Science.gov

Sample records for nanowire resonator arrays

  1. Plasmon resonant cavities in vertical nanowire arrays

    SciTech Connect

    Bora, M; Bond, T; Behymer, E; Chang, A

    2010-02-23

    We investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors over 103 are possible due to plasmon focusing in the inter-wire space.

  2. Plasmon resonant cavities in vertical nanowire arrays

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  3. Multi-peak ferromagnetic resonance in Co nanowires array

    NASA Astrophysics Data System (ADS)

    Kraus, Luděk; Lynnyk, Anna; Azamat, Dmitry; Drahokoupil, Jan; Kopeček, Jaromír; Rameš, Michal

    2017-01-01

    Ferromagnetic resonance in an array of Co nanowires electrolytically deposited into nanoporous alumina template is investigated at four microwave frequencies in the range from 9.3 to 69.7 GHz. The array consists of highly textured hcp Co with hexagonal axes perpendicular to the nanowires. The spectra measured at higher frequencies can be decomposed into four wide resonances peaks. Different mechanisms, which can lead to the multi-peak resonance, are discussed.

  4. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    SciTech Connect

    Raposo, V.; Zazo, M.; Flores, A. G.; Iñiguez, J.; Garcia, J.; Vega, V.; Prida, V. M.

    2016-04-14

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires’ diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which was achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al{sub 2}O{sub 3} layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.

  5. Directed growth of horizontally aligned gallium nitride nanowires for nanoelectromechanical resonator arrays.

    PubMed

    Henry, Tania; Kim, Kyungkon; Ren, Zaiyuan; Yerino, Christopher; Han, Jung; Tang, Hong X

    2007-11-01

    We report the growth of horizontally aligned arrays and networks of GaN nanowires (NWs) as resonant components in nanoelectromechanical systems (NEMS). A combination of top-down selective area growth (SAG) and bottom-up vapor-liquid-solid (VLS) synthesis enables flexible fabrication of highly ordered nanowire arrays in situ with no postgrowth dispersion. Mechanical resonance of free-standing nanowires are measured, with quality factors (Q) ranging from 400 to 1000. We obtained a Young's modulus (E) of approximately 338 GPa from an array of NWs with varying diameters and lengths. The measurement allows detection of nanowire motion with a rotating frame and reveals dual fundamental resonant modes in two orthogonal planes. A universal ratio between the resonant frequencies of these two fundamental modes, irrespective of their dimensions, is observed and attributed to an isosceles cross section of GaN NWs.

  6. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes

    SciTech Connect

    Fountaine, Katherine T.; Whitney, William S.; Atwater, Harry A.

    2014-10-21

    We present a unified framework for resonant absorption in periodic arrays of high index semiconductor nanowires that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes, as array density transitions from sparse to dense. Full dispersion relations are calculated for each mode at varying illumination angles using the eigenvalue equation for leaky waveguide modes of an infinite dielectric cylinder. The dispersion relations along with symmetry arguments explain the selectivity of mode excitation and spectral red-shifting of absorption for illumination parallel to the nanowire axis in comparison to perpendicular illumination. Analysis of photonic crystal band dispersion for varying array density illustrates that the modes responsible for resonant nanowire absorption emerge from the leaky waveguide modes.

  7. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

    PubMed

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

    2014-11-17

    The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors.

  8. Investigation of surface plasmon resonance in composite nanostructure of silver film and nanowire array

    NASA Astrophysics Data System (ADS)

    Li, Jun; Yang, Junyi; Wu, Xingzhi; Song, Yinglin

    2016-10-01

    We investigate the surface plasmon resonance in a new composite nanostructure (Nanowires array beneath metal film). Computational simulation results exhibit that, for both transverse electric(TE) and transverse magnetic (TM) polarization, the positions of resonance peaks is extremely sensitive to the change of center distance (Filling ratio of nanowires). When the diameter of Nanowires is 4nm and under TM polarization, the resonance angle increasing with the increase of center distance. In the case of TE polarization, the result is completely the opposite within limits. It is also shown that changes in thickness of Ag film(At the top of the Ag nanowire) has little direct effect on the resonance angle, But the characteritics of SPR intensity is influenced by the thickness of Ag film in the most degree. When the thickness of Ag film is 50 nm, In range of 10nm to 100nm, the minimum value of the reflectance is only 0.05, the result is consistent with the previous studies. Additionally, the nano composite structure material is very sensitive to the refractive index change of the lowest layer when under the TE- polarization. we have done mode analysis of the SPR structure for both simple and practical structures using comsol multiphysics, our approach is intend to show the feasibity and extend the applicability of the plasmonic nanowires, could lead to provide the basis for design the new structure of nanowires array.

  9. Enhancing absorption properties of composite nanosphere and nanowire arrays by localized surface plasmon resonance shift

    NASA Astrophysics Data System (ADS)

    Tang, Xiaobing; Zhou, Leping; Du, Xiaoze; Yang, Yongping

    Nanoparticles with nonmetallic core and metallic shell can improve the spectral solar absorption efficiency for traditional working fluids, due to the localized surface plasmon resonance (LSPR) effect exists at the surfaces of these core-shell composite nanoparticles. In this work, the effect of geometry and material, and hence the LSPR effect, on the optical absorption properties of core-shell nanostructures was numerically demonstrated by the finite difference time domain method. The nanostructures were formed by varying the inner and outer radii of the composite nanospheres and nanowires and by changing the particle spacing for their arrays. The result indicates that varying the inner radius itself can tune the absorption efficiency factors of the nanostructures monotonously, while an optimal outer radius may exist for maximizing the absorption efficiency factors. It also shows that varying the inner radius itself can widen the absorption spectrums for the arrays, but the absorptance tends to increase with decreasing inner radius or particle spacing. Meanwhile, the second absorption peaks may be observed for nanowires or nanosphere/nanowire arrays, which can be tuned by the resonance shifts induced by the change of either inner or outer radius and hence the LSPR effect. The coupled LSPR effect under studied can be efficiently utilized for tuning the optical absorption properties of nanoparticles used in many applications including photothermal conversion, and perspective also exists for many other applications including surface-enhanced Raman spectroscopy (SERS) enhancement.

  10. Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging.

    PubMed

    Zhou, Zhang-Kai; Li, Min; Yang, Zhong-Jian; Peng, Xiao-Niu; Su, Xiong-Rui; Zhang, Zong-Suo; Li, Jian-Bo; Kim, Nam-Chol; Yu, Xue-Feng; Zhou, Li; Hao, Zhong-Hua; Wang, Qu-Quan

    2010-09-28

    Efficient plasmon-mediated excitation energy transfer between the CdSe/ZnS semiconductor quantum dots (QDs) across the silver nanowire array up to 560 nm in length is observed. The subwavelength imaging and spectral response of the silver nanowire arrays with near-field point-source excitations are revealed by theoretical simulations. Our studies demonstrate three advantages of the nanosystem: efficient exciton-plasmon conversion at the input side of the array through near-field strong coupling, directional waveguidance and resonant transmission via half-wave plasmon modes of the nanowire array, and subwavelength imaging at the output side of the array. These advantages allow a long-range radiative excitation energy transfer with a high efficiency and a good directionality.

  11. Mechanical Resonance and Damping Properties of Gallium Nitride Nanowires in Selected-Area Growth Arrays Measured via Optical Bragg Scattering

    NASA Astrophysics Data System (ADS)

    Houlton, John; Brubaker, M. D.; Bertness, K. A.; Rogers, C. T.

    We report the use of optical Bragg scattering to measure the mechanical resonance frequencies and quality factors (Q) of gallium nitride (GaN) nanowires (NWs) in selected-area growth arrays. The GaN NWs are grown by catalyst-free molecular beam epitaxy on silicon (111) wafers. Hexagonal arrays of approximately 100 GaN NWs with pitch spacings of 400 - 1000 nm have been prepared. The NWs contained in such arrays have diameters ranging from 100-300 nm and lengths from 3 - 10 μm. A diode laser operating at 640 nm and 2 mW of optical power is used to perform Bragg scattering homodyne detection to passively read out the thermally induced Brownian mechanical motion of the NWs. The first order cantilever-mode mechanical resonance frequencies of these NWs have been measured to be between 2 - 12 MHz. We find that the optical readout via Bragg scattered light allows the simultaneous detection of all lowest order mechanical resonances in a given array. Q factors ranging from 1,000 - 12,000 have been seen at room temperature and 10-5 Torr pressures. Qs as high as 25,000 have been seen at temperatures of 80 K. These results show that the narrow mechanical resonances observed in freely-grown GaN NWs can also be seen in NWs prepared via selected-area growth. We gratefully acknowledge funding via NIST MSE Grant # 1553451.

  12. The smallest resonator arrays in atmosphere by chip-size-grown nanowires with tunable Q-factor and frequency for subnanometer thickness detection.

    PubMed

    Jiang, Chengming; Tang, Chaolong; Song, Jinhui

    2015-02-11

    A chip-size vertically aligned nanowire (NW) resonator arrays (VNRs) device has been fabricated with simple one-step lithography process by using grown self-assembled zinc oxide (ZnO) NW arrays. VNR has cantilever diameter of 50 nm, which breakthroughs smallest resonator record (>100 nm) functioning in atmosphere. A new atomic displacement sensing method by using atomic force microscopy is developed to effectively identify the resonance of NW resonator with diameter 50 nm in atmosphere. Size-effect and half-dimensional properties of the NW resonator have been systematically studied. Additionally, VNR has been demonstrated with the ability of detecting nanofilm thickness with subnanometer (<10(-9)m) resolution.

  13. Structural characterization of nanowires and nanowire arrays

    NASA Astrophysics Data System (ADS)

    Becker, Catherine Rose

    synthesis of copper nanowires. The results of this research provide a link between the synthesis and performance of nanowire arrays and will aid in their rapid optimization for thermoelectric applications.

  14. Template-free fabrication of Ag nanowire arrays/Al2O3 assembly with flexible collective longitudinal-mode resonance and ultrafast nonlinear optical response

    NASA Astrophysics Data System (ADS)

    Hui, Shuai; Gao, Junhua; Wu, Xingzhi; Li, Zhongguo; Zou, Yousheng; Song, Yinglin; Cao, Hongtao

    2016-06-01

    We utilized a co-sputtering technique without any templates, featuring growing and etching synchronously, to delicately fabricate dense and ultrafine Ag nanowire arrays/alumina matrix composite films. Both the diameter and separation distance of the Ag nanowire arrays in the composites are not only within the scope of sub-10 nm but also tunable, which is very hard to accomplish for the conventional optical lithography- or template-based method. It is exhibited that the collective longitudinal plasmon resonance of the composite films, covering a wide range from visible to the near infrared region, is extremely sensitive to the geometrical parameters of the Ag nanowires, owing to the strong plasmonic coupling among neighboring nanowires. The experimental observations were also theoretically supported by the near-field electromagnetic numerical simulation. More interestingly, the fabricated composite films demonstrated ultrafast nonlinear optical response in the visible light region under femtosecond laser excitation, possessing a short relaxation time of 1.45 ps for the longitudinal mode (L mode) resonance. These results indicate that the proposed composite films as a building block with exotic optical properties could provide an opportunity to construct integrated nanodevices for plasmonic optical applications.

  15. Nanowire Plasmon Resonators

    NASA Astrophysics Data System (ADS)

    de Leon, Nathalie; Shields, Brendan; Yu, Chun; Englund, Dirk; Akimov, Alexey; Lukin, Mikhail; Park, Hongkun

    2011-05-01

    Strong interactions between light and matter can be engineered by confining light to a small volume for an extended period of time. Nanoscale plasmonic structures can concentrate lighte well below the diffraction limit, but realization of small mode-volume plasmon cavities remains an outstanding challenge. We propose and demonstrate a new approach for realization of nanoscale plasmon resonators enabling strong light-matter interaction. In our approach, chemically synthesized silver nanowires are surrounded by patterned dielectric to create resonators with mode volumes that are two orders of magnitude below the diffraction limit and quality factors approaching 100. We show that they can be used to enhance spontaneous emission rates of CdSe quantum dots and single diamond nitrogen-vacancy centers by a factor larger than 20 at the cavity resonance.

  16. Photoelectrochemistry of Semiconductor Nanowire Arrays

    SciTech Connect

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  17. Copper nanowire arrays for transparent electrodes

    NASA Astrophysics Data System (ADS)

    Gao, Tongchuan; Leu, Paul W.

    2013-08-01

    Metallic nanowires have demonstrated high optical transmission and electrical conductivity with potential for application as transparent electrodes that may be used in flexible devices. In this paper, we systematically investigated the electrical and optical properties of 1D and 2D copper nanowire (Cu NW) arrays as a function of diameter and pitch and compared their performance to that of Cu thin films and our recent results on silver (Ag) NW arrays. Cu NWs exhibit enhanced transmission over thin films due to propagating resonance modes between NWs. For the same geometry, the transmission of Cu NW arrays is about the same as that of Ag NW arrays since the dispersion relation of propagating modes in metal nanowire arrays are independent of the metal permittivity. The sheet resistance is also comparable since the conductivity of Cu is about the same as that of Ag. Just as in Ag NWs, larger Cu NW diameters and pitches are favored for achieving higher solar transmission at a particular sheet resistance. Cu NW arrays may achieve solar transmission >90% with sheet resistances <10 Ω/sq and figure of merit σDC/σop>1000. One of the primary concerns with the use of Cu is oxidation and we also investigated the impact of a nickel (Ni) coating, which can serve as an anti-oxidation layer, on the electrical and optical properties.

  18. Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation.

    PubMed

    Fountaine, Katherine T; Kendall, Christian G; Atwater, Harry A

    2014-05-05

    We report design methods for achieving near-unity broadband light absorption in sparse nanowire arrays, illustrated by results for visible absorption in GaAs nanowires on Si substrates. Sparse (<5% fill fraction) nanowire arrays achieve near unity absorption at wire resonant wavelengths due to coupling into 'leaky' radial waveguide modes of individual wires and wire-wire scattering processes. From a detailed conceptual development of radial mode resonant absorption, we demonstrate two specific geometric design approaches to achieve near unity broadband light absorption in sparse nanowire arrays: (i) introducing multiple wire radii within a small unit cell array to increase the number of resonant wavelengths, yielding a 15% absorption enhancement relative to a uniform nanowire array and (ii) tapering of nanowires to introduce a continuum of diameters and thus resonant wavelengths excited within a single wire, yielding an 18% absorption enhancement over a uniform nanowire array.

  19. Aluminum Nanowire Arrays via Directed Assembly.

    PubMed

    Nesbitt, Nathan T; Merlo, Juan M; Rose, Aaron H; Calm, Yitzi M; Kempa, Krzysztof; Burns, Michael J; Naughton, Michael J

    2015-11-11

    Freestanding and vertically-oriented metal nanowire arrays have potential utility in a number of applications, but presently lack a route to fabrication. Template-based techniques, such as electrodeposition into lithographically defined nanopore arrays, have produced well-ordered nanowire arrays with a maximum pitch of about 2 μm; such nanowires, however, tend to cluster due to local attractive forces. Here, we modify this template fabrication method to produce well-ordered, vertically-oriented, freestanding Al nanowire arrays, etched from an underlying Al substrate, with highly tunable pitch. In addition, optical measurements demonstrated that the nanowires support the propagation of surface plasmon polaritons.

  20. Modifying the emission of light from a semiconductor nanowire array

    NASA Astrophysics Data System (ADS)

    Anttu, Nicklas

    2016-07-01

    Semiconductor nanowire arrays have been identified as a promising platform for future light emitting diodes (LEDs), for example, due to the materials science freedom of combining lattice-mismatched materials in them. Furthermore, the emission of light from nanowires can be tailored by designing their geometry. Such tailoring could optimize the emission of light to the top side as well as enhance the emission rate through the Purcell effect. However, the possibility for enhanced light extraction from III-V nanowire arrays over a conventional bulk-like LED has not been investigated systematically. Here, we use electromagnetic modeling to study the emission of light from nanowire arrays. We vary both the diameter of the nanowires and the array period to show the benefit of moving from a bulk-like LED to a nanowire array LED. We study the fraction of light emitted to the top air side and to the substrate at wavelength λ. We find several diameter-dependent resonant peaks for which the emission to the top side is maximized. For the strongest such peak, by increasing the array period, the fraction of emitted light that is extracted at the top air side can be enhanced by a factor of 30 compared to that in a planar bulk LED. By modeling a single nanowire, we confirm that it is beneficial to place the nanowires further apart to enhance the emission to the top side. Furthermore, we predict that for a nanowire diameter D > λ/2, a majority of the emitted power ends up in the substrate. Our results offer direction for the design and optimization of nanowire-array based light emitting diodes.

  1. Enhanced photothermal conversion in vertically oriented gallium arsenide nanowire arrays.

    PubMed

    Walia, Jaspreet; Dhindsa, Navneet; Flannery, Jeremy; Khodabad, Iman; Forrest, James; LaPierre, Ray; Saini, Simarjeet S

    2014-10-08

    The photothermal properties of vertically etched gallium arsenide nanowire arrays are examined using Raman spectroscopy. The nanowires are arranged in square lattices with a constant pitch of 400 nm and diameters ranging from 50 to 155 nm. The arrays were illuminated using a 532 nm laser with an incident energy density of 10 W/mm(2). Nanowire temperatures were highly dependent on the nanowire diameter and were determined by measuring the spectral red-shift for both TO and LO phonons. The highest temperatures were observed for 95 nm diameter nanowires, whose top facets and sidewalls heated up to 600 and 440 K, respectively, and decreased significantly for the smaller or larger diameters studied. The diameter-dependent heating is explained by resonant coupling of the incident laser light into optical modes of the nanowires, resulting in increased absorption. Photothermal activity in a given nanowire diameter can be optimized by proper wavelength selection, as confirmed using computer simulations. This demonstrates that the photothermal properties of GaAs nanowires can be enhanced and tuned by using a photonic lattice structure and that smaller nanowire diameters are not necessarily better to achieve efficient photothermal conversion. The diameter and wavelength dependence of the optical coupling could allow for localized temperature gradients by creating arrays which consist of different diameters.

  2. Angle sensing with ferromagnetic nanowire arrays

    NASA Astrophysics Data System (ADS)

    Tannous, C.; Gieraltowski, J.

    2014-01-01

    Hysteresis loops and Ferromagnetic Resonance (FMR) linewidths of Nickel ferromagnetic nanowire arrays are measured versus angle θH between the applied magnetic field angle and the common nanowire axis. Using Preisach analysis, we extract from the hysteresis loop an interaction parameter σi that strongly depends on θH. Extending the analysis to FMR lineshapes, we deduce a strong dependence of the FMR field linewidth ΔH on θH through the interaction parameter σi. Existence of a link between static (hysteresis) and dynamic (FMR) cases through θH might be exploited in contactless absolute angle sensing devices that could compete with inductive, Hall, and magnetoresistive devices.

  3. Patterned Fabrication of Zinc Oxide Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Khan, Sahar; Lamson, Thomas; Xu, Huizhong

    Zinc oxide nanowires possess desirable mechanical, thermodynamic, electrical, and optical properties. Although the hydrothermal growth process can be applied in tolerable growth conditions, the dimension and density of nanowires has a complex dependence on substrate pre-treatment, precursor concentrations, and growth conditions. Precise control of the geometry and density of nanowires as well as the location of nanowires would allow for the fabrication of useful nanowaveguide devices. In this work, we used electron beam lithography to pattern hole arrays in a polymer layer on gold-coated glass substrates and synthesized zinc oxide nanowires inside these holes. Arrays of nanowires with diameters ranging from 50 nm to 140 nm and various spacings were obtained. The transmission of light through these zinc oxide nanowire arrays in a silver film was also studied. This research was supported by the Seed Grant Program of St. John's University and the National Science Foundation under Grant No. CBET-0953645.

  4. Photonic band structure and effective medium properties of doubly-resonant core-shell metallo-dielectric nanowire arrays: low-loss, isotropic optical negative-index behavior

    NASA Astrophysics Data System (ADS)

    Abujetas, D. R.; Paniagua-Domínguez, R.; Nieto-Vesperinas, M.; Sánchez-Gil, J. A.

    2015-12-01

    We investigate theoretically and numerically the photonic band structure in the optical domain of an array of core-shell metal-semiconductor nanowires. Corresponding negative-index photonic bands are calculated, showing isotropic equifrequency surfaces. The effective (negative) electric permittivity and magnetic permeability, retrieved from S-parameters, are used to compare the performance of such nanowire arrays with homogeneous media in canonical examples, such as refraction through a prism and flat-lens focusing. Very good agreement is found, confirming the effective medium behavior of the nanowire array as a low-loss, isotropic (2D) and bulk, optical negative index metamaterial. Indeed, disorder is introduced to further stress its robustness.

  5. Collective Quantum Phase-Slip Dynamics in Superconducting Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Skacel, Sebastian T.; Voss, Jan N.; Bier, Tobias; Radke, Lucas; Weides, Martin; Rotzinger, Hannes; Mooij, Hans E.; Ustinov, Alexey V.

    2014-03-01

    Superconducting nanowire arrays exhibit quantum phase-slip (QPS) phenomenon if the superconductor has a very high normal-state sheet resistance. We experimentally study QPS effects in arrays of nanowires embedded in a resonant circuit at GHz frequencies. We probe this circuit at ultra-low microwave power, applied flux and mK temperatures. The nanowires are fabricated utilizing aluminium grown in a precisely-controlled oxygen atmosphere. In this way, we aim to control the QPS rate for a given wire width. The wires are defined with conventional electron beam lithography down to a width of 20 nm. We will present the fabrication of the nanowire arrays and first microwave measurements at mK temperatures. Center for Functional Nanostructures, Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany.

  6. Optical Sensing with Simultaneous Electrochemical Control in Metal Nanowire Arrays

    PubMed Central

    MacKenzie, Robert; Fraschina, Corrado; Sannomiya, Takumi; Auzelyte, Vaida; Vörös, Janos

    2010-01-01

    This work explores the alternative use of noble metal nanowire systems in large-scale array configurations to exploit both the nanowires’ conductive nature and localized surface plasmon resonance (LSPR). The first known nanowire-based system has been constructed, with which optical signals are influenced by the simultaneous application of electrochemical potentials. Optical characterization of nanowire arrays was performed by measuring the bulk refractive index sensitivity and the limit of detection. The formation of an electrical double layer was controlled in NaCl solutions to study the effect of local refractive index changes on the spectral response. Resonance peak shifts of over 4 nm, a bulk refractive index sensitivity up to 115 nm/RIU and a limit of detection as low as 4.5 × 10−4 RIU were obtained for gold nanowire arrays. Simulations with the Multiple Multipole Program (MMP) confirm such bulk refractive index sensitivities. Initial experiments demonstrated successful optical biosensing using a novel form of particle-based nanowire arrays. In addition, the formation of an ionic layer (Stern-layer) upon applying an electrochemical potential was also monitored by the shift of the plasmon resonance. PMID:22163441

  7. Microtubule-based gold nanowires and nanowire arrays.

    PubMed

    Zhou, Jing C; Gao, Yao; Martinez-Molares, Alfredo A; Jing, Xiaoye; Yan, Dong; Lau, Joseph; Hamasaki, Toshikazu; Ozkan, Cengiz S; Ozkan, Mihrimah; Hu, Evelyn; Dunn, Bruce

    2008-09-01

    Biological structures are attractive as templates to form nanoscale architectures for electronics because of their dimensions and the ability to interact with inorganic materials. In this study, we report the fabrication and electrical properties of microtubule (MT)-templated Au nanowires, and methods for assembling Au nanowire arrays based on these templates. The adsorption of MTs on silicon substrates is an effective means for preserving the conformation of the MT and provides a convenient platform for electrical measurements. To improve the metallization of MTs, a photochemical route for gold reduction is adapted, which leads to continuous coverage. The conductivity values measured on micrometer-long nanowires are similar to those reported for other biotemplated gold nanowires. A protocol for fabricating arrays of MT-templated gold nanowires is demonstrated.

  8. Silicon-gold core-shell nanowire array for an optically and electrically characterized refractive index sensor based on plasmonic resonance and Schottky junction.

    PubMed

    Qin, Linling; Zhang, Cheng; Li, Runfeng; Li, Xiaofeng

    2017-04-01

    This work reports the plasmonically enhanced refractive index sensor consisting of silicon nanowire array (Si-NWA) coated by a conformal gold (Au) nanoshell. Compared to the pure Si or Au NWA system, the Si-Au core-shell setup leads to substantially enhanced optical in-coupling to excite strong surface plasmon resonance (SPR) for highly sensitive sensors. Results indicate that the SPR wavelength can be subtly tuned by manipulating the nanowire radius, and it shows a strong shift with very small variation of the refractive index of the analyte. Furthermore, we configure the system into the Schottky junction, which can separate the photogenerated hot electrons so that the electrical outputs under various incident wavelengths can be measured. The capabilities of optical and electrical measurements ensure a high flexibility of the sensing system. Through our optoelectronic evaluation, the optimally designed system shows a sensitivity up to 1008 nm per refractive index unit and a full width at half-maximum of 9.89 nm; moreover, the high sensing performance can be sustained in a relatively large range of the incident angle.

  9. Self-organized metal nanowire arrays with tunable optical anisotropy

    SciTech Connect

    Toma, A.; Chiappe, D.; Massabo, D.; Boragno, C.; Buatier de Mongeot, F.

    2008-10-20

    Here we report on the development of an unconventional approach for the physical synthesis of laterally ordered self-organized arrays of metallic nanowires supported on nanostructured dielectric templates. The method, based on a combination of nanoscale patterning of the glass substrate by ion beam sputtering with shadow deposition of the metal nanoparticles, provides a viable alternative to time consuming serial nanopatterning approaches. Far-field optical characterization demonstrates that the nanowire arrays exhibit tunable anisotropic properties in the visible range due to the excitation of localized plasmon resonances.

  10. Electrochemically synthesized magnetic nanowire heterostructures and arrays for acoustic sensing

    NASA Astrophysics Data System (ADS)

    McGary, Patrick David

    Biological cilia in humans and animals serve many functions, including sensing of acoustic and sensory signals and actuation for mobility in small species or for motion of bodily fluids in larger species. This work sought to fabricate nanowire arrays as artificial cilia. Arrays of tiny sensors at nanoscale dimensions have theoretical advantages to macroscale sensors including higher spatial resolution, miniscule size, and higher ultimate strength for each sensing element. Theoretical investigations showed that a magnetic/non-magnetic heterostructure would enable nanowires with improved sensitivity over single element nanowires. Here, nanowire structures included a soft magnetostrictive sensing segment (such as Ni or Fe1-xGax [also called galfenol]), a permanent magnetic segment to provide an integrated magnetic bias, and a long and hard non-magnetic end segment to increase the viscous drag force of the fluid on the nanowire. Galfenol is a new large magnetostrictive material that has moderate magnetostriction but excellent mechanical properties. This work included the first successful electroplating process for this unique alloy. This enabled the fabrication of these alloys into nanoscopic form. These nanowire structures were grown into nanoporous anodic aluminum oxide (AAO) templates using a robust two-step anodization process. When grown at the proper conditions (temperature, electrolyte, and voltage), the templates contained highly-ordered nanopores with small diameters (10-100 nm), short center-to-center distances (25-250 nm), and long lengths (0.1-100 mum). Metal contacts were deposited onto one side of the templates, and magnetostrictive, magnetic, and non-magnetic materials were sequentially electrodeposited into the nanopores. Controlling the non-magnetic segment lengths enabled control of the nanowire resonant frequency. By using graded nanowire lengths across the array, frequency filtering as a pre-filter for subsequent signal processing could be performed

  11. Atomic Layer Deposition Enabled Interconnect Technology for Vertical Nanowire Arrays

    DTIC Science & Technology

    2009-06-01

    nanowire light emitting diodes (LEDs), nanowire-based field effect transistors (FETs), resonators, batteries or biomedical applications. Keywords...various vertical nanowire-based devices, such as nanowire light emitting diodes (LEDs), nanowire-based field effect transistors (FETs), resonators...Silvija Gradecˇak, Yat Li, Cheng-Yen Wen, and Charles M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light- Emitting

  12. Periodic nanowire array at the crystal interface.

    PubMed

    Nakamura, Atsutomo; Mizoguchi, Teruyasu; Matsunaga, Katsuyuki; Yamamoto, Takahisa; Shibata, Naoya; Ikuhara, Yuichi

    2013-07-23

    A dislocation in a crystalline material has dangling bonds at its core and a strong strain field in its vicinity. Consequently, the dislocation attracts solute atoms and forms a so-called Cottrell atmosphere along the dislocation. A crystalline dislocation can be used as a template to produce nanowires by selectively doping foreign atoms along the dislocation. However, control of the configuration, spacing, and density of the formed periodic nanowire array has heretofore been extremely difficult. Here we show a method for fabricating ordered, electrically conductive nanowire arrays using periodic dislocations at crystal interfaces. As a demonstration, we fabricated arrays of titanium nanowires arranged at intervals of either 13 or 90 nm and then confirmed by scanning probe microscopy that they exhibit electrical conductivity inside an insulating aluminum oxide. Significantly, we were able to precisely control nanowire periodicity by the choice of crystal orientation and/or crystal planes at the crystal interface. This simple method for the fabrication of periodic nanowire arrays of highly controlled density should be widely applicable to electrical, magnetic, and optical devices.

  13. Photoresponse in arrays of thermoelectric nanowire junctions

    NASA Astrophysics Data System (ADS)

    Huber, T. E.; Scott, R.; Johnson, S.; Brower, T.; Belk, J. H.; Hunt, J. H.

    2013-07-01

    We report the first demonstration of optical detection by thermoelectric nanowire junctions. We employed devices composed of bismuth nanowire arrays which are capped with a transparent indium tin oxide electrode. The incident surface features very low optical reflectivity and enhanced light trapping. The unique attributes of the thermoelectric arrays are the combination of strong temporal and optical wavelength dependences of the photocurrent. Under infrared illumination, the signal can be completely described by thermoelectric effects considering cooling rates given by heat diffusion through the array. In addition, under visible illumination, we observe a photovoltaic response.

  14. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

  15. Localized Surface Plasmon Resonance of Metal Nanodot Nanowire Arrays Studied by Far-Field and Near-Field Optical

    DTIC Science & Technology

    2007-09-05

    microscope, nanoholes or nanogrooves can be created on the film. After coating a thin Au film by electron beam evaporation and soaking the sample in acetone...SNOM. III. Results and Discussion: (a) LSPR of Au Nanodots With the use of an indentation force of 3.8 μN, a nanohole array was generated on the...images of (a) a nanohole array on PMMA and (b) the corresponding Au nanodot array after lift-off. SEM images of (c) a Au nanodot pattern “NANO” on

  16. Nanowire sensor, sensor array, and method for making the same

    NASA Technical Reports Server (NTRS)

    Yun, Minhee (Inventor); Myung, Nosang (Inventor); Vasquez, Richard (Inventor); Homer, Margie (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor)

    2012-01-01

    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.

  17. Electroluminescent, polycrystalline cadmium selenide nanowire arrays.

    PubMed

    Ayvazian, Talin; van der Veer, Wytze E; Xing, Wendong; Yan, Wenbo; Penner, Reginald M

    2013-10-22

    Electroluminescence (EL) from nanocrystalline CdSe (nc-CdSe) nanowire arrays is reported. The n-type, nc-CdSe nanowires, 400-450 nm in width and 60 nm in thickness, were synthesized using lithographically patterned nanowire electrodeposition, and metal-semiconductor-metal (M-S-M) devices were prepared by the evaporation of two gold contacts spaced by either 0.6 or 5 μm. These M-S-M devices showed symmetrical current voltage curves characterized by currents that increased exponentially with applied voltage bias. As the applied biased was increased, an increasing number of nanowires within the array "turned on", culminating in EL emission from 30 to 50% of these nanowires at applied voltages of 25-30 V. The spectrum of the emitted light was broad and centered at 770 nm, close to the 1.74 eV (712 nm) band gap of CdSe. EL light emission occurred with an external quantum efficiency of 4 × 10(-6) for devices with a 0.60 μm gap between the gold contacts and 0.5 × 10(-6) for a 5 μm gap-values similar to those reported for M-S-M devices constructed from single-crystalline CdSe nanowires. Kelvin probe force microscopy of 5 μm nc-CdSe nanowire arrays showed pronounced electric fields at the gold electrical contacts, coinciding with the location of strongest EL light emission in these devices. This electric field is implicated in the Poole-Frenkel minority carrier emission and recombination mechanism proposed to account for EL light emission in most of the devices that were investigated.

  18. Spectroscopic investigations of arrays containing vertically and horizontally aligned silicon nanowires

    NASA Astrophysics Data System (ADS)

    Volpati, Diogo; Mårtensson, Niklas; Anttu, Nicklas; Viklund, Per; Sundvall, Christian; Åberg, Ingvar; Bäckström, Joakim; Olin, Håkan; Björk, Mikael T.; Castillo-Leon, Jaime

    2016-12-01

    The properties of nanowire arrays have been investigated mainly in comparison with isolated nanowires or thin films, owing to the difficulty in controlling the nanowire alignment. In this study, we report on arrays containing vertically or horizontally aligned silicon nanowires, whose alignment and structure were determined using x-ray diffraction and scanning electron microscopy. The Raman spectra of the nanowire arrays differ from those of isolated nanowires because of distinct heat dissipation rates of the absorbed energy from the laser, in agreement with recent theoretical calculations. The tailored alignment of the nanowires on solid substrates up to 1 inch of diameter also enabled the observation of resonance modes associated with light trapped into the nanowires. This was proven by comparing the light absorbed and scattered by the arrays, and may be exploited to enhance light harvesting in tandem solar cells. Significantly, the control of the assembly of nanowire arrays may have a direct impact on bottom-up technologies of high anisotropy nanomaterials.

  19. Thermoelectric Nanowire Arrays Response to Illumination

    NASA Astrophysics Data System (ADS)

    Huber, Tito; Scott, Reum; Johnson, Scott; Brower, Tina; Nikolaeva, Albina; Konopko, Leonid

    Bismuth nanowire arrays configured on devices where they are capped with a transparent indium tin oxide electrode generate electric power when exposed to light. The arrays feature poor optical reflectivity and, possibly, light trapping. We show experimental results that indicate that the arrays respond to illumination owing to the thermoelectric conversion of heat absorbed at the surface. The unique features of the energy pathway are manifested through a strong temporal and photon wavelength dependence of the photoresponse. Energy conversion in thermoelectrics with light trapping surfaces is a path to fast infrared light detection and across-the-spectrum solar energy harvesting.

  20. Magnetic properties of arrays of electrodeposited nanowires

    NASA Astrophysics Data System (ADS)

    Ross, C. A.; Hwang, M.; Shima, M.; Smith, Henry I.; Farhoud, M.; Savas, T. A.; Schwarzacher, W.; Parrochon, J.; Escoffier, W.; Bertram, H. Neal; Humphrey, F. B.; Redjdal, M.

    2002-08-01

    The fabrication and magnetic properties of arrays of short nanowires are reviewed. The arrays consist of electrodeposited ferromagnetic cylinders with aspect ratios of up to 3 and diameters of 57-180 nm. Their hysteresis loops are characterized and their remanent states are related to the predictions of a three-dimensional micromagnetic model, which shows a transition from a single-domain 'flower' state to a lower-remanence 'vortex' state with increasing diameter. The shapes of the array hysteresis loops are governed by interactions between the particles. The switching fields of small Ni cylinders can be described using a dynamic micromagnetic model.

  1. Nanowire sensors and arrays for chemical/biomolecule detection

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  2. Nanowire sensors and arrays for chemical/biomolecule detection

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  3. Comparison of ordered and disordered silicon nanowire arrays: experimental evidence of photonic crystal modes.

    PubMed

    Dhindsa, Navneet; Saini, Simarjeet S

    2016-05-01

    We experimentally compared the reflectance between ordered and disordered silicon nanowires to observe the evidence of photonic crystal modes. For similar diameters, the resonance peaks for the ordered nanowires at a spacing of 400 nm was at a shorter wavelength than the disordered nanowires, consistent to the excitation of photonic crystal modes. Furthermore, the resonant wavelength didn't shift while changing the density of the disordered nanowires, whereas there was a significant shift observed in the ordered ones. At an ordered spacing of 800 nm, the resonance wavelength approached that of the disordered structures, indicating that the ordered structures were starting to behave like individual waveguides. To our knowledge, this is the first direct experimental observation of photonic crystal modes in vertical periodic silicon nanowire arrays.

  4. Optical properties of Ni and Cu nanowire arrays and Ni/Cu superlattice nanowire arrays

    PubMed Central

    2012-01-01

    In this study, Ni and Cu nanowire arrays and Ni/Cu superlattice nanowire arrays are fabricated using standard techniques such as electrochemical deposition of metals into porous anodic alumina oxide templates having pore diameters of about 50 nm. We perform optical measurements on these nanowire array structures. Optical reflectance (OR) of the as-prepared samples is recorded using an imaging spectrometer in the wavelength range from 400 to 2,000 nm (i.e., from visible to near-infrared bandwidth). The measurements are carried out at temperatures set to be 4.2, 70, 150, and 200 K and at room temperature. We find that the intensity of the OR spectrum for nanowire arrays depends strongly on the temperature. The strongest OR can be observed at about T = 200 K for all samples in visible regime. The OR spectra for these samples show different features in the visible and near-infrared bandwidths. We discuss the physical mechanisms responsible for these interesting experimental findings. This study is relevant to the application of metal nanowire arrays as optical and optoelectronic devices. PMID:23067299

  5. Highly ordered vertical GaAs nanowire arrays with dry etching and their optical properties.

    PubMed

    Dhindsa, Navneet; Chia, Andrew; Boulanger, Jonathan; Khodadad, Iman; LaPierre, Ray; Saini, Simarjeet S

    2014-08-01

    We report fabrication methods, including metal masks and dry etching, and demonstrate highly ordered vertical gallium arsenide nanowire arrays. The etching process created high aspect ratio, vertical nanowires with insignificant undercutting from the mask, allowing us to vary the diameter from 30 nm to 400 nm with a pitch from 250 nm to 1100 nm and length up to 2.2 μm. A diameter to pitch ratio of ∼68% was achieved. We also measured the reflectance from the nanowire arrays and show experimentally diameter-dependent strong absorption peaks resulting from resonant optical mode excitations within these nanowires. The reflectance curves match very well with simulations. The work done here paves the way towards achieving high efficiency solar cells and tunable photodetectors using III-V nanowires.

  6. Single crystalline molybdenum nanowires, nanowire arrays and nanopore arrays in nickel-aluminium.

    PubMed

    Milenkovic, Srdjan; Smith, Andrew Jonathan; Hassel, Achim Walter

    2009-06-01

    This work describes a novel fabrication method of single crystalline Mo nanowires and nanowire arrays. The method utilizes directional solidification (ds) of a NiAl-Mo eutectic alloy and its subsequent electrochemical processing. In the first step, a self-organized array of Mo nanowires embedded in a NiAl matrix is obtained. By combining the Pourbaix diagrams of the three elements involved, a strategy for selective removal of either of the two phases is derived. An oxidizing acidic solution of pH 0.2 dissolved the matrix and released an array of long and uniform Mo wires. Even a complete extraction of the wires is possible through entire dissolution of the matrix. On the other hand, electrodissolution of the Mo with a simultaneous passivation of the NiAl matrix at the pH 6 and the potential of 200 mV SHE yielded nanopore arrays with rectangular pores. This method has several advantages. First of all, it is one of the few top-down methods that allow the production of large amounts of nanostructures. In addition, both the wires and the matrix are single crystalline which makes them favorable for various applications. Further, the obtained nanostructures exhibit extremely high aspect ratios (> 1000), unreachable by most other techniques. This technique has the potential for the production of nanowire arrays either for employment in sensors or in field emission.

  7. Synthesis and characterization of single crystalline selenium nanowire arrays

    SciTech Connect

    Zhang, X.Y. . E-mail: apzhxy@polyu.edu.hk; Xu, L.H.; Dai, J.Y.; Cai, Y.; Wang, N.

    2006-09-14

    Ordered selenium nanowire arrays with diameters about 40 nm have been fabricated by electrodeposition using anodic porous alumina templates. As determined by X-ray diffraction, Raman spectra, electron diffraction and high-resolution transmission electron microscopy, selenium nanowires have uniform diameters, which are fully controllable. Single crystalline trigonal selenium nanowires have been obtained after postannealing at 180 deg. C. These nanowires are perfect with a c-axis growth orientation. The optical absorption spectra reveal two types of electron transition activity.

  8. Thermal conductivity in porous silicon nanowire arrays.

    PubMed

    Weisse, Jeffrey M; Marconnet, Amy M; Kim, Dong Rip; Rao, Pratap M; Panzer, Matthew A; Goodson, Kenneth E; Zheng, Xiaolin

    2012-10-06

    The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations, surface roughness, and internal porosities using nanosecond transient thermoreflectance. For SiNWs with diameters larger than the phonon mean free path, porosity substantially reduces the thermal conductivity, yielding thermal conductivities as low as 1 W/m/K in highly porous SiNWs. However, when the SiNW diameter is below the phonon mean free path, both the internal porosity and the diameter significantly contribute to phonon scattering and lead to reduced thermal conductivity of the SiNWs.

  9. Thermal conductivity in porous silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Weisse, Jeffrey M.; Marconnet, Amy M.; Kim, Dong Rip; Rao, Pratap M.; Panzer, Matthew A.; Goodson, Kenneth E.; Zheng, Xiaolin

    2012-10-01

    The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations, surface roughness, and internal porosities using nanosecond transient thermoreflectance. For SiNWs with diameters larger than the phonon mean free path, porosity substantially reduces the thermal conductivity, yielding thermal conductivities as low as 1 W/m/K in highly porous SiNWs. However, when the SiNW diameter is below the phonon mean free path, both the internal porosity and the diameter significantly contribute to phonon scattering and lead to reduced thermal conductivity of the SiNWs.

  10. Development of nanowire arrays for neural probe

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Xie, Jining; Varadan, Vijay K.

    2005-05-01

    It is already established that functional electrical stimulation is an effective way to restore many functions of the brain in disabled individuals. The electrical stimulation can be done by using an array of electrodes. Neural probes stimulate or sense the biopotentials mainly through the exposed metal sites. These sites should be smaller relative to the spatial potential distribution so that any potential averaging in the sensing area can be avoided. At the same time, the decrease in size of these sensing sites is limited due to the increase in impedance levels and the thermal noise while decreasing its size. It is known that current density in a planar electrode is not uniform and a higher current density can be observer around the perimeter of the electrodes. Electrical measurements conducted on many nanotubes and nanowires have already proved that it could be possible to use for current density applications and the drawbacks of the present design in neural probes can be overcome by incorporating many nanotechnology solutions. In this paper we present the design and development of nanowire arrays for the neural probe for the multisite contact which has the ability to collect and analyze isolated single unit activity. An array of vertically grown nanowires is used as contact site and many of such arrays can be used for stimulating as well as recording sites. The nanolevel interaction and wireless communication solution can extend to applications involving the treatment of many neurological disorders including Parkinson"s disease, Alzheimer"s disease, spinal injuries and the treatment of blindness and paralyzed patients with minimal or no invasive surgical procedures.

  11. Fabrication of patterned polymer nanowire arrays.

    PubMed

    Fang, Hao; Yuan, Dajun; Guo, Rui; Zhang, Su; Han, Ray P S; Das, Suman; Wang, Zhong Lin

    2011-02-22

    A method for the large-scale fabrication of patterned organic nanowire (NW) arrays is demonstrated by the use of laser interference patterning (LIP) in conjunction with inductively coupled plasma (ICP) etching. The NW arrays can be fabricated after a short ICP etching of periodic patterns produced through LIP. Arrays of NWs have been fabricated in UV-absorbent polymers, such as PET (polyethylene terephthalate) and Dura film (76% polyethylene and 24% polycarbonate), through laser interference photon ablation and in UV transparent polymers such as PVA (polyvinyl acetate) and PP (polypropylene) through laser interference lithography of a thin layer of photoresist coated atop the polymer surface. The dependence of the structure and morphology of NWs as a function of initial pattern created by LIP and the laser energy dose in LIP is discussed. The absence of residual photoresist atop the NWs in UV-transparent polymers is confirmed through Raman spectroscopy.

  12. Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film.

    PubMed

    Poutrina, Ekaterina; Ciracì, Cristian; Gauthier, Daniel J; Smith, David R

    2012-05-07

    We consider the process of four-wave mixing in an array of gold nanowires strongly coupled to a gold film. Using full-wave simulations, we perform a quantitative comparison of the four-wave mixing efficiency associated with a bare film and films with nanowire arrays. We find that the strongly localized surface plasmon resonances of the coupled nanowires provide an additional local field enhancement that, along with the delocalized surface plasmon of the film, produces an overall four-wave mixing efficiency enhancement of up to six orders of magnitude over that of the bare film. The enhancement occurs over a wide range of excitation angles. The film-coupled nanowire array is easily amenable to nanofabrication, and could find application as an ultra-compact component for integrated photonic and quantum optic systems.

  13. Amplified Thermionic Cooling Using Arrays of Nanowires

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Choi, Daniel; Shcheglov, Kirill; Hishinuma, Yoshikazu

    2007-01-01

    A class of proposed thermionic cooling devices would incorporate precise arrays of metal nanowires as electron emitters. The proposed devices could be highly miniaturized, enabling removal of heat from locations, very close to electronic devices, that have previously been inaccessible for heat-removal purposes. The resulting enhancement of removal of heat would enable operation of the devices at higher power levels and higher clock speeds. Moreover, the mass, complexity, and bulk of electronic circuitry incorporating these highly miniaturized cooling devices could be considerably reduced, relative to otherwise equivalent circuitry cooled by conventional electromechanical, thermoelectric, and fluidic means. In thermionic cooling, one exploits the fact that because only the highest-energy electrons are thermionically emitted, collecting those electrons to prevent their return to the emitting electrode results in the net removal of heat from that electrode. Collection is effected by applying an appropriate positive bias potential to another electrode placed near the emitting electrode. The concept underlying the proposal is that the thermionic-emission current and, hence, the cooling effect attainable by use of an array of nanowires could be significantly greater than that attainable by use of a single emitting electrode or other electron- emitting surface. The wires in an array according to the proposal would protrude perpendicularly from a planar surface and their heights would be made uniform to within a sub-nanometer level of precision

  14. Absorption and transmission of light in III-V nanowire arrays for tandem solar cell applications

    NASA Astrophysics Data System (ADS)

    Anttu, Nicklas; Dagytė, Vilgailė; Zeng, Xulu; Otnes, Gaute; Borgström, Magnus

    2017-05-01

    III-V semiconductor nanowires are a platform for next-generation photovoltaics. An interesting research direction is to embed a nanowire array in a transparent polymer, either to act as a stand-alone flexible solar cell, or to be stacked on top of a conventional Si bottom cell to create a tandem structure. To optimize the tandem cell performance, high energy photons should be absorbed in the nanowires whereas low energy photons should be transmitted to and absorbed in the Si cell. Here, through optical measurements on 1.95 eV bandgap GaInP nanowire arrays embedded in a polymer membrane, we identify two mechanisms that could be detrimental for the performance of the tandem cell. First, the Au particles used in the nanowire synthesis can absorb >50% of the low-energy photons, leading to a <40% transmittance, even though the Au particles cover <15% of the surface area. The removal of the Au particles can recover the transmission of low energy photons to >80%. Second, after the removal of the Au particles, a 40% reflectance peak shows up due to resonant back-scattering of light from in-plane waveguide modes. To avoid the excitation of these optical modes in the nanowire array, we propose to limit the pitch of the nanowire array.

  15. III-V Nanowire Array Growth by Selective Area Epitaxy

    SciTech Connect

    Chu, Hyung-Joon; Stewart, Lawrence; Yeh, Tingwei; Dapkus, P. Daniel

    2011-12-23

    III-V semiconductor nanowires are unique material phase due to their high aspect ratio, large surface area, and strong quantum confinement. This affords the opportunity to control charge transport and optical properties for electrical and photonic applications. Nanoscale selective area metalorganic chemical vapor deposition growth (NS-SAG) is a promising technique to maximize control of nanowire diameter and position, which are essential for device application. In this work, InP and GaAs nanowire arrays are grown by NS-SAG. We observe enhanced sidewall growth and array uniformity disorder in high growth rate condition. Disorder in surface morphology and array uniformity of InP nanowire array is explained by enhanced growth on the sidewall and stacking faults. We also find that AsH{sub 3} decomposition on the sidewall affects the growth behavior of GaAs nanowire arrays.

  16. Arrays of indefinitely long uniform nanowires and nanotubes

    NASA Astrophysics Data System (ADS)

    Yaman, Mecit; Khudiyev, Tural; Ozgur, Erol; Kanik, Mehmet; Aktas, Ozan; Ozgur, Ekin O.; Deniz, Hakan; Korkut, Enes; Bayindir, Mehmet

    2011-07-01

    Nanowires are arguably the most studied nanomaterial model to make functional devices and arrays. Although there is remarkable maturity in the chemical synthesis of complex nanowire structures, their integration and interfacing to macro systems with high yields and repeatability still require elaborate aligning, positioning and interfacing and post-synthesis techniques. Top-down fabrication methods for nanowire production, such as lithography and electrospinning, have not enjoyed comparable growth. Here we report a new thermal size-reduction process to produce well-ordered, globally oriented, indefinitely long nanowire and nanotube arrays with different materials. The new technique involves iterative co-drawing of hermetically sealed multimaterials in compatible polymer matrices similar to fibre drawing. Globally oriented, endlessly parallel, axially and radially uniform semiconducting and piezoelectric nanowire and nanotube arrays hundreds of metres long, with nanowire diameters less than 15 nm, are obtained. The resulting nanostructures are sealed inside a flexible substrate, facilitating the handling of and electrical contacting to the nanowires. Inexpensive, high-throughput, multimaterial nanowire arrays pave the way for applications including nanowire-based large-area flexible sensor platforms, phase-changememory, nanostructure-enhanced photovoltaics, semiconductor nanophotonics, dielectric metamaterials,linear and nonlinear photonics and nanowire-enabled high-performance composites.

  17. Sensing properties of assembled Bi2S3 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kunakova, G.; Meija, R.; Bite, I.; Prikulis, J.; Kosmaca, J.; Varghese, J.; Holmes, J. D.; Erts, Donats

    2015-09-01

    Bismuth sulfide (Bi2S3) nanowires were grown in porous aluminium oxide template and a selective chemical etching was applied to transfer the nanowires to a solution. Well aligned nanowire arrays were assembled on pre-patterned silicon substrates employing dielectrophoresis. Electron beam lithography was used to connect aligned individual nanowires to the common macroelectrode. In order to evaluate the conductometric sensing performance of the Bi2S3 nanowires, current-voltage characteristics were measured at different relative humidity (RH) levels (5-80%) / argon medium. The response of the Bi2S3 nanowires depending of RH is found to be considerably different from those reported for other types of nanowire RH sensor devices.

  18. Electrodeposition and device incorporation of bismuth antimony nanowire arrays

    NASA Astrophysics Data System (ADS)

    Keyani, Jennifer

    Thermoelectric materials have the unique property where the application of a potential difference across the material results in the formation of a temperature gradient, and vice versa. There is continued interest in bulk thermoelectric materials for power generation and refrigeration applications, however these materials are not currently in widespread use due to their low conversion efficiency. It has been predicted that nanostructured thermoelectric materials will show enhanced performance over their bulk counterparts. In this study, bismuth antimony (Bi1-xSbx) nanowire arrays have been synthesized and assembled into devices in order to demonstrate an enhanced performance in nanostructured thermoelectric materials. Bi1-xSbx nanowire arrays were fabricated by potentiostatic electrodeposition into porous alumina templates from a dimethyl sulfoxide (DMSO) solution. The nanowire composition and texture were studied as a function of the electrodeposition conditions in order to maximize their thermoelectric performance. Energy dispersive spectrometry and electron microprobe analysis were used to study the nanowire composition as a function of the electroactive and non-electroactive species in solution. Texturing in the nanowire arrays was observed by X-ray diffraction and controlled by the applied voltage and presence of supporting electrolyte. The nanowire arrays were also optimized for device incorporation by maximizing the number of nanowires and minimizing their length distribution. The areal density of nanowire arrays was on the order of 1010 wires/cm2 due to the high density of pores in the alumina and the high degree to which those pores were filled with electrodeposited material. A narrow distribution of nanowire lengths was observed by scanning electron microscopy across millimeter-length portions of the arrays. A hybrid nanowire-bulk thermoelectric device was assembled after electrical contacts were electrodeposited over Bi1-xSbx nanowire arrays. Nickel was

  19. Fabrication of GaN nanowire arrays by confined epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Sun, Xinyu; Fairchild, Michael; Hersee, Stephen D.

    2006-12-01

    The authors report the fabrication of GaN nanowire arrays inside a thick SiNx, selective growth mask that was patterned by interferometric lithography and dry etching. The GaN nanowires are molded by the apertures in the selective growth mask and the growth is epitaxial with respect to the underlying GaN layer. The precise location and diameter of each nanowire in the array are controlled by the growth mask patterning, and the resulting array has a long-range order that is compatible with photonic crystal applications. This process uses conventional metal organic precursors and does not require any additional metal catalysts.

  20. Energy harvesting from vertically aligned PZT nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Zhou, Zhi; Sodano, Henry A.

    2016-04-01

    In this paper, a nanostructured piezoelectric beam is fabricated using vertically aligned lead zirconate titanate (PZT) nanowire arrays and its capability of continuous power generation is demonstrated through direct vibration tests. The lead zirconate titanate nanowires are grown on a PZT thin film coated titanium foil using a hydrothermal reaction. The PZT thin film serves as a nucleation site while the titanium foil is used as the bottom electrode. Electromechanical frequency response function (FRF) analysis is performed to evaluate the power harvesting efficiency of the fabricated device. Furthermore, the feasibility of the continuous power generation using the nanostructured beam is demonstrated through measuring output voltage from PZT nanowires when beam is subjected to a sinusoidal base excitation. The effect of tip mass on the voltage generation of the PZT nanowire arrays is evaluated experimentally. The final results show the great potential of synthesized piezoelectric nanowire arrays in a wide range of applications, specifically power generation at nanoscale.

  1. Surface Plasmon Resonance-Induced Stiffening of Silver Nanowires

    PubMed Central

    Ben, Xue; Park, Harold S.

    2015-01-01

    We report the results of a computational, atomistic electrodynamics study of the effects of electromagnetic waves on the mechanical properties, and specifically the Young’s modulus of silver nanowires. We find that the Young’s modulus of the nanowires is strongly dependent on the optical excitation energy, with a peak enhancement occurring at the localized surface plasmon resonance frequency. When the nanowire is excited at the plasmon resonance frequency, the Young’s modulus is found to increase linearly with increasing nanowire aspect ratio, with a stiffening of nearly 15% for a 2 nm cross section silver nanowire with an aspect ratio of 3.5. Furthermore, our results suggest that this plasmon resonance-induced stiffening is stronger for larger diameter nanowires for a given aspect ratio. Our study demonstrates a novel approach to actively tailoring and enhancing the mechanical properties of metal nanowires. PMID:26024426

  2. Magnetic nanowire arrays in anodic alumina membranes: Rutherford backscattering characterization

    NASA Astrophysics Data System (ADS)

    Hernández-Vélez, M.; Pirota, K. R.; Pászti, F.; Navas, D.; Climent, A.; Vázquez, M.

    2005-05-01

    Systematic study of magnetic nanowire arrays grown in anodic alumina membranes (AAM) has been done by means of Rutherford backscattering spectroscopy (RBS). The AAM used as templates were morphologically characterized by using high resolution scanning electron microscopy (HRSEM), fast Fourier transform (FFT) and atomic force microscopy (AFM). The highly ordered templates with a mean pore diameter size of 30 nanometers, a mean inter-pore spacing of 100 nm and lengths ranging from 4 to 180 microns were obtained through two-steps anodization process, and the Ni and Co nanowire arrays were grown by electrodeposition techniques. The main attention is addressed to Ni nanowire arrays. RBS results allowed us to determine the real depth profile of atomic composition of the obtained nanowire arrays. In addition, the RBS spectra fitting showed that the porosity increased from the top to the bottom of the samples. Two phenomenological models are proposed to understand the apparition of that secondary porosity and a linear relation between the total amount of electrodeposited Ni and the electrodeposition time was obtained. As an example, it is also reported the relation between RBS results and magnetic properties, such as coercive field and remanence/saturation magnetization ratio of the samples. Particularly, for Ni nanowires arrays obtained by using voltage pulses, it is demonstrated that the larger the nanowires, the higher the definition for easy axis parallel to the nanowire length is possible.

  3. Nanowire array and nanowire solar cells and methods for forming the same

    DOEpatents

    Yang, Peidong; Greene, Lori; Law, Matthew

    2007-09-04

    Homogeneous and dense arrays of nanowires are described. The nanowires can be formed in solution and can have average diameters of 40-300 nm and lengths of 1-3 .mu.m. They can be formed on any suitable substrate. Photovoltaic devices are also described.

  4. Nanowire array and nanowire solar cells and methods for forming the same

    DOEpatents

    Yang, Peidong; Greene, Lori E.; Law, Matthew

    2009-06-09

    Homogeneous and dense arrays of nanowires are described. The nanowires can be formed in solution and can have average diameters of 40-300 nm and lengths of 1-3 .mu.m. They can be formed on any suitable substrate. Photovoltaic devices are also described.

  5. Electrochemical synthesis of highly ordered magnetic multilayered nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kok, Kuan-Ying; Ng, Inn-Khuan; Saidin, Nur Ubaidah; Zali, Nurazila Mat; Bustamam, Farah Khuwailah Ahmad; Shaari, Abdul Halim

    2012-06-01

    Electrochemical deposition is a versatile technique that has been employed to synthesize various types of onedimensional nanostructures such as nanorods, nanotubes and nanowires to meet different requirements for applications. Magnetic nanowires in the form of multilayered structures, such as Co/Cu and permalloy (Ni80Fe20)/Cu, with ferromagnetic materials alternating with non-magnetic materials exhibit giant magnetoresistance (GMR) property that can be utilized in sensors and mass memory devices. This study focuses on the synthesis of highly ordered magnetic multilayered nanowire arrays using template-directed electrochemical deposition technique. The nanowires were electrodeposited within the nanopores of anodized alumina from sulphate baths via pulse potential technique. The structures and compositions of the wires were characterized using various microscopy and probe-based techniques. Magnetoresistance measurement was performed on the multilayered nanowire arrays.

  6. Large area, dense silicon nanowire array chemical sensors

    SciTech Connect

    Talin, A. Alec; Hunter, Luke L.; Leonard, Francois; Rokad, Bhavin

    2006-10-09

    The authors present a simple top-down approach based on nanoimprint lithography to create dense arrays of silicon nanowires over large areas. Metallic contacts to the nanowires and a bottom gate allow the operation of the array as a field-effect transistor with very large on/off ratios. When exposed to ammonia gas or cyclohexane solutions containing nitrobenzene or phenol, the threshold voltage of the field-effect transistor is shifted, a signature of charge transfer between the analytes and the nanowires. The threshold voltage shift is proportional to the Hammett parameter and the concentration of the nitrobenzene and phenol analytes.

