hong; Rubio, Angel

    2010-12-01

    We show by first-principles simulations that ultrafast laser pulses induce different chemical reactions in a molecule trapped inside a nanotube. A strong laser pulse polarized perpendicular to the tube axis induces a giant bond stretch of an encapsulated HCl molecule in semiconducting carbon nanotube or in a BN nanotube. Depending on the initial orientation of the HCl molecule, the subsequent laser-induced dynamics is different: either complete disintegration or rebonding of the HCl molecule. Radial motion of the nanotube is always observed and a vacancy appears on the tube wall when the HCl is perpendicular to the tube axis. Those results are important to analyze confined nanochemistry and to manipulate molecules and nanostructures encapsulated in organic and inorganic nanotubes.

  2. First-principles simulations of chemical reactions in an HCl molecule embedded inside a C or BN nanotube induced by ultrafast laser pulses.

    PubMed

    Miyamoto, Yoshiyuki; Zhang, Hong; Rubio, Angel

    2010-12-10

    We show by first-principles simulations that ultrafast laser pulses induce different chemical reactions in a molecule trapped inside a nanotube. A strong laser pulse polarized perpendicular to the tube axis induces a giant bond stretch of an encapsulated HCl molecule in semiconducting carbon nanotube or in a BN nanotube. Depending on the initial orientation of the HCl molecule, the subsequent laser-induced dynamics is different: either complete disintegration or rebonding of the HCl molecule. Radial motion of the nanotube is always observed and a vacancy appears on the tube wall when the HCl is perpendicular to the tube axis. Those results are important to analyze confined nanochemistry and to manipulate molecules and nanostructures encapsulated in organic and inorganic nanotubes.

  3. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes.

    PubMed

    Hegde, Rajesh N; Hosamani, Ragunatharaddi R; Nandibewoor, Sharanappa T

    2009-09-01

    The voltammetric oxidation of cinnarizine was investigated. In pH 2.5 Britton-Robinson buffer, cinnarizine shows an irreversible oxidation peak at about 1.20 V at a multi-walled carbon nanotube (MWCNT)-modified glassy carbon electrode. The cyclic voltammetric results indicate that MWCNT-modified glassy carbon electrode can remarkably enhance electrocatalytic activity towards the oxidation of cinnarizine. The electrocatalytic behavior was further exploited as a sensitive detection scheme for the cinnarizine determination by differential-pulse voltammetry. Under optimized conditions, the concentration range and detection limit are 9.0x10(-8) to 6.0x10(-6) M and 2.58x10(-9) M, respectively for cinnarizine. The proposed method was successfully applied to cinnarizine determination in pharmaceutical samples. The analytical performance of this sensor has been evaluated for the detection of analyte in urine as a real sample.

  4. Copper oxide decorated multi-walled carbon nanotubes/ferroelectric liquid crystal composites for faster display devices

    NASA Astrophysics Data System (ADS)

    Malik, Anu; Prakash, Jai; Kumar, Anil; Dhar, Ajay; Biradar, Ashok M.

    2012-09-01

    We present faster display devices based on copper oxide decorated multi-walled carbon nanotubes (MWCNTs) doped ferroelectric liquid crystal (FLC) material. The fastening of the response has been attributed to decrease in rotational viscosity of the FLC material. The ionic impurities were also reduced by doping copper oxide decorated MWCNTs into the FLC material, and the reduction has been attributed to trapping of ions by the guest copper oxide decorated MWCNTs. The observations of fastening the response and reduction of ionic impurities have been verified by experimental data using dielectric and electro-optical studies. The underlying mechanism would certainly help to understand the basic mechanism of interaction of CNTs with FLC molecules and could be applied to fabricate ionic defects free faster display devices.

  5. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Gating of Water Flow Induced by Bending of a Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Shen; Lu, Hang-Jun; Tu, Yu-Song; Wang, Chun-Lei; Fang, Hai-Ping

    2009-06-01

    The ON-OFF state transition of the water transport induced by the structural bending of a carbon nanotube is studied by molecule dynamics simulation. The water permeation through a bent carbon nanotube shows excellent gating property with a threshold bending angle of about 14.6°. We also investigate the water density distribution inside the nanochannel to illustrate the mechanism.

  6. Hydroxyl radical induced photo-transformation of single-walled carbon nanotubes in the aquatic environment

    EPA Science Inventory

    Inevitably, the growth in production of carbon nanotubes will translate into their release into our environment, yet existing information about their fate and persistence is limited. We hypothesize that indirect photochemical transformation of unfunctionalized carbon nanotubes is...

  7. Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production

    PubMed Central

    Fan, Yanli; Su, Feng; Li, Kai; Ke, Caixia; Yan, Yunjun

    2017-01-01

    Superparamagnetic multi-walled carbon nanotubes (mMWCNTs) were prepared by filling multi-walled carbon nanotubes (MWCNTs) with iron oxide, and further modified by linking polyamidoamine (PAMAM) dendrimers (mMWCNTs-PAMAM) on the surface. Then, mMWCNTs-PAMAM was employed as the carrier and successfully immobilized Burkholderia cepacia lipase (BCL) via a covalent method (BCL-mMWCNTs-G3). The maximum activity recovery of the immobilized lipase was 1,716% and the specific activity increased to 77,460 U/g-protein, 17-fold higher than that of the free enzyme. The immobilized lipase displayed significantly enhanced thermostability and pH-resistance, and could efficiently catalyze transesterification to produce biodiesel at a conversion rate of 92.8%. Moreover, it possessed better recycling performance. After 20 cycles of repeated used, it still retained ca. 90% of its original activity, since the carbon nanotube−enzyme conjugates could be easily separated from the reaction mixture by using a magnet. This study provides a new perspective for biotechnological applications by adding a magnetic property to the unique intrinsic properties of nanotubes. PMID:28358395

  8. Ultra-fast aqueous Li-ion redox energy storage from vanadium oxide-carbon nanotube yarn electrodes

    NASA Astrophysics Data System (ADS)

    Smithyman, Jesse; Do, Quyet H.; Zeng, Changchun; Liang, Zhiyong

    2015-03-01

    Half-cell electrochemical characterizations were conducted on carbon nanotube-vanadium oxide (CNT-VOx) yarn electrodes in an 8 M LiCl aqueous electrolyte. A supercritical fluid deposition and in-situ oxidation process was utilized to deposit nanoscale coatings of vanadium oxide on carbon nanotube (CNT) surfaces throughout the porous structure of CNT yarns. The high surface area, interconnected pore structure and high electrical conductivity of the CNT yarn enabled extraordinary rate capabilities from the high capacity Li/VOx system. High-rate cyclic voltammetry scans, requiring current densities of hundreds of amperes per gram of electrode mass, produced rectangular voltammograms with distinguishable redox peaks from Li-ion intercalation/deintercalation. Capacitances of over 150 F g-1 were achieved at a scan rate of 5 V s-1 over a 1.2 V potential window resulting in an energy density of >32 Wh kg-1 (>30 Wh L-1) for the yarn electrode. The charge storage also showed good reversibility when cycled over this large potential window, maintaining 90% of the capacitance after 100 cycles at a scan rate of 2 V s-1. Electrochemical impedance spectroscopy shows the frequency dependent behavior is distinctly lacking of the characteristic responses from the rate-limiting processes associated with faradaic charge storage in VOx.

  9. Multifunctional, biocompatible and pH-responsive carbon nanotube- and graphene oxide/tectomer hybrid composites and coatings.

    PubMed

    Garriga, Rosa; Jurewicz, Izabela; Seyedin, Shayan; Bardi, Niki; Totti, Stella; Matta-Domjan, Brigitta; Velliou, Eirini G; Alkhorayef, Mohammed A; Cebolla, Vicente L; Razal, Joselito M; Dalton, Alan B; Muñoz, Edgar

    2017-02-10

    Here we present a route for non-covalent functionalization of carboxylated multi-walled carbon nanotubes and graphene oxide with novel two-dimensional peptide assemblies. We show that self-assembled amino-terminated biantennary and tetraantennary oligoglycine peptides (referred to as tectomers) effectively coat carboxylated multi-walled carbon nanotubes and also strongly interact with graphene oxide due to electrostatic interactions and hydrogen bonding as the driving force, respectively. The resulting hybrids can be made into free-standing conducting composites or applied in the form of thin, pH-switchable bioadhesive coatings onto graphene oxide fibers. Monitoring of cell viability of pancreatic cell lines, seeded on those CNT hybrids, show that they can be used as two- and three-dimensional scaffolds to tissue engineer tumour models for studying ex vivo the tumour development and response to treatment. This highly versatile method in producing pH-responsive hybrids and coatings offers an attractive platform for a variety of biomedical applications and for the development of functional materials such as smart textiles, sensors and bioelectronic devices.

  10. Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene.

    PubMed

    Gao, Yanshan; Zhang, Yu; Williams, Gareth R; O'Hare, Dermot; Wang, Qiang

    2016-10-18

    Aqueous miscible organic layered double hydroxides (AMO-LDHs) can act as organophilic inorganic flame retardant nanofillers for unmodified non-polar polymers. In this contribution, AMO [Mg3Al(OH)8](CO3)0.5·yH2O LDH-oxidized carbon nanotube (AMO-LDH-OCNT) hybrids are shown to perform better than the equivalent pure AMO-LDH. A synergistic effect between the AMO-LDH and OCNT was observed; this endows the hybrid material with enhanced flame retardancy, thermal stability, and mechanical properties. The thermal stability of polypropylene (PP) was significantly enhanced by adding AMO-LDH-OCNT hybrids. For PP mixed with AMO-LDH-OCNT hybrids to produce a composite with 10 wt% LDH and 2 wt% OCNT, the 50% weight loss temperature was increased by 43 °C. Further, a system with 10 wt% of AMO-LDH and 1 wt% OCNT showed a peak heat release rate (PHRR) reduction of 40%, greater than the PHRR reduction with PP/20 wt% AMO-LDH (31%). The degree of dispersion (mixability) between AMO-LDH and OCNT has a significant effect on the flame retardant performance of the hybrids. In addition, the incorporation of AMO-LDH-OCNT hybrids led to better mechanical properties, such as higher tensile strength (27.5 MPa) and elongation at break (17.9%), than those composites containing only AMO-LDH (25.6 MPa and 7.5%, respectively).

  11. Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene

    NASA Astrophysics Data System (ADS)

    Gao, Yanshan; Zhang, Yu; Williams, Gareth R.; O’Hare, Dermot; Wang, Qiang

    2016-10-01

    Aqueous miscible organic layered double hydroxides (AMO-LDHs) can act as organophilic inorganic flame retardant nanofillers for unmodified non-polar polymers. In this contribution, AMO [Mg3Al(OH)8](CO3)0.5·yH2O LDH–oxidized carbon nanotube (AMO-LDH–OCNT) hybrids are shown to perform better than the equivalent pure AMO-LDH. A synergistic effect between the AMO-LDH and OCNT was observed; this endows the hybrid material with enhanced flame retardancy, thermal stability, and mechanical properties. The thermal stability of polypropylene (PP) was significantly enhanced by adding AMO-LDH–OCNT hybrids. For PP mixed with AMO-LDH–OCNT hybrids to produce a composite with 10 wt% LDH and 2 wt% OCNT, the 50% weight loss temperature was increased by 43 °C. Further, a system with 10 wt% of AMO-LDH and 1 wt% OCNT showed a peak heat release rate (PHRR) reduction of 40%, greater than the PHRR reduction with PP/20 wt% AMO-LDH (31%). The degree of dispersion (mixability) between AMO-LDH and OCNT has a significant effect on the flame retardant performance of the hybrids. In addition, the incorporation of AMO-LDH–OCNT hybrids led to better mechanical properties, such as higher tensile strength (27.5 MPa) and elongation at break (17.9%), than those composites containing only AMO-LDH (25.6 MPa and 7.5%, respectively).

  12. Phenolic sensor development based on chromium oxide-decorated carbon nanotubes for environmental safety.

    PubMed

    Rahman, Mohammed M; Balkhoyor, Hasan B; Asiri, Abdullah M

    2017-03-01

    A nanocomposite (NC) composed of chromium(III)oxide nanomaterials decorated carbon nanotubes (Cr2O3-CNT NC) was prepared via a simple solution method with reducing agents in an alkaline medium. The Cr2O3-CNT NC was characterized using ultraviolet-visible (UV/Vs.) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (XEDS), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). The Cr2O3-CNT composite was deposited on a flat glassy carbon electrode (GCE) with conducting nafion (5%) binders to produce a sensor that exhibited fast response and high selectivity toward 4-methoxyphenol (4MP) in phosphate buffer phase at pH 7. Furthermore, the sensor performance parameters, including the sensitivity, lower detection range, reliability, and reproducibility, ease of integration, long-term stability, and selectivity were investigated in detail. The calibration plot was found to be linear in the concentration range of 0.01 nM-0.1 μM. The sensitivity and detection limit were calculated as 1.4768 μA cm(-2) μM(-1) and 0.06428 ± 0.0002 nM (at a signal-to-noise ratio of 3), respectively. Thus, it was concluded that the proposed selective and efficient sensor represents a promising approach to effectively detect toxic phenolic compounds in the environment with acceptable and reliable results.

  13. Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene

    PubMed Central

    Gao, Yanshan; Zhang, Yu; Williams, Gareth R.; O’Hare, Dermot; Wang, Qiang

    2016-01-01

    Aqueous miscible organic layered double hydroxides (AMO-LDHs) can act as organophilic inorganic flame retardant nanofillers for unmodified non-polar polymers. In this contribution, AMO [Mg3Al(OH)8](CO3)0.5·yH2O LDH–oxidized carbon nanotube (AMO-LDH–OCNT) hybrids are shown to perform better than the equivalent pure AMO-LDH. A synergistic effect between the AMO-LDH and OCNT was observed; this endows the hybrid material with enhanced flame retardancy, thermal stability, and mechanical properties. The thermal stability of polypropylene (PP) was significantly enhanced by adding AMO-LDH–OCNT hybrids. For PP mixed with AMO-LDH–OCNT hybrids to produce a composite with 10 wt% LDH and 2 wt% OCNT, the 50% weight loss temperature was increased by 43 °C. Further, a system with 10 wt% of AMO-LDH and 1 wt% OCNT showed a peak heat release rate (PHRR) reduction of 40%, greater than the PHRR reduction with PP/20 wt% AMO-LDH (31%). The degree of dispersion (mixability) between AMO-LDH and OCNT has a significant effect on the flame retardant performance of the hybrids. In addition, the incorporation of AMO-LDH–OCNT hybrids led to better mechanical properties, such as higher tensile strength (27.5 MPa) and elongation at break (17.9%), than those composites containing only AMO-LDH (25.6 MPa and 7.5%, respectively). PMID:27752096

  14. Utilization of iron oxide film obtained by CVD process as catalyst to carbon nanotubes growth

    SciTech Connect

    Schnitzler, Mariane C.; Zarbin, Aldo J.G.

    2009-10-15

    Thin films of Fe{sub 2}O{sub 3} were obtained on silica glass substrates through the thermal decomposition of ferrocene in air. These films were characterized by Raman spectroscopy and X-ray diffractometry (XRD), and subsequently used as catalyst on the growth of carbon nanotubes, using benzene or a benzene solution of [Fe{sub 3}(CO){sub 12}] as precursor. A great amount of a black powder was obtained as product, identified as multi-walled carbon nanotubes by XRD, Raman spectroscopy and transmission electron microscopy. The carbon nanotubes formed through the pyrolysis of the [Fe{sub 3}(CO){sub 12}] solution were identified as structurally better than the one obtained by the pyrolysis of pristine benzene. - Graphical abstract: Thin films of Fe{sub 2}O{sub 3} were obtained on silica glass substrates through the thermal decomposition of ferrocene in air, and subsequently used as catalyst on the growth of carbon nanotubes.

  15. Metabolomic Analysis of Liver Cells Exposed to Carbon Nanotubes and Graphene Oxide

    EPA Science Inventory

    Carbon nanotubes (CNTs) and other graphenic nanomaterials are being used extensively in industrial, consumer, and mechanical applications based in part on their unique structural, optical and electronic properties. Due to the widespread use of these nanoparticles (NPs), human and...

  16. The catalytic synergetic effect of carbon nanotubes on CuO during advanced oxidation processes: A theoretical account

    NASA Astrophysics Data System (ADS)

    Qin, Wu; Wei, Li; Wang, Lei; Dong, Changqing; Xiao, Xianbin; Zheng, Zongming; Yang, Yongping

    2013-05-01

    Following our previous work on the synergy between graphene and catalyst particle [1], we discuss how carbon nanotubes (CNTs) affect the catalytic reactivity of CuO during advanced oxidation processes using density functional theory calculations. CNTs act as electron donor and regulate the electronic structure of CuO during each reaction step because the 2p orbitals of the C atoms hybridise with the 4d orbitals of the Cu atoms rather than the 2p orbitals of the O atoms. An electric field guides charge transfer through the interface between the CNTs and CuO, which modifies the electronic state of CuO/CNTs for catalytic reactions.

  17. Experimental analysis of stabilizing effects of carbon nanotubes (CNTs) on thermal oxidation of poly(ethylene glycol)-CNT composites

    NASA Astrophysics Data System (ADS)

    Yamane, Shogo; Ata, Seisuke; Chen, Liang; Sato, Hiroaki; Yamada, Takeo; Hata, Kenji; Mizukado, Junji

    2017-02-01

    In this work, the thermal stabilization of poly(ethylene glycol) (PEG) by super-growth carbon nanotubes (SGCNTs) is studied by analyzing degraded compounds via high-resolution matrix-assisted laser diffusion ionization time-of-flight mass spectroscopy and IR techniques. SGCNTs successfully suppress the thermal oxidation of PEG, and the components of the degraded compounds change upon addition of SGCNTs to PEG. The SGCNTs quench mainly the RO radical generated by the initial chain scission of the Csbnd O bond of PEG, resulting in the suppression of the intermolecular proton abstraction.

  18. Multi-wall carbon nanotube@zeolite imidazolate framework composite from a nanoscale zinc oxide precursor

    DOE PAGES

    Yue, Yanfeng; Guo, Bingkun; Qiao, Zhenan; ...

    2014-07-24

    Nanocomposite of multi-walled carbon nanotube@zeolite imidazolate frameworks (MWNT@ZIF) was prepared through a nanotube-facilitated growth based on a nanosized ZnO precursor. The electrically conductive nanocomposite displays a capacity of 380 mAh/g at 0.1 °C in Li–sulfur battery, transforming electrically inactive ZIF into the active one for battery applications.

  19. Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Kinloch, Ian A.; Wolverson, Daniel; Tenne, Reshef; Zak, Alla; O'Connell, Eoghan; Bangert, Ursel; Young, Robert J.

    2017-03-01

    The relationship between structure and properties has been followed for different nanoscale forms of tungsten disulfide (2H-WS2) namely exfoliated monolayer and few-layer nanoplatelets, and nanotubes. The similarities and differences between these nanostructured materials have been examined using a combination of optical microscopy, scanning and high-resolution transmission electron microscopy and atomic force microscopy. Photoluminescence and Raman spectroscopy have also been used to distinguish between monolayer and few-layer material. Strain induced phonon shifts have been followed from the changes in the positions of the A1g and {{{{E}}}2{{g}}}1 Raman bands during uniaxial deformation. This has been modelled for monolayer using density functional theory with excellent agreement between the measured and predicted behaviour. It has been found that as the number of WS2 layers increases for few-layer crystals or nanotubes, the A1g mode hardens whereas the {{{{E}}}2{{g}}}1 mode softens. This is believed to be due to the A1g mode, which involves out of plane atomic movements, being constrained by the increasing number of WS2 layers whereas easy sliding reduces stress transfer to the individual layers for the {{{{E}}}2{{g}}}1 mode, involving only in-plane vibrations. This finding has enabled the anomalous phonon shift behaviour in earlier pressure measurements on WS2 to be resolved, as well as similar effects in other transition metal dichalcogenides, such as molybdenum disulfide, to be explained.

  20. Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes.

    PubMed

    Wei, Xianlong; Wang, Ming-Sheng; Bando, Yoshio; Golberg, Dmitri

    2011-04-26

    Substitutional carbon doping of the honeycomb-like boron nitride (BN) lattices in two-dimensional (nanosheets) and one-dimensional (nanoribbons and nanotubes) nanostructures was achieved via in situ electron beam irradiation in an energy-filtering 300 kV high-resolution transmission electron microscope using a C atoms feedstock intentionally introduced into the microscope. The C substitutions for B and N atoms in the honeycomb lattices were demonstrated through electron energy loss spectroscopy, spatially resolved energy-filtered elemental mapping, and in situ electrical measurements. The preferential doping was found to occur at the sites more vulnerable to electron beam irradiation. This transformed BN nanostructures from electrical insulators to conductors. It was shown that B and N atoms in a BN nanotube could be nearly completely replaced with C atoms via electron-beam-induced doping. The doping mechanism was proposed to rely on the knockout ejections of B and N atoms and subsequent healing of vacancies with supplying C atoms.

  1. Mechanical agitation induces counterintuitive aggregation of pre-dispersed carbon nanotubes.

    PubMed

    Fernandes, Ricardo M F; Buzaglo, Matat; Regev, Oren; Furó, István; Marques, Eduardo F

    2017-05-01

    Mechanical agitation is commonly used to fragment and disperse insoluble materials in liquids. However, here we show that when pristine single-walled carbon nanotubes pre-dispersed in water are subject to vortex-shaking for very short periods (typically 10-60s, power density ∼0.002WmL(-1)), re-aggregation counterintuitively occurs. The initial dispersions are produced using surfactants as dispersants and powerful tip sonication (∼1WmL(-1)) followed by centrifugation. Detailed imaging by light and electron microscopies shows that the vortex-induced aggregates consist of loose networks (1-10(2)μm in size) of intertwined tubes and thin bundles. The average aggregate size increases with vortexing time in an apparently logarithmic manner and depends on the dispersant used, initial concentration of nanotubes and size distribution of bundles. The aggregation is, nonetheless, reversible: if the vortex-shaken dispersions are mildly bath-sonicated (∼0.03WmL(-1)), the flocs break down and re-dispersal occurs. Molecular insight for the mechanism behind this surprising phenomenon is put forth.

  2. AC field-induced polymer electroluminescence with single wall carbon nanotubes.

    PubMed

    Sung, Jinwoo; Choi, Yeon Sik; Kang, Seok Ju; Cho, Sung Hwan; Lee, Tae-Woo; Park, Cheolmin

    2011-03-09

    We developed a high-performance field-induced polymer electroluminescence (FPEL) device consisting of four stacked layers: a top metal electrode/thin solution-processed nanocomposite film of single wall carbon nanotubes (SWNTs) and a fluorescent polymer/insulator/transparent bottom electrode working under an alternating current (AC) electric field. A small amount of SWNTs that were highly dispersed in the fluorescent polymer matrix by a conjugate block copolymer dispersant significantly enhanced EL, and we were able to realize an SWNT-FPEL device with a light emission of approximately 350 cd/m(2) at an applied voltage of ±25 V and an AC frequency of 300 kHz. The brightness of the SWNT-FPEL device is much greater than those of other AC-based organic or even inorganic ELs that generally require at least a few hundred volts. Light is emitted from our SWNT-FPEL device because of the sequential injection of field-induced holes and then electron carriers through ambipolar carbon nanotubes under an AC field, followed by exciton formation in the conjugated organic layer. Field-induced bipolar charge injection provides great material design freedom for our devices; the energy level does not have to be aligned between the electrode and the emission layer, and the balance of the carrier injected and transported can be altered in contrast to that in conventional organic light-emitting diodes, leading to an extremely cost-effective and unified device architecture that is applicable to all red-green-blue fluorescent polymers.

  3. Radiation-induced cationic polymerization of limonene oxide,. cap alpha. -pinene oxide, and. beta. -pinene oxide

    SciTech Connect

    Aikins, J.A.; Williams, F.

    1984-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weight. A cationic mechanism is evidenced by the strongly retarding effect of tri-n-propylamine on the polymerization rate. At 25/sup 0/C, limonene oxide gives the highest polymerization rates, an average conversion of 36% per Mrad being obtained in comparison with values of 5.7 and 7.3% per Mrad for the ..cap alpha..-pinene and ..beta..-pinene oxides, respectively. Similarly, the average anti DP/sub n/ decreases from 11.8 for the limonene oxide polymer to 5.6 and 4.0 for the ..cap alpha..-pinene oxide and ..beta..-pinene oxide polymers, respectively. A high frequency of chain transfer to monomer is indicated in each case by the fact that the kinetic chain lengths are estimated to be on the order of a hundred times larger than the anti DP/sub n/ values. Structural characterization of the limonene oxide polymer by /sup 1/H and /sup 13/C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the ..cap alpha..-pinene and ..beta..-pinene oxides show that in the polymerization of these monomers, the opening of the epoxide ring is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-dimethyl group in the main chain. The detection of isopropenyl end groups in the pinene oxide polymers is also consistent with this mode of propagation being followed by chain (proton) transfer to monomer.

  4. Gas Transport Properties of Polybenzimidazole and Poly(Phenylene Oxide) Mixed Matrix Membranes Incorporated with PDA-Functionalised Titanate Nanotubes

    NASA Astrophysics Data System (ADS)

    Giel, V.; Perchacz, M.; Kredatusová, J.; Pientka, Z.

    2017-01-01

    Functionalised titanate nanotubes (TiNTs) were incorporated to poly(5,5-bisbenzimidazole-2,2-diyl-1,3-phenylene) (PBI) or poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for improving the interfacial compatibility between the polymer matrix and inorganic material and for altering the gas separation performance of the neat polymer membranes. Functionalisation consisted in oxidative polymerisation of dopamine-hydrochloride on the surface of non-functionalised TiNTs. Transmission electron microscopy (TEM) confirmed that a thin polydopamine (PDA) layer was created on the surface of TiNTs. 1.5, 3, 6, and 9 wt.% of PDA-functionalised TiNTs (PDA-TiNTs) were dispersed to each type of polymer matrix to create so-called mixed matrix membranes (MMMs). Infrared spectroscopy confirmed that -OH and -NH groups exist on the surface of PDA-TiNTs and that the nanotubes interact via H-bonding with PBI but not with PPO. The distribution of PDA-TiNTs in the MMMs was to some extent uniform as scanning electron microscope (SEM) studies showed. Beyond, PDA-TiNTs exhibit positive effect on gas transport properties, resulting in increased selectivities of MMMs. The addition of nanotubes caused a decrease in permeabilities but an increase in selectivities. It is shown that 9 wt.% of PDA-TiNTs in PBI gave a rise to CO2/N2 and CO2/CH4 selectivities of 112 and 63 %, respectively. In case of PPO-PDA-TiNT MMMs, CO2/N2 and CO2/CH4 selectivity increased about 25 and 17 %, respectively. Sorption measurement showed that the presence of PDA-TiNTs in PBI caused an increase in CO2 sorption, whereas the influence on other gases is less noticeable.

  5. One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125.

    PubMed

    Paul, K Brince; Singh, Vikrant; Vanjari, Siva Rama Krishna; Singh, Shiv Govind

    2017-02-15

    Ovarian cancer is the most leading cause of cancer-related death in women . The carcinoma antigen-125, which is found on the surface of many ovarian cancer cells is known to be a gold standard clinical biomarker associated with life-threatening gynecological malignancy. In this work, we demonstrate a novel biosensor platform based on multiwalled carbon nanotubes embedded zinc oxide nanowire for the ultrasensitive detection of carcinoma antigen-125. Label free detection of the carcinoma antigen-125 was accomplished by differential voltammetry technique that demonstrated excellent sensitivity (90.14µA/(U/mL)/cm(2)) with a detection limit of 0.00113UmL(-1) concentration. The fabricated immunosensor exhibits good performance with wider detection range (0.001UmL(-1)-1kUmL(-1)), reproducibility, selectivity, acceptable stability, and thus is a potential cost-effective methodology for point-of-care diagnosis. The multiwalled carbon nanotubes (MWCNTs) embedded highly oriented zinc oxide (ZnO) nanowires were synthesized by simple, low cost electrospinning technique. Compared to pure ZnO nanowires, electrochemical activity of MWCNTs embedded ZnO nanowires was found to be much higher. The calcination temperature was optimized to avoid any decomposition of the CNTs and to obtain multiwalled carbon nanotubes embedded highly crystalline ZnO nanowires. The salient feature of this biosensing platform is that one step calcination process is enough to create the functional groups on MWCNT-ZnO nanowire surface that are effective for the covalent conjugation of antibody without further surface modification. To the best of our knowledge, this is the first report on MWCNT-ZnO nanowire based immunosensor explored for the detection of cancer biomarker.

  6. Gas Transport Properties of Polybenzimidazole and Poly(Phenylene Oxide) Mixed Matrix Membranes Incorporated with PDA-Functionalised Titanate Nanotubes.

    PubMed

    Giel, V; Perchacz, M; Kredatusová, J; Pientka, Z

    2017-12-01

    Functionalised titanate nanotubes (TiNTs) were incorporated to poly(5,5-bisbenzimidazole-2,2-diyl-1,3-phenylene) (PBI) or poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for improving the interfacial compatibility between the polymer matrix and inorganic material and for altering the gas separation performance of the neat polymer membranes. Functionalisation consisted in oxidative polymerisation of dopamine-hydrochloride on the surface of non-functionalised TiNTs. Transmission electron microscopy (TEM) confirmed that a thin polydopamine (PDA) layer was created on the surface of TiNTs. 1.5, 3, 6, and 9 wt.% of PDA-functionalised TiNTs (PDA-TiNTs) were dispersed to each type of polymer matrix to create so-called mixed matrix membranes (MMMs). Infrared spectroscopy confirmed that -OH and -NH groups exist on the surface of PDA-TiNTs and that the nanotubes interact via H-bonding with PBI but not with PPO. The distribution of PDA-TiNTs in the MMMs was to some extent uniform as scanning electron microscope (SEM) studies showed. Beyond, PDA-TiNTs exhibit positive effect on gas transport properties, resulting in increased selectivities of MMMs. The addition of nanotubes caused a decrease in permeabilities but an increase in selectivities. It is shown that 9 wt.% of PDA-TiNTs in PBI gave a rise to CO2/N2 and CO2/CH4 selectivities of 112 and 63 %, respectively. In case of PPO-PDA-TiNT MMMs, CO2/N2 and CO2/CH4 selectivity increased about 25 and 17 %, respectively. Sorption measurement showed that the presence of PDA-TiNTs in PBI caused an increase in CO2 sorption, whereas the influence on other gases is less noticeable.

  7. Electron Beam Induced Etching of Carbon Nanotubes Enhanced by Secondary Electrons in Oxygen.

    PubMed

    Yoshida, Hideto; Tomita, Yuto; Soma, Kentaro; Takeda, Seiji

    2017-03-30

    Multi-walled carbon nanotubes (CNTs) are subjected to electron-beam-induced etching (EBIE) in oxygen. The EBIE process is observed in-situ by environmental transmission electron microscopy (ETEM). The partial pressure of oxygen (10 Pa and 100 Pa), energy of the primary electrons (80 and 200 keV), and environment of the CNTs (suspended or supported on a silicon nitride membrane) are investigated as factors affecting the etching rate. The EBIE rate of CNTs was markedly promoted by the effects of secondary electrons that were emitted from a silicon nitride membrane under irradiation by primary electrons. Membrane supported CNTs can be cut by EBIE with a spatial accuracy better than 3 nm, and a nanogap of 2 nm can be successfully achieved between the ends of two suspended CNTs.

  8. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  9. Effect of geometric curvature on vitrification behavior for polymer nanotubes confined in anodic aluminum oxide templates

    NASA Astrophysics Data System (ADS)

    Chen, Jiao; Li, Linling; Zhou, Dongshan; Wang, Xiaoliang; Xue, Gi

    2015-09-01

    The glass transition behavior of polystyrene (PS) nanotubes confined in cylindrical alumina nanopores was studied as a function of pore diameter (d ) and polymer tube thickness (δ). Both the calorimetric glass transition temperature and the microstructure measured by a nonradiative energy transfer method indicated that the polymer nanotube, or concave polymer thin film, exhibited significant differences in vitrification behavior compared to the planar one. A closer interchain proximity and an increased Tg were observed for polymer nanotubes with respect to the bulk polymer. Tg for polymer nanotubes was primarily dependent on the curvature radius d of the template, while it was less dependent on the thickness δ of the PS tube wall in the range of 11-23 nm. For small nanotubes (d =55 nm ) , the Tg increased as high as 18 °C above the bulk value. This vitrified property reverted back to the bulk value when the substrate was chemically removed, which indicated the crucial importance of the interfacial effect imposed by the hard wall with a concave geometry.

  10. Novel rapid synthesis of zinc oxide nanotubes via hydrothermal technique and antibacterial properties.

    PubMed

    Aal, Nadia Abdel; Al-Hazmi, Faten; Al-Ghamdi, Ahmed A; Al-Ghamdi, Attieh A; El-Tantawy, Farid; Yakuphanoglu, F

    2015-01-25

    ZnO nanotubes with the wurtzite structure have been successfully synthesized via simple hydrothermal solution route using zinc nitrate, urea and KOH for the first time. The structural, compositions and morphology architectures of the as synthesized ZnO nanotubes was performed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and high resolution transmission scanning electron microscopy (HRTEM). TEM showed that ZnO nanotubes exhibited a wall thickness of less than 2 nm, with an average diameter of 17 nm and the length is 2 μm. In addition, the antibacterial activity of ZnO nanotubes was carried out in vitro against two kinds of bacteria: gram - negative bacteria (G -ve) i.e. Escherichia coli (E. coli) and gram - positive bacteria (G +ve) i.e. Staphylococcus aureus. Therefore, this work demonstrates that simply synthesized ZnO nanotubes have excellent potencies, being ideal antibacterial agents for many biomedical applications.

  11. Hollow Ag@Pd core-shell nanotubes as highly active catalysts for the electro-oxidation of formic acid.

    PubMed

    Jiang, Yuanyuan; Lu, Yizhong; Han, Dongxue; Zhang, Qixian; Niu, Li

    2012-03-16

    Ag nanowires are prepared as templates by a polyol reduction process. Then Ag nanotubes coated with a thin layer of Pd are synthesized through sequential reduction accompanied with the galvanic displacement reaction. The products show a hollow core-shell nanotubular structure, as demonstrated by detailed characterizations. The Ag@Pd can significantly improve the electrocatalytic activity towards the electro-oxidation of formic acid and enhance the stability of the Pd component. It is proposed that the enhanced electrochemically active surface area and modulated electron structure of Pd by Ag are responsible for the improvement of electrocatalytic activity and durability. The results obtained in this work are different from those previous reports, in which alloy walls with hollow interiors are usually formed. This work provides a new and simple method for synthesizing novel bimetallic core-shell structure with a hollow interior, which can be applied as high-performance catalysts for the electro-oxidation of formic acid.

  12. In situ electric-field-induced contrast imaging of electronic transport pathways in nanotube-polymer composites

    NASA Astrophysics Data System (ADS)

    Jesse, Stephen; Guillorn, Michael A.; Ivanov, Ilia N.; Puretzky, Alexander A.; Howe, Jane Y.; Britt, Phillip F.; Geohegan, David B.

    2006-07-01

    An electric-field-induced contrast mechanism for scanning electron microscopy is reported which permits the visualization of embedded nanomaterials inside various matrices with high contrast and high definition. The high contrast is proposed to result from localized enhancement of secondary electron emission from the nanomaterials due to electric-field-induced changes in their work functions. By utilizing a stage that allows in situ current-voltage measurements inside a scanning electron microscope, single-walled carbon nanotubes embedded within polymethyl methacrylate films were visualized directly. In addition to the rapid assessment of nanotube dispersion within polymers, electric-field-induced contrast imaging enables the determination of percolation pathways. From the contrast in the images, the relative voltage at all points in the electron micrograph can be determined, providing a new mechanism to understand electronic percolation through nanoscale networks.

  13. In Situ Electric-Field-Induced Contrast Imaging of Electronic Transport Pathways in Nanotube-Polymer Composites

    SciTech Connect

    Jesse, Stephen; Guillorn, Michael A; Ivanov, Ilia N; Puretzky, Alexander A; Howe, Jane Y; Britt, Phillip F; Geohegan, David B

    2006-01-01

    An electric-field-induced contrast mechanism for scanning electron microscopy is reported which permits the visualization of embedded nanomaterials inside various matrices with high contrast and high definition. The high contrast is proposed to result from localized enhancement of secondary electron emission from the nanomaterials due to electric-field-induced changes in their work functions. By utilizing a stage that allows in situ current-voltage measurements inside a scanning electron microscope, single-walled carbon nanotubes embedded within polymethyl methacrylate films were visualized directly. In addition to the rapid assessment of nanotube dispersion within polymers, electric-field-induced contrast imaging enables the determination of percolation pathways. From the contrast in the images, the relative voltage at all points in the electron micrograph can be determined, providing a new mechanism to understand electronic percolation through nanoscale networks.

  14. Toxicity induced enhanced extracellular matrix production in osteoblastic cells cultured on single-walled carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Tutak, Wojtek; Park, Ki Ho; Vasilov, Anatoly; Starovoytov, Valentin; Fanchini, Giovanni; Cai, Shi-Qing; Partridge, Nicola C.; Sesti, Federico; Chhowalla, Manish

    2009-06-01

    A central effort in biomedical research concerns the development of materials for sustaining and controlling cell growth. Carbon nanotube based substrates have been shown to support the growth of different kinds of cells (Hu et al 2004 Nano Lett. 4 507-11 Kalbacova et al 2006 Phys. Status Solidi b 13 243; Zanello et al 2006 Nano Lett. 6 562-7) however the underlying molecular mechanisms remain poorly defined. To address the fundamental question of mechanisms by which nanotubes promote bone mitosis and histogenesis, primary calvariae osteoblastic cells were grown on single-walled carbon nanotube thin film (SWNT) substrates. Using a combination of biochemical and optical techniques we demonstrate here that SWNT networks promote cell development through two distinct steps. Initially, SWNTs are absorbed in a process that resembles endocytosis, inducing acute toxicity. Nanotube-mediated cell destruction, however, induces a release of endogenous factors that act to boost the activity of the surviving cells by stimulating the synthesis of extracellular matrix.

  15. Effect of paraquat-induced oxidative stress

    PubMed Central

    Wiemer, Matthias; Osiewacz, Heinz D.

    2014-01-01

    Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS) at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly linked to aging. Here we view the impact of ROS from a different angle: their role in the control of gene expression. We report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina grown on medium containing paraquat (PQ). This treatment leads to an increased cellular generation and release of H2O2, a reduced growth rate, and a decrease in lifespan. The combined challenge by PQ and copper has a synergistic negative effect on growth and lifespan. The data from the transcriptome analysis of the wild type cultivated under PQ-stress and their comparison to those of a longitudinal aging study as well as of a copper-uptake longevity mutant of P. anserina revealed that PQ-stress leads to the up-regulation of transcripts coding for components involved in mitochondrial remodeling. PQ also affects the expression of copper-regulated genes suggesting an increase of cytoplasmic copper levels as it has been demonstrated earlier to occur during aging of P. anserina and during senescence of human fibroblasts. This effect may result from the induction of the mitochondrial permeability transition pore via PQ-induced ROS, leading to programmed cell death as part of an evolutionary conserved mechanism involved in biological aging and lifespan control. PMID:28357247

  16. Inducible nitric oxide synthase in the myocard.

    PubMed

    Buchwalow, I B; Schulze, W; Karczewski, P; Kostic, M M; Wallukat, G; Morwinski, R; Krause, E G; Müller, J; Paul, M; Slezak, J; Luft, F C; Haller, H

    2001-01-01

    Recognition of significance of nitric oxide synthases (NOS) in cardiovascular regulations has led to intensive research and development of therapies focused on NOS as potential therapeutic targets. However, the NOS isoform profile of cardiac tissue and subcellular localization of NOS isoforms remain a matter of debate. The aim of this study was to investigate the localization of an inducible NOS isoform (NOS2) in cardiomyocytes. Employing a novel immunocytochemical technique of a catalyzed reporter deposition system with tyramide and electron microscopical immunocytochemistry complemented with Western blotting and RT-PCR, we detected NOS2 both in rat neonatal and adult cultured cardiomyocytes and in the normal myocard of adult rats as well as in the human myocard of patients with dilative cardiomyopathy. NOS2 was targeted predominantly to a particulate component of the cardiomyocyte--along contractile fibers, in the plasma membrane including T-tubules, as well as in the nuclear envelope, mitochondria and Golgi complex. Our results point to an involvement of NOS2 in maintaining cardiac homeostasis and contradict to the notion that NOS2 is expressed in cardiac tissue only in response to various physiological and pathogenic factors. NOS2 targeting to mitochondria and contractile fibers suggests a relationship of NO with contractile function and energy production in the cardiac muscle.

  17. Oxidation inhibits iron-induced blood coagulation.

    PubMed

    Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw

    2013-01-01

    Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood.

  18. Effect of temperature on the kinetics of acetylene decomposition over reduced iron oxide catalyst for the production of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Khedr, M. H.; Abdel Halim, K. S.; Soliman, N. K.

    2008-12-01

    Carbon nanotubes (CNTs) were synthesized by the catalytic decomposition of acetylene over nanosized metallic iron. A high metal loading was chosen in order to obtain a longer catalytic activity. Different nanosized iron oxides were prepared using chemical methods. A catalyst of the composition 40% Fe 2O 3:60% Al 2O 3 is prepared by wet impregnation method. The prepared samples of iron oxides supported in alumina were completely reduced by hydrogen gas at 500 °C and then constant rate of acetylene gas was passed over the freshly reduced samples at different reaction conditions. The kinetics of CNTs synthesis on reduced nanosized Fe 2O 3 supported on alumina was investigated as a function of crystal size of iron oxide catalyst (35-150 nm) and decomposition temperature (400-700 °C). The microstructure and morphology of the synthesized catalyst and CNTs were characterized using scanning electron microscope (SEM), high-resolution transmission electron microscope (HR-TEM) and XRD analysis. The results revealed that both the crystal size of iron oxide and decomposition temperature have a significant effect on the percentage yield of carbon deposited. It increased by decreasing crystal size of the catalyst and increasing decomposition temperature to certain limit. The maximum yield of carbon deposited (426%) was obtained at decomposition temperature 600 °C and over nanosized iron oxide catalyst with crystal size of average 35 nm.

  19. Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-κB signaling, and promoting fibroblast-to-myofibroblast transformation.

    PubMed

    He, Xiaoqing; Young, Shih-Houng; Schwegler-Berry, Diane; Chisholm, William P; Fernback, Joseph E; Ma, Qiang

    2011-12-19

    Carbon nanotubes (CNTs) are novel materials with unique electronic and mechanical properties. The extremely small size, fiberlike shape, large surface area, and unique surface chemistry render their distinctive chemical and physical characteristics and raise potential hazards to humans. Several reports have shown that pulmonary exposure to CNTs caused inflammation and lung fibrosis in rodents. The molecular mechanisms that govern CNT lung toxicity remain largely unaddressed. Here, we report that multiwalled carbon nanotubes (MWCNTs) have potent, dose-dependent toxicity on cultured human lung cells (BEAS-2B, A549, and WI38-VA13). Mechanistic analyses were carried out at subtoxic doses (≤20 μg/mL, ≤ 24 h). MWCNTs induced substantial ROS production and mitochondrial damage, implicating oxidative stress in cellular damage by MWCNT. MWCNTs activated the NF-κB signaling pathway in macrophages (RAW264.7) to increase the secretion of a panel of cytokines and chemokines (TNFα, IL-1β, IL-6, IL-10, and MCP1) that promote inflammation. Activation of NF-κB involved rapid degradation of IκBα, nuclear accumulation of NF-κBp65, binding of NF-κB to specific DNA-binding sequences, and transactivation of target gene promoters. Finally, MWCNTs induced the production of profibrogenic growth factors TGFβ1 and PDGF from macrophages that function as paracrine signals to promote the transformation of lung fibroblasts (WI38-VA13) into myofibroblasts, a key step in the development of fibrosis. Our results revealed that MWCNTs elicit multiple and intertwining signaling events involving oxidative damage, inflammatory cytokine production, and myofibroblast transformation, which potentially underlie the toxicity and fibrosis in human lungs by MWCNTs.

  20. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  1. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  2. Inhibition of microbial growth by carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Olivi, Massimiliano; Zanni, Elena; de Bellis, Giovanni; Talora, Claudio; Sarto, Maria Sabrina; Palleschi, Claudio; Flahaut, Emmanuel; Monthioux, Marc; Rapino, Stefania; Uccelletti, Daniela; Fiorito, Silvana

    2013-09-01

    In the last years carbon nanotubes have attracted increasing attention for their potential applications in the biomedical field as diagnostic and therapeutic nano tools. Here we investigate the antimicrobial activity of different fully characterized carbon nanotube types (single walled, double walled and multi walled) on representative pathogen species: Gram-positive Staphylococcus aureus, Gram-negative Pseudomonas aeruginosa and the opportunistic fungus Candida albicans. Our results show that all the carbon nanotube types possess a highly significant antimicrobial capacity, even though they have a colony forming unit capacity and induction of oxidative stress in all the microbial species to a different extent. Moreover, scanning electron microscopy analysis revealed that the microbial cells were wrapped or entrapped by carbon nanotube networks. Our data taken together suggest that the reduced capacity of microbial cells to forming colonies and their oxidative response could be related to the cellular stress induced by the interactions of pathogens with the CNT network.

  3. Facile synthesis of Co3O4-CeO2 composite oxide nanotubes and their multifunctional applications for lithium ion batteries and CO oxidation.

    PubMed

    Yuan, Chenpei; Wang, Heng-Guo; Liu, Jiaqi; Wu, Qiong; Duan, Qian; Li, Yanhui

    2017-05-15

    In this study, Co3O4-CeO2 composite oxide nanotubes (CCONs) have been fabricated by using a simple electrospinning technique followed subsequent annealing and their multifunctional applications for lithium ion batteries and CO oxidation have also been investigated for the first time. When utilized as attractive anodes for lithium-ion batteries (LIBs), the CCONs exhibit good rate capability (497.3mAhg(-1) at 2Ag(-1)), high initial capacity (826.2mAhg(-1) at 0.05Ag(-1)) and improved cycling stability (1286.3mAhg(-1) after 180 cycles at 0.1Ag(-1) and 300.5mAhg(-1) with 63.5% retention after 1500 cycles at 1Ag(-1)). Furthermore, a preliminary CO catalytic oxidation study has demonstrated that the CCONs samples exhibit high catalytic activity. Thus, these properties endorse CCONs as attractive candidates for both LIBs and CO oxidation and this strategy might open new avenues for the design of a series of transition metal oxides with multicomponent for multifunctional applications.