  7. Developing Germanium on Nothing (GON) Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Thomas, Paul M.

    Advanced crystal growth techniques enable novel devices and circuit designs to further scale and integrate heterogeneous structures for CMOS, MEMS/NEMS, and optoelectronic applications. In particular, nanowires (NW) are among the promising structures derived from these developments. Research has demonstrated the utility of NWs as a channel material for gate-all-around transistors, high sensitivity biological/chemical sensors, photodetectors, as well as a whole spectrum of LEDs and lasers. However, NW based devices are not without their fabrication challenges. Relatively simple structures for CMOS or MEMS/NEMS processes are difficult to reproduce when many NW based devices rely on a dropcast process. This thesis demonstrates a method for producing Germanium on Nothing (GON) NW arrays on a Si substrate that forgoes dropcasting and, instead, creates NWs via selective material removal methods commonly utilized by industry. GON NW arrays are formed through the sequential use of E-beam lithography, selective wet chemical etching, and reactive ion etching. Global oxide thinning in BOE leaves a thin masking layer that protects the underlying Si, preventing etching in a TMAH solution. GON regions are defined by E-beam lithography and are subject to a RIE which creates release points in the remaining SiO 2. Unmasked Si is then etched by a TMAH solution, undercutting the Ge lines, leaving an array of suspended Ge wires. NW dimensions are reached by thinning the Ge wire diameter with a H2O2 solution. NWs with ˜50 nm diameters and ˜ 200 nm lengths, as well as 10 microm by 10 microm membranes of Ge/SiO2, have been demonstrated in this thesis.

  8. Knocking down highly-ordered large-scale nanowire arrays.

    PubMed

    Pevzner, Alexander; Engel, Yoni; Elnathan, Roey; Ducobni, Tamir; Ben-Ishai, Moshit; Reddy, Koteeswara; Shpaisman, Nava; Tsukernik, Alexander; Oksman, Mark; Patolsky, Fernando

    2010-04-14

    The large-scale assembly of nanowire elements with controlled and uniform orientation and density at spatially well-defined locations on solid substrates presents one of the most significant challenges facing their integration in real-world electronic applications. Here, we present the universal "knocking-down" approach, based on the controlled in-place planarization of nanowire elements, for the formation of large-scale ordered nanowire arrays. The controlled planarization of the nanowires is achieved by the use of an appropriate elastomer-covered rigid-roller device. After being knocked down, each nanowire in the array can be easily addressed electrically, by a simple single photolithographic step, to yield a large number of nanoelectrical devices with an unprecedented high-fidelity rate. The approach allows controlling, in only two simple steps, all possible array parameters, that is, nanowire dimensions, chemical composition, orientation, and density. The resulting knocked-down arrays can be further used for the creation of massive nanoelectronic-device arrays. More than million devices were already fabricated with yields over 98% on substrate areas of up, but not limited to, to 10 cm(2).

  9. Nanomanufacturing Strategy for Aligned Assembly of Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Shin, Kyeong-Sik; Chui, Chi On

    2012-05-01

    The work reported here concerns a proposed nanomanufacturing strategy to assemble aligned quasi-one-dimensional nanostructure arrays with intrinsic and concurrent control over the resultant number, pitch, and linewidth. For the first time, a standard lithography and crystallographic etching approach have been combined to synthesize periodic, sublithographic, and line edge roughness (LER)-free surface arrays for selective conjugation of nanowires. Key experimental modules have been developed, including the formation of LER-free substrate arrays, formation of periodically dissimilar surfaces, selective conjugation of nanowires, and stamping transfer of nanowire arrays. In particular, successful assembly of Si nanowires onto periodic Si/SiO x surfaces and subsequent transfer of the resultant aligned Si nanowire arrays onto a different substrate surface have been repeatedly demonstrated. The dependences and probability of nanowire aligned assembly have also been examined. The proposed strategy is based on a wafer-scale and very large-scale integration (VLSI)-compatible philosophy, and alignment to pre-existing features on the target substrate is also inherently allowed as a side benefit. Besides, LER-free features could be created, which arguably enables extreme linewidth scaling with suppressed variations.

  10. Investigation of maximum optical enhancement in single gold nanowires and triple nanowire arrays

    NASA Astrophysics Data System (ADS)

    Saylor, Cameron; Novak, Eric; Debu, Desalegn; Herzog, Joseph B.

    2015-01-01

    This work thoroughly investigates gold nanowires with various cross-sectional geometries and patterns. The study has determined the effect of the cross section aspect ratio on its maximum optical enhancement. The plasmonic optical enhancement properties of single gold nanowires and an array of three nanowires were investigated using finite element method simulations. The results indicate a significant dependence of the optical enhancement on both the thickness and width of the nanowires. From the simulation data, an equation for each geometry (single and triple array) was found that relates the dimensions and incident wavelength to the optical enhancement. These relationships can be a valuable resource while designing nanowires to optimize the dimensions and provide the maximum possible optical enhancement.

  11. Analysis of optical absorption in GaAs nanowire arrays.

    PubMed

    Guo, Haomin; Wen, Long; Li, Xinhua; Zhao, Zhifei; Wang, Yuqi

    2011-12-06

    In this study, the influence of the geometric parameters on the optical absorption of gallium arsenide [GaAs] nanowire arrays [NWAs] has been systematically analyzed using finite-difference time-domain simulations. The calculations reveal that the optical absorption is sensitive to the geometric parameters such as diameter [D], length [L], and filling ratio [D/P], and more efficient light absorption can be obtained in GaAs NWAs than in thin films with the same thickness due to the combined effects of intrinsic antireflection and efficient excitation of resonant modes. Optimized geometric parameters are obtained as follows: D = 180 nm, L = 2 μm, and D/P = 0.5. Meanwhile, the simulation on the absorption of GaAs NWAs for oblique incidence has also been carried out. The underlying physics is discussed in this work.PACS: 81.07.Gf nanowires; 81.05.Ea III-V semiconductors; 88.40.hj efficiency and performance of solar cells; 73.50.Pz photoconduction and photovoltaic effects.

  12. Light absorption and emission in nanowire array solar cells.

    PubMed

    Kupec, Jan; Stoop, Ralph L; Witzigmann, Bernd

    2010-12-20

    Inorganic nanowires are under intense research for large scale solar power generation intended to ultimately contribute a substantial fraction to the overall power mix. Their unique feature is to allow different pathways for the light absorption and carrier transport. In this publication we investigate the properties of a nanowire array acting as a photonic device governed by wave-optical phenomena. We solve the Maxwell equations and calculate the light absorption efficiency for the AM1.5d spectrum and give recommendations on the design. Due to concentration of the incident sunlight at a microscopic level the absorptivity of nanowire solar cells can exceed the absorptivity of an equal amount of material used in thin-film devices. We compute the local density of photon states to assess the effect of emission enhancement, which influences the radiative lifetime of excess carriers. This allows us to compute the efficiency limit within the framework of detailed balance. The efficiency is highly sensitive with respect to the diameter and distance of the nanowires. Designs featuring nanowires below a certain diameter will intrinsically feature low short-circuit current that cannot be compensated even by increasing the nanowire density. Optimum efficiency is not achieved in densely packed arrays, in fact spacing the nanowires further apart (simultaneously decreasing the material use) can even improve efficiency in certain scenarios. We observe absorption enhancement reducing the material use. In terms of carrier generation per material use, nanowire devices can outperform thin-film devices by far.

  13. Cytotoxicity of ZnO Nanowire Arrays on Excitable Cells.

    PubMed

    Wang, Yongchen; Wu, Yu; Quadri, Farhan; Prox, Jordan D; Guo, Liang

    2017-04-07

    Zinc oxide (ZnO) nanowires have been widely studied for their applications in electronics, optics, and catalysts. Their semiconducting, piezoelectric, fluorescent, and antibacterial properties have also attracted broad interest in their biomedical applications. Thus, it is imperative to evaluate the biosafety of ZnO nanowires and their biological effects. In this study, the cellular level biological effects of ZnO nanowire arrays are specifically tested on three types of excitable cells, including NG108-15 neuronal cell line, HL-1 cardiac muscle cell line, and neonatal rat cardiomyocytes. Vertically aligned and densely packed ZnO nanowire arrays are synthesized using a solution-based method and used as a substrate for cell culture. The metabolism levels of all three types of cells cultured on ZnO nanowire arrays are studied using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays of a full factorial design. Under the studied settings, the results show statistically significant inhibitory effects of ZnO nanowire arrays on the metabolism of NG108-15 and HL-1 cells in comparison to gold, glass, and polystyrene substrates, and on the metabolism of cardiomyocytes in comparison to gold substrate.

  14. Highly stretchable, printable nanowire array optical polarizers.

    PubMed

    Kwon, Soonshin; Lu, Dylan; Sun, Zhelin; Xiang, Jie; Liu, Zhaowei

    2016-09-21

    Designing optical components such as polarizers on substrates with high mechanical deformability have potential to realize new device platforms in photonics, wearable electronics, and sensors. Conventional manufacturing approaches that rely highly on top-down lithography, deposition and the etching process can easily confront compatibility issues and high fabrication complexity. Therefore, an alternative integration scheme is necessary. Here, we demonstrate fabrication of highly flexible and stretchable wire grid polarizers (WGPs) by printing bottom-up grown Ge or Ge/Si core/shell nanowires (NWs) on device substrates in a highly dense and aligned fashion. The maximum contrast ratio of 104 between transverse electric (TE) and transverse magnetic (TM) fields and above 99% (maximum 99.7%) of light blocking efficiency across the visible spectrum range are achieved. Further systematic analyses are performed both in experimental and numerical models to reveal the correspondence between physical factors (coverage ratio of NW arrays and diameter) and polarization efficiency. Moreover, we demonstrate distinctive merits of our approach: (i) high flexibility in the choice of substrates such as glass, plastic, or elastomer; (ii) easy combination with additional novel functionalities, for example, air permeability, flexibility/stretchability, biocompatibility, and a skin-like low mechanical modulus; (iii) selective printing of polarizers on a designated local area.

  15. Magnetic resonance characterization of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Fanciulli, Marco; Belli, Matteo; Vellei, Antonio; Canevali, Carmen; Rotta, Davide; Paleari, Stefano; Basini, Martina

    2012-02-01

    Silicon nanowires (SiNWs) have been extensively investigated in the last decades. The interest in these nanostructures stems from both fundamental and applied research motivations. The functional properties of one- and zero-dimensional silicon structures are significantly different, at least below a certain critical dimension, from those well known in the bulk. The key and peculiar functional properties of SiNWs find applications in nanoelectronics, classical and quantum information processing and storage, optoelectronics, photovoltaics, thermoelectric, battery technology, nano-biotechnology, and neuroelectronics. We report our work on the characterization by continuous wave (CW) and pulse electron spin resonance (CW, FT-EPR) and electrically detected magnetic resonance (EDMR) measurements of silicon nanowires (SiNWs) produced by different top-down processes. SiNWs were fabricated starting from SOI wafers using standard e-beam lithography and anisotropic wet etching or by metal-assisted chemical etching. Further oxidation was used to reduce the wire cross section. Different EDMR implementations were used to address the electronic wave function of donors (P, As) and to characterize point defects at the SiNWs/SiO2 interface.

  16. Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation.

    PubMed

    Liu, Mingzhao; Nam, Chang-Yong; Zhang, Lihua

    2015-12-21

    Here a seedless and template-free technique is demonstrated to scalably grow bismuth nanowires, through thermal evaporation in high vacuum at RT. Conventionally reserved for the fabrication of metal thin films, thermal evaporation deposits bismuth into an array of vertical single crystalline nanowires over a flat thin film of vanadium held at RT, which is freshly deposited by magnetron sputtering or thermal evaporation. By controlling the temperature of the growth substrate the length and width of the nanowires can be tuned over a wide range. Responsible for this novel technique is a previously unknown nanowire growth mechanism that roots in the mild porosity of the vanadium thin film. Infiltrated into the vanadium pores, the bismuth domains (~ 1 nm) carry excessive surface energy that suppresses their melting point and continuously expels them out of the vanadium matrix to form nanowires. This discovery demonstrates the feasibility of scalable vapor phase synthesis of high purity nanomaterials without using any catalysts.

  17. Electrochemical fabrication of ordered Bi2S3 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Peng, X. S.; Meng, G. W.; Zhang, J.; Zhao, L. X.; Wang, X. F.; Wang, Y. W.; Zhang, L. D.

    2001-11-01

    We have successfully fabricated ordered, well-crystallized Bi2S3 nanowire arrays embedded in the nanochannels of porous anodic aluminium oxide templates by direct current electrodeposition from a dimethylsulfoxide solution containing BiCl3 and elemental sulfur. X-ray diffraction and selected area electron diffraction investigations demonstrate that the Bi2S3 nanowires have an orthorhombic uniform structure. Electromicroscopy results show that the nanowires are quite ordered with diameters of about 40 nm and lengths up to 5 µm. X-ray energy dispersion analysis indicates that the atomic composition of Bi and S is very close to a 2 : 3 stoichiometry. The optical properties of these nanowires were characterized by optical absorption techniques. These studies reveal that the annealed Bi2S3 nanowires have an optical band edge (direct) of about 1.56 eV.

  18. Mechanical Resonances of Helically Coiled Carbon Nanowires

    PubMed Central

    Saini, D.; Behlow, H.; Podila, R.; Dickel, D.; Pillai, B.; Skove, M. J.; Serkiz, S. M.; Rao, A. M.

    2014-01-01

    Despite their wide spread applications, the mechanical behavior of helically coiled structures has evaded an accurate understanding at any length scale (nano to macro) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the development of new methodologies for determining their shear and tensile properties. Accordingly, we developed a synergistic protocol which (i) integrates analytical, numerical (i.e., finite element using COMSOL®) and experimental (harmonic detection of resonance; HDR) methods to obtain an empirically validated closed form expression for the shear modulus and resonance frequency of a singly clamped helically coiled carbon nanowire (HCNW), and (ii) circumvents the need for solving 12th order differential equations. From the experimental standpoint, a visual detection of resonances (using in situ scanning electron microscopy) combined with HDR revealed intriguing non-planar resonance modes at much lower driving forces relative to those needed for linear carbon nanotube cantilevers. Interestingly, despite the presence of mechanical and geometrical nonlinearities in the HCNW resonance behavior the ratio of the first two transverse modes f2/f1 was found to be similar to the ratio predicted by the Euler-Bernoulli theorem for linear cantilevers. PMID:24986377

  19. Mechanical resonances of helically coiled carbon nanowires.

    PubMed

    Saini, D; Behlow, H; Podila, R; Dickel, D; Pillai, B; Skove, M J; Serkiz, S M; Rao, A M

    2014-07-02

    Despite their wide spread applications, the mechanical behavior of helically coiled structures has evaded an accurate understanding at any length scale (nano to macro) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the development of new methodologies for determining their shear and tensile properties. Accordingly, we developed a synergistic protocol which (i) integrates analytical, numerical (i.e., finite element using COMSOL) and experimental (harmonic detection of resonance; HDR) methods to obtain an empirically validated closed form expression for the shear modulus and resonance frequency of a singly clamped helically coiled carbon nanowire (HCNW), and (ii) circumvents the need for solving 12th order differential equations. From the experimental standpoint, a visual detection of resonances (using in situ scanning electron microscopy) combined with HDR revealed intriguing non-planar resonance modes at much lower driving forces relative to those needed for linear carbon nanotube cantilevers. Interestingly, despite the presence of mechanical and geometrical nonlinearities in the HCNW resonance behavior the ratio of the first two transverse modes f₂/f₁ was found to be similar to the ratio predicted by the Euler-Bernoulli theorem for linear cantilevers.

  20. Mechanical Resonances of Helically Coiled Carbon Nanowires

    NASA Astrophysics Data System (ADS)

    Saini, D.; Behlow, H.; Podila, R.; Dickel, D.; Pillai, B.; Skove, M. J.; Serkiz, S. M.; Rao, A. M.

    2014-07-01

    Despite their wide spread applications, the mechanical behavior of helically coiled structures has evaded an accurate understanding at any length scale (nano to macro) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the development of new methodologies for determining their shear and tensile properties. Accordingly, we developed a synergistic protocol which (i) integrates analytical, numerical (i.e., finite element using COMSOL®) and experimental (harmonic detection of resonance; HDR) methods to obtain an empirically validated closed form expression for the shear modulus and resonance frequency of a singly clamped helically coiled carbon nanowire (HCNW), and (ii) circumvents the need for solving 12th order differential equations. From the experimental standpoint, a visual detection of resonances (using in situ scanning electron microscopy) combined with HDR revealed intriguing non-planar resonance modes at much lower driving forces relative to those needed for linear carbon nanotube cantilevers. Interestingly, despite the presence of mechanical and geometrical nonlinearities in the HCNW resonance behavior the ratio of the first two transverse modes f2/f1 was found to be similar to the ratio predicted by the Euler-Bernoulli theorem for linear cantilevers.

  1. Microwave properties of ferromagnetic nanowire arrays patterned with periodic and quasi-periodic structures

    NASA Astrophysics Data System (ADS)

    Lei, Yuxiong; Chen, Zheng; Li, Liangliang

    2015-05-01

    Microwave properties of ferromagnetic nanowire arrays patterned with periodic and quasi-periodic structures were investigated in this study. The periodic and quasi-periodic structures were designed based on Fibonacci sequence and golden ratio. Ni nanowires arrays were electrodeposited in anodic aluminum oxide (AAO) templates with patterned Cu electrodes, and then the AAO templates were attached to the coplanar waveguide lines fabricated on quartz substrate for measurement. The S21 of both periodic and quasi-periodic structure-patterned Ni nanowire arrays showed an extra absorption peak besides the absorption peak due to the ferromagnetic resonance of Ni nanowires. The frequency of the absorption peak caused by the patterned structure could be higher than 40 GHz when the length and arrangement of the structural units were modified. In addition, the frequency of the absorption peak due to the quasi-periodic structure was calculated based on a simple analytical model, and the calculated value was consistent with the measured one. The experimental data showed that it could be a feasible approach to tune the performance of microwave devices by patterning ferromagnetic nanowires.

  2. Dimensional Tailoring of Hydrothermally Grown Zinc Oxide Nanowire Arrays.

    PubMed

    Cheng, Jayce J; Nicaise, Samuel M; Berggren, Karl K; Gradečak, Silvija

    2016-01-13

    Hydrothermally synthesized ZnO nanowire arrays are critical components in a range of nanostructured semiconductor devices. The device performance is governed by relevant nanowire morphological parameters that cannot be fully controlled during bulk hydrothermal synthesis due to its transient nature. Here, we maintain homeostatic zinc concentration, pH, and temperature by employing continuous flow synthesis and demonstrate independent tailoring of nanowire array dimensions including areal density, length, and diameter on device-relevant length scales. By applying diffusion/reaction-limited analysis, we separate the effect of local diffusive transport from the c-plane surface reaction rate and identify direct incorporation as the c-plane growth mechanism. Our analysis defines guidelines for precise and independent control of the nanowire length and diameter by operating in rate-limiting regimes. We validate its utility by using surface adsorbents that limit reaction rate to obtain spatially uniform vertical growth rates across a patterned substrate.

  3. Anomalous polarization conversion in arrays of ultrathin ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Stashkevich, Andrey A.; Roussigné, Yves; Poddubny, Alexander N.; Chérif, S.-M.; Zheng, Y.; Vidal, Franck; Yagupov, Ilya V.; Slobozhanyuk, Alexei P.; Belov, Pavel A.; Kivshar, Yuri S.

    2015-12-01

    We study the optical properties of arrays of ultrathin cobalt nanowires by means of the Brillouin scattering of light on magnons. We employ the Stokes/anti-Stokes scattering asymmetry to probe the circular polarization of a local electric field induced inside nanowires by linearly polarized light waves. We observe the anomalous polarization conversion of the opposite sign than that in a bulk medium or thick nanowires with a great enhancement of the degree of circular polarization attributed to the unconventional refraction in a nanowire medium. A rigorous simulation of the electric field polarization as a function of the wire diameter and spacing reveals the reversed polarization for a thin sparse wire array, in full quantitative agreement with experimental results.

  4. Dissipative processes in superconducting nanodevices: Nanowire-resonators, shunted nanowires, and graphene proximity junctions

    NASA Astrophysics Data System (ADS)

    Brenner, Matthew W.

    The topic of superconducting nanowires has recently been an interesting field of research which has included the study of the superconductor to insulator transition (SIT), the observation of macroscopic quantum behavior such as quantum phase slips (QPS), and the potential use of nanowires as qubits. Superconducting coplanar microwave waveguide resonators have also become a popular way of studying superconducting junctions and qubits, as they provide an extremely low noise environment. For example, superconducting two-dimensional Fabry-Perot resonators have been used by other groups to make non-demolition measurements of a qubit. The motivation of this thesis will be the merging of the fields of superconducting nanowires and the technique of using superconducting microwave resonators to study junctions by incorporating a nanowire into the resonator itself at a current anti-node. By doing this, the nonlinear effects of the nanowire can be studied which may find application in single photon detectors, mixers, and the readout of qubits. We also employ the technique of molecular templating to fabricate some of the thinnest superconducting nanowires ever studied (down to ˜ 5 nm in diameter in some cases). In this thesis, we extend the understanding of the nonlinear properties of a nanowire-resonator system and investigate a new type of nonlinearity that involves a pulsing regime between the superconducting and normal phases of the nanowire. We develop a model, which describes the results quantitatively and by modeling the system, we are able to extract information regarding the relaxation time of the nanowire back into the superconducting state. We also study double nanowire-resonator systems where two closely spaced parallel nanowires interrupt the resonator center conductor and form a loop where vortex tunneling processes can occur. Using a double nanowire-resonator we are able to observe the Little-Parks effect at low temperatures (where the resistance of the wires

  5. Photoresponse and light trapping in nanowire array-graphene interfaces

    NASA Astrophysics Data System (ADS)

    Huber, Tito; Johnson, Scott; Barclift, Quinton; Brower, Tina; Hunt, Jeffrey H.; Belk, John H.

    2015-03-01

    Graphene is emerging as an optical material that features tunability by electrostatic doping and a photothermoelectric response, however it features low optical absorption. We studied interfaces between nanowire arrays and graphene and also other transparent electrodes such as indium tin oxide films. The nanowire arrays were fabricated using a template method. Graphene was transferred from copper substrates. The interfaces were characterized with a number of tools including Scanning Electron microscopy, Raman spectroscopy and optical reflectance. We also studied the photocurrent through the interface in particular the temporal and wavelength dependence that are revealing of the characteristic thermoelectric origin of the signal. In the photocurrent tests we employed devices composed of nanowire arrays which are capped with the transparent electrode. Interestingly, we observed that the interface has low optical reflectivity and high optical absorption, which we will discuss in terms of enhanced optical trapping. T.H. and S.J. acknowledge support from the National Science Foundation.

  6. Ordered Mesostructured CdS Nanowire Arrays with Rectifying Properties

    NASA Astrophysics Data System (ADS)

    Yuan, Na; Cheng, Gang; An, Yanqing; Du, Zuliang; Wu, Sixin

    2009-05-01

    Highly ordered mesoporous CdS nanowire arrays were synthesized by using mesoporous silica as hard template and cadmium xanthate (CdR2) as a single precursor. Upon etching silica, mesoporous CdS nanowire arrays were produced with a yield as high as 93 wt%. The nanowire arrays were characterized by XRD, N2 adsorption, TEM, and SEM. The results show that the CdS products replicated from the mesoporous silica SBA-15 hard template possess highly ordered hexagonal mesostructure and fiber-like morphology, analogous to the mother template. The current-voltage characteristics of CdS nanoarrays are strongly nonlinear and asymmetrical, showing rectifying diode-like behavior.

  7. Conducting polymer nanowire arrays for high performance supercapacitors.

    PubMed

    Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang

    2014-01-15

    This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices.

  8. Lorentzian crater in superconducting microwave resonators with inserted nanowires

    NASA Astrophysics Data System (ADS)

    Bezryadin, Alexey; Brenner, Matthew W.; Gopalakrishnan, Sarang; Ku, Jaseung; Shah, Nayana; Goldbart, Paul M.

    2011-03-01

    We report on observations of nonequilibrium pulsing states in microwave (i.e., GHz) coplanar waveguide(CPW) resonators consisting of superconducting MoGe strips interrupted by a trench and connected by one or more suspended superconducting nanowires. The Lorentzian resonance peak shows a ``crater'' when driven past the critical current of the nanowire, leading to a ``pulsing'' state. In the pulsing state, the supercurrent grows until it reaches the critical current, at which point all stored energy quickly dissipates through Joule heating. We develop a phenomenological model of resonator-nanowire systems, which explains the experimental data quantitatively. For the case of resonators comprising two parallel nanowires and subject to an external magnetic field, we find field-driven oscillations of the onset power for crater formation, as well as the occurrence of a new state, in which the periodic pulsing effect is such that only the weaker wire participates in the dissipation process.

  9. Design rules for core/shell nanowire resonant emitters

    NASA Astrophysics Data System (ADS)

    Kim, Da-Som; Kim, Sun-Kyung

    2017-01-01

    We study design principles to boost the extraction of light from core/shell GaN nanowire optical emitters. A full-vectorial electromagnetic simulation reveals that the extraction efficiency of an emitter within a nanowire cavity depends strongly on its position; the efficiency becomes maximized as the emitter's location approaches the center of the structure. The total extraction of light is sinusoidally modulated by the nanowire diameter, which is directly correlated with optical resonances. The introduction of a conformal dielectric coating on a nanowire leads to a dramatic enhancement in the extraction efficiency, which results from an increase in side emission owing to an optical antenna effect. A simple high-refractive-index dielectric coating approximately doubles the total extraction efficiency of a nanowire LED. These numerical findings will be valuable in providing strategies for high-efficiency nanowire-based optical emitters.

  10. Thermal conductivity of silicon nanowire arrays with controlled roughness

    SciTech Connect

    Feser, JP; Sadhu, JS; Azeredo, BP; Hsu, KH; Ma, J; Kim, J; Seong, M; Fang, NX; Li, XL; Ferreira, PM; Sinha, S; Cahill, DG

    2012-12-01

    A two-step metal assisted chemical etching technique is used to systematically vary the sidewall roughness of Si nanowires in vertically aligned arrays. The thermal conductivities of nanowire arrays are studied using time domain thermoreflectance and compared to their high-resolution transmission electron microscopy determined roughness. The thermal conductivity of nanowires with small roughness is close to a theoretical prediction based on an upper limit of the mean-free-paths of phonons given by the nanowire diameter. The thermal conductivity of nanowires with large roughness is found to be significantly below this prediction. Raman spectroscopy reveals that nanowires with large roughness also display significant broadening of the one-phonon peak; the broadening correlates well with the reduction in thermal conductivity. The origin of this broadening is not yet understood, as it is inconsistent with phonon confinement models, but could derive from microstructural changes that affect both the optical phonons observed in Raman scattering and the acoustic phonons that are important for heat conduction. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767456

  11. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    PubMed

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong

    2004-08-01

    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  12. Fe3O4 nanowire arrays synthesized in AAO templates

    NASA Astrophysics Data System (ADS)

    Xue, D. S.; Zhang, L. Y.; Gui, A. B.; Xu, X. F.

    2005-02-01

    Fe3O4 nanowire arrays with an average diameter of about 120 nm and lengths up to 8 μm were synthesized in anodic aluminum oxide templates through electrodepositing and heat treating a precursor β-FeOOH. The nanowires have a polycrystalline spinel structure with a=8.31 Å and each nanowire is composed of fine particles. Influences of the sintering and the reducing temperatures on the products have been demonstrated by Mössbauer spectra and X-ray diffraction. It was found that high-coercivity nanowires can be obtained when the precursor was sintered at 500 °C in air and then reduced at 325 °C in H2. Hysteresis loops measured at room temperature show a clear perpendicular magnetic anisotropy.

  13. Efficient Multiterminal Spectrum Splitting via a Nanowire Array Solar Cell

    PubMed Central

    2015-01-01

    Nanowire-based solar cells opened a new avenue for increasing conversion efficiency and rationalizing material use by growing different III–V materials on silicon substrates. Here, we propose a multiterminal nanowire solar cell design with a theoretical conversion efficiency of 48.3% utilizing an efficient lateral spectrum splitting between three different III–V material nanowire arrays grown on a flat silicon substrate. This allows choosing an ideal material combination to achieve the proper spectrum splitting as well as fabrication feasibility. The high efficiency is possible due to an enhanced absorption cross-section of standing nanowires and optimization of the geometric parameters. Furthermore, we propose a multiterminal contacting scheme that can be fabricated with a technology close to standard CMOS. As an alternative we also consider a single power source with a module level voltage matching. These new concepts open avenues for next-generation solar cells for terrestrial and space applications. PMID:26878027

  14. Phonon spectroscopy in a Bi2Te3 nanowire array

    NASA Astrophysics Data System (ADS)

    Bessas, Dimitrios; Töllner, William; Aabdin, Zainul; Peranio, Nicola; Sergueev, Ilya; Wille, Hans-Christian; Eibl, Oliver; Nielsch, Kornelius; Hermann, Raphaël P.

    2013-10-01

    The lattice dynamics in an array of 56 nm diameter Bi2Te3 nanowires embedded in a self-ordered amorphous alumina membrane were investigated microscopically using 125Te nuclear inelastic scattering. The element specific density of phonon states is measured on nanowires in two perpendicular orientations and the speed of sound is extracted. Combined high energy synchrotron radiation diffraction and transmission electron microscopy was carried out on the same sample and the crystallinity was investigated. The nanowires grow almost perpendicular to the c-axis, partly with twinning. The average speed of sound in the 56 nm diameter Bi2Te3 nanowires is ~7% smaller with respect to bulk Bi2Te3 and a decrease in the macroscopic lattice thermal conductivity by ~13% due to nanostructuration and to the reduced speed of sound is predicted.

  15. Efficient Multiterminal Spectrum Splitting via a Nanowire Array Solar Cell.

    PubMed

    Dorodnyy, Alexander; Alarcon-Lladó, Esther; Shklover, Valery; Hafner, Christian; Fontcuberta I Morral, Anna; Leuthold, Juerg

    2015-09-16

    Nanowire-based solar cells opened a new avenue for increasing conversion efficiency and rationalizing material use by growing different III-V materials on silicon substrates. Here, we propose a multiterminal nanowire solar cell design with a theoretical conversion efficiency of 48.3% utilizing an efficient lateral spectrum splitting between three different III-V material nanowire arrays grown on a flat silicon substrate. This allows choosing an ideal material combination to achieve the proper spectrum splitting as well as fabrication feasibility. The high efficiency is possible due to an enhanced absorption cross-section of standing nanowires and optimization of the geometric parameters. Furthermore, we propose a multiterminal contacting scheme that can be fabricated with a technology close to standard CMOS. As an alternative we also consider a single power source with a module level voltage matching. These new concepts open avenues for next-generation solar cells for terrestrial and space applications.

  16. Recent progress in patterned silicon nanowire arrays: fabrication, properties and applications.

    PubMed

    Zhang, Yan; Qiu, Teng; Zhang, Wenjun; Chu, Paul K

    2011-01-01

    Currently there is great interest in patterned silicon nanowire arrays and applications. The accurately controlled fabrication of patterned silicon nanowire arrays with the desirable axial crystallographic orientation using simpler and quicker ways is very desirable and of great importance to material synthesis and future nanoscale optoelectronic devices that employ silicon. The recent advances in manipulating patterned silicon nanowire arrays and patents are reviewed with a focus on the progress of nanowire fabrication and applications.

  17. Complex Three-Dimensional Magnetic Ordering in Segmented Nanowire Arrays.

    PubMed

    Grutter, Alexander J; Krycka, Kathryn L; Tartakovskaya, Elena V; Borchers, Julie A; Reddy, K Sai Madhukar; Ortega, Eduardo; Ponce, Arturo; Stadler, Bethanie J H

    2017-08-22

    A comprehensive three-dimensional picture of magnetic ordering in high-density arrays of segmented FeGa/Cu nanowires is experimentally realized through the application of polarized small-angle neutron scattering. The competing energetics of dipolar interactions, shape anisotropy, and Zeeman energy in concert stabilize a highly tunable spin structure that depends heavily on the applied field and sample geometry. Consequently, we observe ferromagnetic and antiferromagnetic interactions both among wires and between segments within individual wires. The resulting magnetic structure for our nanowire sample in a low field is a fan with magnetization perpendicular to the wire axis that aligns nearly antiparallel from one segment to the next along the wire axis. Additionally, while the low-field interwire coupling is ferromagnetic, application of a field tips the moments toward the nanowire axis, resulting in highly frustrated antiferromagnetic stripe patterns in the hexagonal nanowire lattice. Theoretical calculations confirm these observations, providing insight into the competing interactions and resulting stability windows for a variety of ordered magnetic structures. These results provide a roadmap for designing high-density magnetic nanowire arrays for spintronic device applications.

  18. Solution-Liquid-Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst.

    PubMed

    Xu, Kun; Ding, Hui; Jia, Kaicheng; Lu, Xiuli; Chen, Pengzuo; Zhou, Tianpei; Cheng, Han; Liu, Si; Wu, Changzheng; Xie, Yi

    2016-01-26

    Inorganic nanowire arrays hold great promise for next-generation energy storage and conversion devices. Understanding the growth mechanism of nanowire arrays is of considerable interest for expanding the range of applications. Herein, we report the solution-liquid-solid (SLS) synthesis of hexagonal nickel selenide nanowires by using a nonmetal molecular crystal (selenium) as catalyst, which successfully brings SLS into the realm of conventional low-temperature solution synthesis. As a proof-of-concept application, the NiSe nanowire array was used as a catalyst for electrochemical water oxidation. This approach offers a new possibility to design arrays of inorganic nanowires.

  19. High-Q GaN nanowire resonators and oscillators

    SciTech Connect

    Tanner, S. M.; Gray, J. M.; Rogers, C. T.; Bertness, K. A.; Sanford, N. A.

    2007-11-12

    We report high mechanical quality factors Q for GaN nanowire cantilevers grown by molecular beam epitaxy. Nanowires with 30-500 nm diameters and 5-20 {mu}m lengths having resonance frequencies from 400 kHz to 2.8 MHz were measured. Q near room temperature and 10{sup -4} Pa ranged from 2700 to above 60 000 with most above 10 000. Positive feedback to a piezoelectric stack caused spontaneous nanowire oscillations with Q exceeding 10{sup 6}. Spontaneous oscillations also occurred with direct e-beam excitation of unintentionally doped nanowires. Doped nanowires showed no oscillations, consistent with oscillation arising via direct actuation of piezoelectric GaN.

  20. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.

    PubMed

    Lin, Chenxi; Povinelli, Michelle L

    2009-10-26

    In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.

  1. Simulation of wavelength selection using ZnO nanowires array

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Zhang, Yan

    2017-06-01

    A new nanometer sized optical device dividing a beam of multi-wavelength light into constituent spectral wavelengths based on ZnO nanowires arrays has been presented, inspired by the diameter dependent energy bandgap of the nanowires. The theoretical validations based on the quantum optics theory have been conducted. It is shown from the simulation results that the output optical spectrum changes upon the energy bandgap of the material, which is determined by the diameter of the wire. The intensity of the optical spectrum is modeled depending on the charge density of the material. Potential applications of the proposed device on pressure sensitive imaging are discussed.

  2. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array

    NASA Astrophysics Data System (ADS)

    Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.

    2017-07-01

    We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.

  3. Angular dependence of the coercivity in arrays of ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Holanda, J.; Silva, D. B. O.; Padrón-Hernández, E.

    2015-03-01

    We present a new magnetic model for polycrystalline nanowires arrays in porous anodic aluminum oxide. The principal consideration here is the crystalline structure and the morphology of the wires and them the dipolar interactions between the crystals into the wire. Other aspect here is the direct calculation of the dipolar energy for the interaction of one wire with the others in the array. The free energy density was formulated for polycrystalline nanowires arrays in order to determinate the anisotropy effective field. It was using the microstructure study by scanning and transmission electron microscopy for the estimation of the real structure of the wires. After the structural analysis we used the angular dependences for the coercivity field and for the remnant magnetization to determine the properties of the wires. All analysis were made by the theory treatment proposed by Stoner and Wohlfarth.

  4. Steering epitaxial alignment of Au, Pd, and AuPd nanowire arrays by atom flux change.

    PubMed

    Yoo, Youngdong; Seo, Kwanyong; Han, Sol; Varadwaj, Kumar S K; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo; Ahn, Jae Pyoung; Ihee, Hyotcherl; Kim, Bongsoo

    2010-02-10

    We have synthesized epitaxial Au, Pd, and AuPd nanowire arrays in vertical or horizontal alignment on a c-cut sapphire substrate. We show that the vertical and horizontal nanowire arrays grow from half-octahedral seeds by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. The alignment of nanowires can be steered by changing the atom flux. At low atom deposition flux vertical nanowires grow, while at high atom flux horizontal nanowires grow. Similar vertical/horizontal epitaxial growth is also demonstrated on SrTiO(3) substrates. This orientation-steering mechanism is visualized by molecular dynamics simulations.

  5. Nanowire crossbar arrays as address decoders for integrated nanosystems.

    PubMed

    Zhong, Zhaohui; Wang, Deli; Cui, Yi; Bockrath, Marc W; Lieber, Charles M

    2003-11-21

    The development of strategies for addressing arrays of nanoscale devices is central to the implementation of integrated nanosystems such as biological sensor arrays and nanocomputers. We report a general approach for addressing based on molecular-level modification of crossed semiconductor nanowire field-effect transistor (cNW-FET) arrays, where selective chemical modification of cross points in the arrays enables NW inputs to turn specific FET array elements on and off. The chemically modified cNW-FET arrays function as decoder circuits, exhibit gain, and allow multiplexing and demultiplexing of information. These results provide a step toward the realization of addressable integrated nanosystems in which signals are restored at the nanoscale.

  6. Synthesis and characterization of silicon nanowire arrays for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Eichfeld, Sarah M.

    The overall objective of this thesis was the development of processes for the fabrication of radial p-n silicon nanowires (SiNWs) using bottom-up nanowire growth techniques on silicon and glass substrates. Vapor-liquid-solid (VLS) growth was carried out on Si(111) substrates using SiCl4 as the silicon precursor. Growth conditions including temperature, PSiCl4, PH2, and position were investigated to determine the optimum growth conditions for epitaxially oriented silicon nanowire arrays. The experiments revealed that the growth rate of the silicon nanowires exhibits a maximum as a function of PSiCl4 and P H2. Gas phase equilibrium calculations were used in conjunction with a mass transport model to explain the experimental data. The modeling results demonstrate a similar maximum in the mass of solid silicon predicted to form as a function of PSiCl4 and PH2, which results from a change in the gas phase concentration of SiHxCly and SiClx species. This results in a shift in the process from growth to etching with increasing PSiCl4. In general, for the atmospheric pressure conditions employed in this study, growth at higher temperatures >1000°C and higher SiCl4 concentrations gave the best results. The growth of silicon nanowire arrays on anodized alumina (AAO)-coated glass substrates was also investigated. Glass will not hold up to the high temperatures required for Si nanowire growth with SiCl4 so SiH 4 was used as the Si precursor instead. Initial studies were carried out to measure the resistivity of p-type and n-type silicon nanowires grown in freestanding AAO membranes. A series of nanowire samples were grown in which the doping and the nanowire length inside the membrane were varied. Circular metal contacts were deposited on the top surface of the membranes and the resistance of the nanowire arrays was measured. The measured resistance versus nanowire length was plotted and the nanowire resistivity was extracted from the slope. The resistivity of the silicon

  7. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics.

    PubMed

    Kayes, Md Imrul; Leu, Paul W

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).

  8. Dendritic Heterojunction Nanowire Arrays for High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Zou, Rujia; Zhang, Zhenyu; Yuen, Muk Fung; Hu, Junqing; Lee, Chun-Sing; Zhang, Wenjun

    2015-01-01

    Herein, we designed and synthesized for the first time a series of 3D dendritic heterojunction arrays on Ni foam substrates, with NiCo2S4 nanowires as cores and NiCo2O4, NiO, Co3O4, and MnO2 nanowires as branches, and studied systematically their electrochemical performance in comparison with their counterparts in core/shell structure. Attributed to the following reasons: (1) both core and branch are pseudocapacitively active materials, (2) the special dendritic structure with considerable inter-nanowire space enables easy access of electrolyte to the core and branch surfaces, and (3) the highly conductive NiCo2S4 nanowire cores provide ``superhighways'' for charge transition, NiCo2S4-cored dendritic heterojunction electrodes synergistically lead to ultrahigh specific capacitance, good rate capability, and excellent cycling life. These results of core/branch dentritic heterojunction arrays is universially superior to their core/shell conterparts, thus this is a significant improvement of overall electrochemical performance.

  9. Dendritic Heterojunction Nanowire Arrays for High-Performance Supercapacitors

    PubMed Central

    Zou, Rujia; Zhang, Zhenyu; Yuen, Muk Fung; Hu, Junqing; Lee, Chun-Sing; Zhang, Wenjun

    2015-01-01

    Herein, we designed and synthesized for the first time a series of 3D dendritic heterojunction arrays on Ni foam substrates, with NiCo2S4 nanowires as cores and NiCo2O4, NiO, Co3O4, and MnO2 nanowires as branches, and studied systematically their electrochemical performance in comparison with their counterparts in core/shell structure. Attributed to the following reasons: (1) both core and branch are pseudocapacitively active materials, (2) the special dendritic structure with considerable inter-nanowire space enables easy access of electrolyte to the core and branch surfaces, and (3) the highly conductive NiCo2S4 nanowire cores provide “superhighways” for charge transition, NiCo2S4-cored dendritic heterojunction electrodes synergistically lead to ultrahigh specific capacitance, good rate capability, and excellent cycling life. These results of core/branch dentritic heterojunction arrays is universially superior to their core/shell conterparts, thus this is a significant improvement of overall electrochemical performance. PMID:25597402

  10. On-surface formation of metal nanowire transparent top electrodes on CdSe nanowire array-based photoconductive devices.

    PubMed

    Azulai, Daniel; Givan, Uri; Shpaisman, Nava; Belenkova, Tatyana Levi; Gilon, Hagit; Patolsky, Fernando; Markovich, Gil

    2012-06-27

    A simple wet chemical approach was developed for a unique on-surface synthesis of transparent conductive films consisting of ultrathin gold/silver nanowires directly grown on top of CdSe nanowire array photoconductive devices enclosed in polycarbonate membranes. The metal nanowire film formed an ohmic contact to the semiconductor nanowires without additional treatment. The sheet resistance and transparency of the metal nanowire arrays could be controlled by the number of metal nanowire layers deposited, ranging from ∼98-99% transmission through the visible range and several kOhm/sq sheet resistance for a single layer, to 80-85% transmission and ∼100 Ohm/sq sheet resistance for 4 layers.

  11. Polaronic transport and current blockades in epitaxial silicide nanowires and nanowire arrays.

    PubMed

    Iancu, Violeta; Zhang, X-G; Kim, Tae-Hwan; Menard, Laurent D; Kent, P R C; Woodson, Michael E; Ramsey, J Michael; Li, An-Ping; Weitering, Hanno H

    2013-08-14

    Crystalline micrometer-long YSi2 nanowires with cross sections as small as 1 × 0.5 nm(2) can be grown on the Si(001) surface. Their extreme aspect ratios make electron conduction within these nanowires almost ideally one-dimensional, while their compatibility with the silicon platform suggests application as metallic interconnect in Si-based nanoelectronic devices. Here we combine bottom-up epitaxial wire synthesis in ultrahigh vacuum with top-down miniaturization of the electrical measurement probes to elucidate the electronic conduction mechanism of both individual wires and arrays of nanowires. Temperature-dependent transport through individual nanowires is indicative of thermally assisted tunneling of small polarons between atomic-scale defect centers. In-depth analysis of complex wire networks emphasize significant electronic crosstalk between the nanowires due to the long-range Coulomb fields associated with polaronic charge fluctuations. This work establishes a semiquantitative correlation between the density and distributions of atomic-scale defects and resulting current-voltage characteristics of nanoscale network devices.

  12. Automatic Release of Silicon Nanowire Arrays with a High Integrity for Flexible Electronic Devices

    NASA Astrophysics Data System (ADS)

    Wu, Luo; Li, Shuxin; He, Weiwei; Teng, Dayong; Wang, Ke; Ye, Changhui

    2014-02-01

    Automatic release and vertical transferring of silicon/silicon oxide nanowire arrays with a high integrity are demonstrated by an Ag-assisted ammonia etching method. By adding a water steaming step between Ag-assisted HF/H2O2 and ammonia etching to form a SiOx protective layer sheathing Si nanowires, we can tune the composition of the nanowires from SiOx (0 <= x <= 2) to Si nanowires. Ag plays a key role to the neat and uniform release of Si/SiOx nanowire arrays from Si wafer in the ammonia etching process. The vertical Si nanowire array device, with both sides having high-quality Ohmic contact, can be transferred to arbitrary substrates, especially on a flexible substrate. The method developed here offers a facile method to realize flexible Si nanowire array functional devices.

  13. Surface plasmon resonance of Cu nanowires in polycarbonate template

    NASA Astrophysics Data System (ADS)

    Azarian, A.; Babaei, F.

    2013-02-01

    The Cu nanowires were electrodeposited in polycarbonate track-etched (PCT) membrane. SEM, TEM and XPS techniques were used to characterize the morphology, structure, and size of nanowires as well as chemical composition. The absorption spectrum of copper nanowires embedded in PCT was measured and calculated for different incident angles and wavelengths. Our results showed that there is a broad peak due to excitation surface plasmons at θ=70° for wavelength λ=730 nm. We applied the transfer matrix method and the Bruggeman homogenization formalism for optical modeling. The results of absorption spectra showed that there exists good agreement between the experimental and our used model. The results of this work may be useful in the study of surface plasmon resonance of copper nanowires.

  14. Highly sensitive refractive index sensor based on a TiO2 nanowire array.

    PubMed

    Li, Qiu-Shun; Xiang, Dong; Chang, Zhi-Min; Shi, Jian-Guo; Ma, Yao-Hong; Cai, Lei; Feng, Dong; Dong, Wen-Fei

    2017-03-01

    We propose a novel, highly sensitive refractive index (RI) sensor by means of combining the Kretschmann prism with a TiO2 nanowire array and do not use a metallic layer in the Kretschmann configuration. Its RI sensing performance was investigated through measuring different concentrations of sodium chloride solution. Experimental results showed that, with increasing RI of liquid, the resonant wavelength in the reflectance spectrum redshifted gradually in the visible light range. There was a very good linear relationship between resonant wavelength and RI in the range of 1.3330 to 1.3546. More importantly, in contrast to the surface plasmon resonance (SPR) sensor, the interferometric sensors showed higher sensitivity to the external RI. In the case of the transverse magnetic mode, the RI sensitivity is up to 320,700.93 a.u./RIU (refractive index unit) by expression of light intensity, which is 9.55 times that of the SPR sensor. As for the transverse electric mode, it achieves 4371.76 nm/RIU by expression of the resonant wavelength, which is increased by a factor of 1.4 in comparison with the SPR sensor. Moreover, the experimental results have favorable repeatability. A TiO2 nanowire array sensor has also other advantages, such as easy manufacturing, low cost, and in situ determination, etc. To our knowledge, this fact is reported for the first time. It has great potential applications in the field of biological and chemical sensing.

  15. A multimode electromechanical parametric resonator array

    PubMed Central

    Mahboob, I.; Mounaix, M.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.

    2014-01-01

    Electromechanical resonators have emerged as a versatile platform in which detectors with unprecedented sensitivities and quantum mechanics in a macroscopic context can be developed. These schemes invariably utilise a single resonator but increasingly the concept of an array of electromechanical resonators is promising a wealth of new possibilities. In spite of this, experimental realisations of such arrays have remained scarce due to the formidable challenges involved in their fabrication. In a variation to this approach, we identify 75 harmonic vibration modes in a single electromechanical resonator of which 7 can also be parametrically excited. The parametrically resonating modes exhibit vibrations with only 2 oscillation phases which are used to build a binary information array. We exploit this array to execute a mechanical byte memory, a shift-register and a controlled-NOT gate thus vividly illustrating the availability and functionality of an electromechanical resonator array by simply utilising higher order vibration modes. PMID:24658349

  16. Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays.

    PubMed

    Lin, Linhan; Guo, Siping; Sun, Xianzhong; Feng, Jiayou; Wang, Yan

    2010-08-05

    Herein, we prepare vertical and single crystalline porous silicon nanowires (SiNWs) via a two-step metal-assisted electroless etching method. The porosity of the nanowires is restricted by etchant concentration, etching time and doping lever of the silicon wafer. The diffusion of silver ions could lead to the nucleation of silver nanoparticles on the nanowires and open new etching ways. Like porous silicon (PS), these porous nanowires also show excellent photoluminescence (PL) properties. The PL intensity increases with porosity, with an enhancement of about 100 times observed in our condition experiments. A "red-shift" of the PL peak is also found. Further studies prove that the PL spectrum should be decomposed into two elementary PL bands. The peak at 850 nm is the emission of the localized excitation in the nanoporous structure, while the 750-nm peak should be attributed to the surface-oxidized nanostructure. It could be confirmed from the Fourier transform infrared spectroscopy analyses. These porous SiNW arrays may be useful as the nanoscale optoelectronic devices.

  17. III-nitride core–shell nanowire arrayed solar cells.

    PubMed

    Wierer, Jonathan J; Li, Qiming; Koleske, Daniel D; Lee, Stephen R; Wang, George T

    2012-05-17

    A solar cell based on a hybrid nanowire–film architecture consisting of a vertically aligned array of InGaN/GaN multi-quantum well core–shell nanowires which are electrically connected by a coalesced p-InGaN canopy layer is demonstrated. This unique hybrid structure allows for standard planar device processing, solving a key challenge with nanowire device integration, while enabling various advantages by the nanowire absorbing region such as higher indium composition InGaN layers by elastic strain relief, more efficient carrier collection in thinner layers, and enhanced light trapping from nano-scale optical index changes. This hybrid structure is fabricated into working solar cells exhibiting photoresponse out to 2.1 eV and short-circuit current densities of ~1 mA cm(-2) under 1 sun AM1.5G. This proof-of-concept nanowire-based device demonstrates a route forward for high-efficiency III-nitride solar cells.

  18. Semiconductor/dielectric half-coaxial nanowire arrays for large-area nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Hua, X.; Zeng, Y.; Shen, W. Z.

    2014-03-01

    We present a simple assembly strategy of single nanowires (NWs) to form half-coaxial nanowire arrays (NWAs) which can be easily realized in large size by standard pattering and deposition techniques. Through the finite-difference time-domain simulation, we show that the proposed half-coaxial NWAs effectively preserve the leaky modes resonances within single NWs and consequently achieve strong absorption enhancement under optimization of various structural factors. The best half-coaxial NWAs with 100 nm thick absorbing shell offer equivalent light absorption of more than 400 nm thick planar film. Benefiting from the >75% cut of the required thickness of the absorbing layer, the performances of the demonstrated half-coaxial NWAs based a-Si thin film solar cell also gain significant improvement.

  19. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.

    PubMed

    Madaria, Anuj R; Yao, Maoqing; Chi, Chunyung; Huang, Ningfeng; Lin, Chenxi; Li, Ruijuan; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2012-06-13

    Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.

  20. Ordering Ag nanowire arrays by spontaneous spreading of volatile droplet on solid surface

    PubMed Central

    Dai, Han; Ding, Ruiqiang; Li, Meicheng; Huang, Jinjer; Li, Yingfeng; Trevor, Mwenya

    2014-01-01

    Large-area Ag nanowires are ordered by spontaneous spreading of volatile droplet on a wettable solid surface. Compared with other nanowires orientation methods, radial shaped oriented Ag nanowires in a large ring region are obtained in an extremely short time. Furthermore, the radial shaped oriented Ag nanowires are transferred and aligned into one direction. Based on the hydrodynamics, the coactions among the microfluid, gravity effect and the adhesion of substrate on the orientation of the Ag nanowires are clearly revealed. This spreading method opens an efficient way for extreme economic, efficient and “green” way for commercial producing ordered nanowire arrays. PMID:25339118

  1. Magnetic Properties of Feni Nanowire Arrays Assembled on Porous AAO Template by AC Electrodeposition

    NASA Astrophysics Data System (ADS)

    Wang, Pangpang; Gao, Lumei; Wang, Liqun; Zhang, Dongyan; Yang, Sen; Song, Xiaoping; Qiu, Zhiyong; Murakami, Ri-Ichi

    FeNi nanowire arrays were fabricated into the pores of porous alumina template by a simple alternating current electrodeposition method in this work. FeNi nanowires with different diameters were obtained depending on the pore size arrangement of alumina templates. FeNi nanowire arrays exhibited obviously magnetic anisotropy, and the easy axis was along the nanowires. When the applied magnetic field was parallel to the nanowires, the coercivity (Hc) and the maximum remnant ratio (Mr/Ms) are considerable higher than those while the magnetic field perpendicular to the nanowires. FeNi nanowires prepared in this work are expected to be utilized as the perpendicular magnetic recording media. The magnetic domain structure and the magnetizing mechanism of FeNi nanowires were also been discussed.

  2. Magnetic properties of single crystalline Co nanowire arrays with different diameters and orientations

    NASA Astrophysics Data System (ADS)

    Huang, X. H.; Li, G. H.; Dou, X. C.; Li, L.

    2009-04-01

    Single crystalline Co nanowire arrays with different diameters and orientations were grown within porous anodic alumina membranes by a pulsed electrodeposition technique and the magnetic properties of the nanowire were systematically studied. It was found that the magnetization behavior of the Co nanowire arrays is anisotropic and their magnetic properties can be effectively modulated through tuning either the diameter or the orientation of the nanowires. The magnetic properties of the Co nanowires were discussed qualitatively by using the classical magnetization theory and single domain model.

  3. Enhanced magnetocrystalline anisotropy in an ultra-dense array of air-exposed crystalline cobalt nanowires

    NASA Astrophysics Data System (ADS)

    Camara, I. S.; Achkar, C.; Liakakos, N.; Pierrot, A.; Pierron-Bohnes, V.; Henry, Y.; Soulantica, K.; Respaud, M.; Blon, T.; Bailleul, M.

    2016-11-01

    The magnetic anisotropy of an ultradense array of crystalline cobalt nanowires is investigated by means of broadband ferromagnetic resonance and magnetic torque measurements. The array is grown epitaxially in solution on a Pt(111) film and consists of single crystalline metallic wires with a diameter of 6.2 nm and a center-to-center interwire distance of 9.6 nm. The shape anisotropy and the Co hexagonal compact structure with the c-axis along the wire axis combine with each other to impose a perpendicular magnetic anisotropy despite the high density of 8 × 1012 wires/in.2. The intrinsic uniaxial magnetocrystalline anisotropy constants K1 and K2 are extracted from the ferromagnetic resonance and torque measurements using a mean field approach accounting for the interwire dipolar interactions. At room temperature, and despite air exposure, an unexpected increase of K1 and K2 of more than 40% with respect to the bulk is evidenced.

  4. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOEpatents

    Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo

    2013-02-05

    In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.

  5. Multi-spectral optical absorption in substrate-free nanowire arrays

    SciTech Connect

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray; Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  6. Synthesis, Magnetic Anisotropy and Optical Properties of Preferred Oriented Zinc Ferrite Nanowire Arrays

    PubMed Central

    2010-01-01

    Preferred oriented ZnFe2O4 nanowire arrays with an average diameter of 16 nm were fabricated by post-annealing of ZnFe2 nanowires within anodic aluminum oxide templates in atmosphere. Selected area electron diffraction and X-ray diffraction exhibit that the nanowires are in cubic spinel-type structure with a [110] preferred crystallite orientation. Magnetic measurement indicates that the as-prepared ZnFe2O4 nanowire arrays reveal uniaxial magnetic anisotropy, and the easy magnetization direction is parallel to the axis of nanowire. The optical properties show the ZnFe2O4 nanowire arrays give out 370–520 nm blue-violet light, and their UV absorption edge is around 700 nm. The estimated values of direct and indirect band gaps for the nanowires are 2.23 and 1.73 eV, respectively. PMID:20676211

  7. Synthesis, magnetic anisotropy and optical properties of preferred oriented zinc ferrite nanowire arrays.

    PubMed

    Gao, Daqiang; Shi, Zhenhua; Xu, Yan; Zhang, Jing; Yang, Guijin; Zhang, Jinlin; Wang, Xinhua; Xue, Desheng

    2010-05-22

    Preferred oriented ZnFe2O4 nanowire arrays with an average diameter of 16 nm were fabricated by post-annealing of ZnFe2 nanowires within anodic aluminum oxide templates in atmosphere. Selected area electron diffraction and X-ray diffraction exhibit that the nanowires are in cubic spinel-type structure with a [110] preferred crystallite orientation. Magnetic measurement indicates that the as-prepared ZnFe2O4 nanowire arrays reveal uniaxial magnetic anisotropy, and the easy magnetization direction is parallel to the axis of nanowire. The optical properties show the ZnFe2O4 nanowire arrays give out 370-520 nm blue-violet light, and their UV absorption edge is around 700 nm. The estimated values of direct and indirect band gaps for the nanowires are 2.23 and 1.73 eV, respectively.

  8. 2D and 3D ordered arrays of Co magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Prida, V. M.; Vega, V.; Rosa, W. O.; Caballero-Flores, R.; Iglesias, L.; Hernando, B.

    2015-06-01

    Cobalt nanowire arrays spatially distributed in 2D and 3D arrangements have been performed by pulsed electrodeposition into the pores of planar and cylindrical nanoporous anodic alumina membranes, respectively. Morphological characterization points out the good filling factor reached by electroplated Co nanowires in both kinds of alumina membranes exhibiting hexagonally self-ordered porous structures. Co nanowires grown in both kinds of alumina templates exhibit the same crystalline phases. DC magnetometry and First Order Reversal Curve (FORC) analysis were carried out in order to determine the overall magnetic behavior for both nanowire array geometries. It is found that when the Co nanowires of two kinds of arrays are perpendicularly magnetized, both hysteresis loops are identical, suggesting that neither the intrinsic magnetic behavior of the nanowires nor the collective one depend on the arrays geometry. FORC analysis performed along the radial direction of the Co nanowire arrays embedded in the cylindrical alumina template reveals that the contribution of each nanowire to the magnetization reversal process involves its specific orientation with respect to the applied field direction. Furthermore, the comparison between the magnetic properties for both kinds of Co nanowire arrays allows discussing about the effect of the cylindrical geometry of the template on the magnetostatic interaction among nanowires.

  9. Ordering Ag nanowire arrays by a glass capillary: A portable, reusable and durable SERS substrate

    PubMed Central

    Liu, Jian-Wei; Wang, Jin-Long; Huang, Wei-Ran; Yu, Le; Ren, Xi-Feng; Wen, Wu-Cheng; Yu, Shu-Hong

    2012-01-01

    Assembly of nanowires into ordered macroscopic structures with new functionalities has been a recent focus. In this Letter, we report a new route for ordering hydrophilic Ag nanowires with high aspect ratio by flowing through a glass capillary. The present glass capillary with well-defined silver nanowire films inside can serve as a portable and reusable substrate for surface-enhanced Raman spectroscopy (SERS), which may provide a versatile and promising platform for detecting mixture pollutions. By controlling the flow parameters of nanowire suspensions, initially random Ag nanowires can be aligned to form nanowire arrays with tunable density, forming cambered nanowire films adhered onto the inner wall of the capillary. Compared with the planar ordered Ag nanowire films by the Langmuir-Blodgett (LB) technique, the cambered nanowire films show better SERS performance. PMID:23248750

  10. Ordering Ag nanowire arrays by a glass capillary: a portable, reusable and durable SERS substrate.

    PubMed

    Liu, Jian-Wei; Wang, Jin-Long; Huang, Wei-Ran; Yu, Le; Ren, Xi-Feng; Wen, Wu-Cheng; Yu, Shu-Hong

    2012-01-01

    Assembly of nanowires into ordered macroscopic structures with new functionalities has been a recent focus. In this Letter, we report a new route for ordering hydrophilic Ag nanowires with high aspect ratio by flowing through a glass capillary. The present glass capillary with well-defined silver nanowire films inside can serve as a portable and reusable substrate for surface-enhanced Raman spectroscopy (SERS), which may provide a versatile and promising platform for detecting mixture pollutions. By controlling the flow parameters of nanowire suspensions, initially random Ag nanowires can be aligned to form nanowire arrays with tunable density, forming cambered nanowire films adhered onto the inner wall of the capillary. Compared with the planar ordered Ag nanowire films by the Langmuir-Blodgett (LB) technique, the cambered nanowire films show better SERS performance.