  4. High Pressure Oxidizer Turbopump (HPOTP) inducer dynamic design environment

    NASA Technical Reports Server (NTRS)

    Herda, D. A.; Gross, R. S.

    1995-01-01

    The dynamic environment must be known to evaluate high pressure oxidizer turbopump inducer fatigue life. This report sets the dynamic design loads for the alternate turbopump inducer as determined by water-flow rig testing. Also, guidelines are given for estimating the dynamic environment for other inducer and impeller applications.

  5. Collision-induced fusion of two single-walled carbon nanotubes: A quantitative study

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Mao, Fei; Meng, Xiang-Rui; Wang, Dong-Qi; Zhang, Feng-Shou

    2016-07-01

    The coalescence processes of two (6, 0) single-walled carbon nanotubes are investigated via coaxial collision based on the self-consistent-charge density-functional tight-binding molecular dynamics method. According to the structure characteristics of the nanotubes, five impact cases are studied to explore the coalescence processes of the nanotubes. The simulation shows that various kinds of carbon nanomaterials, such as graphene sheets, graphene nanoribbons, and single-walled carbon nanotubes with larger diameters, are created after collision. Moreover, some defects formed in the carbon nanomaterials can be eliminated, and even the final configurations which are originally fragmented can almost become intact structures by properly quenching and annealing.

  6. Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Wenshan; Hennrich, Frank; Flavel, Benjamin S.; Kappes, Manfred M.; Krupke, Ralph

    2016-09-01

    The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.

  7. Electroluminescence from individual air-suspended carbon nanotubes within split-gate structures

    NASA Astrophysics Data System (ADS)

    Higashide, N.; Uda, T.; Yoshida, M.; Ishii, A.; Kato, Y. K.

    Electrically induced light emission from chirality-identified single-walled carbon nanotubes are investigated by utilizing split-gate field-effect devices fabricated on silicon-on-insulator substrates. We begin by etching trenches through the top silicon layer into the buried oxide, and the silicon layer is thermally oxidized for use as local gates. We partially remove the oxide and form gate electrodes, then contacts for nanotubes are deposited on both sides of the trench. Catalyst particles are placed on the contacts, and nanotubes are grown over the trench by chemical vapor deposition. We use photoluminescence microscopy to locate the nanotubes and perform excitation spectroscopy to identify their chirality. Gate-induced photoluminescence quenching is used to confirm carrier doping, and electroluminescence intensity is investigated as a function of the split-gate and bias voltages. Work supported by JSPS (KAKENHI 24340066, 26610080), MEXT (Photon Frontier Network Program, Nanotechnology Platform), Canon Foundation, and Asahi Glass Foundation.

  8. Surfactant functionalization induces robust, differential adhesion of tumor cells and blood cells to charged nanotube-coated biomaterials under flow.

    PubMed

    Mitchell, Michael J; Castellanos, Carlos A; King, Michael R

    2015-07-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion.

  9. Surfactant Functionalization Induces Robust, Differential Adhesion of Tumor Cells and Blood Cells to Charged Nanotube-Coated Biomaterials Under Flow

    PubMed Central

    Mitchell, Michael J.; Castellanos, Carlos A.; King, Michael R.

    2015-01-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion. PMID:25934290

  10. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode.

    PubMed

    Cheemalapati, Srikanth; Palanisamy, Selvakumar; Mani, Veerappan; Chen, Shen-Ming

    2013-12-15

    In the present study, multiwalled carbon nanotubes (MWCNT)/graphene oxide (GO) nanocomposite was prepared by homogenous dispersion of MWCNT and GO and used for the simultaneous voltammetric determination of dopamine (DA) and paracetamol (PA). The TEM results confirmed that MWCNT walls were wrapped well with GO sheets. The MWCNT/GO nanocomposite showed superior electrocatalytic activity towards the oxidation of DA and PA, when compared with either pristine MWCNT or GO. The major reason for the efficient simultaneous detection of DA and PA at nanocomposite was the synergistic effect between MWCNT and GO. The electrochemical oxidation of DA and PA was investigated by cyclic voltammetry, differential pulse voltammetry and amperometry. The nanocomposite modified electrode showed electrocatalytic oxidation of DA and PA in the linear response range from 0.2 to 400 µmol L(-1) and 0.5 to 400 µmol L(-1) with the detection limit of 22 nmol L(-1) and 47 nmol L(-1) respectively. The proposed sensor displayed good selectivity, sensitivity, stability with appreciable consistency and precision.

  11. Shear-induced conductor-insulator transition in melt-mixed polypropylene-carbon nanotube dispersions

    NASA Astrophysics Data System (ADS)

    Obrzut, J.; Douglas, J. F.; Kharchenko, S. B.; Migler, K. B.

    2007-11-01

    The blending of carbon nanotubes (CNTs) into polymer matrices leads to intrinsically nonequilibrium materials whose properties can depend strongly on flow history. We have constructed a rheodielectric spectrometer that allows for the simultaneous in situ measurement of both the electrical conductivity σ(ω) and dielectric constant ɛ(ω) as a function of frequency ω , as well as basic rheological properties (viscosity, normal stresses), as part of an effort to better characterize how flow alters the properties of these complex fluids. Measurements of σ indicate a conductor-insulator transition in melt-mixed dispersions of multiwall CNTs in polypropylene over a narrow range of CNT concentrations that is reasonably described by the generalized effective medium theory. A conductor-insulator transition in σ can also be induced by shearing the fluid at a fixed CNT concentration ϕ near, but above, the zero shear CNT conductivity percolation threshold ϕc . We find that the shear-induced conductor-insulator transition has its origin in the shear-rate dependence of ϕc , which conforms well to a model introduced to describe this effect. Surprisingly, σ of these nonequilibrium materials fully recovers at these elevated temperatures upon cessation of flow. We also find that the frequency dependence of σ(ω) follows a “universal” scaling relation observed for many other disordered materials.

  12. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria.

    PubMed

    Simon-Deckers, Angélique; Loo, Sylvain; Mayne-L'hermite, Martine; Herlin-Boime, Nathalie; Menguy, Nicolas; Reynaud, Cécile; Gouget, Barbara; Carrière, Marie

    2009-11-01

    Ecotoxicological effects of nanoparticles (NP) are still poorly documented while their commercialization for industrial and household applications increases. The aim of this study was to evaluate the influence of physicochemical characteristics on metal oxide NP and carbon nanotubes toxicological effects toward bacteria. Two strains of bacteria, Cupriavidus metallidurans CH34 and Escherichia coli MG1655 were exposed to TiO(2) or Al(2)O(3) NP or to multiwalled-carbon nanotubes (MWCNT). Particular attention was paid on optimizing NP dispersion to obtain nonagglomerated suspensions. Our results show that NP toxicity depends on their chemical composition, size, surface charge, and shape but not on their crystalline phase. MWCNT toxicity does not depend on their purity. Toxicity also depends on the bacterial strain: E. coli MG1655 is sensitive to NP, whereas C. metallidurans CH34 is not. Interestingly, NP are accumulated in both bacterial strains, and association between NP and bacteria is necessary for bacterial death to occur. NP may then represent a danger for the environment, causing the disappearance of some sensitive bacterial strains such as E. coli MG1655, but also being mobilized by nonsensitive strains such as C. metallidurans CH34 and transported through the whole ecosystem.

  13. Enhancement of stiffness, strength, ductility and toughness of poly(ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yang, Bing-Xing; Shi, Jia-Hua; Pramoda, K. P.; Goh, Suat Hong

    2007-03-01

    Phenoxy (poly(hydroxyether of bisphenol-A), also known as poly(bisphenol-A-co-epichlorohydrin)) was grafted onto multiwalled carbon nanotubes (MWNTs) by a reactive blending process. Reactions between terminal glycidyl groups of phenoxy and carboxylic acid groups of acidified MWNTs resulted in the grafting of phenoxy chains onto MWNTs. The mechanical properties of composites of poly(ethylene oxide) (PEO) and phenoxy-grafted MWNTs were studied. The miscibility between PEO and phenoxy enabled the good dispersion of nanotubes in the PEO matrix as evidenced by polarized optical microscopy and transmission electron microscopy. The spherulite size of PEO progressively decreased with increasing amount of phenoxy-grafted MWNTs added. At an optimal MWNT content of 1.5 wt%, the addition of phenoxy-grafted MWNTs led to increases of storage modulus, Young's modulus, yield stress, tensile strength, ultimate strain, and toughness of PEO by 113, 228, 166, 442, 1240, and 4080%, respectively. Such simultaneous increases in stiffness, strength, ductility and toughness of a polymer by an additive are rather uncommon.

  14. Synthesis and Photocatalytic Properties of Ce-Doped TiO2 Nanotube Arrays via Anodic Oxidation

    NASA Astrophysics Data System (ADS)

    Kong, Junhan; Wang, Yongqian; Sun, Qimeng; Meng, Dawei

    2017-03-01

    Ce-doped TiO2 nanotube arrays (TNAs) were prepared successfully through one-step anodic oxidation methods. The structural and morphological features of the TNAs were monitored by x-ray diffraction and field emission scanning electron microscopy with energy dispersive spectroscopy. Ultraviolet-visible light absorption spectra showed the light absorption performances of TiO2 nanotubes in both ultraviolet (UV) and visible light regions. Also, the photocatalytic activities of these samples were measured by the photodegradation rate of methylene blue (MB). The result indicated that doping a moderate amount of cerium ions into TNAs increased the absorption of both ultraviolet light and visible light obviously. However, the excess amount of doping ions would destroy the tubular structure severely and decrease the specific surface area of TNAs sharply. It could directly lead to the decreasing of photocatalytic activitity of TNAs. Furthermore, the best photodegradation rate of the Ce-doped TNAs on MB reached to 95.6%, which had a huge improvement comparing with pure TNAs.

  15. Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density.

    PubMed

    Wu, Chao; Huang, Xingyi; Wu, Xinfeng; Xie, Liyuan; Yang, Ke; Jiang, Pingkai

    2013-05-07

    Polymer-based materials with a high dielectric constant show great potential for energy storage applications. Since the intrinsic dielectric constant of most polymers is very low, the integration of carbon nanotubes (CNTs) into the polymers provides an attractive and promising way to reach a high dielectric constant owing to their outstanding intrinsic physical performances. However, these CNT-based composites usually suffer from high dielectric loss, low breakdown strength and the difficulty to tailor the dielectric constant. Herein, we have designed and fabricated a new class of candidates composed of graphene oxide-encapsulated carbon nanotube (GO-e-CNT) hybrids. The obtained GO-e-CNT-polymer composites not only exhibit a high dielectric constant and low dielectric loss, but also have a highly enhanced breakdown strength and maximum energy storage density. Moreover, the dielectric constant of the composites can be tuned easily by tailoring the loading of GO-e-CNTs. It is believed that the GO shells around CNTs play an important role in realizing the high dielectric performances of the composites. GO shells can not only effectively improve the dispersion of CNTs, but also act as insulation barriers for suppressing leakage current and increasing breakdown strength. Our strategy provides a new pathway to achieve CNT-based polymer composites with high dielectric performances for energy storage applications.

  16. Anti- and pro-oxidant effects of (+)-catechin on hemoglobin-induced protein oxidative damage.

    PubMed

    Lu, Naihao; Chen, Puqing; Yang, Qin; Peng, Yi-Yuan

    2011-06-01

    Evidence to support the role of heme proteins as major inducers of oxidative damage is increasingly present. Flavonoids have been widely used to ameliorate oxidative damage in vivo and in vitro, where the mechanism of this therapeutic action was usually dependent on their anti-oxidant effects. In this study, we investigated the influence of (+)-catechin, a polyphenol identified in tea, cocoa, and red wine, on hemoglobin-induced protein oxidative damage. It was found that (+)-catechin had the capacities to act as a free radical scavenger and reducing agent to remove cytotoxic ferryl hemoglobin, demonstrating apparent anti-oxidant activities. However, the presence of (+)-catechin surprisingly promoted hemoglobin-induced protein oxidation, which was probably due to the ability of this anti-oxidant to rapidly trigger the oxidative degradation of normal hemoglobin. In addition, hemoglobin-H2O2-induced protein carbonyl formation was significantly enhanced by (+)-catechin at lower concentrations, while it was efficiently inhibited when higher concentrations were used. These novel results showed that the dietary intake and therapeutic use of catechins might possess pro-oxidant activity through aggravating hemoglobin-related oxidative damage. The dual effects on hemoglobin redox reactions may provide new insights into the physiological implications of tea extract and wine (catechins) with cellular heme proteins.

  17. Acrylonitrile-Induced Oxidative Stress and Oxidative DNA Damage in Male Sprague-Dawley Rats

    PubMed Central

    Kamendulis, Lisa M.; Klaunig, James E.

    2009-01-01

    Studies have demonstrated that the induction of oxidative stress may be involved in brain tumor induction in rats by acrylonitrile. The present study examined whether acrylonitrile induces oxidative stress and DNA damage in rats and whether blood can serve as a valid surrogate for the biomonitoring of oxidative stress induced by acrylonitrile in the exposed population. Male Sprague-Dawley rats were treated with 0, 3, 30, 100, and 200 ppm acrylonitrile in drinking water for 28 days. One group of rats were also coadministered N-acetyl cysteine (NAC) (0.3% in diet) with acrylonitrile (200 ppm in drinking water) to examine whether antioxidant supplementation was protective against acrylonitrile-induced oxidative stress. Direct DNA strand breakage in white blood cells (WBC) and brain was measured using the alkaline comet assay. Oxidative DNA damage in WBC and brain was evaluated using formamidopyrimidine DNA glycosylase (fpg)-modified comet assay and with high-performance liquid chromatography-electrochemical detection. No significant increase in direct DNA strand breaks was observed in brain and WBC from acrylonitrile-treated rats. However, oxidative DNA damage (fpg comet and 8′hydroxyl-2-deoxyguanosine) in brain and WBC was increased in a dose-dependent manner. In addition, plasma levels of reactive oxygen species (ROS) increased in rats administered acrylonitrile. Dietary supplementation with NAC prevented acrylonitrile-induced oxidative DNA damage in brain and WBC. A slight, but significant, decrease in the GSH:GSSG ratio was seen in brain at acrylonitrile doses > 30 ppm. These results provide additional support that the mode of action for acrylonitrile-induced astrocytomas involves the induction of oxidative stress and damage. Significant associations were seen between oxidative DNA damage in WBC and brain, ROS formation in plasma, and the reported tumor incidences. Since oxidative DNA damage in brain correlated with oxidative damage in WBC, these results suggest

  18. Acrylonitrile-induced oxidative DNA damage in rat astrocytes.

    PubMed

    Pu, Xinzhu; Kamendulis, Lisa M; Klaunig, James E

    2006-10-01

    Chronic administration of acrylonitrile results in a dose-related increase in astrocytomas in rat brain, but the mechanism of acrylonitrile carcinogenicity is not fully understood. The potential of acrylonitrile or its metabolites to induce direct DNA damage as a mechanism for acrylonitrile carcinogenicity has been questioned, and recent studies indicate that the mechanism involves the induction of oxidative stress in rat brain. The present study examined the ability of acrylonitrile to induce DNA damage in the DI TNC1 rat astrocyte cell line using the alkaline Comet assay. Oxidized DNA damage also was evaluated using formamidopyrimidine DNA glycosylase treatment in the modified Comet assay. No increase in direct DNA damage was seen in astrocytes exposed to sublethal concentrations of acrylonitrile (0-1.0 mM) for 24 hr. However, acrylonitrile treatment resulted in a concentration-related increase in oxidative DNA damage after 24 hr. Antioxidant supplementation in the culture media (alpha-tocopherol, (-)-epigallocathechin-3 gallate, or trolox) reduced acrylonitrile-induced oxidative DNA damage. Depletion of glutathione using 0.1 mM DL-buthionine-[S,R]-sulfoximine increased acrylonitrile-induced oxidative DNA damage (22-46%), while cotreatment of acrylonitrile with 2.5 mM L-2-oxothiazolidine-4-carboxylic acid, a precursor for glutathione biosynthesis, significantly reduced acrylonitrile-induced oxidative DNA damage (7-47%). Cotreatment of acrylonitrile with 0.5 mM 1-aminobenzotriazole, a suicidal inhibitor of cytochrome P450, prevented the oxidative DNA damage produced by acrylonitrile. Cyanide (0.1-0.5 mM) increased oxidative DNA damage (44-160%) in astrocytes. These studies demonstrate that while acrylonitrile does not directly damage astrocyte DNA, it does increase oxidative DNA damage. The oxidative DNA damage following acrylonitrile exposure appears to arise mainly through the P450 metabolic pathway; moreover, glutathione depletion may contribute to the

  19. Removal of some impurities from carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Yongcheng; Zhou, Gumin; Wang, Guoping; Qu, Meizhen; Yu, Zuolong

    2003-07-01

    A non-destructive mild oxidation method of removing some impurities from as-grown carbon nanotubes (CNTs), including single-wall carbon nanotubes (SWNTs) and multi-wall carbon nanotubes (MWNTs), by H 2O 2 oxidation and HCl treatment, has been investigated, and somewhat pure carbon nanotubes have been prepared. The CNTs from which some impurities were removed have been evaluated by transmission electron microscopy (TEM) and temperature programmed oxidation and gas chromatography (TPO-GC).

  20. Redox-induced synthesis and encapsulation of metal nanoparticles in shell-cross-linked organometallic nanotubes.

    PubMed

    Wang, Xiao-Song; Wang, Hai; Coombs, Neil; Winnik, Mitchell A; Manners, Ian

    2005-06-29

    A new approach to encapsulate silver nanoparticles inside block copolymer nanotubes is reported and involves an in situ redox reaction between a polyferrocenylsilane (PFS) inner wall and silver ions. Partial preoxidation of the PFS domains was found to be a key step for the efficient formation of one-dimensional arrays of silver nanoparticles confined within the nanotubes.

  1. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  2. Magnetic-field-induced diameter-selective synthesis of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Su, Yanjie; Zhang, Yaozhong; Wei, Hao; Zhang, Liling; Zhao, Jiang; Yang, Zhi; Zhang, Yafei

    2012-02-01

    We report a facile and scalable approach to synthesize single-walled carbon nanotubes (SWNTs) with selected diameter distribution by applying a magnetic field perpendicular to the electric field in the arc plasma region. It is found that this magnetic field-induced diameter-selectivity strategy enables the control of the SWNTs with different diameter distributions in different regions, and the diameter-selective efficiency could be enhanced by modifying the direction of magnetic field. Our results indicate that the motions of the catalysts with different particle sizes, positive carbon ions and electrons are significantly influenced by the magnetic field and electromagnetic force, resulting in the different nucleation and growth processes of SWNTs due to the collective interactions between the magnetic field and arc plasma. This approach would enable a viable route towards the synthesis of SWNTs with desired diameter through the tuning of arc parameters in the arc discharge process.We report a facile and scalable approach to synthesize single-walled carbon nanotubes (SWNTs) with selected diameter distribution by applying a magnetic field perpendicular to the electric field in the arc plasma region. It is found that this magnetic field-induced diameter-selectivity strategy enables the control of the SWNTs with different diameter distributions in different regions, and the diameter-selective efficiency could be enhanced by modifying the direction of magnetic field. Our results indicate that the motions of the catalysts with different particle sizes, positive carbon ions and electrons are significantly influenced by the magnetic field and electromagnetic force, resulting in the different nucleation and growth processes of SWNTs due to the collective interactions between the magnetic field and arc plasma. This approach would enable a viable route towards the synthesis of SWNTs with desired diameter through the tuning of arc parameters in the arc discharge process

  3. A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method

    NASA Astrophysics Data System (ADS)

    Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem

    2015-11-01

    Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.

  4. High-efficiency encapsulation of Pt nanoparticles into the channel of carbon nanotubes as an enhanced electrocatalyst for methanol oxidation.

    PubMed

    Zhang, Jianan; Guo, Shaojun; Wei, Junyi; Xu, Qun; Yan, Wenfu; Fu, Jianwei; Wang, Shoupei; Cao, Mingjing; Chen, Zhimin

    2013-11-18

    Pt-based nanostructures serving as anode catalysts for the methanol oxidation reaction (MOR) have been widely studied for many years. Nevertheless, challenging issues such as poor reaction kinetics and the short-term stability of the MOR are the main drawbacks of such catalysts and limit their applications. Herein, we have developed a facile approach to encapsulate Pt nanoparticles (NPs) inside the nanochannels of porous carbon nanotubes (CNTs; Pt-in-CNTs) as a new enhanced electrocatalytic material. The as-prepared CNTs offer simultaneously ordered diffusion channels for ions and a confinement effect for the NPs, which both facilitate the promotion of catalytic kinetics and avoid the Ostwald ripening of Pt NPs, thus leading to high activity and durable cycle life as an anode catalyst for MOR. This work provides a new approach for enhancing the stability and activity by optimizing the structure of the catalyst, and the Pt-in-CNTs represent the most durable catalysts ever reported for MOR.

  5. Mildly reduced less defective graphene oxide/sulfur/carbon nanotube composite films for high-performance lithium-sulfur batteries.

    PubMed

    Li, Rui; Zhang, Miao; Li, Yingru; Chen, Ji; Yao, Bowen; Yu, Mingpeng; Shi, Gaoquan

    2016-04-28

    The microstructures and properties of the carbonaceous matrices in the cathodes of lithium-sulfur (Li-S) batteries have strong effects on their performances. We prepared a ternary composite cathode of mildly reduced less defective graphene oxide (mrLGO), sulfur, and carbon nanotubes (CNTs) by filtration for Li-S batteries. This battery showed a high initial specific capacity of 1219 mA h g(-1) at 0.2 C and a stable specific capacity of around 1000 mA h g(-1) after 200 cycles with a coulombic efficiency of 99%. Its excellent performance is mainly attributed to the good conductivity and residual oxygen containing groups of mrLGO, and the three-dimensional (3D) framework constructed using mrLGO sheets and CNTs.

  6. Planar-defect-rich zinc oxide nanoparticles assembled on carbon nanotube films as ultraviolet emitters and photocatalysts

    PubMed Central

    Zhu, Yunqing; Zhang, Xiaohua; Li, Ru; Li, Qingwen

    2014-01-01

    Structural defects in zinc oxide (ZnO) nanoparticles are complex and hard to be controlled during the synthesis, however, diversifying the chemical and physical performances. Here we report a rapid and low-temperature deposition method to fabricate planar-defect-rich ZnO nanoparticles on freestanding and aligned carbon nanotube films, different from common treatments which remove structural defects as many as possible. The defect energy states are very close to the valence band of ZnO and serve as recombination centers for a nearly monochromatic ultraviolet luminescence within a wavelength range of 373–376 nm. The absence of point defects, especially of oxygen vacancies whose energy level is <1 eV below the conduction band, allows photoinduced electrons and holes to take parts in possible photocatalytic reactions rather than to recombine at the shallow energy levels of planar defects. PMID:24740315

  7. Langmuir-Blodgett assembly of visible light responsive TiO2 nanotube arrays/graphene oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Gao, Hongyan; Wei, Danming; Dong, Xinju; Cao, Yan

    2017-01-01

    The hybrid nanocomposites of titanium dioxide (TiO2) with graphene oxide (GO) have recently garnered much attention as electronic devices, energy conversion devices, photocatalysts and other applications. In this study, Langmuir-Blodgett (LB) assembly method was firstly reported to prepare a TiO2 nanotube arrays (TNA)-GO heterostructure. The as-prepared TNA-GO sample was characterized by X-ray diffraction, Raman spectra, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The promising characteristics of this TNA-GO material, the inexpensive, nontoxic and highly visible-light responsiveness, may raise the potential uses in many, various photocatalytic applications.

  8. Quercitrin protects skin from UVB-induced oxidative damage

    SciTech Connect

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J.; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  9. Reinforced Carbon Nanotubes.

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  10. Quantum confinement-induced tunable exciton states in graphene oxide

    PubMed Central

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Lee, Jiyoul; Shin, Hyeon-Jin; Cole, Jacqueline M.; Shin, Taeho; Lee, Jaichan; Lee, Hangil; Su, Haibin

    2013-01-01

    Graphene oxide has recently been considered to be a potential replacement for cadmium-based quantum dots due to its expected high fluorescence. Although previously reported, the origin of the luminescence in graphene oxide is still controversial. Here, we report the presence of core/valence excitons in graphene-based materials, a basic ingredient for optical devices, induced by quantum confinement. Electron confinement in the unreacted graphitic regions of graphene oxide was probed by high resolution X-ray absorption near edge structure spectroscopy and first-principles calculations. Using experiments and simulations, we were able to tune the core/valence exciton energy by manipulating the size of graphitic regions through the degree of oxidation. The binding energy of an exciton in highly oxidized graphene oxide is similar to that in organic electroluminescent materials. These results open the possibility of graphene oxide-based optoelectronic device technology. PMID:23872608

  11. Evaluating the Thermal Damage Resistance of Reduced Graphene Oxide/Carbon Nanotube Hybrid Coatings

    NASA Astrophysics Data System (ADS)

    David, Lamuel; Feldman, Ari; Mansfield, Elisabeth; Lehman, John; Singh, Gurpreet; National Institute of Standards and Technology Collaboration

    2014-03-01

    Carbon nanotubes and graphene are known to exhibit some exceptional thermal (K ~ 2000 to 4400 W.m-1K-1 at 300K) and optical properties. Here, we demonstrate preparation and testing of multiwalled carbon nanotubes and chemically modified graphene-composite spray coatings for use on thermal detectors for high-power lasers. The synthesized nanocomposite material was tested by preparing spray coatings on aluminum test coupons used as a representation of the thermal detector's surface. These coatings were then exposed to increasing laser powers and extended exposure times to quantify their damage threshold and optical absorbance. The graphene/carbon nanotube (prepared at varying mass% of graphene in CNTs) coatings demonstrated significantly higher damage threshold values at 2.5 kW laser power (10.6 μm wavelength) than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens showed that the composite coating endured high laser-power densities (up to 2 kW.cm-2) without significant visual damage. This research is based on work supported by the National Science Foundation (Chemical, Bioengineering, Environmental, and Transport Systems Division), under grant no. 1335862 to G. Singh.

  12. Integrated Ternary Bioinspired Nanocomposites via Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes.

    PubMed

    Gong, Shanshan; Cui, Wei; Zhang, Qi; Cao, Anyuan; Jiang, Lei; Cheng, Qunfeng

    2015-12-22

    With its synergistic toughening effect and hierarchical micro/nanoscale structure, natural nacre sets a "gold standard" for nacre-inspired materials with integrated high strength and toughness. We demonstrated strong and tough ternary bioinspired nanocomposites through synergistic toughening of reduced graphene oxide and double-walled carbon nanotube (DWNT) and covalent bonding. The tensile strength and toughness of this kind of ternary bioinspired nanocomposites reaches 374.1 ± 22.8 MPa and 9.2 ± 0.8 MJ/m(3), which is 2.6 and 3.3 times that of pure reduced graphene oxide film, respectively. Furthermore, this ternary bioinspired nanocomposite has a high conductivity of 394.0 ± 6.8 S/cm and also shows excellent fatigue-resistant properties, which may enable this material to be used in aerospace, flexible energy devices, and artificial muscle. The synergistic building blocks with covalent bonding for constructing ternary bioinspired nanocomposites can serve as the basis of a strategy for the construction of integrated, high-performance, reduced graphene oxide (rGO)-based nanocomposites in the future.

  13. A novel voltammetric sensor based on carbon nanotubes and nanoparticles of antimony tin oxide for the determination of ractopamine.

    PubMed

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2016-02-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with carbon nanotubes (CNTs) and nanoparticles of antimony tin oxide (ATO). The surface layer was characterized by scanning electronmicroscopy (SEM), energy dispersive X-ray diffraction method (EDX) and ATR FT-IR spectroscopy. The proposed electrode was assessed in respect to the electro-oxidation of ractopamine. Compared with a bare GCE and a GCE electrode modified with CNTs, the ATONPs/CNTs/GCE exhibited a great catalytic activity towards the oxidation of ractopamine with a well-defined anodic peak at 600 mV. The current response was linear with the concentration of ractopamine over the range from 10 to 240 nM with a detection limit of 3.3 nM. The proposed electrode enabled the selective determination of ractopamine in the presence of high concentrations of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The proposed electrode was successfully applied for the determination of ractopamine in feed and urine samples. The sensitive and selective determination of ractopamine makes the developed method of great interest for monitoring its therapeutic use and doping control purposes.

  14. Visibility and oxidation stability of hybrid-type copper mesh electrodes with combined nickel-carbon nanotube coating.

    PubMed

    Kim, Bu-Jong; Hwang, Young-Jin; Park, Jin-Seok

    2017-04-21

    Hybrid-type transparent conductive electrodes (TCEs) were fabricated by coating copper (Cu) meshes with carbon nanotube (CNT) via electrophoretic deposition, and with nickel (Ni) via electroplating. For the fabricated electrodes, the effects of the coating with CNT and Ni on their transmittance and reflectance in the visible-light range, electrical sheet resistance, and chromatic parameters (e.g., redness and yellowness) were characterized. Also, an oxidation stability test was performed by exposing the electrodes to air for 20 d at 85 °C and 85% temperature and humidity conditions, respectively. It was discovered that the CNT coating considerably reduced the reflectance of the Cu meshes, and that the Ni coating effectively protected the Cu meshes against oxidation. Furthermore, after the coating with CNT, both the redness and yellowness of the Cu mesh regardless of the Ni coating approached almost zero, indicating a natural color. The experiment results confirmed that the hybrid-type Cu meshes with combined Ni-CNT coating improved characteristics in terms of reflectance, sheet resistance, oxidation stability, and color, superior to those of the primitive Cu mesh, and also simultaneously satisfied most of the requirements for TCEs.

  15. Visibility and oxidation stability of hybrid-type copper mesh electrodes with combined nickel–carbon nanotube coating

    NASA Astrophysics Data System (ADS)

    Kim, Bu-Jong; Hwang, Young-Jin; Park, Jin-Seok

    2017-04-01

    Hybrid-type transparent conductive electrodes (TCEs) were fabricated by coating copper (Cu) meshes with carbon nanotube (CNT) via electrophoretic deposition, and with nickel (Ni) via electroplating. For the fabricated electrodes, the effects of the coating with CNT and Ni on their transmittance and reflectance in the visible-light range, electrical sheet resistance, and chromatic parameters (e.g., redness and yellowness) were characterized. Also, an oxidation stability test was performed by exposing the electrodes to air for 20 d at 85 °C and 85% temperature and humidity conditions, respectively. It was discovered that the CNT coating considerably reduced the reflectance of the Cu meshes, and that the Ni coating effectively protected the Cu meshes against oxidation. Furthermore, after the coating with CNT, both the redness and yellowness of the Cu mesh regardless of the Ni coating approached almost zero, indicating a natural color. The experiment results confirmed that the hybrid-type Cu meshes with combined Ni-CNT coating improved characteristics in terms of reflectance, sheet resistance, oxidation stability, and color, superior to those of the primitive Cu mesh, and also simultaneously satisfied most of the requirements for TCEs.

  16. Nitroxides protect against peroxynitrite-induced nitration and oxidation.

    PubMed

    Sadowska-Bartosz, Izabela; Gajewska, Agnieszka; Skolimowski, Janusz; Szewczyk, Rafał; Bartosz, Grzegorz

    2015-12-01

    Nitroxides are promising compounds for prevention of undesired protein modifications. The aim of this study was to compare the efficiency of 11 nitroxides, derivatives of 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO) and 2,2,5,5-tetramethylpirrolidine-1-oxyl (PROXYL) in prevention of nitration and oxidation of model compounds and human serum albumin (HSA). Most nitroxides were very efficient in preventing loss of fluorescein fluorescence induced by peroxynitrite (PN) (IC50 in the nanomolar range) and preventing HSA nitration. The loss of fluorescein fluorescence was demonstrated to be due to nitration. Nitroxides were more effective in prevention nitration than oxidation reactions. They showed a concentration window for preventing dihydrorhodamine (DHR) 123 oxidation but exerted a prooxidant effect at both high and low concentrations. No prooxidant effect of nitroxides was seen in prevention of DHR123 oxidation induced by SIN-1. In all essays hydrophobic nitroxides (especially 4-nonylamido-TEMPO and 3-carbamolyl-dehydroPROXYL) showed the lowest efficiency. An exception was the prevention of thiol group oxidation by PN and SIN-1 where hydrophobic nitroxides were the most effective, apparently due to binding to the protein. Nitroxides showed low toxicity to MCF-7 cells. Most nitroxides, except for the most hydrophobic ones, protected cells from the cytotoxic action of SIN-1 and SIN-1-induced protein nitration. These results point to potential usefulness of nitroxides for prevention of PN-induced oxidation and, especially, nitration.

  17. Temperature gradient-induced fluid pumping inside a single-wall carbon nanotube: A non-equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Faraji, Fahim; Rajabpour, Ali

    2016-09-01

    In this paper we investigate the fluid transport inside a single-wall carbon nanotube induced by a temperature gradient along the tube length, focusing on the effect of fluid-wall interaction strength. It is found that the fluid moves from the hot side of the nanotube towards the cold side. By increasing the fluid-wall interaction strength, the fluid volumetric flux assumes a maximum, increases, and then decreases. Fluid transport is pressure-driven in weak interactions; in contrast, in strong interactions, the fluid is broken into two parts in the radial direction. Fluid transport in the central regions of the tube is pressure-driven, while it is surface-driven in the areas close to the wall.

  18. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    SciTech Connect

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  19. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells

    DOE PAGES

    Benipal, Neeva; Qi, Ji; Liu, Qi; ...

    2017-03-10

    Electro-oxidation of alcohol is the key reaction occurring at the anode of a direct alcohol fuel cell (DAFC), in which both reaction kinetics (rate) and selectivity (to deep oxidation products) need improvement to obtain higher power density and fuel utilization for a more efficient DAFC. We recently found that a PdAg bimetallic nanoparticle catalyst is more efficient than Pd for alcohol oxidation: Pd can facilitate deprotonation of alcohol in a base electrolyte, while Ag can promote intermediate aldehyde oxidation and cleavage of C-single bondC bond of C3 species to C2 species. Furthermore, a combination of the two active sites (Pdmore » and Ag) with two different functions, can simultaneously improve the reaction rates and deeper oxidation products of alcohols. In this continuing work, Pd, Ag mono, and bimetallic nanoparticles supported on carbon nanotubes (Ag/CNT, Pd/CNT, Pd1Ag1/CNT, and Pd1Ag3/CNT) were prepared using an aqueous-phase reduction method; they served as working catalysts for studying electrocatalytic oxidation of glycerol in an anion-exchange membrane-based direct glycerol fuel cell. Combined XRD, TEM, and HAADF-STEM analyses performed to fully characterize as-prepared catalysts suggested that they have small particle sizes: 2.0 nm for Pd/CNT, 2.3 nm for PdAg/CNT, 2.4 nm for PdAg3/CNT, and 13.9 nm for Ag/CNT. XPS further shows that alloying with Ag results in more metal state Pd presented on the surface, and this may be related to their higher direct glycerol fuel cell (DGFC) performances. Single DGFC performance and product analysis results show that PdAg bimetallic nanoparticles can not only improve the glycerol reaction rate so that higher power output can be achieved, but also facilitate deep oxidation of glycerol so that a higher faradaic efficiency and fuel utilization can be achieved along with optimal reaction conditions (increased base-to-fuel ratio). Half-cell electrocatalytic activity measurement and single fuel cell product analysis

  20. Tantalum coating on TiO2 nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts.

    PubMed

    Frandsen, Christine J; Brammer, Karla S; Noh, Kunbae; Johnston, Gary; Jin, Sungho

    2014-04-01

    Nanostructured surface geometries have been the focus of a multitude of recent biomaterial research, and exciting findings have been published. However, only a few publications have directly compared nanostructures of various surface chemistries. The work herein directly compares the response of human osteoblast cells to surfaces of identical nanotube geometries with two well-known orthopedic biomaterials: titanium oxide (TiO2) and tantalum (Ta). The results reveal that the Ta surface chemistry on the nanotube architecture enhances alkaline phosphatase activity, and promotes a ~30% faster rate of matrix mineralization and bone-nodule formation when compared to results on bare TiO2 nanotubes. This study implies that unique combinations of surface chemistry and nanostructure may influence cell behavior due to distinctive physico-chemical properties. These findings are of paramount importance to the orthopedics field for understanding cell behavior in response to subtle alterations in nanostructure and surface chemistry, and will enable further insight into the complex manipulation of biomaterial surfaces. With increased focus in the field of orthopedic materials research on nanostructured surfaces, this study emphasizes the need for careful and systematic review of variations in surface chemistry in concurrence with nanotopographical changes.

  1. A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Han; Zhang, Lusi; Zhang, Dongyang; Chen, Shuangqiang; Coxon, Paul R.; He, Xiong; Coto, Mike; Kim, Hyun-Kyung; Xi, Kai; Ding, Shujiang

    2016-11-01

    We report a simple synthetic approach to coaxially grow transition metal oxide (TMO) nanostructures on carbon nanotubes (CNT) with ready control of phase and morphology. A thin (~4 nm) sulfonated-polystyrene (SPS) pre-coating is essential for the deposition of transition metal based materials. This layer has abundant sulfonic groups (‑SO3‑) that can effectively attract Ni2+, Co2+, Zn2+ ions through electrostatic interaction and induce them via hydrolysis, dehydration and recrystallization to form coaxial (NiO, Co3O4, NiCoO2 and ZnCo2O4) shells and a nanosheet-like morphology around CNT. These structures possess a large active surface and enhanced structural robustness when used as electrode materials for lithium-ion batteries (LIBs) and electrochemical capacitors (ECs). As electrodes for LIBs, the ZnCo2O4@CNT material shows extremely stable cycling performance with a discharge capacity of 1068 mAh g‑1 after 100 cycles at a current density of 400 mAg‑1. For EC applications, the NiCoO2@CNT exhibits a high capacitance of 1360 Fg‑1 at current densities of 10 Ag‑1 after 3000 cycles and an overall capacitance loss of only 1.4%. These results demonstrate the potential of such hybrid materials meeting the crucial requirements of cycling stability and high rate capability for energy conversion and storage devices.

  2. A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors

    PubMed Central

    Zhou, Han; Zhang, Lusi; Zhang, Dongyang; Chen, Shuangqiang; Coxon, Paul R.; He, Xiong; Coto, Mike; Kim, Hyun-Kyung; Xi, Kai; Ding, Shujiang

    2016-01-01

    We report a simple synthetic approach to coaxially grow transition metal oxide (TMO) nanostructures on carbon nanotubes (CNT) with ready control of phase and morphology. A thin (~4 nm) sulfonated-polystyrene (SPS) pre-coating is essential for the deposition of transition metal based materials. This layer has abundant sulfonic groups (−SO3−) that can effectively attract Ni2+, Co2+, Zn2+ ions through electrostatic interaction and induce them via hydrolysis, dehydration and recrystallization to form coaxial (NiO, Co3O4, NiCoO2 and ZnCo2O4) shells and a nanosheet-like morphology around CNT. These structures possess a large active surface and enhanced structural robustness when used as electrode materials for lithium-ion batteries (LIBs) and electrochemical capacitors (ECs). As electrodes for LIBs, the ZnCo2O4@CNT material shows extremely stable cycling performance with a discharge capacity of 1068 mAh g−1 after 100 cycles at a current density of 400 mAg−1. For EC applications, the NiCoO2@CNT exhibits a high capacitance of 1360 Fg−1 at current densities of 10 Ag−1 after 3000 cycles and an overall capacitance loss of only 1.4%. These results demonstrate the potential of such hybrid materials meeting the crucial requirements of cycling stability and high rate capability for energy conversion and storage devices. PMID:27886231

  3. A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors.

    PubMed

    Zhou, Han; Zhang, Lusi; Zhang, Dongyang; Chen, Shuangqiang; Coxon, Paul R; He, Xiong; Coto, Mike; Kim, Hyun-Kyung; Xi, Kai; Ding, Shujiang

    2016-11-25

    We report a simple synthetic approach to coaxially grow transition metal oxide (TMO) nanostructures on carbon nanotubes (CNT) with ready control of phase and morphology. A thin (~4 nm) sulfonated-polystyrene (SPS) pre-coating is essential for the deposition of transition metal based materials. This layer has abundant sulfonic groups (-SO3(-)) that can effectively attract Ni(2+), Co(2+), Zn(2+) ions through electrostatic interaction and induce them via hydrolysis, dehydration and recrystallization to form coaxial (NiO, Co3O4, NiCoO2 and ZnCo2O4) shells and a nanosheet-like morphology around CNT. These structures possess a large active surface and enhanced structural robustness when used as electrode materials for lithium-ion batteries (LIBs) and electrochemical capacitors (ECs). As electrodes for LIBs, the ZnCo2O4@CNT material shows extremely stable cycling performance with a discharge capacity of 1068 mAh g(-1) after 100 cycles at a current density of 400 mAg(-1). For EC applications, the NiCoO2@CNT exhibits a high capacitance of 1360 Fg(-1) at current densities of 10 Ag(-1) after 3000 cycles and an overall capacitance loss of only 1.4%. These results demonstrate the potential of such hybrid materials meeting the crucial requirements of cycling stability and high rate capability for energy conversion and storage devices.

  4. Light-induced vibration characteristics of free-standing carbon nanotube films fabricated by vacuum filtration

    SciTech Connect

    Li, Junying; Zhu, Yong Wang, Ning; Zhang, Jie; Wang, Xin

    2014-07-14

    In this paper, we fabricated carbon nanotube (CNT) films with different thickness by vacuum filtration method, and the films were separated from Mixed Cellulose Ester membranes with burn-off process. The thickness of CNT films with different concentrations of CNTs 50 mg, 100 mg, 150 mg, and 200 mg are 10.36 μm, 20.90 μm, 30.19 μm, and 39.98 μm respectively. The CNT bundles are homogeneously distributed and entangled with each other, and still maintain 2D continuous network structures after burn-off process. The optical absorptivity of the films is between 84% and 99% at wavelengths ranging from 400 nm to 2500 nm. Vibration characteristics were measured with the Fabry-Perot (F-P) interferometer vibration measurement system. CNT films vibrate only under the xenon light irradiating perpendicularly to the surface. Vibration recorded by Fabry-Perot interferometer is considered to be caused by the time-dependent thermal moment, which is due to the temperature differences of two sides of CNT films. The vibration frequency spectrums between 0.1 ∼ 0.5 Hz were obtained by the Fast Fourier Transform spectra from time domain to frequency domain, and showed a linear relationship with films thickness, which is in accordance with theoretical model of thermal induced vibration.

  5. Structure-dependent mitochondrial dysfunction and hypoxia induced with single-walled carbon nanotubes.

    PubMed

    Wang, Li-Rong; Xue, Xue; Hu, Xiao-Mei; Wei, Ming-Yuan; Zhang, Chun-Qiu; Ge, Guang-Lu; Liang, Xing-Jie

    2014-07-23

    Cytotoxicity of nanomaterials on living systems is known to be affected by their size, shape, surface chemistry, and other physicochemical properties. Exposure to a well-characterized subpopulation of specific nanomaterials is therefore desired to reveal more detailed mechanisms. This study develops scalable density gradient ultracentrifugation sorting of highly dispersed single-walled carbon nanotubes (SWNTs) into four distinct bands based on diameter, aggregation, and structural integrity, with greatly improved efficiency, yield, and reproducibility. With guarantee of high yield and stability of four SWNT fractions, it is possible for the first time, to investigate the structure-dependent bioeffects of four SWNT fractions. it is possible Among these, singly-dispersed integral SWNTs show no significant effects on the mitochondrial functions and hypoxia. The aggregated integral SWNTs show more significant effects on the mitochondrial dysfunction and hypoxia compared to the aggregated SWNTs with poor structure integrity. Then, it is found that the aggregated integral SWNTs induced the irregular mitochondria respiratory and pro-apoptotic proteins activation, while aggregated SWNTs with poor structure integrity greatly enhanced reactive oxygen species (ROS) levels. This work supports the view that control of the distinct structure characteristics of SWNTs helps establish clearer structure-bioeffect correlation and health risk assessment. It is also hoped that these results can help in the design of nanomaterials with higher efficiency and accuracy in subcellular translocation.

  6. Pressure-induced superconductivity in thin films of boron-doped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Haruyama, Junji; Nakamura, Jin; Reppert, Jason; Rao, Apparao; Sano, Hirotaka; Iye, Yasuhiro

    2010-03-01

    We have reported that thin films of slightly boron-doped single-walled carbon nanotubes (B-SWNTs) can be superconductor at Tc of 12K [1]. Here, based on this, we show creation of paperlike thin film (Buckypaper) consisting of pseudo-two-dimensional network of B-SWNTs within weakly intertube van der Waals coupling (IVDWC) state. It was formed by sufficiently dissolving as-grown ropes of B-SWNTs and densely assembling them on silicon substrate. We find that superconducting transition temperature Tc of 8 K under absent pressure can be induced up to 19 K by applying a small pressure to the film and that a frequency in the radial breathing phonon drastically increases with applying pressure [2]. Discussion about IVDWC and distribution of B-SWNTs diameter imply the strong correlation. References [1] N. Murata, J. Haruyama, J. Reppert, A. M. Rao, T. Koretsune, S. Saito, Phys. Rev. Lett. 101, 027002 (2008) [2] J. Nakamura, J. Haruyama, M. Tachibana, J. Reppert,A. Rao, H. Sano, Y. Iye et al., Appl.Phys.Lett. 95, 142503 (2009)

  7. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution.