  11. Fabrication and magnetic properties of Ni nanowire arrays with ultrahigh axial squareness.

    PubMed

    Tian, F; Huang, Z P; Whitmore, L

    2012-06-28

    Poly- and single-crystalline Ni nanowire arrays showing ultrahigh axial squareness are fabricated by direct-current electrodeposition in pores of anodic aluminum oxide templates. High voltage is shown to be the key in order for Ni nanowires to have a (220) preferred orientation. 2-Dimensional nucleation theory is used to understand the growth of the nanowires. Based on the structure and growth analyses, the magnetic properties of different kinds of nanowires are explained.

  12. Polarization-tuned Dynamic Color Filters Incorporating a Dielectric-loaded Aluminum Nanowire Array

    PubMed Central

    Raj Shrestha, Vivek; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2015-01-01

    Nanostructured spectral filters enabling dynamic color-tuning are saliently attractive for implementing ultra-compact color displays and imaging devices. Realization of polarization-induced dynamic color-tuning via one-dimensional periodic nanostructures is highly challenging due to the absence of plasmonic resonances for transverse-electric polarization. Here we demonstrate highly efficient dynamic subtractive color filters incorporating a dielectric-loaded aluminum nanowire array, providing a continuum of customized color according to the incident polarization. Dynamic color filtering was realized relying on selective suppression in transmission spectra via plasmonic resonance at a metal-dielectric interface and guided-mode resonance for a metal-clad dielectric waveguide, each occurring at their characteristic wavelengths for transverse-magnetic and electric polarizations, respectively. A broad palette of colors, including cyan, magenta, and yellow, has been attained with high transmission beyond 80%, by tailoring the period of the nanowire array and the incident polarization. Thanks to low cost, high durability, and mass producibility of the aluminum adopted for the proposed devices, they are anticipated to be diversely applied to color displays, holographic imaging, information encoding, and anti-counterfeiting. PMID:26211625

  13. Low-concentration mechanical biosensor based on a photonic crystal nanowire array.

    PubMed

    Lu, Yuerui; Peng, Songming; Luo, Dan; Lal, Amit

    2011-12-06

    The challenge for new biosensors is to achieve detection of biomolecules at low concentrations, which is useful for early-stage disease detection. Nanomechanical biosensors are promising in medical diagnostic applications. For nanomechanical biosensing at low concentrations, a sufficient resonator device surface area is necessary for molecules to bind to. Here we present a low-concentration (500 aM sensitivity) DNA sensor, which uses a novel nanomechanical resonator with ordered vertical nanowire arrays on top of a Si/SiO(2) bilayer thin membrane. The high sensitivity is achieved by the strongly enhanced total surface area-to-volume ratio of the resonator (10(8) m(-1)) and the state-of-the-art mass-per-area resolution (1.8×10(-12) kg m(-2)). Moreover, the nanowire array forms a photonic crystal that shows strong light trapping and absorption over broad-band optical wavelengths, enabling high-efficiency broad-band opto-thermo-mechanical remote device actuation and biosensing on a chip. This method represents a mass-based platform technology that can sense molecules at low concentrations.

  14. Multiscale Study of Plasmonic Scattering and Light Trapping Effect in Silicon Nanowire Array Solar Cells.

    PubMed

    Meng, Lingyi; Zhang, Yu; Yam, ChiYung

    2017-02-02

    Nanometallic structures that support surface plasmons provide new ways to confine light at deep-subwavelength scales. The effect of light scattering in nanowire array solar cells is studied by a multiscale approach combining classical electromagnetic (EM) and quantum mechanical simulations. A photovoltaic device is constructed by integrating a silicon nanowire array with a plasmonic silver nanosphere. The light scatterings by plasmonic element and nanowire array are obtained via classical EM simulations, while current-voltage characteristics and optical properties of the nanowire cells are evaluated quantum mechanically. We found that the power conversion efficiency (PCE) of photovoltaic device is substantially improved due to the local field enhancement of the plasmonic effect and light trapping by the nanowire array. In addition, we showed that there exists an optimal nanowire number density in terms of optical confinement and solar cell PCE.

  15. Freestanding mesoporous quasi-single-crystalline CO3O4 nanowire arrays.

    PubMed

    Li, Yanguang; Tan, Bing; Wu, Yiying

    2006-11-08

    We report a facile template-free method for the large-area growth of freestanding hollow Co3O4 nanowire arrays on a variety of substrates including transparent conducting glass, Si wafer, and copper foil, et al. These nanowires have the interesting combined properties of mesoporosity and quasi-single-crystallinity. With their high surface area and crystallinity, and their direct growth on conductive substrate, these Co3O4 nanowire arrays will have promising applications in lithium-ion batteries, chemical sensing, and field-emission and electrochromic devices. Using the prepared nanowire arrays as electrode, an electrochemical sensor for hydrogen peroxide sensing has been demonstrated.

  16. Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: a comparative study

    NASA Astrophysics Data System (ADS)

    Sergelius, Philip; Garcia Fernandez, Javier; Martens, Stefan; Zocher, Michael; Böhnert, Tim; Vega Martinez, Victor; de la Prida, Victor Manuel; Görlitz, Detlef; Nielsch, Kornelius

    2016-04-01

    The first-order reversal curve (FORC) method can be used to extract information about the interaction and switching field distribution of ferromagnetic nanowire arrays, yet it remains challenging to acquire reliable values. Within ordered pores of anodic alumina templates we electrochemically synthesize eight different Ni x Co1-x samples with x varying between 0.05 and 1. FORC diagrams are acquired using vibrating sample magnetometry. By dissolving the template and using the magneto-optical Kerr effect, we measure the hysteresis loops of up to 100 different and isolated nanowires for each sample to gain precise information about the intrinsic switching field distribution. Values of the interaction field are extracted from a deshearing of the major hysteresis loop. We present a comparative study between all methods in order to evaluate and reinforce current FORC theory with experimental findings.

  17. Resonance spectra of diabolo optical antenna arrays

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Simpkins, Blake; Caldwell, Joshua D.; Guo, Junpeng

    2015-10-01

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  18. Resonance spectra of diabolo optical antenna arrays

    SciTech Connect

    Guo, Hong; Guo, Junpeng; Simpkins, Blake; Caldwell, Joshua D.

    2015-10-15

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  19. Interaction effects on microwave-assisted switching of Ni80Fe20 nanowires in densely packed arrays

    NASA Astrophysics Data System (ADS)

    Topp, Jesco; Heitmann, Detlef; Grundler, Dirk

    2009-11-01

    We perform broadband microwave absorption spectroscopy and explore the switching behavior of 300-nm-wide and 20-nm-thick Ni80Fe20 nanowires under irradiation of a magnetic rf field. In particular, we investigate two arrays where the nanowires exhibit a different edge-to-edge separation, a=100 and 700 nm. In the arrays we observe microwave-assisted switching (MAS). The MAS process with a resonant behavior near 6 GHz is attributed to the excitation of a confined Damon-Eshbach-type mode. Dipolar interactions between nanowires are found to decrease the optimum frequency for MAS and to increase the switching efficiency for the small separation a . The observed characteristics are substantiated by model considerations. We propose a modification of the previously introduced analytical demagnetization factors of an individual thin wire and incorporate the effect of dipolar interactions occurring in the array. The approach explains the dependence of the MAS-relevant eigenmode on the edge-to-edge separation a . MAS is also found to narrow the switching field distribution of the nanowire array.

  20. Position-controlled [100] InP nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Plissard, Sébastien; Hocevar, Moïra; Vu, Thuy T. T.; Zehender, Tilman; Immink, George G. W.; Verheijen, Marcel A.; Haverkort, Jos; Bakkers, Erik P. A. M.

    2012-01-01

    We investigate the growth of vertically standing [100] zincblende InP nanowire (NW) arrays on InP (100) substrates in the vapor-liquid-solid growth mode using low-pressure metal-organic vapor-phase epitaxy. Precise positioning of these NWs is demonstrated by electron beam lithography. The vertical NW yield can be controlled by different parameters. A maximum yield of 56% is obtained and the tapering caused by lateral growth can be prevented by in situ HCl etching. Scanning electron microscopy, high-resolution transmission electron microscopy, and micro-photoluminescence have been used to investigate the NW properties.

  1. General technique for fabricating large arrays of nanowires

    NASA Astrophysics Data System (ADS)

    Jorritsma, J.; Gijs, M. A. M.; Kerkhof, J. M.; Stienen, J. G. H.

    1996-09-01

    Large arrays of parallel metallic nanowires ranging from 20 - 120 nm in width are fabricated using a general and relatively simple technique. Holographic laser interference exposure of photoresist and anisotropic etching are used to pattern the surface of InP(001) substrates into V-shaped grooves of 200 nm period. Subsequently metal is evaporated at an angle onto the V-grooved substrates, naturally resulting in thousands of ultra-narrow metallic wires in parallel. Resistance measurements proof that as-prepared wires are electrically continuous.

  2. Magnetic domain structure in small diameter magnetic nanowire arrays [rapid communication

    NASA Astrophysics Data System (ADS)

    Qin, Dong-Huan; Zhang, Hao-Li; Xu, Cai-Ling; Xu, Tao; Li, Hu-Lin

    2005-01-01

    Fe 0.3Co 0.7 alloy nanowire arrays were prepared by ac electrodepositing Fe 2+ and Co 2+ into a porous anodic aluminum oxide (PAO) template with diameter about 50 nm. The surface of the samples were polished by 100 nm diamond particle then chemical polishing to give a very smooth surface (below ±10 nm/μm 2). The morphology properties were characterized by SEM and AFM. The bulk magnetic properties and domain structure of nanowire arrays were investigated by VSM and MFM respectively. We found that such alloy arrays showed strong perpendicular magnetic anisotropy with easy axis parallel to nanowire arrays. Each nanowire was in single domain structure with several opposite single domains surrounding it. Additionally, we investigated the domain structure with a variable external magnetic field applied parallel to the nanowire arrays. The MFM results showed a good agreement with our magnetic hysteresis loop.

  3. Electrochemical oxidation of methanol on Pt nanoparticles composited MnO 2 nanowire arrayed electrode

    NASA Astrophysics Data System (ADS)

    Zhao, Guang-Yu; Li, Hu-Lin

    2008-03-01

    By use of the membrane-template synthesis route, MnO 2 nanowire arrayed electrodes are successfully synthesized by means of the anodic deposition technique. The Pt nanoparticles composited MnO 2 nanowire arrayed electrodes (PME) are obtained through depositing Pt on MnO 2 nanowire arrayed electrode by cathode deposition technique. For comparison of electrochemical performance, Pt nanowire arrayed electrodes which have the same amount of Pt with PME are also prepared. The electro-oxidation of methanol on PME and Pt nanowire arrayed electrodes is investigated at room temperature by cyclic voltammetry, which show that about 110 mV decreased overpotential and 2.1-fold enhanced votammetric current are achieved on PME. The chronoamperometry result demonstrates that the resistance to carbon monoxide for PME is improved.

  4. Hyperbolic and plasmonic properties of silicon/Ag aligned nanowire arrays.

    PubMed

    Prokes, S M; Glembocki, Orest J; Livenere, J E; Tumkur, T U; Kitur, J K; Zhu, G; Wells, B; Podolskiy, V A; Noginov, M A

    2013-06-17

    The hyperbolic and plasmonic properties of silicon nanowire/Ag arrays have been investigated. The aligned nanowire arrays were formed and coated by atomic layer deposition of Ag, which itself is a metamaterial due to its unique mosaic film structure. The theoretical and numerical studies suggest that the fabricated arrays have hyperbolic dispersion in the visible and IR ranges of the spectrum. The theoretical predictions have been indirectly confirmed by polarized reflection spectra, showing reduction of the reflection in p polarization in comparison to that in s polarization. Studies of dye emission on top of Si/Ag nanowire arrays show strong emission quenching and shortening of dye emission kinetics. This behavior is also consistent with the predictions for hyperbolic media. The measured SERS signals were enhanced by almost an order of magnitude for closely packed and aligned nanowires, compared to random nanowire composites. These results agree with electric field simulations of these array structures.

  5. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry.

    PubMed

    Fan, Zhiyong; Ho, Johnny C; Jacobson, Zachery A; Razavi, Haleh; Javey, Ali

    2008-08-12

    We report large-scale integration of nanowires for heterogeneous, multifunctional circuitry that utilizes both the sensory and electronic functionalities of single crystalline nanomaterials. Highly ordered and parallel arrays of optically active CdSe nanowires and high-mobility Ge/Si nanowires are deterministically positioned on substrates, and configured as photodiodes and transistors, respectively. The nanowire sensors and electronic devices are then interfaced to enable an all-nanowire circuitry with on-chip integration, capable of detecting and amplifying an optical signal with high sensitivity and precision. Notably, the process is highly reproducible and scalable with a yield of approximately 80% functional circuits, therefore, enabling the fabrication of large arrays (i.e., 13 x 20) of nanowire photosensor circuitry with image-sensing functionality. The ability to interface nanowire sensors with integrated electronics on large scales and with high uniformity presents an important advance toward the integration of nanomaterials for sensor applications.

  6. Light trapping in ZnO nanowire arrays covered with an absorbing shell for solar cells.

    PubMed

    Michallon, Jérôme; Bucci, Davide; Morand, Alain; Zanuccoli, Mauro; Consonni, Vincent; Kaminski-Cachopo, Anne

    2014-06-30

    The absorption properties of ZnO nanowire arrays covered with a semiconducting absorbing shell for extremely thin absorber solar cells are theoretically investigated by optical computations of the ideal short-circuit current density with three-dimensional rigorous coupled wave analysis. The effects of nanowire geometrical dimensions on the light trapping and absorption properties are reported through a comprehensive optical mode analysis. It is shown that the high absorptance of these heterostructures is driven by two different regimes originating from the combination of individual nanowire effects and nanowire arrangement effects. In the short wavelength regime, the absorptance is likely dominated by optical modes efficiently coupled with the incident light and interacting with the nearby nanowires (i.e. diffraction), induced by the period of core shell ZnO nanowire arrays. In contrast, in the long wavelength regime, the absorptance is governed by key optically guided modes, related to the diameter of individual core shell ZnO nanowires.

  7. Design for strong absorption in a nanowire array tandem solar cell.

    PubMed

    Chen, Yang; Pistol, Mats-Erik; Anttu, Nicklas

    2016-08-30

    Semiconductor nanowires are a promising candidate for next-generation solar cells. However, the optical response of nanowires is, due to diffraction effects, complicated to optimize. Here, we optimize through optical modeling the absorption in a dual-junction nanowire-array solar cell in terms of the Shockley-Quessier detailed balance efficiency limit. We identify efficiency maxima that originate from resonant absorption of photons through the HE11 and the HE12 waveguide modes in the top cell. An efficiency limit above 40% is reached in the band gap optimized Al0.10Ga0.90As/In0.34Ga0.66As system when we allow for different diameter for the top and the bottom nanowire subcell. However, for experiments, equal diameter for the top and the bottom cell might be easier to realize. In this case, we find in our modeling a modest 1-2% drop in the efficiency limit. In the Ga0.51In0.49P/InP system, an efficiency limit of η = 37.3% could be reached. These efficiencies, which include reflection losses and sub-optimal absorption, are well above the 31.0% limit of a perfectly-absorbing, idealized single-junction bulk cell, and close to the 42.0% limit of the idealized dual-junction bulk cell. Our results offer guidance in the choice of materials and dimensions for nanowires with potential for high efficiency tandem solar cells.

  8. Design for strong absorption in a nanowire array tandem solar cell

    PubMed Central

    Chen, Yang; Pistol, Mats-Erik; Anttu, Nicklas

    2016-01-01

    Semiconductor nanowires are a promising candidate for next-generation solar cells. However, the optical response of nanowires is, due to diffraction effects, complicated to optimize. Here, we optimize through optical modeling the absorption in a dual-junction nanowire-array solar cell in terms of the Shockley-Quessier detailed balance efficiency limit. We identify efficiency maxima that originate from resonant absorption of photons through the HE11 and the HE12 waveguide modes in the top cell. An efficiency limit above 40% is reached in the band gap optimized Al0.10Ga0.90As/In0.34Ga0.66As system when we allow for different diameter for the top and the bottom nanowire subcell. However, for experiments, equal diameter for the top and the bottom cell might be easier to realize. In this case, we find in our modeling a modest 1–2% drop in the efficiency limit. In the Ga0.51In0.49P/InP system, an efficiency limit of η = 37.3% could be reached. These efficiencies, which include reflection losses and sub-optimal absorption, are well above the 31.0% limit of a perfectly-absorbing, idealized single-junction bulk cell, and close to the 42.0% limit of the idealized dual-junction bulk cell. Our results offer guidance in the choice of materials and dimensions for nanowires with potential for high efficiency tandem solar cells. PMID:27574019

  9. Design for strong absorption in a nanowire array tandem solar cell

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Pistol, Mats-Erik; Anttu, Nicklas

    2016-08-01

    Semiconductor nanowires are a promising candidate for next-generation solar cells. However, the optical response of nanowires is, due to diffraction effects, complicated to optimize. Here, we optimize through optical modeling the absorption in a dual-junction nanowire-array solar cell in terms of the Shockley-Quessier detailed balance efficiency limit. We identify efficiency maxima that originate from resonant absorption of photons through the HE11 and the HE12 waveguide modes in the top cell. An efficiency limit above 40% is reached in the band gap optimized Al0.10Ga0.90As/In0.34Ga0.66As system when we allow for different diameter for the top and the bottom nanowire subcell. However, for experiments, equal diameter for the top and the bottom cell might be easier to realize. In this case, we find in our modeling a modest 1–2% drop in the efficiency limit. In the Ga0.51In0.49P/InP system, an efficiency limit of η = 37.3% could be reached. These efficiencies, which include reflection losses and sub-optimal absorption, are well above the 31.0% limit of a perfectly-absorbing, idealized single-junction bulk cell, and close to the 42.0% limit of the idealized dual-junction bulk cell. Our results offer guidance in the choice of materials and dimensions for nanowires with potential for high efficiency tandem solar cells.

  10. Thermoelectric properties of electrolessly etched silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Sadhu, Jyothi; Tian, Hongxiang; Ma, Jun; Valavala, Krishna; Singh, Piyush; Sinha, Sanjiv

    2013-03-01

    Patterning silicon as nanowires with roughened sidewalls enhances the thermoelectric figure-of-merit ZT by order of magnitude compared to the bulk at 300 K. The enhancement is mainly achieved by the remarkable reduction in the thermal conductivity below 5 W/mK at 300 K with only a negligible effect on the power factor of these nanowires. While the focus remained on understanding the implications of surface disorder on the thermal conductivity, the phonon transport effects on the Seebeck coefficient of these wires remains largely unexplored. We developed an electroless etching technique to generate nanowire arrays (NWAs) with controlled surface roughness, morphology, porosity and doping. We conduct the simultaneous device-level measurements of the Seebeck coefficient and thermal conductivity of the NWAs using frequency domain techniques. We observe that nano-structuring quenches the phonon drag in NWAs thereby reducing the Seebeck coefficient by ~25% compared to the bulk at degenerate doping levels. Further, we observe that the sidewall roughness greater than 3 nm roughness height lowers the thermal conductivity 75% below the Casimir limit with 10% - 15% increase in Seebeck coefficient. The porous NWAs show thermal conductivity close to the amorphous limit of Si with enhancement in the Seebeck coefficient primarily due to the carrier depletion.

  11. Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication

    DOEpatents

    Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke

    2015-01-13

    Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.

  12. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.

    PubMed

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E

    2015-09-02

    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.

  13. Ultra-long metal nanowire arrays on solid substrate with strong bonding

    PubMed Central

    2011-01-01

    Ultra-long metal nanowire arrays with large circular area up to 25 mm in diameter were obtained by direct electrodeposition on metalized Si and glass substrates via a template-based method. Nanowires with uniform length up to 30 μm were obtained. Combining this deposition process with lithography technology, micrometre-sized patterned metal nanowire array pads were successfully fabricated on a glass substrate. Good adhesion between the patterned nanowire array pads and the substrate was confirmed using scanning acoustic microscopy characterization. A pull-off tensile test showed strong bonding between the nanowires and the substrate. Conducting atomic force microscopy (C-AFM) measurements showed that approximately 95% of the nanowires were electrically connected with the substrate, demonstrating its viability to use as high-density interconnect. PMID:21906311

  14. Effects of anodization process of aluminum oxide template fabrication on selective growth of Si nanowire arrays

    NASA Astrophysics Data System (ADS)

    Hoang Nguyen, Van; Tutashkonko, Sergii; Hoshi, Yusuke; Usami, Noritaka

    2015-08-01

    We report on effects of anodization process of anodic aluminum oxide (AAO) template on selective growth of Si nanowires using gas source molecular beam epitaxy. By switching off the anodization currents at several points, the structure of Si surface was altered, which was critical factor for the Si nanowire array growth. With reasonable switched-off point of anodization current at R of 10%, the selective growth of Si nanowire growth was favorable and 1-µm-long Si nanowire arrays were successfully grown. It was interesting that their structures were epitaxial structures; whereas, long anodization of AAO was found to be unfavorable for growth of Si nanowires due to anodization of Si surface. It caused the density of Si nanowire arrays to be modest and their structures were polycrystal structure.

  15. Ultrahigh-Density Nanowire Lattices and Circuits

    NASA Astrophysics Data System (ADS)

    Melosh, Nicholas A.; Boukai, Akram; Diana, Frederic; Gerardot, Brian; Badolato, Antonio; Petroff, Pierre M.; Heath, James R.

    2003-04-01

    We describe a general method for producing ultrahigh-density arrays of aligned metal and semiconductor nanowires and nanowire circuits. The technique is based on translating thin film growth thickness control into planar wire arrays. Nanowires were fabricated with diameters and pitches (center-to-center distances) as small as 8 nanometers and 16 nanometers, respectively. The nanowires have high aspect ratios (up to 106), and the process can be carried out multiple times to produce simple circuits of crossed nanowires with a nanowire junction density in excess of 1011 per square centimeter. The nanowires can also be used in nanomechanical devices; a high-frequency nanomechanical resonator is demonstrated.

  16. Reversal modes in FeCoNi nanowire arrays: Correlation between magnetostatic interactions and nanowires length

    NASA Astrophysics Data System (ADS)

    Samanifar, S.; Almasi Kashi, M.; Ramazani, A.; Alikhani, M.

    2015-03-01

    FeCoNi nanowire arrays (175 nm in diameter and lengths ranging from 5 to 40 μm) were fabricated into nanopores of hard-anodized aluminum oxide templates using pulsed ac electrodeposition technique. Increasing the length had no considerable effect on the composition and crystalline characteristics of Fe47Co38Ni15 nanowires (NWs). By eliminating the dendrites formed at the bottom of the pores, we report a careful investigation on the effect of magnetostatic interactions on magnetic properties and the effect of nanowire length on reversal modes. Hysteresis loop measurements indicated that increasing the length decreases coercivity and squareness values. On the other hand, first-order reversal curve measurements show a linear correlation between the magnetostatic interactions and length of NWs. Comparing reversal modes of the NWs both experimentally and theoretically using angular dependence of coercivity, we find that when L≤22 μm, a vortex domain wall mode is only occurred. When L>22 μm, a non-monotonic behavior indicates a transition from the vortex to transverse domain wall propagation. As a result, a critical length was found above which the transition between the reversal modes is occurred due the enhanced interactions. The transition angle also shifts toward a lower angle as the length increases. Moreover, with increasing length from 22 to 31 μm, the single domain structure of NWs changes to a pseudo single domain state. A multidomain-like behavior is also found for the longest NWs length.

  17. Light-controlled resistive switching of ZnWO{sub 4} nanowires array

    SciTech Connect

    Zhao, W. X.; Sun, B.; Liu, Y. H.; Wei, L. J.; Li, H. W.; Chen, P.

    2014-07-15

    ZnWO{sub 4} nanowires array was prepared on the titanium substrate by a facile hydrothermal synthesis, in which the average length of ZnWO{sub 4} nanowires is about 2um and the diameter of individual ZnWO{sub 4} nanowire ranges from 50 to 70 nm. The bipolar resistive switching effect of ZnWO{sub 4} nanowires array was observed. Moreover, the performance of the resistive switching device is greatly improved under white light irradiation compared with that in the dark.

  18. Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation

    SciTech Connect

    Liu, Hailong; She, Guangwei; Mu, Lixuan; Shi, Wensheng

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Arrays of porous SiC nanowires prepared by a facile in situ carbonizing method. Black-Right-Pointing-Pointer Utilizing the SiC nanowire arrays as photocatalysis for water splitting. Black-Right-Pointing-Pointer Excellent photocatalytic performance under the UV irradiation. Black-Right-Pointing-Pointer Very high stability of the SiC nanowire photocatalyst. -- Abstract: In this study, we report the fabrication and photocatalytic properties of the oriented arrays of SiC nanowires on the Si substrate. The SiC nanowire arrays were prepared by carbonizing the Si nanowire arrays with the graphite powder at 1250 Degree-Sign C. The as-prepared SiC nanowires are highly porous, which endows them with a high surface-to-volume ratio. Considering the large surface areas and the high stability, the porous SiC nanowire arrays were used as photocatalyst for water splitting under UV irradiation. It was found that such porous SiC structure exhibited an enhanced and extremely stable photocatalytic performance.

  19. Near-infrared quarter-waveplate with near-unity polarization conversion efficiency based on silicon nanowire array.

    PubMed

    Dai, Yanmeng; Cai, Hongbing; Ding, Huaiyi; Ning, Zhen; Pan, Nan; Zhu, Hong; Shi, Qinwei; Wang, Xiaoping

    2015-04-06

    Metasurfaces made of subwavelength resonators can modify the wave front of light within the thickness much less than free space wavelength, showing great promises in integrated optics. In this paper, we theoretically show that electric and magnetic resonances supported simultaneously by a subwavelength nanowire with high refractive-index can be utilized to design metasurfaces with near-unity transmittance. Taking silicon nanowire for instance, we design numerically a near-infrared quarter-waveplate with high transmittance using a subwavelength nanowire array. The operation bandwidth of the waveplate is 0.14 μm around the center wavelength of 1.71 μm. The waveplate can convert a 45° linearly polarized incident light to circularly polarized light with conversion efficiency ranging from 94% to 98% over the operation band. The performance of quarter waveplate can in principle be tuned and improved through optimizing the parameters of nanowire arrays. Its compatibility to microelectronic technologies opens up a distinct possibility to integrate nanophotonics into the current silicon-based electronic devices.

  20. High yield transfer of ordered nanowire arrays into transparent flexible polymer films.

    PubMed

    Standing, A J; Assali, S; Haverkort, J E M; Bakkers, E P A M

    2012-12-14

    The factors affecting transfer of nanowire arrays from their substrates into flexible PDMS films have been systematically investigated. Experiments were carried out on gallium phosphide nanowires with a standard length of 10 μm with varying pitch (0.2-1.5 μm). The important factors were found to be penetration of the PDMS within the nanowire arrays and the strength/rigidity of the PDMS film. The PDMS penetration between wires in the arrays is affected by both the viscosity of the PDMS solution and the presence of air pockets trapped within nanowire arrays, particularly at small pitches. Dilution with hexane and curing in a vacuum desiccator solve the wire penetration problem, and an increase in cure/base ratio increases the rigidity and strength of the PDMS. The procedures for preparation and deposition of the PDMS solution are optimized and a high yield, up to 95%, of wire transfer across a range of nanowire pitches has been obtained.

  1. Patterned arrays of capped platinum nanowires with quasi-elastic mechanical response to lateral force

    NASA Astrophysics Data System (ADS)

    Hottes, M.; Dassinger, F.; Muench, F.; Rauber, M.; Stegmann, C.; Schlaak, H. F.; Ensinger, W.

    2015-02-01

    In this Letter, we describe the electrodeposition of capped, micro-sized Pt nanowire arrays in ion-track etched polymer templates and measure their collective mechanical response to an external force. By using an aperture mask during the irradiation process, it was possible to restrict the creation of pores in the templates to defined areas, allowing the fabrication of small nanowire arrays in different geometries and sizes. The simultaneous and highly reliable formation of many nanowire arrays was achieved using a pulsed electrodeposition technique. After deposition, the polymer matrix was removed using a gentle, dry oxygen plasma treatment, resulting in an excellent preservation of the array nanostructure as confirmed by scanning electron microscopy. A force measuring station was set up to perform mechanical characterization series on free-standing arrays. The nanowire arrays show a high robustness and respond sensitively to the applied force, making them attractive as spring elements in miniaturized inertial sensors, for example.

  2. Coordination number model to quantify packing morphology of aligned nanowire arrays.

    PubMed

    Stein, Itai Y; Wardle, Brian L

    2013-03-21

    The average inter-wire spacing in aligned nanowire systems strongly influences both the physical and transport properties of the bulk material. Because most studies assume that the nanowire coordination is constant, a model that provides an analytical relationship between the average inter-wire spacings and measurable physical properties, such as nanowire volume fraction, is necessary. Here we report a continuous coordination number model with an analytical relationship between the average nanowire coordination, diameter, and volume fraction. The model is applied to vertically aligned carbon nanotube (VACNT) and nanofiber (VACNF) arrays, and the effective nanowire coordination number is established from easily accessible measures, such as the nanowire spacing and diameter. VACNT analysis shows that the coordination number increases with increasing nanowire volume fraction, leading the measured inter-CNT spacing values to deviate by as much as 13% from the spacing values predicted by the typically assumed hexagonal packing. VACNF analysis suggests that, by predicting an inter-fiber spacing that is within 6% of the reported value, the continuous coordination model outperforms both square and hexagonal packing in real nanowire arrays. Using this model, the average inter-wire spacing of nanowire arrays can be predicted, thus allowing more precise morphology descriptions, and thereby supporting the development of more accurate structure-property models of bulk materials comprised of aligned nanowires.

  3. Large area metal nanowire arrays with tunable sub-20 nm nanogaps.

    PubMed

    Le Thi Ngoc, Loan; Jin, Mingliang; Wiedemair, Justyna; van den Berg, Albert; Carlen, Edwin T

    2013-06-25

    We report a new top-down nanofabrication technology to realize large area metal nanowire (m-NW) arrays with tunable sub-20 nm separation nanogaps without the use of chemical etching or milling of the metal layer. The m-NW array nanofabrication technology is based on a self-regulating metal deposition process that is facilitated by closely spaced and isolated heterogeneous template surfaces that confine the metal deposition into two dimensions, and therefore, electrically isolated parallel arrays of m-NW can be realized with uniform and controllable nanogaps. Au-NW and Ag-NW arrays are presented with high-density ~10(5) NWs cm(-1), variable NW diameters down to ~50 nm, variable nanogaps down to ~5 nm, and very large nanogap length density ~1 km cm(-2). The m-NW arrays are designed and implemented as interdigitated nanoelectrodes for electrochemical applications and as plasmonic substrates where the coupled-mode localized surface plasmon resonance (LSPR) wavelength in the nanogaps between adjacent m-NW dimers can be precisely tuned to match any excitation source in the range from 500 to 1000 nm, thus providing optimal local electromagnetic field enhancement. A spatially averaged (n = 2500) surface-enhanced Raman scattering (SERS) analytical enhancement factor of (1.2 ± 0.1) × 10(7) is demonstrated from a benzenethiol monolayer chemisorbed on a Au-NW array substrate with LSPR wavelength matched to a He-Ne laser source.

  4. Angle-dependent photodegradation over ZnO nanowire arrays on flexible paper substrates.

    PubMed

    Lu, Ming-Yen; Tseng, Yen-Ti; Chiu, Cheng-Yao

    2014-01-01

    In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The crystal structure of a ZnO nanowire revealed that the nanowires were single-crystalline and had grown along the c axis. Further visualization through annular bright field scanning transmission electron microscopy revealed that the hydrothermally grown ZnO nanowires possessed Zn polarity. From photocatalytic activity measurements of the ZnO nanowire (NW) arrays on paper substrate, we extracted rate constants of 0.415, 0.244, 0.195, and 0.08 s(-1) for the degradation of methylene blue at incident angles of 0°, 30°, 60°, and 75°, respectively; that is, the photocatalytic activity of these ZnO nanowire arrays was related to the cosine of the incident angle of the UV light. Accordingly, these materials have promising applications in the design of sterilization systems and light-harvesting devices.

  5. Ultradense and planarized antireflective vertical silicon nanowire array using a bottom-up technique

    PubMed Central

    2013-01-01

    The production and characterization of ultradense, planarized, and organized silicon nanowire arrays with good crystalline and optical properties are reported. First, alumina templates are used to grow silicon nanowires whose height, diameter, and density are easily controlled by adjusting the structural parameters of the template. Then, post-processing using standard microelectronic techniques enables the production of high-density silicon nanowire matrices featuring a remarkably flat overall surface. Different geometries are then possible for various applications. Structural analysis using synchrotron X-ray diffraction reveals the good crystallinity of the nanowires and their long-range periodicity resulting from their high-density organization. Transmission electron microscopy also shows that the nanowires can grow on nonpreferential substrate, enabling the use of this technique with universal substrates. The good geometry control of the array also results in a strong optical absorption which is interesting for their use in nanowire-based optical sensors or similar devices. PMID:23497295

  6. Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Fang, Xing; Zhao, C. Y.; Bao, Hua

    2014-01-01

    The optical absorption of four square arrays of crystalline silicon nanostructures, i.e., circular nanowire array, circular nanohole arrays, square nanowire arrays, and square nanohole arrays, are numerically investigated. The method of rigorous coupled-wave analysis (RCWA) is employed to calculate the absorptivity for the arrays with lattice constant from 100 nm to 1500 nm. The results indicated that the lattice constant is the foremost structural parameter to determine the ultimate efficiency, and the peaks of ultimate efficiencies for the four different nanostructures always appear around the lattice constant of 600 nm. It demonstrates that square nanowire arrays and circular nanohole arrays have great potentials for photovoltaic applications with high ultimate efficiencies and low filling ratios. Moreover, high ultimate efficiencies of all structures can be maintained over a large range of incident angles.

  7. Salt-induced self-assembly of bacteria on nanowire arrays.

    PubMed

    Sakimoto, Kelsey K; Liu, Chong; Lim, Jongwoo; Yang, Peidong

    2014-09-10

    Studying bacteria-nanostructure interactions is crucial to gaining controllable interfacing of biotic and abiotic components in advanced biotechnologies. For bioelectrochemical systems, tunable cell-electrode architectures offer a path toward improving performance and discovering emergent properties. As such, Sporomusa ovata cells cultured on vertical silicon nanowire arrays formed filamentous cells and aligned parallel to the nanowires when grown in increasing ionic concentrations. Here, we propose a model describing the kinetic and the thermodynamic driving forces of bacteria-nanowire interactions.

  8. Ultralow thermal conductivity of silicon nanowire arrays by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Xiong, Xue; Liu, Meng; Cheng, Guoan; Zheng, Ruiting; Xu, Ju; Wei, Lei

    2017-02-01

    We investigate the thermal conductivities of silicon nanowires (SiNWs) and their arrays based on molecular dynamics simulations. It is found that diminishing diameter, roughing surface and doping impurity of SiNWs can reduce their thermal conductivities by two or three orders of magnitude compared with that of bulk silicon crystals due to the strong phonon boundary and phonon impurity scattering. The simulated thermal conductivities of SiNW arrays demonstrate that arraying nanowires can further lower the thermal conductivity owing to the laterally-coupled effect, and the thermal conductivity of arrays decreases notably with the increased nanowire volume fraction, resulting in an ultralow thermal conductivity for the doped SiNW arrays with rough surfaces, which provides theoretical guidance of thermal management for semiconductor nanowire based microelectronic and thermoelectric devices.

  9. Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode.

    PubMed

    Sun, X W; Wang, J X

    2008-07-01

    We report an electrochromic (EC) display using a viologen-modified ZnO nanowire array as the EC electrode. The ZnO nanowire array was grown directly on an indium tin oxide (ITO) glass by a low temperature aqueous thermal decomposition method and then modified with viologen molecules. The ZnO nanowire electrochromic device shows fast switching time (170 and 142 ms for coloration and bleaching respectively for a 1 cm (2) cell), high coloration efficiency (196 C (-1) cm (2)) and good stability. The improved performance of the ZnO nanowires EC device can be attributed to the large surface area and high crystalline and good electron transport properties of the ZnO nanowire array.

  10. Simultaneous electrical and plasmonic monitoring of potential induced ion adsorption on metal nanowire arrays.

    PubMed

    MacKenzie, Robert; Fraschina, Corrado; Dielacher, Bernd; Sannomiya, Takumi; Dahlin, Andreas B; Vörös, Janos

    2013-06-07

    Simultaneous LSPR and electronic sensing of potential induced ion adsorption onto gold nanowire arrays is presented. The formation of a Stern layer upon applying an electrochemical potential generated a complex optical response. Simulation of a lossy atomic layer on the nanowire array using the Multiple Multipole Program (MMP) corresponded very well to the experimentally observed peak position, intensity, and radius of curvature changes. Additionally, a significant voltage-dependent change in the resistance of the gold nanowire array was observed during the controlled formation of the electrical double layer. The results demonstrated that an applied electrochemical potential induces measurable changes in the optical and electrical properties of the gold nanowire surface. This is the first demonstration of combined plasmonic and nanowire resistance-based sensing of a surface process in the literature.

  11. Self-assembled nanowire array capacitors: capacitance and interface state profile.

    PubMed

    Li, Qiliang; Xiong, Hao D; Liang, Xuelei; Zhu, Xiaoxiao; Gu, Diefeng; Ioannou, Dimitris E; Baumgart, Helmut; Richter, Curt A

    2014-04-04

    Direct characterization of the capacitance and interface states is very important for understanding the electronic properties of a nanowire transistor. However, the capacitance of a single nanowire is too small to precisely measure. In this work we have fabricated metal-oxide-semiconductor capacitors based on a large array of self-assembled Si nanowires. The capacitance and conductance of the nanowire array capacitors are directly measured and the interface state profile is determined by using the conductance method. We demonstrate that the nanowire array capacitor is an effective platform for studying the electronic properties of nanoscale interfaces. This approach provides a useful and efficient metrology for the study of the physics and device properties of nanoscale metal-oxide-semiconductor structures.

  12. Self-assembled nanowire array capacitors: capacitance and interface state profile

    NASA Astrophysics Data System (ADS)

    Li, Qiliang; Xiong, Hao D.; Liang, Xuelei; Zhu, Xiaoxiao; Gu, Diefeng; Ioannou, Dimitris E.; Baumgart, Helmut; Richter, Curt A.

    2014-04-01

    Direct characterization of the capacitance and interface states is very important for understanding the electronic properties of a nanowire transistor. However, the capacitance of a single nanowire is too small to precisely measure. In this work we have fabricated metal-oxide-semiconductor capacitors based on a large array of self-assembled Si nanowires. The capacitance and conductance of the nanowire array capacitors are directly measured and the interface state profile is determined by using the conductance method. We demonstrate that the nanowire array capacitor is an effective platform for studying the electronic properties of nanoscale interfaces. This approach provides a useful and efficient metrology for the study of the physics and device properties of nanoscale metal-oxide-semiconductor structures.

  13. Size effect on morphology and optical properties of branched ZnO/Si nanowire arrays

    NASA Astrophysics Data System (ADS)

    Yang, Qianqian; Li, Dingguo; Yu, Binbin; Huang, Shengli; Wang, Jiayuan; Li, Shuping; Kang, Junyong

    2016-03-01

    Branched ZnO/Si nanowire arrays have been synthesized by integration of metal-assisted chemical etching and hydrothermal growth. Experiments for different etching duration and hydrothermal growth time were carried out to investigate their effect on the final morphology of the heterogeneous material as well as its photoluminescence and antireflectance. The results demonstrated that the Si nanowires got longer with extending etching period, on which the branched ZnO nanowires were shorter in length and smaller in diameter in the set time period. The branched ZnO nanowires became longer and gradually filled up the interval among Si nanowires with prolonging hydrothermal growth. The emission spectra indicated that the nanostructure became better with less defects and impurities for the long Si nanowires. The diffuse reflectance spectra of the ZnO/Si nanowires showed an optimal growth period for the reflectivity lower than 4% in the visible region. In this article, possible mechanisms for the nanowire arrays growth and optical properties and their evolution were also discussed, which might provide guidance for the architecture and application of the heterogeneous tree-like nanowire arrays.

  14. Gold nanodisk array surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Tian, Xueli

    Surface plasmon resonances in periodic metal nanostructures have been investigated for sensing applications over the last decade. The resonance wavelengths of the nanostructures are usually measured in the transmission or reflection spectrum for chemical and biological sensing. In this thesis, I introduce a nanoscale gap mediated surface plasmon resonance nanodisk array for displacement sensing and a super-period gold nanodisk grating enabled surface plasmon resonance spectrometer sensor. The super-period gold nanodisk grating has a small subwavelength period and a large diffraction grating period. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD). A surface plasmon resonance sensor for the bovine serum albumin (BSA) protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  15. Probing the spatial extension of light trapping-induced enhanced Raman scattering in high-density Si nanowire arrays

    NASA Astrophysics Data System (ADS)

    Bontempi, Nicolò; Salmistraro, Marco; Ferroni, Matteo; Depero, Laura E.; Alessandri, Ivano

    2014-11-01

    This paper reports an experimental investigation of surface-enhanced Raman scattering in high-density Si nanowire arrays obtained by electroless etching. A direct relationship between light trapping capabilities of Si nanowires and enhanced Raman scattering was demonstrated. Optimized arrays allowed for a remarkable increase of Raman sensitivity in comparison to reference planar samples. As a result, the detection limit of molecular probes under resonant excitation (e.g. methylene blue) can be extended by three orders of magnitude. In addition, continuous ultrathin films, that cannot be analyzed in conventional Raman experiments, are made detectable. In the case of anatase thin films, the detection limit of 5 nm was reached. Raman spectra of Si/TiO2 core/shell heterostructures demonstrate that the enhanced field resulting from surface multiple scattering is characterized by a large spatial extension (about fifty nanometers), making these materials a potential alternative to plasmonic metals for SERS experiments.

  16. Fabrication and assessment of structure, composition, and electronic properties of nanowire arrays

    NASA Astrophysics Data System (ADS)

    Sander, Melissa

    2001-07-01

    Nanocomposite materials consisting of arrays of parallel, uniform-diameter nanowires within a supporting matrix have a variety of potential applications. The focus of this work is on two nanowire array systems, bismuth and bismuth telluride nanowires in alumina templates. These systems are both promising for thermoelectric applications due to an expected increase in thermoelectric efficiency with reduced dimensionality. Bismuth telluride nanowire arrays were fabricated by electrochemical deposition of Bi2Te3 into porous anodic alumina templates. A process has been developed that allows for the production of high density (˜5 x 109/cm2), high aspect-ratio (>1000), ordered nanowire arrays over large areas (>1mm2), which will enable routine assessment of the array properties as well as potential incorporation into existing device structures. High spatial resolution characterization techniques, including imaging, diffraction, and energy-dispersive spectroscopy in the transmission electron microscope (TEM), have been employed to assess the structure and composition in the arrays. The nanowires are dense, polycrystalline Bi2Te3 with strong texturing along the wire axis. A short (<5 mum) Te-rich composition gradient was identified at the base of the pores. In addition, the composition, structure, and electronic properties of pressure-injected bismuth nanowire arrays have been assessed at high spatial resolution by employing imaging, diffraction, and electron energy loss spectrometry (EELS) in the TEM. The nanowires are polycrystalline with high aspect-ratio grains, and there is evidence of internal localized strain fields. The Bi-Al 2O3 interface in the arrays is compositionally abrupt, with a narrow interphase region dominated by Bi-O bonding. Low-loss EELS studies indicate that the volume plasmon loss peak in individual Bi nanowires shifts to higher energy and broadens as the wire diameter decreases from 90 to 35nm. A low-loss excitation is present in spectra from the

  17. Nanowire Array Gratings with ZnO Combs

    SciTech Connect

    Pan, Zhengwei; Mahurin, Shannon Mark; Dai, Sheng; Lowndes, Douglas H

    2005-01-01

    Diffraction gratings are mainly manufactured by mechanical ruling, interference lithography, or resin replication, which generally require expensive equipment, complicated procedures, and a stable environment. We describe the controlled growth of self-organized microscale ZnO comb gratings by a simple one-step thermal evaporation and condensation method. The ZnO combs consist of an array of very uniform, perfectly aligned, evenly spaced and long single-crystalline ZnO nanowires or nanobelts with periods in the range of 0.2 to 2 {mu}m. Diffraction experiments show that the ZnO combs can function as a tiny three-beam divider that may find applications in miniaturized integrated optics such as three-beam optical pickup systems.

  18. Low-frequency noise in gallium nitride nanowire mechanical resonators

    NASA Astrophysics Data System (ADS)

    Gray, Jason M.; Bertness, Kris A.; Sanford, Norman A.; Rogers, Charles T.

    2012-12-01

    We report on the low-frequency 1/f (flicker) parameter noise displayed by the resonance frequency of doubly clamped c-axis gallium nitride nanowire (NW) mechanical resonators. The resonators are electrostatically driven and their mechanical response is electronically detected via NW piezoresistance. With an applied dc voltage bias, a NW driven near its mechanical resonance generates a dc and Lorentzian rf current that both display 1/f noise. The rf current noise is proportional to the square of the derivative of the Lorentzian lineshape with a magnitude highly dependent on NW dc bias voltage conditions, consistent with a model wherein noise in the NW's electrical impedance leads to temperature noise from local Joule heating, which in turn generates resonance frequency noise via thermal expansion and the temperature-dependent Young's modulus. An example device with a 27.8 MHz resonance frequency experiences an approximate resonance frequency shift of -1.4 Hz/nW. The resonance frequency noise increases as the square of the bias voltage, indicating specific operating conditions that optimize the signal-to-noise ratio in proposed NW sensors.

  19. Optical meta-films of alumina nanowire arrays for solar evaporation and optoelectronic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungsik; Bae, Kyuyoung; Kang, Gumin; Baek, Seunghwa

    2017-05-01

    Nanowires with metallic or dielectric materials have received considerable interest in many research fields for optical and optoelectronic devices. Metal nanowires have been extensively studied due to the high optical and electrical properties and dielectric nanowires are also investigated owing to the multiple scattering of light. In this research, we report optical meta-films of alumina nanowire arrays with nanometer scale diameters by fabrication method of self-aggregate process. The aluminum oxide nanowires are transparent from ultraviolet to near infrared wavelength regions and array structures have strong diffusive light scattering. We integrate those optical properties from the material and structure, and produce efficient an optical haze meta-film which has high transparency and transmission haze at the same time. The film enhances efficiencies of optical devices by applying on complete products, such as organic solar cells and LEDs, because of an expanded optical path length and light trapping in active layers maintaining high transparency. On the other hands, the meta-film also produces solar steam by sputtering metal on the aluminum oxide nanowire arrays. The nanowire array film with metal coating exhibits ultrabroadband light absorption from ultraviolet to mid-infrared range which is caused by nanofocusing of plasmons. The meta-film efficiently produces water steam under the solar light by metal-coated alumina arrays which have high light-to-heat conversion efficiency. The design, fabrication, and evaluation of our light management platforms and their applications of the meta-films will be introduced.

  20. Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zhitao, Han; Sisi, Li; Jinkui, Chu; Yong, Chen

    2013-06-01

    Well-aligned ZnO nanowires were hydrothermally synthesized based on a facile method for preparing the ZnO seed layer which was derived from the combination of a sol—gel process and the spin-coating technique. The effect of the contents of growth solution and the growth duration on the morphology of ZnO nanowires has been investigated. The results indicated that long and vertically aligned ZnO nanowires could be obtained by adjusting the contents of ammonia and polyethyleneimine (PEI) in the growth solution. Under the optimized condition, the length of ZnO nanowires increased fast and almost linearly with the growth duration. After 10 h incubation, ZnO nanowires more than 25 μm in length were obtained. By combining the conventional photolithographic method with this hydrothermal approach, long and well-aligned ZnO nanowire arrays were selectively grown on the substrate. In addition, the bottom fusion at the foot of the nanowires has been obviously improved. The results demonstrated that the improved hydrothermal process is favorable to synthesize long and well-aligned ZnO nanowires, and possesses good process compatibility with the conventional photolithographic technique for preparing ZnO nanowire arrays. So it has great potential in applications such as display and field emission devices.

  1. Conductivity of Nanowire Arrays under Random and Ordered Orientation Configurations

    PubMed Central

    Jagota, Milind; Tansu, Nelson

    2015-01-01

    A computational model was developed to analyze electrical conductivity of random metal nanowire networks. It was demonstrated for the first time through use of this model that a performance gain in random metal nanowire networks can be achieved by slightly restricting nanowire orientation. It was furthermore shown that heavily ordered configurations do not outperform configurations with some degree of randomness; randomness in the case of metal nanowire orientations acts to increase conductivity. PMID:25976936

  2. Developing high coercivity in large diameter cobalt nanowire arrays

    NASA Astrophysics Data System (ADS)

    Montazer, A. H.; Ramazani, A.; Almasi Kashi, M.; Zavašnik, J.

    2016-11-01

    Regardless of the synthetic method, developing high magnetic coercivity in ferromagnetic nanowires (NWs) with large diameters has been a challenge over the past two decades. Here, we report on the synthesis of highly coercive cobalt NW arrays with diameters of 65 and 80 nm, which are embedded in porous anodic alumina templates with high-aspect-ratio pores. Using a modified electrochemical deposition method enabled us to reach room temperature coercivity and remanent ratio up to 3000 Oe and 0.70, respectively, for highly crystalline as-synthesized hcp cobalt NW arrays with a length of 8 μm. The first-order reversal curve (FORC) analysis showed the presence of both soft and hard magnetic phases along the length of the resulting NWs. To develop higher coercive fields, the length of the NWs was then gradually reduced in order from bottom to top, thereby reaching NW sections governed by the hard phase. Consequently, this resulted in record high coercivities of 4200 and 3850 Oe at NW diameters of 65 and 80 nm, respectively. In this case, the FORC diagrams confirmed a significant reduction in interactions between the magnetic phases of the remaining sections of NWs. At this stage, x-ray diffraction (XRD) and dark-field transmission electron microscopy analyses indicated the formation of highly crystalline bamboo-like sections along the [0 0 2] direction during a progressive pulse-controlled electrochemical growth of NW arrays under optimized parameters. Our results both provide new insights into the growth process, crystalline characteristics and magnetic phases along the length of large diameter NW arrays and, furthermore, develop the performance of pure 3d transition magnetic NWs.

  3. Low-frequency noise in gallium nitride nanowire mechanical resonators

    NASA Astrophysics Data System (ADS)

    Gray, Jason; Bertness, Kris; Sanford, Norman; Rogers, Charles

    2012-02-01

    We report on the low-frequency 1/f (flicker) parameter noise displayed by the resonance frequency and resistance of doubly clamped c-axis gallium nitride nanowire (NW) mechanical resonators. The resonators are electrostatically driven and their mechanical response is electronically detected via NW piezoresistance. With an applied dc voltage bias, an NW driven near its mechanical resonance generates a dc and Lorentzian rf current that both display 1/f noise. The rf current noise is proportional to the square of the derivative of the Lorentzian lineshape with a magnitude highly dependent on NW dc bias voltage conditions, consistent with noise in the NW's resistance leading to temperature noise from local Joule heating, which in turn generates resonance frequency noise. An example device with a 27.8 MHz resonance frequency and 220 kφ resistance experiences an approximate resonance frequency shift of -5.8 Hz/nW. In terms of NW resistance change, this corresponds with shifts of 0.1 Hz/φ and 2.6 Hz/φ at 1 V bias and 4 V bias, respectively, with an average resistance fluctuation of 1 kφ in a 1-second bandwidth.

  4. Terahertz detectors arrays based on orderly aligned InN nanowires

    PubMed Central

    Chen, Xuechen; Liu, Huiqiang; Li, Qiuguo; Chen, Hao; Peng, Rufang; Chu, Sheng; Cheng, Binbin

    2015-01-01

    Nanostructured terahertz detectors employing a single semiconducting nanowire or graphene sheet have recently generated considerable interest as an alternative to existing THz technologies, for their merit on the ease of fabrication and above-room-temperature operation. However, the lack of alignment in nanostructure device hindered their potential toward practical applications. The present work reports ordered terahertz detectors arrays based on neatly aligned InN nanowires. The InN nanostructures (nanowires and nano-necklaces) were achieved by chemical vapor deposition growth, and then InN nanowires were successfully transferred and aligned into micrometer-sized groups by a “transfer-printing” method. Field effect transistors on aligned nanowires were fabricated and tested for terahertz detection purpose. The detector showed good photoresponse as well as low noise level. Besides, dense arrays of such detectors were also fabricated, which rendered a peak responsivity of 1.1 V/W from 7 detectors connected in series. PMID:26289498

  5. GaN nanowire arrays by a patterned metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Wang, K. C.; Yuan, G. D.; Wu, R. W.; Lu, H. X.; Liu, Z. Q.; Wei, T. B.; Wang, J. X.; Li, J. M.; Zhang, W. J.

    2016-04-01

    We developed an one-step and two-step metal-assisted chemical etching method to produce self-organized GaN nanowire arrays. In one-step approach, GaN nanowire arrays are synthesized uniformly on GaN thin film surface. However, in a two-step etching processes, GaN nanowires are formed only in metal uncovered regions, and GaN regions with metal-covering show nano-porous sidewalls. We propose that nanowires and porous nanostructures are tuned by sufficient and limited etch rate, respectively. PL spectra shows a red-shift of band edge emission in GaN nanostructures. The formation mechanism of nanowires was illustrated by two separated electrochemical reactions occur simultaneously. The function of metals and UV light was illustrated by the scheme of potential relationship between energy bands in Si, GaN and standard hydrogen electrode potential of solution and metals.

  6. A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell.

    PubMed

    Yan, Xin; Zhang, Chen; Wang, Jiamin; Zhang, Xia; Ren, Xiaomin

    2017-12-01

    A low-cost Si nanowire array/perovskite hybrid solar cell is proposed and simulated. The solar cell consists of a Si p-i-n nanowire array filled with CH3NH3PbI3, in which both the nanowires and perovskite absorb the incident light while the nanowires act as the channels for transporting photo-generated electrons and holes. The hybrid structure has a high absorption efficiency in a broad wavelength range of 300~800 nm. A large short-circuit current density of 28.8 mA/cm(2) and remarkable conversion efficiency of 13.3% are obtained at a thin absorber thickness of 1.6 μm, which are comparable to the best results of III-V nanowire solar cells.

  7. Terahertz detectors arrays based on orderly aligned InN nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Xuechen; Liu, Huiqiang; Li, Qiuguo; Chen, Hao; Peng, Rufang; Chu, Sheng; Cheng, Binbin

    2015-08-01

    Nanostructured terahertz detectors employing a single semiconducting nanowire or graphene sheet have recently generated considerable interest as an alternative to existing THz technologies, for their merit on the ease of fabrication and above-room-temperature operation. However, the lack of alignment in nanostructure device hindered their potential toward practical applications. The present work reports ordered terahertz detectors arrays based on neatly aligned InN nanowires. The InN nanostructures (nanowires and nano-necklaces) were achieved by chemical vapor deposition growth, and then InN nanowires were successfully transferred and aligned into micrometer-sized groups by a “transfer-printing” method. Field effect transistors on aligned nanowires were fabricated and tested for terahertz detection purpose. The detector showed good photoresponse as well as low noise level. Besides, dense arrays of such detectors were also fabricated, which rendered a peak responsivity of 1.1 V/W from 7 detectors connected in series.

  8. Pulsed electrodeposition of monocrystalline Ni nanowire array and its magnetic properties

    NASA Astrophysics Data System (ADS)

    Xu, Jinxia; Wang, Keyu

    2008-08-01

    By means of a porous template without removing the aluminium substrate, a technique of pulsed electrodeposition with an intermittent symmetric square pulse has successfully been applied to fabricate Ni nanowire array. The as-obtained nanowires have a diameter of about 60 nm and exhibit high aspect ratio of more than 50. The electron diffraction pattern investigation demonstrates that the nanowires are single crystal. Moreover, a highly preferential orientation [2 2 0] of the as-obtained Ni nanowires with high purity decided by XRD has been obtained, and the preferred orientation is weakened remarkably by an annealing process. Furthermore, the investigation of magnetic properties by VSM indicates that the as-obtained Ni nanowire array has an obvious magnetic anisotropy and exhibits a good thermal stability.

  9. A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Zhang, Chen; Wang, Jiamin; Zhang, Xia; Ren, Xiaomin

    2017-01-01

    A low-cost Si nanowire array/perovskite hybrid solar cell is proposed and simulated. The solar cell consists of a Si p-i-n nanowire array filled with CH3NH3PbI3, in which both the nanowires and perovskite absorb the incident light while the nanowires act as the channels for transporting photo-generated electrons and holes. The hybrid structure has a high absorption efficiency in a broad wavelength range of 300 800 nm. A large short-circuit current density of 28.8 mA/cm2 and remarkable conversion efficiency of 13.3% are obtained at a thin absorber thickness of 1.6 μm, which are comparable to the best results of III-V nanowire solar cells.

  10. Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells.

    PubMed

    Wang, Baomin; Stevens, Erica; Leu, Paul W

    2014-03-10

    We studied the influence of geometric parameters on the optical absorption of gallium arsenide (GaAs) nanocone and nanowire arrays via finite difference time domain simulations. We optimized the structural parameters of the nanocone and nanowire arrays to maximize the ultimate efficiency across a range of lengths from 100 to 1000 nm. Nanocone arrays were found to have improved solar absorption, short-circuit current density, and ultimate efficiencies over nanowire arrays for a wide range of lengths. Detailed simulations reveal that nanocones have superior absorption due to reduced reflection from their smaller tip and reduced transmission from their larger base. Breaking the vertical mirror symmetry of nanowires results in a broader absorption spectrum such that overall efficiencies are enhanced for nanocones. We also evaluated the electric field intensity, carrier generation and angle-dependent optical properties of nanocones and nanowires. The carrier generation in nanocone arrays occurs away from the surface and is more uniform over the entire structure, which should result in less recombination losses than in nanowire arrays.

  11. Multiple nonlinear dielectric resonance of ultra-long silver trimolybdate nanowires

    SciTech Connect

    Wang, Guang-Sheng; Wen, Bo; He, Shuai; Guo, Lin; Cao, Mao-Sheng

    2013-06-01

    The silver molybdate nanowires (NWs) have been synthesized and characterized. The multiple dielectric resonant peaks of the nanocomposites filled with silver molybdate nanowires have been studied from 2 to 18 GHz. The as-established equivalent circuit model of the silver molybdate nanowires were employed to explain the nonlinear dielectric resonant behavior. - Graphical abstract: The ultra-long silver trimolybdate nanowires were synthesized and the dielectric peoperties of the products were studied from 2 to 18 GHz. The as-established equivalent circuit model of the silver molybdate nanowires were employed to explain the nonlinear dielectric resonant behavior. Highlights: • The silver molybdate nanowires have been synthesized and characterized. • The dielectric properties of the silver molybdate/ paraffin nanocomposites have been studied. • Higher concentration of silver trimolybdate enhances the dielectric properties of composite. • The dielectric behaviors were explained based on the as-established equivalent circuit mode.

  12. Interface nature of oxidized single-crystal arrays of etched Si nanowires on (100)Si

    NASA Astrophysics Data System (ADS)

    Jivanescu, M.; Stesmans, A.; Kurstjens, R.; Dross, F.

    2012-02-01

    Low temperature electron spin resonance studies have been carried out on single crystalline arrays of sub-10 nm Si nanowires (NWs) manufactured on (100)Si by top down etching and oxidation thinning. This reveals the presence of a substantial inherent density of Pb0 (Si3 ≡ Si•) defects (traps) at the NW Si/SiO2 interfaces, due to particular faceting and enhanced interface strain, leaving NW interfaces of reduced electrical quality. Perusal of the specific properties of the occurring Pb-type defect system points to a nanopillar morphology compatible with NWs predominantly bordered by {110} facets, with cross sectional shape of <100> truncated {110} squares. The inherent interface quality appears limited by the wire-narrowing thermal oxidation procedure.

  13. Nanowire Terahertz detectors with a resonant four-leaf-clover-shaped antenna.

    PubMed

    Viti, Leonardo; Coquillat, Dominique; Ercolani, Daniele; Sorba, Lucia; Knap, Wojciech; Vitiello, Miriam S

    2014-04-21

    We report on the development of an innovative class of nanowire-based Terahertz (THz) detectors in which the metamaterial properties of an antenna have been imported in the detection scheme of an overdamped plasma-wave field-effect transistor making its response resonant to THz radiation. Responsivities of ~105 V/W at 0.3 THz, with noise equivalent power levels ≈ 10(-10) W/√Hz, detectivities ~2 · 10(8) cm√Hz/W and quantum efficiencies ~1.2 · 10(-5) are reached at room-temperature. The resonant nature of the detection scheme provided by the four-leaf-clover-shaped geometry and the possibility to extend this technology to large multi-pixel arrays opens the path to demanding applications for ultra-sensitive metrology, spectroscopy and biomedicine.

  14. A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasana K.; Cavalli, Alessandro; Pelegati, Vitor B.; Murillo, Duber M.; Souza, Alessandra A.; Cesar, Carlos L.; Bakkers, Erik P. A. M.; Cotta, Monica A.

    2016-03-01

    Understanding the cellular signaling and function at the nano-bio interface can pave the way towards developing next-generation smart diagnostic tools. From this perspective, limited reports detail so far the cellular and subcellular forces exerted by bacterial cells during the interaction with abiotic materials. Nanowire arrays with high aspect ratio have been used to detect such small forces. In this regard, live force measurements were performed ex-vivo during the interaction of Xylella fastidiosa bacterial cells with InP nanowire arrays. The influence of nanowire array topography and surface chemistry on the response and motion of bacterial cells was studied in detail. The nanowire arrays were also functionalized with different cell adhesive promoters, such as amines and XadA1, an afimbrial protein of X.fastidiosa. By employing the well-defined InP nanowire arrays platform, and single cell confocal imaging system, we were able to trace the bacterial growth pattern, and show that their initial attachment locations are strongly influenced by the surface chemistry and nanoscale surface topography. In addition, we measure the cellular forces down to few nanonewton range using these nanowire arrays. In case of nanowire functionalized with XadA1, the force exerted by vertically and horizontally attached single bacteria on the nanowire is in average 14% and 26% higher than for the pristine array, respectively. These results provide an excellent basis for live-cell force measurements as well as unravel the range of forces involved during the early stages of bacterial adhesion and biofilm formation.

  15. Composite arrays of superconducting microstrip line resonators

    SciTech Connect

    Mohebbi, H. R. Miao, G. X.; Benningshof, O. W. B.; Taminiau, I. A. J.; Cory, D. G.

    2014-03-07

    A novel design of an array of half-wave superconductive microstrip resonators is described. The resonator is intended to be useful for electron spin resonance studies of thin film samples at cryogenic temperatures. It achieves a high quality factor, has a small mode-volume, and creates a uniform magnetic field in a plane above the resonator. The device is made of thin film Niobium on sapphire wafer and is tested with a static magnetic field. Variation of Q-factor versus the magnetic field's strength at different temperatures is reported and is in a good agreement with simulation when the loss due to the vortices is included. Also, the power-dependence response of the resonator is shown in experiments and is verified by capturing the nonlinearity associated with the surface impedance of the superconducting film into the circuit model of the device.

  16. Light-trapping properties of the Si inclined nanowire arrays

    NASA Astrophysics Data System (ADS)

    Xu, Zhaopeng; Huangfu, Huichao; He, Long; Wang, Jiazhuang; Yang, Dong; Guo, Jingwei; Wang, Haiyan

    2017-01-01

    The light trapping performance of Si nanowire with different inclination angles were systematically studied by COMSOL Multiphysics. The inclined nanowires with inclination angles smaller than 60° show greater light trapping ability than their counterparts of the vertical nanowires. The Si solar cell with the inclined nanowires of the optimal parameters, whose θ=30°, P=400 nm, D=140 nm, can achieve a 32.395 mA/cm2 short circuit photocurrent density and a 35.655% conversion efficiency. The study of the inclined nanowire provides an effective way for further utilization of the incoming light.

  17. Sensors and devices containing ultra-small nanowire arrays

    DOEpatents

    Xiao, Zhili

    2014-09-23

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  18. Sensors and devices containing ultra-small nanowire arrays

    DOEpatents

    Xiao, Zhili

    2017-04-11

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  19. SWNT array resonant gate MOS transistor.

    PubMed

    Arun, A; Campidelli, S; Filoramo, A; Derycke, V; Salet, P; Ionescu, A M; Goffman, M F

    2011-02-04

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  20. Controlled Segmentation of Metal Nanowire Array by Block Copolymer Lithography and Reversible Ion Loading.

    PubMed

    Mun, Jeong Ho; Cha, Seung Keun; Kim, Ye Chan; Yun, Taeyeong; Choi, Young Joo; Jin, Hyeong Min; Lee, Jae Eun; Jeon, Hyun Uk; Kim, So Youn; Kim, Sang Ouk

    2017-02-20

    Spatial arrangement of 1D nanomaterials may offer enormous opportunities for advanced electronics and photonics. Moreover, morphological complexity and chemical diversity in the nanoscale components may lead to unique properties that are hardly anticipated in randomly distributed homogeneous nanostructures. Here, controlled chemical segmentation of metal nanowire arrays using block copolymer lithography and subsequent reversible metal ion loading are demonstrated. To impose chemical heterogeneity in the nanowires generated by block copolymer lithography, reversible ion loading method highly specific for one particular polymer block is introduced. Reversibility of the metal ion loading enables area-selective localized replacement of metal ions in the self-assembled patterns and creates segmented metal nanowire arrays with different metallic components. Further integration of this method with shear aligning process produces high aligned segmented metal nanowire array with desired local chemical compositions.

  1. Synthesize of barium ferrite nanowire array by self-fabricated porous silicon template

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Han, Mangui; Deng, Jiangxia; Zheng, Liang; Wu, Jun; Deng, Longjiang; Qin, Huibin

    2014-08-01

    In this work, we synthesize barium ferrite (BaFe12O19) nanowire array in porous silicon template. The porous silicon templates are prepared via gold-assisted chemical etching method. The gold (Au) nanoparticles with mean diameter of 30 nm and distance of 100 nm were ordered on the surface of Si substrate through the Polystyrene (510000)-block-poly (2-vinylpyridine) (31000) (PS510000-b-P2VP31000) diblock copolymer. Porous silicon templates with mean diameter of 500 nm and distance between the pores of 500 nm were fabricated by two etching steps. BaFe12O19 nanowires with mean diameter of 200 nm were synthesized into a porous silicon template by a sol-gel method. Magnetic hysteresis loops show an isotropic feature of the BaFe12O19 nanowires array. The coercivity (Hc) and squareness ratio (Mr/Ms) of nanowire arrays are 2560 Oe and 0.6, respectively.

  2. Patterned growth of aligned ZnO nanowire arrays on sapphire and GaN layers

    NASA Astrophysics Data System (ADS)

    Fan, H. J.; Fleischer, F.; Lee, W.; Nielsch, K.; Scholz, R.; Zacharias, M.; Gösele, U.; Dadgar, A.; Krost, A.

    2004-07-01

    Patterned growth of vertically aligned ZnO nanowire arrays on the micrometer and nanometer scale on sapphire and GaN epilayers is reported. In order to control the position and distribution density of the ZnO nanowires, Au seeding nanodots are defined, as regular arrays, with the assistance of deposition shadow masks. Electron micrographs reveal that the wires are single crystals having wire axes along the hexagonal c-axes. The epitaxial growth of ZnO nanowires on sapphire and GaN films on Si substrates was further verified by cross sectional electron microscopy investigations. Compared to the sapphire case, the perfect epitaxial growth on a GaN film on a Si substrate is believed to be more suitable for potential electronic device applications of ZnO nanowire arrays.

  3. Large-scale metal nanoelectrode arrays based on printed nanowire lithography for nanowire complementary inverters.

    PubMed

    Ko, Han-Seung; Lee, Yeongjun; Min, Sung-Yong; Kwon, Sung-Joo; Lee, Tae-Woo

    2017-10-11

    Nanowire (NW) complementary inverters based on NW channels and NW electrodes are a promising core logic unit of future subminiature, high density and textile-type configured electronic circuits. However, existing approaches based on short NWs (<150 μm) or non-woven nanofibers cannot provide precisely-coordinated NW inverters due to the difficulty in the position and alignment control of each NW. In particular, the large-scale fabrication of highly-aligned metal nanoelectrode (NE) arrays with low resistivity is a challenging issue. Here, we developed large-scale-aligned AgNE arrays with very low resistivity by using printed NW lithography, and then demonstrated NW complementary inverters by combining with direct-printed organic semiconducting NWs. The width of the AgNEs was controlled from 250 to 1000 nm; their resistivity was 2.6 μΩ cm which is quite comparable with that of Ag films (1.6 μΩ cm). We expect that this approach will facilitate advances in the large-scale fabrication of nanoelectronics which will be compatible with printed electronics.

  4. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    DOE PAGES

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; ...

    2015-01-15

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, themore » Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.« less

  5. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    PubMed Central

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.

    2015-01-01

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, the Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process. PMID:25589290

  6. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    SciTech Connect

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.

    2015-01-15

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, the Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.

  7. Ultra-sensitive detection of adipocytokines with CMOS-compatible silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Pui, Tze-Sian; Agarwal, Ajay; Ye, Feng; Tou, Zhi-Qiang; Huang, Yinxi; Chen, Peng

    2009-09-01

    Perfectly aligned arrays of single-crystalline silicon nanowires were fabricated using top-down CMOS-compatible techniques. We demonstrate that these nanowire devices are able to detect adipocytokines secreted by adipose cells with femtomolar sensitivity, high specificity, wide detection range, and ability for parallel monitoring. The nanowire sensors also provide a novel tool to reveal the poorly understood signaling mechanisms of these newly recognized signaling molecules, as well as their relevance in common diseases such as obesity and diabetes.Perfectly aligned arrays of single-crystalline silicon nanowires were fabricated using top-down CMOS-compatible techniques. We demonstrate that these nanowire devices are able to detect adipocytokines secreted by adipose cells with femtomolar sensitivity, high specificity, wide detection range, and ability for parallel monitoring. The nanowire sensors also provide a novel tool to reveal the poorly understood signaling mechanisms of these newly recognized signaling molecules, as well as their relevance in common diseases such as obesity and diabetes. Electronic supplementary information (ESI) available: Process diagram of nanowire fabrication; specificity of nanowire detection; induced differentiation of 3T3-L1 cells. See DOI: 10.1039/b9nr00092e

  8. Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: a demonstration of epitaxial growth strategy.

    PubMed

    Utama, Muhammad Iqbal Bakti; Peng, Zeping; Chen, Rui; Peng, Bo; Xu, Xinlong; Dong, Yajie; Wong, Lai Mun; Wang, Shijie; Sun, Handong; Xiong, Qihua

    2011-08-10

    We report a strategy for achieving epitaxial, vertically aligned cadmium chalcogenide (CdS, CdSe, and CdTe) nanowire arrays utilizing van der Waals epitaxy with (001) muscovite mica substrate. The nanowires, grown from a vapor transport process, exhibited diameter uniformity throughout their length, sharp interface to the substrate, and positive correlation between diameter and length with preferential growth direction of [0001] for the monocrystalline wurtzite CdS and CdSe nanowires, but of [111] for zinc blende CdTe nanowires, which also featured abundant twinning boundaries. Self-catalytic vapor-liquid-solid mechanism with hydrogen-assisted thermal evaporation is proposed to intepret the observations. Optical absorption from the as-grown CdSe nanowire arrays on mica at 10 K revealed intense first-order exciton absorption and its longitudinal optical phonon replica. A small Stokes shift (∼1.3 meV) was identified, suggesting the high quality of the nanowires. This study demonstrated the generality of van der Waals epitaxy for the growth of nanowire arrays and their potential applications in optical and energy related devices.

  9. Critical coupling in plasmonic resonator arrays

    NASA Astrophysics Data System (ADS)

    Balci, Sinan; Kocabas, Coskun; Aydinli, Atilla

    2011-08-01

    We report critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moiré surfaces. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. The critical coupling conditions depend on the superperiod of the Moiré surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have a relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Analytical and finite difference time domain calculations support the experimental observations.

  10. Enhanced harvesting of red photons in nanowire solar cells: evidence of resonance energy transfer.

    PubMed

    Shankar, Karthik; Feng, Xinjian; Grimes, Craig A

    2009-04-28

    Modern excitonic solar cells efficiently harvest photons in the 350-650 nm spectral range; however, device efficiencies are typically limited by poor quantum yields for red and near-infrared photons. Using Forster-type resonance energy transfer from zinc phthalocyanine donor molecules to ruthenium polypyridine complex acceptors, we demonstrate a four-fold increase in quantum yields for red photons in dye-sensitized nanowire array solar cells. The dissolved donor and surface anchored acceptor molecules are not tethered to each other, through either a direct chemical bond or a covalent linker layer. The spatial confinement of the electrolyte imposed by the wire-to-wire spacing of the close-packed nanowire array architecture ensures that the distances between a significant fraction of donors and acceptors are within a Förster radius. The critical distance for energy transfer from an isolated donor chromophore to a self-assembled monolayer of acceptors on a plane follows the inverse fourth power instead of the inverse sixth power relation. Consequently, we observe near quantitative energy transfer efficiencies in our devices. Our results represent a new design paradigm in excitonic solar cells and show it is possible to more closely match the spectral response of the device to the AM 1.5 solar spectrum through use of electronic energy transfer.

  11. Electrodeposition of bismuth:tellurium nanowire arrays into porous alumina templates for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Trahey, Lynn

    Bismuth telluride is a well-known thermoelectric material for refrigeration applications. Thermoelectrics possess several advantages over conventional refrigeration and power generation devices, yet are not widely-used due to low efficiencies. It has been predicted and shown experimentally that the efficiency of thermoelectric devices increases when the semiconducting materials have reduced dimensions. Therefore, the aim of this research was to show enhanced thermoelectric efficiency in one-dimensional nanowires. The nanowires were synthesized via electrochemical deposition into porous alumina templates. Electrodeposition is a versatile technique that ensures electrical continuity in the deposited material. The nanowire templates, porous alumina, were made by the double anodization of high-purity aluminum foil in oxalic acid solutions. This technique produces parallel, hexagonally packed, and nanometer-range diameter pores that can reach high aspect ratios (greater than 2000:1). The main anodization variables (electrolyte concentration, applied potential, 2nd anodization time, and temperature) were studied systematically in order to deconvolute their effects on the resulting pores and to obtain high aspect ratio pores. The porous alumina is of great importance because the pore dimensions determine the dimensions of the electrodeposited nanowires, which influence the thermoelectric performance of the nanowire arrays. Nanowire arrays were characterized in several ways. Powder X-ray diffraction was used to assess crystallinity and preferred orientation of the nanowires, revealing that the nanowires are highly crystalline and grow with strong preferred orientation such that the material is suited for optimal thermoelectric performance. Scanning electron microscopy was used to evaluate the nanowire nucleation percentage and growth-front uniformity, both of which were enhanced by pulsed-potential electrodeposition. Compositional analysis via electron microprobe indicates

  12. Controllable synthesis of branched ZnO/Si nanowire arrays with hierarchical structure

    PubMed Central

    2014-01-01

    A rational approach for creating branched ZnO/Si nanowire arrays with hierarchical structure was developed based on a combination of three simple and cost-effective synthesis pathways. The crucial procedure included growth of crystalline Si nanowire arrays as backbones by chemical etching of Si substrates, deposition of ZnO thin film as a seed layer by magnetron sputtering, and fabrication of ZnO nanowire arrays as branches by hydrothermal growth. The successful synthesis of ZnO/Si heterogeneous nanostructures was confirmed by morphologic, structural, and optical characterizations. The roles of key experimental parameters, such as the etchant solution, the substrate direction, and the seed layer on the hierarchical nanostructure formation, were systematically investigated. It was demonstrated that an etchant solution with an appropriate redox potential of the oxidant was crucial for a moderate etching speed to achieve a well-aligned Si nanowire array with solid and round surface. Meanwhile, the presence of gravity gradient was a key issue for the growth of branched ZnO nanowire arrays. The substrate should be placed vertically or facedown in contrast to the solution surface during the hydrothermal growth. Otherwise, only the condensation of the ZnO nanoparticles took place in a form of film on the substrate surface. The seed layer played another important role in the growth of ZnO nanowire arrays, as it provided nucleation sites and determined the growing direction and density of the nanowire arrays for reducing the thermodynamic barrier. The results of this study might provide insight on the synthesis of hierarchical three-dimensional nanostructure materials and offer an approach for the development of complex devices and advanced applications. PMID:25024688

  13. Exploring highly porous Co2P nanowire arrays for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Chen, Minghua; Zhou, Weiwei; Qi, Meili; Yin, Jinghua; Xia, Xinhui; Chen, Qingguo

    2017-02-01

    Controllable synthesis of mesoporous conductive metal phosphide nanowire arrays is critical for developing highly-active electrodes of alkaline batteries. Herein we develop a simple combined strategy for rational synthesis of mesoporous Co2P nanowire arrays by hydrothermal-phosphorization method. Free-standing mesoporous Co2P nanowires consisting of interconnected nanoparticles of 10-20 nm grow vertically to the substrate forming arrays. High electrical conductivity and large porosity are obtained in the arrays architecture. When characterized as the cathode of high-rate alkaline batteries, the designed Co2P nanowire arrays are proven with good electrochemical performance with a large capacity (133 mAh g-1 at 1 A g-1), stable cycling life with a capacity retention of almost 100% after 5000 cycles at 10 A g-1 owing to the mesoporous nanowire structure with short ion/electron transport path. Our synthetic approach can be useful for construction of other porous metal phosphide arrays for energy storage and conversion.

  14. Synthesis of crystalline CoFex nanowire arrays through high voltage pulsed electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Ji, Renlong; Cao, Chuanbao; Chen, Zhuo; Yao, Ruimin

    2014-08-01

    A high voltage pulsed electrochemical deposition (50 Hz, -50 V) technique was used to synthesize CoFex (x=1.57, 2.02) nanowire arrays in anodic aluminum oxide templates. The nanowire arrays (NA) are different in diameter (NA A, 40 nm; NA B, 50 nm), center-to-center distance (NA A, 60 nm; NA B, 100 nm) and length (NA A, 4 μm; NA B, 8 μm). Microstructural characterization shows high crystallinity of the formed nanowires. The magnetic measurements indicate that the nanowire arrays possess uniaxial anisotropy with the easy magnetization axis along the nanowire. When magnetic field is applied in this direction, the coercivities of both nanowire arrays are larger than 1600 Oe. The shape difference between two magnetization hysteresis loops is due to dipolar magnetostatic interaction, and analytical calculation is performed to interpret the magnetic properties as a function of the wire geometry. The results suggest that during high voltage electrodeposition, reduced atoms are highly energetic and the crystallographic growth planes can be (110), (111) and (211).

  15. Potassium Chloride Nanowire Formation Inside a Microchannel Glass Array

    SciTech Connect

    Zhang, Daqing; Moore, Sam; Wei, Jiang; Alkhateeb, Abudullah I.; Gangadean, Dev; Mahmood, Hasan; Lantrips, Justin; McIlroy, David N.; LaLonde, Aaron D.; Norton, M G.; Young, James S.; Wang, Chong M.

    2005-06-27

    The synthesis of KCl nanowires has been achieved by atomic layer deposition inside high aspect ratio channels of microchannel glass. The average diameter of the KCl nanowires is 250 nm, with a minimum observed diameter of 50 nm, and lengths up to 5 {micro}m. The Cl precursor was TaCl5, while the source of K was determined to be impurities in the microchannel glass substrate. The process for KCl nanowire formation is a three-step chemical process that simultaneously etches K from the substrate concomitant with the formation of chlorine gas. It is postulated that the curvature of the channels may influence the diameters of the KCl nanowires.

  16. Resonant photo-thermal modification of vertical gallium arsenide nanowires studied using Raman spectroscopy.

    PubMed

    Walia, Jaspreet; Boulanger, Jonathan; Dhindsa, Navneet; LaPierre, Ray; Tang, Xiaowu Shirley; Saini, Simarjeet S

    2016-06-17

    Gallium arsenide nanowires have shown considerable promise for use in applications in which the absorption of light is required. When the nanowires are oriented vertically, a considerable amount of light can be absorbed, leading to significant heating effects. Thus, it is important to understand the threshold power densities that vertical GaAs nanowires can support, and how the nanowire morphology is altered under these conditions. Here, resonant photo-thermal modification of vertical GaAs nanowires was studied using both Raman spectroscopy and electron microscopy techniques. Resonant waveguiding, and subsequent absorption of the excited optical mode reduces the irradiance vertical GaAs nanowires can support relative to horizontal ones, by three orders of magnitude before the onset of structural changes occur. A power density of only 20 W mm(-2) was sufficient to induce local heating in the nanowires, resulting in the formation of arsenic species. Upon further increasing the power, a hollow nanowire morphology was realized. These findings are pertinent to all optical applications and spectroscopic measurements involving vertically oriented GaAs nanowires. Understanding the optical absorption limitations, and the effects of exceeding these limitations will help improve the development of all III-V nanowire devices.

  17. Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting.

    PubMed

    Li, Xiaojuan; Lu, Wenhui; Dong, Weiling; Chen, Qi; Wu, Dan; Zhou, Wenzheng; Chen, Liwei

    2013-06-21

    Si/poly(3,4-ethylenedioxythiophene) (PEDOT) core/shell nanowire arrays have been prepared by chemical etching of Si nanowires followed by vapor-phase polymerization of PEDOT as hybrid photoanodes for photoelectrochemical water-splitting. The PEDOT layer is employed as a multi-functional coating to prevent photocorrosion of Si nanowires, collect photogenerated holes and catalyze the water oxidation reaction. The amino silane modified Si nanowire surface improves PEDOT layer adhesion, and the resulting photoanode exhibits better photoresponse and improved stability. By tuning the length of the nanowires, we identify that the competition between the carrier recombination and catalytic water oxidation reaction is the primary factor determining the photoelectrocatalytic activity of the hybrid photoanode.

  18. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    SciTech Connect

    Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.; Sodano, Henry A.

    2015-06-01

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.

  19. In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays

    NASA Astrophysics Data System (ADS)

    Sauer, G.; Brehm, G.; Schneider, S.; Graener, H.; Seifert, G.; Nielsch, K.; Choi, J.; Göring, P.; Gösele, U.; Miclea, P.; Wehrspohn, R. B.

    2005-01-01

    Highly ordered two-dimensional arrays of monodisperse coinage metal nanowires embedded in an alumina matrix have been prepared. When light is propagating in the direction of the long axis of the nanowire, plasmon-enhanced absorption and light guidance of the nanowire were observed by optical microspectroscopy and scanning near-field optical spectroscopy and compared to Mie scattering theory. By selectively dissolving the matrix at a constant etching rate, we detected in situ and ex situ the surface-enhanced Raman scattering (SERS) of organic dyes. In contrast to earlier publications, we find that the SERS signal is linearly proportional to the free-surface area of the nanowires that are in contact with the dye. We cannot detect any change in the enhancement factor due to the releasing of the nanowires from the host structure.

  20. Synthesis of Fe Doped ZnO Nanowire Arrays that Detect Formaldehyde Gas.

    PubMed

    Jeon, Yoo Sang; Seo, Hyo Won; Kim, Su Hyo; Kim, Young Keun

    2016-05-01

    Owing to their chemical and thermal stability and doping effects on providing electrons to the conduction band, doped ZnO nanowires have generated interest for use in electronic devices. Here we report hydrothermally grown Fe-doped ZnO nanowires and their gas-sensing properties. The synthesized nanowires have a high crystallinity and are 60 nm in diameter and 1.7 μm in length. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are employed to understand the doping effects on the microstructures and gas sensing properties. When the Fe-doped ZnO nanowire arrays were evaluated for gas sensing, responses were recorded through changes in temperature and gas concentration. Gas sensors consisting of ZnO nanowires doped with 3-5 at.% Fe showed optimum formaldehyde (HCHO) sensing performance at each working temperature.

  1. Fabrication of sub-10 nm metal nanowire arrays with sub-1 nm critical dimension control

    NASA Astrophysics Data System (ADS)

    Pi, Shuang; Lin, Peng; Xia, Qiangfei

    2016-11-01

    Sub-10 nm metal nanowire arrays are important electrodes for building high density emerging ‘beyond CMOS’ devices. We made Pt nanowire arrays with sub-10 nm feature size using nanoimprint lithography on silicon substrates with 100 nm thick thermal oxide. We further studied the critical dimension (CD) evolution in the fabrication procedure and achieved 0.4 nm CD control, providing a viable solution to the imprint lithography CD challenge as specified by the international technology roadmap for semiconductors. Finally, we fabricated Pt/TiO2/Pt memristor crossbar arrays with the 8 nm electrodes, demonstrating great potential in dimension scaling of this emerging device.

  2. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    SciTech Connect

    Allman, M. S. Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W.; Marsili, F.; Beyer, A.; Shaw, M. D.; Kumor, D.

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  3. Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting

    NASA Astrophysics Data System (ADS)

    Li, Xiaojuan; Lu, Wenhui; Dong, Weiling; Chen, Qi; Wu, Dan; Zhou, Wenzheng; Chen, Liwei

    2013-05-01

    Si/poly(3,4-ethylenedioxythiophene) (PEDOT) core/shell nanowire arrays have been prepared by chemical etching of Si nanowires followed by vapor-phase polymerization of PEDOT as hybrid photoanodes for photoelectrochemical water-splitting. The PEDOT layer is employed as a multi-functional coating to prevent photocorrosion of Si nanowires, collect photogenerated holes and catalyze the water oxidation reaction. The amino silane modified Si nanowire surface improves PEDOT layer adhesion, and the resulting photoanode exhibits better photoresponse and improved stability. By tuning the length of the nanowires, we identify that the competition between the carrier recombination and catalytic water oxidation reaction is the primary factor determining the photoelectrocatalytic activity of the hybrid photoanode.Si/poly(3,4-ethylenedioxythiophene) (PEDOT) core/shell nanowire arrays have been prepared by chemical etching of Si nanowires followed by vapor-phase polymerization of PEDOT as hybrid photoanodes for photoelectrochemical water-splitting. The PEDOT layer is employed as a multi-functional coating to prevent photocorrosion of Si nanowires, collect photogenerated holes and catalyze the water oxidation reaction. The amino silane modified Si nanowire surface improves PEDOT layer adhesion, and the resulting photoanode exhibits better photoresponse and improved stability. By tuning the length of the nanowires, we identify that the competition between the carrier recombination and catalytic water oxidation reaction is the primary factor determining the photoelectrocatalytic activity of the hybrid photoanode. Electronic supplementary information (ESI) available: The schematic setup of photoelectrochemical performance tests, and the SEM images of different photoanodes before and after photoelectrochemical tests. See DOI: 10.1039/c3nr00867c

  4. Synthesis and Characterization of fe Nanowire Arrays by AC Electrodeposition in PAMs

    NASA Astrophysics Data System (ADS)

    Wang, Xuehua; Li, Chengyong; Chen, Gui; Peng, Cai; He, Lei; Yang, Liang

    Fe nanowire arrays were fabricated at lower voltage by alternating current (AC) electrodeposition into the highly ordered nanoholes of the porous alumina membrane (PAM) obtained by two-step anodization in oxalic acid. The morphology, structure and magnetic properties of Fe nanowire arrays were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM), respectively. The results indicate that Fe nanowires are about 50 nm in diameter which were accorded with the pores of the PAM, and stabilized in body-centered cubic (bcc) structure with a preferred orientation along (110). The easy magnetization axis is parallel to the axis of the Fe nanowires, while corresponding coercivity and squareness ratio value is 1674.5 Oe and 0.87, respectively.

  5. Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Dan; Tian, Miao; Lee, Yung-Cheng; Yang, Ronggui

    2012-09-01

    A novel and facile method was successfully developed to fabricate wafer-scale Si nanowire arrays with well-controlled sizes through the in-situ porous anodic alumina (PAA) template-assisted wet-etching process. The diameter and filling ratio (inter-wire spacing) of the as-prepared Si nanowires are determined by the size and density of pores in the in-situ PAA templates, which can be tailored independently by adjusting the anodization voltages and the immersion time of PAA templates in phosphoric acid. The length of Si nanowires can be more than one hundred micrometers long, which is controlled by adjusting the wet-etching time. Moreover, this method is compatible with complex Si surface topology for creating desirable 3-dimensional hybrid micro/nano-structures. Such Si nanowire arrays exhibit ultralow reflectance and interesting wettability that are of great importance to photovoltaics and thermal management applications.

  6. Patterned polymer nanowire arrays as an effective protein immobilizer for biosensing and HIV detection

    NASA Astrophysics Data System (ADS)

    Shen, Yue; Liu, Yingyi; Zhu, Guang; Fang, Hao; Huang, Yunhui; Jiang, Xingyu; Wang, Zhong L.

    2012-12-01

    We report an array of polymeric nanowires for effectively immobilizing biomolecules on biochips owing to the large surface area. The nanowires were fabricated in predesigned patterns using an inductively coupled plasma (ICP) etching process. Microfluidic biochips integrated using the substrates with arrays of nanowires and polydimethylsiloxane channels have been demonstrated to be effective for detecting antigens, and a detection limit of antigens at 0.2 μg mL-1 has been achieved, which is improved by a factor of 50 compared to that based on flat substrates without the nanowires. In addition, the high sensitivity for clinical detection of human immunodeficiency virus (HIV) antibody has also been demonstrated, showing a 20 times enhancement in fluorescent signal intensity between the samples with positive and negative HIV.

  7. Scalable, epitaxy-free fabrication of super-absorbing sparse III-V nanowire arrays for photovoltaic applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cheng, Wen-Hui; Fountaine, Katherine T.; Bukowsky, Colton R.; Atwater, Harry A.

    2016-09-01

    III-V compound semiconductor nanowire arrays are promising candidates for photovoltaics applications due to their high volumetric absorption. Uniform nanowire arrays exhibit high absorption at certain wavelengths due to strong coupling into lossy waveguide modes. Previously, simulations predicted near-unity, broadband absorption in sparse semiconductor nanowire arrays (<5% fill fraction) with multi-radii and tapered nanowire array designs [1]. Herein, we experimentally demonstrate near-unity broadband absorption in InP nanowire arrays via a scalable, epitaxy-free fabrication method, using nanoimprint lithography and ICP-RIE to define nanowire arrays in bulk InP wafers. In addition to mask pattern design (wire radius and spacing) and etch chemistry (wire taper), appropriate selection of a hard mask for the InP etch is critical to precise dimension control and reproducibility. Polymer-embedded wires are removed from the bulk InP substrate by a mechanical method that facilitates extensive reuse of a single bulk InP wafer to synthesize many polymer-embedded nanowire array thin films. Arrays containing multiple nanowire radii and tapered nanowires were successfully fabricated. For both designs, the polymer-embedded arrays achieved 90% broadband absorption (λ=400-900 nm) in less than 100 nm planar equivalence of InP. The addition of a silver back reflector increased this broadband absorption to 95%. The repeatable process of imprinting, etching and peeling to obtain many nanowire arrays from one single wafer represents an economical manufacturing route for high efficiency III-V photovoltaics. [1] K.T. Fountaine, C.G. Kendall, Harry A. Atwater, "Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation," Opt. Exp. (2014).

  8. Wavelength-dependent absorption in structurally tailored randomly branched vertical arrays of InSb nanowires.

    PubMed

    Mohammad, Asaduzzaman; Das, Suprem R; Khan, M Ryyan; Alam, Muhammad A; Janes, David B

    2012-12-12

    Arrays of semiconductor nanowires are of potential interest for applications including photovoltaic devices and IR detectors/imagers. While nominally uniform arrays have typically been studied, arrays containing nanowires with multiple diameters and/or random distributions of diameters could allow tailoring of the photonic properties of the arrays. In this Letter, we demonstrate the growth and optical properties of randomly branched InSb nanowire arrays. The structure mentioned can be approximated as three vertically stacked regions, with average diameters of 20, 100, and 150 nm within the respective layers. Reflectance and transmittance measurements on structures with different average nanowire lengths have been performed over the wavelength range of 300-2000 nm, and absorbance has been calculated from these measurements. The structures show low reflectance over the visible and IR regions and wavelength-dependent absorbance in the IR region. A model considering the diameter-dependent photonic coupling (at a given wavelength) and random distribution of nanowire diameters within the regions has been developed. The diameter-dependent photonic coupling results in a roll-off in the absorbance spectra at wavelengths well below the bulk cutoff of ∼7 μm, and randomness is observed to broaden the absorbance response. Varying the average diameters would allow tailoring of the wavelength dependent absorption within various layers, which could be employed in photovoltaic devices or wavelength-dependent IR imagers.

  9. Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte

    PubMed Central

    2010-01-01

    A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially. PMID:20596417

  10. Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition

    NASA Astrophysics Data System (ADS)

    Lee, Jongmin; Farhangfar, Shadyar; Lee, Jaeyoung; Cagnon, Laurent; Scholz, Roland; Gösele, Ulrich; Nielsch, Kornelius

    2008-09-01

    Arrays of thermoelectric bismuth telluride (Bi2Te3) nanowires were grown into porous anodic alumina (PAA) membranes prepared by a two-step anodization. Bi2Te3 nanowire arrays were deposited by galvanostatic, potentiostatic and pulsed electrodeposition from aqueous solution at room temperature. Depending on the electrodeposition method and as a consequence of different growth mechanisms, Bi2Te3 nanowires exhibit different types of crystalline microstructure. Bi2Te3 nanowire arrays, especially those grown by pulsed electrodeposition, have a highly oriented crystalline structure and were grown uniformly as compared to those grown by other electrodeposition techniques used. X-ray diffraction (XRD) analyses are indicative of the existence of a preferred growth orientation. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) confirm the formation of a preferred orientation and highly crystalline structure of the grown nanowires. The nanowires were further analyzed by scanning electron microscopy (SEM). Energy dispersive x-ray spectrometry (EDX) indicates that the composition of Bi-Te nanowires can be controlled by the electrodeposition method and the relaxation time in the pulsed electrodeposition approach. The samples fabricated by pulsed electrodeposition were electrically characterized within the temperature range 240 K<=T<=470 K. Below T≈440 K, the nanowire arrays exhibited a semiconducting behavior. Depending on the relaxation time in the pulsed electrodeposition, the semiconductor energy gaps were estimated to be 210-290 meV. At higher temperatures, as a consequence of the enhanced carrier-phonon scattering, the measured electrical resistances increased slightly. The Seebeck coefficient was measured for every Bi2Te3 sample at room temperature by a very simple method. All samples showed a positive value (12-33 µV K-1), indicating a p-type semiconductor behavior.

  11. Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light

    SciTech Connect

    Kibria, M. G.; Chowdhury, F. A.; Zhao, S.; Mi, Z.; Trudeau, M. L.; Guo, H.

    2015-03-16

    We report that by engineering the intra-gap defect related energy states in GaN nanowire arrays using Mg dopants, efficient and stable overall neutral water splitting can be achieved under violet light. Overall neutral water splitting on Rh/Cr{sub 2}O{sub 3} co-catalyst decorated Mg doped GaN nanowires is demonstrated with intra-gap excitation up to 450 nm. Through optimized Mg doping, the absorbed photon conversion efficiency of GaN nanowires reaches ∼43% at 375–450 nm, providing a viable approach to extend the solar absorption of oxide and non-oxide photocatalysts.

  12. Enhanced structural ordering and coercivity in FePt nanowire arrays by addition of Zn

    NASA Astrophysics Data System (ADS)

    Wang, Huixin; Hu, Baofu; Zhang, Lide; Li, Ming; Ja, Erguang; Liu, Zhenshen

    2014-08-01

    Arrays of FePt and (FePt)84Zn16 nanowire with diameter around 40 nm and 1.5 μm in length have been synthesized from an aqueous electrolyte by codepositing Fe, Pt and Fe, Pt, Zn into porous anodic alumina. The morphology, structure, and magnetic properties of the nanowire arrays are characterized by FE-SEM, TEM, XRD and SQUID. We find that the addition of Zn to FePt nanowires is an effective approach for reducing the ordering temperature of FePt. The (FePt)84Zn16 nanowires start ordering after annealing at 350 °C, which is lowered by 150 °C with respect to FePt nanowire arrays. The coercivity of the (FePt)84Zn16 nanowires is around 2 kOe after annealing at 350 °C for 30 min. The effect of Zn-doping on decreasing the annealing temperature required to produce L10 phase FePt is studied.

  13. Simulation Analysis on Photoelectric Conversion Characteristics of Silicon Nanowire Array Photoelectrodes.

    PubMed

    Zhao, Yong; Yu, Jin; Fang, Li-Guang; Zheng, Jun; Wang, Hui-Qin; Yuan, Ji-Ren; Wu, Shaolong; Cheng, Guo-An

    2015-12-01

    Semiconductor nanowire photoelectrochemical cells have attracted extensive attention in the light-conversion field owing to the low-cost preparation, excellent optical absorption, and short distance of carrier collection. Although there are numbers of experimental investigations to improve the device performance, the understanding of the detailed process of photoelectric conversion needs to be further improved. In this work, a thorough optoelectronic simulation is employed to figure out how the nanowire diameter, doping concentration, and illumination wavelength affect the photoelectric conversion characteristics of the silicon nanowire array photoelectrodes. We find that two balances should be carefully weighted between optical absorption and photogenerated-carrier collection, along with between short-circuit photocurrent density and open-circuit voltage. For the small-diameter nanowire array photoelectrodes, the overall absorption is higher than that of the larger-diameter ones with the most contribution from the nanowires. However, the substrate shows increasing absorption with increasing illumination wavelength. Higher doping density leads to a larger open-circuit voltage; while lower doping density can guarantee a relatively higher short-circuit photocurrent. To obtain high-light-conversion-efficiency photoelectrodes, the doping density should be carefully chosen with considerations of illumination wavelength and surface recombination. Suppressing the surface recombination velocity can effectively enhance the short-circuit photocurrent (open-circuit voltage) for the lightly (heavily) doped nanowire array photoelectrodes. Our systematical results provide a theoretical guidance for the photoelectrochemical devices based on semiconductor nanostructures.

  14. Interfacing Inorganic Nanowire Arrays and Living Cells for Cellular Function Analysis.

    PubMed

    Kwak, Minsuk; Han, Lin; Chen, Jonathan J; Fan, Rong

    2015-11-11

    Inorganic nanowires are among the most attractive functional materials, which have emerged in the past two decades. They have demonstrated applications in information technology and energy conversion, but their utility in biological or biomedical research remains relatively under-explored. Although nanowire-based sensors have been frequently reported for biomolecular detection, interfacing nanowire arrays and living mammalian cells for the direct analysis of cellular functions is a very recent endeavor. Cell-penetrating nanowires enabled effective delivery of biomolecules, electrical and optical stimulation and recording of intracellular signals over a long period of time. Non-penetrating, high-density nanowire arrays display rich interactions between the nanostructured substrate and the micro/nanoscale features of cell surfaces. Such interactions enable efficient capture of rare cells including circulating tumor cells and trafficking leukocytes from complex biospecimens. It also serves as a platform for probing cell traction force and neuronal guidance. The most recent advances in the field that exploits nanowire arrays (both penetrating and non-penetrating) to perform rapid analysis of cellular functions potentially for disease diagnosis and monitoring are reviewed.

  15. Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires.

    PubMed

    Byun, Kyung Min; Yoon, Soon Joon; Kim, Donghyun; Kim, Sung June

    2007-07-01

    We have experimentally confirmed sensitivity enhancement of a nanowire-based surface plasmon resonance (SPR) sensor structure. Gold nanowires with periods of 200 and 500 nm were fabricated, respectively, by electron-beam and interference lithography on a gold/SF10 substrate. Sensitivity enhancement was measured to be 44% compared with a conventional thin-film-based SPR structure for nanowires of 200 nm period and 31% for 500 nm when evaluated using ethanol at a varied concentration. This result is consistent with numerical data. Surface roughness is responsible for sensitivity reduction by more than 10%. More significant sensitivity improvement can be achieved by inducing strong localized plasmon coupling with finer nanowires.

  16. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    SciTech Connect

    Santavicca, Daniel F. Adams, Jesse K.; Grant, Lierd E.; McCaughan, Adam N.; Berggren, Karl K.

    2016-06-21

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.

  17. An air gap moderates the performance of nanowire array transistors

    NASA Astrophysics Data System (ADS)

    Yang, Tong; Mehta, Jeremy S.; Mativetsky, Jeffrey M.

    2017-03-01

    Solution-processed nanowires are promising for low-cost and flexible electronics. When depositing nanowires from solution, due to stacking of the nanowires, an air gap exists between the substrate and much of the active material. Here, using confocal Raman spectroscopy, we quantify the thickness of the air gap in transistors comprising organic semiconductor nanowires. The average air gap thickness is found to be unexpectedly large, being at least three times larger than the nanowire diameter, leading to a significant impact on transistor performance. The air gap acts as an additional dielectric layer that reduces the accumulation of charge carriers due to a gate voltage. Conventional determination of the charge carrier mobility ignores the presence of an air gap, resulting in an overestimate of charge carrier accumulation and an underestimate of charge carrier mobility. It is shown that the larger the air gap, the larger the mobility correction (which can be greater than an order of magnitude) and the larger the degradation in on–off current ratio. These results demonstrate the importance of minimizing the air gap and of taking the air gap into consideration when analyzing the electrical performance of transistors consisting of stacked nanowires. This finding is applicable to all types of stacked one-dimensional materials including organic and inorganic nanowires, and carbon nanotubes.

  18. An air gap moderates the performance of nanowire array transistors.

    PubMed

    Yang, Tong; Mehta, Jeremy S; Mativetsky, Jeffrey M

    2017-03-24

    Solution-processed nanowires are promising for low-cost and flexible electronics. When depositing nanowires from solution, due to stacking of the nanowires, an air gap exists between the substrate and much of the active material. Here, using confocal Raman spectroscopy, we quantify the thickness of the air gap in transistors comprising organic semiconductor nanowires. The average air gap thickness is found to be unexpectedly large, being at least three times larger than the nanowire diameter, leading to a significant impact on transistor performance. The air gap acts as an additional dielectric layer that reduces the accumulation of charge carriers due to a gate voltage. Conventional determination of the charge carrier mobility ignores the presence of an air gap, resulting in an overestimate of charge carrier accumulation and an underestimate of charge carrier mobility. It is shown that the larger the air gap, the larger the mobility correction (which can be greater than an order of magnitude) and the larger the degradation in on-off current ratio. These results demonstrate the importance of minimizing the air gap and of taking the air gap into consideration when analyzing the electrical performance of transistors consisting of stacked nanowires. This finding is applicable to all types of stacked one-dimensional materials including organic and inorganic nanowires, and carbon nanotubes.

  19. Fabrication of a dual-layer aluminum nanowires polarization filter array.

    PubMed

    Gruev, Viktor

    2011-11-21

    In this paper we present a procedure for fabricating an array of micropolarization filter array via an optimized interference lithography and microfabrication procedure. The filter array is composed of two linear polarization filters offset by 45 degrees with pixel pitch of 18 microns. The individual polarization filters are composed of aluminum nanowires with 140 nm pitch, 140 nm height and 70 nm width. The maximum extinction ratio of the pixelated filters is measured to be 95 at 700 nm wavelength.

  20. Morphology-dependent field emission properties and wetting behavior of ZnO nanowire arrays

    PubMed Central

    2011-01-01

    The fabrication of three kinds of ZnO nanowire arrays with different structural parameters over Au-coated silicon (100) by facile thermal evaporation of ZnS precursor is reported, and the growth mechanism are proposed based on structural analysis. Field emission (FE) properties and wetting behavior were revealed to be strongly morphology dependent. The nanowire arrays in small diameter and high aspect ratio exhibited the best FE performance showing a low turn-on field (4.1 V/μm) and a high field-enhancement factor (1745.8). The result also confirmed that keeping large air within the films was an effective way to obtain super water-repellent properties. This study indicates that the preparation of ZnO nanowire arrays in an optimum structural model is crucial to FE efficiency and wetting behavior. PMID:21711609

  1. Field emission from in situ-grown vertically aligned SnO2 nanowire arrays

    PubMed Central

    2012-01-01

    Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters. PMID:22330800

  2. Tuning the magnetic anisotropy of Co-Ni nanowires: comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes.

    PubMed

    Vega, V; Böhnert, T; Martens, S; Waleczek, M; Montero-Moreno, J M; Görlitz, D; Prida, V M; Nielsch, K

    2012-11-23

    Co(x)Ni(1-x) alloy nanowires with varying Co content (0 ≤ x ≤ 0.95), having a diameter of 130 nm and length of around 20 μm, are synthesized by template-assisted electrodeposition into the nanopores of SiO(2) conformal coated hard-anodic aluminum oxide membranes. The magneto-structural properties of both single isolated nanowires and hexagonally ordered nanowire arrays of Co-Ni alloys are systematically studied by means of magneto-optical Kerr effect magnetometry and vibrating sample magnetometry, respectively, allowing us to compare different alloy compositions and to distinguish between the magnetostatic and magnetocrystalline contributions to the effective magnetic anisotropy for each system. The excellent tunable soft magnetic properties and magnetic bistability exhibited by low Co content Co-Ni nanowires indicate that they might become the material of choice for the development of nanostructured magnetic systems and devices as an alternative to Fe-Ni alloy based systems, being chemically more robust. Furthermore, Co contents higher than 51 at.% allow us to modify the magnetic behavior of Co-rich nanowires by developing well controlled magnetocrystalline anisotropy, which is desirable for data storage applications.

  3. Magnetic and structural properties of the electrochemically deposited arrays of Co and CoFe nanowires

    NASA Astrophysics Data System (ADS)

    Khan, H. R.; Petrikowski, K.

    2002-09-01

    Magnetic and structural properties of the arrays of 18 nm diameter nanowires of Co and Co 90Fe 10 electrodeposited in the pores of anodic alumina are investigated. Arrays of Co and Co 90Fe 10 nanowires show perpendicular magnetic anisotropy and textured crystallographic behaviour. Coercivity Hc (⊥) and remanence Mr/ Ms (⊥) values of 2275 Oe (Co 90Fe 10); 1188 Oe (Co) and 96% (Co 90Fe 10), 81% (Co) are observed. The continuous films of Co and Co 90Fe 10 on Cu substrates show in plane magnetic anisotropy and coercivity values between 109 and 288 Oe.

  4. Design of two dimensional silicon nanowire arrays for antireflection and light trapping in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Ding, Wuchang; Jia, Rui; Li, Haofeng; Chen, Chen; Sun, Yun; Jin, Zhi; Liu, Xinyu

    2014-01-01

    Silicon nitride coated nanowire arrays have been investigated as an efficient antireflection structure for silicon solar cells. The minimum average reflectance could reach 1.62% under AM1.5 spectrum. Scattering effects of silicon nanowire arrays also result in enhanced absorption in the substrate, and analytical results show that the scattered light can be well trapped in silicon substrate when the back surface is passivated by silicon dioxide. This ultra-low surface reflection property combined with light trapping effect may have potential applications in silicon solar cells with thin substrate.

  5. Double-sided tin nanowire arrays for advanced thermal interface materials

    NASA Astrophysics Data System (ADS)

    Feng, Bo; Faruque, Fardin; Bao, Peng; Chien, An-Ting; Kumar, Satish; Peterson, G. P.

    2013-03-01

    This investigation examines a type of thermal interface material (TIM) based on a double-sided array of tin nanowires (NWs) prepared using a hot-pressing approach with the assistance of anodic aluminum oxide templates. The metal based TIM effectively reduces the contact resistance, while the flexible nanowires show excellent mechanical compliance to increase the actual contact area with the mating rough surfaces. The results indicate that the overall thermal contact resistance of the two rough copper surfaces assisted by the tin NW array, can reduce the overall resistance to 29 mm2KW-1 at 0.25 MPa and 20 mm2KW-1 at 1.0 MPa.

  6. Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells.

    PubMed

    Lu, Wenhui; Wang, Chengwei; Yue, Wei; Chen, Liwei

    2011-09-01

    A solution filling and drying method has been demonstrated to fabricate Si/PEDOT:PSS core/shell nanowire arrays for hybrid solar cells. The hybrid core/shell nanowire arrays show excellent broadband anti-reflection, and resulting hybrid solar cells absorb about 88% of AM 1.5G photons in the 300-1100 nm range. The power conversion efficiency (PCE) of the hybrid solar cell reaches 6.35%, and is primarily limited by direct and indirect interfacial recombination of charge carriers.

  7. High frequency top-down junction-less silicon nanowire resonators

    NASA Astrophysics Data System (ADS)

    Koumela, Alexandra; Hentz, Sébastien; Mercier, Denis; Dupré, Cécilia; Ollier, Eric; X-L Feng, Philip; Purcell, Stephen T.; Duraffourg, Laurent

    2013-11-01

    We report here the first realization of top-down silicon nanowires (SiNW) transduced by both junction-less field-effect transistor (FET) and the piezoresistive (PZR) effect. The suspended SiNWs are among the smallest top-down SiNWs reported to date, featuring widths down to ˜20 nm. This has been achieved thanks to a 200 mm-wafer-scale, VLSI process fully amenable to monolithic CMOS co-integration. Thanks to the very small dimensions, the conductance of the silicon nanowire can be controlled by a nearby electrostatic gate. Both the junction-less FET and the previously demonstrated PZR transduction have been performed with the same SiNW. These self-transducing schemes have shown similar signal-to-background ratios, and the PZR transduction has exhibited a relatively higher output signal. Allan deviation (σA) of the same SiNW has been measured with both schemes, and we obtain σA ˜ 20 ppm for the FET detection and σA ˜ 3 ppm for the PZR detection at room temperature and low pressure. Orders of magnitude improvements are expected from tighter electrostatic control via changes in geometry and doping level, as well as from CMOS integration. The compact, simple topology of these elementary SiNW resonators opens up new paths towards ultra-dense arrays for gas and mass sensing, time keeping or logic switching systems on the SiNW-CMOS platform.

  8. High frequency top-down junction-less silicon nanowire resonators.

    PubMed

    Koumela, Alexandra; Hentz, Sébastien; Mercier, Denis; Dupré, Cécilia; Ollier, Eric; Feng, Philip X-L; Purcell, Stephen T; Duraffourg, Laurent

    2013-11-01

    We report here the first realization of top-down silicon nanowires (SiNW) transduced by both junction-less field-effect transistor (FET) and the piezoresistive (PZR) effect. The suspended SiNWs are among the smallest top-down SiNWs reported to date, featuring widths down to ~20 nm. This has been achieved thanks to a 200 mm-wafer-scale, VLSI process fully amenable to monolithic CMOS co-integration. Thanks to the very small dimensions, the conductance of the silicon nanowire can be controlled by a nearby electrostatic gate. Both the junction-less FET and the previously demonstrated PZR transduction have been performed with the same SiNW. These self-transducing schemes have shown similar signal-to-background ratios, and the PZR transduction has exhibited a relatively higher output signal. Allan deviation (σA) of the same SiNW has been measured with both schemes, and we obtain σ(A) ~ 20 ppm for the FET detection and σ(A) ~ 3 ppm for the PZR detection at room temperature and low pressure. Orders of magnitude improvements are expected from tighter electrostatic control via changes in geometry and doping level, as well as from CMOS integration. The compact, simple topology of these elementary SiNW resonators opens up new paths towards ultra-dense arrays for gas and mass sensing, time keeping or logic switching systems on the SiNW-CMOS platform.

  9. Crosstalk analysis of silicon-on-insulator nanowire-arrayed waveguide grating

    NASA Astrophysics Data System (ADS)

    Li, Kai-Li; An, Jun-Ming; Zhang, Jia-Shun; Wang, Yue; Wang, Liang-Liang; Li, Jian-Guang; Wu, Yuan-Da; Yin, Xiao-Jie; Hu, Xiong-Wei

    2016-12-01

    The factors influencing the crosstalk of silicon-on-insulator (SOI) nanowire arrayed waveguide grating (AWG) are analyzed using the transfer function method. The analysis shows that wider and thicker arrayed waveguides, outsider fracture of arrayed waveguide, and larger channel space, could mitigate the deterioration of crosstalk. The SOI nanowire AWGs with different arrayed waveguide widths are fabricated by using deep ultraviolet lithography (DUV) and inductively coupled plasma etching (ICP) technology. The measurement results show that the crosstalk performance is improved by about 7 dB through adopting 800 nm arrayed waveguide width. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA016902), the National Natural Science Foundation of China (Grant Nos. 61274047, 61435013, 61307034, and 61405188), and the National Key Research and Development Program of China (Grant No. 2016YFB0402504).

  10. Stable field emission from arrays of vertically aligned free-standing metallic nanowires

    NASA Astrophysics Data System (ADS)

    Xavier, Stephane; Mátéfi-Tempfli, Stefan; Ferain, Etienne; Purcell, Stephen; Enouz-Védrenne, Shaïma; Gangloff, Laurent; Minoux, Eric; Hudanski, Ludovic; Vincent, Pascal; Schnell, Jean-Philippe; Pribat, Didier; Piraux, Luc; Legagneux, Pierre

    2008-05-01

    We present a fully elaborated process to grow arrays of metallic nanowires with controlled geometry and density, based on electrochemical filling of nanopores in track-etched templates. Nanowire growth is performed at room temperature, atmospheric pressure and is compatible with low cost fabrication and large surfaces. This technique offers an excellent control of the orientation, shape and nanowires density. It is applied to fabricate field emission arrays with a good control of the emission site density. We have prepared Co, Ni, Cu and Rh nanowires with a height of 3 µm, a diameter of 80 nm and a density of ~107 cm-2. The electron field emission measurements and total energy distributions show that the as-grown nanowires exhibit a complex behaviour, first with emission activation under high field, followed by unstable emission. A model taking into account the effect of an oxide layer covering the nanowire surface is developed to explain this particular field emission behaviour. Finally, we present an in situ cleaning procedure by ion bombardment that collectively removes this oxide layer, leading to a stable and reproducible emission behaviour. After treatment, the emission current density is ~1 mA cm-2 for a 30 V µm-1 applied electric field.

  11. Dark Field Imaging of Plasmonic Resonator Arrays

    NASA Astrophysics Data System (ADS)

    Aydinli, Atilla; Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun

    2012-02-01

    We present critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moir'e surfaces. The critical coupling condition depends on the superperiod of Moir'e surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. We image the light scattered from SPPs in the plasmonic cavities excited by a tunable light source. Tuning the excitation wavelength, we measure the localization and dispersion of the plasmonic cavity mode. Dark field imaging has been achieved in the Kretschmann configuration using a supercontinuum white light laser equipped with an acoustooptic tunable filter. Polarization dependent spectroscopic reflection and dark field imaging measurements are correlated and found to be in agreement with FDTD simulations.

  12. Finite-size effect on magnetic properties in iron sulfide nanowire arrays.

    PubMed

    Yue, G H; Yan, P X; Wang, L S; Wang, W; Chen, Y Z; Peng, D L

    2008-05-14

    We report the size effect on the magnetic properties in Fe(7)S(8) nanowire arrays. Samples with diameters in the range of 50-200 nm have been prepared by electrodeposition with AAO films. The Mössbauer measurement results show that four parameters (hyperfine fields, isomer shift, quadrupole splitting, full width at half-maximum) increased with decreasing the diameter of the nanowires. The magnetic properties were investigated. The hysteresis loop shape and the magnetization are dependent on the diameter of the nanowires. The thermomagnetic measurements on the as-synthesized nanowire samples and the corresponding bulk display a mixed-type curve and a Weiss-type curve, respectively.

  13. Red, Green, and Blue (RGB) Luminescence from ZnGa2O4 Nanowire Arrays

    SciTech Connect

    Gu, Zhanjun; Liu, Feng; Li, Xufan; Howe, Jane Y; Xu, Jun; Pan, Zhengwei

    2009-01-01

    Using a simple two-step reaction process, we have demonstrated the synthesis of large-area ZnGa2O4, ZnGa2O4:Mn2+, and ZnGa2O4:Cr3+ nanowire arrays which, respectively, exhibit bright blue, green, and red luminescence under UV light irradiation. The realization of three primary colors from one host material suggests that full color display based on ZnGa2O4 nanowires might be achievable. These luminescent nanowires could also be used in solid-state lighting as well as radiation detection. The cathodoluminescence properties of the ZnGa2O4 nanowires will be studied in future research.

  14. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    PubMed Central

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-01-01

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303

  15. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes.