    PubMed

    Chen, Jing; Xue, Shuang; Song, Youtao; Shen, Manli; Zhang, Zhaohong; Yuan, Tianxin; Tian, Fangyuan; Dionysiou, Dionysios D

    2016-06-05

    In this study, a new catalytic degradation technology using microwave induced carbon nanotubes (MW/CNTs) was proposed and applied in the treatment of organic pollutants in aqueous solution. The catalytic activity of three CNTs of 10-20nm, 20-40nm, and 40-60nm diameters were compared. The results showed that organic pollutants such as methyl orange (MO), methyl parathion (MP), sodium dodecyl benzene sulfonate (SDBS), bisphenol A (BPA), and methylene blue (MB) in aqueous solution could be degraded effectively and rapidly in MW/CNTs system. CNTs with diameter of 10-20nm exhibited the highest catalytic activity of the three CNTs under MW irradiation. Further, complete degradation was obtained using 10-20nm CNTs within 7.0min irradiation when 25mL MO solution (25mg/L), 1.2g/L catalyst dose, 450W, 2450MHz, and pH=6.0 were applied. The rate constants (k) for the degradation of SDBS, MB, MP, MO and BPA using 10-20nm CNTs/MW system were 0.726, 0.679, 0.463, 0.334 and 0.168min(-1), respectively. Therefore, this technology may have potential application for the treatment of targeted organic pollutants in wastewaters.

  8. Aluminum Induces Oxidative Stress Genes in Arabidopsis thaliana1

    PubMed Central

    Richards, Keith D.; Schott, Eric J.; Sharma, Yogesh K.; Davis, Keith R.; Gardner, Richard C.

    1998-01-01

    Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al. PMID:9449849

  9. Heat-induced transformations in coronene-single-walled carbon nanotube systems

    NASA Astrophysics Data System (ADS)

    Chernov, Alexander I.; Fedotov, Pavel V.; Krylov, Alexander S.; Vtyurin, Alexander N.; Obraztsova, Elena D.

    2016-03-01

    Coronene molecules are used as filler for single-walled carbon nanotubes. Variation of the synthesis temperature regimes leads to formation of different types of carbon nanostructures inside the nanotubes. Accurate determination of the structures by optical spectroscopy methods remains an important issue in composite materials. Clear distinction between adsorbed organic molecules on the surface of the tubes and filled structures may be accessed by Raman and photoluminescence spectroscopies. We perform additional heat treatment after the initial synthesis procedure and show the evolution of the optical spectral features corresponding to the filled structures and adsorbed materials on the surface of single-walled carbon nanotubes.

  10. Bias-dependent amino-acid-induced conductance changes in short semi-metallic carbon nanotubes.

    PubMed

    Abadir, G B; Walus, K; Pulfrey, D L

    2010-01-08

    We study the interaction between short semi-metallic carbon nanotubes and different amino acids using molecular dynamics and ab initio (density functional theory/non-equilibrium Green's function) simulations. We identify two different mechanisms of nanotube conductance change upon adsorption of amino acids: one due to the change of the coordinates of the nanotube arising from van der Waals forces of interaction with the adsorbed amino acid; and one due to electrostatic interactions, which appear only in the case of charged amino acids. We also find that the transport mechanism and the changes in the conductance of the tube upon amino acid adsorption are bias dependent.

  11. Electronic modulations in a single wall carbon nanotube induced by the Au(111) surface reconstruction

    SciTech Connect

    Clair, Sylvain; Shin, Hyung-Joon; Kim, Yousoo E-mail: maki@riken.jp; Kawai, Maki E-mail: maki@riken.jp

    2015-02-02

    The structural and electronic structure of single wall carbon nanotubes adsorbed on Au(111) has been investigated by low-temperature scanning tunneling microscopy and spectroscopy. The nanotubes were dry deposited in situ in ultrahigh vacuum onto a perfectly clean substrate. In some cases, the native herringbone reconstruction of the Au(111) surface interacted directly with adsorbed nanotubes and produced long-range periodic oscillations in their local density of states, corresponding to charge transfer modulations along the tube axis. This effect, however, was observed not systematically for all tubes and only for semiconducting tubes.

  12. Phloroglucinol Attenuates Free Radical-induced Oxidative Stress

    PubMed Central

    So, Mi Jung; Cho, Eun Ju

    2014-01-01

    The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions (O2−), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, O2−, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide (H2O2)-induced SIPS. Phloroglucinol treatment attenuated H2O2-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS. PMID:25320709

  13. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence.

    PubMed

    Zhang, Xian-Ping; Zhang, Gui-Hai; Wang, Yu-Ying; Liu, Jun; Wei, Qiang; Xu, Chun-Yan; Wang, Jian-Wei; Wang, Ya-Ping

    2013-09-01

    We have investigated oxidized low-density lipoprotein (ox-LDL) induced senescence in hematopoietic stem cells (HCs). Mouse Sca-1+ HCs were separated and purified using the magnetic activated cell sorting technique. Ox-LDL induced significant senescence in HCs measured by SA-β-Gal staining, and reduced CFU-Mix colony-forming capacity, arresting cells at G0/G1 phase. In agreement with the cell cycle arrest, ox-LDL markedly reduced the expression of CDK4, cyclin D, and cyclin E. As possible contributing factors for cell senescence, ox-LDL also induced cellular oxidative stress and reduced telomerase activity.

  14. Efficiently Visible-Light Driven Photoelectrocatalytic Oxidation of As(III) at Low Positive Biasing Using Pt/TiO2 Nanotube Electrode.

    PubMed

    Qin, Yanyan; Li, Yilian; Tian, Zhen; Wu, Yangling; Cui, Yanping

    2016-12-01

    A constant current deposition method was selected to load highly dispersed Pt nanoparticles on TiO2 nanotubes in this paper, to extend the excited spectrum range of TiO2-based photocatalysts to visible light. The morphology, elemental composition, and light absorption capability of as-obtained Pt/TiO2 nanotubes electrodes were characterized by FE-SEM, energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), and UV-vis spectrometer. The photocatalytic and photoelectrocatalytic oxidation of As(III) using a Pt/TiO2 nanotube arrays electrode under visible light (λ > 420 nm) irradiation were investigated in a divided anode/cathode electrolytic tank. Compared with pure TiO2 which had no As(III) oxidation capacity under visible light, Pt/TiO2 nanotubes exhibited excellent visible-light photocatalytic performance toward As(III), even at dark condition. In anodic cell, As(III) could be oxidized with high efficiency by photoelectrochemical process with only 1.2 V positive biasing. Experimental results showed that photoelectrocatalytic oxidation process of As(III) could be well described by pseudo-first-order kinetic model. Rate constants depended on initial concentration of As(III), applied bias potential and solution pH. At the same time, it was interesting to find that in cathode cell, As(III) was also continuously oxidized to As(V). Furthermore, high-arsenic groundwater sample (25 m underground) with 0.32 mg/L As(III) and 0.35 mg/L As(V), which was collected from Daying Village, Datong basin, Northern China, could totally transform to As(V) after 200 min under visible light in this system.

  15. Efficiently Visible-Light Driven Photoelectrocatalytic Oxidation of As(III) at Low Positive Biasing Using Pt/TiO2 Nanotube Electrode

    NASA Astrophysics Data System (ADS)

    Qin, Yanyan; Li, Yilian; Tian, Zhen; Wu, Yangling; Cui, Yanping

    2016-01-01

    A constant current deposition method was selected to load highly dispersed Pt nanoparticles on TiO2 nanotubes in this paper, to extend the excited spectrum range of TiO2-based photocatalysts to visible light. The morphology, elemental composition, and light absorption capability of as-obtained Pt/TiO2 nanotubes electrodes were characterized by FE-SEM, energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), and UV-vis spectrometer. The photocatalytic and photoelectrocatalytic oxidation of As(III) using a Pt/TiO2 nanotube arrays electrode under visible light ( λ > 420 nm) irradiation were investigated in a divided anode/cathode electrolytic tank. Compared with pure TiO2 which had no As(III) oxidation capacity under visible light, Pt/TiO2 nanotubes exhibited excellent visible-light photocatalytic performance toward As(III), even at dark condition. In anodic cell, As(III) could be oxidized with high efficiency by photoelectrochemical process with only 1.2 V positive biasing. Experimental results showed that photoelectrocatalytic oxidation process of As(III) could be well described by pseudo-first-order kinetic model. Rate constants depended on initial concentration of As(III), applied bias potential and solution pH. At the same time, it was interesting to find that in cathode cell, As(III) was also continuously oxidized to As(V). Furthermore, high-arsenic groundwater sample (25 m underground) with 0.32 mg/L As(III) and 0.35 mg/L As(V), which was collected from Daying Village, Datong basin, Northern China, could totally transform to As(V) after 200 min under visible light in this system.

  16. Highly purified, multi-wall carbon nanotubes induce light-chain 3B expression in human lung cells

    SciTech Connect

    Tsukahara, Tamotsu; Matsuda, Yoshikazu; Usui, Yuki; Haniu, Hisao

    2013-10-18

    Highlights: •HTT2800-treated BEAS-2B cells induced LC3B in a time-dependent manner. •HTT2800-treated BEAS-2B cells showed decreased cell proliferation that was both time- and dose-dependent. •Addition of 3-MA, LC3B-II protein and mRNA levels were significantly decreased. •3-MA and E64-d + pepstatin A, but not brefeldin A, provided protection against HTT2800-induced cell death. •These results suggest that HTT2800 predominantly causes autophagy rather than apoptotic cell death in BEAS-2B cells. -- Abstract: Bronchial epithelial cells are targets of inhalation and play a critical role in the maintenance of mucosal integrity as mechanical barriers against various particles. Our previous result suggest that vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. Increasing evidence suggests that autophagy may critically influence vital cellular processes such as apoptosis, cell proliferation and inflammation and thereby may play a critical role in pulmonary diseases. Autophagy was recently recognized as a critical cell death pathway, and autophagosome accumulation has been found to be associated with the exposure of various nanoparticles. In this study, the authors focus on the autophagic responses of HTT2800 exposure. The HTT2800-exposed cells induced LC3B expression and induced cell growth inhibition.

  17. Preparation and properties of alumina composites modified by electric field-induced alignment of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhu, Yue-Feng; Shi, Lei; Zhang, Chan; Yang, Xi-Zhi; Liang, Ji

    2007-11-01

    Catalytic chemical vapor deposition (CVD) grown multi-walled carbon nanotubes (MWNTs) are treated with HF and deionized water and are then placed into alumina ceramics for improvement of both electrical conductivity and mechanical properties. In particular, an alternating current (ac) electric field is applied during the coagulation of the alumina slurries to induce the formation of aligned MWNT networks in the alumina matrix. The coagulated alumina matrix composite bases filled with 2 wt. % ac electric field-induced aligned MWNTs, are then sintered by hot pressing. The electrical conductivities of the prepared composites in directions both parallel and perpendicular to the MWNTs alignment, reach values of 6.2×10-2 S m-1 and 6.8×10-9 S m-1, respectively, compared with that of 4.5×10-15 S m-1 for pristine alumina ceramics. The fracture toughness and flexing strengths of the prepared composites in the two directions are 4.66±0.66 MPa m0.5, 390±70 MPa, and 3.65±0.46 MPa m0.5, 191±5 MPa, respectively, compared with 3.78±0.66 MPa m0.5 and 302±50 MPa for pristine alumina, 4.09±0.15 MPa m0.5 and 334±60 MPa for alumina filled with 2 wt. % MWNTs prepared without the effect of an electric field, respectively. The results indicate that the electric field leads to anisotropic behaviour. The properties of the composites along the direction of the MWNTs alignment are much improved with the addition of a small amount of CVD grown MWNTs.

  18. Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes.

    PubMed

    Chen, Guang-Cai; Shan, Xiao-Quan; Zhou, Yi-Quan; Shen, Xiu-e; Huang, Hong-Lin; Khan, Shahamat U

    2009-09-30

    The adsorption kinetics, isotherms and thermodynamic of atrazine on multiwalled carbon nanotubes (MWCNTs) containing 0.85%, 2.16%, and 7.07% oxygen was studied. Kinetic analyses were performed using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. The regression results showed that the pseudo-second-order law fit the adsorption kinetics. The calculated thermodynamic parameters indicated that adsorption of atrazine on MWCNTs was spontaneous and exothermic. Standard free energy (DeltaG(0)) became less negative when the oxygen content of MWCNTs increased from 0.85% to 7.07% which is consistent with the low adsorption affinity of MWCNTs for atrazine.

  19. The effects of liquid-phase oxidation of multiwall carbon nanotubes on their surface characteristics

    NASA Astrophysics Data System (ADS)

    Burmistrov, I. N.; Muratov, D. S.; Ilinykh, I. A.; Kolesnikov, E. A.; Godymchuk, A. Yu; Kuznetsov, D. V.

    2016-01-01

    The development of new sorbents based on nanostructured carbon materials recently became a perspective field of research. Main topic of current study is to investigate the effect of different regimes of multiwall carbon nanotubes (MWCNT) surface modification process on their structural characteristics. MWCNT samples were treated with nitric acid at high temperature. Structural properties were studied using low temperature nitrogen adsorption and acid-base back titration methods. The study showed that diluted nitric acid does not affect MWCNT structure. Concentrated nitric acid treatment leads to formation of 2.8 carboxylic groups per 1 nm2 of the sample surface.

  20. Radiation-induced cationic polymerization of limonene oxide,. cap alpha. -pinene oxide, and. beta. -pinene oxide

    SciTech Connect

    Aikins, J.A.; Williams, F.

    1985-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weights. A high frequency of chain (proton) transfer to monomer is indicated by the fact that the kinetic chain lengths are estimated to be several hundred times larger than the range of DP/sub n/ values (12-4). Structural characterization of the limonene oxide polymer by /sup 1/H and /sup 13/C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the ..cap alpha..-pinene and ..beta..-pinene oxides show that the opening of the epoxide ring for these monomers is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-di-methyl group in the main chain.

  1. Quantification of carbon nanotubes in different environmental matrices by a microwave induced heating method.

    PubMed

    He, Yang; Al-Abed, Souhail R; Dionysiou, Dionysios D

    2017-02-15

    Carbon nanotubes (CNTs) have been incorporated into numerous consumer products, and have also been employed in various industrial areas because of their extraordinary properties. The large scale production and wide applications of CNTs make their release into the environment a major concern. Therefore, it is crucial to determine the degree of potential CNT contamination in the environment, which requires a sensitive and accurate technique for selectively detecting and quantifying CNTs in environmental matrices. In this study, a simple device based on utilizing heat generated/temperature increase from CNTs under microwave irradiation was built to quantify single-walled CNTs (SWCNTs), multi-walled CNTs (MWCNTs) and carboxylated CNTs (MWCNT-COOH) in three environmentally relevant matrices (sand, soil and sludge). Linear temperature vs CNT mass relationships were developed for the three environmental matrices spiked with known amounts of different types of CNTs that were then irradiated in a microwave at low energies (70-149W) for a short time (15-30s). MWCNTs had a greater microwave response in terms of heat generated/temperature increase than SWCNTs and MWCNT-COOH. An evaluation of microwave behavior of different carbonaceous materials showed that the microwave measurements of CNTs were not affected even with an excess of other organic, inorganic carbon or carbon based nanomaterials (fullerene, granular activated carbon and graphene oxide), mainly because microwave selectively heats materials such as CNTs that have a higher dielectric loss factor. Quantification limits using this technique for the sand, soil and sludge were determined as low as 18.61, 27.92, 814.4μg/g for MWCNTs at a microwave power of 133W and exposure time of 15s.

  2. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon

    EPA Science Inventory

    Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applicatio...

  3. Oxidative stress in alcohol-induced rat parotid sialadenosis.

    PubMed

    Campos, Sara Cristina Gonçalves; Moreira, Denise Aparecida Corrêa; Nunes, Terezinha D'Avila e Silva; Colepicolo, Pio; Brigagão, Maísa Ribeiro Pereira Lima

    2005-07-01

    This study evaluated the effect of chronic ethanol consumption on the oxidative status of rat parotid and submandibular glands. To identify the endogenous response to ethanol ingestion, the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined. In addition, the antioxidant alpha-tocopherol was supplied to the animals in order to estimate its action in ethanol-associated glandular damage. The thiobarbituric acid reactive substances (TBARS), and the protein carbonyl (PC) content, both markers of cellular oxidative stress on lipid and protein structures, respectively, were recorded. Animals subjected to alcohol ingestion showed a low body growth rate with concomitant enlargement of absolute and relative parotid wet weight, compared with pair-fed calorie-controlled rats. Parotid glands of ethanol-treated animals showed increased SOD and GPx activity, and alpha-tocopherol was able to reduce their activities to the control levels. TBARS and PC were enhanced after chronic ethanol treatment in rat parotids. Supplemental alpha-tocopherol suppressed the oxidative ethanol-induced damage in lipid without affecting induced protein oxidation. Submandibular glands revealed no alterations in the weight, enzymatic and oxidative parameters tested due to ethanol and/or alpha-tocopherol ingestion. These findings indicate the involvement of oxidative stress in parotid gland sialadenosis due to ethanol consumption and the capability of alpha-tocopherol to halt lipid damage, although this low-molecular antioxidant compound leads to neither increased glandular weight nor protein oxidation in ethanol-induced parotid alterations.

  4. Oxidative stress in MeHg-induced neurotoxicity

    SciTech Connect

    Farina, Marcelo; Aschner, Michael; Rocha, Joao B.T.

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  5. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

    SciTech Connect

    Thayanithy, Venugopal; Babatunde, Victor; Dickson, Elizabeth L.; Wong, Phillip; Oh, Sanghoon; Ke, Xu; Barlas, Afsar; Fujisawa, Sho; Romin, Yevgeniy; Moreira, André L.; Downey, Robert J.; Steer, Clifford J.; Subramanian, Subbaya; Manova-Todorova, Katia; Moore, Malcolm A.S.; Lou, Emil

    2014-04-15

    Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes and

  6. High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes.

    PubMed

    Singh, Ashutosh K; Sarkar, Debasish; Karmakar, Keshab; Mandal, Kalyan; Khan, Gobinda Gopal

    2016-08-17

    We report a facile method to design Co3O4-MnO2-NiO ternary hybrid 1D nanotube arrays for their application as active material for high-performance supercapacitor electrodes. This as-prepared novel supercapacitor electrode can store charge as high as ∼2020 C/g (equivalent specific capacitance ∼2525 F/g) for a potential window of 0.8 V and has long cycle stability (nearly 80% specific capacitance retains after successive 5700 charge/discharge cycles), significantly high Coulombic efficiency, and fast response time (∼0.17s). The remarkable electrochemical performance of this unique electrode material is the outcome of its enormous reaction platform provided by its special nanostructure morphology and conglomeration of the electrochemical properties of three highly redox active materials in a single unit.

  7. Probing Photosensitization by Functionalized Carbon Nanotubes

    EPA Science Inventory

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  8. Occupational Exposure to Carbon Nanotubes and Nanofibers

    MedlinePlus

    ... Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers Recommend on Facebook Tweet Share Compartir ... composed of engineered nanoparticles, such as metal oxides, nanotubes, nanowires, quantum dots, and carbon fullerenes (buckyballs), among ...

  9. Light-induced disassembly of self-assembled vesicle-capped nanotubes observed in real time

    NASA Astrophysics Data System (ADS)

    Coleman, Anthony C.; Beierle, John M.; Stuart, Marc C. A.; Maciá, Beatriz; Caroli, Giuseppe; Mika, Jacek T.; van Dijken, Derk Jan; Chen, Jiawen; Browne, Wesley R.; Feringa, Ben L.

    2011-09-01

    Molecular self-assembly is the basis for the formation of numerous artificial nanostructures. The self-organization of peptides, amphiphilic molecules composed of fused benzene rings and other functional molecules into nanotubes is of particular interest. However, the design of dynamic, complex self-organized systems that are responsive to external stimuli remains a significant challenge. Here, we report self-assembled, vesicle-capped nanotubes that can be selectively disassembled by irradiation. The walls of the nanotubes are 3-nm-thick bilayers and are made from amphiphilic molecules with two hydrophobic legs that interdigitate when the molecules self-assemble into bilayers. In the presence of phospholipids, a phase separation between the phospholipids and the amphiphilic molecules creates nanotubes, which are end-capped by vesicles that can be chemically altered or removed and reattached without affecting the nanotubes. The presence of a photoswitchable and fluorescent core in the amphiphilic molecules allows fast and highly controlled disassembly of the nanotubes on irradiation, and distinct disassembly processes can be observed in real time using fluorescence microscopy.

  10. Mechanisms of carbon nanotube-induced toxicity: focus on pulmonary inflammation.

    PubMed

    Bhattacharya, Kunal; Andón, Fernando Torres; El-Sayed, Ramy; Fadeel, Bengt

    2013-12-01

    Carbon nanotubes have gained tremendous interest in a wide range of applications due to their unique physical, chemical, and electronic properties. Needless to say, close attention to the potential toxicity of carbon nanotubes is of paramount importance. Numerous studies have linked exposure of carbon nanotubes to the induction of inflammation, a complex protective response to harmful stimuli including pathogens, damaged or dying cells, and other irritants. However, inflammation is a double-edged sword as chronic inflammation can lead to destruction of tissues thus compromising the homeostasis of the organism. Here, we provide an overview of the process of inflammation, the key cells and the soluble mediators involved, and discuss research on carbon nanotubes and inflammation, including recent studies on the activation of the so-called inflammasome complex in macrophages resulting in secretion of pro-inflammatory cytokines. Moreover, recent work has shown that inflammatory cells i.e. neutrophils and eosinophils are capable of enzymatic degradation of carbon nanotubes, with mitigation of the pro-inflammatory and pro-fibrotic effects of nanotubes thus underscoring that inflammation is both good and bad.

  11. Well-dispersed NiO nanoparticles supported on nitrogen-doped carbon nanotube for methanol electrocatalytic oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Zhou, Yingke; Hu, Min; Chen, Jian

    2017-01-01

    Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.

  12. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    PubMed

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  13. Hypoxia-Induced Oxidative Stress Modulation with Physical Activity

    PubMed Central

    Debevec, Tadej; Millet, Grégoire P.; Pialoux, Vincent

    2017-01-01

    Increased oxidative stress, defined as an imbalance between prooxidants and antioxidants, resulting in molecular damage and disruption of redox signaling, is associated with numerous pathophysiological processes and known to exacerbate chronic diseases. Prolonged systemic hypoxia, induced either by exposure to terrestrial altitude or a reduction in ambient O2 availability is known to elicit oxidative stress and thereby alter redox balance in healthy humans. The redox balance modulation is also highly dependent on the level of physical activity. For example, both high-intensity exercise and inactivity, representing the two ends of the physical activity spectrum, are known to promote oxidative stress. Numerous to-date studies indicate that hypoxia and exercise can exert additive influence upon redox balance alterations. However, recent evidence suggests that moderate physical activity can attenuate altitude/hypoxia-induced oxidative stress during long-term hypoxic exposure. The purpose of this review is to summarize recent findings on hypoxia-related oxidative stress modulation by different activity levels during prolonged hypoxic exposures and examine the potential mechanisms underlying the observed redox balance changes. The paper also explores the applicability of moderate activity as a strategy for attenuating hypoxia-related oxidative stress. Moreover, the potential of such moderate intensity activities used to counteract inactivity-related oxidative stress, often encountered in pathological, elderly and obese populations is also discussed. Finally, future research directions for investigating interactive effects of altitude/hypoxia and exercise on oxidative stress are proposed. PMID:28243207

  14. Electrochemical properties of iron oxides/carbon nanotubes as anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zeng, Zhipeng; Zhao, Hailei; Lv, Pengpeng; Zhang, Zijia; Wang, Jie; Xia, Qing

    2015-01-01

    A composited anode material with combined Fe3O4/FeO nanotube and carbon shell is synthesized by a facile hydrothermal method with subsequent CVD heat treatment. The as-prepared Fe3O4/FeO/C composite shows excellent cycle stability and rate capability as lithium ion battery anode. We study the effect of FeO on the electrochemical performances of the Fe3O4/FeO/C electrode. A capacity climbing phenomenon can be observed for the Fe3O4/FeO/C electrodes, which tends to be more evident with increasing FeO content. The "extra capacity" is correlated with the reversible formation of polymeric gel-like film on the particle surface of active materials, which is electrochemical active towards Li ions. The FeO component presents a certain extent of catalytic role in assisting the formation of the gel-like film. Transmission electron microscope (TEM) and electrochemical impedance spectroscopy (EIS) analytical technique are combined to further confirm the reversible growth of the SEI gel-like film. High temperature promotes the formation of gel-like film, while the resistance from the film decreases remarkably with temperature due to the enhanced lithium ion conductivity. The film contributes little to the whole EIS resistance of Fe3O4/FeO nanotube/carbon electrode. Tentative explanations based on the current experiments and existing literature are made to explain such unusual finding.