    PubMed

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-09-04

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H₂O₂) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM⁻¹·cm⁻²) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  16. Platinum nanowire microelectrode arrays for neurostimulation applications: Fabrication, characterization, and in-vitro retinal cell stimulation

    NASA Astrophysics Data System (ADS)

    Whalen, John J., III

    Implantable electrical neurostimulating devices are being developed for a number of applications, including artificial vision through retinal stimulation. The epiretinal prosthesis will use a two-dimensional array microelectrodes to address individual cells of the retina. MEMS fabrication processes can produce arrays of microelectrodes with these dimensions, but there are two critical issues that they cannot satisfy. One, the stimulating electrodes are the only part of the implanted electrical device that penetrate through the water impermeable package, and must do so without sacrificing hermeticity. Two, As electrode size decreases, the current density (A cm-2 ) increases, due to increased electrochemical impedance. This reduces the amount of charge that can be safely injected into the tissue. To date, MEMS processing method, cannot produce electrode arrays with good, prolonged hermetic properties. Similarly, MEMS approaches do not account for the increased impedance caused by decreased surface area. For these reasons there is a strong motivation for the development of a water-impermeable, substrate-penetrating electrode array with low electrochemical impedance. This thesis presents a stimulating electrode array fabricated from platinum nanowires using a modified electrochemical template synthesis approach. Nanowires are electrochemically deposited from ammonium hexachloroplatinate solution into lithographically patterned nanoporous anodic alumina templates to produce microarrays of platinum nanowires. The platinum nanowires penetrating through the ceramic aluminum oxide template serve as parallel electrical conduits through the water impermeable, electrically insulating substrate. Electrode impedance can be adjusted by either controlling the nanowire hydrous platinum oxide content or by partially etching the alumina template to expose additional surface area. A stepwise approach to this project was taken. First, the electrochemistry of ammonium

  17. Negative effective gravity in water waves by periodic resonator arrays.

    PubMed

    Hu, Xinhua; Chan, C T; Ho, Kai-Ming; Zi, Jian

    2011-04-29

    Based on analytic derivations and numerical simulations, we show that near a low resonant frequency water waves cannot propagate through a periodic array of resonators (bottom-mounted split tubes) as if water has a negative effective gravitational acceleration g(e) and positive effective depth h(e). This gives rise to a low-frequency resonant band gap in which water waves can be strongly reflected by the resonator array. For a damping resonator array, the resonant gap can also dramatically modify the absorption efficiency of water waves. The results provide a mechanism to block water waves and should find applications in ocean wave energy extraction.

  18. Pulse electrodeposition and electrochemical quartz crystal microbalance techniques for high perpendicular magnetic anisotropy cobalt nanowire arrays

    SciTech Connect

    Ursache, Andrei; Goldbach, James T.; Russell, Thomas P.; Tuominen, Mark T.

    2005-05-15

    This research is focused on the development of pulse electrodeposition techniques to fabricate a high-density array of vertically oriented, high-magnetic anisotropy cobalt nanowires using a porous polymer film template. This type of array is a competitive candidate for future perpendicular magnetic media capable of storage densities exceeding 1 Terabit/in.{sup 2} The polymer template, derived from a self-assembling P(S-b-MMA) diblock copolymer film, provides precise control over the nanowire diameter (15 nm) and interwire spacing (24 nm), whereas nanowire length (typically 50 to 1000 nm) is controlled accurately with the aid of real-time electrochemical quartz crystal monitoring. Pulse and pulse-reversed electrodeposition techniques, as compared to dc, are shown to significantly enhance the perpendicular magnetic anisotropy of the magnetic nanowire array and ultimately result in coercivity as large as 2.7 kOe at 300 K. Magnetic and structural characterizations suggest that these properties arise from an improved degree of magnetocrystalline anisotropy (due to c-axis oriented crystal growth and improvements in crystal quality) that strongly supplements the basic shape anisotropy of the nanowires. Low temperature magnetometry is used to investigate exchange bias effects due to the incorporation of CoO antiferromagnetic impurities during the electrodeposition process and subsequent Co oxidation in air.

  19. Electric-Field Guided Synthesis of Standalone Nanowire Arrays for Thermoelectric Applications

    NASA Astrophysics Data System (ADS)

    San Hor, Yew

    2012-02-01

    Theoretical studies have suggested that figure of merits of thermoelectric materials can be improved through fabrications of nanoscaled thermoelectric materials. Thin films are expected to result in up to a seven fold improvement in efficiency over bulk materials; even greater enhancement, up to 15 times in efficiency, is expected for very thin wires. Researchers have already succeeded in increasing the efficiency by making thin-layered materials and nanowires of a non-thermoelectric material, i.e. silicone. For practical applications, however, arrays of standalone nanowires or isolated thermoelectric nanowire devices without any template will be required. Here I present an electromagnetic field guided nanostructured synthesis of an array of standalone thermoelectric nanowires. This technique utilizing electric field as a guide in building highly ordered nanostructures will be an elegant, ``bottom-up'' method for nanofabrication without the need of a template. An array of quasi-one dimensional chalcogenide nanowires has been successfully grown in between two conducting plates. Thermoelectric transport measurements including thermalconductivity, thermoelectric power and figure of merit can be easily performed in the device, without any need of complicated electron beam lithography technique.

  20. Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Chun, Dong Won; Kim, Tae Kyoung; Choi, Duyoung; Caldwell, Elizabeth; Kim, Young Jin; Paik, Jae Cheol; Jin, Sungho; Chen, Renkun

    2016-11-01

    In this work, vertically aligned Si nanowire arrays were fabricated by magnetically guided metal-assisted directional chemical etching. Using an anodized aluminum oxide template as a shadow mask, nanoscale Ni dot arrays were fabricated on an Si wafer to serve as a mask to protect the Si during the etching. For the magnetically guided chemical etching, we deposited a tri-layer metal catalyst (Au/Fe/Au) in a Swiss-cheese configuration and etched the sample under the magnetic field to improve the directionality of the Si nanowire etching and increase the etching rate along the vertical direction. After the etching, the nanowires were dried with minimal surface-tension-induced aggregation by utilizing a supercritical CO2 drying procedure. High-resolution transmission electron microscopy (HR-TEM) analysis confirmed the formation of single-crystal Si nanowires. The method developed here for producing vertically aligned Si nanowire arrays could find a wide range of applications in electrochemical and electronic devices.

  1. Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching.

    PubMed

    Chun, Dong Won; Kim, Tae Kyoung; Choi, Duyoung; Caldwell, Elizabeth; Kim, Young Jin; Paik, Jae Cheol; Jin, Sungho; Chen, Renkun

    2016-11-11

    In this work, vertically aligned Si nanowire arrays were fabricated by magnetically guided metal-assisted directional chemical etching. Using an anodized aluminum oxide template as a shadow mask, nanoscale Ni dot arrays were fabricated on an Si wafer to serve as a mask to protect the Si during the etching. For the magnetically guided chemical etching, we deposited a tri-layer metal catalyst (Au/Fe/Au) in a Swiss-cheese configuration and etched the sample under the magnetic field to improve the directionality of the Si nanowire etching and increase the etching rate along the vertical direction. After the etching, the nanowires were dried with minimal surface-tension-induced aggregation by utilizing a supercritical CO2 drying procedure. High-resolution transmission electron microscopy (HR-TEM) analysis confirmed the formation of single-crystal Si nanowires. The method developed here for producing vertically aligned Si nanowire arrays could find a wide range of applications in electrochemical and electronic devices.

  2. Surface effect on resonant properties of nanowires predicted by an elastic theory for nanomaterials

    SciTech Connect

    Yao, Yin; Chen, Shaohua E-mail: shchen@LNM.imech.ac.cn

    2015-07-28

    A recently developed continuum theory considering surface effect in nanomaterials is adopted to investigate the resonant properties of nanowires with different boundary conditions in the present paper. The main feature of the adopted theory is that the surface effect in nanomaterials is characterized by the surface energy density of the corresponding bulk materials and the surface relaxation parameter in nanoscale. Based on a fixed-fixed beam model and a cantilever one, the governing equation of resonant frequency for corresponding nanowires is obtained. Numerical calculation of the fundamental resonant frequency is carried out, the result of which is well consistent with the existing numerical ones. Comparing to the result predicted by the conventionally structural dynamics, the resonant frequency of a fixed-fixed nanowire is improved, while that of a cantilever nanowire is weakened due to the surface effect. Both a decreasing characteristic size (height or diameter) and an increasing aspect ratio could further enhance the varying trend of resonant properties for both kinds of nanowires. The present result should be helpful for the design of nano-devices and nanostructures related to nanowires.

  3. Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting

    NASA Astrophysics Data System (ADS)

    Chernomordik, Boris D.; Russell, Harry B.; Cvelbar, Uros; Jasinski, Jacek B.; Kumar, Vivekanand; Deutsch, Todd; Sunkara, Mahendra K.

    2012-05-01

    Undoped hematite nanowire arrays grown using plasma oxidation of iron foils show significant photoactivity (˜0.38 mA cm-2 at 1.5 V versus reversible hydrogen electrode in 1 M KOH). In contrast, thermally oxidized nanowire arrays grown on iron exhibit no photoactivity due to the formation of a thick (>7 μm Fe1-xO) interfacial layer. An atmospheric plasma oxidation process required only a few minutes to synthesize hematite nanowire arrays with a 1-5 μm interfacial layer of magnetite between the nanowire arrays and the iron substrate. An amorphous oxide surface layer on hematite nanowires, if present, is shown to decrease the resulting photoactivity of as-synthesized, plasma grown nanowire arrays. The photocurrent onset potential is improved after removing the amorphous surface on the nanowires using an acid etch. A two-step method involving high temperature nucleation followed by growth at low temperature is shown to produce a highly dense and uniform coverage of nanowire arrays.

  4. Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting.

    PubMed

    Chernomordik, Boris D; Russell, Harry B; Cvelbar, Uros; Jasinski, Jacek B; Kumar, Vivekanand; Deutsch, Todd; Sunkara, Mahendra K

    2012-05-17

    Undoped hematite nanowire arrays grown using plasma oxidation of iron foils show significant photoactivity (~0.38 mA cm(-2) at 1.5 V versus reversible hydrogen electrode in 1 M KOH). In contrast, thermally oxidized nanowire arrays grown on iron exhibit no photoactivity due to the formation of a thick (>7 μm Fe(1-x)O) interfacial layer. An atmospheric plasma oxidation process required only a few minutes to synthesize hematite nanowire arrays with a 1–5 μm interfacial layer of magnetite between the nanowire arrays and the iron substrate. An amorphous oxide surface layer on hematite nanowires, if present, is shown to decrease the resulting photoactivity of as-synthesized, plasma grown nanowire arrays. The photocurrent onset potential is improved after removing the amorphous surface on the nanowires using an acid etch. A two-step method involving high temperature nucleation followed by growth at low temperature is shown to produce a highly dense and uniform coverage of nanowire arrays.

  5. Photoelectrochemical Activity of As-Grown, a-Fe2O3 Nanowire Array Electrodes for Water Splitting

    SciTech Connect

    Chernomordik, B. D.; Russell, H. B.; Cvelbar, U.; Jasinski, J. B.; Kumar, V.; Deutsch, T.; Sunkara, M. K.

    2012-05-17

    Undoped hematite nanowire arrays grown using plasma oxidation of iron foils show significant photoactivity ({approx}0.38 mA cm{sup -2} at 1.5 V versus reversible hydrogen electrode in 1 M KOH). In contrast, thermally oxidized nanowire arrays grown on iron exhibit no photoactivity due to the formation of a thick (>7 {micro}m Fe{sub 1-x}O) interfacial layer. An atmospheric plasma oxidation process required only a few minutes to synthesize hematite nanowire arrays with a 1-5 {micro}m interfacial layer of magnetite between the nanowire arrays and the iron substrate. An amorphous oxide surface layer on hematite nanowires, if present, is shown to decrease the resulting photoactivity of as-synthesized, plasma grown nanowire arrays. The photocurrent onset potential is improved after removing the amorphous surface on the nanowires using an acid etch. A two-step method involving high temperature nucleation followed by growth at low temperature is shown to produce a highly dense and uniform coverage of nanowire arrays.

  6. High-Kinetic-Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Samkharadze, N.; Bruno, A.; Scarlino, P.; Zheng, G.; DiVincenzo, D. P.; DiCarlo, L.; Vandersypen, L. M. K.

    2016-04-01

    We present superconducting microwave-frequency resonators based on NbTiN nanowires. The small cross section of the nanowires minimizes vortex generation, making the resonators resilient to magnetic fields. Measured intrinsic quality factors exceed 2 ×105 in a 6-T in-plane magnetic field and 3 ×104 in a 350-mT perpendicular magnetic field. Because of their high characteristic impedance, these resonators are expected to develop zero-point voltage fluctuations one order of magnitude larger than in standard coplanar waveguide resonators. These properties make the nanowire resonators well suited for circuit QED experiments needing strong coupling to quantum systems with small electric dipole moments and requiring a magnetic field, such as electrons in single and double quantum dots.

  7. Co/Au multisegmented nanowires: a 3D array of magnetostatically coupled nanopillars.

    PubMed

    Bran, C; Ivanov, Yu P; Kosel, J; Chubykalo-Fesenko, O; Vazquez, M

    2017-03-03

    Arrays of multisegmented Co/Au nanowires with designed segment lengths and diameters have been prepared by electrodeposition into aluminum oxide templates. The high quality of the Co/Au interface and the crystallographic structure of Co segments have determined by high-resolution transmission electron microscopy. Magnetic hysteresis loop measurements show larger coercivity and squareness of multisegmented nanowires as compared to single segment Co nanowires. The complementary micromagnetic simulations are in good agreement with the experimental results, confirming that the magnetic behavior is defined mainly by magnetostatic coupling between different segments. The proposed structure constitutes an innovative route towards a 3D array of synchronized magnetic nano-oscillators with large potential in nanoelectronics.

  8. An InN/InGaN/GaN nanowire array guided wave photodiode on silicon

    NASA Astrophysics Data System (ADS)

    Hazari, Arnab; Zunaid Baten, Md.; Yan, Lifan; Millunchick, Joanna M.; Bhattacharya, Pallab

    2016-11-01

    The III-nitride nanowire heterostructure arrays with multiple InN disk light absorbing regions have been grown by plasma-assisted molecular beam epitaxy on (001)Si substrates, and guided wave photodiodes have been fabricated and characterized. The spectral photocurrent of the devices has been measured under reverse bias, and the data exhibit distinct shoulders in the range of 0.69-3.2 eV (0.39-1.8 μm). The estimated responsivity at a wavelength of 1.3 μm is 0.2 A/W. The nanowire photodiode response was also measured with an excitation at one facet provided by an edge-emitting laser fabricated with the same nanowire array and emitting at 1.3 μm.

  9. Co/Au multisegmented nanowires: a 3D array of magnetostatically coupled nanopillars

    NASA Astrophysics Data System (ADS)

    Bran, C.; Ivanov, Yu P.; Kosel, J.; Chubykalo-Fesenko, O.; Vazquez, M.

    2017-03-01

    Arrays of multisegmented Co/Au nanowires with designed segment lengths and diameters have been prepared by electrodeposition into aluminum oxide templates. The high quality of the Co/Au interface and the crystallographic structure of Co segments have determined by high-resolution transmission electron microscopy. Magnetic hysteresis loop measurements show larger coercivity and squareness of multisegmented nanowires as compared to single segment Co nanowires. The complementary micromagnetic simulations are in good agreement with the experimental results, confirming that the magnetic behavior is defined mainly by magnetostatic coupling between different segments. The proposed structure constitutes an innovative route towards a 3D array of synchronized magnetic nano-oscillators with large potential in nanoelectronics.

  10. Modeling the collective magnetic behavior of highly-packed arrays of multi-segmented nanowires

    NASA Astrophysics Data System (ADS)

    Agramunt-Puig, S.; Del-Valle, N.; Pellicer, E.; Zhang, J.; Nogués, J.; Navau, C.; Sanchez, A.; Sort, J.

    2016-01-01

    A powerful model to evaluate the collective magnetic response of large arrays of segmented nanowires comprising two magnetic segments of dissimilar coercivity separated by a non-magnetic spacer is introduced. The model captures the essential aspects of the underlying physics in these systems while being at the same time computationally tractable for relatively large arrays. The minimum lateral and vertical distances rendering densely packed weakly-interacting nanowires and segments are calculated for optimizing their performance in applications like magnetic sensors or recording media. The obtained results are appealing for the design of multifunctional miniaturized devices actuated by external magnetic fields, whose successful implementation relies on achieving a delicate balance between two opposing technological demands: the need for an ultra-high density of nanowires per unit area and the minimization of inter-wire and inter-segment dipolar interactions.

  11. Antibacterial activity of single crystalline silver-doped anatase TiO2 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyu; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin

    2016-05-01

    Well-ordered, one-dimensional silver-doped anatase TiO2 nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO2 nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  12. Magnetic-optical bifunctional CoPt3/Co multilayered nanowire arrays

    NASA Astrophysics Data System (ADS)

    Su, Yi-Kun; Yan, Zhi-Long; Wu, Xi-Ming; Liu, Huan; Ren, Xiao; Yang, Hai-Tao

    2015-10-01

    CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic (fcc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472165, 51471185, and 11274370).

  13. Light-controlled resistive switching memory of multiferroic BiMnO3 nanowire arrays.

    PubMed

    Sun, Bai; Li, Chang Ming

    2015-03-14

    A multiferroic BiMnO3 nanowire array was prepared using a hydrothermal process and its resistive switching memory behaviors were further investigated. The prominent ferroelectricity can be well controlled by white-light illumination, thus offering an excellent light-controlled resistive switching memory device using a Ag/BiMnO3/Ti structure at room temperature.

  14. MOF Thin Film-Coated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance.

    PubMed

    Yao, Ming-Shui; Tang, Wen-Xiang; Wang, Guan-E; Nath, Bhaskar; Xu, Gang

    2016-07-01

    A strategy for combining metal oxides and metal-organic frameworks is proposed to design new materials for sensing volatile organic compounds, for the first time. The prepared ZnO@ZIF-CoZn core-sheath nanowire arrays show greatly enhanced performance not only on its selectivity but also on its response, recovery behavior, and working temperature.

  15. Bandgap tuning of silicon nanowire arrays for application to all-silicon tandem solar cells

    NASA Astrophysics Data System (ADS)

    Kurokawa, Yasuyoshi; Yano, Mitsugu; Miyajima, Shinsuke; Yamada, Akira

    2017-04-01

    To reduce the diameter of silicon nanowire (SiNW) arrays for bandgap tuning, a diameter reduction (DR) process incorporating H3PO4 oxidation and HF etching was conducted for SiNW arrays with a diameter of 30 nm and a length of 15 µm. After the DR process, the diameter of SiNW arrays around the tip was successfully reduced to below 10 nm. From the cathode luminescence measurement, the bandgap around the tip of SiNW arrays was estimated to be 1.2 eV, suggesting that bandgap widening occurred owing to the quantum size effect.

  16. Fabrication and properties of a branched (NH₄)xWO₃ nanowire array film and a porous WO3 nanorod array film.

    PubMed

    Liu, Ya; Zhao, Liang; Su, Jinzhan; Li, Mingtao; Guo, Liejin

    2015-02-18

    We describe the successful fabrication of a three-dimensional branched (NH4)xWO3 nanowire array film on fluorine-doped tin oxide coated glass by a facile one-step hydrothermal method. The porous WO3 nanorod array film formed after heat treatment and recrystallization. Specifically, the branched (NH4)xWO3 nanowire array film has very thin nanowires that were about 10 nm in diameter. The results of an optical and photoelectrochemical test show that the branched (NH4)xWO3 nanowire array film could be used as a near-infrared shielder, while the porous WO3 nanorod array film can be used as a photoanode for water splitting. Moreover, the morphology, structure, and composition of the as-prepared films are revealed, and the related changes caused by heat treatment are discussed in detail.

  17. Fast growth of well-aligned ZnO nanowire arrays by a microwave heating method and their photocatalytic properties.

    PubMed

    Cao, Guangxia; Hong, Kunquan; Wang, Wenda; Liu, Liqing; Xu, Mingxiang

    2016-10-28

    The fast growth of aligned ZnO nanowire arrays with optimized structure is attractive for electrical and optical devices. In this paper, we report a controllable and rapid growth of ZnO nanowire arrays by a microwave-assisted hydrothermal method. When using different zinc salts as the precursors, the morphology of the samples changes a lot and the length growth rate is several times different. The growth mechanism is also investigated. It is found that the solution near neutral pH value is ideal for fast nanowire growth, in which the length of the nanowires increases linearly with growth time and the growth rate is over ten times faster than that in the traditional hydrothermal method. Therefore, aligned ZnO nanowire arrays can grow up to tens of microns in a few hours, while the density and sizes of these nanowires can be well controlled. The ZnO nanowire arrays used as photocatalysts present good photocatalytic performance to the degradation of methyl orange (MO) due to the large surface area. So this paper provides an effective method to obtain vertically aligned ZnO nanowire arrays for practical applications.

  18. Fast growth of well-aligned ZnO nanowire arrays by a microwave heating method and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Cao, Guangxia; Hong, Kunquan; Wang, Wenda; Liu, Liqing; Xu, Mingxiang

    2016-10-01

    The fast growth of aligned ZnO nanowire arrays with optimized structure is attractive for electrical and optical devices. In this paper, we report a controllable and rapid growth of ZnO nanowire arrays by a microwave-assisted hydrothermal method. When using different zinc salts as the precursors, the morphology of the samples changes a lot and the length growth rate is several times different. The growth mechanism is also investigated. It is found that the solution near neutral pH value is ideal for fast nanowire growth, in which the length of the nanowires increases linearly with growth time and the growth rate is over ten times faster than that in the traditional hydrothermal method. Therefore, aligned ZnO nanowire arrays can grow up to tens of microns in a few hours, while the density and sizes of these nanowires can be well controlled. The ZnO nanowire arrays used as photocatalysts present good photocatalytic performance to the degradation of methyl orange (MO) due to the large surface area. So this paper provides an effective method to obtain vertically aligned ZnO nanowire arrays for practical applications.

  19. Gap Plasmon Resonance in a Suspended Plasmonic Nanowire Coupled to a Metallic Substrate.

    PubMed

    Miyata, Masashi; Holsteen, Aaron; Nagasaki, Yusuke; Brongersma, Mark L; Takahara, Junichi

    2015-08-12

    We present an experimental demonstration of nanoscale gap plasmon resonators that consist of an individual suspended plasmonic nanowire (NW) over a metallic substrate. Our study demonstrates that the NW supports strong gap plasmon resonances of various gap sizes including single-nanometer-scale gaps. The obtained resonance features agree well with intuitive resonance models for near- and far-field regimes. We also illustrate that our suspended NW geometry is capable of constructing plasmonic coupled systems dominated by quasi-electrostatics.

  20. Hydrothermal growth of ZnO nanowire arrays: fine tuning by precursor supersaturation

    DOE PAGES

    Yan, Danhua; Cen, Jiajie; Zhang, Wenrui; ...

    2016-12-20

    In this paper, we develop a technique that fine tunes the hydrothermal growth of ZnO nanowires to address the difficulties in controlling their growth in a conventional one-pot hydrothermal method. In our technique, precursors are separately and slowly supplied with the assistance of a syringe pump, through the entire course of the growth. Compared to the one-pot method, the significantly lowered supersaturation of precursors helps eliminating competitive homogeneous nucleation and improves the reproducibility. The supersaturation degree can be readily tuned by the precursor quantity and injection rate, thus forming ZnO nanowire arrays of various geometries and packing densities in amore » highly controllable fashion. The precise control of ZnO nanowire growth enables systematic studies on the correlation between the material's properties and its morphology. Finally, in this work, ZnO nanowire arrays of various morphologies are studied as photoelectrochemical (PEC) water splitting photoanodes, in which we establish clear correlations between the water splitting performance and the nanowires' size, shape, and packing density.« less

  1. Hydrothermal growth of ZnO nanowire arrays: fine tuning by precursor supersaturation

    SciTech Connect

    Yan, Danhua; Cen, Jiajie; Zhang, Wenrui; Orlov, Alexander; Liu, Mingzhao

    2016-12-20

    In this paper, we develop a technique that fine tunes the hydrothermal growth of ZnO nanowires to address the difficulties in controlling their growth in a conventional one-pot hydrothermal method. In our technique, precursors are separately and slowly supplied with the assistance of a syringe pump, through the entire course of the growth. Compared to the one-pot method, the significantly lowered supersaturation of precursors helps eliminating competitive homogeneous nucleation and improves the reproducibility. The supersaturation degree can be readily tuned by the precursor quantity and injection rate, thus forming ZnO nanowire arrays of various geometries and packing densities in a highly controllable fashion. The precise control of ZnO nanowire growth enables systematic studies on the correlation between the material's properties and its morphology. Finally, in this work, ZnO nanowire arrays of various morphologies are studied as photoelectrochemical (PEC) water splitting photoanodes, in which we establish clear correlations between the water splitting performance and the nanowires' size, shape, and packing density.

  2. 15% Power Conversion Efficiency from a Gated Nanotube/Silicon Nanowire Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Petterson, Maureen K.; Lemaitre, Maxime G.; Shen, Yu; Wadhwa, Pooja; Hou, Jie; Vasilyeva, Svetlana V.; Kravchenko, Ivan I.; Rinzler, Andrew G.

    2015-03-01

    Despite their enhanced light trapping ability the performance of silicon nanowire array solar cells have, been stagnant with power conversion efficiencies barely breaking 10%. The problem is understood to be the consequence of a high photo-carrier recombination at the large surface area of the Si nanowire sidewalls. Here, by exploiting 1) electronic gating via an ionic liquid electrolyte to induce inversion in the n-type Si nanowires and 2) using a layer of single wall carbon nanotubes engineered to contact each nanowire tip and extract the minority carriers, we demonstrate silicon nanowire array solar cells with power conversion efficiencies of 15%. Our results allow for discrimination between the two principle means of avoiding front surface recombination: surface passivation and the use of local fields. A deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue a non-encapsulation based solution is also described. We gratefully acknowledge support from the National Science Foundation under ECCS-1232018.

  3. Förster Resonance Energy Transfer between Nanoparticles and Nanowires.

    NASA Astrophysics Data System (ADS)

    Hernandez-Martinez, Pedro L.; Govorov, Alexander O.

    2008-03-01

    We develop a theoretical model to describe Förster resonance energy transfer (FRET) between semiconductor nanoparticles (NPs) and nanowires (NWs). We obtain an analytical equation in the dipole limit and a numerical solution for the general case. We find that, for FRET between NPs and NW, the transfer time is proportional to 1/d̂5, where d is the distance between NP and NW. The calculated transfer time between CdTe NPs and NWs is 16.9 ns. This number agrees well with the experimental value, 16 ns [1]. We also found good agreement with the experimental data [1] for other NP-NW distances. For a NW material, we explore a semiconductor (CdTe) and metals (Au and Ag) [2]. In a NP-NW bio-conjugate, excitons flow from NPs to a NW and then become collected in a NW. When voltage is applied across a NW, this system is expected to demonstrate enhanced photo-current and photo-voltage responses. The enhancement effect comes from energy channeling from NPs to a NW due to FRET. This system can be used in optoelectronic devices and energy conversion systems. [1] J. Lee, A. O. Govorov, and N. A. Kotov, Nano Letters 5, 2063-2069 (2005). [2] J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, Nature Materials, 6, 291 -- 295 (2007)..

  4. Eu-doped ZnO nanowire arrays grown by electrodeposition

    NASA Astrophysics Data System (ADS)

    Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P.; Ahmadi, M.; Cuenya, B. Roldan; Rudzevich, Y.; Lin, Y.; Chow, L.

    2013-10-01

    The preparation of efficient light emitting diodes requires active optical layers working at low voltage for light emission. Trivalent lanthanide doped wide-bandgap semiconducting oxide nanostructures are promising active materials in opto-electronic devices. In this work we report on the electrochemical deposition (ECD) of Eu-doped ZnO (ZnO:Eu) nanowire arrays on glass substrates coated with F-doped polycrystalline SnO2. The structural, chemical and optical properties of ZnO:Eu nanowires have been systematically characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and photoluminescence. XRD results suggest the substitution of Zn2+ by Eu ions in the crystalline lattice. High-resolution TEM and associated electron diffraction studies indicate an interplanar spacing of 0.52 nm which corresponds to the (0 0 0 1) crystal plane of the hexagonal ZnO, and a growth along the c-direction. The ZnO:Eu nanowires have a single crystal structure, without noticeable defects. According to EDX, SIMS and XPS studies, cationic Eu species are detected in these samples showing the incorporation of Eu into the ZnO matrix. The oxidation states of europium ions in the nanowires are determined as +3 (74%) and +2 (26%). Photoluminescence studies demonstrated red emission from the Eu-doped ZnO nanowire arrays. When Eu was incorporated during the nanowire growth, the sharp 5D0-7F2 transition of the Eu3+ ion at around 612 nm was observed. These results suggest that Eu doped ZnO nanowires could pave the way for efficient, multispectral LEDs and optical devices.

  5. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition.

    PubMed

    Wang, Hong-Wen; Ting, Chi-Feng; Hung, Miao-Ken; Chiou, Chwei-Huann; Liu, Ying-Ling; Liu, Zongwen; Ratinac, Kyle R; Ringer, Simon P

    2009-02-04

    Dye-sensitized solar cells (DSSCs) show promise as a cheaper alternative to silicon-based photovoltaics for specialized applications, provided conversion efficiency can be maximized and production costs minimized. This study demonstrates that arrays of nanowires can be formed by wet-chemical methods for use as three-dimensional (3D) electrodes in DSSCs, thereby improving photoelectric conversion efficiency. Two approaches were employed to create the arrays of ITO (indium-tin-oxide) nanowires or arrays of ITO/TiO(2) core-shell nanowires; both methods were based on electrophoretic deposition (EPD) within a polycarbonate template. The 3D electrodes for solar cells were constructed by using a doctor-blade for coating TiO(2) layers onto the ITO or ITO/TiO(2) nanowire arrays. A photoelectric conversion efficiency as high as 4.3% was achieved in the DSSCs made from ITO nanowires; this performance was better than that of ITO/TiO(2) core-shell nanowires or pristine TiO(2) films. Cyclic voltammetry confirmed that the reaction current was significantly enhanced when a 3D ITO-nanowire electrode was used. Better separation of charge carriers and improved charge transport, due to the enlarged interfacial area, are thought to be the major advantages of using 3D nanowire electrodes for the optimization of DSSCs.

  6. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    PubMed

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  7. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    PubMed Central

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  8. Surface plasmon resonance of two-segmented Au—Cu nanowires in polycarbonate template

    NASA Astrophysics Data System (ADS)

    Babaei, F.; Azarian, A.

    2013-10-01

    Two segmented gold—copper nanowires were grown inside the pores of polycarbonate track (PCT) etched membranes from two separate solutions by the electrodeposition method. Optical absorption spectra of two segmented Au—Cu nanowires in PCT template showed a surface plasmon resonance peak at about 900 nm for incident angle θ=65° but for θ=0 there are no peaks in spectra. This work is possibly useful as labels in biological assays or as embedded identification tags.

  9. Investigation of the fill factor of dye-sensitized solar cell based on ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Tian, Yongshu; Hu, Chenguo; Wu, Qing; Wu, Xiaohui; Li, Xiaoyan; Hashim, Muhammad

    2011-10-01

    The fill factor of dye-sensitized solar cells based on the ZnO nanowire array is very low, which is usually ascribed to a rapid charge recombination. In this article, the influence on the fill factor of ZnO nanowire array cell is investigated and discussed by comparing dark current and decay rate of open circuit potential of the ZnO nanowire array cell with those of the ZnO nanoparticle cell, TiO 2 nanoparticle cell and TiO 2-coated ZnO nanowire array cell. The results demonstrate that the low fill factor of the ZnO nanowire array cell is largely caused by a rapid decrease of electron injection efficiency rather than a rapid charge recombination, which is decided by the absorption nature of Ru-complexed dye molecules on ZnO surface and repellency of radial electric field. The fill factor of the ZnO nanowire array cell can be improved by coating ZnO nanowires with a wide band gap semiconductor material or metal oxide insulator.

  10. Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics.

    PubMed

    Li, Junshuai; Yu, HongYu; Li, Yali

    2012-05-17

    Investigation of solar energy harvesting in hexagonally arranged Si nanowire (NW) arrays is performed through optimizing the structural parameters, such as array periodicity (P), Si NW diameter (D) and length (L). The results demonstrate that there exist wide P and D/P 'windows' for the Si NW arrays, locating around 600 nm and 0.833 (i.e., D=500 nm), respectively, for achieving enhanced light absorption compared to their thin film counterparts with the same thickness, but with much less materials consumption. Calculation of the ultimate efficiency (UE) indicates that the light trapping capability is not monotonically increased with L, and that UE vibration is found when L is >1000 nm. Comparison of the light absorption spectra for hexagonally and squarely arranged Si NW arrays demonstrates that these two most widely employed array symmetries in practice have little impact on the light trapping capability.

  11. Fabrication and phase variation in annealed Cu 3Se 2 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Jagminas, Arūnas; Tomašiūnas, Rolandas; Krotkus, Arūnas; Juškėnas, Remigijus; Aleksejenko, Genadijus

    2009-06-01

    We have found for the first time that Cu 3Se 2 nanowired products encased inside the alumina pores by electrodeposition demonstrate the promising nonlinear optical properties in UV-vis-NIR spectra region. Furthermore, the annealing of these products results in the formation of Cu 2- xSe with x depending on the annealing temperature. Optical nonlinearities of as-grown and thermally treated copper selenide nanowire arrays were evidenced using the standard open-aperture Z-scan and laser pump-probe techniques.

  12. Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires

    DTIC Science & Technology

    2008-11-01

    Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires Lena Mazeina,* Yoosuf N. Picard, and Sharka M. Prokes Electronics...Manuscript ReceiVed NoVember 6, 2008 ABSTRACT: Novel hierarchical ZnO- Ga2O3 nanostructures were fabricated via a two stage growth process. Nanowires of Ga2O3 ...nanobrushes (NBs) with Ga2O3 as the core and ZnO as the branches self-assembling symmetrically in six equiangular directions around the core

  13. Fabrication of large arrays of metallic nanowires on V-grooved substrates

    NASA Astrophysics Data System (ADS)

    Jorritsma, J.; Gijs, M. A. M.; Schönenberger, C.; Stienen, J. G. H.

    1995-09-01

    Large arrays of Au nanowires down to 50 nm in width are fabricated on V-grooved InP substrates. Holographic laser interference exposure of photoresist and anisotropic etching are used to pattern the surface of InP(001) substrates into V-shaped grooves with a 200 nm period. Next, the patterned substrates are covered with a thin Au film, which is subsequently structured into nanowires using a well controlled wet etching process. Initial characterization confirms that the wires are electrically continuous.

  14. Novel physical properties of glancing angle deposited nanowire arrays for spintronics

    NASA Astrophysics Data System (ADS)

    Alouach, Hamid

    Highly oriented perpendicular nanowire arrays with novel structures were fabricated by the technique of glancing angle deposition with substrate rotation. The nanowires are considered as a potential tool for the fundamental study of spin transport, and promising candidates for applications in perpendicular recording media. The detailed spin arrangements and dynamics in such devices have not been explored yet, and can only be understood if the atomic scale structure of the devices is precisely known. The growth and resulting crystallography of self assembled Cu nanowire arrays deposited both on native oxide Si(100) and H-terminated Si(110) substrates, respectively, were studied and compared. On native oxide Si(100), the nanowires exhibited a strong (110) texture for a deposition angle theta = 75° with rotational symmetry of the low energy Cu[111] directions about the wire's long axis. On H-terminated Si(110), the wires have an epitaxial orientation relationship with the substrate up to the critical height limit of 300 nm. Individual nanowires were confirmed to be single crystal by examination by transmission electron microscopy. The critical height for epitaxial growth is maximal (2800 nm) at a deposition angle theta = 35° and decreases rapidly with increasing deposition angle. Atomic self-shadowing and surface diffusion, which depend on the incidence angle, have a strong effect on morphology and texture formation. As the angle of incidence is increased, Cu grows as isolated columns with a spacing that increases as the angle of incidence is increased. Based on these observations, the growth mechanisms in glancing angle deposited materials and the theory of structural transitions in epitaxial overlayers of thin films, a theory for the growth mode in epitaxial nanowire arrays is proposed with a description of the recrystallization process that takes place above the critical height. The epitaxial Cu nanoarrays were used as seed layers to grow Ni 80Fe20 nanowire

  15. Nonlithographic nanowire-array tunnel device: Fabrication, zero-bias anomalies, and Coulomb blockade

    NASA Astrophysics Data System (ADS)

    Davydov, D. N.; Haruyama, J.; Routkevitch, D.; Statt, B. W.; Ellis, D.; Moskovits, M.; Xu, J. M.

    1998-06-01

    Coulomb blockade (CB) was observed in Al/aluminum oxide/Ni nanowire single-junction arrays fabricated by electrochemical deposition of Ni into porous aluminum oxide nanotemplates. The bias dependence of the tunneling current and the temperature dependence of the zero-bias anomalies observed in the tunneling spectra are shown to accord well with the theory of Nazarov for CB in systems where the leads play a significant role. Direct scanning tunneling microscopy measurements of the nanowire leads resistance confirms it to be the regime required by the theory.

  16. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly.

    PubMed

    Gall, Oren Z; Zhong, Xiahua; Schulman, Daniel S; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S

    2017-06-30

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  17. Versatile Particle-Based Route to Engineer Vertically Aligned Silicon Nanowire Arrays and Nanoscale Pores.

    PubMed

    Elnathan, Roey; Isa, Lucio; Brodoceanu, Daniel; Nelson, Adrienne; Harding, Frances J; Delalat, Bahman; Kraus, Tobias; Voelcker, Nicolas H

    2015-10-28

    Control over particle self-assembly is a prerequisite for the colloidal templating of lithographical etching masks to define nanostructures. This work integrates and combines for the first time bottom-up and top-down approaches, namely, particle self-assembly at liquid-liquid interfaces and metal-assisted chemical etching, to generate vertically aligned silicon nanowire (VA-SiNW) arrays and, alternatively, arrays of nanoscale pores in a silicon wafer. Of particular importance, and in contrast to current techniques, including conventional colloidal lithography, this approach provides excellent control over the nanowire or pore etching site locations and decouples nanowire or pore diameter and spacing. The spacing between pores or nanowires is tuned by adjusting the specific area of the particles at the liquid-liquid interface before deposition. Hence, the process enables fast and low-cost fabrication of ordered nanostructures in silicon and can be easily scaled up. We demonstrate that the fabricated VA-SiNW arrays can be used as in vitro transfection platforms for transfecting human primary cells.

  18. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly

    NASA Astrophysics Data System (ADS)

    Gall, Oren Z.; Zhong, Xiahua; Schulman, Daniel S.; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S.

    2017-06-01

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  19. Fabrication of nanowire arrays over micropyramids for efficient Si solar cell

    NASA Astrophysics Data System (ADS)

    Pant, Namrata; Singh, Prashant; Srivastava, Sanjay Kumar; Shukla, Vivek Kumar

    2016-05-01

    To improve the efficiency of solar cell, trapping the sunlight and using it to its maximum limit has been the area of research for past several decades. In the present work, texturisation of silicon surface has been done to make nanowire arrays over micropyramids. Micropyramids on Si surface increases the surface area, reduce the reflectivity and hence help to enhance the solar cell performance. Additionally, with the aim to further reduce the reflectance of Si surface, nanowire arrays over micro pyramids were fabricated. For this, samples with variation in their nanotexturisation time (etching time) were prepared. Measurements like SEM and UV-Vis reflectance spectroscopy were performed on the samples to investigate the changes with etching time. It was observed that the reflectance of planar Si in the spectral range 400 to 1000 nm is ˜35%. The reflectance of microtextured (micropyramid) Si surface is significantly reduced to ˜11%. A further decrease in reflectivity was observed when nanowire arrays were grown over the micropyramids. This may be attributed to the effective light trapping caused by multiple scattering of the incident light from the nanowires over micropyramids. Hence, it may improve silicon solar cell efficiency.

  20. Crystallographically driven magnetic behaviour of arrays of monocrystalline Co nanowires.

    PubMed

    Ivanov, Yu P; Trabada, D G; Chuvilin, A; Kosel, J; Chubykalo-Fesenko, O; Vázquez, M

    2014-11-28

    Cobalt nanowires, 40 nm in diameter and several micrometers long, have been grown by controlled electrodeposition into ordered anodic alumina templates. The hcp crystal symmetry is tuned by a suitable choice of the electrolyte pH (between 3.5 and 6.0) during growth. Systematic high resolution transmission electron microscopy imaging and analysis of the electron diffraction patterns reveals a dependence of crystal orientation from electrolyte pH. The tailored modification of the crystalline signature results in the reorientation of the magnetocrystalline anisotropy and increasing experimental coercivity and squareness with decreasing polar angle of the 'c' growth axis. Micromagnetic modeling of the demagnetization process and its angular dependence is in agreement with the experiment and allows us to establish the change in the character of the magnetization reversal: from quasi-curling to vortex domain wall propagation modes when the crystal 'c' axis tilts more than 75° in respect to the nanowire axis.

  1. In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates.

    PubMed

    Zhang, Weixin; Yang, Shihe

    2009-10-20

    The full potential of nanotechnology can be unleashed only when one is able not only to synthesize a rich variety of nanoscale building blocks but also assemble them into various patterns at the supramolecular and supracluster levels. In particular, the application of nanoparticle and nanowire materials often requires their assembly in the form of thin films, preferably on conductive surfaces for electrical addressing, control, and detection. Although a dazzling array of nanostructures has been fabricated by bottom-up approaches, one of the contemporary challenges is to assemble these nanostructures so that they introduce and realize functionalities. An alluring avenue is to simultaneously accomplish both the nanostructure synthesis and assembly on a useful substrate in a parallel fashion, affording the advantages of simplicity, low cost, and high throughput. In this Account, we review our recent work on growing inorganic nanowires (for example, metal sulfides, metal oxides, and so forth) directly from and on metal substrates in arrays without using templates and catalysts. This method of engineering nanowire arrays on metal substrates integrates the nanowire synthesis and assembly into a parallel process, both in time and in space, by exploiting in situ chemistry on the metal substrates. Both gas-phase and solution-phase approaches have been developed to synthesize the aligned nanowires; here, full advantage is taken of interfacial kinetics of restricted diffusion and surface-specific reactions, often accompanied by new interfacial growth mechanisms. The setting of nanowire arrays on metal substrates has allowed exploration of their application potentials in areas such as field electron emission and chemical sensing. The approaches described here are general, and we predict that they will be extended to more inorganic materials, such as metal halides. Moreover, as more control is achieved with synthetic methods, inorganic nanowire arrays should provide unusual

  2. Matrix replacement route to vertically aligned nickel nanowire array/polydimethylsiloxane nanocomposite film

    NASA Astrophysics Data System (ADS)

    Meng, Xin; Zhou, Liang-Tian; Zhu, Ji-Xiang; Song, Jie; Wang, Xuan-Rui; Qiao, Zheng-Ping

    2008-12-01

    Vertically aligned magnetic anisotropic nickel (Ni) nanowire (NW) array/polydimethylsiloxane (PDMS) film was prepared from (Ni NW array)/anodic aluminum oxide by a simple matrix replacement route. The main challenge is to preserve the parallelly aligned Ni NW during replacement. The diameter and thickness of the as-prepared Ni NW and the Ni NW array/PDMS film are 8 mm and 60 μm, respectively. The magnetic property measurement shows that the film has remarkably enhanced coercivity and remanence ratio compared to that of bulk nickel and exhibits perpendicular magnetic anisotropy.

  3. Influence of the adatom diffusion on selective growth of GaN nanowire regular arrays

    NASA Astrophysics Data System (ADS)

    Gotschke, T.; Schumann, T.; Limbach, F.; Stoica, T.; Calarco, R.

    2011-03-01

    Molecular beam epitaxy (MBE) on patterned Si/AlN/Si(111) substrates was used to obtain regular arrays of uniform-size GaN nanowires (NWs). The silicon top layer has been patterned with e-beam lithography, resulting in uniform arrays of holes with different diameters (dh) and periods (P). While the NW length is almost insensitive to the array parameters, the diameter increases significantly with dh and P till it saturates at P values higher than 800 nm. A diffusion induced model was used to explain the experimental results with an effective diffusion length of the adatoms on the Si, estimated to be about 400 nm.

  4. ZnTe Amorphous Semiconductor Nanowires Array Electrodeposited into Polycarbonate Membrane Thin Films

    NASA Astrophysics Data System (ADS)

    Ohgai, T.; Ikeda, T.; Ohta, J.

    2013-03-01

    ZnTe amorphous semiconductor nanowires array was electrodeposited into the nanochannels of ion-track etched polycarbonate membrane thin films from acidic aqueous solution at 313 K. ZnTe electrodeposits with Zn-rich composition was obtained over the wide range of cathode potential from -0.8 V to -1.1 V and the growth rate of ZnTe amorphous nanowires was around 3 nm•sec-1 at the cathode potential of -0.8 V. Cylindrical shape of the nanowires was precisely transferred from the nanochannels and the aspect ratio reached up to ca. 40. ZnTe amorphous phase electrodeposited at 313 K was crystallized by annealing at 683 K and the band gap energy of ZnTe crystalline phase reached up to ca. 2.13 eV.

  5. Dynamical formation of spatially localized arrays of aligned nanowires in plastic films with magnetic anisotropy.

    PubMed

    Fragouli, Despina; Buonsanti, Raffaella; Bertoni, Giovanni; Sangregorio, Claudio; Innocenti, Claudia; Falqui, Andrea; Gatteschi, Dante; Cozzoli, Pantaleo Davide; Athanassiou, Athanassia; Cingolani, Roberto

    2010-04-27

    We present a simple technique for magnetic-field-induced formation, assembling, and positioning of magnetic nanowires in a polymer film. Starting from a polymer/iron oxide nanoparticle casted solution that is allowed to dry along with the application of a weak magnetic field, nanocomposite films incorporating aligned nanocrystal-built nanowire arrays are obtained. The control of the dimensions of the nanowires and of their localization across the polymer matrix is achieved by varying the duration of the applied magnetic field, in combination with the evaporation dynamics. These multifunctional anisotropic free-standing nanocomposite films, which demonstrate high magnetic anisotropy, can be used in a wide field of technological applications, ranging from sensors to microfluidics and magnetic devices.

  6. Zinc oxide nanowire arrays for photovoltaic and light-emitting devices

    NASA Astrophysics Data System (ADS)

    Janfeshan, Bita; Sadeghimakki, Bahareh; Jahed, Navid M. S.; Sivoththaman, Siva

    2013-03-01

    Knowledge of carrier transfer, in quantum dot sensitized solar cells, is the key to engineering the device structure and architecture optimization. In this work, Zinc oxide (ZnO) nanowire (NW) arrays were synthesized on glass wafers and on GaN thin films for application in photovoltaic and light-emitting devices. The nanowires grown on glass wafers were incorporated with CdSe/ZnS quantum dots (QD) and their steady state and lifetime photoluminescence (PL) were studied to investigate the feasibility of electron transfer from excited QDs to ZnO NWs. The results provide an indication that the injected electrons, from excited high quantum efficiency QDs, live longer and hence facilitate electron transport without undergoing non-radiative recombination at surface trap states. Morphology and optical properties of the ZnO nanowires on GaN film were also studied for application in light-emitting devices.

  7. Structure and magnetic properties of metastable Co-Cu solid solution nanowire arrays fabricated by electrodeposition

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Li, Fashen; Wang, Ying; Song, Lijing

    2006-08-01

    Nanowire arrays of the metastable Cox Cu1-x (0.20 x 0.85) solid solution system which can not be obtained by equilibrium methods, were prepared by electrodeposition in pores of anodic aluminum oxide (AAO) template, and subsequently annealed at different temperatures. The as-deposited samples all show single phase of fcc structure, and lattice parameters decrease with the increase of Co content and fundamentally accord with Vegard's law. The phase transition with heat treatment was investigated by X-ray diffraction and differential thermal analysis (DTA) which further confirmed the formation of solid solution. With Co content increasing, the coercivity along nanowire axis for as-deposited samples increases, but it decreases for the annealed samples at 700 °C. This phenomenon was explained considering the interaction of Co particles through Cu in nanowires after phase separation.

  8. Self-assembled ZnS nanowire arrays: synthesis, in situ Cu doping and field emission

    NASA Astrophysics Data System (ADS)

    Liu, Baodan; Bando, Yoshio; Jiang, Xin; Li, Chun; Fang, Xiaosheng; Zeng, Haibo; Terao, Takeshi; Tang, Chengchun; Mitome, Masanori; Golberg, Dmitri

    2010-09-01

    Well-aligned single-crystalline ZnS nanowire arrays have been grown on highly conductive Cu substrates through controlling the morphology evolution of self-patterned ZnS nanoparticles. The ZnS nanowires have sharp tips with an average size of ~ 30 nm and a length of ~ 3 µm. Field emission measurements demonstrated that the aligned ZnS nanowires grown on Cu substrates are excellent field emitters having a turn-on field as low as 2.92 V µm - 1 and a field-enhancement factor as high as 3400. The use of highly conductive metal substrate may promote the commercial applications of ZnS-based emitters in flat panel displays and other optoelectronic devices.

  9. Laser Modified ZnO/CdSSe Core-Shell Nanowire Arrays for Micro-Steganography and Improved Photoconduction

    NASA Astrophysics Data System (ADS)

    Lu, Junpeng; Liu, Hongwei; Zheng, Minrui; Zhang, Hongji; Lim, Sharon Xiaodai; Tok, Eng Soon; Sow, Chorng Haur

    2014-09-01

    Arrays of ZnO/CdSSe core/shell nanowires with shells of tunable band gaps represent a class of interesting hybrid nanomaterials with unique optical and photoelectrical properties due to their type II heterojunctions and chemical compositions. In this work, we demonstrate that direct focused laser beam irradiation is able to achieve localized modification of the hybrid structure and chemical composition of the nanowire arrays. As a result, the photoresponsivity of the laser modified hybrid is improved by a factor of ~3. A 3D photodetector with improved performance is demonstrated using laser modified nanowire arrays overlaid with monolayer graphene as the top electrode. Finally, by controlling the power of the scanning focused laser beam, micropatterns with different fluorescence emissions are created on a substrate covered with nanowire arrays. Such a pattern is not apparent when imaged under normal optical microscopy but the pattern becomes readily revealed under fluorescence microscopy i.e. a form of Micro-Steganography is achieved.

  10. Laser modified ZnO/CdSSe core-shell nanowire arrays for Micro-Steganography and improved photoconduction.

    PubMed

    Lu, Junpeng; Liu, Hongwei; Zheng, Minrui; Zhang, Hongji; Lim, Sharon Xiaodai; Tok, Eng Soon; Sow, Chorng Haur

    2014-09-12

    Arrays of ZnO/CdSSe core/shell nanowires with shells of tunable band gaps represent a class of interesting hybrid nanomaterials with unique optical and photoelectrical properties due to their type II heterojunctions and chemical compositions. In this work, we demonstrate that direct focused laser beam irradiation is able to achieve localized modification of the hybrid structure and chemical composition of the nanowire arrays. As a result, the photoresponsivity of the laser modified hybrid is improved by a factor of ~3. A 3D photodetector with improved performance is demonstrated using laser modified nanowire arrays overlaid with monolayer graphene as the top electrode. Finally, by controlling the power of the scanning focused laser beam, micropatterns with different fluorescence emissions are created on a substrate covered with nanowire arrays. Such a pattern is not apparent when imaged under normal optical microscopy but the pattern becomes readily revealed under fluorescence microscopy i.e. a form of Micro-Steganography is achieved.

  11. Contact printing of horizontally-aligned p-type Zn₃P₂ nanowire arrays for rigid and flexible photodetectors.

    PubMed

    Yu, Gang; Liang, Bo; Huang, Hongtao; Chen, Gui; Liu, Zhe; Chen, Di; Shen, Guozhen

    2013-03-08

    Zn(3)P(2) is an important p-type semiconductor with the ability to detect almost all visible and ultraviolet light. By using the simple and efficient contact printing process, we reported the assembly of horizontally-aligned p-type Zn(3)P(2) nanowire arrays to be used as building blocks for high performance photodetectors. Horizontally-aligned Zn(3)P(2) nanowire arrays were first printed on silicon substrate to make thin-film transistors, exhibiting typical p-type transistor behavior with a high on/off ratio of 10(3). Besides, the Zn(3)P(2) nanowire array based devices showed a substantial response to illuminated lights with a wide range of wavelengths and densities. Flexible photodetectors were also fabricated by contact printing of horizontally-aligned Zn(3)P(2) nanowire arrays on flexible PET substrate, showing a comparable performance to the device on rigid silicon substrate.

  12. Field-effect transistors from lithographically patterned cadmium selenide nanowire arrays.

    PubMed

    Ayvazian, Talin; Xing, Wendong; Yan, Wenbo; Penner, Reginald M

    2012-09-26

    Field-effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrodeposition (LPNE) process on SiO(2)/Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C × 4 h either with or without exposure to CdCl(2) in methanol-a grain growth promoter. The influence of CdCl(2) treatment was to increase the mean grain diameter from 10 to 80 nm as determined by grazing incidence X-ray diffraction and to convert the crystal structure from cubic to wurtzite. Measured transfer characteristics showed an increase of the field effect mobility (μ(eff)) by an order of magnitude from 1.94 × 10(-4) cm(2)/(V s) to 23.4 × 10(-4) cm(2)/(V s) for pc-CdSe nanowires subjected to the CdCl(2) treatment. The CdCl(2) treatment also reduced the threshold voltage (from 20 to 5 V) and the subthreshold slope (by ~35%). Transfer characteristics for pc-CdSe NWFETs were also influenced by the channel length, L. For CdCl(2)-treated nanowires, μ(eff) was reduced by a factor of eight as L increased from 5 to 25 μm. These channel length effects are attributed to the presence of defects including breaks and constrictions within individual pc-CdSe nanowires.

  13. Development of multifunctional fiber reinforced polymer composites through ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Patterson, Brendan A.; Hwang, Hyun-Sik; Sodano, Henry A.

    2016-04-01

    Piezoelectric nanowires, in particular zinc oxide (ZnO) nanowires, have been vastly used in the fabrication of electromechanical devices to convert wasted mechanical energy into useful electrical energy. Over recent years, the growth of vertically aligned ZnO nanowires on various structural fibers has led to the development of fiber-based nanostructured energy harvesting devices. However, the development of more realistic energy harvesters that are capable of continuous power generation requires a sufficient mechanical strength to withstand typical structural loading conditions. Yet, a durable, multifunctional material system has not been developed thoroughly enough to generate electrical power without deteriorating the mechanical performance. Here, a hybrid composite energy harvester is fabricated in a hierarchical design that provides both efficient power generating capabilities while enhancing the structural properties of the fiber reinforced polymer composite. Through a simple and low-cost process, a modified aramid fabric with vertically aligned ZnO nanowires grown on the fiber surface is embedded between woven carbon fabrics, which serve as the structural reinforcement as well as the top and the bottom electrodes of the nanowire arrays. The performance of the developed multifunctional composite is characterized through direct vibration excitation and tensile strength examination.

  14. Electro-physical characterization of individual and arrays of ZnO nanowires

    SciTech Connect

    Mallampati, Bhargav; Singh, Abhay; Philipose, U.; Shik, Alex; Ruda, Harry E.

    2015-07-21

    Capacitance measurements were made on an array of parallel ZnO nanowires embedded in a polymer matrix and provided with two electrodes perpendicular to the nanowires. The capacitance monotonically increased, and saturated at large negative (depleting) and large positive (accumulating) voltages. A qualitative explanation for this behavior is presented, taking into account specific features of quasi-one-dimensional screening. The increasing or decreasing character of the capacitance-voltage characteristics were determined by the conductivity type of the nanowires, which in our case was n-type. A dispersion of the experimental capacitance was observed over the entire frequency range of 1 kHz to 5 MHz. This phenomenon is explained by the slow discharge of the nanowires through the thin dielectric layer that separates them from the top electrode. Separate measurements on individual identical nanowires in a field effect transistor configuration yielded an electron concentration and mobility of approximately 10{sup 17 }cm{sup −3} and 150 cm{sup 2}/Vs, respectively, at room temperature.

  15. Magnetic properties of Ni-Fe nanowire arrays: effect of template material and deposition conditions

    SciTech Connect

    Singleton, John; Aravamudhan, Shyan; Goddard, Paul A; Bhansali, Shekhar

    2008-01-01

    The objective of this work is to study the magnetic properties of arrays of Ni-Fe nanowires electrodeposited in different template materials such as porous silicon, polycarbonate and alumina. Magnetic properties were studied as a function of template material, applied magnetic field (parallel and perpendicular) during deposition, wire length, as well as magnetic field orientation during measurement. The results show that application of magnetic field during deposition strongly influences the c-axis preferred orientation growth of Ni-Fe nanowires. The samples with magnetic field perpendicular to template plane during deposition exhibits strong perpendicular anisotropy with greatly enhanced coercivity and squareness ratio, particularly in Ni-Fe nanowires deposited in polycarbonate templates. In case of polycarbonate template, as magnetic field during deposition increases, both coercivity and squareness ratio also increase. The wire length dependence was also measured for polycarbonate templates. As wire length increases, coercivity and squarness ratio decrease, but saturation field increases. Such magnetic behavior (dependence on template material, magnetic field, wire length) can be qualitatively explained by preferential growth phenomena, dipolar interactions among nanowires, and perpendicular shape anisotropy in individual nanowires.

  16. Electro-physical characterization of individual and arrays of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Mallampati, Bhargav; Singh, Abhay; Shik, Alex; Ruda, Harry E.; Philipose, U.

    2015-07-01

    Capacitance measurements were made on an array of parallel ZnO nanowires embedded in a polymer matrix and provided with two electrodes perpendicular to the nanowires. The capacitance monotonically increased, and saturated at large negative (depleting) and large positive (accumulating) voltages. A qualitative explanation for this behavior is presented, taking into account specific features of quasi-one-dimensional screening. The increasing or decreasing character of the capacitance-voltage characteristics were determined by the conductivity type of the nanowires, which in our case was n-type. A dispersion of the experimental capacitance was observed over the entire frequency range of 1 kHz to 5 MHz. This phenomenon is explained by the slow discharge of the nanowires through the thin dielectric layer that separates them from the top electrode. Separate measurements on individual identical nanowires in a field effect transistor configuration yielded an electron concentration and mobility of approximately 1017 cm-3 and 150 cm2/Vs, respectively, at room temperature.

  17. Planar Arrays of Nanoporous Gold Nanowires: When Electrochemical Dealloying Meets Nanopatterning.

    PubMed

    Chauvin, Adrien; Delacôte, Cyril; Molina-Luna, Leopoldo; Duerrschnabel, Michael; Boujtita, Mohammed; Thiry, Damien; Du, Ke; Ding, Junjun; Choi, Chang-Hwan; Tessier, Pierre-Yves; El Mel, Abdel-Aziz

    2016-03-01

    Nanoporous materials are of great interest for various technological applications including sensors based on surface-enhanced Raman scattering, catalysis, and biotechnology. Currently, tremendous efforts are dedicated to the development of porous one-dimensional materials to improve the properties of such class of materials. The main drawback of the synthesis approaches reported so far includes (i) the short length of the porous nanowires, which cannot reach the macroscopic scale, and (ii) the poor organization of the nanostructures obtained by the end of the synthesis process. In this work, we report for the first time on a two-step approach allowing creating highly ordered porous gold nanowire arrays with a length up to a few centimeters. This two-step approach consists of the growth of gold/copper alloy nanowires by magnetron cosputtering on a nanograted silicon substrate, serving as a physical template, followed by a selective dissolution of copper by an electrochemical anodic process in diluted sulfuric acid. We demonstrate that the pore size of the nanowires can be tailored between 6 and 21 nm by tuning the dealloying voltage between 0.2 and 0.4 V and the dealloying time within the range of 150-600 s. We further show that the initial gold content (11 to 26 atom %) and the diameter of the gold/copper alloy nanowires (135 to 250 nm) are two important parameters that must carefully be selected to precisely control the porosity of the material.

  18. Ferromagnetic resonance study of interface coupling for spin waves in narrow NiFe/Ru/NiFe multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Lupo, P.; Haghshenasfard, Z.; Cottam, M. G.; Adeyeye, A. O.