  15. Highly Ordered Periodic Au/TiO₂ Hetero-Nanostructures for Plasmon-Induced Enhancement of the Activity and Stability for Ethanol Electro-oxidation.

    PubMed

    Jin, Zhao; Wang, Qiyu; Zheng, Weitao; Cui, Xiaoqiang

    2016-03-02

    The catalytic electro-oxidation of ethanol is the essential technique for direct alcohol fuel cells (DAFCs) in the area of alternative energy for the ability of converting the chemical energy of alcohol into the electric energy directly. Developing highly efficient and stable electrode materials with antipoisoning ability for ethanol electro-oxidation remains a challenge. A highly ordered periodic Au-nanoparticle (NP)-decorated bilayer TiO2 nanotube (BTNT) heteronanostructure was fabricated by a two-step anodic oxidation of Ti foil and the subsequent photoreduction of HAuCl4. The plasmon-induced charge separation on the heterointerface of Au/TiO2 electrode enhances the electrocatalytic activity and stability for the ethanol oxidation under visible light irradiation. The highly ordered periodic heterostructure on the electrode surface enhanced the light harvesting and led to the greater performance of ethanol electro-oxidation under irradiation compared with the ordinary Au NPs-decorated monolayer TiO2 nanotube (MTNT). This novel Au/TiO2 electrode also performed a self-cleaning property under visible light attributed to the enhanced electro-oxidation of the adsorbed intermediates. This light-driven enhancement of the electrochemical performances provides a development strategy for the design and construction of DAFCs.

  16. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification.

    PubMed

    Chen, Xianfu; Qiu, Minghui; Ding, Hao; Fu, Kaiyun; Fan, Yiqun

    2016-03-14

    In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m(-2) h(-1) bar(-1). Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes.

  17. Nafion-porous cerium oxide nanotubes composite membrane for polymer electrolyte fuel cells operated under dry conditions

    NASA Astrophysics Data System (ADS)

    Ketpang, Kriangsak; Oh, Kwangjin; Lim, Sung-Chul; Shanmugam, Sangaraju

    2016-10-01

    A composite membrane operated in polymer electrolyte fuel cells (PEFCs) under low relative humidity (RH) is developed by incorporating cerium oxide nanotubes (CeNT) into a perfluorosulfonic acid (Nafion®) membrane. Porous CeNT is synthesized by direct heating a precursor impregnated polymer fibers at 500 °C under an air atmosphere. Compared to recast Nafion and commercial Nafion (NRE-212) membranes, the Nafion-CeNT composite membrane generates 1.1 times higher power density at 0.6 V, operated at 80 °C under 100% RH. Compared to Nafion-cerium oxide nanoparticles (Nafion-CeNP) membrane, the Nafion-CeNT provides 1.2 and 1.7 times higher PEFC performance at 0.6 V when operated at 80 °C under 100% and 18% RH, respectively. Additionally, the Nafion-CeNT composite membrane exhibits a good fuel cell operation under 18% RH at 80 °C. Specifically, the fluoride emission rate of Nafion-CeNT composite membrane is 20 times lower than that of the commercial NRE-212 membrane when operated under 18% RH at 80 °C for 96 h. The outstanding PEFC performance and durability operated under dry conditions is mainly attributed to the facile water diffusion capability as well as the effective hydroxyl radical scavenging property of the CeNT filler, resulting in significantly mitigating both the ohmic resistance and Nafion membrane degradation.

  18. Carbon nanotubes supported cerium dioxide and platinum nanohybrids: Layer-by-layer synthesis and enhanced electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Lou, Xinyuan; Chen, Jiayi; Wang, Mengdi; Gu, Jialei; Wu, Ping; Sun, Dongmei; Tang, Yawen

    2015-08-01

    We successfully synthesize carbon nanotubes (CNTs) supported cerium dioxide and platinum (Pt/CeO2/CNTs) nanohybrids via layer-by-layer assembly. The composition, morphology and structure of the as-prepared Pt/CeO2/CNTs nanohybrids are characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDX), selected-area electron diffraction (SAED), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and inductively coupled plasma atomic emission spectrometry (ICP-AES). By comparison of the electrocatalytic properties of the Pt/CeO2/CNTs with the Pt/CNTs, we systematically investigate the promotion effect of CeO2 on the Pt/CeO2/CNTs catalysts towards methanol oxidation. It is found that the introduction of CeO2 not only enhances the electrocatalytic activity and stability of the Pt/CeO2/CNTs catalyst for methanol oxidation but also minimizes the CO poisoning, probably accounting for the good oxygen carrying capacity of CeO2 and its high stability in acidic solution.

  19. Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment

    SciTech Connect

    Pham, Chuyen V.; Krueger, Michael E-mail: emre.erdem@physchem.uni-freiburg.de; Eck, Michael; Weber, Stefan; Erdem, Emre E-mail: emre.erdem@physchem.uni-freiburg.de

    2014-03-31

    Electron paramagnetic resonance (EPR) spectroscopy has been applied to different chemically treated reduced graphene oxide (rGO) and multiwalled carbon nanotubes (CNTs). A narrow EPR signal is visible at g = 2.0029 in both GO and CNT-Oxide from carbon-related dangling bonds. EPR signals became broader and of lower intensity after oxygen-containing functionalities were reduced and partially transformed into thiol groups to obtain thiol-functionalized reduced GO (TrGO) and thiol-functionalized CNT (CNT-SH), respectively. Additionally, EPR investigation of CdSe quantum dot-TrGO hybrid material reveals complete quenching of the TrGO EPR signal due to direct chemical attachment and electronic coupling. Our work confirms that EPR is a suitable tool to detect spin density changes in different functionalized nanocarbon materials and can contribute to improved understanding of electronic coupling effects in nanocarbon-nanoparticle hybrid nano-composites promising for various electronic and optoelectronic applications.

  20. Analysis of Oxidation State of Multilayered Catalyst Thin Films for Carbon Nanotube Growth Using Plasma-Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Okita, Atsushi; Ozeki, Atsushi; Suda, Yoshiyuki; Nakamura, Junji; Oda, Akinori; Bhattacharyya, Krishnendu; Sugawara, Hirotake; Sakai, Yosuke

    2006-10-01

    We synthesized vertically aligned carbon nanotubes (CNTs) using multilayered catalyst thin films (Fe/Al2O3 and Al2O3/Fe/Al2O3) by RF (13.56 MHz) CH4/H2/Ar plasma-enhanced chemical vapor deposition. Pretreatment of the catalyst is crucial for CNT growth. In this paper, we analyzed the effect of catalyst reduction on CNT growth. Catalyst thin films on substrates were reduced by H2 plasma pretreatment at 550 °C to form nanometer-sized catalyst particles. The multilayered thin films were analyzed; the chemical composition and oxidation state by X-ray photoelectron spectroscopy (XPS) and the surface morphology by scanning electron microscopy (SEM). The Fe 2p peak of the XPS spectra showed that FexOy in the as-deposited catalyst was effectively reduced to Fe by a pretreatment of duration 4 min. Using this catalyst, we obtained CNTs with an average diameter of 10.7 nm and an average length of 5.3 μm. However, pretreatment longer than 4 min resulted in shorter CNTs and the Fe peak was shifted from Fe to Fe3O4. These transitions (Fe2O3→Fe3O4→Fe→Fe3O4) can be explained by the enthalpy of the oxides. This result indicates the presence of an optimum ratio between Fe and FexOy to maximize the CNT lengths.

  1. Electrochemical characteristics of the reduced graphene oxide/carbon nanotube/polypyrrole composites for aqueous asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Peng, Yu-Jung; Wu, Tzu-Ho; Hsu, Chun-Tsung; Li, Shin-Ming; Chen, Ming-Guan; Hu, Chi-Chang

    2014-12-01

    Polypyrrole (PPy) has been polymerized onto reduced graphene oxide/carbon nanotube (rGO/CNT) to form an rGO/CNT/PPy composite using the chemical oxidation method. The electrochemical characteristics of the above composite in various aqueous electrolytes are systematically compared for the asymmetric supercapacitor application. The electrochemical characteristics of rGO/CNT/PPy in the electrolytes containing K+ show improved reversibility and higher stability. Introducing XC-72 in preparing the electrode has been found to enhance the specific capacitance and the cycle stability of rGO/CNT/PPy. The charge storage stability of rGO/CNT/PPy + XC-72 in various potential windows has been evaluated through the potential bias stress test. An asymmetric supercapacitor (ASC) with a positive electrode of Mn3O4 and a negative electrode of rGO/CNT/PPy + XC-72 is successfully demonstrated, which shows specific energy and power of 14. Wh kg-1 and 6.62 kW kg-1 with a cell voltage of 1.6 V. This ASC with a cell voltage of 1.6 V shows excellent charge-discharge cycle stability and ideal capacitive behavior in NaNO3 even after the application of 3250 charge-discharge cycles.

  2. Influence of carboxylic acid functionalization on the cytotoxic effects induced by single wall carbon nanotubes on human endothelial cells (HUVEC).

    PubMed

    Gutiérrez-Praena, Daniel; Pichardo, Silvia; Sánchez, Elena; Grilo, Antonio; Cameán, Ana Maria; Jos, Angeles

    2011-12-01

    A vast variety of nanomaterials have been developed in the recent years, being carbon nanotubes (CNTs) the ones that have attracted more attention, due to its unique properties which make them suitable for numerous applications. Consequently, it is predicted that tons of CNTs will be produced worldwide every year, being its exposure of toxicological concern. Nanomaterials, once into the body, can translocate from the uptake sites to the blood circulation or the lymphatic system, resulting in distribution throughout the body. Thus, the vascular endothelium can be in contact with them and can suffer from their toxic effects. In this regard, the aim of this work was to investigate the cytotoxicity of single-walled carbon nanotubes (SWCNTs) on human endothelial cells evaluating the influence of acid carboxylic functionalization and also the exposure time (24 and 48 h). Biomarkers assessed were neutral red uptake, protein content, a tetrazolium salt metabolization and cell viability by means of the Trypan blue exclusion test. Cells were exposed to concentrations between 0 and 800 μg/mL SWCNTs for 24 and 48 h. Results have shown that both SWCNTs and carboxylic acid functionalized single-walled carbon nanotubes (COOH-SWCNTs) induce toxic effects in HUVEC cells in a concentration- and time-dependent way. Moreover, the carboxylic acid functionalization results in a higher toxicity compared to the SWCNTs.

  3. Characterization of an inducible oxidative stress system in Bacillus subtilis.

    PubMed

    Bol, D K; Yasbin, R E

    1990-06-01

    Exponentially growing cells of Bacillus subtilis demonstrated inducible protection against killing by hydrogen peroxide when prechallenged with a nonlethal dose of this oxidative agent. Cells deficient in a functional recE+ gene product were as much as 100 times more sensitive to the H2O2 but still exhibited an inducible protective response. Exposure to hydrogen peroxide also induced the recE(+)-dependent DNA damage-inducible (din) genes, the resident prophage, and the product of the recE+ gene itself. Thus hydrogen peroxide is capable of inducing the SOS-like or SOB system of B. subtilis. However, the induction of this DNA repair system by other DNA-damaging agents is not sufficient to activate the protective response to hydrogen peroxide. Therefore, at least one more regulatory network (besides the SOB system) that responds to oxidative stress must exist. Furthermore, the data presented indicate that a functional catalase gene is necessary for this protective response.

  4. Studies of single-walled carbon nanotubes-induced hepatotoxicity by NMR-based metabonomics of rat blood plasma and liver extracts

    NASA Astrophysics Data System (ADS)

    Lin, Bencheng; Zhang, Huashan; Lin, Zhiqing; Fang, Yanjun; Tian, Lei; Yang, Honglian; Yan, Jun; Liu, Huanliang; Zhang, Wei; Xi, Zhuge

    2013-05-01

    The toxicological effects of single-walled carbon nanotubes (SWCNTs) were investigated after intratracheal instillation in male Wistar rats over a 15-day period using metabonomic analysis of 1H (nuclear magnetic resonance) NMR spectra of blood plasma and liver tissue extracts. Concurrent liver histopathology examinations and plasma clinical chemistry analyses were also performed. Significant changes were observed in clinical chemistry features, including alkaline phosphatase, total protein, and total cholesterol, and in liver pathology, suggesting that SWCNTs clearly have hepatotoxicity in the rat. 1H NMR spectra and pattern recognition analyses from nanomaterial-treated rats showed remarkable differences in the excretion of lactate, trimethylamine oxide, bilineurin, phosphocholine, amylaceum, and glycogen. Indications of amino acid metabolism impairment were supported by increased lactate concentrations and decreased alanine concentrations in plasma. The rise in plasma and liver tissue extract concentrations of choline and phosphocholine, together with decreased lipids and lipoproteins, after SWCNTs treatment indicated a disruption of membrane fluidity caused by lipid peroxidation. Energy, amino acid, and fat metabolism appeared to be affected by SWCNTs exposure. Clinical chemistry and metabonomic approaches clearly indicated liver injury, which might have been associated with an indirect mechanism involving nanomaterial-induced oxidative stress.

  5. Role of oxidative stress in transformation induced by metal mixture.

    PubMed

    Martín, Silva-Aguilar; Emilio, Rojas; Mahara, Valverde

    2011-01-01

    Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity.

  6. Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor

    SciTech Connect

    Wei, Li; Jiang, Wenchao; Yuan, Yang; Goh, Kunli; Yu, Dingshan; Wang, Liang; Chen, Yuan

    2015-04-15

    We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×10{sup 4} S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m{sup 2}/g) are achieved. Two-electrode supercapacitor assembled using the CNT–rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7 Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of −64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications. - Graphical abstract: Flexible and highly conductive carbon nanotube-reduced graphene oxide nanohybrid. - Highlights: • Direct growth of carbon nanotubes by chemical vapor deposition on air-sprayed graphene oxide paper. • Two-dimensional carbon nanohybrid with excellent conductivity and mechanical flexibility. • Supercapacitor with excellent performance stability upon mechanical deformation for flexible electronics applications. • Supercapacitor with high impedance phase angle for 120 Hz alternating current line filtering applications.

  7. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Shumin; Zheng, Yudong; Qiao, Kun; Su, Lei; Sanghera, Amendeep; Song, Wenhui; Yue, Lina; Sun, Yi

    2015-12-01

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  8. Free-standing reduced graphene oxide/MnO2-reduced graphene oxide-carbon nanotube nanocomposite flexible membrane as an anode for improving lithium-ion batteries.

    PubMed

    Li, Yong; Ye, Daixin; Shi, Bin; Liu, Wen; Guo, Rui; Pei, Haijuan; Xie, Jingying

    2017-03-15

    To solve the barriers of poor rate capability and inferior cycling stability for the MnO2 anode in lithium ion batteries, we present a highly flexible membrane anode employing two-dimensional (2D) reduced graphene oxide sheets (rGO) and a three-dimensional (3D) MnO2-reduced graphene oxide-carbon nanotube nanocomposite (MGC) by a vacuum filtration and thermal annealing approach. All the components in the 2D/3D thin film anode have a synergistic effect on the improved performance. The initial discharge specific capacity of the electrode with the MnO2 content of 56 wt% was 1656.8 mA h g(-1) and remains 1172.5 mA h g(-1) after 100 cycles at a density of 100 mA g(-1). On enhancing the density to 200 mA g(-1), the membrane-electrode still exhibits a large reversible discharging capacity of ∼948.9 mA h g(-1) after 300 cycles. Moreover, the flexible Li-ion battery with a large area also shows excellent electrochemical performance in different bending positions, which provides the potential for wearable energy storage devices.

  9. Rh-induced support transformation phenomena in titanate nanowire and nanotube catalysts.

    PubMed

    Pótári, G; Madarász, D; Nagy, L; László, B; Sápi, A; Oszkó, A; Kukovecz, A; Erdőhelyi, A; Kónya, Z; Kiss, J

    2013-03-05

    High-aspect-ratio titanate nanotubes (NT) and nanowires (NW) were produced by the hydrothermal conversion of TiO2 at 400 K. The titanate morphology was studied by high-resolution transmission electron microscopy (HRTEM). The formation of ordered titanate nanoobjects depended on the time of conversion. Shorter synthesis times favored hollow nanotube production while during prolonged treatment the thermodynamically more stable nanowires were formed. Titanate nanotubes and nanowires were decorated by Rh nanoparticles. The structure and stability of titanate nanocomposites were studied by thermal gravimetric (TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopic (XPS), Fourier transformed infrared spectroscopic (FTIR), and Raman spectroscopic methods. The nanowires preserve their structure up to 850 K, while the nanotubes start to recrystallize above 600 K. FTIR measurements showed that the water and hydroxyl content gradually decreased with increasing temperature in both cases. XPS data revealed the existence of high binding energy, highly dispersed Rh species on both supports. A small portion of Rh may participate in an ion exchange process. Support transformation phenomena were observed in Rh containing titanate nanowires and nanotubes. Rh decorated nanowires transform into the β-TiO2 structure, whereas their pristine counterparts' recrystallize into anatase. The formation of anatase was dominant during the thermal annealing process in both acid treated and Rh decorated nanotubes. Transformation to anatase was enhanced in the presence of Rh. The average diameters Rh nanoparticles were 4.9 ± 1.4 and 2.8 ± 0.7 nm in the case of nanowires and nanotubes, respectively.

  10. Carboxylation of multiwalled carbon nanotube attenuated the cytotoxicity by limiting the oxidative stress initiated cell membrane integrity damage, cell cycle arrestment, and death receptor mediated apoptotic pathway.

    PubMed

    Liu, Zhenbao; Liu, Yanfei; Peng, Dongming

    2015-08-01

    In this study, the effects of carboxylated multiwalled carbon nanotubes (MWCNTs-COOH) on human normal liver cell line L02 was compared with that of pristine multiwalled carbon nanotubes (p-MWCNTs). It was shown that compared with MWCNTs-COOH, p-MWCNTs induced apoptosis, reduced the level of intracellular antioxidant glutathione more significantly, and caused severer cell membrane damage as demonstrated by lactate dehydrogenase leakage. Cell cycles were arrested by both MWCNTs, while p-MWCNTs induced higher ratio of G0/G1 phase arrestment as compared with MWCNTs-COOH. Caspase-8 was also activated after both MWCNTs exposure, indicating extrinsic apoptotic pathway was involved in the apoptosis induced by MWCNTs exposure, more importantly, MWCNTs-COOH significantly reduced the activation of caspase-8 as compared with p-MWCNTs. All these results suggested that MWCNTs-COOH might be safer for in vivo application as compared with p-MWCNTs.

  11. Sensory experience induced by nitrous oxide analgesia.

    PubMed Central

    Kaufman, E.; Galili, D.; Furer, R.; Steiner, J.

    1990-01-01

    Preliminary findings on a group of 15 dental patients, treated with nitrous oxide indicated frequent occurrence of several, well-defined sensory experiences related to various modalities. A subsequent controlled experiment carried out on 44 volunteers, inhaling a 35% N2O + 65% O2 sedative gas-mixture as well as O2 alone in two different sessions confirmed a large variety of sensations not related to external stimuli. Taste and/or odor and thermal sensations were often reported as well as changes in auditory or visual perception of the environment in addition to reports of general heaviness, relaxation or tingling. PMID:2097907

  12. New Approach to Chemically Induced Silicon Oxidation

    DTIC Science & Technology

    1991-10-01

    Kim, C.H. Wolowodiuk, R.J. Jaccodine, F.A. Stevie , and P.M. Kohora, to be published in J. Electrochem. Society. 4. "Effect of NF3 Addition on Point...Defect Generation at the Oxidizing Interface", U.S. Kim, R.J. Jaccodine, F.A. Stevie , and T. Kook, to be published in J. Electrochem. Society. 5...Macfarlane, R.J. Jaccodine and F.A. Stevie , presented at the 180th Meeting of the Electro- chemical Society, Phoenix, AZ, October 13-18, 1991. 15

  13. Supplemental Information: Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: the Importance of Amorphous Carbon

    EPA Pesticide Factsheets

    Additional information about the carboxylated SWCNT calibration curve, AFM images, EDS results, solar simulator light and UVB lamp spectra, TEM image ofparent carboxylated SWCNTs, XPS spectra of the dark control P3 sample and the irradiated P3 sample, and a table summarizing the kinetic parameters (PDF)This dataset is associated with the following publication:Hou, W., C. He, Y. Wang, D. Wang, and R. Zepp. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY. American Chemical Society, Washington, DC, USA, 50(7): 3494–3502, (2016).

  14. Oxidatively Damaged DNA in Rats Exposed by Oral Gavage to C60 Fullerenes and Single-Walled Carbon Nanotubes

    PubMed Central

    Folkmann, Janne K.; Risom, Lotte; Jacobsen, Nicklas R.; Wallin, Håkan; Loft, Steffen; Møller, Peter

    2009-01-01

    Background C60 fullerenes and single-walled carbon nanotubes (SWCNT) are projected to be used in medicine and consumer products with potential human exposure. The hazardous effects of these particles are expected to involve oxidative stress with generation of oxidatively damaged DNA that might be the initiating event in the development of cancer. Objective In this study we investigated the effect of a single oral administration of C60 fullerenes and SWCNT. Methods We measured the level of oxidative damage to DNA as the premutagenic 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) in the colon mucosa, liver, and lung of rats after intragastric administration of pristine C60 fullerenes or SWCNT (0.064 or 0.64 mg/kg body weight) suspended in saline solution or corn oil. We investigated the regulation of DNA repair systems toward 8-oxodG in liver and lung tissue. Results Both doses of SWCNT increased the levels of 8-oxodG in liver and lung. Administration of C60 fullerenes increased the hepatic level of 8-oxodG, whereas only the high dose generated 8-oxodG in the lung. We detected no effects on 8-oxodG in colon mucosa. Suspension of particles in saline solution or corn oil yielded a similar extent of genotoxicity, whereas corn oil per se generated more genotoxicity than the particles. Although there was increased mRNA expression of 8-oxoguanine DNA glycosylase in the liver of C60 fullerene-treated rats, we found no significant increase in repair activity. Conclusions Oral exposure to low doses of C60 fullerenes and SWCNT is associated with elevated levels of 8-oxodG in the liver and lung, which is likely to be caused by a direct genotoxic ability rather than an inhibition of the DNA repair system. PMID:19479010

  15. Selection, characterisation and mapping of complex electrochemical processes at individual single-walled carbon nanotubes: the case of serotonin oxidation.