    2016-12-01

    A systematic investigation is presented for the magnetization dynamics in trilayer nanowires, consisting of two permalloy (Ni80Fe20 ) layers separated by a nonmagnetic Ru spacer layer. The width of the wires ranges from 90 to 190 nm. By varying the Ru thickness between 0.7 and 2.0 nm, the interlayer coupling can be effectively controlled, modifying the corresponding magnetic ground state and the spin-wave dynamics. By contrast with previous work on coupled trilayer nanowires with larger widths (270 nm and more), the focus here is on nanowire arrays where the strong shape anisotropy competes with the Ruderman-Kittel-Kasuya-Yosida interactions and biquadratic exchange interactions across the Ru interface, as well as dipolar interactions and Zeeman energy. As a result, the spin-wave spectrum is found to be drastically modified. Ferromagnetic resonance and hysteresis loop measurements are reported over a wide range of applied magnetic fields, showing that the overall magnetization alignment between the permalloy layers may be parallel, antiparallel, or in a spin-flop state, depending on the overall interlayer coupling. The experimental results for different stripe widths are successfully analyzed using a microscopic dipole-dipole theory and micromagnetic simulations.

  19. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction

    PubMed Central

    2013-01-01

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726

  20. Effects of various hydrogenated treatments on formation and photocatalytic activity of black TiO2 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Chieh; Chou, Po-Hsun

    2016-08-01

    The effects of hydrogen thermal and plasma treatment on the formation and photocatalytic activities of black TiO2 nanowire arrays were investigated and discussed. After either the hydrogen thermal or plasma treatment, the TiO2 nanowires remained. However, in contrast to the plasma treated nanowires, the diameter of the thermal treated TiO2 nanowires reduced more significantly, which was attributed to a thicker surface amorphous layer and more oxygen vacancies. A higher photoresponse in both UV and visible light regions and more hydroxide groups were also observed for the thermal treated nanowires. In addition, the black nanowires possessed greater carrier concentration, leading to a more efficient separation of electron-hole pairs. As a consequence, much enhanced photoelectrochemical water splitting and photocatalytic degradation of methylene blue were obtained.

  1. Electrodeposited Co93.2P6.8 nanowire arrays with core-shell microstructure and perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Nasirpouri, F.; Peighambari, S. M.; Samardak, A. S.; Ognev, A. V.; Sukovatitsina, E. V.; Modin, E. B.; Chebotkevich, L. A.; Komogortsev, S. V.; Bending, S. J.

    2015-05-01

    We demonstrate the formation of an unusual core-shell microstructure in Co93.2P6.8 nanowires electrodeposited by alternating current (ac) in an alumina template. By means of transmission electron microscopy, it is shown that the coaxial-like nanowires contain amorphous and crystalline phases. Analysis of the magnetization data for Co-P alloy nanowires indicates that a ferromagnetic core is surrounded by a weakly ferromagnetic or non-magnetic phase, depending on the phosphor content. The nanowire arrays exhibit an easy axis of magnetization parallel to the wire axis. For this peculiar composition and structure, the coercivity values are 2380 ± 50 and 1260 ± 35 Oe, parallel and perpendicular to the plane directions of magnetization, respectively. This effect is attributed to the core-shell structure making the properties and applications of these nanowires similar to pure cobalt nanowires with an improved perpendicular anisotropy.

  2. Trace detection of dissolved hydrogen gas in oil using a palladium nanowire array.

    PubMed

    Yang, Fan; Jung, Dongoh; Penner, Reginald M

    2011-12-15

    The electrical resistance, R, of an array of 30 palladium nanowires is used to detect the concentration of dissolved hydrogen gas (H(2)) in transformer oil over the temperature range from 21 to 70 °C. The palladium nanowire array (PdNWA), consisting of Pd nanowires ∼100 nm (width), ∼20 nm (height), and 100 μm (length), was prepared using the lithographically patterned nanowire electrodeposition (LPNE) method. The R of the PdNWA increased by up to 8% upon exposure to dissolved H(2) at concentrations above 1.0 ppm and up to 2940 ppm at 21 °C. The measured limit-of-detection for dissolved H(2) was 1.0 ppm at 21 °C and 1.6 ppm at 70 °C. The increase in resistance induced by exposure to H(2) was linear with [H(2)](oil)(1/2) across this concentration range. A PdNWA sensor operating in flowing transformer oil has functioned continuously for 150 days.

  3. Growth of ZnO Nanowire Arrays for Advanced Ultraviolet Detectors

    NASA Astrophysics Data System (ADS)

    Zeller, John; Manzur, Tariq; Anwar, A. F. Mehdi; Sood, Ashok K.

    2012-02-01

    Zinc oxide (ZnO) provides a unique wide bandgap biocompatible material system exhibiting both semiconducting and piezoelectric properties. Bulk ZnO has a bandgap of 3.37 eV that corresponds to emissions in the solar blind ultraviolet (UV) spectral band (240-280 nm). We have grown highly ordered vertical arrays of ZnO nanowires using the metal organic chemical vapor deposition (MOCVD) technique on Si, silicon dioxide, c-plane sapphire, and GaN epitaxial substrates. UV detectors based on ZnO nanowires offer the highest UV sensitivity and lowest visible sensitivity for applications such as missile plume detection and threat warning. The development of UV detectors based on vertical nanowire arrays requires an innovative fabrication approach involving precise deposition of metal contacts, where UV sensor performance depends to a large extent on the growth conditions as well as on the substrate used. We will present experimental results on the structural, electrical, and optical properties of ZnO nanowires grown for UV sensing applications.

  4. Photon lifetime correlated increase of Raman scattering and third-harmonic generation in silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zabotnov, S. V.; Kholodov, M. M.; Georgobiani, V. A.; Presnov, D. E.; Golovan, L. A.; Kashkarov, P. K.

    2016-03-01

    Light propagation in silicon nanowire layers is studied via Raman scattering, third-harmonic generation and cross-correlation function measurements. The studied silicon nanowire arrays are characterized by a wire diameter of 50-100 nm and a layer thickness ranging from 0.2-16 μm. These structures are mesoscopic for light in the visible and near infrared ranges. The Raman signal increases monotonically with layer thickness increases at a 1.064 μm pump wavelength. The Stokes component for silicon nanowire arrays with a thickness larger than 2 μm exceeds that for crystalline silicon by more than an order. At the mentioned thicknesses, an increase is also registered for the third-harmonic signal, one that is up to fourfold greater than that for crystalline silicon for a 1.25 μm pump wavelength. Measurements of cross-correlation functions for the scattered photons evidence the significant photon lifetime increase in the silicon nanowire layers at their thickness increase. This fact can be connected with multiple scattering inside the studied mesoscopic structures and the increase of the interaction length for the Raman and third-harmonic generation processes.

  5. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition.

    PubMed

    Sun, Hongyu; Li, Xiaohong; Chen, Yan; Guo, Defeng; Xie, Yanwu; Li, Wei; Liu, Baoting; Zhang, Xiangyi

    2009-10-21

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  6. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition

    NASA Astrophysics Data System (ADS)

    Sun, Hongyu; Li, Xiaohong; Chen, Yan; Guo, Defeng; Xie, Yanwu; Li, Wei; Liu, Baoting; Zhang, Xiangyi

    2009-10-01

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  7. Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode.

    PubMed

    Oh, Ilwhan; Kye, Joohong; Hwang, Seongpil

    2012-01-11

    Herein we report that silicon nanowires (SiNWs) fabricated via metal-catalyzed electroless etching yielded a photoelectrochemical hydrogen generation performance superior to that of a planar Si, which is attributed to a lower kinetic overpotential due to a higher surface roughness, favorable shift in the flat-band potential, and light-trapping effects of the SiNW surface. The SiNW photocathode yielded a photovoltage of 0.42 V, one of the highest values ever reported for hydrogen generation on p-type Si/electrolyte interfaces.

  8. Synthesis of Si/SiO2 core-shell nanowire arrays and broadband anti-reflection effects in diluted Si nanowire arrays by adjusting dielectric shell thickness.

    PubMed

    Li, Xinhua; Chen, Tao; Zhou, BuKang; Liu, Guangqiang; Shi, Tongfei; Wen, Long; Cao, Huaxiang; Wang, Yuqi

    2017-05-05

    A low filling ratio and enhanced absorption is needed to enable the full potential of Si nanowire (NW) arrays for optoelectronic applications. In this paper, we report a versatile, scalable fabrication technique that uses nanosphere lithography (NSL) patterning for the synthesis of vertically aligned Si and Si/SiO2 NW arrays. The optical reflection of the NW arrays can be substantially suppressed by the addition of the transparent shell. Meanwhile, by the finite-difference time-domain (FDTD) simulation, we find that the absorption enhancement in the core Si NW can be obtained by adding the transparent shell. The special absorption enhancement of the Si NW arrays with a core-shell structure can be theoretically understood by modal analysis. The absorption in such Si NW array structures is very sensitive to the thickness of transparent coating. By the addition of a SiO2 shell layer, the absorption in the inner Si NW array can be substantially enhanced. Furthermore, significant absorption enhancement and broadband anti-reflection effects can be achieved by the diluted Si NWs combined with the single dielectric shell.

  9. Electromagnetic modeling and resonant detectors and arrays

    NASA Astrophysics Data System (ADS)

    Choi, K. K.; Sun, J.; DeCuir, E. A.; Olver, K. A.; Wijewarnasuriya, P.

    2015-05-01

    We recently developed a finite element three-dimensional electromagnetic model for quantum efficiency (QE) computation. It is applicable to any arbitrary detector geometry and materials. Using this model, we can accurately account for the open literature experimental results that we have investigated, which include those from GaAs solar cells, GaSb type-II superlattices, and GaAs quantum wells. We applied the model to design a photon trap to increase detector QE. By accumulating and storing incident light in the resonator-QWIP structure, we observed experimental QE as high as 71%. This improvement shows that we are now able to fully determine the optical properties of QWIPs. For example, we can design QWIPs to detect at certain wavelengths with certain bandwidths. To illustrate this capability, we designed QWIPs with its QE spectrum matching well with the transmission spectrum of a medium. We subsequently produced several focal plane arrays according to these designs with 640 × 512 and 1 K × 1 K formats. In this paper, we will compare the modeled QE and the experimental results obtained from single detectors as well as FPAs.

  10. A laser-assisted process to produce patterned growth of vertically aligned nanowire arrays for monolithic microwave integrated devices.

    PubMed

    Kerckhoven, Vivien Van; Piraux, Luc; Huynen, Isabelle

    2016-06-10

    An experimental process for the fabrication of microwave devices made of nanowire arrays embedded in a dielectric template is presented. A pulse laser process is used to produce a patterned surface mask on alumina templates, defining precisely the wire growing areas during electroplating. This technique makes it possible to finely position multiple nanowire arrays in the template, as well as produce large areas and complex structures, combining transmission line sections with various nanowire heights. The efficiency of this process is demonstrated through the realisation of a microstrip electromagnetic band-gap filter and a substrate-integrated waveguide.

  11. Low temperature magnetoresistance measurements on bismuth nanowire arrays.

    PubMed

    Kaiser, Ch; Weiss, G; Cornelius, T W; Toimil-Molares, M E; Neumann, R

    2009-05-20

    We present low temperature resistance R(T) and magnetoresistance measurements for Bi nanowires with diameters between 100 and 500 nm, which are close to being single-crystalline. The nanowires were fabricated by electrochemical deposition in pores of polycarbonate membranes. R(T) varies as T(2) in the low temperature range 1.5 K

  12. Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection.

    PubMed

    In, Hyun Jin; Field, Christopher R; Pehrsson, Pehr E

    2011-09-02

    Nanowires of various materials and configurations have been shown to be highly effective in the detection of chemical and biological species. In this paper, we report a novel, nanosphere-enabled approach to fabricating highly sensitive gas sensors based on ordered arrays of vertically aligned silicon nanowires topped with a periodically porous top electrode. The vertical array configuration helps to greatly increase the sensitivity of the sensor while the pores in the top electrode layer significantly improve sensing response times by allowing analyte gases to pass through freely. Herein, we show highly sensitive detection to both nitrogen dioxide (NO(2)) and ammonia (NH(3)) in humidified air. NO(2) detection down to 10 parts per billion (ppb) is demonstrated and an order-of-magnitude improvement in sensor response time is shown in the detection of NH(3).

  13. Density Detection of Aligned Nanowire Arrays Using Terahertz Time-Domain Spectroscopy.

    PubMed

    Xiang, Wenfeng; Wang, Xin; Liu, Yuan; Zhang, JiaQi; Zhao, Kun

    2016-12-01

    A rapid technique is necessary to quantitatively detect the density of nanowire (NW) and nanotube arrays in one-dimensional devices which have been identified as useful building blocks for nanoelectronics, optoelectronics, biomedical devices, etc. Terahertz (THz) time-domain spectroscopy was employed in this research to detect the density of aligned Ni NW arrays. The transmitted amplitude of THz peaks and optical thickness of NW arrays was found to be the effective parameters to analyze the density change of NW arrays. Owing to the low multiple scattering and high order of Ni NW arrays, a linear relationship was observed for the transmitted amplitude and optical thickness regarding NW density, respectively. Therefore, THz technique may be used as a promising tool to characterize the density of one-dimensional structures in the large-scale integrated nanodevice fabrication.

  14. Ultrahigh density array of vertically aligned small-molecular organic nanowires on arbitrary substrates.

    PubMed

    Starko-Bowes, Ryan; Pramanik, Sandipan

    2013-06-18

    In recent years π-conjugated organic semiconductors have emerged as the active material in a number of diverse applications including large-area, low-cost displays, photovoltaics, printable and flexible electronics and organic spin valves. Organics allow (a) low-cost, low-temperature processing and (b) molecular-level design of electronic, optical and spin transport characteristics. Such features are not readily available for mainstream inorganic semiconductors, which have enabled organics to carve a niche in the silicon-dominated electronics market. The first generation of organic-based devices has focused on thin film geometries, grown by physical vapor deposition or solution processing. However, it has been realized that organic nanostructures can be used to enhance performance of above-mentioned applications and significant effort has been invested in exploring methods for organic nanostructure fabrication. A particularly interesting class of organic nanostructures is the one in which vertically oriented organic nanowires, nanorods or nanotubes are organized in a well-regimented, high-density array. Such structures are highly versatile and are ideal morphological architectures for various applications such as chemical sensors, split-dipole nanoantennas, photovoltaic devices with radially heterostructured "core-shell" nanowires, and memory devices with a cross-point geometry. Such architecture is generally realized by a template-directed approach. In the past this method has been used to grow metal and inorganic semiconductor nanowire arrays. More recently π-conjugated polymer nanowires have been grown within nanoporous templates. However, these approaches have had limited success in growing nanowires of technologically important π-conjugated small molecular weight organics, such as tris-8-hydroxyquinoline aluminum (Alq3), rubrene and methanofullerenes, which are commonly used in diverse areas including organic displays, photovoltaics, thin film transistors

  15. Ultrahigh Density Array of Vertically Aligned Small-molecular Organic Nanowires on Arbitrary Substrates

    PubMed Central

    Starko-Bowes, Ryan; Pramanik, Sandipan

    2013-01-01

    In recent years π-conjugated organic semiconductors have emerged as the active material in a number of diverse applications including large-area, low-cost displays, photovoltaics, printable and flexible electronics and organic spin valves. Organics allow (a) low-cost, low-temperature processing and (b) molecular-level design of electronic, optical and spin transport characteristics. Such features are not readily available for mainstream inorganic semiconductors, which have enabled organics to carve a niche in the silicon-dominated electronics market. The first generation of organic-based devices has focused on thin film geometries, grown by physical vapor deposition or solution processing. However, it has been realized that organic nanostructures can be used to enhance performance of above-mentioned applications and significant effort has been invested in exploring methods for organic nanostructure fabrication. A particularly interesting class of organic nanostructures is the one in which vertically oriented organic nanowires, nanorods or nanotubes are organized in a well-regimented, high-density array. Such structures are highly versatile and are ideal morphological architectures for various applications such as chemical sensors, split-dipole nanoantennas, photovoltaic devices with radially heterostructured "core-shell" nanowires, and memory devices with a cross-point geometry. Such architecture is generally realized by a template-directed approach. In the past this method has been used to grow metal and inorganic semiconductor nanowire arrays. More recently π-conjugated polymer nanowires have been grown within nanoporous templates. However, these approaches have had limited success in growing nanowires of technologically important π-conjugated small molecular weight organics, such as tris-8-hydroxyquinoline aluminum (Alq3), rubrene and methanofullerenes, which are commonly used in diverse areas including organic displays, photovoltaics, thin film transistors

  16. Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays

    PubMed Central

    2011-01-01

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices. PMID:27502660

  17. Periodically Porous Top Electrodes on Vertical Nanowire Arrays for Highly Sensitive Gas Detection

    DTIC Science & Technology

    2011-08-01

    highly sensitive detection to both nitrogen dioxide (NO2) and ammonia (NH3) in humidified air. NO2 detection down to 10 parts per billion (ppb) is... humidified air. NO2 detection down to 10 parts per billion (ppb) is demonstrated and an order-of-magnitude improvement in sensor response time is shown in...controllable size and distribution. Fast and highly sensitive detection of ammonia and nitrogen dioxide in humidified air using the PTE nanowire array sensor

  18. Flexible Dye-Sensitized Solar Cell based on Vertical ZnO Nanowire Arrays

    SciTech Connect

    Chu, Sheng; Li, Dongdong; Chang, Pai-Chun; Lu, Jia Grace

    2010-09-26

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices.

  19. Effects of annealing on the structure and magnetic properties of Fe27Co23Pb50 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, R. L.; Tang, S. L.; Shi, Y. G.; Fei, X. L.; Nie, B.; Du, Y. W.

    2008-04-01

    Ferromagnetic-nonmagnetic heterogeneous Fe27Co23Pb50 ternary metal nanowire arrays were successfully fabricated by alternating current electrodeposition into anodic alumina oxide (AAO) template. The effects of the different annealing temperatures (100, 200, 300, 400, 500, 600°C) on the structure and magnetic properties have been discussed. X-ray diffraction observations indicated that FeCo and Pb phases coexist for the as-deposited and annealed samples. Magnetic measurements indicate that the nanowire arrays have high perpendicular magnetic anisotropy with their easy axis parallel to the nanowire arrays. The coercivity and remanence ratio increases as the annealing temperature rises, reaches their maximum at 400°C, and then decreases as the annealing temperature rises further. The mechanism of the magnetic properties and magnetic variety should be attributed to the special structure of the nanowires/AAO.

  20. Stripe- or square-patterned arrays of tin dioxide nanowires for use in lithium-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Sang Ho; Kim, Won Bae

    2016-03-01

    This paper reports a novel electrode design for use in electrochemical lithium-ion storage. 3-dimensional patterns of tin dioxide nanowires that are grown directly over current collectors are suggested as electrode frameworks, representing the synergetic combination of nanometer-sized 1-dimensional electrode materials and micrometer-scaled hollow channels formed between the patterned nanowire arrays. The lithium-ion storage properties are investigated by changing the pattern geometries of these nanowire arrays in the shape of stripes and squares. The proposed electrode platforms show the enhanced electrochemical storage performances, which might be attributed to the effective diffusion of liquid phase electrolyte through the hollow channels between these patterned nanowire arrays. More interestingly, with increasing the hollow channels in these proposed systems, the high-rate performance and cycling stability are improved even further due to the structural effect of these electrode frameworks.

  1. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.

    PubMed

    Qiu, M C; Yang, L W; Qi, X; Li, Jun; Zhong, J X

    2010-12-01

    Highly ordered NiO coated Si nanowire array films are fabricated as electrodes for a high performance lithium ion battery via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The structures and morphologies of as-prepared films are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. When the potential window versus lithium was controlled, the coated NiO can be selected to be electrochemically active to store and release Li+ ions, while highly conductive crystalline Si cores function as nothing more than a stable mechanical support and an efficient electrical conducting pathway. The hybrid nanowire array films exhibit superior cyclic stability and reversible capacity compared to that of NiO nanostructured films. Owing to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowire array films will be promising anode materials for high performance lithium-ion batteries.

  2. Single crystalline cylindrical nanowires – toward dense 3D arrays of magnetic vortices

    PubMed Central

    Ivanov, Yurii P.; Chuvilin, Andrey; Vivas, Laura G.; Kosel, Jurgen; Chubykalo-Fesenko, Oksana; Vázquez, Manuel

    2016-01-01

    Magnetic vortex-based media have recently been proposed for several applications of nanotechnology; however, because lithography is typically used for their preparation, their low-cost, large-scale fabrication is a challenge. One solution may be to use arrays of densely packed cobalt nanowires that have been efficiently fabricated by electrodeposition. In this work, we present this type of nanoscale magnetic structures that can hold multiple stable magnetic vortex domains at remanence with different chiralities. The stable vortex state is observed in arrays of monocrystalline cobalt nanowires with diameters as small as 45 nm and lengths longer than 200 nm with vanishing magnetic cross talk between closely packed neighboring wires in the array. Lorentz microscopy, electron holography and magnetic force microscopy, supported by micromagnetic simulations, show that the structure of the vortex state can be adjusted by varying the aspect ratio of the nanowires. The data we present here introduce a route toward the concept of 3-dimensional vortex-based magnetic memories. PMID:27030143

  3. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures

    PubMed Central

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N.; Rocca, Jorge J.

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 108 J cm−3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 1019 W cm−2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 1022 W cm−2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 1010 J cm−3, equivalent to a pressure of 0.35 Tbar. PMID:28097218

  4. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures.

    PubMed

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N; Rocca, Jorge J

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10(8) J cm(-3) and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 10(19) W cm(-2), we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10(22) W cm(-2) will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10(10) J cm(-3), equivalent to a pressure of 0.35 Tbar.

  5. Energy Density in Aligned Nanowire Arrays Irradiated with Relativistic Intensities: Path to Terabar Pressure Plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J.; Bargsten, C.; Hollinger, R.; Shylaptsev, V.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Capeluto, M.; Kaymak, V.; Pukhov, A.; Tommasini, R.; London, R.; Park, J.

    2016-10-01

    Ultra-high-energy-density (UHED) plasmas, characterized by energy densities >1 x 108 J cm-3 and pressures greater than a gigabar are encountered in the center of stars and in inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto aligned nanowire array targets. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations validated by these measurements predict that irradiation of nanostructures at increased intensity will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency.

  6. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells.

    PubMed

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-22

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm(2)) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  7. Single crystalline cylindrical nanowires - toward dense 3D arrays of magnetic vortices

    NASA Astrophysics Data System (ADS)

    Ivanov, Yurii P.; Chuvilin, Andrey; Vivas, Laura G.; Kosel, Jurgen; Chubykalo-Fesenko, Oksana; Vázquez, Manuel

    2016-03-01

    Magnetic vortex-based media have recently been proposed for several applications of nanotechnology; however, because lithography is typically used for their preparation, their low-cost, large-scale fabrication is a challenge. One solution may be to use arrays of densely packed cobalt nanowires that have been efficiently fabricated by electrodeposition. In this work, we present this type of nanoscale magnetic structures that can hold multiple stable magnetic vortex domains at remanence with different chiralities. The stable vortex state is observed in arrays of monocrystalline cobalt nanowires with diameters as small as 45 nm and lengths longer than 200 nm with vanishing magnetic cross talk between closely packed neighboring wires in the array. Lorentz microscopy, electron holography and magnetic force microscopy, supported by micromagnetic simulations, show that the structure of the vortex state can be adjusted by varying the aspect ratio of the nanowires. The data we present here introduce a route toward the concept of 3-dimensional vortex-based magnetic memories.

  8. A vertical tip-tip contact silicon nanowire array for gas sensing.

    PubMed

    Lin, Leimiao; Liu, Dong; Chen, Qiaofen; Zhou, Hongzhi; Wu, Jianmin

    2016-10-20

    Novel chemiresistive gas sensors based on a vertical tip-tip contact silicon nanowire (TTC-SiNW) array were constructed. The welding of TTC-SiNWs after joule heating treatment was confirmed by a current-voltage curve (I-V curve). The TTC-SiNW structure not only resolved the problem of electrode contact encountered in conventional nanowire sensors, but also elongated the nanowire length to increase the void space for fast gas diffusion. The TTC-SiNW sensor comprising the same two types of SiNW arrays responded to NO2 very sensitively. The LOD for the p-p and n-n contact SiNW arrays is around 150 ppb and 3 ppb (S/N = 3), respectively. Furthermore, the highly oriented nano-junction formed on the TTC structure provided solid evidence to clarify the contribution of the nanojunction to gas sensing behavior. The TTC-SiNW sensor with a p-n junction displays a significant rectification effect. The sensitive response towards NO2 (LOD is about 18 ppb) was observed at a reverse bias voltage, whereas the response at a forward bias voltage was insignificant. Finally, the mechanism of gas sensing behavior on different types of TTC structures was proposed.

  9. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    PubMed Central

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-01-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5–3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications. PMID:25241800

  10. A Photocatalytic Rotating Disc Reactor with TiO₂ Nanowire Arrays Deposited for Industrial Wastewater Treatment.

    PubMed

    Li, Fang; Szeto, Wai; Huang, Haibao; Li, Jiantao; Leung, Dennis Y C

    2017-02-22

    A photocatalytic rotating disc reactor (PRD-reactor) with TiO₂ nanowire arrays deposited on a thin Ti plate is fabricated and tested for industrial wastewater treatment. Results indicate that the PRD-reactor shows excellent decolorization capability when tested with methyl orange (>97.5%). Advanced oxidation processes (AOP), including photocatalytic oxidation and photolytic reaction, occurred during the processing. Efficiency of the AOP increases with reduction in light absorption pathlength, which enhanced the photocatalytic reaction, as well as by increasing oxygen exposure of the wastewater thin film due to the rotating disc design. It is found that, with a small dosage of hydrogen peroxide, the mineralization efficiency of industrial biodegraded wastewater can be enhanced, with a superior mineralization of >75% total organic carbon (TOC) removal. This is due to the fact that the TiO₂ photocatalysis and hydrogen peroxide processes generate powerful oxidants (hydroxyl radicals) that can strongly improve photocatalytic oxidation efficiency. Application of this industrial wastewater treatment system is benefited from the TiO₂ nanowire arrays, which can be fabricated by a mild solvothermal method at 80 °C and under atmospheric pressure. Similar morphologies and microstructures are found for the TiO₂ nanowire arrays deposited on a large metal Ti disc, which makes the wastewater treatment process more practical and economical.

  11. Energy Penetration into Arrays of Aligned Nanowires Irradiated with Relativistic Intensities: Scaling to Terabar Pressures

    SciTech Connect

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, M; Shlyaptsev, Vyacheslav N.; Rocca, Jorge J.

    2016-11-11

    Ultra-high-energy-density (UHED) matter, characterized by energy densities > 1 x 108 J cm-3 and pressures greater than a gigabar, is encountered in the center of stars and in inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of > 1 x 1022 W cm-2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar.

  12. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  13. Thickness dependent self limiting 1-D tin oxide nanowire arrays by nanosecond pulsed laser irradiation

    SciTech Connect

    Shirato, N.; Strader, J.; Kumar, Amit; Vincent, A.; Zhang, P.; Karakoti, Ajay S.; Nachimuthu, Ponnusamy; Cho, H-J.; Seal, Sudipta; Kalyanaraman, R.

    2011-01-23

    Fast, sensitive and discriminating detection of hydrogen at room temperature is crucial for storage, transportation, and distribution of hydrogen as an energy source. One dimensional nanowires of SnO2 are potential candidates for improved H2 sensor performance. The single directional conducting continuous nanowires can decrease electrical noise, and their large active surface area could improve the response and recovery time of the sensor. In this work we discuss synthesis and characterization of nanowire arrays made using nanosecond ultraviolet wavelength (266 nm) laser interference processing of ultrathin SnO2 films on SiO2 substrates. The laser energy was chosen to be above the melting point of the films. The results show that the final nanowire formation is dominated by preferential evaporation as compared to thermocapillary flow. The nanowire height (and hence wire aspect ratio) increased with increasing initial film thickness ho and with increasing laser energy density Eo. Furthermore, a self-limiting effect was observed where-in the wire formation ceased at a specific final remaining thickness of SnO2 that was almost independent of ho for a given Eo. To understand these effects, finite element modeling of the nanoscale laser heating was performed. This showed that the temperature rise under laser heating was a strong non-monotonic function of film thickness. As a result, the preferential evaporation rate varies as wire formation occurs, eventually leading to a shut-off of evaporation at a characteristic thickness. This results in the stoppage of wire formation. This combination of nanosecond pulsed laser experiments and thermal modeling shows that several unique synthesis approaches can be utilized to control the nanowire characteristics.

  14. Bi-stable resistive switching in an array of nanowires

    NASA Astrophysics Data System (ADS)

    Gayen, Sirshendu; Sanyal, Milan K.; Sarma, Abhisakh; Satpati, Biswarup

    2015-01-01

    A resistive switching system comprising of metal-insulator-metal sandwich-structured nanowires embedded within polycarbonate membrane has been investigated. The system switches from non-Ohmic high resistive state (HRS) to Ohmic low resistive state on application of a critical bias of 2.5 V. The bipolar switching can be performed by applying current bias as well. Driving two suitable currents, and we observe highly reproducible switching between two stable resistive states. The switching is initiated by establishment of filamentary conduction path commonly formed in oxide materials. However, the main charge transport in the HRS is governed with modified activated behavior, which is obvious from the antisymmetric, reversible I-V characteristic following where a, b and are constants. The exponential term corresponds to charge generation by field-enhanced thermal activation process, whereas the linear term is related to mobility.

  15. Manufacturing a nanowire-based sensing system via flow-guided assembly in a microchannel array template

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zu, Yingbo; Rajagopalan, Kartik Kumar; Wang, Shengnian

    2015-06-01

    A novel flow-guided assembly approach is presented to accurately align and position nanowire arrays in pre-defined locations with high throughput and large-scale manufacturing capability. In this approach, a polymer solution is first filled in an array of microfluidic channels. Then a gas flow is introduced to blow out most of the solution while pushing a little leftover against the channel wall for assembly into polymer nanowires. In this way, highly ordered nanowires are conveniently aligned in the flow direction and patterned along both sides of the microchannels. In this study, we demonstrated this flow-guided assembly process by producing millimetre-long nanowires across a 5 × 12 mm area in the same orientation and with basic ‘I-shape’, ‘T-shape’, and ‘cross’ patterns. The assembled polymer nanowires were further converted to conductive carbon nanowires through a standard carbonization process. After being integrated into electronic sensors, high sensitivity was found in model protein sensing tests. This new nanowire manufacturing approach is anticipated to open new doors to the fabrication of nanowire-based sensing systems and serve as good manufacturing practice for its simplicity, low cost, alignment reliability, and high throughput.

  16. Temperature-dependent structure and phase variation of nickel silicide nanowire arrays prepared by in situ silicidation

    SciTech Connect

    Liu, Hailong; She, Guangwei; Mu, Lixuan; Shi, Wensheng

    2012-12-15

    Graphical abstract: Display Omitted Highlight: ► Nickel silicides nanowire arrays prepared by a simple in situ silicidation method. ► Phases of nickel silicides could be varied by tuning the reaction temperature. ► A growth model was proposed for the nickel silicides nanowires. ► Diffusion rates of Ni and Si play a critical role for the phase variation. -- Abstract: In this paper, we report an in situ silicidizing method to prepare nickel silicide nanowire arrays with varied structures and phases. The in situ reaction (silicidation) between Si and NiCl{sub 2} led to conversion of Si nanowires to nickel silicide nanowires. Structures and phases of the obtained nickel silicides could be varied by changing the reaction temperature. At a relatively lower temperature of 700 °C, the products are Si/NiSi core/shell nanowires or NiSi nanowires, depending on the concentration of NiCl{sub 2} solution. At a higher temperature (800 °C and 900 °C), other phases of the nickel silicides, including Ni{sub 2}Si, Ni{sub 31}Si{sub 12}, and NiSi{sub 2}, were obtained. It is proposed that the different diffusion rates of Ni and Si atoms at different temperatures played a critical role in the formation of nickel silicide nanowires with different phases.

  17. Design guidelines of periodic Si nanowire arrays for solar cell application

    NASA Astrophysics Data System (ADS)

    Li, Junshuai; Yu, HongYu; Wong, She Mein; Li, Xiaocheng; Zhang, Gang; Lo, Patrick Guo-Qiang; Kwong, Dim-Lee

    2009-12-01

    In this letter, optimum periodic Si nanowire (SiNW) arrays are designed via simulation for solar cell application, in terms of the structural parameters, e.g., the array periodicity (P) and SiNW diameter (D). It is found that the more efficient light absorption compared to that of the Si thin film with the same thickness could be realized when P is between 250 and 1200 nm. Further, the ratio of D to P should be >0.5 (or more specifically ˜0.8) for the optimized solar energy harvesting. The underlying physics is also discussed in this work.

  18. Transfer-free synthesis of highly ordered Ge nanowire arrays on glass substrates

    NASA Astrophysics Data System (ADS)

    Nakata, M.; Toko, K.; Jevasuwan, W.; Fukata, N.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.

    2015-09-01

    Vertically aligned Ge nanowires (NWs) are directly synthesized on glass via vapor-liquid-solid (VLS) growth using chemical-vapor deposition. The use of the (111)-oriented Ge seed layer, formed by metal-induced crystallization at 325 °C, dramatically improved the density, uniformity, and crystal quality of Ge NWs. In particular, the VLS growth at 400 °C allowed us to simultaneously achieve the ordered morphology and high crystal quality of the Ge NW array. Transmission electron microscopy demonstrated that the resulting Ge NWs had no dislocations or stacking faults. Production of high-quality NW arrays on amorphous insulators will promote the widespread application of nanoscale devices.

  19. Enhanced field emission from ZnO nanowire arrays utilizing MgO buffer between seed layer and silicon substrate

    NASA Astrophysics Data System (ADS)

    Chen, Si; Chen, Jiangtao; Liu, Jianlin; Qi, Jing; Wang, Yuhua

    2016-11-01

    Field emitters based on ZnO nanowires and other nanomaterials are promising high-brightness electron sources for field emission display, microscopy and other applications. The performance of a ZnO nanowire field emitter is linked to the quality, conductivity and alignment of the nanowires on a substrate, therefore requiring ways to improve these parameters. Here, ZnO nanowire arrays were grown on ZnO seed layer on silicon substrate with MgO buffer between the seed layer and Si. The turn-on field and enhancement factor of these nanowire arrays are 3.79 V/μm and 3754, respectively. These properties are improved greatly compared to those of ZnO nanowire arrays grown on ZnO seed layer without MgO buffer, which are 5.06 V/μm and 1697, respectively. The enhanced field emission properties can be attributed to better electron transport in seed layer, and better nanowire alignment because of MgO buffer.

  20. New Insights into the Origins of Sb-Induced Effects on Self-Catalyzed GaAsSb Nanowire Arrays.

    PubMed

    Ren, Dingding; Dheeraj, Dasa L; Jin, Chengjun; Nilsen, Julie S; Huh, Junghwan; Reinertsen, Johannes F; Munshi, A Mazid; Gustafsson, Anders; van Helvoort, Antonius T J; Weman, Helge; Fimland, Bjørn-Ove

    2016-02-10

    Ternary semiconductor nanowire arrays enable scalable fabrication of nano-optoelectronic devices with tunable bandgap. However, the lack of insight into the effects of the incorporation of Vy element results in lack of control on the growth of ternary III-V(1-y)Vy nanowires and hinders the development of high-performance nanowire devices based on such ternaries. Here, we report on the origins of Sb-induced effects affecting the morphology and crystal structure of self-catalyzed GaAsSb nanowire arrays. The nanowire growth by molecular beam epitaxy is changed both kinetically and thermodynamically by the introduction of Sb. An anomalous decrease of the axial growth rate with increased Sb2 flux is found to be due to both the indirect kinetic influence via the Ga adatom diffusion induced catalyst geometry evolution and the direct composition modulation. From the fundamental growth analyses and the crystal phase evolution mechanism proposed in this Letter, the phase transition/stability in catalyst-assisted ternary III-V-V nanowire growth can be well explained. Wavelength tunability with good homogeneity of the optical emission from the self-catalyzed GaAsSb nanowire arrays with high crystal phase purity is demonstrated by only adjusting the Sb2 flux.

  1. High density micro-pyramids with silicon nanowire array for photovoltaic applications.

    PubMed

    Rahman, Tasmiat; Navarro-Cía, Miguel; Fobelets, Kristel

    2014-12-05

    We use a metal assisted chemical etch process to fabricate silicon nanowire arrays (SiNWAs) onto a dense periodic array of pyramids that are formed using an alkaline etch masked with an oxide layer. The hybrid micro-nano structure acts as an anti-reflective coating with experimental reflectivity below 1% over the visible and near-infrared spectral regions. This represents an improvement of up to 11 and 14 times compared to the pyramid array and SiNWAs on bulk, respectively. In addition to the experimental work, we optically simulate the hybrid structure using a commercial finite difference time domain package. The results of the optical simulations support our experimental work, illustrating a reduced reflectivity in the hybrid structure. The nanowire array increases the absorbed carrier density within the pyramid by providing a guided transition of the refractive index along the light path from air into the silicon. Furthermore, electrical simulations which take into account surface and Auger recombination show an efficiency increase for the hybrid structure of 56% over bulk, 11% over pyramid array and 8.5% over SiNWAs.

  2. Improved Thermal Behavior of Multiple Linked Arrays of Silicon Nanowires Integrated into Planar Thermoelectric Microgenerators

    NASA Astrophysics Data System (ADS)

    Dávila, Diana; Tarancón, Albert; Calaza, Carlos; Salleras, Marc; Fernández-Regúlez, Marta; Paulo, Alvaro San; Fonseca, Luis

    2013-07-01

    Low-dimensional structures have been shown to be promising candidates for enhancing the thermoelectric properties of semiconductors, paving the way for integration of thermoelectric generators into silicon microtechnology. With this aim, dense arrays of well-oriented and size-controlled silicon nanowires (Si NWs) obtained by the chemical vapor deposition (CVD)-vapor-liquid-solid (VLS) mechanism have been implemented into microfabricated structures to develop planar unileg thermoelectric microgenerators ( μTEGs). Different low-thermal-mass suspended structures have been designed and microfabricated on silicon-on-insulator (SOI) substrates to operate as microthermoelements using p-type Si NW arrays as the thermoelectric material. To obtain nanowire arrays with effective lengths larger than normally attained by the VLS technique, structures composed of multiple ordered arrays consecutively bridged by transversal microspacers have been fabricated. The successive linkage of multiple Si NW arrays enabled the development of larger temperature differences while preserving good electrical contact. This gives rise to small internal thermoelement resistances, enhancing the performance of the devices as energy harvesters.

  3. Optical resonance problem in metamaterial arrays: a lattice dynamics approach

    NASA Astrophysics Data System (ADS)

    Liu, Wanguo

    2016-11-01

    A systematic dynamic theory is established to deal with the optical collective resonance in metamaterial arrays. As a reference model, we consider an infinite split ring resonator (SRR) array illuminated by a linearly polarized wave and introduce an N-degree-of-freedom forced oscillator equation to simplify the coupled-mode vibration problem. We derive a strict formula of resonance frequency (RF) and its adjustable range from the steady-state response. Unlike a single SRR possesses invariant RF, it successfully explains the mechanism of RF shift effect in the SRR array when the incident angle changes. Instead of full wave analysis, only one or two adjacent resonance modes can give an accurate response line shape. Our approach is applicable for metallic arrays with any N-particle cell at all incident angles and well matched with numerical results. It provides a versatile way to study the vibration dynamics in optical periodic many-body systems.

  4. Dual-color single-mode lasing in axially coupled organic nanowire resonators

    PubMed Central

    Zhang, Chunhuan; Zou, Chang-Ling; Dong, Haiyun; Yan, Yongli; Yao, Jiannian; Zhao, Yong Sheng

    2017-01-01

    Miniaturized lasers with multicolor output and high spectral purity are of crucial importance for yielding more compact and more versatile photonic devices. However, multicolor lasers usually operate in multimode, which largely restricts their practical applications due to the lack of an effective mode selection mechanism that is simultaneously applicable to multiple wavebands. We propose a mutual mode selection strategy to realize dual-color single-mode lasing in axially coupled cavities constructed from two distinct organic self-assembled single-crystal nanowires. The unique mode selection mechanism in the heterogeneously coupled nanowires was elucidated experimentally and theoretically. With each individual nanowire functioning as both the laser source and the mode filter for the other nanowire, dual-color single-mode lasing was successfully achieved in the axially coupled heterogeneous nanowire resonators. Furthermore, the heterogeneously coupled resonators provided multiple nanoscale output ports for delivering coherent signals with different colors, which could greatly contribute to increasing the integration level of functional photonic devices. These results advance the fundamental understanding of the lasing modulation in coupled cavity systems and offer a promising route to building multifunctional nanoscale lasers for high-level practical photonic integrations. PMID:28785731

  5. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems

    PubMed Central

    Smith, David C.; Spencer, Joseph H.; Sloan, Jeremy; McDonnell, Liam P.; Trewhitt, Harrison; Kashtiban, Reza J.; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  6. Micromagnetic simulation and the angular dependence of coercivity and remanence for array of polycrystalline nickel nanowires

    NASA Astrophysics Data System (ADS)

    Fuentes, G. P.; Holanda, J.; Guerra, Y.; Silva, D. B. O.; Farias, B. V. M.; Padrón-Hernández, E.

    2017-02-01

    We present here our experimental results for the preparation and characterization of nanowires of nickel and the analysis of the angular dependence of coercivity and remanence using experimental data and micromagnetic simulation. The fabrication was made by using aluminum oxide membranes as templates and deposited nickel by an electrochemical route. The magnetic measurements showed that coercivity and remanence are dependent of the angle of application of the external magnetic field. Our results are different than that expected for the coherent, vortex and transversal modes of the reversion for the magnetic moments. According to the transmission electron microscopy analysis we can see that our nanowires have not a perfect cylindrical format. That is why we have used the ellipsoids chain model for better understanding the real structure of wires and its relation with the magnetic behavior. In order to generate theoretical results for this configuration we have made micromagnetic simulation using Nmag code. Our numerical results for the realistic distances are in correspondence with the magnetic measurements and we can see that there are contradictions if we assume the transverse reversal mode. Then, we can conclude that structure of nanowires should be taken into account to understand the discrepancies reported in the literature for the reversion mechanism in arrays of nickel nanowires.

  7. Wire-supported CdSe nanowire array photoelectrochemical solar cells.

    PubMed

    Zhang, Luhui; Shi, Enzheng; Li, Zhen; Li, Peixu; Jia, Yi; Ji, Chunyan; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2012-03-14

    Previous fiber-shaped solar cells are based on polymeric materials or dye-sensitized wide band-gap oxides. Here, we show that efficient fiber solar cells can be made from semiconducting nanostructures (e.g. CdSe) with smaller band-gap as the light absorption material. We directly grow a vertical array of CdSe nanowires uniformly around a core metal wire and make the device by covering the top of nanowires with a carbon nanotube (CNT) film as the porous transparent electrode. The CdSe-CNT fiber solar cells show power conversion efficiencies of 1-2% under AM 1.5 illumination after the nanowires are infiltrated with redox electrolyte. We do not use a secondary metal wire (e.g. Pt) as in conventional fiber-shaped devices, instead, the end part of the CNT film is condensed into a conductive yarn to serve as the secondary electrode. In addition, our CdSe nanowire-based photoelectrochemical fiber solar cells maintain good flexibility and stable performance upon rotation and bending to large angles.

  8. Microstructure and superconductivity of highly ordered YBa(2)Cu(3)O(7-δ) nanowire arrays.

    PubMed

    Zhang, Genqiang; Lu, Xiaoli; Zhang, Tao; Qu, Jifeng; Wang, Wei; Li, Xiaoguang; Yu, Shuhong

    2006-08-28

    In order to explore the fundamental properties of one-dimensional nanostructured high-temperature superconductors and enhance their promising applications, a universal and general method for the synthesis of high-quality YBa(2)Cu(3)O(7-δ) (YBCO) nanowire arrays is developed, which involves the combination of a novel sol-gel process to lower the crystallization temperature of YBCO, and porous anodic alumina (PAA) as an effective morphology-directing hard template. Field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results indicate that the as-prepared YBCO nanowires have average diameters of about 50 nm and lengths up to several microns. The structures of the samples were analysed by x-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDX) and inductively coupled plasma (ICP) analysis, which indicate that the nanowires are well crystallized with orthorhombic YBCO-123 structure. The magnetization measurement under zero-field-cooled (ZFC) mode indicates that the superconducting transition temperature (T(c)) of the nanowires is about 92 K, which is in agreement with that of a bulk YBCO sample.

  9. Fabrication of single crystalline, uniaxial single domain Co nanowire arrays with high coercivity

    NASA Astrophysics Data System (ADS)

    Ramazani, A.; Almasi Kashi, M.; Montazer, A. H.

    2014-03-01

    Whilst Co nanorods with high coercivity were synthesized during recent years, they did not achieve the same results as for Co nanowires embedded in solid templates. In the present work, Co nanowire arrays (NWAs) with high coercivity were successfully fabricated in porous aluminum oxide template under optimum conditions by using pulsed ac electrodeposition technique. Magnetic properties and crystalline characteristics of the nanowires were investigated by hysteresis loop measurements, first-order reversal curve (FORC) analysis, X-ray diffraction (XRD), and selected area electron diffraction (SAED) patterns. Hysteresis loop measurements showed high coercivity of about 4.8 kOe at room temperature together with optimum squareness of 1, resulting in an increase of the previous maximum coercivity for Co NWAs up to 45%. XRD and SAED patterns revealed a single crystalline texture along the [0002] direction, indicating the large magnetocrystalline anisotropy. On the other hand, FORC analysis confirmed a single domain structure for the Co NWAs. In addition, the reversal mechanism of the single crystalline, single domain Co NWAs was studied which resulted in the fixed easy axis with a coherent rotation. Accordingly, these nanowires might offer promising applications in high density bit patterned media and low power logic devices.

  10. Electrodeposition of Rhodium Nanowires Arrays and Their Morphology-Dependent Hydrogen Evolution Activity

    PubMed Central

    Zhang, Liqiu; Liu, Lichun; Wang, Hongdan; Shen, Hongxia; Cheng, Qiong; Yan, Chao; Park, Sungho

    2017-01-01

    This work reports on the electrodeposition of rhodium (Rh) nanowires with a controlled surface morphology synthesized using an anodic aluminum oxide (AAO) template. Vertically aligned Rh nanowires with a smooth and coarse morphology were successfully deposited by adjusting the electrode potential and the concentration of precursor ions and by involving a complexing reagent in the electrolyte solution. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses were used to follow the morphological evolution of Rh nanowires. As a heterogeneous electrocatalyst for hydrogen evolution reactions (HER), the coarse Rh nanowire array exhibited an enhanced catalytic performance respect to smooth ones due to the larger surface area to mass ratio and the higher density of catalytically active defects, as evidenced by voltammetric measurements and TEM. Results suggest that the morphology of metallic nanomaterials could be readily engineered by electrodeposition. The controlled electrodeposition offers great potential for the development of an effective synthesis tool for heterogeneous catalysts with a superior performance for wide applications. PMID:28467375

  11. Temperature dependent magnetization in Co-base nanowire arrays: Role of crystalline anisotropy

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Vázquez, M.; Vega, V.; García, J.; Rosa, W. O.; del Real, R. P.; Prida, V. M.

    2012-04-01

    Co, Co(1-x)Pdx, and Co(1-y)Niy nanowire arrays have been prepared by electrochemical template-assisted growth. Hcp, fcc or both phases are detected in Co nanowires depending on their length (300 nm to 40 μm) and on the content of Pd (0 ≤ x ≤ 0.4) and Ni (0 ≤ y ≤ 0.8). Their magnetic behavior has been studied under longitudinal and perpendicular applied fields. The effective magnetic anisotropy is mostly determined by the balance between the shape and the crystalline terms, the latter depending on the fractional volume of hcp phase with strong perpendicular anisotropy and fcc phase with weaker longitudinal anisotropy. The temperature dependence of remanence and coercivity and the eventual observation of compensation temperature is interpreted as due to the different temperature dependence of shape and hcp crystalline anisotropy. Optimum longitudinal magnetic anisotropy is achieved in low Pd-content CoPd nanowires and in short Co nanowires.

  12. Substantial influence on solar energy harnessing ability by geometries of ordered Si nanowire array

    PubMed Central

    2014-01-01

    The reflectance of the controlled periodic Si nanowire (NW) arrays is systematically explored, which characterizes the influence on the solar energy harnessing ability by the geometries of the NW. A unique dependence of the reflectance of the Si NW array on the diameter, the height, and the bending of the NW are disclosed. The solar energy loss caused by the reflection of the Si NW array exhibits the minimum for the NW with intermediate diameter and length. A plane-wave-based transfer-matrix method (TMM) simulation is performed, which is well consistent with the experimental results. Our results demonstrate the design principle to optimize the Si NW arrays for high-efficiency solar cells. PACS 81.07.-b; 78.67.-n; 81.16.-c PMID:25258613

  13. Self-assembled growth of tandem nanostructures based on TiO2 mesoporous/ZnO nanowire arrays and their optoelectronic and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Kılıç, Bayram; Çelik, Volkan

    2015-05-01

    Growth of ZnO nanowires within TiO2 mesoporous structures is carried out by hydrothermal method. Structural, optical and thermal characterizations have been carried out by SEM, XRD, EDAX, DTG, TG, PL and UV-Vis spectroscopy. XRD characterization shows that the all diffraction peaks of the tandem nanostructures films can be well indexed to a mixture of hexagonal wurtzite ZnO and anatase TiO2 structures. The UV-Visible absorbance spectrum indicates that the tandem nanostructures based on TiO2 mesoporous/ZnO nanowire arrays have 3.13 eV band gap energy while pure ZnO nanowire and bare TiO2 mesoporous show 3.37 and 3.22 eV band gap energy, respectively. The PL spectra of tandem nanostructures show that the UV, violet and yellow emission peaks appeared at 3.1, 2.6 and 2.3 eV, respectively. It has been shown that from the PL spectra, the enhanced ultraviolet emission of TiO2/ZnO tandem structures is related to the fluorescence resonance energy transfer between TiO2 mesoporous and ZnO nanowires. Thermogravimetric analysis from room temperature to 800 °C has been performed to identify the thermal stability and the amount of tandem TiO2/ZnO structures.

  14. Stabilization mechanisms for information stored in magnetic nanowire arrays

    NASA Astrophysics Data System (ADS)

    Cisternas, Eduardo; Faúndez, Julián; Vogel, Eugenio E.

    2017-03-01

    The durability of the stored information in magnetic systems is one important feature in firmware applications such as security codes, magnetic keys and other similar products. In the present paper we discuss two different ways of preserving patterns in the set of magnetic wires trapped in the porous membranes used to produce them. One of the techniques is the inscription of an opposite magnetic band of about 1/3 the width of the stored pattern which minimizes the repulsive energy among the ferromagnetic cylinders still leaving a potent magnetic signal to be read. The other technique makes use of segmented nanowires which present a competition of repulsive energy of segments within the same layer while the interaction is attractive with the closer segments of the other layer; such a competition can lead to stabilization if the geometrical parameters are properly controlled. The first technique is cheaper and faster to implement, while the second technique needs a more complete fabrication process but can lead to more durable stored information.

  15. Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate

    NASA Astrophysics Data System (ADS)

    Kwon, Jinhyeong; Hong, Sukjoon; Lee, Habeom; Yeo, Junyeob; Lee, Seung S.; Ko, Seung Hwan

    2013-11-01

    Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature. Therefore, Zn acetate precursor inkjet printing-based direct nanowire local growth is expected to give extremely high flexibility in nanomaterial patterning for high-performance electronics fabrication especially at the development stage. As a proof of concept of the proposed method, ZnO nanowire network-based field effect transistors and ultraviolet photo-detectors were demonstrated by direct patterned grown ZnO nanowires as active layer.

  16. Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate

    PubMed Central

    2013-01-01

    Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature. Therefore, Zn acetate precursor inkjet printing-based direct nanowire local growth is expected to give extremely high flexibility in nanomaterial patterning for high-performance electronics fabrication especially at the development stage. As a proof of concept of the proposed method, ZnO nanowire network-based field effect transistors and ultraviolet photo-detectors were demonstrated by direct patterned grown ZnO nanowires as active layer. PMID:24252130

  17. On-Demand Fabrication of Si/SiO2 Nanowire Arrays by Nanosphere Lithography and Subsequent Thermal Oxidation.

    PubMed

    Cao, Huaxiang; Li, Xinhua; Zhou, Bukang; Chen, Tao; Shi, Tongfei; Zheng, Jianqiang; Liu, Guangqiang; Wang, Yuqi

    2017-12-01

    We demonstrate the fabrication of the large-area arrays of vertically aligned Si/SiO2 nanowires with full tunability of the geometry of the single nanowires by the metal-assisted chemical etching technique and the following thermal oxidation process. To fabricate the geometry controllable Si/SiO2 nanowire (NW) arrays, two critical issues relating with the size control of polystyrene reduction and oxide thickness evolution are investigated. Through analyzing the morphology evolutions of polystyrene particles, we give a quantitative description on the diameter variations of polystyrene particles with the etching time of plasma etching. Based on this, pure Si NW arrays with controllable geometry are generated. Then the oxide dynamic of Si NW is analyzed by the extended Deal-Grove model. By control, the initial Si NWs and the thermal oxidation time, the well-aligned Si/SiO2 composite NW arrays with controllable geometry are obtained.

  18. Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates

    NASA Astrophysics Data System (ADS)

    Guerrera, S. A.; Akinwande, A. I.

    2016-07-01

    We developed a fabrication process for embedding a dense array (108 cm-2) of high-aspect-ratio silicon nanowires (200 nm diameter and 10 μm tall) in a dielectric matrix and then structured/exposed the tips of the nanowires to form self-aligned gate field emitter arrays using chemical mechanical polishing (CMP). Using this structure, we demonstrated a high current density (100 A cm-2), uniform, and long lifetime (>100 h) silicon field emitter array architecture in which the current emitted by each tip is regulated by the silicon nanowire current limiter connected in series with the tip. Using the current voltage characteristics and with the aid of numerical device models, we estimated the tip radius of our field emission arrays to be ≈4.8 nm, as consistent with the tip radius measured using a scanning electron microscope (SEM).

  19. On-Demand Fabrication of Si/SiO2 Nanowire Arrays by Nanosphere Lithography and Subsequent Thermal Oxidation

    NASA Astrophysics Data System (ADS)

    Cao, Huaxiang; Li, Xinhua; Zhou, Bukang; Chen, Tao; Shi, Tongfei; Zheng, Jianqiang; Liu, Guangqiang; Wang, Yuqi

    2017-02-01

    We demonstrate the fabrication of the large-area arrays of vertically aligned Si/SiO2 nanowires with full tunability of the geometry of the single nanowires by the metal-assisted chemical etching technique and the following thermal oxidation process. To fabricate the geometry controllable Si/SiO2 nanowire (NW) arrays, two critical issues relating with the size control of polystyrene reduction and oxide thickness evolution are investigated. Through analyzing the morphology evolutions of polystyrene particles, we give a quantitative description on the diameter variations of polystyrene particles with the etching time of plasma etching. Based on this, pure Si NW arrays with controllable geometry are generated. Then the oxide dynamic of Si NW is analyzed by the extended Deal-Grove model. By control, the initial Si NWs and the thermal oxidation time, the well-aligned Si/SiO2 composite NW arrays with controllable geometry are obtained.

  20. Controlled Growth of Platinum Nanowire Arrays on Sulfur Doped Graphene as High Performance Electrocatalyst

    PubMed Central

    Wang, Rongyue; Higgins, Drew C.; Hoque, Md Ariful; Lee, DongUn; Hassan, Fathy; Chen, Zhongwei

    2013-01-01

    Graphene supported Pt nanostructures have great potential to be used as catalysts in electrochemical energy conversion and storage technologies; however the simultaneous control of Pt morphology and dispersion, along with ideally tailoring the physical properties of the catalyst support properties has proven very challenging. Using sulfur doped graphene (SG) as a support material, the heterogeneous dopant atoms could serve as nucleation sites allowing for the preparation of SG supported Pt nanowire arrays with ultra-thin diameters (2–5 nm) and dense surface coverage. Detailed investigation of the preparation technique reveals that the structure of the resulting composite could be readily controlled by fine tuning the Pt nanowire nucleation and growth reaction kinetics and the Pt-support interactions, whereby a mechanistic platinum nanowire array growth model is proposed. Electrochemical characterization demonstrates that the composite materials have 2–3 times higher catalytic activities toward the oxygen reduction and methanol oxidation reaction compared with commercial Pt/C catalyst. PMID:23942256

  1. Synthesis and field emission of β-SiC nanowires on silicon nanoporous pillar array

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Li, Zijiong; Kang, Liping; Li, Xinjian

    2012-10-01

    Nonaligned β-SiC nanowires (nw-SiC) were grown on silicon nanoporous pillar array (Si-NPA) by a chemical vapor deposition (CVD) method with nickel as the catalyst. The curly hair like SiC nanowires and the silicon pillar array formed a nanometer-micron hierarchy structure. The field-emission measurements to nw-SiC/Si-NPA showed that a lower turn-on field of 2.9 V μm-1 was obtained, and the enhancement factor of nw-SiC/Si-NPA according to the Fowler-Nordheim (F-N) theory reached 5200. The excellent field-emission performance was attributed to the nanometer-micron hierarchy structure of nw-SiC/Si-NPA, including the high aspect ratio of the SiC nanowires and the regular surface undulation of Si-NPA which increased the emission sites density and might have reduced the electrostatic shielding among the emitters.

  2. Selective growth of vertical silicon nanowire array guided by anodic aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Hoang Nguyen, Van; Hoshi, Yusuke; Usami, Noritaka; Konagai, Makoto

    2015-09-01

    We report on the selective growth of vertical silicon nanowire arrays guided by an anodic aluminum oxide (AAO) template without the introduction of any metallic catalyst. Gas-source molecular beam epitaxy using disilane as a source gas was carried out. The growth conditions such as flow rate and growth temperature were changed to optimize the Si nanowire growth. It was found that the selective growth was promoted at a flow rate of 0.5 sccm, whereas the selective growth was poor at high flow rates of 1 and 2 sccm. One-micrometer-long Si nanowire arrays were obtained at a low flow rate of 0.5 sccm only at the growth temperature of 700 °C. The obtained Si grown at a temperature of 650 °C exhibited conglomerated structures with Si grains piled up inside the nanopores of the AAO template. We found that increasing the growth temperature and decreasing the flow rate are useful for improving the growth selectivity.

  3. A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors

    SciTech Connect

    Verma, V. B. Horansky, R.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Marsili, F.; Stern, J. A.; Shaw, M. D.

    2014-02-03

    We demonstrate a scalable readout scheme for an infrared single-photon pulse-position camera consisting of WSi superconducting nanowire single-photon detectors. For an N × N array, only 2 × N wires are required to obtain the position of a detection event. As a proof-of-principle, we show results from a 2 × 2 array.

  4. Broadband resonances in indium-tin-oxide nanorod arrays

    SciTech Connect

    Li, Shi-Qiang E-mail: r-chang@northwestern.edu; Sakoda, Kazuaki; Ketterson, John B.; Chang, Robert P. H. E-mail: r-chang@northwestern.edu

    2015-07-20

    There is currently much discussion within the nanophotonics community regarding the origin of wavelength selective absorption/scattering of light by the resonances in nanorod arrays. Here, we report a study of resonances in ordered indium-tin-oxide nanorod arrays resulting from waveguide-like modes. We find that with only a 2.4% geometrical coverage, micron-length nanorod arrays interact strongly with light across a surprisingly wide band from the visible to the mid-infrared, resulting in less than 10% transmission. Simulations show excellent agreement with our experimental observations. The field profile in the vicinity of the rods obtained from simulations shows that the electric field is mainly localized on the surfaces of the nanorods for all resonances. Based on our analysis, the resonances in the visible are different in character from those in the infrared. When light is incident on the array, part of it propagates in the space between the rods and part of it is guided within the rods. The phase difference (interference) at the ends of the rods forms the basis for the resonances in the visible region. The resonances in the infrared are Fabry-Perot-like resonances involving standing surface waves between the opposing ends of the rods. Simple analytical formulae predict the spectral positions of these resonances. It is suggested that these phenomena can be utilized for wavelength-selective photodetectors, modulators, and nanorod-based solar cells.

  5. Broadband resonances in indium-tin-oxide nanorod arrays

    NASA Astrophysics Data System (ADS)

    Li, Shi-Qiang; Sakoda, Kazuaki; Ketterson, John B.; Chang, Robert P. H.

    2015-07-01

    There is currently much discussion within the nanophotonics community regarding the origin of wavelength selective absorption/scattering of light by the resonances in nanorod arrays. Here, we report a study of resonances in ordered indium-tin-oxide nanorod arrays resulting from waveguide-like modes. We find that with only a 2.4% geometrical coverage, micron-length nanorod arrays interact strongly with light across a surprisingly wide band from the visible to the mid-infrared, resulting in less than 10% transmission. Simulations show excellent agreement with our experimental observations. The field profile in the vicinity of the rods obtained from simulations shows that the electric field is mainly localized on the surfaces of the nanorods for all resonances. Based on our analysis, the resonances in the visible are different in character from those in the infrared. When light is incident on the array, part of it propagates in the space between the rods and part of it is guided within the rods. The phase difference (interference) at the ends of the rods forms the basis for the resonances in the visible region. The resonances in the infrared are Fabry-Perot-like resonances involving standing surface waves between the opposing ends of the rods. Simple analytical formulae predict the spectral positions of these resonances. It is suggested that these phenomena can be utilized for wavelength-selective photodetectors, modulators, and nanorod-based solar cells.

  6. Split-loop resonator array for microwave energy harvesting

    NASA Astrophysics Data System (ADS)

    Wang, Shen-Yun; Xu, Peng; Geyi, Wen; Ma, Zhewang

    2016-11-01

    In this paper, we propose a three-dimensional split-loop resonator composed of a bended wire, a metallic ground slab, and a coaxial line loaded with a lumped matching resistor to mimic the input impedance of a rectifier. An ensemble of such resonators can function as an efficient energy harvester. The energy capture mechanism is explained by an equivalent circuit model. A 20 × 20 resonator array is fabricated to resonate around 2.45 GHz. The simulated and measured results indicate that the proposed resonator array has nearly unity energy conversion efficiency at the resonant frequency and is quite promising as an energy harvester in the microwave wireless power transmission system.

  7. Randomly Distributed Fabry-Pérot-type Metal Nanowire Resonators and Their Lasing Action

    PubMed Central

    Kwon, Kyungmok; Jung, Youngho; Kim, Minkyung; Shim, Jaeho; Yu, Kyoungsik

    2016-01-01

    Optical feedback mechanisms are often obtained from well-defined resonator structures fabricated by top-down processes. Here, we demonstrate that two-dimensional networks of metallic nanowires dispersed on the semiconductor slab can provide strong in-plane optical feedback and, thus, form randomly-distributed Fabry-Pérot-type resonators that can achieve multi- or single-mode lasing action in the near infrared wavelengths. Albeit with their subwavelength-scale cross-sections and uncontrolled inter-nanowire distances, a cluster of nearly parallel metal nanowires acts as an effective in-situ reflector for the semiconductor-metal slab waveguide modes for coherent optical feedback in the lateral direction. Fabry-Pérot type resonance can be readily developed by a pair of such clusters coincidentally formed in the solution-processed random nanowire network. Our low-cost and large-area approach for opportunistic random cavity formation would open a new pathway for integrated planar light sources for low-coherence imaging and sensing applications. PMID:27102220

  8. Ultra-dense silicon nanowire array solar cells by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Liu, Pei; Siontas, Stylianos; Zaslavsky, Alexander; Pacifici, Domenico; Ha, Jong-Yoon; Krylyuk, Sergiy; Davydov, Albert

    Nanowire (NW) solar cells have been attracting increasing interest due to their potentially superior light absorption compared to thin bulk films. In order to improve light trapping, we have used nanoimprint lithography (NIL) to fabricate high-density NW arrays with deep sub-micron pitch (P) and diameter (D). We have grown dense vertical arrays of Si axial p - i - n junction NWs of D = 170 nm and P = 500 nm by vapor-liquid-solid epitaxy on seed arrays produced by NIL. The NWs were 9 µm length long with a 5 µm intrinsic section. The NW arrays were planarized using SU-8 photoresist, followed by reactive ion etching to expose the NW tips. Top n-contact was realized by sputter deposition of a transparent 200 nm IZO layer. The nanoimprinted NW array samples measured under AM 1.5 G illumination showed a peak external quantum efficiency of ~8% and internal quantum efficiency of ~90% in the visible spectral range. Three-dimensional finite-difference time-domain simulations of Si NW periodic arrays with varying P confirm the importance of high NW density. Specifically, due to diffractive scattering and light trapping, absorption efficiency close to 100% in the 400-650 nm spectral range is predicted for a Si NW array with an even smaller P = 250 nm, significantly outperforming a blanket Si film of the same thickness. Such pitch values are accessible to NIL and work on such arrays is in progress. National Science Foundation.

  9. High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity

    SciTech Connect

    Hwang, Yun Jeong; Boukai, Akram; Yang, Peidong

    2008-11-15

    There are currently great needs to develop low-cost inorganic materials that can efficiently perform solar water splitting as photoelectrolysis of water into hydrogen and oxygen has significant potential to provide clean energy. We investigate the Si/TiO2 nanowire heterostructures to determine their potential for the photooxidation of water. We observed that highly dense Si/TiO2 core/shell nanowire arrays enhanced the photocurrent by 2.5 times compared to planar Si/TiO2 structure due to their low reflectance and high surface area. We also showed that n-Si/n-TiO2 nanowire arrays exhibited a larger photocurrent and open circuit voltage than p-Si/n-TiO2 nanowires due to a barrier at the heterojunction.

  10. Sensitive and Selective Detection of HIV-1 RRE RNA Using Vertical Silicon Nanowire Electrode Array

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyung; Hong, Min-Ho; Han, Sanghun; Na, Jukwan; Kim, Ilsoo; Kwon, Yong-Joon; Lim, Yong-beom; Choi, Heon-Jin

    2016-07-01

    In this study, HIV-1 Rev response element (RRE) RNA was detected via an Au-coated vertical silicon nanowire electrode array (VSNEA). The VSNEA was fabricated by combining bottom-up and top-down approaches and then immobilized by artificial peptides for the recognition of HIV-1 RRE. Differential pulse voltammetry (DPV) analysis was used to measure the electrochemical response of the peptide-immobilized VSNEA to the concentration and types of HIV-1 RRE RNA. DPV peaks showed linearity to the concentration of RNA with a detection limit down to 1.513 fM. It also showed the clear different peaks to the mutated HIV-1 RRE RNA. The high sensitivity and selectivity of VSNEA for the detection of HIV-1 RRE RNA may be attributed to the high surface-to-volume ratio and total overlap diffusion mode of ions of the one-dimensional nanowire electrodes.

  11. Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon.

    PubMed

    Frost, Thomas; Jahangir, Shafat; Stark, Ethan; Deshpande, Saniya; Hazari, Arnab; Zhao, Chao; Ooi, Boon S; Bhattacharya, Pallab

    2014-08-13

    A silicon-based laser, preferably electrically pumped, has long been a scientific and engineering goal. We demonstrate here, for the first time, an edge-emitting InGaN/GaN disk-in-nanowire array electrically pumped laser emitting in the green (λ = 533 nm) on (001) silicon substrate. The devices display excellent dc and dynamic characteristics with values of threshold current density, differential gain, T0 and small signal modulation bandwidth equal to 1.76 kA/cm(2), 3 × 10(-17) cm(2), 232 K, and 5.8 GHz respectively under continuous wave operation. Preliminary reliability measurements indicate a lifetime of 7000 h. The emission wavelength can be tuned by varying the alloy composition in the quantum disks. The monolithic nanowire laser on (001)Si can therefore address wide-ranging applications such as solid state lighting, displays, plastic fiber communication, medical diagnostics, and silicon photonics.

  12. Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors.

    PubMed

    Yu, Pingping; Li, Yingzhi; Yu, Xinyi; Zhao, Xin; Wu, Lihao; Zhang, Qinghua

    2013-09-24

    A combination of vertical polyaniline (PANI) nanowire arrays and nitrogen plasma etched carbon fiber cloths (eCFC) was fabricated to create 3D nanostructured PANI/eCFC composites. The small size of the highly ordered PANI nanowires can greatly reduce the scale of the diffusion length, allowing for the improved utilization of electrode materials. A two-electrode flexible supercapacitor based on PANI/eCFC demonstrates a high specific capacitance (1035 F g(-1) at a current density of 1 A g(-1)), good rate capability (88% capacity retention at 8 A g(-1)), and long-term cycle life (10% capacity loss after 5000 cycles). The lightweight, low-cost, flexible composites are promising candidates for use in energy storage device applications.

  13. Vertical nanowire electrode array: a highly scalable platform for intracellular interfacing to neuronal circuits

    NASA Astrophysics Data System (ADS)

    Jorgolli, Marsela; Robinson, Jacob; Shalek, Alex; Yoon, Myung-Han; Gertner, Rona; Park, Hongkun

    2012-02-01

    Interrogation of complex neuronal network requires new experimental tools that are sensitive enough to quantify the strengths of synaptic connections, yet scalable enough to couple to a large number of neurons simultaneously. Here, we will present a new, highly scalable intracellular electrode platform based on vertical nanowires that affords parallel interfacing to multiple mammalian neurons. Specifically, we show that our vertical nanowire electrode arrays can intracellularly record and stimulate neuronal activity in dissociated cultures of rat cortical neurons and be used to map multiple individual synaptic connections. This platform's scalability and full compatibility with silicon nanofabrication techniques provide a clear path toward simultaneous high-fidelity interfacing with hundreds of individual neurons, opening up exciting new avenues for neuronal circuit studies and prosthetics.

  14. Combined flame and electrodeposition synthesis of energetic coaxial tungsten-oxide/aluminum nanowire arrays.

    PubMed

    Dong, Zhizhong; Al-Sharab, Jafar F; Kear, Bernard H; Tse, Stephen D

    2013-09-11

    A nanostructured thermite composite comprising an array of tungsten-oxide (WO2.9) nanowires (diameters of 20-50 nm and lengths of >10 μm) coated with single-crystal aluminum (thickness of ~16 nm) has been fabricated. The method involves combined flame synthesis of tungsten-oxide nanowires and ionic-liquid electrodeposition of aluminum. The geometry not only presents an avenue to tailor heat-release characteristics due to anisotropic arrangement of fuel and oxidizer but also eliminates or minimizes the presence of an interfacial Al2O3 passivation layer. Upon ignition, the energetic nanocomposite exhibits strong exothermicity, thereby being useful for fundamental study of aluminothermic reactions as well as enhancing combustion characteristics.

  15. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits

    PubMed Central

    Robinson, Jacob T.; Jorgolli, Marsela; Shalek, Alex K.; Yoon, Myung-Han; Gertner, Rona S.; Park, Hongkun

    2014-01-01

    Deciphering the neuronal code - the rules by which neuronal circuits store and process information - is a major scientific challenge1,2. Currently, these efforts are impeded by a lack of experimental tools that are sensitive enough to quantify the strength of individual synaptic connections and also scalable enough to simultaneously measure and control a large number of mammalian neurons with single-cell resolution3,4. Here, we report a scalable intracellular electrode platform based on vertical nanowires that affords parallel electrical interfacing to multiple mammalian neurons. Specifically, we show that our vertical nanowire electrode arrays (VNEAs) can intracellularly record and stimulate neuronal activity in dissociated cultures of rat cortical neurons and can also be used to map multiple individual synaptic connections. The scalability of this platform, combined with its compatibility with silicon nanofabrication techniques, provides a clear path toward simultaneous, high-fidelity interfacing with hundreds of individual neurons. PMID:22231664

  16. Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells.

    PubMed

    Li, Yanhong; Yan, Xin; Wu, Yao; Zhang, Xia; Ren, Xiaomin

    2015-12-01

    In this paper, we propose a plasmon-enhanced solar cell structure based on a GaAs nanowire array decorated with metal nanoparticles. The results show that by engineering the metallic nanoparticles, localized surface plasmon could be excited, which can concentrate the incident light and propagate the energy to nanowires. The surface plasmon can dramatically enhance the absorbance of near-bandgap light, and the enhancement is influenced by the size and material of nanoparticles. By optimizing the particle parameters, a large absorbance enhancement of 50 % at 760 nm and a high conversion efficiency of 14.5 % can be obtained at a low diameter and period ratio (D/P ratio) of 0.3. The structure is promising for low-cost high-performance nanoscale solar cells.

  17. Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Yan, Xin; Wu, Yao; Zhang, Xia; Ren, Xiaomin

    2015-11-01

    In this paper, we propose a plasmon-enhanced solar cell structure based on a GaAs nanowire array decorated with metal nanoparticles. The results show that by engineering the metallic nanoparticles, localized surface plasmon could be excited, which can concentrate the incident light and propagate the energy to nanowires. The surface plasmon can dramatically enhance the absorbance of near-bandgap light, and the enhancement is influenced by the size and material of nanoparticles. By optimizing the particle parameters, a large absorbance enhancement of 50 % at 760 nm and a high conversion efficiency of 14.5 % can be obtained at a low diameter and period ratio ( D/ P ratio) of 0.3. The structure is promising for low-cost high-performance nanoscale solar cells.

  18. Coating and enhanced photocurrent of vertically aligned zinc oxide nanowire arrays with metal sulfide materials.

    PubMed

    Volokh, Michael; Diab, Mahmud; Magen, Osnat; Jen-La Plante, Ilan; Flomin, Kobi; Rukenstein, Pazit; Tessler, Nir; Mokari, Taleb

    2014-08-27

    Hybrid nanostructures combining zinc oxide (ZnO) and a metal sulfide (MS) semiconductor are highly important for energy-related applications. Controlled filling and coating of vertically aligned ZnO nanowire arrays with different MS materials was achieved via the thermal decomposition approach of single-source precursors in the gas phase by using a simple atmospheric-pressure chemical vapor deposition system. Using different precursors allowed us to synthesize multicomponent structures such as nanowires coated with alloy shell or multishell structures. Herein, we present the synthesis and structural characterization of the different structures, as well as an electrochemical characterization and a photovoltaic response of the ZnO-CdS system, in which the resulting photocurrent upon illumination indicates charge separation at the interface.

  19. Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives.

    PubMed

    Jackson, Everett D; Prieto, Amy L

    2016-11-09

    Nanowires of electrochemically active electrode materials for lithium ion batteries represent a unique system that allows for intensive investigations of surface phenomena. In particular, highly ordered nanowire arrays produced by electrodeposition into anodic aluminum oxide templates can lead to new insights into a material's electrochemical performance by providing a high-surface-area electrode with negligible volume expansion induced pulverization. Here we show that for the Li-CuxSb ternary system, stabilizing the surface chemistry is the most critical factor for promoting long electrode life. The resulting solid electrolyte interphase is analyzed using a mix of electron microscopy, X-ray photoelectron spectroscopy, and lithium ion battery half-cell testing to provide a better understanding of the importance of electrolyte composition on this multicomponent alloy anode material.

  20. Multiband Hot Photoluminescence from Nanocavity-Embedded Silicon Nanowire Arrays with Tunable Wavelength.

    PubMed

    Mu, Zhiqiang; Yu, Haochi; Zhang, Miao; Wu, Aimin; Qi, Gongmin; Chu, Paul K; An, Zhenghua; Di, Zengfeng; Wang, Xi

    2017-03-08

    Besides the well-known quantum confinement effect, hot luminescence from indirect bandgap Si provides a new and promising approach to realize monolithically integrated silicon optoelectronics due to phonon-assisted light emission. In this work, multiband hot photoluminescence is generated from Si nanowire arrays by introducing trapezoid-shaped nanocavities that support hybrid photonic-plasmonic modes. By continuously adjusting the geometric parameters of the Si nanowires with trapezoidal nanocavities, the multiband hot photoluminescence can be tuned in the range from visible to near-infrared independent of the excitation laser wavelength. The highly tunable wavelength bands and concomitant compatibility with Si-integrated electronics enable tailoring of silicon-based light sources suitable for next-generation optoelectronics devices.

  1. Magnetic force microscopy investigation of arrays of nickel nanowires and nanotubes.

    PubMed

    Tabasum, M R; Zighem, F; De La Torre Medina, J; Encinas, A; Piraux, L; Nysten, B

    2014-06-20

    The magnetic properties of arrays of nanowires (NWs) and nanotubes (NTs), 150 nm in diameter, electrodeposited inside nanoporous polycarbonate membranes are investigated. The comparison of the nanoscopic magnetic force microscopy (MFM) imaging and the macroscopic behavior as measured by alternating gradient force magnetometry (AGFM) is made. It is shown that MFM is a complementary technique that provides an understanding of the magnetization reversal characteristics at the microscopic scale of individual nanostructures. The local hysteresis loops have been extracted by MFM measurements. The influence of the shape of such elongated nanostructures on the dipolar coupling and consequently on the squareness of the hysteresis curves is demonstrated. It is shown that the nanowires exhibit stronger magnetic interactions than nanotubes. The non-uniformity of the magnetization states is also revealed by combining the MFM and AGFM measurements.

  2. Enhancing absorption in coated semiconductor nanowire/nanorod core-shell arrays using active host matrices

    NASA Astrophysics Data System (ADS)

    Jule, Leta; Dejene, Francis; Roro, Kittessa

    2016-12-01

    In the present work, we investigated theoretically and experimentally the interaction of radiation field phenomena interacting with arrays of nanowire/nanorod core-shell embedded in active host matrices. The optical properties of composites are explored including the case when the absorption of propagating wave by dissipative component is completely compensated by amplification in active (lasing) medium. On the basis of more elaborated modeling approach and extended effective medium theory, the effective polarizability and the refractive index of electromagnetic mode dispersion of the core-shell nanowire arrays are derived. ZnS(shell)-coated by sulphidation process on ZnO(shell) nanorod arrays grown on (100) silicon substrate by chemical bath deposition (CBD) has been used for theoretical comparison. Compared with the bare ZnO nanorods, ZnS-coated core/shell nanorods exhibit a strongly reduced ultraviolet (UV) emission and a dramatically enhanced deep level (DL) emission. Obviously, the UV and DL emission peaks are attributed to the emissions of ZnO nanorods within ZnO/ZnS core/shell nanorods. The reduction of UV emission after ZnS coating seems to agree with the charge separation mechanism of type-II band alignment that holes transfer from the core to shell, which would quench the UV emission to a certain extent. Our theoretical calculations and numerical simulation demonstrate that the use of active host (amplifying) medium to compensate absorption at metallic inclusions. Moreover the core-shell nanorod/nanowire arrays create the opportunity for broad band absorption and light harvesting applications.

  3. Localized absorption in aluminum mask in visible spectrum due to longitudinal modes in vertical silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Dhindsa, Navneet; Saini, Simarjeet Singh

    2015-06-01

    Localized optical absorption in aluminum masks used for vertical silicon nanowire fabrication is demonstrated experimentally and supported using computer simulations. The mask is in the form of 30 nm thick aluminum nano-disks on top of silicon nanowires arranged in square lattices. The nanowires are 1 μm long, with diameters ranging from 60 nm to 100 nm and spaced 400 nm apart. New spectral features appear in the 500 nm-700 nm wavelengths range and are dependent on both the nanowire diameter and length. The former is due to the excitation of radial modes, whereas the latter stems from longitudinal (Fabry-Perot) resonances. The salient features associated with absorption in the aluminum mask and the role nanowire plays in this connection are discussed.

  4. Nanowire-organic thin film transistor integration and scale up towards developing sensor array for biomedical sensing applications

    NASA Astrophysics Data System (ADS)

    Kumar, Prashanth S.; Hankins, Phillip T.; Rai, Pratyush; Varadan, Vijay K.

    2010-04-01

    Exploratory research works have demonstrated the capability of conducting nanowire arrays in enhancing the sensitivity and selectivity of bio-electrodes in sensing applications. With the help of different surface manipulation techniques, a wide range of biomolecules have been successfully immobilized on these nanowires. Flexible organic electronics, thin film transistor (TFT) fabricated on flexible substrate, was a breakthrough that enabled development of logic circuits on flexible substrate. In many health monitoring scenarios, a series of biomarkers, physical properties and vital signals need to be observed. Since the nano-bio-electrodes are capable of measuring all or most of them, it has been aptly suggested that a series of electrode (array) on single substrate shall be an excellent point of care tool. This requires an efficient control system for signal acquisition and telemetry. An array of flexible TFTs has been designed that acts as active matrix for controlled switching of or scanning by the sensor array. This array is a scale up of the flexible organic TFT that has been fabricated and rigorously tested in previous studies. The integration of nanowire electrodes to the organic electronics was approached by growing nanowires on the same substrate as TFTs and fl ip chip packaging, where the nanowires and TFTs are made on separate substrates. As a proof of concept, its application has been explored in various multi-focal biomedical sensing applications, such as neural probes for monitoring neurite growth, dopamine, and neuron activity; myocardial ischemia for spatial monitoring of myocardium.

  5. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    PubMed

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-07

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute).

  6. Fabrication and characterization of GaN nanowire doubly clamped resonators

    SciTech Connect

    Maliakkal, Carina B. Mathew, John P.; Hatui, Nirupam; Rahman, A. Azizur; Deshmukh, Mandar M.; Bhattacharya, Arnab

    2015-09-21

    Gallium nitride (GaN) nanowires (NWs) have been intensely researched as building blocks for nanoscale electronic and photonic device applications; however, the mechanical properties of GaN nanostructures have not been explored in detail. The rigidity, thermal stability, and piezoelectric properties of GaN make it an interesting candidate for nano-electromechanical systems. We have fabricated doubly clamped GaN NW electromechanical resonators on sapphire using electron beam lithography and estimated the Young's modulus of GaN from resonance frequency measurements. For wires of triangular cross section with side ∼90 nm, we obtained values for the Young's modulus to be about 218 and 691 GPa, which are of the same order of magnitude as the values reported for bulk GaN. We also discuss the role of residual strain in the nanowire on the resonant frequency and the orientation dependence of the Young's modulus in wurtzite crystals.

  7. Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays

    SciTech Connect

    Cui, J.B.; Gibson, U.J.

    2005-09-26

    Cobalt and nickel doped ZnO nanowire arrays were synthesized by an electrochemical process at a temperature of 90 deg. C. Energy dispersive x-ray spectroscopy and x-ray diffraction show that the dopants are incorporated into the wurtzite-structure ZnO. Anisotropic ferromagnetism with an easy direction of magnetization either perpendicular or parallel to the wire axis, depending on the wire geometry and density, was observed in 1.7% Co and 2.2% Ni-doped ZnO nanowires at room temperature. The anisotropic magnetism was explained in terms of a competition between self-demagnetization and magnetostatic coupling among the nanowires.

  8. Fabrication of Bi Nanowire Array into Nanoporous Film Made from Phase-Separated Al-Si Film

    NASA Astrophysics Data System (ADS)

    Fukutani, Kazuhiko; Den, Tohru

    2008-04-01

    Ultrahigh-pore-density nanoporous films with a pore diameter less than 10 nm and a pore density exceeding 1016 pores/m2 have been fabricated by the phase separation of an Al-Si system and the subsequent removal of Al cylinders, for use in the template-assisted growth of Bi nanowire arrays. Bi was used to fill the pores of template films by electrodeposition. The temperature dependence of the resistance of the obtained Bi nanowires with a diameter of 9 nm, parallel to the Bi nanowire growth direction, exhibits a semimetal-to-semiconductor transition due to the quantum confinement effect.

  9. Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method

    NASA Astrophysics Data System (ADS)

    Banerjee, Debika; Trudeau, Charles; Gerlein, Luis Felipe; Cloutier, Sylvain G.

    2016-03-01

    The nanoscale engineering of silicon can significantly change its bulk optoelectronic properties to make it more favorable for device integration. Phonon process engineering is one way to enhance inter-band transitions in silicon's indirect band structure alignment. This paper demonstrates phonon localization at the tip of silicon nanowires fabricated by galvanic displacement using wet electroless chemical etching of a bulk silicon wafer. High-resolution Raman micro-spectroscopy reveals that such arrayed structures of silicon nanowires display phonon localization behaviors, which could help their integration into the future generations of nano-engineered silicon nanowire-based devices such as photodetectors and solar cells.

  10. Vertical nanowire array-based field effect transistors for ultimate scaling

    NASA Astrophysics Data System (ADS)

    Larrieu, G.; Han, X.-L.

    2013-02-01

    Nanowire-based field-effect transistors are among the most promising means of overcoming the limits of today's planar silicon electronic devices, in part because of their suitability for gate-all-around architectures, which provide perfect electrostatic control and facilitate further reductions in ``ultimate'' transistor size while maintaining low leakage currents. However, an architecture combining a scalable and reproducible structure with good electrical performance has yet to be demonstrated. Here, we report a high performance field-effect transistor implemented on massively parallel dense vertical nanowire arrays with silicided source/drain contacts and scaled metallic gate length fabricated using a simple process. The proposed architecture offers several advantages including better immunity to short channel effects, reduction of device-to-device variability, and nanometer gate length patterning without the need for high-resolution lithography. These benefits are important in the large-scale manufacture of low-power transistors and memory devices.Nanowire-based field-effect transistors are among the most promising means of overcoming the limits of today's planar silicon electronic devices, in part because of their suitability for gate-all-around architectures, which provide perfect electrostatic control and facilitate further reductions in ``ultimate'' transistor size while maintaining low leakage currents. However, an architecture combining a scalable and reproducible structure with good electrical performance has yet to be demonstrated. Here, we report a high performance field-effect transistor implemented on massively parallel dense vertical nanowire arrays with silicided source/drain contacts and scaled metallic gate length fabricated using a simple process. The proposed architecture offers several advantages including better immunity to short channel effects, reduction of device-to-device variability, and nanometer gate length patterning without the need

  11. Comparative study of absorption efficiency of inclined and vertical InP nanowires

    NASA Astrophysics Data System (ADS)

    Aghaeipour, Mahtab; Pistol, Mats-Erik; Pettersson, Hâkan

    2017-02-01

    Geometrically designed III-V nanowire arrays are promising candidates for optoelectronics due to their possibility to excite nanophotonic resonances in absorption spectra. Strong absorption resonances can be obtained by proper tailoring of nanowire diameter, length and pitch. Such enhancement of the light absorption is, however, accompanied by undesired resonance dips at specific wavelengths. In this work, we theoretically show that tilting of the nanowires mitigates the absorption dips by exciting strong Mie resonances. In particular, we derive a theoretical optimum inclination angle of about 30° at which the inclined nanowires gain 8% in absorption efficiency compared to vertically standing nanowires in a spectral region matching the intensity distribution of the sun. The enhancement is due to engineering the excited modes inside the nanowires regarding the symmetry properties of the nanowire/light system without increasing the absorbing material. We expect our results to be important for nanowire-based photovoltaic applications.

  12. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: The effect of substrate on magnetic properties of Co/Cu multilayer nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ren, Yong; Wang, Jian-Bo; Liu, Qing-Fang; Han, Xiang-Hua; Xue, De-Sheng

    2009-08-01

    Ordered Co/Cu multilayer nanowire arrays have been fabricated into anodic aluminium oxide templates with Ag and Cu substrate by direct current electrodeposition. This paper studies the morphology, structure and magnetic properties by transmission electron microscopy, selective area electron diffraction, x-ray diffraction, and vibrating sample magnetometer. X-ray diffraction patterns reveal that both as-deposited nanowire arrays films exhibit face-centred cubic structure. Magnetic measurements indicate that the easy magnetization direction of Co/Cu multilayer nanowire arrays films on Ag substrate is perpendicular to the long axis of nanowire, whereas the easy magnetization direction of the sample with Cu substrate is parallel to the long axis of nanowire. The change of easy magnetization direction attributed to different substrates, and the magnetic properties of the nanowire arrays are discussed.

  13. Resonant tunnelling features in a suspended silicon nanowire single-hole transistor

    SciTech Connect

    Llobet, Jordi; Pérez-Murano, Francesc E-mail: z.durrani@imperial.ac.uk; Krali, Emiljana; Wang, Chen; Jones, Mervyn E.; Durrani, Zahid A. K. E-mail: z.durrani@imperial.ac.uk; Arbiol, Jordi

    2015-11-30

    Suspended silicon nanowires have significant potential for a broad spectrum of device applications. A suspended p-type Si nanowire incorporating Si nanocrystal quantum dots has been used to form a single-hole transistor. Transistor fabrication uses a novel and rapid process, based on focused gallium ion beam exposure and anisotropic wet etching, generating <10 nm nanocrystals inside suspended Si nanowires. Electrical characteristics at 10 K show Coulomb diamonds with charging energy ∼27 meV, associated with a single dominant nanocrystal. Resonant tunnelling features with energy spacing ∼10 meV are observed, parallel to both diamond edges. These may be associated either with excited states or hole–acoustic phonon interactions, in the nanocrystal. In the latter case, the energy spacing corresponds well with reported Raman spectroscopy results and phonon spectra calculations.

  14. Magnetic properties of planar nanowire arrays of Co fabricated on oxidized step-bunched silicon templates.

    PubMed

    Arora, S K; O'Dowd, B J; Ballesteros, B; Gambardella, P; Shvets, I V

    2012-06-15

    Planar nanowire (NW) arrays of Co grown on oxidized step-bunched Si(111) templates exhibit room temperature ferromagnetic behaviour for wire widths down to 25 nm. Temperature and thickness dependent magnetization studies on these polycrystalline NW arrays show that the magnetic anisotropy of the NW array is dominated by shape anisotropy, which keeps the magnetization in-plane with easy axis parallel to the wires. This shape related uniaxial anisotropy is preserved even at low temperatures (10 K). Thickness dependent studies reveal that the magnetization reversal is governed by the curling mode reversal for thick wires whereas thinner wires exhibit a more complex behaviour which is related to thermal effects and size distribution of the crystal grains that constitute the NWs.

  15. Influence of the adatom diffusion on selective growth of GaN nanowire regular arrays

    SciTech Connect

    Gotschke, T.; Schumann, T.; Limbach, F.; Calarco, R.; Stoica, T.

    2011-03-07

    Molecular beam epitaxy (MBE) on patterned Si/AlN/Si(111) substrates was used to obtain regular arrays of uniform-size GaN nanowires (NWs). The silicon top layer has been patterned with e-beam lithography, resulting in uniform arrays of holes with different diameters (d{sub h}) and periods (P). While the NW length is almost insensitive to the array parameters, the diameter increases significantly with d{sub h} and P till it saturates at P values higher than 800 nm. A diffusion induced model was used to explain the experimental results with an effective diffusion length of the adatoms on the Si, estimated to be about 400 nm.

  16. Broadband light absorption of silicon nanowires embedded in Ag nano-hole arrays

    NASA Astrophysics Data System (ADS)

    Rao, Lei; Ji, Chun-Lei; Li, Ming

    2016-09-01

    Silicon nanowires (SiNWs) embedded in Ag nano-hole arrays with broadband light absorption is proposed in this paper. Finite Difference Time Domain (FDTD) simulations were utilized to obtain absorptivity and band diagrams for both SiNWs and SiNWs embedded in Ag nano-hole arrays. A direct relationship between waveguide modes and extraordinary absorptivity is established qualitatively, which helps to optimal design the structure parameters to achieve broadband absorptivity. After introducing Ag nano-hole arrays at the rear side of SiNWs, the band modes are extended into leaky regions and light energy can be fully absorbed, resulting in high absorptivity at long wavelength. Severe reflection is also suppressed by light trapping capability of SiNWs at short wavelength. Over 70% average absorptivity from 400 nm to 1100 nm is realized finally. This kinds of design give promising route for high efficiency solar cells and optical absorbers.

  17. Solid-phase crystallization of amorphous silicon nanowire array and optical properties

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryousuke; Kato, Shinya; Yamazaki, Tatsuya; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; Konagai, Makoto

    2014-02-01

    An amorphous silicon nanowire (a-SiNW) array perpendicular to a glass substrate can be successfully obtained through the metal-assisted chemical etching of amorphous silicon (a-Si) thin films. The solid-phase crystallization of a-SiNWs was carried out by thermal annealing in a forming gas in the temperature range from 600 to 900 °C. The effects of hydrogen in the film and the film morphology on the crystallization of a-SiNWs were investigated by Raman spectroscopy and transmission electron microscopy. A higher hydrogen concentration of a-SiNWs reduced the crystallization temperature, as in a-Si thin films. It was also revealed that the large surface area of the a-SiNW array affected the crystallization process. We also studied the optical property of the fabricated SiNW array and demonstrated its high potential as an active layer in solar cells.

  18. Ultra-thin superconducting film coated silicon nitride nanowire resonators for low-temperature applications

    NASA Astrophysics Data System (ADS)

    Sebastian, Abhilash; Zhelev, Nikolay; de Alba, Roberto; Parpia, Jeevak

    We demonstrate fabrication of high stress silicon nitride nanowire resonators with a thickness and width of less than 50 nm intended to be used as probes for the study of superfluid 3He. The resonators are fabricated as doubly-clamped wires/beams using a combination of electron-beam lithography and wet/dry etching techniques. We demonstrate the ability to suspend (over a trench of depth ~8 µm) wires with a cross section as small as 30 nm, covered with a 20 nm superconducting film, and having lengths up to 50 µm. Room temperature resonance measurements were carried out by driving the devices using a piezo stage and detecting the motion using an optical interferometer. The results show that metalizing nano-mechanical resonators not only affects their resonant frequencies but significantly reduce their quality factor (Q). The devices are parametrically pumped by modulating the system at twice its fundamental resonant frequency, which results in observed amplification of the signal. The wires show self-oscillation with increasing modulation strength. The fabricated nanowire resonators are intended to be immersed in the superfluid 3He. By tracking the resonant frequency and the Q of the various modes of the wire versus temperature, we aim to probe the superfluid gap structure.

  19. Formation of Ordered and Disordered Dielectric/metal Nanowire Arrays and their Plasmonic Behavior

    DTIC Science & Technology

    2007-01-01

    sheath geometry. 2. EXPERIMENTAL PROCEDURES Several different nanowire systems have been grown, including random Ga2O3 nanowires, InAs...nanowires, ZnO nanowires, as well as Au lines produced by e-beam lithography. The growth of the Ga2O3 nanowires was achieved by the controlled oxidation...CLOSELY-SPACED PARALLEL ZnO NANOWIRES AND CROSSED Ga2O3 NANOWIRES. As discussed above, due to the far separation of the gold colloid catalyst in the

  20. The dynamics of large-scale arrays of coupled resonators

    NASA Astrophysics Data System (ADS)

    Borra, Chaitanya; Pyles, Conor S.; Wetherton, Blake A.; Quinn, D. Dane; Rhoads, Jeffrey F.

    2017-03-01

    This work describes an analytical framework suitable for the analysis of large-scale arrays of coupled resonators, including those which feature amplitude and phase dynamics, inherent element-level parameter variation, nonlinearity, and/or noise. In particular, this analysis allows for the consideration of coupled systems in which the number of individual resonators is large, extending as far as the continuum limit corresponding to an infinite number of resonators. Moreover, this framework permits analytical predictions for the amplitude and phase dynamics of such systems. The utility of this analytical methodology is explored through the analysis of a system of N non-identical resonators with global coupling, including both reactive and dissipative components, physically motivated by an electromagnetically-transduced microresonator array. In addition to the amplitude and phase dynamics, the behavior of the system as the number of resonators varies is investigated and the convergence of the discrete system to the infinite-N limit is characterized.

  1. Synthesis of ZnO/Si Hierarchical Nanowire Arrays for Photocatalyst Application

    NASA Astrophysics Data System (ADS)

    Li, Dingguo; Yan, Xiaolan; Lin, Chunhua; Huang, Shengli; Tian, Z. Ryan; He, Bing; Yang, Qianqian; Yu, Binbin; He, Xu; Li, Jing; Wang, Jiayuan; Zhan, Huahan; Li, Shuping; Kang, Junyong

    2017-01-01

    ZnO/Si nanowire arrays with hierarchical architecture were synthesized by solution method with ZnO seed layer grown by atomic layer deposition and magnetron sputtering, respectively. The photocatalytic activity of the as-grown tree-like arrays was evaluated by the degradation of methylene blue under ultraviolet light at ambient temperature. The comparison of morphology, crystal structure, optical properties, and photocatalysis efficiency of the two samples in different seeding processes was conducted. It was found that the ZnO/Si nanowire arrays presented a larger surface area with better crystalline and more uniform ZnO branches on the whole sidewall of Si backbones for the seed layer by atomic layer deposition, which gained a strong light absorption as high as 98% in the ultraviolet and visible range. The samples were proven to have a potential use in photocatalyst, but suffered from photodissolution and memory effect. The mechanism of the photocatalysis was analyzed, and the stability and recycling ability were also evaluated and enhanced.

  2. Fabrication of arrayed Si nanowire-based nano-floating gate memory devices on flexible plastics.

    PubMed

    Yoon, Changjoon; Jeon, Youngin; Yun, Junggwon; Kim, Sangsig

    2012-01-01

    Arrayed Si nanowire (NW)-based nano-floating gate memory (NFGM) devices with Pt nanoparticles (NPs) embedded in Al2O3 gate layers are successfully constructed on flexible plastics by top-down approaches. Ten arrayed Si NW-based NFGM devices are positioned on the first level. Cross-linked poly-4-vinylphenol (PVP) layers are spin-coated on them as isolation layers between the first and second level, and another ten devices are stacked on the cross-linked PVP isolation layers. The electrical characteristics of the representative Si NW-based NFGM devices on the first and second levels exhibit threshold voltage shifts, indicating the trapping and detrapping of electrons in their NPs nodes. They have an average threshold voltage shift of 2.5 V with good retention times of more than 5 x 10(4) s. Moreover, most of the devices successfully retain their electrical characteristics after about one thousand bending cycles. These well-arrayed and stacked Si NW-based NFGM devices demonstrate the potential of nanowire-based devices for large-scale integration.

  3. Non-resonant Mie scattering: Emergent optical properties of core-shell polymer nanowires

    PubMed Central

    Khudiyev, Tural; Huseyinoglu, Ersin; Bayindir, Mehmet

    2014-01-01

    We provide the in-depth characterization of light-polymer nanowire interactions in the context of an effective Mie scattering regime associated with low refractive index materials. Properties of this regime sharply contrast with these of resonant Mie scattering, and involve the formation of strictly forward-scattered and coupling-free optical fields in the vicinity of core-shell polymer nanowires. Scattering from these optical fields is shown to be non-resonant in nature and independent from incident polarization. In order to demonstrate the potential utility of this scattering regime in one-dimensional (1D) polymeric nanostructures, we fabricate polycarbonate (PC) - polyvinylidene difluoride (PVDF) core-shell nanowires using a novel iterative thermal drawing process that yields uniform and indefinitely long core-shell nanostructures. These nanowires are successfully engineered for novel nanophotonics applications, including size-dependent structural coloration, efficient light capture on thin-film solar cells, optical nano-sensors with ultrahigh sensitivity and a mask-free photolithography method suitable for the straightforward production of 1D nanopatterns. PMID:24714206

  4. Fabrication of a wafer-scale uniform array of single-crystal organic nanowire complementary inverters by nanotransfer printing

    NASA Astrophysics Data System (ADS)

    Park, Kyung Sun; Baek, Jangmi; Koo Lee, Yong-Eun; Sung, Myung Mo

    2015-02-01

    We report the fabrication and electrical characterization of a wafer-scale array of organic complementary inverters using single-crystal 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) and fullerene (C60) nanowires as p- and n-channels, respectively. Two arrays of single-crystal organic nanowires were generated consecutively on desired locations of a common substrate with a desired mutual alignment by a direct printing method (liquid-bridge-mediated nanotransfer molding). Another direct printing of silver micron scale structures, as source and drain electrodes, on the substrate with the two printed nanowire arrays produced an array of complementary inverters with a bottom gate, top contact configuration. Field-effect mobilities of single-crystal TIPS-PEN and C60 nanowire field-effect transistors (FETs) in the arrays were uniform with 1.01 ± 0.14 and 0.10 ± 0.01 cm2V-1 s-1, respectively. A wafer-scale array of complementary inverters produced all by the direct printing method showed good performance with an average gain of 25 and with low variations among the inverters.

  5. N-doped carbon-coated tungsten oxynitride nanowire arrays for highly efficient electrochemical hydrogen evolution.

    PubMed

    Li, Qun; Cui, Wei; Tian, Jingqi; Xing, Zhicai; Liu, Qian; Xing, Wei; Asiri, Abdullah M; Sun, Xuping

    2015-08-10

    It is highly desired but still challenging to develop active nonprecious metal hydrogen evolution reaction (HER) electrocatalysts operating under all pH conditions. Herein, the development of three-dimensional N-doped carbon-coated tungsten oxynitride nanowire arrays on carbon cloth as a highly efficient and durable HER cathode was explored. The material delivers current densities of 10 and 100 mA cm(-2) at overpotentials of 106 and 172 mV, respectively, in acidic medium, and it also performs well in neutral and basic electrolytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of Highly Ordered Heterostructured Semiconductor Nanowire Arrays for Sub-Wavelength Optical Devices

    DTIC Science & Technology

    2007-06-01

    nanowire arrays for optical devices 5b. GRANTNUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Harry Ruda Selvakumar Nair So. TASK...2004 - March 2007 Funding Number: AFOSR Grant FA9550-04-1-0435 Principal Investigator: Prof. Harry Ruda Personnel involved: Prof. H. Ruda Dr. Z. Wu Dr...Page 1 of 30 LIST OF PUBLICATIONS 1. T. Xu, S. Yang, S. V. Nair and H. E. Ruda , "Confined modes in finite-size photonic crystals", Phys. Rev. B 2

  7. Design and simulation of temperature-insensitive arrayed waveguide gratings based on silicon nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Lang, Tingting; Zou, Jun; He, J.-J.

    2011-12-01

    The design and simulation results of temperature-insensitive arrayed waveguide gratings based on silicon nanowires are presented. The temperature dependent wavelength shift is minimized by using negative thermo-optic coefficient material SU-8 as the upper-cladding. Simulation results show that by using an appropriate thickness and width of the waveguide, quasi-athermal operation can be achieved. For temperature varying from 0°C to 80°C, the TD-CWS can be controlled down to 0.036nm with little polarization dependence for 272nm×253nm waveguide.

  8. Enhanced optical properties in inclined GaAs nanowire arrays for high-efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Yile; Zhang, Xu; Sun, Xiaohong; Qi, Yongle; Wang, Zhen; Wang, Hua

    2016-11-01

    The inclined Gallium Arsenide (GaAs) nanowire arrays (NWAs) as light absorbing structures for solar photovoltaics are proposed. The influence of geometric parameters on the optical absorption properties is systematically investigated, and the optimal geometric parameters of the proposed structure are determined by using rigorous coupled wave analysis (RCWA) and the finite element method. It is found that the absorption efficiency of the optimized structure can be improved significantly compared with vertical NWAs and thin film layer structure. The optimized structure yields a photocurrent of 30.3 mA/cm2, which is much higher than that of vertical NWAs and thin film layer with the same geometric configurations.

  9. Vapor detection performance of vertically aligned, ordered arrays of silicon nanowires with a porous electrode.

    PubMed

    Field, Christopher R; In, Hyun Jin; Begue, Nathan J; Pehrsson, Pehr E

    2011-06-15

    Vertically aligned, ordered arrays of silicon nanowires capped with a porous top electrode are used to detect gas phase ammonia and nitrogen dioxide in humidified air. The sensors had very fast response times and large signal-to-noise ratios. Calibration curves were created using both an initial slope method and a fixed-time point method. The initial-slope method had a power law dependence that correlates well with concentration, demonstrating a viable alternative for eventual quantitative vapor detection and enabling shorter sampling and regeneration times.

  10. A palladium-nanoparticle and silicon-nanowire-array hybrid: a platform for catalytic heterogeneous reactions.

    PubMed

    Yamada, Yoichi M A; Yuyama, Yoshinari; Sato, Takuma; Fujikawa, Shigenori; Uozumi, Yasuhiro

    2014-01-03

    We report the development of a silicon nanowire array-stabilized palladium nanoparticle catalyst, SiNA-Pd. Its use in the palladium-catalyzed Mizoroki-Heck reaction, the hydrogenation of an alkene, the hydrogenolysis of nitrobenzene, the hydrosilylation of an α,β-unsaturated ketone, and the C-H bond functionalization reactions of thiophenes and indoles achieved a quantitative production with high reusability. The catalytic activity reached several hundred-mol ppb of palladium, reaching a TON of 2 000 000.

  11. Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells.

    PubMed

    Michallon, Jérôme; Bucci, Davide; Morand, Alain; Zanuccoli, Mauro; Consonni, Vincent; Kaminski-Cachopo, Anne

    2015-02-20

    The absorption processes of extremely thin absorber solar cells based on ZnO/CdTe core-shell nanowire (NW) arrays with square, hexagonal or triangular arrangements are investigated through systematic computations of the ideal short-circuit current density using three-dimensional rigorous coupled wave analysis. The geometrical dimensions are optimized for optically designing these solar cells: the optimal NW diameter, height and array period are of 200 ± 10 nm, 1-3 μm and 350-400 nm for the square arrangement with CdTe shell thickness of 40-60 nm. The effects of the CdTe shell thickness on the absorption of ZnO/CdTe NW arrays are revealed through the study of two optical key modes: the first one is confining the light into individual NWs, the second one is strongly interacting with the NW arrangement. It is also shown that the reflectivity of the substrate can improve Fabry-Perot resonances within the NWs: the ideal short-circuit current density is increased by 10% for the ZnO/fluorine-doped tin oxide (FTO)/ideal reflector as compared to the ZnO/FTO/glass substrate. Furthermore, the optimized square arrangement absorbs light more efficiently than both optimized hexagonal and triangular arrangements. Eventually, the enhancement factor of the ideal short-circuit current density is calculated as high as 1.72 with respect to planar layers, showing the high optical potentiality of ZnO/CdTe core-shell NW arrays.

  12. Ternary core/shell structure of Co3O4/NiO/C nanowire arrays as high-performance anode material for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Wu, J. B.; Guo, R. Q.; Huang, X. H.; Lin, Y.

    2014-02-01

    Self-supported core/shell nanowire arrays are highly desirable for designing high-performance electrochemical energy storage devices. Herein, we report self-supported ternary core/shell nanowire arrays of Co3O4/NiO/C on the nickel foam with the help of hydrothermal synthesis, chemical bath deposition and annealing carbonation methods. As an anode material for lithium ion batteries, the Co3O4/NiO/C core/shell nanowire arrays exhibit excellent electrochemical performances with lower polarization, higher capacity, improved cycle life and better high-rate capability than the pure Co3O4 nanowire arrays and single NiO nanoflake arrays. The enhanced electrochemical properties are mainly ascribed to the core/shell nanowire architecture with potential synergistic contribution such as improved mechanical stability and enhanced conductivity as well as faster ion/electron transfer.

  13. Waveguide modes in sparse III-V nanowire arrays for ultra-broadband tunable perfect absorbers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fountaine, Katherine T.; Cheng, Wen-Hui; Bukowsky, Colton R.; Atwater, Harry A.

    2016-09-01

    Design of perfect absorbers and emitters has been a primary focus of the metamaterials community owing to their potential to enhance device efficiency and sensitivity in energy harvesting and sensing applications, specifically photovoltaics, thermal emission control, bolometers and photodetectors, to name a few. While reports of perfect absorbers/emitters for a specific frequency, wavevector, and polarization are ubiquitous, a broadband and polarization- and angle-insensitive perfect absorber remains a particular challenge. In this work, we report on directed optical design and fabrication of sparse III-V nanowire arrays as broadband, polarization- and angle-insensitive perfect absorbers and emitters. Specifically, we target response in the UV-Vis-NIR and NIR-SWIR-MWIR via two material systems, InP (Eg=1.34 eV) and InSb (Eg=0.17 eV), respectively. Herein, we present results on InP and InSb nanowire array broadband absorbers, supported by experiment, simulation and analytic theory. Electromagnetic simulations indicate that, with directed optical design, tapered nanowire arrays and multi-radii nanowire arrays with 5% fill fraction can achieve greater than 95% broadband absorption (λInP=400-900nm, λInSb=1.5-5.5µm), due to efficient excitation and interband transition-mediated attenuation of the HE11 waveguide mode. Experimentally-fabricated InP nanowire arrays embedded in PDMS achieved broadband, polarization- and angle-insensitive 90-95% absorption, limited primarily by reflection off the PDMS interface. Addition of a thin, planar VO2 layer above a sparse InSb nanowire array enables active thermal tunability in the infrared, effecting a 50% modulation, from 87% (insulating VO2) to 43% (metallic VO2) average absorption. These concepts and results along with photovoltaic and other optical and optoelectronic device applications will be discussed.

  14. Laterally assembled nanowires for ultrathin broadband solar absorbers.

    PubMed

    Song, Kyung-Deok; Kempa, Thomas J; Park, Hong-Gyu; Kim, Sun-Kyung

    2014-05-05

    We studied optical resonances in laterally oriented Si nanowire arrays by conducting finite-difference time-domain simulations. Localized Fabry-Perot and whispering-gallery modes are supported within the cross section of each nanowire in the array and result in broadband light absorption. Comparison of a nanowire array with a single nanowire shows that the current density (J(SC)) is preserved for a range of nanowire morphologies. The J(SC) of a nanowire array depends on the spacing of its constituent nanowires, which indicates that both diffraction and optical antenna effects contribute to light absorption. Furthermore, a vertically stacked nanowire array exhibits significantly enhanced light absorption because of the emergence of coupled cavity-waveguide modes and the mitigation of a screening effect. With the assumption of unity internal quantum efficiency, the J(SC) of an 800-nm-thick cross-stacked nanowire array is 14.0 mA/cm², which yields a ~60% enhancement compared with an equivalent bulk film absorber. These numerical results underpin a rational design strategy for ultrathin solar absorbers based on assembled nanowire cavities.

  15. From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour

    PubMed Central

    Persson, Henrik; Li, Zhen; Tegenfeldt, Jonas O.; Oredsson, Stina; Prinz, Christelle N.

    2015-01-01

    The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a ”bed-of-nails” regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the “bed-of-nails” regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm−2) and medium (1 μm−2) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm−2). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing. PMID:26691936

  16. From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour.

    PubMed

    Persson, Henrik; Li, Zhen; Tegenfeldt, Jonas O; Oredsson, Stina; Prinz, Christelle N

    2015-12-22

    The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a "bed-of-nails" regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the "bed-of-nails" regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm(-2)) and medium (1 μm(-2)) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm(-2)). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing.

  17. From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour

    NASA Astrophysics Data System (ADS)

    Persson, Henrik; Li, Zhen; Tegenfeldt, Jonas O.; Oredsson, Stina; Prinz, Christelle N.

    2015-12-01

    The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a ”bed-of-nails” regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the “bed-of-nails” regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm-2) and medium (1 μm-2) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm-2). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing.

  18. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid

    Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be

  19. Magnetic behavior of NiCu nanowire arrays: Compositional, geometry and temperature dependence

    SciTech Connect

    Palmero, E. M. Bran, C.; Real, R. P. del; Vázquez, M.; Magén, C.

    2014-07-21

    Arrays of Ni{sub 100−x}Cu{sub x} nanowires ranging in composition 0 ≤ x ≤ 75, diameter from 35 to 80 nm, and length from 150 nm to 28 μm have been fabricated by electrochemical co-deposition of Ni and Cu into self-ordered anodic aluminum oxide membranes. As determined by X-ray diffraction and Transmission Electron Microscopy, the crystalline structure shows fcc cubic symmetry with [111] preferred texture and preferential Ni or Cu lattice depending on the composition. Their magnetic properties such as coercivity and squareness have been determined as a function of composition and geometry in a Vibrating Sample Magnetometer in the temperature range from 10 to 290 K for applied magnetic fields parallel and perpendicular to the nanowires axis. Addition of Cu into the NiCu alloy up to 50% enhances both parallel coercivity and squareness. For the higher Cu content, these properties decrease and the magnetization easy axis becomes oriented perpendicular to the wires. In addition, coercivity and squareness increase by decreasing the diameter of nanowires which is ascribed to the increase of shape anisotropy. The temperature dependent measurements reflect a complex behavior of the magnetic anisotropy as a result of energy contributions with different evolution with temperature.

  20. Smart integration of silicon nanowire arrays in all-silicon thermoelectric micro-nanogenerators

    NASA Astrophysics Data System (ADS)

    Fonseca, Luis; Santos, Jose-Domingo; Roncaglia, Alberto; Narducci, Dario; Calaza, Carlos; Salleras, Marc; Donmez, Inci; Tarancon, Albert; Morata, Alex; Gadea, Gerard; Belsito, Luca; Zulian, Laura

    2016-08-01

    Micro and nanotechnologies are called to play a key role in the fabrication of small and low cost sensors with excellent performance enabling new continuous monitoring scenarios and distributed intelligence paradigms (Internet of Things, Trillion Sensors). Harvesting devices providing energy autonomy to those large numbers of microsensors will be essential. In those scenarios where waste heat sources are present, thermoelectricity will be the obvious choice. However, miniaturization of state of the art thermoelectric modules is not easy with the current technologies used for their fabrication. Micro and nanotechnologies offer an interesting alternative considering that silicon in nanowire form is a material with a promising thermoelectric figure of merit. This paper presents two approaches for the integration of large numbers of silicon nanowires in a cost-effective and practical way using only micromachining and thin-film processes compatible with silicon technologies. Both approaches lead to automated physical and electrical integration of medium-high density stacked arrays of crystalline or polycrystalline silicon nanowires with arbitrary length (tens to hundreds microns) and diameters below 100 nm.

  1. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays.

    PubMed

    Yang, Xiaoling; Zhong, Hua; Zhu, Yihua; Shen, Jianhua; Li, Chunzhong

    2013-10-21

    Metallic nanoparticle (NP) decorated silicon nanowire (SiNW) heterostructures show significant promise in enhanced optical and opto-electrical properties due to the coupling of surface plasmon to nanowires. Here, recyclable Au-decorated silicon nanowire arrays (Au-SiNWAs) as surface-enhanced Raman scattering (SERS) substrates were successfully fabricated by a simple galvanic displacement reaction. The influence of different average size and aggregation level of Au NPs on SERS activity was explored. The SERS activity of the substrates strongly depends on the average size and aggregation level of Au NPs on the surface of the SiNWs, and the most optimal size and separation of AuNPs on the SiNWs can be achieved by controlling the reaction time. The optimized Au-SiNWA substrate exhibits ultrahigh sensitivity with an enhancement factor of 10(9), and is able to detect the analyte molecule at a concentration as low as 10(-11) M. More importantly, the SERS substrate is recyclable, as enabled by a self-cleaning function due to UV light photocatalytic degradation of the analyte molecules. The high sensitivity and recyclability of the Au-SiNWA SERS substrate is demonstrated by the detection of a model molecule rhodamine B (RhB). Our studies show that the unique Au-SiNWA SERS substrates have significant potential to put SERS into wider application.

  2. A metallo-DNA nanowire with uninterrupted one-dimensional silver array.

    PubMed

    Kondo, Jiro; Tada, Yoshinari; Dairaku, Takenori; Hattori, Yoshikazu; Saneyoshi, Hisao; Ono, Akira; Tanaka, Yoshiyuki

    2017-10-01

    The double-helix structure of DNA, in which complementary strands reversibly hybridize to each other, not only explains how genetic information is stored and replicated, but also has proved very attractive for the development of nanomaterials. The discovery of metal-mediated base pairs has prompted the generation of short metal-DNA hybrid duplexes by a bottom-up approach. Here we describe a metallo-DNA nanowire-whose structure was solved by high-resolution X-ray crystallography-that consists of dodecamer duplexes held together by four different metal-mediated base pairs (the previously observed C-Ag-C, as well as G-Ag-G, G-Ag-C and T-Ag-T) and linked to each other through G overhangs involved in interduplex G-Ag-G. The resulting hybrid nanowires are 2 nm wide with a length of the order of micrometres to millimetres, and hold the silver ions in uninterrupted one-dimensional arrays along the DNA helical axis. The hybrid nanowires are further assembled into three-dimensional lattices by interactions between adenine residues, fully bulged out of the double helix.

  3. Diode Characteristics Approaching Bulk Limits in GaAs Nanowire Array Photodetectors.

    PubMed

    Farrell, Alan C; Senanayake, Pradeep; Meng, Xiao; Hsieh, Nick Y; Huffaker, Diana L

    2017-04-12

    We present the electrical properties of p-n junction photodetectors comprised of vertically oriented p-GaAs nanowire arrays on the n-GaAs substrate. We measure an ideality factor as low as n = 1.0 and a rectification ratio >10(8) across all devices, with some >10(9), comparable to the best GaAs thin film photodetectors. An analysis of the Arrhenius plot of the saturation current yields an activation energy of 690 meV-approximately half the bandgap of GaAs-indicating generation-recombination current from midgap states is the primary contributor to the leakage current at low bias. Using fully three-dimensional electrical simulations, we explain the lack of a recombination current dominated regime at low forward bias, as well as some of the issues related to analysis of the capacitance-voltage characteristics of nanowire devices. This work demonstrates that, through proper design and fabrication, nanowire-based devices can perform as well as their bulk device counterparts.

  4. A monolithic electrically-injected nanowire array edge-emitting laser on (001) silicon

    NASA Astrophysics Data System (ADS)

    Stark, E.; Frost, T.; Jahangir, S.; Hazari, A.; Deshpande, S.; Bhattacharya, P.

    2015-03-01

    A silicon-based laser remains an important goal in science and technology. Unfortunately silicon is ill-suited as a light-emitter, prompting the need for alternative high quality light sources integrated with silicon. One such alternative, presented here, is a monolithic III-N edge-emitting laser comprised of a planarized nanowire array. Nanowire heterostructures with InGaN/GaN disk-in-nanowire active regions were grown on (001)silicon and planarized with parylene, forming a composite slab heterostructure supporting a guided mode propagating transverse to the growth direction. From this composite slab, ridge-geometry lasers were fabricated. Lasers with emission at 533 nm (green) and 610 nm (red) are presented here. The lasers are characterized by Jth = 1.76 kA/cm2 (green) and 2.94kA/cm2 (red) under continuous wave current injection. The green lasers have device lifetime of ~7000 hrs. Small-signal modulation measurements have also been performed. The -3dB modulation bandwidth of the green laser is 5.7 GHz.