    PubMed

    Güell, Aleix G; Meadows, Katherine E; Dudin, Petr V; Ebejer, Neil; Byers, Joshua C; Macpherson, Julie V; Unwin, Patrick R

    2014-01-01

    The electrochemical (EC) oxidation of the neurotransmitter, serotonin, at individual single-walled carbon nanotubes (SWNTs) is investigated at high resolution using a novel platform that combines flow-aligned SWNTs with atomic force microscopy, Raman microscopy, electronic conductance measurements, individual SWNT electrochemistry and high-resolution scanning electrochemical cell microscopy (SECCM). SECCM has been used to visualise the EC activity along side-wall sections of metallic SWNTs to assess the extent to which side-walls promote the electrochemistry of this complex multi-step process. Uniform and high EC activity is observed that is consistent with significant reaction at the side-wall, rather than electrochemistry being driven by defects alone. By scanning forward and reverse (trace and retrace) over the same region of a SWNT, it is also possible to assess any blocking of EC activity by serotonin oxidation reaction products. At a physiologically relevant concentration (5 μM), there is no detectable blocking of SWNTs, which can be attributed, at least in part, to the high diffusion rate to an individual, isolated SWNT in the SECCM format. At higher serotonin concentration (2 mM), oligomer formation from oxidation products is much more significant and major blocking of the EC process is observed from line profiles recorded as the SECCM meniscus moves over an SWNT. The SECCM line profile morphology is shown to be highly diagnostic of whether blocking occurs during EC processes. The studies herein add to a growing body of evidence that various EC processes at SWNTs, from simple outer sphere redox reactions to complex multi-step processes, occur readily at pristine SWNTs. The platform described is of general applicability to various types of nanostructures and nanowires.

  16. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity

    PubMed Central

    Wang, Liying

    2013-01-01

    The rapidly emerging field of nanotechnology has offered innovative discoveries in the medical, industrial, and consumer sectors. The unique physicochemical and electrical properties of engineered nanoparticles (NP) make them highly desirable in a variety of applications. However, these novel properties of NP are fraught with concerns for environmental and occupational exposure. Changes in structural and physicochemical properties of NP can lead to changes in biological activities including ROS generation, one of the most frequently reported NP-associated toxicities. Oxidative stress induced by engineered NP is due to acellular factors such as particle surface, size, composition, and presence of metals, while cellular responses such as mitochondrial respiration, NP-cell interaction, and immune cell activation are responsible for ROS-mediated damage. NP-induced oxidative stress responses are torch bearers for further pathophysiological effects including genotoxicity, inflammation, and fibrosis as demonstrated by activation of associated cell signaling pathways. Since oxidative stress is a key determinant of NP-induced injury, it is necessary to characterize the ROS response resulting from NP. Through physicochemical characterization and understanding of the multiple signaling cascades activated by NP-induced ROS, a systemic toxicity screen with oxidative stress as a predictive model for NP-induced injury can be developed. PMID:24027766

  17. A high-throughput reaction system to measure the gas-phase photocatalytic oxidation activity of TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Grasser, Jordan A.; Muggli, Darrin S.

    2009-07-01

    A sixteen-channel, high-throughput system was designed and built to test the activity of catalysts for gas-phase photocatalytic oxidation of methanol. The system utilizes granular catalyst films to model relevant applications and allow for rapid processing. It is capable of 48 catalyst tests per day using the procedure described herein. Several experiments were performed to minimize both the within-node and between-node variances of the system. Utilizing the high-throughput system, the significance of preparation methods on the photocatalytic activity of TiO2 nanotubes was investigated. A one-half fractional factorial experiment identified the factors that significantly impact catalyst activity as the following: precursor type (Degussa P-25, or nanotubes), platinum loading, the interaction between precursor and dope time, and the interaction between the precursor and calcination temperature. Based on experimental results, catalyst activity is optimized by doping TiO2 nanotubes directly (rather than doping P-25 prior to nanotube formation), a low platinum loading (0.01 wt %), and using a dope time of 30 min followed by calcination at 773 K. The optimum catalyst preparation conditions produced a catalyst that was three times more active than the starting P-25 material.

  18. Platinum nanocatalysts loaded on graphene oxide-dispersed carbon nanotubes with greatly enhanced peroxidase-like catalysis and electrocatalysis activities

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Li, Shuai; Si, Yanmei; Zhang, Ning; Sun, Zongzhao; Wu, Hong; Lin, Yuehe

    2014-06-01

    A powerful enzymatic mimetic has been fabricated by employing graphene oxide (GO) nanocolloids to disperse conductive carbon supports of hydrophobic carbon nanotubes (CNTs) before and after the loading of Pt nanocatalysts. The resulting GOCNT-Pt nanocomposites could present improved aqueous dispersion stability and Pt spatial distribution. Unexpectedly, they could show greatly enhanced peroxidase-like catalysis and electrocatalysis activities in water, as evidenced in the colorimetric and electrochemical investigations in comparison to some inorganic nanocatalysts commonly used. Moreover, it is found that the new enzyme mimetics could exhibit peroxidase-like catalysis activity comparable to natural enzymes; yet, they might circumvent some of their inherent problems in terms of catalysis efficiency, electron transfer, environmental stability, and cost effectiveness. Also, sandwiched electrochemical immunoassays have been successfully conducted using GOCNT-Pt as enzymatic tags. Such a fabrication avenue of noble metal nanocatalysts loaded on well-dispersed conductive carbon supports should be tailored for the design of different enzyme mimics promising the extensive catalysis applications in environmental, medical, industrial, and particularly aqueous biosensing fields.A powerful enzymatic mimetic has been fabricated by employing graphene oxide (GO) nanocolloids to disperse conductive carbon supports of hydrophobic carbon nanotubes (CNTs) before and after the loading of Pt nanocatalysts. The resulting GOCNT-Pt nanocomposites could present improved aqueous dispersion stability and Pt spatial distribution. Unexpectedly, they could show greatly enhanced peroxidase-like catalysis and electrocatalysis activities in water, as evidenced in the colorimetric and electrochemical investigations in comparison to some inorganic nanocatalysts commonly used. Moreover, it is found that the new enzyme mimetics could exhibit peroxidase-like catalysis activity comparable to natural

  19. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions

    NASA Astrophysics Data System (ADS)

    Yang, Dongjiang; Liu, Hongwei; Liu, Long; Sarina, Sarina; Zheng, Zhanfeng; Zhu, Huaiyong

    2013-10-01

    Iodine radioisotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials. The 129I- anion is one of the more mobile radioactive species due to a long half-life, and it is a great challenge to design long-term management solutions for such radioactive waste. In this study, a new adsorbent structure with the potential to efficiently remove radioactive iodine anions (I-) from water is devised: silver oxide (Ag2O) nanocrystals firmly anchored on the surface of titanate nanotubes and nanofibers via coherent interfaces between Ag2O and titanate phases. I- anions in fluids can easily access the Ag2O nanocrystals and be efficiently trapped by forming AgI precipitate that firmly attaches to the adsorbent. Due to their one-dimensional morphology, the new adsorbents can be readily dispersed in liquids and easily separated after purification; and the adsorption beds loaded with the adsorbents can permit high flux. This significantly enhances the adsorption efficiency and reduces the separation costs. The proposed structure reveals a new direction in developing efficient adsorbents for the removal of radioactive anions from wastewater.Iodine radioisotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials. The 129I- anion is one of the more mobile radioactive species due to a long half-life, and it is a great challenge to design long-term management solutions for such radioactive waste. In this study, a new adsorbent structure with the potential to efficiently remove radioactive iodine anions (I-) from water is devised: silver oxide (Ag2O) nanocrystals firmly anchored on the surface of titanate nanotubes and nanofibers via coherent interfaces between Ag2O and titanate phases. I- anions in fluids can easily access the Ag2O nanocrystals and be efficiently trapped by forming AgI precipitate that firmly attaches to the adsorbent. Due to their one

  20. Highly sensitive integrated pressure sensor with horizontally oriented carbon nanotube network.

    PubMed

    Mohammad Haniff, Muhammad Aniq Shazni; Lee, Hing Wah; Bien, Daniel Chia Sheng; Teh, Aun Shih; Azid, Ishak Abdul

    2014-01-28

    This paper presents a functionalized, horizontally oriented carbon nanotube network as a sensing element to enhance the sensitivity of a pressure sensor. The synthesis of horizontally oriented nanotubes from the AuFe catalyst and their deposition onto a mechanically flexible substrate via transfer printing are studied. Nanotube formation on thermally oxidized Si (100) substrates via plasma-enhanced chemical vapor deposition controls the nanotube coverage and orientation on the flexible substrate. These nanotubes can be simply transferred to the flexible substrate without changing their physical structure. When tested under a pressure range of 0 to 50 kPa, the performance of the fabricated pressure sensor reaches as high as approximately 1.68%/kPa, which indicates high sensitivity to a small change of pressure. Such sensitivity may be induced by the slight contact in isolated nanotubes. This nanotube formation, in turn, enhances the modification of the contact and tunneling distance of the nanotubes upon the deformation of the network. Therefore, the horizontally oriented carbon nanotube network has great potential as a sensing element for future transparent sensors.

  1. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  2. Exercise-Induced Oxidative Stress Responses in the Pediatric Population.

    PubMed

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z; Mastorakos, George; Fatouros, Ioannis G

    2017-01-17

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  3. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies

    PubMed Central

    2011-01-01

    Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170–180 A/cm2 were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma. PMID:27502662

  4. Oxidant-induced intramolecular triazole formation.

    PubMed

    Abraham, Maria L; Schulze, A Carina; Korthaus, Alexander; Oppel, Iris M

    2013-12-07

    C3-symmetric ligands carrying a rigid triaminoguanidinium backbone are important building blocks for the preparation of supramolecular coordination cages as tetrahedra or trigonal bipyramides. Coordination of Eu(III)- or Gd(III)-ions leads to 1,2,4-triazole formation, which has been reported only rarely. Using Pd(II)-complexes as a model system, this triazole formation could be analyzed in more detail. The preparation of Pd(II)-coordination compounds can be easily done under stoichiometric control. These complexes could be transformed into 1,2,4-triazoles using O2 or H2O2 as an oxidation reagent. The steric demand of the PR3-coligand seems to play a key role in the cyclisation reaction.

  5. Inducing injection barrier by covalent functionalization of multiwall carbon nanotubes acting as Moiré crystals

    NASA Astrophysics Data System (ADS)

    Bonnet, Roméo; Barraud, Clément; Martin, Pascal; Della Rocca, Maria Luisa; Lafarge, Philippe

    2016-10-01

    Covalent functionalization of multiwall carbon nanotubes is a direct method to suppress the conduction of the outermost shell, subject to interactions with the environment. The rehybridized sp3 external shell of the functionalized multiwall carbon nanotubes becomes naturally a hybrid injection barrier allowing the control of the contact resistances and the study of quantum transport in the more protected inner shells. Charge transport measurements performed on isolated multiwall carbon nanotubes of large diameter show an increase of the contact resistance and stabilization in the MΩ range. Electronic quantum properties of the inner shells are highlighted by the observation of superlattice structures in the conductance, recently attributed to the formation of a one-dimensional Moiré pattern.

  6. Oxidative UO2 dissolution induced by soluble Mn(III).

    PubMed

    Wang, Zimeng; Xiong, Wei; Tebo, Bradley M; Giammar, Daniel E

    2014-01-01

    The stability of UO2 is critical to the success of reductive bioremediation of uranium. When reducing conditions are no longer maintained, Mn redox cycling may catalytically mediate the oxidation of UO2 and remobilization of uranium. Ligand-stabilized soluble Mn(III) was recently recognized as an important redox-active intermediate in Mn biogeochemical cycling. This study evaluated the kinetics of oxidative UO2 dissolution by soluble Mn(III) stabilized by pyrophosphate (PP) and desferrioxamine B (DFOB). The Mn(III)-PP complex was a potent oxidant that induced rapid UO2 dissolution at a rate higher than that by a comparable concentration of dissolved O2. However, the Mn(III)-DFOB complex was not able to induce oxidative dissolution of UO2. The ability of Mn(III) complexes to oxidize UO2 was probably determined by whether the coordination of Mn(III) with ligands allowed the attachment of the complexes to the UO2 surface to facilitate electron transfer. Systematic investigation into the kinetics of UO2 oxidative dissolution by the Mn(III)-PP complex suggested that Mn(III) could directly oxidize UO2 without involving particulate Mn species (e.g., MnO2). The expected 2:1 reaction stoichiometry between Mn(III) and UO2 was observed. The reactivity of soluble Mn(III) in oxidizing UO2 was higher at lower ratios of pyrophosphate to Mn(III) and lower pH, which is probably related to differences in the ligand-to-metal ratio and/or protonation states of the Mn(III)-pyrophosphate complexes. Disproportionation of Mn(III)-PP occurred at pH 9.0, and the oxidation of UO2 was then driven by both MnO2 and soluble Mn(III). Kinetic models were derived that provided excellent fits of the experimental results.

  7. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    SciTech Connect

    Lefevre, Sophie; Sliwa, Dominika; Rustin, Pierre; Camadro, Jean-Michel; Santos, Renata

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  8. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology

  9. Doping induced structural stability and electronic properties of GaN nanotubes.

    PubMed

    Srivastava, Anurag; Khan, Mohammad Irfan; Tyagi, Neha; Swaroop Khare, Purnima

    2014-01-01

    The present paper discusses the effect of manganese doping on the structural stability and electronic band gap of chiral (2, 1), armchair (3, 3), and zigzag ((6, 0) and (10, 0)) single walled GaN nanotube by using density functional theory based Atomistix Toolkit (ATK) Virtual NanoLab (VNL). The structural stability has been analyzed in terms of minimum ground state total energy, binding, and formation energy. As an effect of Mn doping (1-4 atoms), all the GaN nanotubes taken into consideration show semiconducting to metallic transition first and after certain level of Mn doping changes its trend.

  10. Doping Induced Structural Stability and Electronic Properties of GaN Nanotubes

    PubMed Central

    Khan, Mohammad Irfan; Tyagi, Neha; Swaroop Khare, Purnima

    2014-01-01

    The present paper discusses the effect of manganese doping on the structural stability and electronic band gap of chiral (2, 1), armchair (3, 3), and zigzag ((6, 0) and (10, 0)) single walled GaN nanotube by using density functional theory based Atomistix Toolkit (ATK) Virtual NanoLab (VNL). The structural stability has been analyzed in terms of minimum ground state total energy, binding, and formation energy. As an effect of Mn doping (1–4 atoms), all the GaN nanotubes taken into consideration show semiconducting to metallic transition first and after certain level of Mn doping changes its trend. PMID:24707225

  11. Soy protein reduces paraquat-induced oxidative stress in rats.

    PubMed

    Aoki, Hisa; Otaka, Yukiko; Igarashi, Kiharu; Takenaka, Asako

    2002-08-01

    The effect of soy protein, soy isoflavones and saponins on paraquat (PQ)-induced oxidative stress was investigated in rats. Rats were fed experimental diets containing casein (CAS), soy protein (SPI), and casein with soy isoflavones and saponins (CAS + IS). The diets were supplemented or not with 0.025% paraquat (CAS + PQ, SPI + PQ, and CAS + IS + PQ). The protective effects of soy protein, soy isoflavones, and saponins on paraquat-induced oxidative stress were examined. Ingestion of soy protein generally mitigated the lung enlargement (P = 0.076), loss of body weight (P = 0.051) and oxidation of liver lipid (P = 0.043) and glutathione (P = 0.035) induced by paraquat, although soy isoflavones and saponins did not. To determine whether soy protein exerted its antioxidative effects by preventing paraquat absorption from digestive organs, rats were fed CAS or SPI diets and orally administered a 12.5 g/L paraquat solution. Plasma, urine, and fecal paraquat concentrations did not differ between the two groups, indicating that soy protein did not prevent paraquat absorption. The present study suggests that intake of soy protein itself, but not soy isoflavones and saponins, reduces paraquat-induced oxidative stress in rats, although this effect was not due to reduced absorption of paraquat from digestive organs.

  12. OXIDATIVE STRESS PARTICIPATES IN PARTICULATE MATTER (PM) INDUCED LUNG INJURY

    EPA Science Inventory

    Oxidative stress participates in particulate matter (PM) induced acute lung injury.
    Elizabeth S. Roberts1, Judy L. Richards2, Kevin L. Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC, 2US Environmental Protection Agency, NHEERL, RTP, NC.
    Epidemiol...

  13. Quercitrin protects skin from UVB-induced oxidative damage.

    PubMed

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin.

  14. Does aspirin-induced oxidative stress cause asthma exacerbation?

    PubMed Central

    Kacprzak, Dorota

    2015-01-01

    Aspirin-induced asthma (AIA) is a distinct clinical syndrome characterized by severe asthma exacerbations after ingestion of aspirin or other non-steroidal anti-inflammatory drugs. The exact pathomechanism of AIA remains unknown, though ongoing research has shed some light. Recently, more and more attention has been focused on the role of aspirin in the induction of oxidative stress, especially in cancer cell systems. However, it has not excluded the similar action of aspirin in other inflammatory disorders such as asthma. Moreover, increased levels of 8-isoprostanes, reliable biomarkers of oxidative stress in expired breath condensate in steroid-naïve patients with AIA compared to AIA patients treated with steroids and healthy volunteers, has been observed. This review is an attempt to cover aspirin-induced oxidative stress action in AIA and to suggest a possible related pathomechanism. PMID:26170841

  15. Influence of Formation Conditions on the Level of Arrays Ordering of Anodic Titanium Oxide Nanotubes

    NASA Astrophysics Data System (ADS)

    Kondrikov, N. B.; Titov, P. L.; Schegoleva, S. A.; Khorin, M. A.

    Nanotubular titanium oxide coatings with different morphology and dimensional parameters are formed by anodic oxidation under different voltage and time modes in fluorine aqueous-nonaqueous electrolytes containing glycerin as well as several surface-active agents (SAA). Their morphological peculiarities are examined and qualitative and quantitative analysis of obtained types of ordering is carried out, geometric configuration entropy are calculated on the base of analysis SEM images and theory of self-organization.

  16. Hydrothermal synthesis of manganese oxides/carbon nanotubes composites as anode materials for lithium ion batteries

    SciTech Connect

    Xu, Shou-Dong; Zhu, Ya-Bo; Zhuang, Quan-Chao; Wu, Chao

    2013-09-01

    Graphical abstract: Carbon nanotubes in the composites not only accommodate the volume change during charge/discharge processes, but also provide a good electron conducting network at high power rates, resulting in high reversible capacity of the electrodes. - Highlights: • MnO/CNTs composites are obtained by heating Mn{sub 3}O{sub 4}/CNTs at 500 °C for 3 h in flowing Ar/H{sub 2}. • MnO/CNTs electrode exhibits higher specific capacity at the current density of 100 mAh g{sup −1} and a better cycle performance. • Enhancement of cyclability of MnO/CNTs electrode can be attributed to the presence of CNTs in the composites. - Abstract: Mn{sub 3}O{sub 4} nanoparticles and Mn{sub 3}O{sub 4}/carbon nanotubes (CNTs) composites are prepared via a hydrothermal synthesis method. MnO and MnO/CNTs composites are obtained by heating Mn{sub 3}O{sub 4} and Mn{sub 3}O{sub 4}/CNTs at 500 for 3 h in flowing Ar/H{sub 2}. The phase structure, composition and morphology of the composites are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM). The electrochemical properties of the composite electrodes are studied by performing cyclic voltammetry (CV), galvanostatic charge and discharge tests. The results reveal that the Mn{sub 3}O{sub 4}/CNTs and MnO/CNTs electrodes exhibit higher specific capacity at the current density of 100 mAh g{sup −1} and a better cycle performance than pure Mn{sub 3}O{sub 4} and MnO electrodes. The excellent electrochemical properties of Mn{sub 3}O{sub 4}/CNTs and MnO/CNTs electrodes can be attributed to the presence of CNTs in the composites offering an electron conducting network and suppressing the volume expansion of Mn{sub 3}O{sub 4} and MnO particles efficiently during the charge and discharge processes.

  17. Strong reduction of V4+ amount in vanadium oxide/hexadecylamine nanotubes by doping with Co2+ and Ni2+ ions: Electron paramagnetic resonance and magnetic studies

    NASA Astrophysics Data System (ADS)

    Saleta, M. E.; Troiani, H. E.; Ribeiro Guevara, S.; Ruano, G.; Sánchez, R. D.; Malta, M.; Torresi, R. M.

    2011-05-01

    In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VOx/Hexa NT's) doped with Co2+ and Ni2+ ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co2+, S = 3/2 and Ni2+, S = 1) decreases notably the amount of V4+ ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V4+ in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes.

  18. Microbially Induced Iron Oxidation: What, Where, How

    SciTech Connect

    SCHIERMEYER,ELISA M.; PROVENCIO,PAULA P.; NORTHUP,DIANA E.

    2000-08-15

    From the results of the different bacterial cells seen, it is fairly certain that Gallionella is present because of the bean-shaped cells and twisted stalks found with the TEM. The authors cannot confirm, though, what other iron-oxidizing genera exist in the tubes, since the media was only preferential and not one that isolated a specific genus of bacteria. Based on the environment in which they live and the source of the water, they believe their cultures contain Gallionella, Leptothrix, and possibly Crenothrix and Sphaerotilus. They believe the genus Leptothrix rather than Sphaerotilus exist in the tubes because the water source was fresh, unlike the polluted water in which Sphaerotilus are usually found. The TEM preparations worked well. The cryogenic method rapidly froze the cells in place and allowed them to view their morphology. The FAA method, as stated previously, was the best of the three methods because it gave the best contrast. The gluteraldehyde samples did not come out as well. It is possible that the gluteraldehyde the authors prepared was still too concentrated and did not mix well. Although these bacteria were collected from springs and then cultured in an environment containing a presumably pure iron-bearing metal, it seems the tube already containing Manganese Gradient Medium could be used with a piece of metal containing these bacteria. A small piece of corroding metal could then be inserted into the test tube and cultured to study the bacteria.

  19. Electrochemical anodization of graphite oxide-TiO2 nanotube composite for enhanced visible light photocatalytic activity.

    PubMed

    Ali, Imran; Park, Kyungmin; Kim, Seu-Run; Kim, Jong-Oh

    2017-02-11

    The electrochemical anodization method was used to dope graphite oxide (GO) onto TiO2 nanotubes (TNTs). This study focused on enhancement of the photocatalytic activity of TNTs in the visible light region. In this study, we have checked the effect of different GO concentrations and effect of GO doping time on photocatalytic efficiency of composite. The photocatalytic activity of the GO-TNT composite was tested by degradation of an organic compound. The organic compound was most severely degraded (95%) when the GO-TNT catalyst was doped at an anodization of 60 V for 13 min and GO concentration of 0.25 g L(-1). This degradation was 5.6 times higher than that of bare TiO2. The as-prepared catalyst was characterized using FE-SEM, XRD, AES, PL, UV-Vis DRS, and Raman analysis. Recycling of the GO-TNT composite was also performed in order to examine the stability of the visible light catalyst. We observed that the doping of GO on the TNT surface can enhance the photocatalytic efficiency under visible light. Graphene acts as an electron transport; therefore, GO-TNTs were favorable for the separation of e(-) and h(+) charges. This promoted the formation of OH radicals, h(+), and superoxides, all of which degrade organics.