  5. Morphology-controlled ZnO nanowire arrays for tailored hybrid composites with high damping.

    PubMed

    Malakooti, Mohammad H; Hwang, Hyun-Sik; Sodano, Henry A

    2015-01-14

    Hybrid fiber reinforced composites using a nanoscale reinforcement of the interface have not reached their optimal performance in practical applications due to their complex design and the challenging assembly of their multiscale components. One promising approach to the fabrication of hybrid composites is the growth of zinc oxide (ZnO) nanowire arrays on the surface of carbon fibers to provide improved interfacial strength and out of plane reinforcement. However, this approach has been demonstrated mainly on fibers and thus still requires complex processing conditions. Here we demonstrate a simple approach to the fabrication of such composites through the growth of the nanowires on the fabric. The fabricated composites with nanostructured graded interphase not only exhibit remarkable damping enhancement but also stiffness improvement. It is demonstrated that these two extremely important properties of the composite can be controlled by tuning the morphology of the ZnO nanowires at the interface. Higher damping and flexural rigidity of these composites over traditional ones offer practical high-performance composites.

  6. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors.

    PubMed

    Wang, Fengmei; Zhan, Xueying; Cheng, Zhongzhou; Wang, Zhenxing; Wang, Qisheng; Xu, Kai; Safdar, Muhammad; He, Jun

    2015-02-11

    Among active pseudocapacitive materials, polypyrrole (PPy) is a promising electrode material in electrochemical capacitors. PPy-based materials research has thus far focused on its electrochemical performance as a positive electrode rather than as a negative electrode for asymmetric supercapacitors (ASCs). Here high-performance electrochemical supercapacitors are designed with tungsten oxide@PPy (WO3 @PPy) core-shell nanowire arrays and Co(OH)2 nanowires grown on carbon fibers. The WO3 @PPy core-shell nanowire electrode exhibits a high capacitance (253 mF/cm2) in negative potentials (-1.0-0.0 V). The ASCs packaged with CF-Co(OH)2 as a positive electrode and CF-WO3 @PPy as a negative electrode display a high volumetric capacitance up to 2.865 F/cm3 based on volume of the device, an energy density of 1.02 mWh/cm3 , and very good stability performance. These findings promote the application of PPy-based nanostructures as advanced negative electrodes for ASCs.

  7. Development of amperometric glucose sensors with heterostructured nanowire arrays for continuous subcutaneous monitoring

    NASA Astrophysics Data System (ADS)

    Deshpande, Devesh C.; Yoon, Hargsoon; Khaing, Aung M.; Varadan, Vijay K.

    2007-04-01

    This research discusses the development of a novel amperometric sensor to detect glucose concentrations in solution without the need for an artificial mediator. Since the intended goal of this research is to develop a glucose sensor to subcutaneously monitor glucose levels in the body, it is important that the sensor does not require a mediator, since such chemicals would prove harmful to the body. Nanowire arrays were used as the sensing electrode in place of planar electrodes to utilize the unique properties of nanostructures. Heterostructured Au/Pt nanowires were used so that the dual roles of covalent immobilization of glucose oxidase and oxidation of hydrogen peroxide could be carried out by the sensing electrode. Glucose oxidase was immobilized on these nanowires using self- assembled monolayers of alkanethiols and using a conducting polypyrrole matrix. Results indicate that the unique structure of the sensing electrode delivers superior performance with regards to sensitivity and response time in the absence of an artificial mediator. The development of such a sensor would assist the treatment of patients in an effective and timely manner. Ongoing efforts will help understand the process fabrication and analysis in detail.

  8. Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition.

    PubMed

    Kato, Shinya; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; Watanabe, Yuya; Yamada, Akira; Ohta, Yoshimi; Niwa, Yusuke; Hirota, Masaki

    2013-08-23

    To achieve a high-efficiency silicon nanowire (SiNW) solar cell, surface passivation technique is very important because a SiNW array has a large surface area. We successfully prepared by atomic layer deposition (ALD) high-quality aluminum oxide (Al2O3) film for passivation on the whole surface of the SiNW arrays. The minority carrier lifetime of the Al2O3-depositedSiNW arrays with bulk silicon substrate was improved to 27 μs at the optimum annealing condition. To remove the effect of bulk silicon, the effective diffusion length of minority carriers in the SiNW array was estimated by simple equations and a device simulator. As a result, it was revealed that the effective diffusion length in the SiNW arrays increased from 3.25 to 13.5 μm by depositing Al2O3 and post-annealing at 400°C. This improvement of the diffusion length is very important for application to solar cells, and Al2O3 deposited by ALD is a promising passivation material for a structure with high aspect ratio such as SiNW arrays.

  9. Selective actuation of arrays of carbon nanotubes using magnetic resonance.

    PubMed

    Volodin, Alexander; Santini, Claudia A; De Gendt, Stefan; Vereecken, Philippe M; Van Haesendonck, Chris

    2013-07-23

    We introduce the use of ferromagnetic resonance (FMR) to actuate mechanical resonances in as grown arrays of carbon nanotubes (CNTs) loaded with Ni particles (Ni-CNTs). This contactless method is closely related to the magnetic resonance force microscopy technique and provides spatial selectivity of actuation along the array. The Ni-CNT arrays are grown by chemical vapor deposition and are composed of homogeneous CNTs with uniform length (~600 nm) and almost equal diameter (~20 nm), which are loaded with Ni catalyst particles at their tips due to the tip growth mode. The vibrations of the Ni-CNTs are actuated by relying on the driving force that appears due to the FMR excited at about 2 GHz in the Ni particles (diameter ~100 nm). The Ni-CNT oscillations (frequency ~40 MHz) are detected mechanically by atomic force microscopy. The acquired oscillation images of the Ni-CNT uniform array reveal clear maxima in the spatial distribution of the oscillation amplitudes. We attribute these maxima to the "sensitive slices", i.e., the spatial regions of the Ni-CNT array where the FMR condition is met. Similar to magnetic resonance imaging, the sensitive slice is determined by the magnetic field gradient and moves along the Ni-CNT array as the applied magnetic field is ramped. Our excitation method does not require the presence of any additional microfabricated electrodes or coils near the CNTs and is particularly advantageous in cases where the traditional electrical actuation methods are not effective or cannot be implemented. The remote actuation can be effectively implemented also for arrays of other magnetic nanomechanical resonators.

  10. Dense nanoimprinted silicon nanowire arrays with passivated axial p-i-n junctions for photovoltaic applications

    SciTech Connect

    Zhang, Peng; Liu, Pei; Siontas, Stylianos; Zaslavsky, A.; Pacifici, D.; Ha, Jong-Yoon; Krylyuk, S.; Davydov, A. V.

    2015-03-28

    We report on the fabrication and photovoltaic characteristics of vertical arrays of silicon axial p-i-n junction nanowire (NW) solar cells grown by vapor-liquid-solid (VLS) epitaxy. NW surface passivation with silicon dioxide shell is shown to enhance carrier recombination time, open-circuit voltage (V{sub OC}), short-circuit current density (J{sub SC}), and fill factor (FF). The photovoltaic performance of passivated individual NW and NW arrays was compared under 532 nm laser illumination with power density of ∼10 W/cm{sup 2}. Higher values of V{sub OC} and FF in the NW arrays are explained by enhanced light trapping. In order to verify the effect of NW density on light absorption and hence on the photovoltaic performance of NW arrays, dense Si NW arrays were fabricated using nanoimprint lithography to periodically arrange the gold seed particles prior to epitaxial growth. Compared to sparse NW arrays fabricated using VLS growth from randomly distributed gold seeds, the nanoimprinted NW array solar cells show a greatly increased peak external quantum efficiency of ∼8% and internal quantum efficiency of ∼90% in the visible spectral range. Three-dimensional finite-difference time-domain simulations of Si NW periodic arrays with varying pitch (P) confirm the importance of high NW density. Specifically, due to diffractive scattering and light trapping, absorption efficiency close to 100% in the 400–650 nm spectral range is calculated for a Si NW array with P = 250 nm, significantly outperforming a blanket Si film of the same thickness.

  11. Study of the Electrochemical System of Antimony-Tellurium in Dimethyl Sulfoxide for Growth of Nanowire Arrays, and an Innovative Method for Single Nanowire Measurements

    NASA Astrophysics Data System (ADS)

    Kalisman, Philip Taubman

    There is a strong interest in thermoelectric materials for energy production and savings. The properties which are integral to thermoelectric performance are typically linked, typically changing one of these properties for the better will change another for the worse. The intertwined nature of these properties has limited bulk thermoelectrics to low efficiencies, which has curbed their use to only niche applications. There has been theoretical and experimental work which has shown that limiting these materials in one or more dimensions will result in deconvolution of properties. Nanowires of well established thermoelectrics should show impressively high performance. Tellurium is attractive in many fields, including thermoelectrics. Nanowires of tellurium have been grown, but with limited success and with out the ability to dope the tellurium. Working on previous work with other systems, tellurium was studied in dimethyl sulfoxide (DMSO). The electrochemical system of tellurium was found to be quite dierent from its aqueous analog, but through comprehensive cyclic voltammetric study, all events were identified and explained. The binary antimony-tellurium system was also studied, as doping of tellurium is integral for many applications. Cyclic voltammograms of this system were studied, and the insight from these studies was used to grow nanowire arrays. Arrays of tellurium were grown and analysis showed that by using DMSO, antimony doped tellurium nanowire arrays could be grown. Furthermore, analysis showed that the antimony doped tellurium interstitially, resulting in a n-type material. Measurements were also performed on arrays and individual wires. Arrays of 1.15% antimony showed ZT of 0.092, with the low ZT attributed to poor contact methods. Although contacting was an obstacle towards measuring whole arrays, single wire measurements were also performed. Single wire measurements were done by a novel method which allows for easy, reproducible measurements of wire

  12. Facile Synthesis of Vanadium-Doped Ni3S2 Nanowire Arrays as Active Electrocatalyst for Hydrogen Evolution Reaction.

    PubMed

    Qu, Yuanju; Yang, Mingyang; Chai, Jianwei; Tang, Zhe; Shao, Mengmeng; Kwok, Chi Tat; Yang, Ming; Wang, Zhenyu; Chua, Daniel; Wang, Shijie; Lu, Zhouguang; Pan, Hui

    2017-02-22

    Ni3S2 nanowire arrays doped with vanadium(V) are directly grown on nickel foam by a facile one-step hydrothermal method. It is found that the doping can promote the formation of Ni3S2 nanowires at a low temperature. The doped nanowires show excellent electrocatalytic performance toward hydrogen evolution reaction (HER), and outperform pure Ni3S2 and other Ni3S2-based compounds. The stability test shows that the performance of V-doped Ni3S2 nanowires is improved and stabilized after thousands of linear sweep voltammetry test. The onset potential of V-doped Ni3S2 nanowire can be as low as 39 mV, which is comparable to platinum. The nanowire has an overpotential of 68 mV at 10 mA cm(-2), a relatively low Tafel slope of 112 mV dec(-1), good stability and high Faradaic efficiency. First-principles calculations show that the V-doping in Ni3S2 extremely enhances the free carrier density near the Fermi level, resulting in much improved catalytic activities. We expect that the doping can be an effective way to enhance the catalytic performance of metal disulfides in hydrogen evolution reaction and V-doped Ni3S2 nanowire is one of the most promising electrocatalysts for hydrogen production.

  13. Gold-Free Ternary III–V Antimonide Nanowire Arrays on Silicon: Twin-Free down to the First Bilayer

    PubMed Central

    2013-01-01

    With the continued maturation of III–V nanowire research, expectations of material quality should be concomitantly raised. Ideally, III–V nanowires integrated on silicon should be entirely free of extended planar defects such as twins, stacking faults, or polytypism, position-controlled for convenient device processing, and gold-free for compatibility with standard complementary metal–oxide–semiconductor (CMOS) processing tools. Here we demonstrate large area vertical GaAsxSb1–x nanowire arrays grown on silicon (111) by molecular beam epitaxy. The nanowires’ complex faceting, pure zinc blende crystal structure, and composition are mapped using characterization techniques both at the nanoscale and in large-area ensembles. We prove unambiguously that these gold-free nanowires are entirely twin-free down to the first bilayer and reveal their three-dimensional composition evolution, paving the way for novel infrared devices integrated directly on the cost-effective Si platform. PMID:24329502

  14. Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires.

    PubMed

    Luan, Nannan; Wang, Ran; Lv, Wenhua; Lu, Ying; Yao, Jianquan

    2014-08-29

    We propose a temperature sensor design based on surface plasmon resonances (SPRs) supported by filling the holes of a six-hole photonic crystal fiber (PCF) with a silver nanowire. A liquid mixture (ethanol and chloroform) with a large thermo-optic coefficient is filled into the PCF holes as sensing medium. The filled silver nanowires can support resonance peaks and the peak will shift when temperature variations induce changes in the refractive indices of the mixture. By measuring the peak shift, the temperature change can be detected. The resonance peak is extremely sensitive to temperature because the refractive index of the filled mixture is close to that of the PCF material. Our numerical results indicate that a temperature sensitivity as high as 4 nm/K can be achieved and that the most sensitive range of the sensor can be tuned by changing the volume ratios of ethanol and chloroform. Moreover, the maximal sensitivity is relatively stable with random filled nanowires, which will be very convenient for the sensor fabrication.

  15. Controllable Synthesis of Copper Oxide/Carbon Core/Shell Nanowire Arrays and Their Application for Electrochemical Energy Storage.

    PubMed

    Zhan, Jiye; Chen, Minghua; Xia, Xinhui

    2015-10-09

    Rational design/fabrication of integrated porous metal oxide arrays is critical for the construction of advanced electrochemical devices. Herein, we report self-supported CuO/C core/shell nanowire arrays prepared by the combination of electro-deposition and chemical vapor deposition methods. CuO/C nanowires with diameters of ~400 nm grow quasi-vertically to the substrates forming three-dimensional arrays architecture. A thin carbon shell is uniformly coated on the CuO nanowire cores. As an anode of lithium ion batteries, the resultant CuO/C nanowire arrays are demonstrated to have high specific capacity (672 mAh·g(-1) at 0.2 C) and good cycle stability (425 mAh·g(-1) at 1 C up to 150 cycles). The core/shell arrays structure plays positive roles in the enhancement of Li ion storage due to fast ion/electron transfer path, good strain accommodation and sufficient contact between electrolyte and active materials.

  16. Controllable Synthesis of Copper Oxide/Carbon Core/Shell Nanowire Arrays and Their Application for Electrochemical Energy Storage

    PubMed Central

    Zhan, Jiye; Chen, Minghua; Xia, Xinhui

    2015-01-01

    Rational design/fabrication of integrated porous metal oxide arrays is critical for the construction of advanced electrochemical devices. Herein, we report self-supported CuO/C core/shell nanowire arrays prepared by the combination of electro-deposition and chemical vapor deposition methods. CuO/C nanowires with diameters of ~400 nm grow quasi-vertically to the substrates forming three-dimensional arrays architecture. A thin carbon shell is uniformly coated on the CuO nanowire cores. As an anode of lithium ion batteries, the resultant CuO/C nanowire arrays are demonstrated to have high specific capacity (672 mAh·g−1 at 0.2 C) and good cycle stability (425 mAh·g−1 at 1 C up to 150 cycles). The core/shell arrays structure plays positive roles in the enhancement of Li ion storage due to fast ion/electron transfer path, good strain accommodation and sufficient contact between electrolyte and active materials. PMID:28347084

  17. Highly efficient and stable Si nanowires array embedded into transparent polymer for visible light photoelectrochemical cell.

    PubMed

    Wang, Hui; Wang, Jian-Tao; Ou, Xue-Mei; Li, Fan; Zhang, Xiao-Hong

    2014-07-04

    Photoelectrochemical (PEC) cell supports a renewable method for solving current environmental and energy issues by combining solar energy collection and photocatalysis in a single semiconductor photoelectrode. However, it is still challenged by visible light photoelectrodes. The present work reports fabricating highly efficient and stable Si nanowires (SiNWs) array as visible light photoelectrodes. It involves embedding SiNWs arrays into a transparent polymer substrate to build an axial carrier collection geometry. We demonstrated that this strategy could significantly strengthen the chemical stability of SiNWs by largely reducing their surface area. Moreover, this device structure can also enhance visible light absorption efficiency through taking advantage of the highly crystalline structure of vapor-liquid-solid (VLS) grown SiNWs. Thus it can double the photodegradation ability of SiNWs.

  18. Transfer-free synthesis of highly ordered Ge nanowire arrays on glass substrates

    SciTech Connect

    Nakata, M.; Toko, K. Suemasu, T.; Jevasuwan, W.; Fukata, N.; Saitoh, N.; Yoshizawa, N.

    2015-09-28

    Vertically aligned Ge nanowires (NWs) are directly synthesized on glass via vapor-liquid-solid (VLS) growth using chemical-vapor deposition. The use of the (111)-oriented Ge seed layer, formed by metal-induced crystallization at 325 °C, dramatically improved the density, uniformity, and crystal quality of Ge NWs. In particular, the VLS growth at 400 °C allowed us to simultaneously achieve the ordered morphology and high crystal quality of the Ge NW array. Transmission electron microscopy demonstrated that the resulting Ge NWs had no dislocations or stacking faults. Production of high-quality NW arrays on amorphous insulators will promote the widespread application of nanoscale devices.

  19. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Reduced Graphene Oxide Sheets for Supercapacitors

    PubMed Central

    Wang, Li; Ye, Yinjian; Lu, Xingping; Wen, Zhubiao; Li, Zhuang; Hou, Haoqing; Song, Yonghai

    2013-01-01

    Here we reported a novel route to synthesize a hierarchical nanocomposite (PANI-frGO) of polyaniline (PANI) nanowire arrays covalently bonded on reduced graphene oxide (rGO). In this strategy, nitrophenyl groups were initially grafted on rGO via C-C bond, and then reduced to aminophenyl to act as anchor sites for the growth of PANI arrays on rGO. The functionalized process was confirmed by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis. The electrochemical properties of the PANI-frGO as supercapacitor materials were investigated. The PANI-frGO nanocomposites showed high capacitance of 590 F g−1 at 0.1 A g−1, and had no loss of capacitance after 200 cycles at 2 A g−1. The improved electrochemical performance suggests promising application of the PANI-frGO nanocomposites in high-performance supercapacitors. PMID:24356535

  20. Electrical properties of high density arrays of silicon nanowire field effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Hye-Young; Lee, Kangho; Lee, Jae Woo; Kim, Sangwook; Kim, Gyu-Tae; Duesberg, Georg S.

    2013-10-01

    Proximity effect corrected e-beam lithography of hydrogen silsesquioxane on silicon on insulator was used to fabricate multi-channel silicon nanowire field-effect transistors (SiNW FETs). Arrays of 15-channels with a line width of 18 nm and pitch as small as 50 nm, the smallest reported for electrically functional devices, were fabricated. These high density arrays were back-gated by the substrate and allowed for investigation of the effects of scaling on the electrical performance of this multi-channel SiNW FET. It was revealed that the drain current and the transconductance (gm) are both reduced with decreasing pitch size. The drain induced barrier lowering and the threshold voltage (Vth) are also decreased, whereas the subthreshold swing (S) is increased. The results are in agreement with our simulations of the electric potential profile of the devices. The study contains valuable information on SiNW FET integration and scaling for future devices.

  1. High Yield of GaAs Nanowire Arrays on Si Mediated by the Pinning and Contact Angle of Ga.

    PubMed

    Russo-Averchi, Eleonora; Vukajlovic Plestina, Jelena; Tütüncüoglu, Gözde; Matteini, Federico; Dalmau-Mallorquí, Anna; de la Mata, Maria; Rüffer, Daniel; Potts, Heidi A; Arbiol, Jordi; Conesa-Boj, Sonia; Fontcuberta i Morral, Anna

    2015-05-13

    GaAs nanowire arrays on silicon offer great perspectives in the optoelectronics and solar cell industry. To fulfill this potential, gold-free growth in predetermined positions should be achieved. Ga-assisted growth of GaAs nanowires in the form of array has been shown to be challenging and difficult to reproduce. In this work, we provide some of the key elements for obtaining a high yield of GaAs nanowires on patterned Si in a reproducible way: contact angle and pinning of the Ga droplet inside the apertures achieved by the modification of the surface properties of the nanoscale areas exposed to growth. As an example, an amorphous silicon layer between the crystalline substrate and the oxide mask results in a contact angle around 90°, leading to a high yield of vertical nanowires. Another example for tuning the contact angle is anticipated, native oxide with controlled thickness. This work opens new perspectives for the rational and reproducible growth of GaAs nanowire arrays on silicon.

  2. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

    PubMed Central

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.

    2016-01-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194

  3. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

    NASA Astrophysics Data System (ADS)

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.

    2016-06-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20-60 nm and lengths of 4-6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications.

  4. Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC.

    PubMed

    Zhang, Guo-Jun; Chai, Kevin Tshun Chuan; Luo, Henry Zhan Hong; Huang, Joon Min; Tay, Ignatius Guang Kai; Lim, Andy Eu-Jin; Je, Minkyu

    2012-05-15

    Early detection of cardiac biomarkers for diagnosis of heart attack is the key to saving lives. Conventional method of detection like the enzyme-linked immunosorbent assay (ELISA) is time consuming and low in sensitivity. Here, we present a label-free detection system consisting of an array of silicon nanowire sensors and an interface readout application specific integrated circuit (ASIC). This system provides a rapid solution that is highly sensitive and is able to perform direct simultaneous-multiplexed detection of cardiac biomarkers in serum. Nanowire sensor arrays were demonstrated to have the required selectivity and sensitivity to perform multiplexed detection of 100 fg/ml troponin T, creatine kinase MM, and creatine kinase MB in serum. A good correlation between measurements from a probe station and the readout ASIC was obtained. Our detection system is expected to address the existing limitations in cardiac health management that are currently imposed by the conventional testing platform, and opens up possibilities in the development of a miniaturized device for point-of-care diagnostic applications.

  5. Quantifying the traction force of a single cell by aligned silicon nanowire array.

    PubMed

    Li, Zhou; Song, Jinhui; Mantini, Giulia; Lu, Ming-Yen; Fang, Hao; Falconi, Christian; Chen, Lih-Juann; Wang, Zhong Lin

    2009-10-01

    The physical behaviors of stationary cells, such as the morphology, motility, adhesion, anchorage, invasion and metastasis, are likely to be important for governing their biological characteristics. A change in the physical properties of mammalian cells could be an indication of disease. In this paper, we present a silicon-nanowire-array based technique for quantifying the mechanical behavior of single cells representing three distinct groups: normal mammalian cells, benign cells (L929), and malignant cells (HeLa). By culturing the cells on top of NW arrays, the maximum traction forces of two different tumor cells (HeLa, L929) have been measured by quantitatively analyzing the bending of the nanowires. The cancer cell exhibits a larger traction force than the normal cell by approximately 20% for a HeLa cell and approximately 50% for a L929 cell. The traction forces have been measured for the L929 cells and mechanocytes as a function of culture time. The relationship between cells extending area and their traction force has been investigated. Our study is likely important for studying the mechanical properties of single cells and their migration characteristics, possibly providing a new cellular level diagnostic technique.

  6. Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions.

    PubMed

    Huang, Zhipeng; Shimizu, Tomohiro; Senz, Stephan; Zhang, Zhang; Zhang, Xuanxiong; Lee, Woo; Geyer, Nadine; Gösele, Ulrich

    2009-07-01

    The metal-assisted etching direction of Si(110) substrates was found to be dependent upon the morphology of the deposited metal catalyst. The etching direction of a Si(110) substrate was found to be one of the two crystallographically preferred 100 directions in the case of isolated metal particles or a small area metal mesh with nanoholes. In contrast, the etching proceeded in the vertical [110] direction, when the lateral size of the catalytic metal mesh was sufficiently large. Therefore, the direction of etching and the resulting nanostructures obtained by metal-assisted etching can be easily controlled by an appropriate choice of the morphology of the deposited metal catalyst. On the basis of this finding, a generic method was developed for the fabrication of wafer-scale vertically aligned arrays of epitaxial [110] Si nanowires on a Si(110) substrate. The method utilized a thin metal film with an extended array of pores as an etching catalyst based on an ultrathin porous anodic alumina mask, while a prepatterning of the substrate prior to the metal depostion is not necessary. The diameter of Si nanowires can be easily controlled by a combination of the pore diameter of the porous alumina film and varying the thickness of the deposited metal film.

  7. Silicon nanowire arrays-induced graphene oxide reduction under UV irradiation.

    PubMed

    Fellahi, Ouarda; Das, Manash R; Coffinier, Yannick; Szunerits, Sabine; Hadjersi, Toufik; Maamache, Mustapha; Boukherroub, Rabah

    2011-11-01

    This paper reports on efficient UV irradiation-induced reduction of exfoliated graphene oxide. Direct illumination of an aqueous solution of graphene oxide at λ = 312 nm for 6 h resulted in the formation of graphene nanosheets dispersible in water. X-Ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, atomic force microscopy (AFM) and electrochemical measurements (cyclic voltammetry and electrochemical impedance spectroscopy) suggest a restoration of the sp(2) carbon network. The results were compared with graphene nanosheets prepared by photochemical irradiation of a GO aqueous solution in the presence of hydrogenated silicon nanowire (SiNW) arrays or silicon nanowire arrays decorated with silver (SiNW/Ag NPs) or copper nanoparticles (SiNW/Cu NPs). Graphene nanosheets obtained by illumination of the GO aqueous solution at 312 nm for 6 h in the presence of SiNW/Cu NPs exhibited superior electrochemical charge transfer characteristics. This is mainly due to the higher amount of sp(2)-hybridized carbon in these graphene sheets found by XPS analysis. The high level of extended conjugated carbon network was also evident by the water insoluble nature of the resulting graphene nanosheets, which precipitated upon photochemical reduction.

  8. Hot deuteron generation and neutron production in deuterated nanowire array irradiated at relativistic intensity

    NASA Astrophysics Data System (ADS)

    Curtis, Alden; Calvi, Chase; Tinsley, Jim; Hollinger, Reed; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Buss, Conrad; Shlyaptsev, Vyacheslav; Kaymak, V.; Pukhov, Alexander; Rocca, Jorge

    2016-10-01

    Irradiation of arrays of aligned high aspect ratio nanowires with high contrast femtosecond laser pulses of relativistic intensity was recently shown to volumetrically heat near solid density plasmas to multi-KeV energy. Using aligned arrays of deuterated polyethylene nanowires (CD2) irradiated at laser intensities of up to 1 ×1020 W/cm2 we are able to generate near solid density plasmas in which the tail of the deuteron distribution was measured to reach energies of up to 3 MeV, in agreement with particle-in-cell simulations. Comparative measurements conducted using flat CD2 targets irradiated by the same laser pulses show the maximum deuteron energies are sub-MeV. We also observed a 100x increase in the number of neutrons produced as compared to flat CD2 targets irradiated at the same conditions, with the highest yield shots producing above 106 neutrons per Joule of laser energy. Work supported by AFOSR Award FA9560-14-10232 and NSTec SDRD program.

  9. Transparent-conducting-oxide nanowire arrays for efficient photoelectrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    Lee, Sangwook; Park, Sangbaek; Han, Gill Sang; Kim, Dong Hoe; Noh, Jun Hong; Cho, In Sun; Jung, Hyun Suk; Hong, Kug Sun

    2014-07-01

    We report one dimensional (1-D) transparent-conducting-oxide arrays coated with light-absorbing semiconductors to simultaneously maximize light harvesting and charge collection in a photoelectrochemical (PEC) system. Tin-doped indium oxide (ITO) nanowire (NW) arrays are prepared on ITO thin-film substrates as the transparent-conducting-oxide, and TiO2 or CdSe/CdS/TiO2 thin layers were coated on the ITO NW arrays as the solar light-absorbing layers. The optimal PEC performance, 0.85% under 100 mW cm-2 of light illumination, is obtained from ~30 μm-long ITO NW, which is covered with ~20 nm-thick TiO2 nanoshell. We finally demonstrate that the ITO NW-based photoelectrode is also compatible with one of the most efficient visible-light sensitizers, the CdS/CdSe quantum dot. Our approach using the transparent conducting 1-D array has wide potential to improve the PEC performances of conventional semiconducting materials through liberation from the poor charge transport.We report one dimensional (1-D) transparent-conducting-oxide arrays coated with light-absorbing semiconductors to simultaneously maximize light harvesting and charge collection in a photoelectrochemical (PEC) system. Tin-doped indium oxide (ITO) nanowire (NW) arrays are prepared on ITO thin-film substrates as the transparent-conducting-oxide, and TiO2 or CdSe/CdS/TiO2 thin layers were coated on the ITO NW arrays as the solar light-absorbing layers. The optimal PEC performance, 0.85% under 100 mW cm-2 of light illumination, is obtained from ~30 μm-long ITO NW, which is covered with ~20 nm-thick TiO2 nanoshell. We finally demonstrate that the ITO NW-based photoelectrode is also compatible with one of the most efficient visible-light sensitizers, the CdS/CdSe quantum dot. Our approach using the transparent conducting 1-D array has wide potential to improve the PEC performances of conventional semiconducting materials through liberation from the poor charge transport. Electronic supplementary information

  10. Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching

    PubMed Central

    2013-01-01

    We demonstrated a novel, simple, and low-cost method to fabricate silicon nanowire (SiNW) arrays and silicon nanohole (SiNH) arrays based on thin silver (Ag) film dewetting process combined with metal-assisted chemical etching. Ag mesh with holes and semispherical Ag nanoparticles can be prepared by simple thermal annealing of Ag thin film on a silicon substrate. Both the diameter and the distribution of mesh holes as well as the nanoparticles can be manipulated by the film thickness and the annealing temperature. The silicon underneath Ag coverage was etched off with the catalysis of metal in an aqueous solution containing HF and an oxidant, which form silicon nanostructures (either SiNW or SiNH arrays). The morphologies of the corresponding etched SiNW and SiNH arrays matched well with that of Ag holes and nanoparticles. This novel method allows lithography-free fabrication of the SiNW and SiNH arrays with control of the size and distribution. PMID:23557325

  11. Graphene quantum dots modified silicon nanowire array for ultrasensitive detection in the gas phase

    NASA Astrophysics Data System (ADS)

    Li, T. Y.; Duan, C. Y.; Zhu, Y. X.; Chen, Y. F.; Wang, Y.

    2017-03-01

    Si nanostructure-based gas detectors have attracted much attention due to their huge surface areas, relatively high carrier mobility, maneuverability for surface functionalization and compatibility to modern electronic industry. However, the unstable surface of Si, especially for the nanostructures in a corrosive atmosphere, hinders their sensitivity and reproducibility when used for detection in the gas phase. In this study, we proposed a novel strategy to fabricate a Si-based gas detector by using the vertically aligned Si nanowire (SiNW) array as a skeleton and platform, and decorated chemically inert graphene quantum dots (GQDs) to protect the SiNWs from oxidation and promote the carriers’ interaction with the analytes. The radial core-shell structures of the GQDs/SiNW array were then assembled into a resistor-based gas detection system and evaluated by using nitrogen dioxide (NO2) as the model analyte. Compared to the bare SiNW array, our novel sensor exhibited ultrahigh sensitivity for detecting trace amounts of NO2 with the concentration as low as 10 ppm in room temperature and an immensely reduced recovery time, which is of significant importance for their practical application. Meanwhile, strikingly, reproducibility and stability could also be achieved by showing no sensitivity decline after storing the GQDs/SiNW array in air for two weeks. Our results demonstrate that protecting the surface of the SiNW array with chemically inert GQDs is a feasible strategy to realize ultrasensitive detection in the gas phase.

  12. Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Liu, Ruiyuan; Zhang, Fute; Con, Celal; Cui, Bo; Sun, Baoquan

    2013-04-01

    We demonstrated a novel, simple, and low-cost method to fabricate silicon nanowire (SiNW) arrays and silicon nanohole (SiNH) arrays based on thin silver (Ag) film dewetting process combined with metal-assisted chemical etching. Ag mesh with holes and semispherical Ag nanoparticles can be prepared by simple thermal annealing of Ag thin film on a silicon substrate. Both the diameter and the distribution of mesh holes as well as the nanoparticles can be manipulated by the film thickness and the annealing temperature. The silicon underneath Ag coverage was etched off with the catalysis of metal in an aqueous solution containing HF and an oxidant, which form silicon nanostructures (either SiNW or SiNH arrays). The morphologies of the corresponding etched SiNW and SiNH arrays matched well with that of Ag holes and nanoparticles. This novel method allows lithography-free fabrication of the SiNW and SiNH arrays with control of the size and distribution.

  13. Nonlinear Oscillations of Microscale Piezoelectric Resonators and Resonator Arrays

    DTIC Science & Technology

    2006-06-30

    linear characteristics [2-5]. These characteristics include DUffing oscillator like response during resonance excitations [6], temporal harmonics in the...model is used with a single-mode approximation to produce a forced Duffing oscillator . Nonlinear analysis is used to obtain the frequency-response...backward this procedure, the simplified model takes the form of a forced frequency sweeps, only the forward sweep data are used in Duffing oscillator , shown

  14. Plasmonic resonance scattering from silver nanowire illuminated by tightly focused singular beam.

    PubMed

    Normatov, Alexander; Spektor, Boris; Leviatan, Yehuda; Shamir, Joseph

    2010-08-15

    We investigate scattering features of tightly focused singular beams by placing a cylindrical nanowire in the vicinity of a line phase singularity. Applying an illumination wavelength corresponding to silver cylinder plasmonic resonance, we compare the scattering response with that of a perfect conductor. The rigorous modeling employs a 2D version of the Richards-Wolf focusing method and the source model technique. It is found that a cylinder with a plasmonic resonance produces a strong scattering response by deflecting the power flow toward the optical singularity region, where otherwise the power approaches zero.

  15. Dzyaloshinskii-Moriya domain wall resonance in ferromagnetic nanowires with a spin-transfer torque

    SciTech Connect

    Li, Zai-Dong; Liu, Fei; Li, Qiu-Yan; He, P. B.

    2015-05-07

    We theoretically investigate the current-induced domain wall resonance in ferromagnetic nanowires with a Dzyaloshinskii-Moriya interaction. The adiabatic and nonadiabatic torques distort the wall's internal structure and exert a global pressure on the wall. An effective Newton's equation is obtained analytically for a domain wall moving in one-dimensional potential and subject to a viscous friction and a driving force. Our results demonstrate that the Dzyaloshinskii-Moriya interaction affects the critical current density for depinning the wall, resonance frequency, and amplitude.

  16. Micromachined quartz crystal resonator arrays for bioanalytical applications

    NASA Astrophysics Data System (ADS)

    Kao, Ping

    This work presents the design, fabrication and investigation of high frequency quartz crystal resonator arrays and their application for analyzing interfacial layers and sensing purposes. An 8-pixel micromachined quartz crystal resonator array with a fundamental resonance frequency of ˜66 MHz has been fabricated, tested and used in this work. One dimensional model for the characterization of resonator behavior for single or multiple viscoelastic layers under liquid ambient are developed by continuum mechanics approach as well as using an equivalent electrical admittance analysis approach. The investigation of thin interfacial layer between solid (electrode) and liquid phases are reported in terms of the improved resolution of viscoelasitc characteristics of adsorbed layer arising from the use of high frequency resonators. Analyzed layers include globular proteins layer under phosphate buffer solution (PBS) with molecular weights spanning three orders of magnitude, multilayers of avidin and biotin labeled bovine albumin under PBS and diffuse double layer induced by DC bias under 0.5 M sulfuric acid solution. The second half of the dissertation focuses on biosensing applications of quartz resonator arrays. The selective functionalization of 3,3'-Dithiobis (sulfosuccinimidylpropionate) (DTSSP) by physical masking method was first used for specifically detecting avidin molecules. The selective immobilization of thiol modified single stranded DNA probes via electrochemical methods was used for the specific detection of Respiratory Syncytial Virus (RSV) G-gene. The work demonstrates that micromachined quartz crystal resonator arrays could be a powerful analytical tool of investigating interfacial region and can be readily configured as biosenors that can be used for label-free, quantitative assays using extremely small volumes of analytes.

  17. Self-assembled bundled TiO2 nanowire arrays encapsulated with indium tin oxide for broadband absorption in plasmonic photocatalysis.

    PubMed

    Huang, Hao; Hao, Qi; Fan, Xingce; Luo, Zhengwei; Hou, Xiangyu; Yang, Xiaozhi; Qiu, Teng; Chu, Paul K

    2017-10-11

    In order to enhance photocatalysis by broadening light harvesting, bundled TiO2 nanowire bundle arrays are encapsulated with indium tin oxide (ITO) by a self-assembly technique involving anodization, electrochemical etching, and ITO deposition. The plasmonic photocatalyst, which has a multiscale structure with variable nanoscale gaps as well as microscale funnels, shows broadband localized surface plasmon resonance absorption of 84% in the wavelength range between 400 and 2500 nm. The improved photocatalytic efficiency is demonstrated by methyl orange degradation under sunlight illumination. The improvement stems from enhanced light harvesting arising from the localized surface plasmon resonance of the ITO membrane which extends the light response to the visible and NIR regions and excites hot charge carriers.

  18. High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with "caterpillar-like" structure.

    PubMed

    McCune, Mallarie; Zhang, Wei; Deng, Yulin

    2012-07-11

    A 3D ZnO nanowire-based dye-sensitized solar cell (DSSC) with unique "caterpillar-like" structure was designed. Because of the significant improvement of the total ZnO nanowire surface area, the amount of light absorption was substantially increased. This increase in the light harvesting efficiency enables us to achieve an overall power conversion efficiency as high as 5.20%, which is the highest reported value to date for ZnO nanowire-based DSSCs. A branched-multilayered design of ZnO nanowire arrays grown from ZnO nanofiber seed layers proves to be very successful in fabricating 3D ZnO nanowire arrays. Practically, electrospun ZnO nanowires were used as the seeds in multilayer growth of ZnO nanowire arrays with a unique "caterpillar-like" structure. This unique structure significantly enhances the surface area of the ZnO nanowire arrays, leading to higher short-circuit currents. Additionally, this design resulted in closer spacing between the nanowires and more direct conduction pathways for electron transfer. Thus, the open-circuit voltage was so significantly improved as a direct result of the reduction in electron recombination.

  19. Optimizing the Field Emission Properties of ZnO Nanowire Arrays by Precisely Tuning the Population Density and Application in Large-Area Gated Field Emitter Arrays.

    PubMed

    Li, Yufeng; Zhang, Zhipeng; Zhang, Guofu; Zhao, Long; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2017-02-01

    Zinc oxide (ZnO) nanowires are prepared for application in large area gated field emitter arrays (FEAs). By oxidizing Al-coated Zn films, the population density of the ZnO nanowires was tuned precisely by varying the thickness of the Al film. The nanowire density decreased linearly as the thickness of the Al film increased. Optimal field emission properties with a turn-on field of 6.21 V μm(-1) and current fluctuations less than 1% are obtained. This can be explained by the minimized screening effect and good electrical conductivity of the back-contact layer. The mechanism responsible for the linear variation in the nanowire density is investigated in detail. Addressable FEAs using the optimal ZnO nanowire cathodes were fabricated and applied in a display device. Good gate-controlled characteristics and the display of video images are realized. The results indicate that ZnO nanowires could be applied in large area FEAs.

  20. KOH post-etching-induced rough silicon nanowire array for H2 gas sensing application

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Wang, Yongyao; Liu, Yi; Zhang, Xiaojuan

    2016-11-01

    The limited surface area and compacted configuration of silicon nanowires (SiNWs), which are made by one-step metal-assisted chemical etching (MACE) go against target gas diffusion and adsorbtion for gas sensing application. To harvest suitable gas sensitivity and fast response-recovery characteristics, an aligned, rough SiNW array with loose configuration and high surface area was fabricated by a two-step etching process. The MACE technique was first employed to fabricate a smooth SiNW array, and then a KOH post-etching method was developed to roughen the NW surface further. The influence of the KOH post-etching time on the array density and surface roughness of the SiNWs was investigated, and the H2-sensing properties of the sensor based on the as-fabricated rough SiNW array were evaluated systematically at room temperature. It was revealed that the post-etching of KOH roughens the NW surface effectively, and also decreases the wire diameter and array density considerably. The resulting configuration of the SiNW array with high active surface and loose geometry is favorable for gas sensing. Consequently, the rough SiNW array-based sensor exhibited a linear response to H2 with a wide range of concentrations (50-10 000 ppm) at room temperature. Good stability and selectivity, satisfying response-recovery characteristics were also achieved. However, over-etching of SiNWs by KOH solution results in a considerable decrease in surface roughness and then in the H2-sensing response of the NWs.

  1. Laser Modified ZnO/CdSSe Core-Shell Nanowire Arrays for Micro-Steganography and Improved Photoconduction

    PubMed Central

    Lu, Junpeng; Liu, Hongwei; Zheng, Minrui; Zhang, Hongji; Lim, Sharon Xiaodai; Tok, Eng Soon; Sow, Chorng Haur

    2014-01-01

    Arrays of ZnO/CdSSe core/shell nanowires with shells of tunable band gaps represent a class of interesting hybrid nanomaterials with unique optical and photoelectrical properties due to their type II heterojunctions and chemical compositions. In this work, we demonstrate that direct focused laser beam irradiation is able to achieve localized modification of the hybrid structure and chemical composition of the nanowire arrays. As a result, the photoresponsivity of the laser modified hybrid is improved by a factor of ~3. A 3D photodetector with improved performance is demonstrated using laser modified nanowire arrays overlaid with monolayer graphene as the top electrode. Finally, by controlling the power of the scanning focused laser beam, micropatterns with different fluorescence emissions are created on a substrate covered with nanowire arrays. Such a pattern is not apparent when imaged under normal optical microscopy but the pattern becomes readily revealed under fluorescence microscopy i.e. a form of Micro-Steganography is achieved. PMID:25213321

  2. Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Li, Minchan; Lv, Fucong; Yang, Mingyang; Tao, Pengpeng; Tang, Yougen; Liu, Hongtao; Lu, Zhouguang

    2015-10-01

    A novel heterogeneous NiCo2O4@PPy core/sheath nanowire arrays are directly grown on Ni foam involving three facile steps, hydrothermal synthesis and calcination of NiCo2O4 nanowire arrays and subsequent in-situ oxidative polymerization of polypyrrole (PPy). When investigated as binder- and conductive additive-free electrodes for supercapacitors (SCs) in 6 M KOH, the NiCo2O4@PPy core/sheath nanowire arrays exhibit high areal capacitance of 3.49 F cm-2 at a discharge current density of 5 mA cm-2, which is almost 1.5 times as much as the pristine NiCo2O4 (2.30 F cm-2). More importantly, it can remain 3.31 F cm-2 (94.8% retention) after 5000 cycles. The as-obtained electrode also displays excellent rate capability, whose areal capacitance can still remain 2.79 F cm-2 while the discharge current density is increased to 50 mA cm-2. The remarkable electrochemical performance is mainly attributed to the unique heterogeneous core/sheath nanowire-array architectures.

  3. Integration of graphene/ZnS nanowire film hybrids based photodetector arrays for high-performance image sensors

    NASA Astrophysics Data System (ADS)

    Wu, Congjun; Wang, Fei; Cai, Caoyuan; Xu, Zhihao; Ma, Yang; Huang, Fan; Jia, Feixiang; Wang, Min

    2017-06-01

    High-performance photodetector arrays are desired to achieve integrated devices for various technological applications. Film based photodetectors have shown great potential as photodetector arrays because they are compatible with traditional complementary metal oxide semiconductor (CMOS) electronics. Herein, high-mobility graphene/single-crystal ZnS nanowire film hybrids based photodetector arrays have been successfully achieved. With 3 orders of magnitude higher conductance compared with ZnS nanoparticle films, single-crystal ZnS nanowire films are expected to enable a larger portion of photo-generated carriers to move to graphene channel via charge transfer mechanism. As a result, the as-produced graphene/ZnS nanowire film hybrids based devices possess a high photocurrent of 320 µA, a high responsivity of 2.6  ×  106 A W-1, a high detectivity of 8.0  ×  1012 Jones, and a low detectable light intensity of 1 µW cm-2. Moreover, the integrated graphene/ZnS nanowire film hybrids based photodetector arrays are demonstrated as high-performance image sensors with good uniformity.

  4. Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors

    PubMed Central

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-01-01

    Here we proposed a novel architectural design of a ternary MnO2-based electrode – a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2–based nanowire arrays for constructing next-generation supercapacitors. PMID:24132040

  5. Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-10-01

    Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2-based nanowire arrays for constructing next-generation supercapacitors.

  6. A review and analysis on growth and optical absorption properties of silicon nanowire array for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sharma, Ritu; Dusad, Lalit Kumar

    2015-11-01

    In this paper, optical absorptions in silicon nanowires (SiNWs) arrays obtained from theoretical studies and experimental approaches have been reviewed. A brief description on the different growth techniques for SiNW arrays reported so far is presented. Comparative analysis based on major research findings has been done and the advantages of SiNW-based solar cells over thin film solar cells are presented. Furthermore, future aspects of the use of SiNWs for photovoltaic applications are discussed.

  7. Scalable nanofabrication of U-shaped nanowire resonators with tunable optical magnetism.

    PubMed

    Zhou, Fan; Wang, Chen; Dong, Biqin; Chen, Xiangfan; Zhang, Zhen; Sun, Cheng

    2016-03-21

    Split ring resonators have been studied extensively in reconstituting the diminishing magnetism at high electromagnetic frequencies in nature. However, breakdown in the linear scaling of artificial magnetism is found to occur at the near-infrared frequency mainly due to the increasing contribution of self-inductance while reducing dimensions of the resonators. Although alternative designs have enabled artificial magnetism at optical frequencies, their sophisticated configurations and fabrication procedures do not lend themselves to easy implementation. Here, we report scalable nanofabrication of U-shaped nanowire resonators (UNWRs) using the high-throughput nanotransfer printing method. By providing ample area for conducting oscillating electric current, UNWRs overcome the saturation of the geometric scaling of the artificial magnetism. We experimentally demonstrated coarse and fine tuning of LC resonances over a wide wavelength range from 748 nm to 1600 nm. The added flexibility in transferring to other substrates makes UNWR a versatile building block for creating functional metamaterials in three dimensions.

  8. A technique for large-area position-controlled growth of GaAs nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kauppinen, Christoffer; Haggren, Tuomas; Kravchenko, Aleksandr; Jiang, Hua; Huhtio, Teppo; Kauppinen, Esko; Dhaka, Veer; Suihkonen, Sami; Kaivola, Matti; Lipsanen, Harri; Sopanen, Markku

    2016-04-01

    We demonstrate a technique for fabricating position-controlled, large-area arrays of vertical semiconductor nanowires (NWs) with adjustable periods and NW diameters. In our approach, a Au-covered GaAs substrate is first coated with a thin film of photoresponsive azopolymer, which is exposed twice to a laser interference pattern forming a 2D surface relief grating. After dry etching, an array of polymer islands is formed, which is used as a mask to fabricate a matrix of gold particles. The Au particles are then used as seeds in vapour-liquid-solid growth to create arrays of vertical GaAs NWs using metalorganic vapour phase epitaxy. The presented technique enables producing NWs of uniform size distribution with high throughput and potentially on large wafer sizes without relying on expensive lithography techniques. The feasibility of the technique is demonstrated by arrays of vertical NWs with periods of 255-1000 nm and diameters of 50-80 nm on a 2 × 2 cm area. The grown NWs exhibit high long range order and good crystalline quality. Although only GaAs NWs were grown in this study, in principle, the presented technique is suitable for any material available for Au seeded NW growth.

  9. Template-directed atomically precise self-organization of perfectly ordered parallel cerium silicide nanowire arrays on Si(110)-16 × 2 surfaces

    PubMed Central

    2013-01-01

    The perfectly ordered parallel arrays of periodic Ce silicide nanowires can self-organize with atomic precision on single-domain Si(110)-16 × 2 surfaces. The growth evolution of self-ordered parallel Ce silicide nanowire arrays is investigated over a broad range of Ce coverages on single-domain Si(110)-16 × 2 surfaces by scanning tunneling microscopy (STM). Three different types of well-ordered parallel arrays, consisting of uniformly spaced and atomically identical Ce silicide nanowires, are self-organized through the heteroepitaxial growth of Ce silicides on a long-range grating-like 16 × 2 reconstruction at the deposition of various Ce coverages. Each atomically precise Ce silicide nanowire consists of a bundle of chains and rows with different atomic structures. The atomic-resolution dual-polarity STM images reveal that the interchain coupling leads to the formation of the registry-aligned chain bundles within individual Ce silicide nanowire. The nanowire width and the interchain coupling can be adjusted systematically by varying the Ce coverage on a Si(110) surface. This natural template-directed self-organization of perfectly regular parallel nanowire arrays allows for the precise control of the feature size and positions within ±0.2 nm over a large area. Thus, it is a promising route to produce parallel nanowire arrays in a straightforward, low-cost, high-throughput process. PMID:24188092

  10. Modeling high-order plasmon resonances of a U-shaped nanowire used to build a negative-index metamaterial

    SciTech Connect

    Rodriguez-Fortuno, Francisco J.; Garcia-Meca, Carlos; Ortuno, Ruben; Marti, Javier; Martinez, Alejandro

    2009-02-15

    We apply the concept of slow surface-plasmon polariton standing-wave resonances to model the plasmon resonances which exist on split-ring resonators (U-shaped nanowires) forming the unit cell of a metamaterial at infrared frequencies. We compare the expected resonances predicted by the model with full electrodynamic three-dimensional simulations of the U-shaped nanowires for varying geometrical parameters and find a reasonably good agreement. We also consider how far-field dipolar coupling between unit-cells and near-field coupling between the U-shaped nanowire's arms should be taken into account. In addition, we study how the different resonances give rise to negative constitutive parameters for the metamaterial and adjust the geometrical parameters so that the second and third order slow-SPP standing-wave resonances of the U-shaped nanowires result in a double-negative behavior at far-infrared wavelengths without the need of further wires or particles. Finally, we study the effects of stacking N layers of such metamaterial, where each resonant mode splits into N normal mode resonances, showing different electric or magnetic responses. This simple stacked structure maintains the left-handed behavior, exhibiting backward wave propagation.

  11. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers

    NASA Astrophysics Data System (ADS)

    Gorisse, Therese; Dupré, Ludovic; Gentile, Pascal; Martin, Mickael; Zelsmann, Marc; Buttard, Denis

    2013-06-01

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>-oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm-2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors.

  12. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers.

    PubMed

    Gorisse, Therese; Dupré, Ludovic; Gentile, Pascal; Martin, Mickael; Zelsmann, Marc; Buttard, Denis

    2013-06-17

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>-oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm-2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors.

  13. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers

    PubMed Central

    2013-01-01

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702

  14. Influence of metallic and dielectric nanowire arrays on the photoluminescence properties of P3HT thin films.

    PubMed

    Handloser, M; Dunbar, R B; Wisnet, A; Altpeter, P; Scheu, C; Schmidt-Mende, L; Hartschuh, A

    2012-08-03

    The optical properties of organic semiconductor thin films deposited on nanostructured surfaces are investigated using time-resolved two-photon photoluminescence (PL) microscopy. The surfaces consist of parallel aligned metallic or dielectric nanowires forming well-defined arrays on glass substrates. Keeping the nanowire dimensions constant and varying only their spacing from 40 to 400 nm, we study the range of different types of nanowire-semiconductor interactions. For silver nanowires and spacings below 100 nm, the PL intensity and lifetime of P3HT and MDMO-PPV decrease rapidly due to the short-ranged metal-induced quenching that dominates the PL response with respect to a possible plasmonic enhancement of optical transition rates. In the case of P3HT however, we observe an additional longer-ranged reduction of non-radiative losses for both metallic and dielectric nanowires that is not observed for MDMO-PPV. Excitation polarization dependent measurements indicate that this reduction is due to self-assembly of the P3HT polymer chains along the nanowires. In conclusion, nanostructured surfaces, when fabricated across large areas, could be used to control film morphologies and to improve energy transport and collection efficiencies in P3HT-based solar cells.

  15. Conformal TCO-semiconductor-metal nanowire array for narrowband and polarization-insensitive hot-electron photodetection application

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wu, Kai; Ling, Bo; Li, Xiaofeng

    2016-10-01

    The use of hot electrons arising from the nonradiative decay of surface plasmons (SPs) is increasingly attracting interests in photodetection, photovoltaics, photocatalysis, and surface imaging. Nevertheless, the quantum efficiency of the hot-electron devices has to be improved to promote the practical applications. We propose an architecture of conformal TCO/semiconductor/metal nanowire (NW) array for hot-electron photodetection with a tunable optical response across the visible and near-infrared bands. The wavelength, strength, and bandwidth of the plasmonic resonance are tailored by controlling the lattice periodicity and topology. Finite-element simulation demonstrates that the near-perfect, polarization-insensitive, and ultranarrow-band optical absorption can be achieved in the conformal NW system. By the excitation of localized SPs, a strong field concentrates at the top corner of the NWs with a high hot-electrons generation rate. The analytical probability-based electrical calculation further shows that the SPs-enhanced photoresponsivity can be more than five times larger than that of the flat reference.

  16. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting.

    PubMed

    Zhang, Xing; Liu, Yang; Kang, Zhenhui

    2014-03-26

    Plasmonic photoelectrochemical (PEC) water splitting is very promising in the conversion of abundant solar energy into chemical energy. However, the solar-to-hydrogen efficiencies reported so far are still too low for practical use, which can be improved by optimizing the design and synthesis of individual blocks (i. e., the compositions, sizes, shapes of the metal and the coupling semiconductors) and the assembly of these blocks into targeted three-dimensional (3D) structures. Here, we constructed a composite plasmonic metal/semiconductor photoanode by decorating gold nanoparticles (Au NPs) on 3D branched ZnO nanowire arrays (B-ZnO NWs) through a series of simple solution chemical routes. The 3D ordered Au/B-ZnO NWs photoanodes exhibited excellent PEC activities in both ultraviolet and visible region. The improved photoactivities in visible region were demonstrated to be caused by the surface-plasmon-resonance effect of Au NPs. The photoconversion efficiency of Au/B-ZnO NWs photoanode reached 0.52% under simulated sunlight illumination. This is a high value of solar-to-hydrogen efficiencies reported till nowadays for plasmonic PEC water splitting, which was mainly benefit from the extensive metal/semiconductor interfaces for efficient extraction of hot electron from Au NPs and excellent charge-carries collection efficiency of the 3D ordered Au/B-ZnO NWs photoelectrode.

  17. Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor

    NASA Astrophysics Data System (ADS)

    Xie, Yibing; Xia, Chi; Du, Hongxiu; Wang, Wei

    2015-07-01

    The ternary nanocomposite of polyaniline/carbon/titanium nitride (PANI/C/TiN) nanowire array (NWA) is fabricated as electroactive electrode material for flexible supercapacitor application. Firstly, TiN NWA is formed through ammonia nitridation treatment of TiO2 NWA, which is synthesized via seed-assisted hydrothermal reaction. PANI/C/TiN NWA is then formed through sequentially coating carbon and PANI on the surface of TiN NWA. PANI/C/TiN NWA has unique shell/shell/core architecture, including a core layer of TiN NWA with a diameter of 40-160 nm and a length of 1.5 μm, a middle shell layer of carbon with a thickness of about 6.0 nm and an external surface layer of PANI with a thickness of 20-50 nm. PANI/C/TiN NWA provides ion diffusion channel at interspaces between the neighboring nanowires and electron transfer route along independent nanowires. The carbon shell layer is able to protect TiN NWA from electrochemical corrosion during charge/discharge process. PANI/C/TiN NWA displays high specific capacitance of 1093 F g-1 at 1.0 Ag-1, and good cycling stability with a capacity retention of 98% after 2000 cycles, presenting better supercapacitive performance than other integrated nanocomposites of C/PANI/TiN, PANI/TiN and PANI/C/TiO2 NWA. Such a ternary nanocomposite of PANI/C/TiN NWA can be used as an electrode material of flexible supercapacitors.

  18. Strikingly enhanced cooling performance for a micro-cooler using unique Cu nanowire array with high electrical conductivity and fast heat transfer behavior

    NASA Astrophysics Data System (ADS)

    Tan, Ming; Wang, Xiuzhen; Hao, Yanming; Deng, Yuan

    2017-06-01

    It was found that phonons/electrons are less scattered along (1 1 1)-preferred Cu nanowires than in ordinary structure films and that the interface of Cu nanowires electrode and thermoelectric materials are more compatible. Here highly ordered, high-crystal-quality, high-density Cu nanowire array was successfully fabricated by a magnetron sputtering method. The Cu nanowire array was successfully incorporated using mask-assisted deposition technology as electrodes for thin-film thermoelectric coolers, which would greatly improve electrical/thermal transport and enhance performance of micro-coolers. The cooling performance of the micro-cooler with Cu nanowire array electrode is over 200% higher than that of the cooler with ordinary film electrode.

  19. Layer-by-layer assembly synthesis of ZnO/SnO{sub 2} composite nanowire arrays as high-performance anode for lithium-ion batteries

    SciTech Connect

    Wang, Jiazheng; Du, Ning; Zhang, Hui; Yu, Jingxue; Yang, Deren

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer SnO{sub 2} nanoparticles was deposited on ZnO nanoarrays through layer-by-layer assembly. Black-Right-Pointing-Pointer The composite nanowire arrays show improved performance as anode for Li-ion battery. Black-Right-Pointing-Pointer Improved performance was attributed to the combining advantages of each ingredient. -- Abstract: A layer-by-layer approach has been developed to synthesize ZnO/SnO{sub 2} composite nanowire arrays on copper substrate. ZnO nanowire arrays have been first prepared on copper substrate through seed-assisted method, and then, the surface of ZnO nanowires have been modified by the polyelectrolyte. After oxidation-reduction reaction, SnO{sub 2} layer has been deposited onto the surface of ZnO nanowires. The as-synthesized ZnO/SnO{sub 2} composite nanowire arrays have been applied as anode for lithium-ion batteries, which show high reversible capacity and good cycling stability compared to pure ZnO nanowire arrays and SnO{sub 2} nanoparticles. It is believed that the improved performance may be attributed to the high capacity of SnO{sub 2} and the good cycling stability of the array structure on current collector.

  20. Optical properties of Ag nanoparticle arrays: Tuning the plasmon resonance

    NASA Astrophysics Data System (ADS)

    Simpson, J. R.; Drew, H. D.; Guo, S. H.; Phaneuf, R.

    2006-03-01

    Potential applications in the optical spectral range of meta-materials displaying negative permittivity and negative permeability has driven recent interest in nanostructured materials. Electromagnetic radiation incident on metallic nanoparticles induces a collective electronic excitation, or plasmon, which results in a detectable optical resonance. We report polarization-dependent transmission measurements of Ag nanoparticle arrays in the near-infrared to visible frequency range. E-beam lithography patterns arrays of nanoparticles from Ag deposited on transparent ITO-glass substrates. The array grid spacing is several hundred nanometers and the nanoparticle thickness and width are approximately 75,m. We vary the length to provide an in-plane aspect ratio (length to width) from 1,,to 4,,. The resonance shifts to lower (higher) energy with increasing aspect ratio for polarizations parallel to the long (short) axis. This work demonstrates the ability to tune optical resonance energies and widths in nanostructured materials with quality factors Q exceeding 10. Additionally, we discuss the effects of radiation damping, carrier scattering, and inhomogeneous broadening on the resonance widths.