  20. Synthesis of palladium nanoparticle modified reduced graphene oxide and multi-walled carbon nanotube hybrid structures for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Zhao, Zhenting; Zhang, Jun; Li, Gang; Li, Pengwei; Zhang, Wendong; Lian, Kun

    2017-02-01

    In this work, palladium (Pd) nanoparticles functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) hybrid structures (Pd/rGO-MWCNTs) were successfully prepared by a combination of electrochemical reduction with electrodeposition method. The morphology, structure, and composition of the Pd/rGO-MWCNTs hybrid were characterized by scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy. The as-synthesized hybrid structures were modified on the glassy carbon electrode (GCE) and further utilized for hydrazine sensing. Electrochemical impedance spectroscopic, cyclic voltammetry and single-potential amperometry experiments were carried out on Pd/rGO-MWCNTs hybrid structures to investigate the interface properties and sensing performance. The measured results demonstrate that the fabricated Pd/rGO-MWCNTs/GCE sensor show a high sensitivity of 7.09 μA μM-1 cm-2 in a large concentration range of 1.0 to 1100 μM and a low detection limit of 0.15 μM. Moreover, the as-prepared sensor exhibits good selectivity and stability for the determination of hydrazine under interference conditions.

  1. PEGylated Carbon Nanotubes Impair Retrieval of Contextual Fear Memory and Alter Oxidative Stress Parameters in the Rat Hippocampus

    PubMed Central

    Dal Bosco, Lidiane; Weber, Gisele E. B.; Parfitt, Gustavo M.; Paese, Karina; Gonçalves, Carla O. F.; Serodre, Tiago M.; Furtado, Clascídia A.; Santos, Adelina P.; Monserrat, José M.; Barros, Daniela M.

    2015-01-01

    Carbon nanotubes (CNT) are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG) on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions. PMID:25738149

  2. Carbon nanotubes-ionic liquid nanocomposites sensing platform for NADH oxidation and oxygen, glucose detection in blood.

    PubMed

    Bai, Lu; Wen, Dan; Yin, Jianyuan; Deng, Liu; Zhu, Chengzhou; Dong, Shaojun

    2012-03-15

    An excellent electrochemical sensing platform has been designed by combining the huge specific surface area of carbon nanotubes (CNTs) and the remarkable conductivity of ionic liquid (IL). IL can easily untangle CNTs bundles and disperse CNTs by itself under grinding condition due to the π-π interaction between CNTs and IL. The resulting nanocomposites showed an augmentation on the voltammetric and amperometric behaviors of electrocatalytic activity toward O(2) and NADH. Therefore, such an efficient platform was developed to fabricate mediator-free oxygen sensor and glucose biosensor based on glucose dehydrogenase (GDH). O(2) could be determined in the range of zero to one hundred percent of O(2) content with the detection limit of 126 μg L(-1) (S/N=3). The glucose biosensor which was constructed by entrapping GDH into chitosan on the nanocomposites modified glassy carbon electrode surface, exhibited good electrocatalytic oxidation toward glucose with a detection limit of 9 μM in the linear range of 0.02-1mM. We also applied the as-prepared sensors to detect oxygen and glucose in real blood samples and acquired satisfied results.

  3. Preparation and Exceptional Mechanical Properties of Bone-Mimicking Size-Tuned Graphene Oxide@Carbon Nanotube Hybrid Paper.

    PubMed

    Oh, Jun Young; Kim, Yern Seung; Jung, Yeonsu; Yang, Seung Jae; Park, Chong Rae

    2016-02-23

    The self-assembled nanostructures of carbon nanomaterials possess a damage-tolerable architecture crucial for the inherent mechanical properties at both micro- and macroscopic levels. Bone, or "natural composite," has been known to have superior energy dissipation and fracture resistance abilities due to its unique load-bearing hybrid structure. However, few approaches have emulated the desirable structure using carbon nanomaterials. In this paper, we present an approach in fabricating a hybrid composite paper based on graphene oxide (GO) and carbon nanotube (CNT) that mimicks the natural bone structure. The size-tuning strategy enables smaller GO sheets to have more cross-linking reactions with CNTs and be homogeneously incorporated into CNT-assembled paper, which is advantageous for effective stress transfer. The resultant hybrid composite film has enhanced mechanical strength, modulus, toughness, and even electrical conductivity compared to previously reported CNT-GO based composites. We further demonstrate the usefulness of the size-tuned GOs as the "stress transfer medium" by performing in situ Raman spectroscopy during the tensile test.

  4. Long-term biopersistence of tangled oxidized carbon nanotubes inside and outside macrophages in rat subcutaneous tissue

    PubMed Central

    Sato, Yoshinori; Yokoyama, Atsuro; Nodasaka, Yoshinobu; Kohgo, Takao; Motomiya, Kenichi; Matsumoto, Hiroaki; Nakazawa, Eiko; Numata, Tomoko; Zhang, Minfang; Yudasaka, Masako; Hara, Hideyuki; Araki, Rikita; Tsukamoto, Osamu; Saito, Hiroaki; Kamino, Takeo; Watari, Fumio; Tohji, Kazuyuki

    2013-01-01

    Because of their mechanical strength, chemical stability, and low molecular weight, carbon nanotubes (CNTs) are attractive biological implant materials. Biomaterials are typically implanted into subcutaneous tissue or bone; however, the long-term biopersistence of CNTs in these tissues is unknown. Here, tangled oxidized multi-walled CNTs (t-ox-MWCNTs) were implanted into rat subcutaneous tissues and structural changes in the t-ox-MWCNTs located inside and outside of macrophages were studied for 2 years post-implantation. The majority of the large agglomerates were present in the intercellular space, maintained a layered structure, and did not undergo degradation. By contrast, small agglomerates were found inside macrophages, where they were gradually degraded in lysosomes. None of the rats displayed symptoms of cancer or severe inflammatory reactions such as necrosis. These results indicate that t-ox-MWCNTs have high biopersistence and do not evoke adverse events in rat subcutaneous tissue in vivo, demonstrating their potential utility as implantable biomaterials. PMID:23981952

  5. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants.

    PubMed

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan; Yuan, Xing; Li, Baikun

    2017-02-15

    The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24h IC50 values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology.

  6. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    NASA Astrophysics Data System (ADS)

    Chen, Mei; Hou, Changjun; Huo, Danqun; Yang, Mei; Fa, Huanbao

    2016-02-01

    Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10-14 to 1.0 × 10-8 M), with a detection limit of 3.5 × 10-15 M (signal/noise ratio of 3). The biosensor also showed high selectivity to single-base mismatched target DNA. Compared with other electrochemical DNA biosensors, we showed that the proposed biosensor is simple to implement, with good stability and high sensitivity.

  7. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density.

    PubMed

    Feng, Yiyu; Qin, Mengmeng; Guo, Haiqiang; Yoshino, Katsumi; Feng, Wei

    2013-11-13

    Optically actuated shape recovery materials receive much interest because of their great ability to control the creation of mechanical motion remotely and precisely. An infrared (IR) triggered actuator based on shape recovery was fabricated using polyurethane (TPU) incorporated by sulfonated reduced graphene oxide (SRGO)/sulfonated carbon nanotube (SCNT) hybrid nanofillers. Interconnected SRGO/SCNT hybrid nanofillers at a low weight loading of 1% dispersed in TPU showed good IR absorption and improved the crystallization of soft segments for a large shape deformation. The output force, energy density and recovery time of IR-triggered actuators were dependent on weight ratios of SRGO to SCNT (SRGO:SCNT). TPU nanocomposites filled by a hybrid nanofiller with SRGO:SCNT of 3:1 showed the maximum IR-actuated stress recovery of lifting a 107.6 g weight up 4.7 cm in 18 s. The stress recovery delivered a high energy density of 0.63 J/g and shape recovery force up to 1.2 MPa due to high thermal conductivity (1.473 W/mK) and Young's modulus of 23.4 MPa. Results indicate that a trade-off between the stiffness and efficient heat transfer controlled by synergistic effect between SRGO and SCNT is critical for high mechanical power output of IR-triggered actuators. IR-actuated shape recovery of SRGO/SCNT/TPU nanocomposites combining high energy density and output forces can be further developed for advanced optomechanical systems.

  8. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement.

    PubMed

    Gonçalves, Gil; Cruz, Sandra M A; Ramalho, A; Grácio, José; Marques, Paula A A P

    2012-04-28

    Graphene oxide (GO) and functionalized carbon nanotubes (f-CNTs) (each in the concentration range of 0.01-1.00 wt/wt%) were investigated as the reinforcing agent in a poly(methyl methacrylate) (PMMA)/hydroxyapatite (HA) bone cement. Mixed results were obtained for the changes in the mechanical properties determined (storage modulus, bending strength, and elastic modulus) for the reinforced cement relative to the unreinforced counterpart; that is, some property changes were increased while others were decreased. We postulate that this outcome is a consequence of the fact that each of the nanofillers hampered the polymerization process in the cement; specifically, the nanofiller acts as a scavenger of the radicals produced during polymerization reaction due to the delocalized π-bonds. Results obtained from the chemical structure and polymer chain size distribution determined, respectively, by nuclear magnetic resonance and size exclusion chromatography analysis, on the polymer extracted from the specimens support the postulated mechanism. Furthermore, in the case of the 0.5 wt/wt% GO-reinforced cement, we showed that when the concentration of the radical species in the PMMA bone cement was doubled, mechanical properties markedly improved (relative to the value in the unreinforced cement), suggesting suppression of the aforementioned scavenger activity.

  9. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions.

    PubMed

    Yang, Dongjiang; Liu, Hongwei; Liu, Long; Sarina, Sarina; Zheng, Zhanfeng; Zhu, Huaiyong

    2013-11-21

    Iodine radioisotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials. The (129)I(-) anion is one of the more mobile radioactive species due to a long half-life, and it is a great challenge to design long-term management solutions for such radioactive waste. In this study, a new adsorbent structure with the potential to efficiently remove radioactive iodine anions (I(-)) from water is devised: silver oxide (Ag2O) nanocrystals firmly anchored on the surface of titanate nanotubes and nanofibers via coherent interfaces between Ag2O and titanate phases. I(-) anions in fluids can easily access the Ag2O nanocrystals and be efficiently trapped by forming AgI precipitate that firmly attaches to the adsorbent. Due to their one-dimensional morphology, the new adsorbents can be readily dispersed in liquids and easily separated after purification; and the adsorption beds loaded with the adsorbents can permit high flux. This significantly enhances the adsorption efficiency and reduces the separation costs. The proposed structure reveals a new direction in developing efficient adsorbents for the removal of radioactive anions from wastewater.

  10. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol

    SciTech Connect

    Zheng, Jie; Cullen, David A.; Forest, Robert V.; Wittkopf, Jarrid A.; Zhuang, Zhongbin; Zheng, Whenchao; Chen, Jingguang G.; Yan, Yushan

    2015-01-15

    The sluggish kinetics of methanol oxidation reaction (MOR) is a major barrier to the commercialization of direct methanol fuel cells (DMFCs). In this study, we report a facile synthesis of platinum–ruthenium nanotubes (PtRuNTs) and platinum–ruthenium-coated copper nanowires (PtRu/CuNWs) by galvanic displacement reaction using copper nanowires as a template. The PtRu compositional effect on MOR is investigated; the optimum Pt/Ru bulk atomic ratio is about 4 and surface atomic ratio about 1 for both PtRuNTs and PtRu/CuNWs. Enhanced specific MOR activities are observed on both PtRuNTs and PtRu/CuNWs compared with the benchmark commercial carbon-supported PtRu catalyst (PtRu/C, Hispec 12100). Finally, x-ray photoelectron spectroscopy (XPS) reveals a larger extent of electron transfer from Ru to Pt on PtRu/CuNWs, which may lead to a modification of the d-band center of Pt and consequently a weaker bonding of CO (the poisoning intermediate) on Pt and a higher MOR activity on PtRu/CuNWs.

  11. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol

    DOE PAGES

    Zheng, Jie; Cullen, David A.; Forest, Robert V.; ...

    2015-01-15

    The sluggish kinetics of methanol oxidation reaction (MOR) is a major barrier to the commercialization of direct methanol fuel cells (DMFCs). In this study, we report a facile synthesis of platinum–ruthenium nanotubes (PtRuNTs) and platinum–ruthenium-coated copper nanowires (PtRu/CuNWs) by galvanic displacement reaction using copper nanowires as a template. The PtRu compositional effect on MOR is investigated; the optimum Pt/Ru bulk atomic ratio is about 4 and surface atomic ratio about 1 for both PtRuNTs and PtRu/CuNWs. Enhanced specific MOR activities are observed on both PtRuNTs and PtRu/CuNWs compared with the benchmark commercial carbon-supported PtRu catalyst (PtRu/C, Hispec 12100). Finally, x-raymore » photoelectron spectroscopy (XPS) reveals a larger extent of electron transfer from Ru to Pt on PtRu/CuNWs, which may lead to a modification of the d-band center of Pt and consequently a weaker bonding of CO (the poisoning intermediate) on Pt and a higher MOR activity on PtRu/CuNWs.« less

  12. Photocatalytic oxidation of methyl orange in water phase by immobilized TiO2-carbon nanotube nanocomposite photocatalyst

    NASA Astrophysics Data System (ADS)

    Dong, Yinmao; Tang, Dongyan; Li, Chensha

    2014-03-01

    We developed an immobilized carbon nanotube (CNT)-titanium dioxide (TiO2) heterostructure material for the photocatalytic oxidation of methyl orange in aqueous phase. The catalyst material was prepared via sol-gel method using multi-walled CNTs grown on graphite substrate as carriers. The multi-walled CNTs were synthesized from thermal decomposing of hydrocarbon gas directly on thin graphite plate, forming immobilized 3-dimensional network of CNTs. The nanophase TiO2 was synthesized coating on CNTs to form "coral"-shaped nanocomposite 3-dimensional network on graphite substrate, thus bringing effective porous structure and high specific surface area, and possessing the merit of dispersive powder photocatalysts, which is the fully available surface area, while adapting the requirement for clean and convenient manipulation as an immobilized photocatalyst. Moreover, the CNT-TiO2 heterostructure reduced the electron-hole pair recombination rate and enhanced the photoabsorption and the adsorption ability, resulting in elevating the photocatalysis efficiency. These synergistic effects due to the hybrid nature of the materials and interphase interaction greatly improved the catalytic activity, and demonstrated superior photocatalytic performances. Our work can be a significant inspiration for developing hybrid nano-phase materials to realize sophisticated functions, and bear tremendous significance for the development and applications of semiconductor nano-materials.

  13. MoO2 nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst

    NASA Astrophysics Data System (ADS)

    Li, Xin; Jiang, Yimin; Jia, Lingpu; Wang, Chunming

    2016-02-01

    Hydrogen evolution reaction (HER) through low-cost and earth-abundant electrocatalysts at low overpotentials is a crucial project to clean energy. Molybdenum dioxide/reduced graphene oxide/polyimide-carbon nanotube (MoO2/RGO/PI-CNT) film was synthesized by a simple electrodeposition method as an efficient catalyst for HER. MoO2 nanoparticles with a small size of 10-20 nm uniformly disperse on the RGO surface. The large quantity and small size of MoO2 nanoparticles afford large surface area for HER, greatly enhancing the electrocatalytic performance of MoO2/RGO/PI-CNT film. The HER electrocatalytic property of MoO2/RGO/PI-CNT film in acidic solution is evaluated by linear sweep voltammetry (LSV). MoO2/RGO/PI-CNT film exhibit a high electrocatalytic activity for HER at a small onset overpotential (-110 mV vs RHE) with a high current density (10.0 mA cm-2) and a good stability. The low Tafel slope (68 mV dec-1) reveals the Volmer-Heyrovsky mechanism for HER. The comparison between MoO2/RGO/PI-CNT film and other catalysts indicate that the MoO2/RGO/PI-CNT film had a great performance for HER. This work presents a new thought for the synthesis of MoO2/RGO/PI-CNT film as an efficient HER electrocatalyst.

  14. Platinum nanocatalysts loaded on graphene oxide-dispersed carbon nanotubes with greatly enhanced peroxidase-like catalysis and electrocatalysis activities.

    PubMed

    Wang, Hua; Li, Shuai; Si, Yanmei; Zhang, Ning; Sun, Zongzhao; Wu, Hong; Lin, Yuehe

    2014-07-21

    A powerful enzymatic mimetic has been fabricated by employing graphene oxide (GO) nanocolloids to disperse conductive carbon supports of hydrophobic carbon nanotubes (CNTs) before and after the loading of Pt nanocatalysts. The resulting GOCNT-Pt nanocomposites could present improved aqueous dispersion stability and Pt spatial distribution. Unexpectedly, they could show greatly enhanced peroxidase-like catalysis and electrocatalysis activities in water, as evidenced in the colorimetric and electrochemical investigations in comparison to some inorganic nanocatalysts commonly used. Moreover, it is found that the new enzyme mimetics could exhibit peroxidase-like catalysis activity comparable to natural enzymes; yet, they might circumvent some of their inherent problems in terms of catalysis efficiency, electron transfer, environmental stability, and cost effectiveness. Also, sandwiched electrochemical immunoassays have been successfully conducted using GOCNT-Pt as enzymatic tags. Such a fabrication avenue of noble metal nanocatalysts loaded on well-dispersed conductive carbon supports should be tailored for the design of different enzyme mimics promising the extensive catalysis applications in environmental, medical, industrial, and particularly aqueous biosensing fields.

  15. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    NASA Astrophysics Data System (ADS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-07-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO.

  16. A novel composite electrode based on tungsten oxide nanoparticles and carbon nanotubes for the electrochemical determination of paracetamol.

    PubMed

    Baytak, Aysegul Kutluay; Duzmen, Sehriban; Teker, Tugce; Aslanoglu, Mehmet

    2015-12-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with a composite of nanoparticles of tungsten oxide (WO3) and carbon nanotubes (CNTs) for the quantification of paracetamol (PR). Energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM) were performed for the characterization of the nanocomposite layer. Compared with a bare GCE and a GCE modified with CNTs, the proposed electrode (WO3NPs/CNTs/GCE) exhibited a well-defined redox couple for PR and a marked enhancement of the current response. The experimental results also showed that ascorbic acid (AA) did not interfere with the selective determination of PR. The proposed electrode was used for the determination of PR in 0.1M phosphate buffer solution (PBS) at pH7.0 using square wave voltammetry (SWV). The peak current increased linearly with the concentration of PR in the range of 1.0×10(-9)-2.0×10(-7)M. The detection limit (LOD) was 5.54×10(-11)M (based on 3Sb/m). The proposed voltammetric sensor provided long-time stability, improved voltammetric behavior and good reproducibility for PR. The selective, accurate and precise determination of PR makes the proposed electrode of great interest for monitoring its therapeutic use.

  17. Amperometric choline biosensor based on multiwalled carbon nanotubes/zirconium oxide nanoparticles electrodeposited on glassy carbon electrode.

    PubMed

    Pundir, S; Chauhan, N; Narang, J; Pundir, C S

    2012-08-01

    A bienzymatic choline biosensor was constructed by coimmobilizing acetylcholinesterase (AChE) and choline oxidase (ChO) onto nanocomposite of carboxylated multiwalled carbon nanotubes (c-MWCNTs) and zirconium oxide nanoparticles (ZrO(2)NPs) electrodeposited on the surface of a glassy carbon electrode (GCE) and using it (AChE-ChO/c-MWCNT/ZrO(2)NPs/GCE) as working electrode, Ag/AgCl as reference electrode, and Pt wire as auxiliary electrode connected through a potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV) studies, optimized, and evaluated. The biosensor exhibited optimum response within 4 s at +0.2V, pH 7.4, and 25 °C. The detection limit and working range of the biosensor were 0.01 μM and 0.05 to 200 μM, respectively. The half-life of the enzyme electrode was 60 days at 4 °C. The serum choline level, as measured by the biosensor, was 9.0 to 12.8 μmol/L (with a mean of 10.81 μmol/L) in apparently healthy persons and 5.0 to 8.4 μmol/L (with a mean of 6.53 μmol/L) in persons suffering from Alzheimer's disease. The enzyme electrode was unaffected by a number of serum substances.

  18. Cerium oxide nanoparticles/multi-wall carbon nanotubes composites: Facile synthesis and electrochemical performances as supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Deng, Dongyang; Chen, Nan; Li, Yuxiu; Xing, Xinxin; Liu, Xu; Xiao, Xuechun; Wang, Yude

    2017-02-01

    Cerium oxide nanoparticles/multi-wall carbon nanotubes (MWCNTs) composites are synthesized by a facile hydrothermal method without any surfactant or template. The morphology and microstructure of samples are examined by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray diffraction (XRD), Raman spectrum and X-ray photoelectron spectroscopy (XPS). Electrochemical properties of the MWCNTs, the pure CeO2, and the CeO2/MWCNTs nanocomposites electrodes are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge (GDC) and electrochemical impedance spectroscopy (EIS) measurements. The CeO2/MWCNTs nanocomposite (at the mole ratio of 1:1) electrode exhibits much larger specific capacitance compared with both the MWCNTs electrode and the pure CeO2 electrode and significantly improves cycling stability compared to the pure CeO2 electrode. The CeO2/MWCNTs nanocomposite (at the mole ratio of 1:1) achieves a specific capacitance of 455.6 F g-1 at the current density of 1 A g-1. Therefore, the as prepared CeO2/MWCNTs nanocomposite is a promising electrode material for high-performance supercapacitors.

  19. Biomimetic sensor based on hemin/carbon nanotubes/chitosan modified microelectrode for nitric oxide measurement in the brain.

    PubMed

    Santos, Ricardo M; Rodrigues, Marcelo S; Laranjinha, João; Barbosa, Rui M

    2013-06-15

    A novel biomimetic microsensor for measuring nitric oxide (NO) in the brain in vivo was developed. The sensor consists of hemin and functionalized multi-wall carbon nanotubes covalently attached to chitosan via the carbodiimide crosslinker EDC followed by chitosan electrodeposition on the surface of carbon fiber microelectrodes. Cyclic voltammetry supported direct electron transfer from the Fe(III)/Fe(II) couple of hemin to the carbon surface at -0.370 V and -0.305 V vs. Ag/AgCl for cathodic and anodic peaks, respectively. Square wave voltammetry revealed a NO reduction peak at -0.762 V vs. Ag/AgCl that increased linearly with NO concentration between 0.25 and 1 μM. The average sensitivity of the microsensors was 1.72 nA/μM and the limit of detection was 25 nM. Oxygen and hydrogen peroxide reduction peaks were observed at -0.269 V and -0.332 V vs. Ag/AgCl, respectively and no response was observed for other relevant interferents, namely ascorbate, nitrite and dopamine. The microsensor was successfully applied to the measurement of exogenously applied NO in the rat brain in vivo.

  20. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior.

    PubMed

    Beltrán-Partida, Ernesto; Valdez-Salas, Benjamín; Escamilla, Alan; Curiel, Mario; Valdez-Salas, Ernesto; Nedev, Nicola; Bastidas, Jose M

    2016-03-01

    Amorphous titanium dioxide (TiO2) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability.