Sample records for nanowires bulk synthesis

  1. Transformation of bulk alloys to oxide nanowires

    NASA Astrophysics Data System (ADS)

    Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2017-01-01

    One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes.

  2. Bulk nucleation and growth of inorganic nanowires and nanotubes

    NASA Astrophysics Data System (ADS)

    Sharma, Shashank

    The nanometer scale materials such as nanowires and nanotubes will be of particular interest as building blocks for designing novel sensors, catalysts, electronic, optical, and optoelectronic devices. However, in order to realize these applications, bulk amounts of nanowires and nanotubes need to be synthesized with precise control over the nanostructure characteristics. In addition, the structure-property relationships for one-dimensional structures are expected to be different than their bulk when their diameters are less than a characteristic Bohr exciton radius. This fundamental curiosity also necessitates bulk synthesis of nanostructures. The current bulk nanowire synthesis methods utilize either nanometer scale porous molds or nanometer scale transition metal clusters to template one-dimensional growth. All these techniques have inherent limitations in terms of control over the nanowire diameter distribution, composition, the growth direction, and the ability to generate abrupt interfaces within individual nanowires. In this dissertation, a new concept for bulk nucleation and growth of one-dimensional nanostructures is proposed and demonstrated for a variety of inorganic material systems. In this technique, multiple nanowires nucleate and grow from pools of low-melting metal melts when exposed to an activated gas phase containing the necessary precursors. This concept, hereby termed Low Melting Metals and Activated Gas phase (LMAG) mediated method, is specifically demonstrated for the synthesis of, (a) silicon nanowires grown using molten gallium and silane precursors; (b) silicon compound nanowires using solution of molten gallium and appropriate gas phase precursors, and (c) metal-oxide nanostructures grown using direct reaction of the respective metal melts and oxygen precursors. Nanowires resulted from the same molten gallium pool at high densities (>1011/cm2) and with narrow diameter distribution. The silicon nanowires synthesized using the LMAG

  3. Transformation of bulk alloys to oxide nanowires.

    PubMed

    Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2017-01-20

    One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes. Copyright © 2017, American Association for the Advancement of Science.

  4. Synthesis of copper oxide nanowires and nanoporous copper via environmentally friendly transformation of bulk copper-calcium alloys.

    PubMed

    Zhang, X; Turcheniuk, K; Zusmann, B; Benson, J; Nelson, S; Luo, S; Magasinski, A; Yushin, G

    2018-05-24

    In this work, we report a novel, one-step, inexpensive and environmentally friendly synthesis of Cu nanostructures by means of chemical de-alloying of bulk Cu-Ca alloys in aqueous solutions. By controlling the synthesis conditions, we tune the morphology of the nanostructured Cu from nanoporous Cu to copper oxide nanowires.

  5. BULK AND TEMPLATE-FREE SYNTHESIS OF SILVER NANOWIRES USING CAFFEINE AT ROOM TEMPERATURE

    EPA Science Inventory

    A simple eco-friendly one-pot method is described to synthesize bulk quantities of nanowires of silver (Ag) using caffeine without the need of reducing agent, surfactants, and/or large amounts of insoluble templates. Chemical reduction of silver salts with caffeine dramatically c...

  6. Boron carbide nanowires: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Guan, Zhe

    Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a

  7. Integrated amplifying nanowire FET for surface and bulk sensing

    NASA Astrophysics Data System (ADS)

    Chui, Chi On; Shin, Kyeong-Sik

    2011-10-01

    For over one decade, numerous research have been performed on field-effect transistor (FET) sensors with a quasi-onedimensional (1D) nanostructure channel demonstrating highly sensitive surface and bulk sensing. The high surface and bulk sensing sensitivity respectively arises from the inherently large surface area-to-volume ratio and tiny channel volume. The generic nanowire FET sensors, however, have limitations such as impractically low output current levels especially near the limit of detection (LOD) that would require downstream remote amplification with an appreciable amount of added noise. We have recently proposed and experimentally demonstrated an innovative amplifying nanowire FET sensor structure that seamlessly integrates therein a sensing nanowire and a nanowire FET amplifier. This novel sensor structure embraces the same geometrical advantage in quasi-1D nanostructure yet it offers unprecedented closeproximity signal amplification with the lowest possible added noise. In this paper, we review the device operating principle and amplification mechanism. We also present the prototype fabrication procedures, and surface and bulk sensing experimental results showing significantly enhanced output current level difference as predicted.

  8. Spark-plasma-sintering magnetic field assisted compaction of Co{sub 80}Ni{sub 20} nanowires for anisotropic ferromagnetic bulk materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouar, Nassima; Schoenstein, Frédéric; Mercone, Silvana

    We developed a two-step process showing the way for sintering anisotropic nanostructured bulk ferromagnetic materials. A new reactor has been optimized allowing the synthesis of several grams per batch of nanopowders via a polyol soft chemistry route. The feasibility of the scale-up has been successfully demonstrated for Co{sub 80}Ni{sub 20} nanowires and a massic yield of ∼97% was obtained. The thus obtained nanowires show an average diameter of ∼6 nm and a length of ∼270 nm. A new bottom-up strategy allowed us to compact the powder into a bulk nanostructured system. We used a spark-plasma-sintering technique under uniaxial compression andmore » low temperature assisted by a permanent magnetic field of 1 T. A macroscopic pellet of partially aligned nanowire arrays has been easily obtained. This showed optimized coercive properties along the direction of the magnetic field applied during compaction (i.e., the nanowires' direction)« less

  9. A new approach of the synthesis of SiO 2 nanowires by using bulk copper foils as catalyst

    DOE PAGES

    Gomez-Martinez, A.; Márquez, F.; Morant, C.

    2016-06-22

    In this paper, a novel procedure for the growth of SiO 2 nanowires (SiO 2NWs) directly from polycrystalline copper foils is reported. The single-step synthesis procedure consists of a thermal treatment at 900°C without the need for additional catalysts. As a result, nanowires with an average diameter of 100 nm are synthesized. A systematic study undertaken at different stages of the SiO 2NWs growth confirmed the generation of nucleation centers on the Cu surface, as well as revealed the existence of an intermediate gaseous SiO species at the synthesis temperature. Lastly, on the basis of these evidences, the vapor-liquid-solid (VLS)more » route has been proposed as the mechanism responsible for the growth.« less

  10. Topological insulator nanowires and nanowire hetero-junctions

    NASA Astrophysics Data System (ADS)

    Deng, Haiming; Zhao, Lukas; Wade, Travis; Konczykowski, Marcin; Krusin-Elbaum, Lia

    2014-03-01

    The existing topological insulator materials (TIs) continue to present a number of challenges to complete understanding of the physics of topological spin-helical Dirac surface conduction channels, owing to a relatively large charge conduction in the bulk. One way to reduce the bulk contribution and to increase surface-to-volume ratio is by nanostructuring. Here we report on the synthesis and characterization of Sb2Te3, Bi2Te3 nanowires and nanotubes and Sb2Te3/Bi2Te3 heterojunctions electrochemically grown in porous anodic aluminum oxide (AAO) membranes with varied (from 50 to 150 nm) pore diameters. Stoichiometric rigid polycrystalline nanowires with controllable cross-sections were obtained using cell voltages in the 30 - 150 mV range. Transport measurements in up to 14 T magnetic fields applied along the nanowires show Aharonov-Bohm (A-B) quantum oscillations with periods corresponding to the nanowire diameters. All nanowires were found to exhibit sharp weak anti-localization (WAL) cusps, a characteristic signature of TIs. In addition to A-B oscillations, new quantization plateaus in magnetoresistance (MR) at low fields (< 0 . 7T) were observed. The analysis of MR as well as I - V characteristics of heterojunctions will be presented. Supported in part by NSF-DMR-1122594, NSF-DMR-1312483-MWN, and DOD-W911NF-13-1-0159.

  11. Bulk to nanostructured vanadium pentaoxide-nanowires (V2O5-NWs) for high energy density supercapacitors

    NASA Astrophysics Data System (ADS)

    Ahirrao, Dinesh J.; Mohanapriya., K.; Jha, Neetu

    2018-04-01

    Vanadium pentoxide (V2O5) has attracted huge attention in field of energy storage including supercapacitor electrodes due to its low cost and layered structure. In this present study, Bulk V2O5 has been prepared by the calcination of ammonium metavanadate followed by the synthesis of V2O5-nanowires (V2O5-NWs) by hydrothermal treatment of bulk V2O5. Obtained V2O5-NWs was further used to fabricate the supercapacitor electrodes. Structure and morphology analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Energy storage capability of as prepared nanowires was investigated by Galvanostatic charge-discharge (GCD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in aqueous electrolyte (1M H2SO4). High specific capacitantance of about 622 F/g was achieved at 1 A/g. Along with high storage by faradic charge storage mechanism; V2O5-NWs electrodes also possess high stability. It could retain 63% of its initial capacitance even after 1000 GCD cycles. Excellent performance of V2O5-NWs promotes its commercial utilization for the development of high performance supercapacitors.

  12. Synthesis and characterization of Au incorporated Alq3 nanowires

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad Bilal; Ahmad, Sultan; Parwaz, M.; Rahul, Khan, Zishan H.

    2018-05-01

    We report the synthesis and characterization of pure and Au incorporated Alq3 nanowires. These nanowires are synthesized using thermal vapor transport method. The luminescence intensity of Au incorporated Alq3 nanowires are recorded to be higher than that of pure Alq3 nanowires, which is found to increase with the increase in Au concentration. Fluorescence quenching is also observed when Au concentration is increased beyond the certain limit.

  13. Thermal conductivity of bulk and nanowire Mg₂Si xSn 1–x alloys from first principles

    DOE PAGES

    Li, Wu; Lindsay, L.; Broido, D. A.; ...

    2012-11-29

    The lattice thermal conductivity (κ) of the thermoelectric materials, Mg₂Si, Mg₂Sn, and their alloys, are calculated for bulk and nanowires, without adjustable parameters. We find good agreement with bulk experimental results. For large nanowire diameters, size effects are stronger for the alloy than for the pure compounds. For example, in 200 nm diameter nanowires κ is lower than its bulk value by 30%, 20%, and 20% for Mg₂Si₀.₆Sn₀.₄, Mg₂Si, and Mg₂Sn, respectively. For nanowires less than 20 nm thick, the relative decrease surpasses 50%, and it becomes larger in the pure compounds than in the alloy. At room temperature, κmore » of Mg₂Si xSn 1–x is less sensitive to nanostructuring size effects than Si xGe 1–x, but more sensitive than PbTe xSe 1–x. This suggests that further improvement of Mg₂Si xSn 1–x as a nontoxic thermoelectric may be possible.« less

  14. III-V nanowire synthesis by use of electrodeposited gold particles.

    PubMed

    Jafari Jam, Reza; Heurlin, Magnus; Jain, Vishal; Kvennefors, Anders; Graczyk, Mariusz; Maximov, Ivan; Borgström, Magnus T; Pettersson, Håkan; Samuelson, Lars

    2015-01-14

    Semiconductor nanowires are great candidates for building novel electronic devices. Considering the cost of fabricating such devices, substrate reuse and gold consumption are the main concerns. Here we report on implementation of high throughput gold electrodeposition for selective deposition of metal seed particles in arrays defined by lithography for nanowire synthesis. By use of this method, a reduction in gold consumption by a factor of at least 300 was achieved, as compared to conventional thermal evaporation for the same pattern. Because this method also facilitates substrate reuse, a significantly reduced cost of the final device is expected. We investigate the morphology, crystallography, and optical properties of InP and GaAs nanowires grown from electrodeposited gold seed particles and compare them with the properties of nanowires grown from seed particles defined by thermal evaporation of gold. We find that nanowire synthesis, as well as the material properties of the grown nanowires are comparable and quite independent of the gold deposition technique. On the basis of these results, electrodeposition is proposed as a key technology for large-scale fabrication of nanowire-based devices.

  15. Performance improvement of miniaturized ZnO nanowire accelerometer fabricated by refresh hydrothermal synthesis

    PubMed Central

    Song, Sangho; Kim, Hyun Chan; Kim, Jung Woong; Kim, Debora

    2017-01-01

    Miniaturized accelerometers are necessary for evaluating the performance of small devices, such as haptics, robotics and simulators. In this study, we fabricated miniaturized accelerometers using well-aligned ZnO nanowires. The layer of ZnO nanowires is used for active piezoelectric layer of the accelerometer, and copper was chosen as a head mass. Seedless and refresh hydrothermal synthesis methods were conducted to grow ZnO nanowires on the copper substrate and the effect of ZnO nanowire length on the accelerometer performance was investigated. The refresh hydrothermal synthesis exhibits longer ZnO nanowires, 12 µm, than the seedless hydrothermal synthesis, 6 µm. Performance of the fabricated accelerometers was verified by comparing with a commercial accelerometer. The sensitivity of the fabricated accelerometer by the refresh hydrothermal synthesis is shown to be 37.7 pA g−1, which is about 30 times larger than the previous result. PMID:28989760

  16. Sub-diffraction Laser Synthesis of Silicon Nanowires

    PubMed Central

    Mitchell, James I.; Zhou, Nan; Nam, Woongsik; Traverso, Luis M.; Xu, Xianfan

    2014-01-01

    We demonstrate synthesis of silicon nanowires of tens of nanometers via laser induced chemical vapor deposition. These nanowires with diameters as small as 60 nm are produced by the interference between incident laser radiation and surface scattered radiation within a diffraction limited spot, which causes spatially confined, periodic heating needed for high resolution chemical vapor deposition. By controlling the intensity and polarization direction of the incident radiation, multiple parallel nanowires can be simultaneously synthesized. The nanowires are produced on a dielectric substrate with controlled diameter, length, orientation, and the possibility of in-situ doping, and therefore are ready for device fabrication. Our method offers rapid one-step fabrication of nano-materials and devices unobtainable with previous CVD methods. PMID:24469704

  17. PREFACE: Synthesis and integration of nanowires

    NASA Astrophysics Data System (ADS)

    Samuelson, L.

    2006-06-01

    The field of semiconductor nanowires has attracted much attention in recent years, from the areas of basic materials science, advanced characterization and technology, as well as from the perspective of the applications of nanowires. Research on large-sized whiskers and wires had already begun in the 1960s with the pioneering work of Wagner, as well as by other researchers. It was, however, in the early 1990s that Kenji Hiruma at Hitachi Central Research Laboratories in Japan first succeeded in developing methods for the growth of nanowires with dimensions on the scale of 10-100 nm, thereby initiating the field of growth and applications of nanowires, with a strong emphasis on epitaxial nucleation of nanowires on a single-crystalline substrate. Starting from the mid-1990s, the field developed very rapidly with the number of papers on the subject growing from ten per year to several thousand papers on the subject published annually today, although with a rather generous definition of the concept of nanowires. With this rapid development we have seen many new and different approaches to the growth of nanowires, technological advances leading to a more well-controlled formation of nanowires, new innovative methods for the characterization of structures, as well as a wealth of approaches towards the use of nanowires in electronics, photonics and sensor applications. This issue contains contributions from many different laboratories, each adding significant detail to the development of the field of research. The contributions cover issues such as basic growth, advanced characterization and technology, and application of nanowires. I would like to acknowledge the shared responsibilities for this special issue of Nanotechnology on the synthesis and integration of nanowires with my co-Editors, S Tong Lee and M Sunkara, as well as the highly professional support from Dr Nina Couzin, Dr Ian Forbes and the Nanotechnology team from the Institute of Physics Publishing.

  18. Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis

    NASA Astrophysics Data System (ADS)

    Zhigalina, O. M.; Doludenko, I. M.; Khmelenin, D. N.; Zagorskiy, D. L.; Bedin, S. A.; Ivanov, I. M.

    2018-05-01

    The structure of layered Cu/Ni nanowires obtained by template synthesis in 100-nm channels of track membranes has been investigated by transmission and scanning electron microscopy. The phase composition and main structural features of individual nanowires are determined. It is shown that nanowires consist of alternating Ni ( Fm3m) and Cu ( Fm3m) layers with grains up to 100 nm in size. It is found that nanowires contain also copper oxide crystallites up to 20 nm in size. The elemental composition of individual layers and their mutual arrangement are determined.

  19. Synthesis and Optical Properties of Silver Bicrystalline Nanowires

    NASA Astrophysics Data System (ADS)

    Sun, Yugang; Xia, Younan

    2002-11-01

    This paper describes a solution-phase route to the large-scale synthesis of silver nanowires with diameters in the range of 30-40 nm, and lengths up to ~50 μm. The initial step of this synthesis involved the formation of Pt nanoparticles by reducing PtCl2 with ethylene glycol (EG) refluxed at ~160 °C. These Pt nanoparticles could serve as seeds for the growth of silver (formed by reducing AgNO3 with EG) through heterogeneous nucleation process because their crystal structures and lattice constants matched closely. In the presence of poly(vinyl pyrrolidone) (PVP), the growth of silver could be led to a highly anisotropic mode with formation of uniform nanowires. UV-visible spectroscopy was used to track the growth process of silver nanowires because different silver nanostructures exhibited distinctive surface plasmon resonance peaks at different frequencies. SEM, TEM, XRD, and electron diffraction were used to characterize these silver nanowires, indicating the formation of a highly pure face-centered cubic phase, as well as uniform diameter and bicrystalline structure. The morphology of these silver nanostructures could be varied from particles and rods to long wires by tuning the reaction conditions, including reaction temperature, and the ratio of PVP to silver nitrate. These silver nanowires could be used as sacrificial templates to synthesize gold nanotubes via a template-engaged replacement reaction. The dispersion of gold nanotubes exhibited a strong extinction peak in the red regime, which was around 760 nm.

  20. Synthesis of monoclinic potassium niobate nanowires that are stable at room temperature.

    PubMed

    Kim, Seungwook; Lee, Ju-Hyuck; Lee, Jaeyeon; Kim, Sang-Woo; Kim, Myung Hwa; Park, Sungnam; Chung, Haegeun; Kim, Yong-Il; Kim, Woong

    2013-01-09

    We report the synthesis of KNbO(3) nanowires (NWs) with a monoclinic phase, a phase not observed in bulk KNbO(3) materials. The monoclinic NWs can be synthesized via a hydrothermal method using metallic Nb as a precursor. The NWs are metastable, and thermal treatment at ∼450 °C changed the monoclinic phase into the orthorhombic phase, which is the most stable phase of KNbO(3) at room temperature. Furthermore, we fabricated energy-harvesting nanogenerators by vertically aligning the NWs on SrTiO(3) substrates. The monoclinic NWs showed significantly better energy conversion characteristics than orthorhombic NWs. Moreover, the frequency-doubling efficiency of the monoclinic NWs was ∼3 times higher than that of orthorhombic NWs. This work may contribute to the synthesis of materials with new crystalline structures and hence improve the properties of the materials for various applications.

  1. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    NASA Astrophysics Data System (ADS)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of <220>. Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  2. Electron Transport Properties of Ge nanowires

    NASA Astrophysics Data System (ADS)

    Hanrath, Tobias; Khondaker, Saiful I.; Yao, Zhen; Korgel, Brian A.

    2003-03-01

    Electron Transport Properties of Ge nanowires Tobias Hanrath*, Saiful I. Khondaker, Zhen Yao, Brian A. Korgel* *Dept. of Chemical Engineering, Dept. of Physics, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology University of Texas at Austin, Austin, Texas 78712-1062 e-mail: korgel@mail.che.utexas.edu Germanium (Ge) nanowires with diameters ranging from 6 to 50 nm and several micrometer in length were grown via a supercritical fluid-liquid-solid synthesis. Parallel electron energy loss spectroscopy (PEELS) was employed to study the band structure and electron density in the Ge nanowires. The observed increase in plasmon peak energy and peak width with decreasing nanowire diameter is attributed to quantum confinement effects. For electrical characterization, Ge nanowires were deposited onto a patterned Si/SiO2 substrate. E-beam lithography was then used to form electrode contacts to individual nanowires. The influence of nanowire diameter, surface chemistry and crystallographic defects on electron transport properties were investigated and the comparison of Ge nanowire conductivity with respect to bulk, intrinsic Ge will be presented.

  3. Synthesis and structural property of Si nanosheets connected to Si nanowires using MnCl2/Si powder source

    NASA Astrophysics Data System (ADS)

    Meng, Erchao; Ueki, Akiko; Meng, Xiang; Suzuki, Hiroaki; Itahara, Hiroshi; Tatsuoka, Hirokazu

    2016-08-01

    Si nanosheets connected to Si nanowires were synthesized using a MnCl2/Si powder source with an Au catalyst. The synthesis method has benefits in terms of avoiding conventionally used air-sensitive SiH4 or SiCl4. The existence of the Si nanosheets connected to the Si<111> nanowires, like sprouts or leaves with petioles, was observed, and the surface of the nanosheets was Si{111}. The nanosheets were grown in the growth direction of <211> perpendicular to that of the Si nanowires. It was evident from these structural features of the nanosheets that the nanosheets were formed by the twin-plane reentrant-edge mechanism. The feature of the observed lattice fringes, which do not appear for Si bulk crystals, of the Si(111) nanosheets obtained by high resolution transmission electron microscopy was clearly explained due to the extra diffraction spots that arose by the reciprocal lattice streaking effect.

  4. Hydrothermal synthesis of vanadium pentoxide nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, J. Santhosh; Thangadurai, P., E-mail: thangaduraip.nst@pondiuni.edu.in, E-mail: thangadurai.p@gmail.com

    2016-05-23

    Nanowires of V{sub 2}O{sub 5} were prepared via hydrothermal route using NH{sub 4}VO{sub 3} as precursor in the presence of sulfuric acid at 120°C for 24 h. This synthesis process is free of any templates and reducing agents. Thermal analysis showed a phase change at 350°C and the samples were annealed at 500°C. The XRD analysis showed the monoclinic phase for the as-prepared and orthorhombic phase of V{sub 2}O{sub 5} when annealed at 500°C. Characteristic Raman peaks also expressed the same structural features. Microstructure analysis by SEM showed the nanowire structure of V{sub 2}O{sub 5} with thickness in the range ofmore » 20–50 nm and length in micrometers. The possible mechanisms of formation of the nanowires were schematically explained based on the layered structure of V{sub 2}O{sub 5}.« less

  5. Silicon nanowire synthesis by a vapor-liquid-solid approach.

    PubMed

    Mao, Aaron; Ng, H T; Nguyen, Pho; McNeil, Melanie; Meyyappan, M

    2005-05-01

    Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.

  6. Silicon nanowire synthesis by a vapor-liquid-solid approach

    NASA Technical Reports Server (NTRS)

    Mao, Aaron; Ng, H. T.; Nguyen, Pho; McNeil, Melanie; Meyyappan, M.

    2005-01-01

    Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.

  7. Method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures

    DOEpatents

    Sunkara, Mahendra Kumar [Louisville, KY; Vaddiraju, Sreeram [Mountain View, CA; Mozetic, Miran [Ljubljan, SI; Cvelbar, Uros [Idrija, SI

    2009-09-22

    A process for the rapid synthesis of metal oxide nanoparticles at low temperatures and methods which facilitate the fabrication of long metal oxide nanowires. The method is based on treatment of metals with oxygen plasma. Using oxygen plasma at low temperatures allows for rapid growth unlike other synthesis methods where nanomaterials take a long time to grow. Density of neutral oxygen atoms in plasma is a controlling factor for the yield of nanowires. The oxygen atom density window differs for different materials. By selecting the optimal oxygen atom density for various materials the yield can be maximized for nanowire synthesis of the metal.

  8. Localized synthesis, assembly and integration of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Englander, Ongi

    Localized synthesis, assembly and integration of one-dimensional silicon nanowires with MEMS structures is demonstrated and characterized in terms of local synthesis processes, electric-field assisted self-assembly, and a proof-of-concept nanoelectromechanical system (HEMS) demonstration. Emphasis is placed on the ease of integration, process control strategies, characterization techniques and the pursuit of integrated devices. A top-down followed by a bottom-up integration approach is utilized. Simple MEMS heater structures are utilized as the microscale platforms for the localized, bottom-up synthesis of one-dimensional nanostructures. Localized heating confines the high temperature region permitting only localized nanostructure synthesis and allowing the surroundings to remain at room temperature thus enabling CMOS compatible post-processing. The vapor-liquid-solid (VLS) process in the presence of a catalytic nanoparticle, a vapor phase reactant, and a specific temperature environment is successfully employed locally. Experimentally, a 5nm thick gold-palladium layer is used as the catalyst while silane is the vapor phase reactant. The current-voltage behavior of the MEMS structures can be correlated to the approximate temperature range required for the VLS reaction to take place. Silicon nanowires averaging 45nm in diameter and up to 29mum in length synthesized at growth rates of up to 1.5mum/min result. By placing two MEMS structures in close proximity, 4--10mum apart, localized silicon nanowire growth can be used to link together MEMS structures to yield a two-terminal, self-assembled micro-to-nano system. Here, one MEMS structure is designated as the hot growth structure while a nearby structure is designated as the cold secondary structure, whose role is to provide a natural stopping point for the VLS reaction. The application of a localized electric-field, 5 to 13V/mum in strength, during the synthesis process, has been shown to improve nanowire

  9. Understanding Self-Catalyzed Epitaxial Growth of III-V Nanowires toward Controlled Synthesis.

    PubMed

    Zi, Yunlong; Suslov, Sergey; Yang, Chen

    2017-02-08

    The self-catalyzed growth of III-V nanowires has drawn plenty of attention due to the potential of integration in current Si-based technologies. The homoparticle-assisted vapor-liquid-solid growth mechanism has been demonstrated for self-catalyzed III-V nanowire growth. However, the understandings of the preferred growth sites of these nanowires are still limited, which obstructs the controlled synthesis and the applications of self-catalyzed nanowire arrays. Here, we experimentally demonstrated that thermally created pits could serve as the preferred sites for self-catalyzed InAs nanowire growth. On that basis, we performed a pregrowth annealing strategy to promote the nanowire density by enhancing the pits formation on the substrate surface and enable the nanowire growth on the substrate that was not capable to facilitate the growth. The discovery of the preferred self-catalyzed nanowire growth sites and the pregrowth annealing strategy have shown great potentials for controlled self-catalyzed III-V nanowire array growth with preferred locations and density.

  10. Bulk and surface states carried supercurrent in ballistic Nb-Dirac semimetal Cd3As2 nanowire-Nb junctions

    NASA Astrophysics Data System (ADS)

    Li, Cai-Zhen; Li, Chuan; Wang, Li-Xian; Wang, Shuo; Liao, Zhi-Min; Brinkman, Alexander; Yu, Da-Peng

    2018-03-01

    A three-dimensional Dirac semimetal has bulk Dirac cones in all three momentum directions and Fermi arc like surface states, and can be converted into a Weyl semimetal by breaking time-reversal symmetry. However, the highly conductive bulk state usually hides the electronic transport from the surface state in Dirac semimetal. Here, we demonstrate the supercurrent carried by bulk and surface states in Nb -Cd3As2 nanowire-Nb short and long junctions, respectively. For the ˜1 -μ m -long junction, the Fabry-Pérot interferences-induced oscillations of the critical supercurrent are observed, suggesting the ballistic transport of the surface states carried supercurrent, where the bulk states are decoherent and the topologically protected surface states still stay coherent. Moreover, a superconducting dome is observed in the long junction, which is attributed to the enhanced dephasing from the interaction between surface and bulk states as tuning gate voltage to increase the carrier density. The superconductivity of topological semimetal nanowire is promising for braiding of Majorana fermions toward topological quantum computing.

  11. Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance

    DOE PAGES

    Alia, Shaun M.; Pivovar, Bryan S.

    2018-01-01

    Platinum-nickel (Pt-Ni) nanowires were developed as fuel cell electrocatalysts, and were optimized for the performance and durability in the oxygen reduction reaction. Spontaneous galvanic displacement was used to deposit Pt layers onto Ni nanowire substrates. The synthesis approach produced catalysts with high specific activities and high Pt surface areas. Hydrogen annealing improved Pt and Ni mixing and specific activity. Acid leaching was used to preferentially remove Ni near the nanowire surface, and oxygen annealing was used to stabilize near-surface Ni, improving durability and minimizing Ni dissolution. These protocols detail the optimization of each post-synthesis processing step, including hydrogen annealing tomore » 250 degrees C, exposure to 0.1 M nitric acid, and oxygen annealing to 175 degrees C. Through these steps, Pt-Ni nanowires produced increased activities more than an order of magnitude than Pt nanoparticles, while offering significant durability improvements. The presented protocols are based on Pt-Ni systems in the development of fuel cell catalysts. Furthermore, these techniques have also been used for a variety of metal combinations, and can be applied to develop catalysts for a number of electrochemical processes.« less

  12. Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance.

    PubMed

    Alia, Shaun M; Pivovar, Bryan S

    2018-04-27

    Platinum-nickel (Pt-Ni) nanowires were developed as fuel cell electrocatalysts, and were optimized for the performance and durability in the oxygen reduction reaction. Spontaneous galvanic displacement was used to deposit Pt layers onto Ni nanowire substrates. The synthesis approach produced catalysts with high specific activities and high Pt surface areas. Hydrogen annealing improved Pt and Ni mixing and specific activity. Acid leaching was used to preferentially remove Ni near the nanowire surface, and oxygen annealing was used to stabilize near-surface Ni, improving durability and minimizing Ni dissolution. These protocols detail the optimization of each post-synthesis processing step, including hydrogen annealing to 250 °C, exposure to 0.1 M nitric acid, and oxygen annealing to 175 °C. Through these steps, Pt-Ni nanowires produced increased activities more than an order of magnitude than Pt nanoparticles, while offering significant durability improvements. The presented protocols are based on Pt-Ni systems in the development of fuel cell catalysts. These techniques have also been used for a variety of metal combinations, and can be applied to develop catalysts for a number of electrochemical processes.

  13. Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alia, Shaun M.; Pivovar, Bryan S.

    Platinum-nickel (Pt-Ni) nanowires were developed as fuel cell electrocatalysts, and were optimized for the performance and durability in the oxygen reduction reaction. Spontaneous galvanic displacement was used to deposit Pt layers onto Ni nanowire substrates. The synthesis approach produced catalysts with high specific activities and high Pt surface areas. Hydrogen annealing improved Pt and Ni mixing and specific activity. Acid leaching was used to preferentially remove Ni near the nanowire surface, and oxygen annealing was used to stabilize near-surface Ni, improving durability and minimizing Ni dissolution. These protocols detail the optimization of each post-synthesis processing step, including hydrogen annealing tomore » 250 degrees C, exposure to 0.1 M nitric acid, and oxygen annealing to 175 degrees C. Through these steps, Pt-Ni nanowires produced increased activities more than an order of magnitude than Pt nanoparticles, while offering significant durability improvements. The presented protocols are based on Pt-Ni systems in the development of fuel cell catalysts. Furthermore, these techniques have also been used for a variety of metal combinations, and can be applied to develop catalysts for a number of electrochemical processes.« less

  14. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires

    NASA Astrophysics Data System (ADS)

    Lu, Qipeng; Wang, An-Liang; Gong, Yue; Hao, Wei; Cheng, Hongfei; Chen, Junze; Li, Bing; Yang, Nailiang; Niu, Wenxin; Wang, Jie; Yu, Yifu; Zhang, Xiao; Chen, Ye; Fan, Zhanxi; Wu, Xue-Jun; Chen, Jinping; Luo, Jun; Li, Shuzhou; Gu, Lin; Zhang, Hua

    2018-03-01

    Crystal-phase engineering offers opportunities for the rational design and synthesis of noble metal nanomaterials with unusual crystal phases that normally do not exist in bulk materials. However, it remains a challenge to use these materials as seeds to construct heterometallic nanostructures with desired crystal phases and morphologies for promising applications such as catalysis. Here, we report a strategy for the synthesis of binary and ternary hybrid noble metal nanostructures. Our synthesized crystal-phase heterostructured 4H/fcc Au nanowires enable the epitaxial growth of Ru nanorods on the 4H phase and fcc-twin boundary in Au nanowires, resulting in hybrid Au-Ru nanowires. Moreover, the method can be extended to the epitaxial growth of Rh, Ru-Rh and Ru-Pt nanorods on the 4H/fcc Au nanowires to form unique hybrid nanowires. Importantly, the Au-Ru hybrid nanowires with tunable compositions exhibit excellent electrocatalytic performance towards the hydrogen evolution reaction in alkaline media.

  15. Electrochemical Deposition of Lanthanum Telluride Thin Films and Nanowires

    NASA Astrophysics Data System (ADS)

    Chi, Su (Ike); Farias, Stephen; Cammarata, Robert

    2013-03-01

    Tellurium alloys are characterized by their high performance thermoelectric properties and recent research has shown nanostructured tellurium alloys display even greater performance than bulk equivalents. Increased thermoelectric efficiency of nanostructured materials have led to significant interests in developing thin film and nanowire structures. Here, we report on the first successful electrodeposition of lanthanum telluride thin films and nanowires. The electrodeposition of lanthanum telluride thin films is performed in ionic liquids at room temperature. The synthesis of nanowires involves electrodepositing lanthanum telluride arrays into anodic aluminum oxide (AAO) nanoporous membranes. These novel procedures can serve as an alternative means of simple, inexpensive and laboratory-environment friendly methods to synthesize nanostructured thermoelectric materials. The thermoelectric properties of thin films and nanowires will be presented to compare to current state-of-the-art thermoelectric materials. The morphologies and chemical compositions of the deposited films and nanowires are characterized using SEM and EDAX analysis.

  16. Ordered arrays of Ni magnetic nanowires: Synthesis and investigation

    NASA Astrophysics Data System (ADS)

    Napolskii, K. S.; Eliseev, A. A.; Yesin, N. V.; Lukashin, A. V.; Tretyakov, Yu. D.; Grigorieva, N. A.; Grigoriev, S. V.; Eckerlebe, H.

    2007-03-01

    The present study is focused on the synthesis and investigation of anodic aluminum oxide (AAO) films and magnetic nanocomposites Ni/AAO obtained by Ni electrodeposition into porous matrix. AAO membranes and magnetic nanocomposites were investigated by HRSEM, EDX microanalysis, XRD, nitrogen capillary adsorption method, SQUID magnetometry, and polarized small-angle neutron scattering (SANS). The influence of synthesis conditions and form factor effect on the magnetic properties of nanowire arrays is reported.

  17. Synthesis and transport characterization of electrochemically deposited CdTe nanowires

    NASA Astrophysics Data System (ADS)

    Kaur, Jaskiran; Kaur, Harmanmeet; Singh, R. C.

    2018-04-01

    This paper reports the synthesis and characterization of CdTe nanowires. A thin polymeric films were irradiated with 80MeV Ag ions at a fluence of 8E7 ions/cm2, followed by UV irradiation and chemically etching in aqueous NaOH. Nanosizes go-through pores so formed were filled using a specially designed cell via electrodeposition. Nanowires so formed were further studied using SEM, I-V, UV and XRD analysis. SEM images show very smooth and uniform CdTe nanowires freely standing on the substrate. The in-situ I-V characteristics of nano-/micro structures was carried out at room temperature by leaving the structures embedded in the insulating template membrane itself.

  18. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-01-01

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms. PMID:28348350

  19. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-09-09

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  20. Atomistics of vapour–liquid–solid nanowire growth

    PubMed Central

    Wang, Hailong; Zepeda-Ruiz, Luis A.; Gilmer, George H.; Upmanyu, Moneesh

    2013-01-01

    Vapour–liquid–solid route and its variants are routinely used for scalable synthesis of semiconducting nanowires, yet the fundamental growth processes remain unknown. Here we employ atomic-scale computations based on model potentials to study the stability and growth of gold-catalysed silicon nanowires. Equilibrium studies uncover segregation at the solid-like surface of the catalyst particle, a liquid AuSi droplet, and a silicon-rich droplet–nanowire interface enveloped by heterogeneous truncating facets. Supersaturation of the droplets leads to rapid one-dimensional growth on the truncating facets and much slower nucleation-controlled two-dimensional growth on the main facet. Surface diffusion is suppressed and the excess Si flux occurs through the droplet bulk which, together with the Si-rich interface and contact line, lowers the nucleation barrier on the main facet. The ensuing step flow is modified by Au diffusion away from the step edges. Our study highlights key interfacial characteristics for morphological and compositional control of semiconducting nanowire arrays. PMID:23752586

  1. Growth of metal oxide nanowires from supercooled liquid nanodroplets.

    PubMed

    Kim, Myung Hwa; Lee, Byeongdu; Lee, Sungsik; Larson, Christopher; Baik, Jeong Min; Yavuz, Cafer T; Seifert, Sönke; Vajda, Stefan; Winans, Randall E; Moskovits, Martin; Stucky, Galen D; Wodtke, Alec M

    2009-12-01

    Nanometer-sized liquid droplets formed at temperatures below the bulk melting point become supercooled as they grow through Ostwald ripening or coalescence and can be exploited to grow nanowires without any catalyst. We used this simple approach to synthesize a number of highly crystalline metal oxide nanowires in a chemical or physical vapor deposition apparatus. Examples of nanowires made in this way include VO(2), V(2)O(5), RuO(2), MoO(2), MoO(3), and Fe(3)O(4), some of which have not been previously reported. Direct evidence of this new mechanism of nanowire growth is found from in situ 2-dimensional GISAXS (grazing incidence small angle X-ray scattering) measurements of VO(2) nanowire growth, which provides quantitative information on the shapes and sizes of growing nanowires as well as direct evidence of the presence of supercooled liquid droplets. We observe dramatic changes in nanowire growth by varying the choice of substrate, reflecting the influence of wetting forces on the supercooled nanodroplet shape and mobility as well as substrate-nanowire lattice matching on the definition of nanowire orientation. Surfaces with defects can also be used to pattern the growth of the nanowires. The simplicity of this synthesis concept suggests it may be rather general in its application.

  2. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    PubMed

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  3. Extreme Carrier Depletion and Superlinear Photoconductivity in Ultrathin Parallel-Aligned ZnO Nanowire Array Photodetectors Fabricated by Infiltration Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Chang-Yong; Stein, Aaron

    Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less

  4. Extreme Carrier Depletion and Superlinear Photoconductivity in Ultrathin Parallel-Aligned ZnO Nanowire Array Photodetectors Fabricated by Infiltration Synthesis

    DOE PAGES

    Nam, Chang-Yong; Stein, Aaron

    2017-11-15

    Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less

  5. Multiphase separation of copper nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Fang; Lan, Pui Ching; Olson, Tammy

    Here, this communication reports a new method to purify copper nanowires with nearly 100% yield from undesired copper nanoparticle side-products formed during batch processes of copper nanowire synthesis. Also, this simple separation method can yield large quantities of long, uniform, high-purity copper nanowires to meet the requirements of nanoelectronics applications as well as provide an avenue for purifying copper nanowires in the industrial scale synthesis of copper nanowires, a key step for commercialization and application of nanowires.

  6. Multiphase separation of copper nanowires

    DOE PAGES

    Qian, Fang; Lan, Pui Ching; Olson, Tammy; ...

    2016-09-01

    Here, this communication reports a new method to purify copper nanowires with nearly 100% yield from undesired copper nanoparticle side-products formed during batch processes of copper nanowire synthesis. Also, this simple separation method can yield large quantities of long, uniform, high-purity copper nanowires to meet the requirements of nanoelectronics applications as well as provide an avenue for purifying copper nanowires in the industrial scale synthesis of copper nanowires, a key step for commercialization and application of nanowires.

  7. Green urea synthesis catalyzed by hematite nanowires in magnetic field

    NASA Astrophysics Data System (ADS)

    Yahya, Noorhana; Qureshi, Saima; Rehman, Zia ur; Alqasem, Bilal; Fai Kait, Chong

    2017-04-01

    The catalytic activity of hematite (α-Fe2O3) nanowires under the influence of magnetic field on urea synthesis is considered green. The adsorption and subsequent dissociative reaction of hydrogen, nitrogen and carbon dioxide gases on the α-Fe2O3 (111) nanowires were investigated using the density functional theory (DFT) method. The average adsorption energy is -4.12 kcal/mole at different sites. The adsorption of gases resulted in a difference in density and net spin of electrons from 68 to 120 and 0-21 respectively. In addition, it induces magnetic moment value of 36.33 μB, which confirms the enhanced magnetic behaviour of hematite. α-Fe2O3 nanowires (NWs) synthesized by heating iron wire in a box furnace at (750-800) °C and as synthesized α-Fe2O3 nanoparticles (NPs) were received to use as a catalyst in the magnetic reaction of urea synthesis. X-ray Diffractometer (XRD) confirms the peaks of rhombohedral structure of α-Fe2O3 and Raman spectrum analyses confirms the α-Fe2O3 peaks at 410 cm-1, 500 cm-1 and 616 cm-1. The needle-like shape of hematite nanowires with length ranging from 16-25) μm and diameter from 74 to 145 nm confirmed by Field emission scanning electron microscopy (FESEM). The magnetic properties of the nanowires exhibited different levels of saturation magnetization, for α-Fe2O3 perpendicularly aligned direction (13.18 emu/g) and random direction (10.73 emu/g). Urea synthesis was done under magnetic field ranges from 0.0 to 2.5 T. The activation energy of α-Fe2O3 NWs for urea production is lower than NPs in the range of 0-1 T, whereas it is reversed for higher magnetic induction values. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of urea at the peaks of 1690-1600 cm-1. This green urea employing magnetically induced method could be a contender to the Haber-Bosch process currently used by the current industry which utilizes high temperature and high pressure.

  8. Tuning the gas sensing performance of single PEDOT nanowire devices.

    PubMed

    Hangarter, Carlos M; Hernandez, Sandra C; He, Xueing; Chartuprayoon, Nicha; Choa, Yong Ho; Myung, Nosang V

    2011-06-07

    This paper reports the synthesis and dopant dependent electrical and sensing properties of single poly(ethylenedioxythiophene) (PEDOT) nanowire sensors. Dopant type (i.e. polystyrenesulfonate (PSS(-)) and perchlorate (ClO(4)(-))) and solvent (i.e. acetonitrile and 1 : 1 water-acetonitrile mixture) were adjusted to change the conjugation length and hydrophilicity of nanowires which resulted in change of the electrical properties and sensing performance. Temperature dependent coefficient of resistance (TCR) indicated that the electrical properties are greatly dependent on dopants and electrolyte where greater disorder was found in PSS(-) doped PEDOT nanowires compared to ClO(4)(-) doped nanowires. Upon exposure to different analytes including water vapor and volatile organic compounds, these nanowire devices displayed substantially different sensing characteristics. ClO(4)(-) doped PEDOT nanowires from an acetonitrile bath show superior sensing responses toward less electronegative analytes and followed a power law dependence on the analyte concentration at high partial pressures. These tunable sensing properties were attributed to variation in the conjugation lengths, dopant type and concentration of the wires which may be attributed to two distinct sensing mechanisms: swelling within the bulk of the nanowire and work function modulation of Schottky barrier junction between nanowire and electrodes.

  9. Synthesis of InSb Nanowire Architectures - Building Blocks for Majorana Devices

    NASA Astrophysics Data System (ADS)

    Car, Diana

    Breakthroughs in material development are playing a major role in the emerging field of topological quantum computation with Majorana Zero Modes (MZMs). Due to the strong spin-orbit interaction and large Landé g-factor InSb nanowires are one of the most promising one dimensional material systems in which to detect MZMs. The next generation of Majorana experiments should move beyond zero-mode detection and demonstrate the non-Abelian nature of MZMs by braiding. To achieve this goal advanced material platforms are needed: low-disorder, single-crystalline, planar networks of nanowires with high spin-orbit energy. In this talk I will discuss the formation and electronic properties of InSb nanowire networks. The bottom-up synthesis method we have developed is generic and can be employed to synthesize interconnected nanowire architectures of group III-V, II-VI and IV materials as long as they grow along a <111>direction.

  10. Towards large-scale plasma-assisted synthesis of nanowires

    NASA Astrophysics Data System (ADS)

    Cvelbar, U.

    2011-05-01

    Large quantities of nanomaterials, e.g. nanowires (NWs), are needed to overcome the high market price of nanomaterials and make nanotechnology widely available for general public use and applications to numerous devices. Therefore, there is an enormous need for new methods or routes for synthesis of those nanostructures. Here plasma technologies for synthesis of NWs, nanotubes, nanoparticles or other nanostructures might play a key role in the near future. This paper presents a three-dimensional problem of large-scale synthesis connected with the time, quantity and quality of nanostructures. Herein, four different plasma methods for NW synthesis are presented in contrast to other methods, e.g. thermal processes, chemical vapour deposition or wet chemical processes. The pros and cons are discussed in detail for the case of two metal oxides: iron oxide and zinc oxide NWs, which are important for many applications.

  11. Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance

    PubMed Central

    2012-01-01

    In this work, we report a direct synthesis of vertically aligned ZnO nanowires on fluorine-doped tin oxide-coated substrates using the chemical vapor deposition (CVD) method. ZnO nanowires with a length of more than 30 μm were synthesized, and dye-sensitized solar cells (DSSCs) based on the as-grown nanowires were fabricated, which showed improvement of the device performance compared to those fabricated using transferred ZnO nanowires. Dependence of the cell performance on nanowire length and annealing temperature was also examined. This synthesis method provided a straightforward, one-step CVD process to grow relatively long ZnO nanowires and avoided subsequent nanowire transfer process, which simplified DSSC fabrication and improved cell performance. PMID:22673046

  12. Synthesis of Ga 2O 3 chains with closely spaced knots connected by nanowires

    NASA Astrophysics Data System (ADS)

    Dai, L.; You, L. P.; Duan, X. F.; Lian, W. C.; Qin, G. G.

    2004-07-01

    Chains of closely spaced metal or semiconductor particles have potential applications in optoelectronics and single electron devices. We report, for the first time, the synthesis of Ga 2O 3 chains with closely spaced knots connected by nanowires using the thermal evaporation method with a specially designed quartz boat. The Ga 2O 3 chains grew only on the Si substrates where Au catalyst or Ga droplets were coated. The average diameter of the knots is about 450 nm and that of the nanowires is about 50 nm. The selected area electron diffraction of either a knot or a connecting nanowire includes two sets of overlapped single crystal electron diffraction patterns which belong to the [1 0 2] and [1 0 1¯] crystal zone axes of the monoclinic β-Ga 2O 3 phase, respectively. The knot and its neighbor nanowire have the common ( 2¯ 0 1) growth planes at their interface. A mechanism model for the Ga 2O 3 chains synthesis based on the vapor-liquid-solid mechanism is discussed.

  13. Selective growth of Ge nanowires by low-temperature thermal evaporation.

    PubMed

    Sutter, Eli; Ozturk, Birol; Sutter, Peter

    2008-10-29

    High-quality single-crystalline Ge nanowires with electrical properties comparable to those of bulk Ge have been synthesized by vapor-liquid-solid growth using Au growth seeds on SiO(2)/Si(100) substrates and evaporation from solid Ge powder in a low-temperature process at crucible temperatures down to 700 °C. High nanowire growth rates at these low source temperatures have been identified as being due to sublimation of GeO from substantial amounts of GeO(2) on the powder. The Ge nanowire synthesis from GeO is highly selective at our substrate temperatures (420-500 °C), i.e., occurs only on Au vapor-liquid-solid growth seeds. For growth of nanowires of 10-20 µm length on Au particles, an upper bound of 0.5 nm Ge deposition was determined in areas of bare SiO(2)/Si substrate without Au nanoparticles.

  14. Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process.

    PubMed

    Cui, Xianjin; Yu, Shu-Hong; Li, Lingling; Biao, Liu; Li, Huabin; Mo, Maosong; Liu, Xian-Ming

    2004-01-05

    Selective synthesis of uniform single crystalline silver molybdate/tungstate nanorods/nanowires in large scale can be easily realized by a facile hydrothermal recrystallization technique. The synthesis is strongly dependent on the pH conditions, temperature, and reaction time. The phase transformation was examined in details. Pure Ag(2)MoO(4) and Ag(6)Mo(10)O(33) can be easily obtained under neutral condition and pH 2, respectively, whereas other mixed phases of Mo(17)O(47), Ag(2)Mo(2)O(7,) Ag(6)Mo(10)O(33) were observed under different pH conditions. Ag(6)Mo(10)O(33) nanowires with uniform diameter 50-60 nm and length up to several hundred micrometers were synthesized in large scale for the first time at 140 degrees C. The melting point of Ag(6)Mo(10)O(33) nanowires were found to be about 238 degrees C. Similarly, Ag(2)WO(4), and Ag(2)W(2)O(7) nanorods/nanowires can be selectively synthesized by controlling pH value. The results demonstrated that this route could be a potential mild way to selectively synthesize various molybdate nanowires with various phases in large scale.

  15. Pentatwinned Cu Nanowires with Ultrathin Diameters below 20 nm and Their Use as Templates for the Synthesis of Au-Based Nanotubes

    DOE PAGES

    Luo, Ming; Zhou, Ming; Rosa da Silva, Robson; ...

    2017-01-24

    Here, we report a one-pot method for the facile synthesis of Cu nanowires in high purity, together with ultrathin diameters well below 20 nm. Selected area electron diffraction and high-resolution transmission electron microscopy studies confirm that the Cu nanowires are grown along the <110> direction to give pentatwinned, one-dimensional nanostructures, enclosed by five {100} facets on the side surface. A systematic study further indicates that it is critical to conduct the synthesis under an argon atmosphere in order to improve the purity and uniformity of the nanowires while keeping their diameters thinner than 20 nm. Finally, we demonstrate the usemore » of these nanowires as sacrificial templates for the synthesis of Au-based nanotubes through a galvanic replacement process.« less

  16. Pentatwinned Cu Nanowires with Ultrathin Diameters below 20 nm and Their Use as Templates for the Synthesis of Au-Based Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Ming; Zhou, Ming; Rosa da Silva, Robson

    Here, we report a one-pot method for the facile synthesis of Cu nanowires in high purity, together with ultrathin diameters well below 20 nm. Selected area electron diffraction and high-resolution transmission electron microscopy studies confirm that the Cu nanowires are grown along the <110> direction to give pentatwinned, one-dimensional nanostructures, enclosed by five {100} facets on the side surface. A systematic study further indicates that it is critical to conduct the synthesis under an argon atmosphere in order to improve the purity and uniformity of the nanowires while keeping their diameters thinner than 20 nm. Finally, we demonstrate the usemore » of these nanowires as sacrificial templates for the synthesis of Au-based nanotubes through a galvanic replacement process.« less

  17. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.

    2015-06-01

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growthmore » in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.« less

  18. Fabrication of a Silicon Nanowire on a Bulk Substrate by Use of a Plasma Etching and Total Ionizing Dose Effects on a Gate-All-Around Field-Effect Transistor

    NASA Technical Reports Server (NTRS)

    Moon, Dong-Il; Han, Jin-Woo; Meyyappan, Meyya

    2016-01-01

    The gate all around transistor is investigated through experiment. The suspended silicon nanowire for the next generation is fabricated on bulk substrate by plasma etching method. The scallop pattern generated by Bosch process is utilized to form a floating silicon nanowire. By combining anisotropic and istropic silicon etch process, the shape of nanowire is accurately controlled. From the suspended nanowire, the gate all around transistor is demonstrated. As the silicon nanowire is fully surrounded by the gate, the device shows excellent electrostatic characteristics.

  19. NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Olson, PhD

    2004-07-21

    This project involved the synthesis of nanowire ã-MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing ã-MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ionmore » batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the ã-MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the ã-MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into ã-MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the ã-MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for

  20. Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers.

    PubMed

    Xing, Jun; Liu, Xin Feng; Zhang, Qing; Ha, Son Tung; Yuan, Yan Wen; Shen, Chao; Sum, Tze Chien; Xiong, Qihua

    2015-07-08

    Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic-inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbIxCl3(-x) perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm(2), and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic-inorganic perovskite nanowires.

  1. Synthesis of magnetic microtubes decorated with nanowires and cells

    NASA Astrophysics Data System (ADS)

    Pomar, C. Diaz; Martinho, H.; Ferreira, F. F.; Goia, T. S.; Rodas, A. C. D.; Santos, S. F.; Souza, J. A.

    2018-04-01

    Antiferromagnetic and ferrimagnetic microtubes decorated with nanowires have been obtained during thermal oxidation process, which was assisted by in situ electrical resistivity measurements. The synthesis route including heat treatment and electrical current along with growth mechanism are presented. This simple method and the ability to tune in the magnetic moment of the obtained microtubes going from a nonmagnetic-like to a large magnetization saturation open an avenue for interesting applications. In vitro experiments involving adherence, migration, and proliferation of fibroblasts cell culture on the surface of the microtubes indicated the absence of cytotoxicity for this material. We have also calculated both torque and driving magnetic force for these microtubes with nanowires and cells as a function of external magnetic field gradient which were found to be robust opening the possibility for magnetic bio micro-robot device fabrication and application in biotechnology.

  2. Controlled Synthesis of Nanomaterials at the Undergraduate Laboratory: Cu(OH)[subscript 2] and CuO Nanowires

    ERIC Educational Resources Information Center

    da Silva, Anderson G. M.; Rodrigues, Thenner S.; Parussulo, Andre´ L. A.; Candido, Eduardo G.; Geonmonond, Rafael S.; Brito, Hermi F.; Toma, Henrique E.; Camargo, Pedro H. C.

    2017-01-01

    Undergraduate-level laboratory experiments that involve the synthesis of nanomaterials with well-defined/controlled shapes are very attractive under the umbrella of nanotechnology education. Herein we describe a low-cost and facile experiment for the synthesis of Cu(OH)[subscript 2] and CuO nanowires comprising three main parts: (i) synthesis of…

  3. 25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications.

    PubMed

    Dasgupta, Neil P; Sun, Jianwei; Liu, Chong; Brittman, Sarah; Andrews, Sean C; Lim, Jongwoo; Gao, Hanwei; Yan, Ruoxue; Yang, Peidong

    2014-04-09

    Semiconductor nanowires (NWs) have been studied extensively for over two decades for their novel electronic, photonic, thermal, electrochemical and mechanical properties. This comprehensive review article summarizes major advances in the synthesis, characterization, and application of these materials in the past decade. Developments in the understanding of the fundamental principles of "bottom-up" growth mechanisms are presented, with an emphasis on rational control of the morphology, stoichiometry, and crystal structure of the materials. This is followed by a discussion of the application of nanowires in i) electronic, ii) sensor, iii) photonic, iv) thermoelectric, v) photovoltaic, vi) photoelectrochemical, vii) battery, viii) mechanical, and ix) biological applications. Throughout the discussion, a detailed explanation of the unique properties associated with the one-dimensional nanowire geometry will be presented, and the benefits of these properties for the various applications will be highlighted. The review concludes with a brief perspective on future research directions, and remaining barriers which must be overcome for the successful commercial application of these technologies. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Investigation of trapping levels in p-type Zn3P2 nanowires using transport and optical properties

    NASA Astrophysics Data System (ADS)

    Lombardi, G. A.; de Oliveira, F. M.; Teodoro, M. D.; Chiquito, A. J.

    2018-05-01

    Here, we report the synthesis and structural characterization of high-quality Zn3P2 nanowires via chemical vapour deposition. Structural and morphological characterization studies revealed a reliable growth process of long, uniform, and single-crystalline nanowires. From temperature dependent transport and photoluminescence measurements, we have observed the contribution of different acceptor levels (15, 50, 70, 90, and 197 meV) to the conduction mechanisms. These levels were associated with zinc vacancies and phosphorous interstitial atoms which assigned a p-type character to this semiconductor. From time resolved photoluminescence experiments, a 91 ps lifetime decay was found. Such a fast lifetime decay is in agreement with the exciton transition along the bulk emission from high quality crystalline nanowires.

  5. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Leandro Londoño-Calderón, César; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-01

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  6. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires.

    PubMed

    Londoño-Calderón, César Leandro; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-16

    A straightforward method for the synthesis of CoFe 2.7 /CoFe 2 O 4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe 2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe 2 O 4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe 2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  7. Nanowire Photovoltaic Devices

    NASA Technical Reports Server (NTRS)

    Forbes, David

    2015-01-01

    Firefly Technologies, in collaboration with the Rochester Institute of Technology and the University of Wisconsin-Madison, developed synthesis methods for highly strained nanowires. Two synthesis routes resulted in successful nanowire epitaxy: direct nucleation and growth on the substrate and a novel selective-epitaxy route based on nanolithography using diblock copolymers. The indium-arsenide (InAs) nanowires are implemented in situ within the epitaxy environment-a significant innovation relative to conventional semiconductor nanowire generation using ex situ gold nanoparticles. The introduction of these nanoscale features may enable an intermediate band solar cell while simultaneously increasing the effective absorption volume that can otherwise limit short-circuit current generated by thin quantized layers. The use of nanowires for photovoltaics decouples the absorption process from the current extraction process by virtue of the high aspect ratio. While no functional solar cells resulted from this effort, considerable fundamental understanding of the nanowire epitaxy kinetics and nanopatterning process was developed. This approach could, in principle, be an enabling technology for heterointegration of dissimilar materials. The technology also is applicable to virtual substrates. Incorporating nanowires onto a recrystallized germanium/metal foil substrate would potentially solve the problem of grain boundary shunting of generated carriers by restricting the cross-sectional area of the nanowire (tens of nanometers in diameter) to sizes smaller than the recrystallized grains (0.5 to 1 micron(exp 2).

  8. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes.

    PubMed

    Xu, Lin; Jiang, Zhe; Qing, Quan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M

    2013-02-13

    Functional kinked nanowires (KNWs) represent a new class of nanowire building blocks, in which functional devices, for example, nanoscale field-effect transistors (nanoFETs), are encoded in geometrically controlled nanowire superstructures during synthesis. The bottom-up control of both structure and function of KNWs enables construction of spatially isolated point-like nanoelectronic probes that are especially useful for monitoring biological systems where finely tuned feature size and structure are highly desired. Here we present three new types of functional KNWs including (1) the zero-degree KNW structures with two parallel heavily doped arms of U-shaped structures with a nanoFET at the tip of the "U", (2) series multiplexed functional KNW integrating multi-nanoFETs along the arm and at the tips of V-shaped structures, and (3) parallel multiplexed KNWs integrating nanoFETs at the two tips of W-shaped structures. First, U-shaped KNWs were synthesized with separations as small as 650 nm between the parallel arms and used to fabricate three-dimensional nanoFET probes at least 3 times smaller than previous V-shaped designs. In addition, multiple nanoFETs were encoded during synthesis in one of the arms/tip of V-shaped and distinct arms/tips of W-shaped KNWs. These new multiplexed KNW structures were structurally verified by optical and electron microscopy of dopant-selective etched samples and electrically characterized using scanning gate microscopy and transport measurements. The facile design and bottom-up synthesis of these diverse functional KNWs provides a growing toolbox of building blocks for fabricating highly compact and multiplexed three-dimensional nanoprobes for applications in life sciences, including intracellular and deep tissue/cell recordings.

  9. Hard template synthesis of metal nanowires

    NASA Astrophysics Data System (ADS)

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-11-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  10. Hard template synthesis of metal nanowires.

    PubMed

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  11. Solution synthesis of lead seeded germanium nanowires and branched nanowire networks and their application as Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Flynn, Grace; Palaniappan, Kumaranand; Sheehan, Martin; Kennedy, Tadhg; Ryan, Kevin M.

    2017-06-01

    Herein, we report the high density growth of lead seeded germanium nanowires (NWs) and their development into branched nanowire networks suitable for application as lithium ion battery anodes. The synthesis of the NWs from lead seeds occurs simultaneously in both the liquid zone (solution-liquid-solid (SLS) growth) and solvent rich vapor zone (vapor-liquid-solid (VLS) growth) of a high boiling point solvent growth system. The reaction is sufficiently versatile to allow for the growth of NWs directly from either an evaporated catalyst layer or from pre-defined nanoparticle seeds and can be extended to allowing extensive branched nanowire formation in a secondary reaction where these seeds are coated onto existing wires. The NWs are characterized using TEM, SEM, XRD and DF-STEM. Electrochemical analysis was carried out on both the single crystal Pb-Ge NWs and the branched Pb-Ge NWs to assess their suitability for use as anodes in a Li-ion battery. Differential capacity plots show both the germanium wires and the lead seeds cycle lithium and contribute to the specific capacity that is approximately 900 mAh g-1 for the single crystal wires, rising to approximately 1100 mAh g-1 for the branched nanowire networks.

  12. Ferromagnetism and semiconducting of boron nanowires

    PubMed Central

    2012-01-01

    More recently, motivated by extensively technical applications of carbon nanostructures, there is a growing interest in exploring novel non-carbon nanostructures. As the nearest neighbor of carbon in the periodic table, boron has exceptional properties of low volatility and high melting point and is stronger than steel, harder than corundum, and lighter than aluminum. Boron nanostructures thus are expected to have broad applications in various circumstances. In this contribution, we have performed a systematical study of the stability and electronic and magnetic properties of boron nanowires using the spin-polarized density functional calculations. Our calculations have revealed that there are six stable configurations of boron nanowires obtained by growing along different base vectors from the unit cell of the bulk α-rhombohedral boron (α-B) and β-rhombohedral boron (β-B). Well known, the boron bulk is usually metallic without magnetism. However, theoretical results about the magnetic and electronic properties showed that, whether for the α-B-based or the β-B-based nanowires, their magnetism is dependent on the growing direction. When the boron nanowires grow along the base vector [001], they exhibit ferromagnetism and have the magnetic moments of 1.98 and 2.62 μB, respectively, for the α-c [001] and β-c [001] directions. Electronically, when the boron nanowire grows along the α-c [001] direction, it shows semiconducting and has the direct bandgap of 0.19 eV. These results showed that boron nanowires possess the unique direction dependence of the magnetic and semiconducting behaviors, which are distinctly different from that of the bulk boron. Therefore, these theoretical findings would bring boron nanowires to have many promising applications that are novel for the boron bulk. PMID:23244063

  13. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking.

    PubMed

    Yang, Haoran; Bahk, Je-Hyeong; Day, Tristan; Mohammed, Amr M S; Snyder, G Jeffrey; Shakouri, Ali; Wu, Yue

    2015-02-11

    To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could lead to an improvement in the thermoelectric figure of merit (ZT). Here we show the first experimental demonstration of the minority carrier blocking in lead telluride-silver telluride (PbTe-Ag2Te) nanowire heterostructure-based nanocomposites. The nanocomposites are made by sintering PbTe-Ag2Te nanowire heterostructures produced in a highly scalable solution-phase synthesis. Compared with Ag2Te nanowire-based nanocomposite produced in similar method, the PbTe-Ag2Te nanocomposite containing ∼5 atomic % PbTe exhibits enhanced Seebeck coefficient, reduced thermal conductivity, and ∼40% improved ZT, which can be well explained by the theoretical modeling based on the Boltzmann transport equations when energy barriers for both electrons and holes at the heterostructure interfaces are considered in the calculations. For this p-type PbTe-Ag2Te nanocomposite, the barriers for electrons, that is, minority carriers, are primarily responsible for the ZT enhancement. By extending this approach to other nanostructured systems, it represents a key step toward low-cost solution-processable nanomaterials without heavy doping level for high-performance thermoelectric energy harvesting.

  14. Solution synthesis of germanium nanowires using a Ge+2 alkoxide precursor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, Timothy J.; Tribby, Louis, J; Bunge, Scott D.

    2006-02-01

    A simple solution synthesis of germanium (Ge{sup 0}) nanowires under mild conditions (<400 C and 1 atm) was demonstrated using germanium 2,6 dibutylphenoxide Ge(DBP){sub 2} (1) as the precursor where DBP = OC{sub 6}H{sub 3}(C(CH{sub 3}){sub 3}){sub 2}-2,6. Compound 1, synthesized from Ge(NR{sub 2}){sub 2} where R = SiMe{sub 3} and two equivalents of DBP-H, was characterized as a mononuclear species by single crystal X-ray diffraction. Dissolution of 1 in oleylamine, followed by rapid injection into a 1-octadecene solution heated to 300 C under an atmosphere of Ar, led to the formation of Ge{sup 0} nanowires. The Ge{sup 0} nanowiresmore » were characterized by transmission electron microscopy (TEM), X-ray diffraction analysis, and Fourier transform infrared spectroscopy. These characterizations revealed that the nanowires are single crystalline in the cubic phase and coated with oleylamine surfactant. We also observed that the nanowire length (0.1 to 10 {micro}m) increases with increasing temperature (285 to 315 C) and time (5 to 60 min). Two growth mechanisms are proposed based on the TEM images intermittently taken during the growth process as a function of time: (1) self-seeding mechanism where one of two overlapping nanowires serves as a seed, while the other continues to grow as a wire and (2) self-assembly mechanism where an aggregate of small rods (< 50 nm in diameter) recrystallize on the tip of a longer wire, extending its length.« less

  15. Hard template synthesis of metal nanowires

    PubMed Central

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed. PMID:25453031

  16. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jian-Yang; Hsueh, Yu-Lee; Huang, Jung-Jie, E-mail: jjhuang@mdu.edu.tw

    2014-06-01

    Silver nanowires were synthesized by the polyol method employing ethylene glycol, Poly(N-vinylpyrrolidone) (PVP) and silver nitrate (AgNO{sub 3}) as the precursors. Most of the studies used metal salts (PtCl{sub 2}, NaCl) as seed precursor to synthesize the silver nanowires. In the study, the metal salts were not used and the concentration of capping agent was changed to observe the aspect ratio of silver nanowires. The experimental results showed that controlling synthesis temperature, Poly(N-vinylpyrrolidone) (PVP) molecular weight, reactant concentrations, and addition rates of AgNO{sub 3} affects the growth characteristics of silver nanowires. Field-emission scanning electron microscopy, UV–vis spectrophotometry, and X-ray diffractometrymore » were employed to characterize the silver nanowires. As increasing the concentration of PVP, the silver nanowire diameter widened and resulted in a smaller aspect ratio. We successfully prepared silver nanowires (diameter: 170 nm, length: 20 μm). The silver nanowire thin film suspension showed high transmittance, low sheet resistance, and may be used for transparent conductive film applications. - Graphical abstract: The FE-SEM image shows that nanostructures with considerable quantities of silver nanowires can also be produced when the PVP (Mw=360 K)/AgNO{sub 3} molar ratio was 2.5. - Highlights: • The polyol method was used to synthesize of silver nanowire. • The metal seed precursors were not used before synthesizing the silver nanowires. • The silver nanowire diameter and length was 170 nm and 20 μm, respectively. • Silver nanowire film with high transmittance (>85%) and low sheet resistance (<110 Ω/sq)« less

  17. Wet-Chemical Synthesis of Enhanced-Thermopower Bi1 -xSbx Nanowire Composites for Solid-State Active Cooling of Electronics

    NASA Astrophysics Data System (ADS)

    Vandaele, K.; He, Bin; Van Der Voort, P.; De Buysser, K.; Heremans, J. P.

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. In 1993, Hicks and Dresselhaus [Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47, 16631 (1993)., 10.1103/PhysRevB.47.16631] suggested that Bi nanowires could result in values of the thermoelectric figure of merit z T >1 . The Dresselhaus group also calculated a ternary phase diagram for Bi1 -xSbx nanowires as a function of x and wire diameter. This manuscript reports a wet-chemical method to synthesize Bi1 -xSbx -silica nanowire composites. Resistivity, Hall electron concentration, electron mobility, Seebeck and Nernst coefficients, and thermal conductivity of composites are measured and compared to bulk polycrystalline Bi1 -xSbx samples prepared either by ingot casting or by the same wet chemistry but without nanostructuring. A clear increase of the thermopower in 20-nm Bi94Sb6 -silica is reported when compared to bulk samples, and the values are among the highest found in the literature from 300 to 380 K, even though the electron concentration is higher than in the bulk. This suggests that consistent with theory, size quantization is responsible for the thermopower increase.

  18. Synthesis and Characteristics of Large-Area and High-Filling CdS Nanowire Arrays in AAO Template.

    PubMed

    Lv, Xiao-Yi; Hou, Jun-Wei; Gao, Zhi-Xian; Liu, Hong-Fei

    2018-05-01

    CdS nanowires arrays were successfully synthesized by a simple solvothermal process using AAO as templates. The phase structures, morphologies, and optical properties of the products were investigated by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and photoluminescence spectroscopy. It was found that the nanowires were composed of hexagonal structure CdS nanoparticles and the average diameters is about 60-70 nm. A strong green emission with a maximum around 505 nm was observed from the synthesized CdS nanowires at room temperature, which was attributed to near-band-edge emission. A 3D self-seed nucleation coalescent process was proposed for the formation of CdS nanowires structures. The present synthetic route is expected to be applied to the synthesis of other II-VI groups or other group's 1D semiconducting materials.

  19. Mechanical characterization of metallic nanowires by using a customized atomic microscope

    NASA Astrophysics Data System (ADS)

    Celik, Emrah

    A new experimental method to characterize the mechanical properties of metallic nanowires is introduced. An accurate and fast mechanical characterization of nanowires requires simultaneous imaging and testing of nanowires. However, there exists no practical experimental procedure in the literature that provides a quantitative mechanical analysis and imaging of the nanowire specimens during mechanical testing. In this study, a customized atomic force microscope (AFM) is placed inside a scanning electron microscope (SEM) in order to locate the position of the nanowires. The tip of the atomic force microscope cantilever is utilized to bend and break the nanowires. The nanowires are prepared by electroplating of nickel ions into the nanoscale pores of the alumina membranes. Force versus bending displacement responses of these nanowires are measured experimentally and then compared against those of the finite element analysis and peridynamic simulations to extract their mechanical properties through an inverse approach. The average elastic modulus of nickel nanowires, which are extracted using finite element analysis and peridynamic simulations, varies between 220 GPa and 225 GPa. The elastic modulus of bulk nickel published in the literature is comparable to that of nickel nanowires. This observation agrees well with the previous findings on nanowires stating that the elastic modulus of nanowires with diameters over 100nm is similar to that of bulk counterparts. The average yield stress of nickel nanowires, which are extracted using finite element analysis and peridynamic simulations, is found to be between 3.6 GPa to 4.1 GPa. The average value of yield stress of nickel nanowires with 250nm diameter is significantly higher than that of bulk nickel. Higher yield stress of nickel nanowires observed in this study can be explained by the lower defect density of nickel nanowires when compared to their bulk counterparts. Deviation in the extracted mechanical properties is

  20. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

    PubMed Central

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.

    2016-01-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194

  1. Biotemplated synthesis of PZT nanowires.

    PubMed

    Cung, Kellye; Han, Booyeon J; Nguyen, Thanh D; Mao, Sheng; Yeh, Yao-Wen; Xu, Shiyou; Naik, Rajesh R; Poirier, Gerald; Yao, Nan; Purohit, Prashant K; McAlpine, Michael C

    2013-01-01

    Piezoelectric nanowires are an important class of smart materials for next-generation applications including energy harvesting, robotic actuation, and bioMEMS. Lead zirconate titanate (PZT), in particular, has attracted significant attention, owing to its superior electromechanical conversion performance. Yet, the ability to synthesize crystalline PZT nanowires with well-controlled properties remains a challenge. Applications of common nanosynthesis methods to PZT are hampered by issues such as slow kinetics, lack of suitable catalysts, and harsh reaction conditions. Here we report a versatile biomimetic method, in which biotemplates are used to define PZT nanostructures, allowing for rational control over composition and crystallinity. Specifically, stoichiometric PZT nanowires were synthesized using both polysaccharide (alginate) and bacteriophage templates. The wires possessed measured piezoelectric constants of up to 132 pm/V after poling, among the highest reported for PZT nanomaterials. Further, integrated devices can generate up to 0.820 μW/cm(2) of power. These results suggest that biotemplated piezoelectric nanowires are attractive candidates for stimuli-responsive nanosensors, adaptive nanoactuators, and nanoscale energy harvesters.

  2. Controlled synthesis of AlN/GaN multiple quantum well nanowire structures and their optical properties.

    PubMed

    Qian, Fang; Brewster, Megan; Lim, Sung K; Ling, Yichuan; Greene, Christopher; Laboutin, Oleg; Johnson, Jerry W; Gradečak, Silvija; Cao, Yu; Li, Yat

    2012-06-13

    We report the controlled synthesis of AlN/GaN multi-quantum well (MQW) radial nanowire heterostructures by metal-organic chemical vapor deposition. The structure consists of a single-crystal GaN nanowire core and an epitaxially grown (AlN/GaN)(m) (m = 3, 13) MQW shell. Optical excitation of individual MQW nanowires yielded strong, blue-shifted photoluminescence in the range 340-360 nm, with respect to the GaN near band-edge emission at 368.8 nm. Cathodoluminescence analysis on the cross-sectional MQW nanowire samples showed that the blue-shifted ultraviolet luminescence originated from the GaN quantum wells, while the defect-associated yellow luminescence was emitted from the GaN core. Computational simulation provided a quantitative analysis of the mini-band energies in the AlN/GaN superlattices and suggested the observed blue-shifted emission corresponds to the interband transitions between the second subbands of GaN, as a result of quantum confinement and strain effect in these AlN/GaN MQW nanowire structures.

  3. Combined flame and electrodeposition synthesis of energetic coaxial tungsten-oxide/aluminum nanowire arrays.

    PubMed

    Dong, Zhizhong; Al-Sharab, Jafar F; Kear, Bernard H; Tse, Stephen D

    2013-09-11

    A nanostructured thermite composite comprising an array of tungsten-oxide (WO2.9) nanowires (diameters of 20-50 nm and lengths of >10 μm) coated with single-crystal aluminum (thickness of ~16 nm) has been fabricated. The method involves combined flame synthesis of tungsten-oxide nanowires and ionic-liquid electrodeposition of aluminum. The geometry not only presents an avenue to tailor heat-release characteristics due to anisotropic arrangement of fuel and oxidizer but also eliminates or minimizes the presence of an interfacial Al2O3 passivation layer. Upon ignition, the energetic nanocomposite exhibits strong exothermicity, thereby being useful for fundamental study of aluminothermic reactions as well as enhancing combustion characteristics.

  4. Investigation of composition dependence of the nanowire samples grown on brass on synthesis conditions

    NASA Astrophysics Data System (ADS)

    Srivastava, Himanshu; Khooha, Ajay; Singh, Ajit; Ganguli, Tapas

    2018-04-01

    The study of the growth of nanowires on α-brass (Cu 65%, Zn 35%) substrate was done by annealing the substrates at different temperatures in air and varying flow of moist nitrogen. It was found that the surface composition of oxidized brass depended on the synthesis condition. Angle Dependent X-ray Fluorescence (ADXRF) measurements of the oxidized brass samples were done to study the variation of composition with the synthesis conditions and depth. The results showed that the cause of the compositional dependence on synthesis parameters is due to a process, inherent to the oxidation of brass.

  5. Byproduct-free mass production of compound semiconductor nanowires: zinc phosphide

    NASA Astrophysics Data System (ADS)

    Chen, Yixi; Polinnaya, Rakesh; Vaddiraju, Sreeram

    2018-05-01

    A method for the mass production of compound semiconductor nanowires that involves the direct reaction of component elements in a chemical vapor deposition chamber (CVD) is presented. This method results in nanowires, without the associated production of any other byproducts such as nanoparticles or three-dimensional (3D) bulk crystals. Furthermore, no unreacted reactants remain mixed with the nanowire product in this method. This byproduct-free nanowire production thus circumvents the need to tediously purify and collect nanowires from a mixture of products/reactants after their synthesis. Demonstration made using zinc phosphide (Zn3P2) material system as an example indicated that the direct reaction of zinc microparticles with phosphorus supplied via the vapor phase results in the production of gram quantities of nanowires. To enhance thermal transport and achieve the complete reaction of zinc microparticles, while simultaneously ensuring that the microparticles do not agglomerate into macroscale zinc particles and partly remain unreacted (owing to diffusion limitations), pellets composed of mixtures of zinc and a sacrificial salt, NH4Cl, were employed as the starting material. The sublimation by decomposition of NH4Cl in the early stages of the reaction leaves a highly porous pellet of zinc composed of only zinc microparticles, which allows for inward diffusion of phosphorus/outward diffusion of zinc and the complete conversion of zinc into Zn3P2 nanowires. NH4Cl also aids in removal of any native oxide layer present on the zinc microparticles that may prevent their reaction with phosphorus. This method may be used to mass produce many other nanowires in a byproduct-free manner, besides Zn3P2.

  6. Advances in nanowire bioelectronics

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Dai, Xiaochuan; Lieber, Charles M.

    2017-01-01

    Semiconductor nanowires represent powerful building blocks for next generation bioelectronics given their attractive properties, including nanometer-scale footprint comparable to subcellular structures and bio-molecules, configurable in nonstandard device geometries readily interfaced with biological systems, high surface-to-volume ratios, fast signal responses, and minimum consumption of energy. In this review article, we summarize recent progress in the field of nanowire bioelectronics with a focus primarily on silicon nanowire field-effect transistor biosensors. First, the synthesis and assembly of semiconductor nanowires will be described, including the basics of nanowire FETs crucial to their configuration as biosensors. Second, we will introduce and review recent results in nanowire bioelectronics for biomedical applications ranging from label-free sensing of biomolecules, to extracellular and intracellular electrophysiological recording.

  7. Metal Nanowires: Synthesis, Processing, and Structure-Property Relationships in the Context of Flexible Transparent Conducting Films

    NASA Astrophysics Data System (ADS)

    Rathmell, Aaron R.

    The demand for flat-panel televisions, e-readers, smart-phones, and touch-screens has been increasing over the past few years and will continue to increase for the foreseeable future. Each of these devices contains a transparent conductor, which is usually indium tin oxide (ITO) because of its high transparency and low sheet resistance. ITO films, however, are brittle, expensive, and difficult to deposit, and because of these problems, alternative transparent electrodes are being studied. One cheap and flexible alternative to ITO is films of randomly oriented copper nanowires. We have developed a synthesis to make long, thin, and well-dispersed copper nanowires that can be suspended in an ink and coated onto a substrate to make flexible transparent films. These films are then made conductive by annealing in a hydrogen atmosphere or by a solution processing technique that can be done in air at room temperature. The resulting flexible transparent conducting films display transparencies and sheet resistance values comparable to ITO. Since it is well known that copper oxidizes, we also developed a synthesis to coat the copper nanowires with a layer of nickel in solution. Our measurements indicated that copper nanowires would double their sheet resistance in 3 months, but the sheet resistance of cupronickel nanowire films containing 20 mole% nickel will double in about 400 years. The addition of nickel to the copper nanowires also gave the film a more neutral grey appearance. The nickel coating can also be applied to the copper nanowires after the film is formed via an electroless plating method. To further optimize the properties of our transparent conductors we developed a framework to understand how the dimensions and area coverage of the nanowires affect the overall film properties. To quantify the effect of length on the sheet resistance and transmittance, wires with different lengths but the same diameter were synthesized to make transparent conducting films and

  8. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films

    NASA Astrophysics Data System (ADS)

    Bergin, Stephen M.; Chen, Yu-Hui; Rathmell, Aaron R.; Charbonneau, Patrick; Li, Zhi-Yuan; Wiley, Benjamin J.

    2012-03-01

    This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For

  9. Controlled Synthesis of Millimeter-Long Silicon Nanowires with Uniform Electronic Properties

    PubMed Central

    Park, Won Il; Zheng, Gengfeng; Jiang, Xiaocheng; Tian, Bozhi; Lieber, Charles M.

    2009-01-01

    We report the nanocluster-catalyzed growth of ultra-long and highly-uniform single-crystalline silicon nanowires (SiNWs) with millimeter-scale lengths and aspect ratios up to ca. 100,000. The average SiNW growth rate using disilane (Si2H6) at 400 °C was 31 µm/min, while the growth rate determined for silane (SiH4) reactant under similar growth conditions was 130 times lower. Transmission electron microscopy studies of millimeter-long SiNWs with diameters of 20–80 nm show that the nanowires grow preferentially along the <110> direction independent of diameter. In addition, ultra-long SiNWs were used as building blocks to fabricate one-dimensional arrays of field-effect transistors (FETs) consisting of ca. 100 independent devices per nanowire. Significantly, electrical transport measurements demonstrated that the millimeter-long SiNWs had uniform electrical properties along the entire length of wires, and each device can behave as a reliable FET with an on-state current, threshold voltage, and transconductance values (average ± 1 standard deviation) of 1.8 ± 0.3 µA, 6.0 ± 1.1 V, 210 ± 60 nS, respectively. Electronically-uniform millimeter-long SiNWs were also functionalized with monoclonal antibody receptors, and used to demonstrate multiplexed detection of cancer marker proteins with a single nanowire. The synthesis of structurally- and electronically-uniform ultra-long SiNWs may open up new opportunities for integrated nanoelectronics, and could serve as unique building blocks linking integrated structures from the nanometer through millimeter length scales. PMID:18710294

  10. Quantum-confinement effects on conduction band structure of rectangular cross-sectional GaAs nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, H., E-mail: tanaka@semicon.kuee.kyoto-u.ac.jp; Morioka, N.; Mori, S.

    2014-02-07

    The conduction band structure and electron effective mass of GaAs nanowires with various cross-sectional shapes and orientations were calculated by two methods, a tight-binding method and an effective mass equation taking the bulk full-band structure into account. The effective mass of nanowires increases as the cross-sectional size decreases, and this increase in effective mass depends on the orientations and substrate faces of nanowires. Among [001], [110], and [111]-oriented rectangular cross-sectional GaAs nanowires, [110]-oriented nanowires with wider width along the [001] direction showed the lightest effective mass. This dependence originates from the anisotropy of the Γ valley of bulk GaAs. Themore » relationship between effective mass and bulk band structure is discussed.« less

  11. Porous Silicon Nanowires

    PubMed Central

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  12. Miniaturized accelerometer made with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan

    2017-04-01

    Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.

  13. Synthesis and properties of silicon nanowire devices

    NASA Astrophysics Data System (ADS)

    Byon, Kumhyo

    Silicon nanowire (SiNW) is a very attractive one-dimensional material for future nanoelectronic applications. Reliable control of key field effect transistor (FET) parameters such as conductance, mobility, threshold voltage and on/off ratio is crucial to the applications of SiNW to working logic devices and integrated circuits. In this thesis, we fabricated silicon nanowire field effect transistors (SiNW FETs) and studied the dependence of their electrical transport properties upon various parameters including SiNW growth conditions, post-growth doping, and contact annealing. From these studies, we found how different processes control important FET characteristics. Key accomplishments of this thesis include p-channel enhancement mode FETs, n-channel FETs by post-growth vapor doping and high performance ambipolar devices. In the first part of this work, single crystalline SiNWs were synthesized by thermal evaporation without gold catalysts. FETs were fabricated using both as-grown SiNWs and post-growth n-doped SiNWs. FET from p-type source materials behaves as a p-channel enhancement mode FET which is predominant in logic devices due to its fast operation and low power consumption. Using bismuth vapor, the as-grown SiNWs were doped into n-type materials. The majority carriers in SiNWs can therefore be controlled by proper choice of the vapor phase dopant species. Post-growth doping using vapor phase is applicable to other nanowire systems. In the second part, high performance ambipolar FETs were fabricated. A two step annealing process was used to control the Schottky barrier between SiNW and metal contacts in order to enhance device performance. Initial p-channel SiNW FETs were converted into ambipolar SiNW FETs after contact annealing. Furthermore, significant increases in both on/off ratio and channel mobilities were achieved after contact annealing. Promising device structures to implement ambipolar devices into large scale integrated circuits were proposed

  14. Combustion synthesis of AlB2-Al2O3 composite powders with AlB2 nanowire structures

    NASA Astrophysics Data System (ADS)

    Yang, Pan; Xiao, Guoqing; Ding, Donghai; Ren, Yun; Yang, Shoulei; Lv, Lihua; Hou, Xing

    2018-05-01

    Using of Al and B2O3 powders as starting materials, and Mg-Al alloy as additives, AlB2-Al2O3 composite powders with AlB2 nanowire structures were successfully fabricated via combustion synthesis method in Ar atmosphere at a pressure of 1.5 MPa. The effect of different amount of Mg-Al alloy on the phase compositions and morphology of the combustion products was investigated. The results revealed that AlB2 and Al2O3 increased, whereas Al decreased with the content of Mg-Al alloy increasing. The impurities MgAl2O4 and AlB12 would exist in the sample with adding of 18 wt% Mg-Al alloy. Interestingly, FESEM/TEM/EDS results showed that AlB2 nanowires were observed in the products when the content of Mg-Al alloy is 6 wt% and 12 wt%. The more AlB2 nanowires can be found as the content of Mg-Al alloy increased. And the yield of AlB2 nanowires with the diameter of about 200 nanometers (nm) and the length up to several tens of micrometers (μm) in the combustion product is highest when the content of Mg-Al alloy is 12 wt%. The vapor, such as Mg-Al (g), B2O2 (g), AlO (g) and Al2O (g), produced during the process of combustion synthesis, reacted with each other to yield AlB2 nanowires by vapor-solid (VS) mechanism and the corresponding model was also proposed.

  15. Synthesis of nickel entities: From highly stable zerovalent nanoclusters to nanowires. Growth control and catalytic behavior.

    PubMed

    Peinetti, Ana S; Mizrahi, Martín; Requejo, Félix G; Buceta, David; López-Quintela, M Arturo; González, Graciela A; Battaglini, Fernando

    2018-04-15

    Non-noble metal nanoclusters synthesis is receiving increased attention due to their unique catalytic properties and lower cost. Herein, the synthesis of ligand-free Ni nanoclusters with an average diameter of 0.7 nm corresponding to a structure of 13 atoms is presented; they exhibit a zero-valence state and a high stability toward oxidation and thermal treatment. The nanoclusters formation method consists in the electroreduction of nickel ions inside an ordered mesoporous alumina; also, by increasing the current density, other structures can be obtained reaching to nanowires of 10 nm diameter. A seed-mediated mechanism is proposed to explain the growth to nanowires inside these mesoporous cavities. The size dependence on the catalytic behavior of these entities is illustrated by studying the reduction of methylene blue where the nanoclusters show an outstanding performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. On-surface synthesis on a bulk insulator surface

    NASA Astrophysics Data System (ADS)

    Richter, Antje; Floris, Andrea; Bechstein, Ralf; Kantorovich, Lev; Kühnle, Angelika

    2018-04-01

    On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as well as new reactions demonstrated that have no classical analogue. So far, the majority of the work has been carried out on conducting surfaces. However, when aiming for electronic decoupling of the resulting structures, e.g. for the use in future molecular electronic devices, non-conducting surfaces are highly desired. Here, we review the current status of on-surface reactions demonstrated on the (10.4) surface of the bulk insulator calcite. Besides thermally induced C-C coupling of halogen-substituted aryls, photochemically induced [2  +  2] cycloaddition has been proven possible on this surface. Moreover, experimental evidence exists for coupling of terminal alkynes as well as diacetylene polymerization. While imaging of the resulting structures with dynamic atomic force microscopy provides a direct means of reaction verification, the detailed reaction pathway often remains unclear. Especially in cases where the presence of metal atoms is known to catalyze the corresponding solution chemistry reaction (e.g. in the case of the Ullmann reaction), disclosing the precise reaction pathway is of importance to understand and generalize on-surface reactivity on a bulk insulator surface. To this end, density-functional theory calculations have proven to provide atomic

  17. Investigation of ZnO Nanowire Interfaces for Multi-Scale Composites

    DTIC Science & Technology

    2012-03-06

    growth of zinc oxide ( ZnO ) nanowires on the surface of the...through the growth of zinc oxide ( ZnO ) nanowires on the surface of the reinforcing fibers. The nanowires functionally grade the interface, improve bonding...bulk composite. This has been accomplished through the growth of zinc oxide ( ZnO ) nanowires on the surface of the reinforcing fibers. ZnO

  18. Semiconductor nanowires: A platform for nanoscience and nanotechnology

    PubMed Central

    Lieber, Charles M.

    2012-01-01

    Advances in nanoscience and nanotechnology critically depend on the development of nanostructures whose properties are controlled during synthesis. We focus on this critical concept using semiconductor nanowires, which provide the capability through design and rational synthesis to realize unprecedented structural and functional complexity in building blocks as a platform material. First, a brief review of the synthesis of complex modulated nanowires in which rational design and synthesis can be used to precisely control composition, structure, and, most recently, structural topology is discussed. Second, the unique functional characteristics emerging from our exquisite control of nanowire materials are illustrated using several selected examples from nanoelectronics and nano-enabled energy. Finally, the remarkable power of nanowire building blocks is further highlighted through their capability to create unprecedented, active electronic interfaces with biological systems. Recent work pushing the limits of both multiplexed extracellular recording at the single-cell level and the first examples of intracellular recording is described, as well as the prospects for truly blurring the distinction between nonliving nanoelectronic and living biological systems. PMID:22707850

  19. Spatial distribution of defect luminescence in GaN nanowires.

    PubMed

    Li, Qiming; Wang, George T

    2010-05-12

    The spatial distribution of defect-related and band-edge luminescence from GaN nanowires grown by metal-organic chemical vapor deposition was studied by spatially resolved cathodoluminescence imaging and spectroscopy. A surface layer exhibiting strong yellow luminescence (YL) near 566 nm in the nanowires was revealed, compared to weak YL in the bulk. In contrast, other defect-related luminescence near 428 nm (blue luminescence) and 734 nm (red luminescence), in addition to band-edge luminescence (BEL) at 366 nm, were observed in the bulk of the nanowires but were largely absent at the surface. As the nanowire width approaches a critical dimension, the surface YL layer completely quenches the BEL. The surface YL is attributed to the diffusion and piling up of mobile point defects, likely isolated gallium vacancies, at the surface during growth.

  20. Semiconductor Nanowires and Nanotubes for Energy Conversion

    NASA Astrophysics Data System (ADS)

    Fardy, Melissa Anne

    In recent years semiconductor nanowires and nanotubes have garnered increased attention for their unique properties. With their nanoscale dimensions comes high surface area and quantum confinement, promising enhancements in a wide range of applications. 1-dimensional nanostructures are especially attractive for energy conversion applications where photons, phonons, and electrons come into play. Since the bohr exciton radius and phonon and electron mean free paths are on the same length scales as nanowire diameters, optical, thermal, and electrical properties can be tuned by simple nanowire size adjustments. In addition, the high surface area inherent to nanowires and nanotubes lends them towards efficient charge separation and superior catalytic performance. In thermoelectric power generation, the nanoscale wire diameter can effectively scatter phonons, promoting reductions in thermal conductivity and enhancements in the thermoelectric figure of merit. To that end, single-crystalline arrays of PbS, PbSe, and PbTe nanowires have been synthesized by a chemical vapor transport approach. The electrical and thermal transport properties of the nanowires were characterized to investigate their potential as thermoelectric materials. Compared to bulk, the lead chalcogenide nanowires exhibit reduced thermal conductivity below 100 K by up to 3 orders of magnitude, suggesting that they may be promising thermoelectric materials. Smaller diameters and increased surface roughness are expected to give additional enhancements. The solution-phase synthesis of PbSe nanowires via oriented attachment of nanoparticles enables facile surface engineering and diameter control. Branched PbSe nanowires synthesized by this approach showed near degenerately doped charge carrier concentrations. Compared to the bulk, the PbSe nanowires exhibited a similar Seebeck coefficient and a significant reduction in thermal conductivity in the temperature range 20 K to 300 K. Thermal annealing of the Pb

  1. Facile Synthesis of Ultrafine Hematite Nanowire Arrays in Mixed Water-Ethanol-Acetic Acid Solution for Enhanced Charge Transport and Separation.

    PubMed

    Wang, Jian; Wang, Menglong; Zhang, Tao; Wang, Zhiqiang; Guo, Penghui; Su, Jinzhan; Guo, Liejin

    2018-04-18

    Nanostructure engineering is of great significance for semiconductor electrode to achieve high photoelectrochemical performance. Herein, we report a novel strategy to fabricate ultrafine hematite (α-Fe 2 O 3 ) nanowire arrays in a mixed water-ethanol-acetic acid (WEA) solvent. To the best of our knowledge, this is the first report on direct growth of ultrafine (∼10 nm) α-Fe 2 O 3 nanowire arrays on fluorine-doped tin oxide substrates through solution-based fabrication process. The effect of WEA ratio on the morphology of nanowires has been systematically studied to understand the formation mechanism. Photoelectrochemical measurements were conducted on both Ti-treated α-Fe 2 O 3 nanowire and nanorod photoelectrodes. It reveals that α-Fe 2 O 3 nanowire electrode has higher photocurrent and charge separation efficiencies than nanorod electrode if the carrier concentration and space-charge carrier width are in the same order of magnitude. Normalized by electrochemically active surface area, the Ti-treated α-Fe 2 O 3 nanowire electrode obtains 6.4 times higher specific photocurrent density than nanorod electrode. This superiority of nanowires arises from the higher bulk and surface charge separation efficiencies, which could be partly attributed to reduced distance that holes must transfer to reach the semiconductor-liquid junction.

  2. Green synthesis of carbon quantum dots embedded onto titanium dioxide nanowires for enhancing photocurrent

    NASA Astrophysics Data System (ADS)

    Yen, Yin-Cheng; Lin, Chia-Chi; Chen, Ping-Yu; Ko, Wen-Yin; Tien, Tzu-Rung; Lin, Kuan-Jiuh

    2017-05-01

    The green synthesis of nanowired photocatalyst composed of carbon quantum dots-titanium hybrid-semiconductors, CQDs/TiO2, are reported. Where graphite-based CQDs with a size less than 5 nm are directly synthesized in pure water electrolyte by a one-step electrochemistry approach and subsequently electrodeposited onto as-prepared TiO2 nanowires through a voltage-driven reduction process. Electron paramagnetic resonance studies show that the CQDs can generate singlet oxygen and/or oxygen radicals to decompose the kinetic H2O2 intermediate species upon UV light illumination. With the effect of peroxidase-like CQDs, photocurrent density of CQDs/TiO2 is remarkably enhanced by a 6.4 factor when compared with that of as-prepared TiO2.

  3. Environmental-Friendly and Facile Synthesis of Co3O4 Nanowires and Their Promising Application with Graphene in Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqiang; Liu, Wei; Yang, Yuanyi; Sun, Lijuan; Deng, Yi; Liao, Li

    2017-12-01

    In this work, we developed an eco-friendly strategy for preparing Co3O4 nanowires. The process consisted of two steps: controllable synthesis of metal cobalt nanowires followed by a facile air-oxidization step. The 1D nanowire structure with a high aspect ratio was easily achieved via a magnetic-field-assisted self-assembly of cobalt ion complexes during reduction. After air-calcinations, the Co3O4 nanowires were prepared in large scale and ready to be used as the anode material for lithium-ion batteries. The Co3O4 nanowires, which possessed a length ranging from 3 to 8 μm with the aspect ratio more than 15, exhibited a reversible lithium storage capacity up to 790 mAh/g when using a small amount of defect-free graphene flakes as conductive additives. The superior electrochemical performances were ascribable to the synergistic "flat-on" effect between the 1D nanowires and the 2D graphene. Therefore, the Co3O4 nanowire/graphene composite holds promising application for lithium-ion batteries.

  4. Synthesis of nanostructures in nanowires using sequential catalyst reactions

    PubMed Central

    Panciera, F.; Chou, Y.-C.; Reuter, M.C.; Zakharov, D.; Stach, E.A.; Hofmann, S.; Ross, F.M.

    2016-01-01

    Nanowire growth by the vapor-liquid-solid process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid state lighting and single photon sources to thermoelectric devices. Here we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyze nanowire growth as a “mixing bowl”, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures. PMID:26168344

  5. Characterization of individual straight and kinked boron carbide nanowires

    NASA Astrophysics Data System (ADS)

    Cui, Zhiguang

    Boron carbides represent a class of ceramic materials with p-type semiconductor natures, complex structures and a wide homogeneous range of carbon compositions. Bulk boron carbides have long been projected as promising high temperature thermoelectric materials, but with limited performance. Bringing the bulk boron carbides to low dimensions (e.g., nanowires) is believed to be an option to enhance their thermoelectric performance because of the quantum size effects. However, the fundamental studies on the microstructure-thermal property relation of boron carbide nanowires are elusive. In this dissertation work, systematic structural characterization and thermal conductivity measurement of individual straight and kinked boron carbide nanowires were carried out to establish the true structure-thermal transport relation. In addition, a preliminary Raman spectroscopy study on identifying the defects in individual boron carbide nanowires was conducted. After the synthesis of single crystalline boron carbide nanowires, straight nanowires accompanied by the kinked ones were observed. Detailed structures of straight boron carbide nanowires have been reported, but not the kinked ones. After carefully examining tens of kinked nanowires utilizing Transmission Electron Microscopy (TEM), it was found that they could be categorized into five cases depending on the stacking faults orientations in the two arms of the kink: TF-TF, AF-TF, AF-AF, TF-IF and AF-IF kinks, in which TF, AF and IF denotes transverse faults (preferred growth direction perpendicular to the stacking fault planes), axial faults (preferred growth direction in parallel with the stacking fault planes) and inclined faults (preferred growth direction neither perpendicular to nor in parallel with the stacking fault planes). Simple structure models describing the characteristics of TF-TF, AF-TF, AF-AF kinked nanowires are constructed in SolidWorks, which help to differentiate the kinked nanowires viewed from the zone

  6. In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqiang; Long, Qin; Deng, Yi; Liao, Li

    2018-05-01

    Controlled synthesis of magnetic nanocomposite with outstanding catalytic performances is a promising strategy in catalyst industry. We proposed a novel concept for fabrication of reduced graphene oxide-supported cobalt nanowires (RGO/Co-NWs) nanocomposite as high-efficient magnetic catalyst. Unlike the majority of experiments necessitating harsh synthesis conditions such as high-pressure, high-temperature and expensive template, here the RGO/Co-NWs were successfully prepared in aqueous solution under mild conditions with the assistance of external magnetic field. The synthetic process was facile and external magnetic force was adopted to induce the unidirectional self-assembly of cobalt crystals on graphene oxide to form RGO/Co-NWs. The possible formation mechanism laid on the fact that the dipole magnetic moments of the nanoparticles were aligned along the magnetic induction lines with the external magnetic field direction resulting in the formation of nanowires elongating in the direction of the magnetization axis. Simultaneously, a series of controlled reactions were conducted to illuminate the effect of graphene oxide, external magnetic field and PVP on the morphology and size of RGO/Co-NWs in the present approach. More importantly, the nanocomposite exhibited a high catalytic performance towards ammonia borane. Hence the novel nanocomposite holds a great potential for technological applications such as catalyst industry.

  7. Orbital ordering-driven ferromagnetism in LaCoO3 nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Fan, Hong Jin

    2010-09-01

    The structure and magnetic properties of LaCoO3 nanowires are investigated as a function of the diameter in the temperature range of 5-300 K. Ferromagnetism below 85 K is observed in these nanowires, in agreement with the recent observations in LaCoO3 epitaxial thin films and nanoparticles. With the diameter of nanowires decreasing, the unit-cell volume increases, while both the global and local structural distortions lessen, accompanied by the gradual enhancement of ferromagnetism. The structure analysis reveals that LaCoO3 nanowires exhibit a monoclinic distorted structure with I2/a space group in the entire investigated temperature range. Different from bulks, there is no clear spin-state transition occurring with temperature in LaCoO3 nanowires. There exists a noticeable Jahn-Teller (JT) distortion in the nanowires even at the lowest temperature, namely, orbital-ordered JT active Co3+ ions with intermediate-spin (IS) state persist at low temperatures, which is not observed in bulk LaCoO3. These results indicate that the ferromagnetism in the nanowires is driven by the orbital ordering of IS Co3+.

  8. Soft plasma processing of organic nanowires: a route for the fabrication of 1D organic heterostructures and the template synthesis of inorganic 1D nanostructures.

    PubMed

    Alcaire, Maria; Sanchez-Valencia, Juan R; Aparicio, Francisco J; Saghi, Zineb; Gonzalez-Gonzalez, Juan C; Barranco, Angel; Zian, Youssef Oulad; Gonzalez-Elipe, Agustin R; Midgley, Paul; Espinos, Juan P; Groening, Pierangelo; Borras, Ana

    2011-11-01

    Hierarchical (branched) and hybrid metal-NPs/organic supported NWs are fabricated through controlled plasma processing of metalloporphyrin, metallophthalocyanine and perylene nanowires. The procedure is also applied for the development of a general template route for the synthesis of supported metal and metal oxide nanowires.

  9. Towards bulk syntheses of nanomaterials: a homeostatically supersaturated synthesis of polymer-like Bi 2S 3 nanowires with nearly 100% yield and no injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Bin; Iowa State Univ. of Science and Technology, Ames, IA; Brandt, Jordan Aaron

    This article reports the implementation of a one-pot strategy for the synthesis of polymer-like Bi 2S 3 nanowires from supersaturated precursors. These conditions result in (i) a homeostatically regulated supersaturation of the growing phase during most of the reaction, (ii) a nearly 100% conversion of the limiting reagent, and (iii) an improved colloidal stability and polydispersity of the product (when compared to the hot-injection product) that allows the identification of three new exciton transitions in the absorption spectrum (one of them, importantly, being a weakly absorbing ground state at 1.64 eV). Three different commercial sources of ligands do not yieldmore » significantly different conversion rates. Scalability is further improved by lack of stirring after the initial stage of reaction and a lower reaction temperature (90 °C).« less

  10. Towards bulk syntheses of nanomaterials: a homeostatically supersaturated synthesis of polymer-like Bi 2S 3 nanowires with nearly 100% yield and no injection

    DOE PAGES

    Yuan, Bin; Iowa State Univ. of Science and Technology, Ames, IA; Brandt, Jordan Aaron; ...

    2016-11-25

    This article reports the implementation of a one-pot strategy for the synthesis of polymer-like Bi 2S 3 nanowires from supersaturated precursors. These conditions result in (i) a homeostatically regulated supersaturation of the growing phase during most of the reaction, (ii) a nearly 100% conversion of the limiting reagent, and (iii) an improved colloidal stability and polydispersity of the product (when compared to the hot-injection product) that allows the identification of three new exciton transitions in the absorption spectrum (one of them, importantly, being a weakly absorbing ground state at 1.64 eV). Three different commercial sources of ligands do not yieldmore » significantly different conversion rates. Scalability is further improved by lack of stirring after the initial stage of reaction and a lower reaction temperature (90 °C).« less

  11. Synthesis of nanostructures in nanowires using sequential catalyst reactions

    DOE PAGES

    Panciera, F.; Chou, Y. -C.; Reuter, M. C.; ...

    2015-07-13

    Nanowire growth by the vapour–liquid–solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a ‘mixing bowl’, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystalsmore » that are then incorporated into the nanowires by further growth. Furthermore, we demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.« less

  12. Compositional disorder and its effect on the thermoelectric performance of Zn₃P₂ nanowire-copper nanoparticle composites.

    PubMed

    Brockway, Lance; Vasiraju, Venkata; Vaddiraju, Sreeram

    2014-03-28

    Recent studies indicated that nanowire format of materials is ideal for enhancing the thermoelectric performance of materials. Most of these studies were performed using individual nanowires as the test elements. It is not currently clear whether bulk assemblies of nanowires replicate this enhanced thermoelectric performance of individual nanowires. Therefore, it is imperative to understand whether enhanced thermoelectric performance exhibited by individual nanowires can be extended to bulk assemblies of nanowires. It is also imperative to know whether the addition of metal nanoparticle to semiconductor nanowires can be employed for enhancing their thermoelectric performance further. Specifically, it is important to understand the effect of microstructure and composition on the thermoelectric performance on bulk compound semiconductor nanowire-metal nanoparticle composites. In this study, bulk composites composed of mixtures of copper nanoparticles with either unfunctionalized or 1,4-benzenedithiol (BDT) functionalized Zn₃P₂ nanowires were fabricated and analyzed for their thermoelectric performance. The results indicated that use of BDT functionalized nanowires for the fabrication of composites leads to interface-engineered composites that have uniform composition all across their cross-section. The interface engineering allows for increasing their Seebeck coefficients and electrical conductivities, relative to the Zn₃P₂ nanowire pellets. In contrast, the use of unfunctionalized Zn₃P₂ nanowires for the fabrication of composite leads to the formation of composites that are non-uniform in composition across their cross-section. Ultimately, the composites were found to have Zn₃P₂ nanowires interspersed with metal alloy nanoparticles. Such non-uniform composites exhibited very high electrical conductivities, but slightly lower Seebeck coefficients, relative to Zn₃P₂ nanowire pellets. These composites were found to show a very high zT of 0.23 at 770

  13. Ultralight Conductive Silver Nanowire Aerogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Fang; Lan, Pui Ching; Freyman, Megan C.

    Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here in this work, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm 3 and an electrical conductivity up tomore » 51 000 S/m. Lastly, mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa.« less

  14. Ultralight Conductive Silver Nanowire Aerogels

    DOE PAGES

    Qian, Fang; Lan, Pui Ching; Freyman, Megan C.; ...

    2017-09-05

    Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here in this work, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm 3 and an electrical conductivity up tomore » 51 000 S/m. Lastly, mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa.« less

  15. Synthesis and humidity sensing analysis of ZnS nanowires

    NASA Astrophysics Data System (ADS)

    Okur, Salih; Üzar, Neslihan; Tekgüzel, Nesli; Erol, Ayşe; Çetin Arıkan, M.

    2012-03-01

    ZnS nanowires synthesized by the vapor-liquid-solid (VLS) method and humidity sensing properties of obtained ZnS nanowires were investigated by quartz crystal microbalance (QCM) method and electrical measurements. The synthesized nanowires were exposed to relative humidity (RH) between 22% and 97% under controlled environment. Our experimental results show that ZnS nanowires have a great potential for humidity sensing applications in room temperature operations.

  16. Virus-based Photo-Responsive Nanowires Formed By Linking Site-Directed Mutagenesis and Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Murugesan, Murali; Abbineni, Gopal; Nimmo, Susan L.; Cao, Binrui; Mao, Chuanbin

    2013-05-01

    Owing to the genetic flexibility and error-free bulk production, bio-nanostructures such as filamentous phage showed great potential in materials synthesis, however, their photo-responsive behaviour is neither explored nor unveiled. Here we show M13 phage genetically engineered with tyrosine residues precisely fused to the major coat protein is converted into a photo-responsive organic nanowire by a site-specific chemical reaction with an aromatic amine to form an azo dye structure on the surface. The resulting azo-M13-phage nanowire exhibits reversible photo-responsive properties due to the photo-switchable cis-trans isomerisation of the azo unit formed on the phage. This result shows that site-specific display of a peptide on bio-nanostructures through site-directed genetic mutagenesis can be translated into site-directed chemical reaction for developing advanced materials. The photo-responsive properties of the azo-M13-phage nanowires may open the door for the development of light controllable smart devices for use in non-linear optics, holography data storage, molecular antenna, and actuators.

  17. Virus-based Photo-Responsive Nanowires Formed By Linking Site-Directed Mutagenesis and Chemical Reaction

    PubMed Central

    Murugesan, Murali; Abbineni, Gopal; Nimmo, Susan L.; Cao, Binrui; Mao, Chuanbin

    2013-01-01

    Owing to the genetic flexibility and error-free bulk production, bio-nanostructures such as filamentous phage showed great potential in materials synthesis, however, their photo-responsive behaviour is neither explored nor unveiled. Here we show M13 phage genetically engineered with tyrosine residues precisely fused to the major coat protein is converted into a photo-responsive organic nanowire by a site-specific chemical reaction with an aromatic amine to form an azo dye structure on the surface. The resulting azo-M13-phage nanowire exhibits reversible photo-responsive properties due to the photo-switchable cis-trans isomerisation of the azo unit formed on the phage. This result shows that site-specific display of a peptide on bio-nanostructures through site-directed genetic mutagenesis can be translated into site-directed chemical reaction for developing advanced materials. The photo-responsive properties of the azo-M13-phage nanowires may open the door for the development of light controllable smart devices for use in non-linear optics, holography data storage, molecular antenna, and actuators. PMID:23673356

  18. Synthesis, Properties and Applications of Gallium Nitride Nanowires

    NASA Astrophysics Data System (ADS)

    Ma, Zheng

    This main focus of the work is on controlling the growth morphology in GaN and related nanowires. Two key results are presented: (1) demonstration of GaN nanowire growth in a newly discovered `serrated' morphology and (2) demonstration of Mn-doped, GaMnN nanowires by a new method. In (1) it is shown that simply by controlling the type of catalyst, size of the catalyst and the initial ratio of the precursor materials, GaN nanowire growth in a highly periodic serrated morphology can be obtained. Unlike regular non-serrated wires which grow in the non-polar [1010] direction, growth of the serrated wires is in the polar [0001] direction. The serrated faces are oriented in the semi-polar directions. Wires with serrated faces in both [1011] and [1122] semi-polar directions have been obtained. In (2) it has been shown that by using Au-Mn alloy catalyst method, GaMnN wire growth can be obtained. This is a significant result since this may be the first demonstration wherein Mn doping is achieved by introducing Mn as a catalyst rather than as a source material. The growth direction of these GaMnN wires is in the non-polar direction as in the case of non-serrated wires. Interestingly, unlike the non-serrated GaN wires, in this case the growth direction is [1120]. A second focus of the work is on the investigation of transport properties of serrated GaN nanowires and comparison with the non-serrated GaN nanowires. For the serrated nanowires our results indicate significant influence of surface effects on the electronic transport resulting in much higher electrical resistivity. A third focus of the work is on the investigation of magnetic properties of the GaMnN nanowires which indicates potential weak ferromagnetic behavior. This is consistent with low hole concentration and low Mn doping concentration (~0.5%) in these nanowires.

  19. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.

    PubMed

    Madaria, Anuj R; Yao, Maoqing; Chi, Chunyung; Huang, Ningfeng; Lin, Chenxi; Li, Ruijuan; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2012-06-13

    Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.

  20. Lithium Assisted “Dissolution–Alloying” Synthesis of Nanoalloys from Individual Bulk Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkholtz, Heather M.; Gallagher, James R.; Li, Tao

    2016-04-12

    We report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (similar to 200 degrees C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, which results in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron X-ray adsorption techniques. Then, upon the conversion of metal lithium tomore » LiOH in humid air, the Pd and Pt atoms undergo an alloying process to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted "dissolution-alloying" method bypasses many complications intrinsic to conventional ion reduction-based nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less

  1. Lithium assisted “dissolution–alloying” synthesis of nanoalloys from individual bulk metals

    DOE PAGES

    Barkholtz, Heather M.; Gallagher, James R.; Li, Tao; ...

    2016-03-27

    Here, we report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (~200°C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, resulting in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron Xray adsorption techniques. Then, upon the conversion of metal lithium to LiOH in humid air,more » the Pd and Pt atoms undergo an alloying process, to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted “dissolutionalloying” method bypasses many complications intrinsic to conventional ion reductionbased nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less

  2. Methods for synthesizing metal oxide nanowires

    DOEpatents

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  3. Facile synthesis of silicon nanowire-nanopillar superhydrophobic structures

    NASA Astrophysics Data System (ADS)

    Roy, Abhijit; Satpati, Biswarup

    2018-04-01

    We have used metal assisted chemical etching (MACE) method to produce silicon (Si) nanowire-nanopillar array. Nanowire-nanopillar combined structures show higher degree of hydrophobicity compared to its nanowire (Si-NW) counterparts. The rate of etching is depended on initial metal deposition. The structural analysis was carried out using scanning electron microscopy (SEM) in combination with transmission electron microscopy (TEM) to determine different parameters like etching direction, crystallinity etc.

  4. Segmented nanowires displaying locally controllable properties

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2013-03-05

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  5. Synthesis of nanowires and nanoparticles of cubic aluminium nitride

    NASA Astrophysics Data System (ADS)

    Balasubramanian, C.; Godbole, V. P.; Rohatgi, V. K.; Das, A. K.; Bhoraskar, S. V.

    2004-03-01

    Nanostructures of cubic aluminium nitride were synthesized by DC arc-plasma-induced melting of aluminium in a nitrogen-argon ambient. The material flux ejected from the molten aluminium surface was found to react with nitrogen under highly non-equilibrium conditions and subsequently condense on a water-cooled surface to yield a mixture of nanowires and nanoparticles of crystalline cubic aluminium nitride. Both x-ray diffraction and electron diffraction measurements revealed that the as-synthesized nitrides adopted the cubic phase. Fourier transform infrared spectroscopy was used to understand the bonding configuration. Microstructural features of the synthesized material were best studied by transmission electron microscopy. From these analyses cubic aluminium nitride was found to be the dominating phase for both nanowires and nanoparticles synthesized at low currents. The typical particle size distribution was found to range over 15-80 nm, whereas the wires varied from 30 to 100 nm in diameter and 500 to 700 nm in length, depending upon the process parameters such as arc current and the nitrogen pressure. The reaction products inside the plasma zone were also obtained theoretically by minimization of free energy and the favourable zone temperature necessary for the formation of aluminium nitride was found to be {\\sim } 6000 K. Results are discussed in view of the highly non-equilibrium conditions that prevail during the arc-plasma synthesis.

  6. Salt flux synthesis of single and bimetallic carbide nanowires

    NASA Astrophysics Data System (ADS)

    Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng

    2016-07-01

    Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.

  7. Synthesis of Sub-2 nm Iron-Doped NiSe2 Nanowires and Their Surface-Confined Oxidation for Oxygen Evolution Catalysis.

    PubMed

    Gu, Chao; Hu, Shaojin; Zheng, Xusheng; Gao, Min-Rui; Zheng, Ya-Rong; Shi, Lei; Gao, Qiang; Zheng, Xiao; Chu, Wangsheng; Yao, Hong-Bin; Zhu, Junfa; Yu, Shu-Hong

    2018-04-03

    Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition-metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub-2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft-template mediated colloidal synthesis of Fe-doped NiSe 2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1-dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm -2 in 0.1 m KOH, as well as remarkable long-term stability, representing one of the most efficient noble-metal-free catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and properties of SrAl2O4:Eu2+, Dy3+ nanowires

    NASA Astrophysics Data System (ADS)

    Li, Zhi-jie; Zhang, Yu-feng; Wu, Xiao; Qin, Chu-yang; Shi, Gui-mei

    2017-10-01

    The SrAl2O4:Eu2+, Dy3+ nanowire was successfully synthesized by means of catalyst-assisted thermal chemical vapor deposition method. Their morphology, structure, composition, luminescent properties are explored in way of SEM, TEM, XRD and PL analysis. The nanowires diameter is uniform distributed in 50∼80 nm, but orientation distribution is irregular, with the length varying from 4 μm to 20 μm. When heated up to the temperature of 1200 °C for three hours, the optimum synthesis is achieved with the alumina substrate covered by Al nanoparticles. The emission peak reaches to 517 nm with 365 nm light excitation and the luminous intensity was down to 1/10 of the initial brightness in 20 mins. The dielectric property was investigated at the room temperature, which show stronger dielectric loss ability.

  9. One-Step Synthesis of Au-Ag Nanowires through Microorganism-Mediated, CTAB-Directed Approach.

    PubMed

    Xu, Luhang; Huang, Dengpo; Chen, Huimei; Jing, Xiaoling; Huang, Jiale; Odoom-Wubah, Tareque; Li, Qingbiao

    2018-05-28

    Synthesis and applications of one dimensional (1D) metal nanostructures have attracted much attention. However, one-step synthesis of bimetallic nanowires (NWs) has remained challenging. In this work, we developed a microorganism-mediated, hexadecyltrimethylammonium bromide (CTAB)-directed (MCD) approach to synthesize closely packed and long Au-Ag NWs with the assistance of a continuous injection pump. Characterization results confirmed that the branched Au-Ag alloy NWs was polycrystalline. And the Au-Ag NWs exhibited a strong absorbance at around 1950 nm in the near-infrared (NIR) region, which can find potential application in NIR absorption. In addition, the Au-Ag NWs showed excellent surface-enhanced Raman scattering (SERS) enhancement when 4-mercaptobenzoic acid (MBA) and rhodamine 6G (R6G) were used as probe molecules.

  10. Synthesis of AG@AgCl Core-Shell Structure Nanowires and Its Photocatalytic Oxidation of Arsenic (III) Under Visible Light.

    PubMed

    Qin, Yanyan; Cui, Yanping; Tian, Zhen; Wu, Yangling; Li, Yilian

    2017-12-01

    Ag@AgCl core-shell nanowires were synthesized by oxidation of Ag nanowires with moderate FeCl 3 , which exhibited excellent photocatalytic activity for As(III) oxidation under visible light. It was proved that the photocatalytic oxidation efficiency was significantly dependent on the mole ratio of Ag:AgCl. The oxidation rate of As(III) over Ag@AgCl core-shell nanowires first increased with the decrease of Ag 0 percentage, up until the optimized synthesis mole ratio of Ag nanowires:FeCl 3 was 2.32:2.20, with 0.023 mg L -1  min -1 As(III) oxidation rate; subsequently, the oxidation rate dropped with the further decrease of Ag 0 percentage. Effects of the pH, ionic strength, and concentration of humic acid on Ag@AgCl photocatalytic ability were also studied. Trapping experiments using radical scavengers confirmed that h + and ·O 2 - acted as the main active species during the visible-light-driven photocatalytic process for As(III) oxidation. The recycling experiments validated that Ag@AgCl core-shell nanowires were a kind of efficient and stable photocatalyst for As(III) oxidation under visible-light irradiation.

  11. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    PubMed

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

  12. Facile synthesis of palladium nanoparticle doped polyaniline nanowires in soft templates for catalytic applications

    NASA Astrophysics Data System (ADS)

    Kshirasagar, Krushna J.; Markad, Uddhav S.; Saha, Abhijit; Sharma, Kiran Kumar K.; Sharma, Geeta K.

    2017-02-01

    Palladium nanoparticles doped polyaniline (Pd-PANI) nanocomposite (NCs) is synthesized in surfactant based liquid crystalline mesophase by chemical oxidation followed by radiolysis. The confinement of the liquid crystalline mesophase facilitates polymerization of aniline monomers and their 1D growth into polyaniline (PANI) nanowires by using ammonium persulfate. The PANI nanowires have an average diameter of 30-40 nm. The in situ radiolytic reduction of palladium ions ensures uniform size distribution of the palladium (Pd) nanoparticles on the surface of the PANI nanowires. The synthesized Pd-PANI nanocomposites show wire like structures of PANI (diameter ~30-40 nm) on which Pd nanoparticles of the size 10 nm are decorated. The identical average diameter of the PANI nanowires before and post gamma irradiation suggest high stability of the PANI nanowires in liquid crystalline mesophase. Surface characterization of the NCs were carried out using BET and XPS. The catalytic activity of Pd-PANI NCs are investigated in the reduction of methylene blue (MB) and 4-nitro phenol (4-NP) by sodium borohydride (NaBH4). The kinetics of the Pd-PANI NCs catalysed reactions are analysed using the Langmuir-Hinshelwood model. The apparent rate constant (k app) for the MB and 4-NP reduction reactions is 29  ×  10-3 s-1 and 20  ×  10-3 s-1 respectively with an actual Pd catalyst loading of 2.665  ×  10-4 ppm. Further, the recyclability of the Pd-PANI NCs catalyst in both the reduction reactions shows the stability of the catalyst up to four reaction cycles tested in this investigation and the multifunctional nature of the catalyst. The study provides a new approach for the directional synthesis of conducting polymer-metal nanocomposites and their possible application as a nanocatalyst in environmental remediation.

  13. Electrically Conductive and Optically Active Porous Silicon Nanowires

    PubMed Central

    Qu, Yongquan; Liao, Lei; Li, Yujing; Zhang, Hua; Huang, Yu; Duan, Xiangfeng

    2009-01-01

    We report the synthesis of vertical silicon nanowire array through a two-step metal-assisted chemical etching of highly doped n-type silicon (100) wafers in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of the as-grown silicon nanowires is tunable from solid nonporous nanowires, nonporous/nanoporous core/shell nanowires, and entirely nanoporous nanowires by controlling the hydrogen peroxide concentration in the etching solution. The porous silicon nanowires retain the single crystalline structure and crystallographic orientation of the starting silicon wafer, and are electrically conductive and optically active with visible photoluminescence. The combination of electronic and optical properties in the porous silicon nanowires may provide a platform for the novel optoelectronic devices for energy harvesting, conversion and biosensing. PMID:19807130

  14. Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing

    PubMed Central

    Song, Edward; Choi, Jin-Woo

    2013-01-01

    One dimensional polyaniline nanowire is an electrically conducting polymer that can be used as an active layer for sensors whose conductivity change can be used to detect chemical or biological species. In this review, the basic properties of polyaniline nanowires including chemical structures, redox chemistry, and method of synthesis are discussed. A comprehensive literature survey on chemiresistive/conductometric sensors based on polyaniline nanowires is presented and recent developments in polyaniline nanowire-based sensors are summarized. Finally, the current limitations and the future prospect of polyaniline nanowires are discussed. PMID:28348347

  15. Piezoelectric properties of zinc oxide nanowires: an ab initio study.

    PubMed

    Korir, K K; Cicero, G; Catellani, A

    2013-11-29

    Nanowires made of materials with non-centrosymmetric crystal structures are expected to be ideal building blocks for self-powered nanodevices due to their piezoelectric properties, yet a controversial explanation of the effective operational mechanisms and size effects still delays their real exploitation. To solve this controversy, we propose a methodology based on DFT calculations of the response of nanostructures to external deformations that allows us to distinguish between the different (bulk and surface) contributions: we apply this scheme to evaluate the piezoelectric properties of ZnO [0001] nanowires, with a diameter up to 2.3 nm. Our results reveal that, while surface and confinement effects are negligible, effective strain energies, and thus the nanowire mechanical response, are dependent on size. Our unified approach allows for a proper definition of piezoelectric coefficients for nanostructures, and explains in a rigorous way the reason why nanowires are found to be more sensitive to mechanical deformation than the corresponding bulk material.

  16. ROOM TEMPERATURE BULK AND TEMPLATE-FREE SYNTHESIS OF LEUCOEMARLDINE POLYANILINE NANOFIBERS

    EPA Science Inventory

    Herein, we describe a simple strategy for the bulk and template-free synthesis of reduced leucoemarldine polyaniline nanofibers size ranging from as low as 10 nm to 50 nm without the use of any reducing agents at room temperature.

  17. Fabrication of very high aspect ratio metal nanowires by a self-propulsion mechanism.

    PubMed

    Sharabani, Rona; Reuveni, Saada; Noy, Gilad; Shapira, Eyal; Sadeh, Shira; Selzer, Yoram

    2008-04-01

    A novel synthesis method of very high aspect ratio metal nanowires is described. The synthesis utilizes a nanoporous membrane as a template and self-electrophoresis as a directed force that continuously push formed nanowires out of the pores in a rate that is identical to the rate of their elongation. As a result, while the pores of membranes are only 6 microm long, the formed nanowires could be more than 100 microm long.

  18. Diameter dependent thermoelectric properties of individual SnTe nanowires

    DOE PAGES

    Xu, E. Z.; Li, Z.; Martinez, J. A.; ...

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a promising thermoelectric material. In this work, we report on the first thermoelectric study of individual single-crystalline SnTe nanowires with different diameters ranging from ~ 218 to ~ 913 nm. Measurements of thermopower S, electrical conductivity σ and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While the electrical conductivity does not show a strong diameter dependence, the thermopower increases by a factor of two when the nanowire diameter is decreased from ~ 913 nm to ~more » 218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may arise from the enhanced phonon - surface boundary scattering and phonon-defect scattering. Lastly, temperature dependent figure of merit ZT was determined for individual nanowires and the achieved maximum value at room temperature is about three times higher than that in bulk samples of comparable carrier density.« less

  19. Synthesis of platinum nanowire networks using a soft template.

    PubMed

    Song, Yujiang; Garcia, Robert M; Dorin, Rachel M; Wang, Haorong; Qiu, Yan; Coker, Eric N; Steen, William A; Miller, James E; Shelnutt, John A

    2007-12-01

    Platinum nanowire networks have been synthesized by chemical reduction of a platinum complex using sodium borohydride in the presence of a soft template formed by cetyltrimethylammonium bromide in a two-phase water-chloroform system. The interconnected polycrystalline nanowires possess the highest surface area (53 +/- 1 m2/g) and electroactive surface area (32.4 +/- 3.6 m2/g) reported for unsupported platinum nanomaterials; the high surface area results from the small average diameter of the nanowires (2.2 nm) and the 2-10 nm pores determined by nitrogen adsorption measurements. Synthetic control over the network was achieved simply by varying the stirring rate and reagent concentrations, in some cases leading to other types of nanostructures including wormlike platinum nanoparticles. Similarly, substitution of a palladium complex for platinum gives palladium nanowire networks. A mechanism of formation of the metal nanowire networks is proposed based on confined metal growth within a soft template consisting of a network of swollen inverse wormlike micelles.

  20. ROOM TEMPERATURE BULK AND TEMPLATE-FREE SYNTHESIS OF LEUCOEMARLDINE POLYANILINE NANOFIBERS

    EPA Science Inventory

    An extremely simple single-step method is described for the bulk synthesis of nanofibers of the electronic polymer polyaniline in fully reduced state (leucoemarldine form) without using any reducing agents, surfactants, and/or large amounts of insoluble templates. Chemical oxida...

  1. Template synthesis of indium nanowires using anodic aluminum oxide membranes.

    PubMed

    Chen, Feng; Kitai, Adrian H

    2008-09-01

    Indium nanowires with diameters approximately 300 nm have been synthesized by a hydraulic pressure technique using anodic aluminum oxide (AAO) templates. The indium melt is injected into the AAO template and solidified to form nanostructures. The nanowires are dense, continuous and uniformly run through the entire approximately 60 microm thickness of the AAO template. X-ray diffraction (XRD) reveals that the nanowires are polycrystalline with a preferred orientation. SEM is performed to characterize the morphology of the nanowires.

  2. Diamond nanowires: fabrication, structure, properties, and applications.

    PubMed

    Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang

    2014-12-22

    C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Flow Synthesis of Silver Nanowires for Semitransparent Solar Cell Electrodes: A Life Cycle Perspective.

    PubMed

    Espinosa, Nieves; Søndergaard, Roar R; Jørgensen, Mikkel; Krebs, Frederik C

    2016-04-21

    Silver nanowires (AgNWs) were prepared on a 5 g scale using either the well-known batch synthesis following the polyol method or a new flow synthesis method. The AgNWs were employed as semitransparent electrode materials in organic photovoltaics and compared to traditional printed silver electrodes based on micron sized silver flakes using life cycle analysis and environmental impact analysis methods. The life cycle analysis of AgNWs confirms that they provide an avenue to low-impact semitransparent electrodes. We find that the benefit of AgNWs in terms of embodied energy is less pronounced than generally assumed but that the toxicological and environmental benefits are significant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and characterization of single-crystalline zinc tin oxide nanowires

    NASA Astrophysics Data System (ADS)

    Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin

    2014-05-01

    Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.

  5. Synthesis and characterization of single-crystalline zinc tin oxide nanowires.

    PubMed

    Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin

    2014-01-01

    Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.

  6. Thermoelectric Properties of Topological Crystalline Insulator Nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Enzhi

    Bulk lead telluride (PbTe) and its alloy compounds are well-known thermoelectric materials for electric power generation. Tin telluride (SnTe) which has the same rock-salt crystalline structure as PbTe has recently been demonstrated to host unique topological surface states that may favor improved thermoelectric properties. In this thesis work, we studied the thermoelectric properties of single-crystalline nanowires of the SnTe family compounds, i.e. undoped SnTe, PbTe, (Sn,Pb)Te alloy, and In-doped SnTe, all of which were grown by a vapor transport approach. We measured the thermopower S, electrical conductivity sigma and thermal conductivity kappa on each individual nanowire over a temperature range of 25 - 300 K, from which the thermoelectric figures of merit ZTs were determined. In comparison to PbTe nanowires, SnTe and (Sn,Pb)Te has lower thermopower but significantly higher electrical conductivity. Both SnTe and (Sn,Pb)Te nanowires showed enhanced thermopower and suppressed thermal conductivity, compared to their bulk counterparts. The enhancement of thermopower may result from the existence of topological surface states, while the suppression of thermal conductivity may relate to the increased phonon-surface scattering in nanowires. Moreover, indium doping suppresses both electrical and thermal conductivities but enhances thermopower, yielding an improved figure of merit ZT. Our results highlight nanostructuring in combination with alloying or doping as an important approach to enhancing thermoelectric properties. In spite of excellent thermoelectric properties and robust topological surface states, we found that the nanowire surface is subject to fast oxidation. In particular, we demonstrated that exposure of In-doped SnTe nanowires to air leads to surface oxidation within only one minute. Transmission electron microscopy characterization suggests the amorphous nature of the surface, and X-ray photoelectron spectroscopy studies identify the oxide species on

  7. Resonant features of the terahertz generation in semiconductor nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trukhin, V. N., E-mail: valera.truchin@mail.ioffe.ru; Bouravleuv, A. D.; Mustafin, I. A.

    2016-12-15

    The paper presents the results of experimental studies of the generation of terahertz radiation in periodic arrays of GaAs nanowires via excitation by ultrashort optical pulses. It is found that the generation of THz radiation exhibits resonant behavior due to the resonant excitation of cylindrical modes in the nanowires. At the optimal geometric parameters of the nanowire array, the generation efficiency is found to be higher than that for bulk p-InAs, which is one of the most effective coherent terahertz emitters.

  8. Shear-driven phase transformation in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Vincent, L.; Djomani, D.; Fakfakh, M.; Renard, C.; Belier, B.; Bouchier, D.; Patriarche, G.

    2018-03-01

    We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.

  9. Shear-driven phase transformation in silicon nanowires.

    PubMed

    Vincent, L; Djomani, D; Fakfakh, M; Renard, C; Belier, B; Bouchier, D; Patriarche, G

    2018-03-23

    We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.

  10. Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements.

    PubMed

    Otnes, Gaute; Barrigón, Enrique; Sundvall, Christian; Svensson, K Erik; Heurlin, Magnus; Siefer, Gerald; Samuelson, Lars; Åberg, Ingvar; Borgström, Magnus T

    2018-05-09

    III-V solar cells in the nanowire geometry might hold significant synthesis-cost and device-design advantages as compared to thin films and have shown impressive performance improvements in recent years. To continue this development there is a need for characterization techniques giving quick and reliable feedback for growth development. Further, characterization techniques which can improve understanding of the link between nanowire growth conditions, subsequent processing, and solar cell performance are desired. Here, we present the use of a nanoprobe system inside a scanning electron microscope to efficiently contact single nanowires and characterize them in terms of key parameters for solar cell performance. Specifically, we study single as-grown InP nanowires and use electron beam induced current characterization to understand the charge carrier collection properties, and dark current-voltage characteristics to understand the diode recombination characteristics. By correlating the single nanowire measurements to performance of fully processed nanowire array solar cells, we identify how the performance limiting parameters are related to growth and/or processing conditions. We use this understanding to achieve a more than 7-fold improvement in efficiency of our InP nanowire solar cells, grown from a different seed particle pattern than previously reported from our group. The best cell shows a certified efficiency of 15.0%; the highest reported value for a bottom-up synthesized InP nanowire solar cell. We believe the presented approach have significant potential to speed-up the development of nanowire solar cells, as well as other nanowire-based electronic/optoelectronic devices.

  11. Stable and metastable nanowires displaying locally controllable properties

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2014-11-18

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  12. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin B2: Catalytic Polymerisation of Aniline and Pyrrole

    EPA Science Inventory

    For the first time, we report green chemistry approach using vitamin B2 in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride (NaBH4) or hydroxylamine hydro...

  13. Nanowire Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Borshchevsky, Alexander; Fleurial, Jean-Pierre; Herman, Jennifer; Ryan, Margaret

    2005-01-01

    Nanowire thermoelectric devices, now under development, are intended to take miniaturization a step beyond the prior state of the art to exploit the potential advantages afforded by shrinking some device features to approximately molecular dimensions (of the order of 10 nm). The development of nanowire-based thermoelectric devices could lead to novel power-generating, cooling, and sensing devices that operate at relatively low currents and high voltages. Recent work on the theory of thermoelectric devices has led to the expectation that the performance of such a device could be enhanced if the diameter of the wires could be reduced to a point where quantum confinement effects increase charge-carrier mobility (thereby increasing the Seebeck coefficient) and reduce thermal conductivity. In addition, even in the absence of these effects, the large aspect ratios (length of the order of tens of microns diameter of the order of tens of nanometers) of nanowires would be conducive to the maintenance of large temperature differences at small heat fluxes. The predicted net effect of reducing diameters to the order of tens of nanometers would be to increase its efficiency by a factor of .3. Nanowires made of thermoelectric materials and devices that comprise arrays of such nanowires can be fabricated by electrochemical growth of the thermoelectric materials in templates that contain suitably dimensioned pores (10 to 100 nm in diameter and 1 to 100 microns long). The nanowires can then be contacted in bundles to form devices that look similar to conventional thermoelectric devices, except that a production version may contain nearly a billion elements (wires) per square centimeter, instead of fewer than a hundred as in a conventional bulk thermoelectric device or fewer than 100,000 as in a microdevice. It is not yet possible to form contacts with individual nanowires. Therefore, in fabricating a nanowire thermoelectric device, one forms contacts on nanowires in bundles of the

  14. Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.

    PubMed

    Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong

    2017-10-11

    The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.

  15. Metal-Insulator Transition in W-doped VO2 Nanowires

    NASA Astrophysics Data System (ADS)

    Long, Gen; Parry, James; Whittaker, Luisa; Banerjee, Sarbajit; Zeng, Hao

    2010-03-01

    We report a systematic study of the metal-insulator transition in W-doped VO2 nanowires. Magnetic susceptibility were measured for a bulk amount of VO2 nanowire powder. The susceptibility shows a sharp drop with decreasing temperature corresponding to the metal-insulator transition. The transition shows large temperature hysteresis for cooling and heating. With increasing doping concentration, the transition temperatures decreases systematically from 320 K to 275K. Charge transport measurements on the same nanowires showed similar behavior. XRD and TEM measurements were taken to further determine the structure of the materials in study.

  16. Synthesis and characterization of silicon nanowire arrays for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Eichfeld, Sarah M.

    The overall objective of this thesis was the development of processes for the fabrication of radial p-n silicon nanowires (SiNWs) using bottom-up nanowire growth techniques on silicon and glass substrates. Vapor-liquid-solid (VLS) growth was carried out on Si(111) substrates using SiCl4 as the silicon precursor. Growth conditions including temperature, PSiCl4, PH2, and position were investigated to determine the optimum growth conditions for epitaxially oriented silicon nanowire arrays. The experiments revealed that the growth rate of the silicon nanowires exhibits a maximum as a function of PSiCl4 and P H2. Gas phase equilibrium calculations were used in conjunction with a mass transport model to explain the experimental data. The modeling results demonstrate a similar maximum in the mass of solid silicon predicted to form as a function of PSiCl4 and PH2, which results from a change in the gas phase concentration of SiHxCly and SiClx species. This results in a shift in the process from growth to etching with increasing PSiCl4. In general, for the atmospheric pressure conditions employed in this study, growth at higher temperatures >1000°C and higher SiCl4 concentrations gave the best results. The growth of silicon nanowire arrays on anodized alumina (AAO)-coated glass substrates was also investigated. Glass will not hold up to the high temperatures required for Si nanowire growth with SiCl4 so SiH 4 was used as the Si precursor instead. Initial studies were carried out to measure the resistivity of p-type and n-type silicon nanowires grown in freestanding AAO membranes. A series of nanowire samples were grown in which the doping and the nanowire length inside the membrane were varied. Circular metal contacts were deposited on the top surface of the membranes and the resistance of the nanowire arrays was measured. The measured resistance versus nanowire length was plotted and the nanowire resistivity was extracted from the slope. The resistivity of the silicon

  17. Synthesis and properties of transition-metal arsenide nanostructures: From superparamagnetism to superconductivity

    NASA Astrophysics Data System (ADS)

    Desai, Prachi

    This dissertation study focuses on developing new protocols for synthesis of nanostructured transition-metal pnictides including superconducting LiFeAs and studying their structure- property relationship. Nanostructured materials are known to differ in properties compared to their bulk counterparts owing to enhanced surface area and increased packing efficiency in devices. Synthetic chemistry skills and nanofabrication techniques like wet chemistry, electrodeposition, solvothermal, hydrothermal and lithography, are extremely useful for creating nanostructures of these functional materials. This is a challenging task simply because maintaining the phase composition same as that of the bulk material along with achieving nanostructures (nanoparticles, nanowires, nanopillars etc.) simultaneously is not easy. Papers I and II showcase novel synthesis methods for E based pnictides [EPn where E = 1st row transition elements and Pn = P, As etc.]. The superparamagnetism of transition-metal pnictides (e.g. FeAs, CoAs) nanomaterials obtained by this method have interesting magnetic features like high blocking temperatures and inter-particle magnetic exchange. Paper III, shows the concept of generalized protocol of EAs synthesis and discusses the principles behind this method. This protocol has been tested for applicability to not only FeAs, but also MnAs, CoAs and CrAs systems. Generalization of this method along with the discovery of superparamagnetic behavior in FeAs is one of the key findings of this research work. Alongside, paper IV shows the formation of Co3O4 nanowires through solid-solid conversion route aided by sacrificial templates.

  18. A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation

    PubMed Central

    Yang, Yuan; Wang, Kai; Liang, Hai-Wei; Liu, Guo-Qiang; Feng, Mei; Xu, Liang; Liu, Jian-Wei; Wang, Jin-Long; Yu, Shu-Hong

    2015-01-01

    One-dimensional metal chalcogenide nanostructures are important candidates for many technological applications such as photovoltaic and thermoelectric devices. However, the design and synthesis of one-dimensional metal chalcogenide nanostructured materials with controllable components and properties remain a challenge. We report a general chemical transformation process for the synthesis of more than 45 kinds of one-dimensional alloyed/hybrid metal chalcogenide nanostructures inherited from mother template TexSey@Se core-shell nanowires with tunable compositions. As many as nine types of monometal chalcogenide alloy nanowires (including AgSeTe, HgSeTe, CuSeTe, BiSeTe, PbSeTe, CdSeTe, SbSeTe, NiSeTe, and CoSeTe) can be synthesized. Alloyed and hybrid nanowires integrated with two or more alloyed metal chalcogenide phases can also be prepared. The compositions of all of these metal chalcogenide nanowires are tunable within a wide range. This protocol provides a new general route for the controllable synthesis of a new generation of one-dimensional metal chalcogenide nanostructures. PMID:26601137

  19. A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation.

    PubMed

    Yang, Yuan; Wang, Kai; Liang, Hai-Wei; Liu, Guo-Qiang; Feng, Mei; Xu, Liang; Liu, Jian-Wei; Wang, Jin-Long; Yu, Shu-Hong

    2015-11-01

    One-dimensional metal chalcogenide nanostructures are important candidates for many technological applications such as photovoltaic and thermoelectric devices. However, the design and synthesis of one-dimensional metal chalcogenide nanostructured materials with controllable components and properties remain a challenge. We report a general chemical transformation process for the synthesis of more than 45 kinds of one-dimensional alloyed/hybrid metal chalcogenide nanostructures inherited from mother template Te x Se y @Se core-shell nanowires with tunable compositions. As many as nine types of monometal chalcogenide alloy nanowires (including AgSeTe, HgSeTe, CuSeTe, BiSeTe, PbSeTe, CdSeTe, SbSeTe, NiSeTe, and CoSeTe) can be synthesized. Alloyed and hybrid nanowires integrated with two or more alloyed metal chalcogenide phases can also be prepared. The compositions of all of these metal chalcogenide nanowires are tunable within a wide range. This protocol provides a new general route for the controllable synthesis of a new generation of one-dimensional metal chalcogenide nanostructures.

  20. Electrodeposition of Metal on GaAs Nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  1. Measuring thermal conductivity of polystyrene nanowires using the dual-cantilever technique.

    PubMed

    Canetta, Carlo; Guo, Samuel; Narayanaswamy, Arvind

    2014-10-01

    Thermal conductance measurements are performed on individual polystyrene nanowires using a novel measurement technique in which the wires are suspended between two bi-material microcantilever sensors. The nanowires are fabricated via electrospinning process. Thermal conductivity of the nanowire samples is found to be between 6.6 and 14.4 W m(-1) K(-1) depending on sample, a significant increase above typical bulk conductivity values for polystyrene. The high strain rates characteristic of electrospinning are believed to lead to alignment of molecular polymer chains, and hence the increase in thermal conductivity, along the axis of the nanowire.

  2. High Aspect Ratio Perforated Co₃O₄ Nanowires Derived from Cobalt-Carbonate-Hydroxide Nanowires with Enhanced Sensing Performance.

    PubMed

    Zhou, Tuantuan; Gao, Wanlin; Wang, Qiang; Umar, Ahmad

    2018-05-01

    Herein, we report the facile synthesis of high-aspect ratio perforated Co3O4 nanowires derived from cobalt-carbonate-hydroxide (Co(CO3)0.5(OH) 0.11H2O) nanowires. The Co(CO3)0.5(OH) 0.11H2O nanowires were synthesized by simple hydrothermal process at 120 °C while annealing of such nanowires at 400 °C leads the formation of perforated Co3O4 nanowires. The prepared nanowires were characterized by several techniques which confirmed the high aspect ratio and well-crystallinity for the synthesized nanowires. For application point of view, the prepared perforated Co3O4 nanowires were used as efficient electrode material to fabricate highly sensitive and selective hydrazine chemical sensor. The electrochemical impedance spectroscopy (EIS) technique was employed to confirm the successful modification of the electrode. The key parameters of chemical sensor, such as detection limit, sensitivity, and linear range, have been systematically explored. The fabricated hydrazine sensor displayed a rather low detection limit of 4.52 μM (S/N = 3), a good sensitivity of 25.70 μA · mM-1, and a wide linear range of 16.97-358.34 μM.

  3. Transport properties of Sb-doped Si nanowires

    NASA Astrophysics Data System (ADS)

    Nukala, Prathyusha; Sapkota, Gopal; Gali, Pradeep; Philipose, U.

    2012-08-01

    We present a safe and cost-effective approach for synthesis of n-type Sb-doped Si nanowires. The nanowires were synthesized at ambient pressure using SiCl4 as Si source and pure Sb as the dopant source. Structural and compositional characterization using electron microscopy and X-ray spectroscopy show crystalline nanowires with lengths of 30-40 μm and diameters of 40-100 nm. A 3-4 nm thick amorphous oxide shell covers the surface of the nanowire, post-growth. The composition of this shell was confirmed by Raman spectroscopy. Growth of Si nanowires, followed by low temperature annealing in Sb vapor, was shown to be an effective technique for synthesizing Sb-doped Si nanowires. The doping concentration of Sb was found to be dependent on temperature, with Sb re-evaporating from the Si nanowire at higher doping temperatures. Field effect transistors (FETs) were fabricated to investigate the electrical transport properties of these nanowires. The as-grown Si nanowires were found to be p-type with a channel mobility of 40 cm2 V-1 s-1. After doping with Sb, these nanowires exhibited n-type behavior. The channel mobility and carrier concentration of the Sb-doped Si nanowires were estimated to be 288 cm2 V-1 s-1 and 5.3×1018 cm-3 respectively.

  4. Abnormal temperature dependence of conductance of single Cd-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Li, Q. H.; Wan, Q.; Wang, Y. G.; Wang, T. H.

    2005-06-01

    Positive temperature coefficient of resistance is observed on single Cd-doped ZnO nanowires. The current along the nanowire increases linearly with the bias and saturates at large biases. The conductance is greatly enhanced either by ultraviolet illumination or infrared illumination. However, the conductance decreases with increasing temperature, in contrast to the reported temperature behavior either for ZnO nanostructures or for CdO nanoneedles. The increase of the conductance under illumination is related to surface effect and the decrease with increasing temperature to bulk effect. These results show that Cd doping does not change surface effect but affects bulk effect. Such a bulk effect could be used to realize on-chip temperature-independent varistors.

  5. Synthesis and characterization of WO3 nanowires and metal nanoparticle-WO3 nanowire composites

    NASA Astrophysics Data System (ADS)

    Szabó, Mária; Pusztai, Péter; Leino, Anne-Riikka; Kordás, Krisztián; Kónya, Zoltán; Kukovecz, Ákos

    2013-07-01

    Tungsten-trioxide nanowire bundles were prepared using a simple hydrothermal method. Sodium-tungstate was used as precursor and sodium-sulfate as structure directing agent. All the reflections of the X-ray diffractogram of the synthesized wires belong to the hexagonal phase of the tungsten trioxide. The nanowires were successfully decorated with metal nanoparticles by wet impregnation. The TEM investigation showed that using different metal precursors resulted in different particle sizes and coverage on the surface.

  6. Synthesis of silver nanowires using hydrothermal technique for flexible transparent electrode application

    NASA Astrophysics Data System (ADS)

    Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.; Jayaraj, M. K.

    2016-05-01

    Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.

  7. Synthesis of silver nanowires using hydrothermal technique for flexible transparent electrode application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.

    2016-05-23

    Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.

  8. Synthesis of ZnO nanowires for thin film network transistors

    NASA Astrophysics Data System (ADS)

    Dalal, S. H.; Unalan, H. E.; Zhang, Y.; Hiralal, Pritesh; Gangloff, L.; Flewitt, Andrew J.; Amaratunga, Gehan A. J.; Milne, William I.

    2008-08-01

    Zinc oxide nanowire networks are attractive as alternatives to organic and amorphous semiconductors due to their wide bandgap, flexibility and transparency. We demonstrate the fabrication of thin film transistors (TFT)s which utilize ZnO nanowires as the semiconducting channel. These thin film transistors can be transparent and flexible and processed at low temperatures on to a variety of substrates. The nanowire networks are created using a simple contact transfer method that is easily scalable. Apparent nanowire network mobility values can be as high as 3.8 cm2/Vs (effective thin film mobility: 0.03 cm2/Vs) in devices with 20μm channel lengths and ON/OFF ratios of up to 104.

  9. Three-Dimensional Bi₂Te₃ Networks of Interconnected Nanowires: Synthesis and Optimization.

    PubMed

    Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martín-González, Marisol

    2018-05-18

    Self-standing Bi₂Te₃ networks of interconnected nanowires were fabricated in three-dimensional porous anodic alumina templates (3D⁻AAO) with a porous structure spreading in all three spatial dimensions. Pulsed electrodeposition parameters were optimized to grow highly oriented Bi₂Te₃ interconnected nanowires with stoichiometric composition inside those 3D⁻AAO templates. The nanowire networks were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Raman spectroscopy. The results are compared to those obtained in films and 1D nanowires grown under similar conditions. The crystalline structure and composition of the 3D Bi⁻Te nanowire network are finely tuned by controlling the applied voltage and the relaxation time off at zero current density during the deposition. With this fabrication method, and controlling the electrodeposition parameters, stoichiometric Bi₂Te₃ networks of interconnected nanowires have been obtained, with a preferential orientation along [1 1 0], which makes them optimal candidates for out-of-plane thermoelectric applications. Moreover, the templates in which they are grown can be dissolved and the network of interconnected nanowires is self-standing without affecting its composition and orientation properties.

  10. Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Coriell, S. R.; Su, Ching-Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  11. Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays.

    PubMed

    Anttu, Nicklas

    2013-03-01

    Semiconductor nanowire arrays have shown promise for next-generation photovoltaics and photodetection, but enhanced understanding of the light-nanowire interaction is still needed. Here, we study theoretically the absorption of light in an array of vertical InP nanowires by moving continuously, first from the electrostatic limit to the nanophotonic regime and then to the geometrical optics limit. We show how the absorption per volume of semiconductor material in the array can be varied by a factor of 200, ranging from 10 times weaker to 20 times stronger than in a bulk semiconductor sample.

  12. Stable Defects in Semiconductor Nanowires.

    PubMed

    Sanchez, A M; Gott, J A; Fonseka, H A; Zhang, Y; Liu, H; Beanland, R

    2018-05-09

    Semiconductor nanowires are commonly described as being defect-free due to their ability to expel mobile defects with long-range strain fields. Here, we describe previously undiscovered topologically protected line defects with null Burgers vector that, unlike dislocations, are stable in nanoscale crystals. We analyze the defects present in semiconductor nanowires in regions of imperfect crystal growth, i.e., at the nanowire tip formed during consumption of the droplet in self-catalyzed vapor-liquid-solid growth and subsequent vapor-solid shell growth. We use a form of the Burgers circuit method that can be applied to multiply twinned material without difficulty. Our observations show that the nanowire microstructure is very different from bulk material, with line defects either (a) trapped by locks or other defects, (b) arranged as dipoles or groups with a zero total Burgers vector, or (c) have a zero Burgers vector. We find two new line defects with a null Burgers vector, formed from the combination of partial dislocations in twinned material. The most common defect is the three-monolayer high twin facet with a zero Burgers vector. Studies of individual nanowires using cathodoluminescence show that optical emission is quenched in defective regions, showing that they act as strong nonradiative recombination centers.

  13. Size-dependent fracture mode transition in copper nanowires.

    PubMed

    Peng, Cheng; Zhan, Yongjie; Lou, Jun

    2012-06-25

    In situ uni-axial tensile tests of single-crystalline copper nanowires are performed using a micromechanical device inside a scanning electron microscope chamber. The single-crystalline copper nanowires are synthesized by solvothermal processes, and the growth direction along the wire axis is the <110> orientation as confirmed by transmission electron microscopy (TEM) selected area diffraction (SAD) analysis. The fracture strengths of copper nanowires are found to be much higher than that of bulk copper. More interestingly, both ductile and brittle-like fracture modes are found in the same batch of fabricated nanowires, and the fracture modes appear to be dependent on the diameters of tested nanowires. From the analysis of fracture surfaces, sample morphologies and corresponding stress-strain curves, the competition between deformation and fracture mechanisms controlled by initial defects density and by the probability of dislocation interactions is attributed to this intriguing size-dependent fracture mode transition. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Room-temperature lasing in a single nanowire with quantum dots

    NASA Astrophysics Data System (ADS)

    Tatebayashi, Jun; Kako, Satoshi; Ho, Jinfa; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-08-01

    Semiconductor nanowire lasers are promising as ultrasmall, highly efficient coherent light emitters in the fields of nanophotonics, nano-optics and nanobiotechnology. Although there have been several demonstrations of nanowire lasers using homogeneous bulk gain materials or multi-quantum-wells/disks, it is crucial to incorporate lower-dimensional quantum nanostructures into the nanowire to achieve superior device performance in relation to threshold current, differential gain, modulation bandwidth and temperature sensitivity. The quantum dot is a useful and essential nanostructure that can meet these requirements. However, difficulties in forming stacks of quantum dots in a single nanowire hamper the realization of lasing operation. Here, we demonstrate room-temperature lasing of a single nanowire containing 50 quantum dots by properly designing the nanowire cavity and tailoring the emission energy of each dot to enhance the optical gain. Our demonstration paves the way toward ultrasmall lasers with extremely low power consumption for integrated photonic systems.

  15. Grooved nanowires from self-assembling hairpin molecules for solar cells.

    PubMed

    Tevis, Ian D; Tsai, Wei-Wen; Palmer, Liam C; Aytun, Taner; Stupp, Samuel I

    2012-03-27

    One of the challenges facing bulk heterojunction organic solar cells is obtaining organized films during the phase separation of intimately mixed donor and acceptor components. We report here on the use of hairpin-shaped sexithiophene molecules to generate by self-assembly grooved nanowires as the donor component in bulk heterojunction solar cells. Photovoltaic devices were fabricated via spin-casting to produce by solvent evaporation a percolating network of self-assembled nanowires and fullerene acceptors. Thermal annealing was found to increase power conversion efficiencies by promoting domain growth while still maintaining this percolating network of nanostructures. The benefits of self-assembly and grooved nanowires were examined by building devices from a soluble sexithiophene derivative that does not form one-dimensional structures. In these systems, excessive phase separation caused by thermal annealing leads to the formation of defects and lower device efficiencies. We propose that the unique hairpin shape of the self-assembling molecules allows the nanowires as they form to interact well with the fullerenes in receptor-ligand type configurations at the heterojunction of the two domains, thus enhancing device efficiencies by 23%. © 2012 American Chemical Society

  16. Epitaxy of advanced nanowire quantum devices

    NASA Astrophysics Data System (ADS)

    Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.

    2017-08-01

    Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

  17. How Copper Nanowires Grow and How To Control Their Properties.

    PubMed

    Ye, Shengrong; Stewart, Ian E; Chen, Zuofeng; Li, Bo; Rathmell, Aaron R; Wiley, Benjamin J

    2016-03-15

    Scalable, solution-phase nanostructure synthesis has the promise to produce a wide variety of nanomaterials with novel properties at a cost that is low enough for these materials to be used to solve problems. For example, solution-synthesized metal nanowires are now being used to make low cost, flexible transparent electrodes in touch screens, organic light-emitting diodes (OLEDs), and solar cells. There has been a tremendous increase in the number of solution-phase syntheses that enable control over the assembly of atoms into nanowires in the last 15 years, but proposed mechanisms for nanowire formation are usually qualitative, and for many syntheses there is little consensus as to how nanowires form. It is often not clear what species is adding to a nanowire growing in solution or what mechanistic step limits its rate of growth. A deeper understanding of nanowire growth is important for efficiently directing the development of nanowire synthesis toward producing a wide variety of nanostructure morphologies for structure-property studies or producing precisely defined nanostructures for a specific application. This Account reviews our progress over the last five years toward understanding how copper nanowires form in solution, how to direct their growth into nanowires with dimensions ideally suited for use in transparent conducting films, and how to use copper nanowires as a template to grow core-shell nanowires. The key advance enabling a better understanding of copper nanowire growth is the first real-time visualization of nanowire growth in solution, enabling the acquisition of nanowire growth kinetics. By measuring the growth rate of individual nanowires as a function of concentration of the reactants and temperature, we show that a growing copper nanowire can be thought of as a microelectrode that is charged with electrons by hydrazine and grows through the diffusion-limited addition of Cu(OH)2(-). This deeper mechanistic understanding, coupled to an

  18. Synthesis and optimization of the magnetic properties of aligned strontium ferrite nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, Fatemeh, E-mail: F.Ebrahimi@ma.iut.ac.ir; Bakhshi, Saeed Reza; Ashrafizadeh, Fakhreddin

    Highlights: • Dip coating method was used to synthesize strontium ferrite nanowires in template. • Size of nanowires was controlled via anodization parameters. • Fe/Sr ratio was optimized in precursor. • Magnetic properties of nanowires and nanopowders were compared. - Abstract: High aspect ratio strontium hexaferrite nanowires were fabricated by dip coating in alumina template. Fe/Sr ratio was changed from 10 to 12 in precursor, and the samples were annealed at a range of temperatures 500–900 °C in order to optimize the magnetic properties of strontium ferrite in the form of nanowires. Field emission scanning electron microscope (FESEM) proved themore » formation of nanowires in the templates, while TEM images revealed a high degree of crystallinity. The ferrites were further characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectrometer (EDS). Magnetic properties of the specimens were studied by a SQUID at 10–300 K. The results showed that the coercivity of packed density nanowires in the template was much less than that of the nanopowders. On the other hand, the coercivity of nanowires at ambient temperature was less than low temperature coercivity.« less

  19. Optical properties of single ZnTe nanowires grown at low temperature

    NASA Astrophysics Data System (ADS)

    Artioli, A.; Rueda-Fonseca, P.; Stepanov, P.; Bellet-Amalric, E.; Den Hertog, M.; Bougerol, C.; Genuist, Y.; Donatini, F.; André, R.; Nogues, G.; Kheng, K.; Tatarenko, S.; Ferrand, D.; Cibert, J.

    2013-11-01

    Optically active gold-catalyzed ZnTe nanowires have been grown by molecular beam epitaxy, on a ZnTe(111) buffer layer, at low temperature (350 °C) under Te rich conditions, and at ultra-low density (from 1 to 5 nanowires per μm2). The crystalline structure is zinc blende as identified by transmission electron microscopy. All nanowires are tapered and the majority of them are ⟨111⟩ oriented. Low temperature micro-photoluminescence and cathodoluminescence experiments have been performed on single nanowires. We observe a narrow emission line with a blue-shift of 2 or 3 meV with respect to the exciton energy in bulk ZnTe. This shift is attributed to the strain induced by a 5 nm-thick oxide layer covering the nanowires, and this assumption is supported by a quantitative estimation of the strain in the nanowires.

  20. Morphological control of heterostructured nanowires synthesized by sol-flame method

    PubMed Central

    2013-01-01

    Heterostructured nanowires, such as core/shell nanowires and nanoparticle-decorated nanowires, are versatile building blocks for a wide range of applications because they integrate dissimilar materials at the nanometer scale to achieve unique functionalities. The sol-flame method is a new, rapid, low-cost, versatile, and scalable method for the synthesis of heterostructured nanowires, in which arrays of nanowires are decorated with other materials in the form of shells or chains of nanoparticles. In a typical sol-flame synthesis, nanowires are dip-coated with a solution containing precursors of the materials to be decorated, then dried in air, and subsequently heated in the post-flame region of a flame at high temperature (over 900°C) for only a few seconds. Here, we report the effects of the precursor solution on the final morphology of the heterostructured nanowire using Co3O4 decorated CuO nanowires as a model system. When a volatile cobalt salt precursor is used with sufficient residual solvent, both solvent and cobalt precursor evaporate during the flame annealing step, leading to the formation of Co3O4 nanoparticle chains by a gas-solid transition. The length of the nanoparticle chains is mainly controlled by the temperature of combustion of the solvent. On the other hand, when a non-volatile cobalt salt precursor is used, only the solvent evaporates and the cobalt salt is converted to nanoparticles by a liquid–solid transition, forming a conformal Co3O4 shell. This study facilitates the use of the sol-flame method for synthesizing heterostructured nanowires with controlled morphologies to satisfy the needs of diverse applications. PMID:23924299

  1. BULK SYNTHESIS OF SILVER NANORODS IN POLY(ETHYLENE GLYCOL) USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-assisted (MW), surfactantless, greener approach to bulk synthesis of silver nanorods employing poly (ethylene glycol) (PEG) is described. An aqueous solution of silver nitrate (AgNO-3,- 0.1 M, 4 mL) and 4 mL of PEG (molecular weight 300) were mixed at room temperature t...

  2. Dry-growth of silver single-crystal nanowires from porous Ag structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuantong, E-mail: chenchuantong@sanken.osaka-u.ac.jp; Nagao, Shijo; Jiu, Jinting

    A fabrication method of single crystal Ag nanowires in large scale is introduced without any chemical synthesis in wet processes, which usually generates fivefold twinned nanowires of fcc metals. Dense single-crystal nanowires grow on a mechanically polished surface of micro-porous Ag structure, which is created from Ag micro-particles. The diameter and the length of the nanowires can be controlled simply by changing the temperature and the time of the heating during the nanowire growth in air. Unique growth mechanism is described in detail, based on stress-induced migration accelerated by the micro-porous structure where the origin of Ag nanowires growth ismore » incubated. Transmission electron microscopy analysis on the single crystal nanowires is also presented. This simple method offered an alternative preparation for metallic nanowires, especially with the single crystal structure in numerous applications.« less

  3. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1-xSnx nanowires

    NASA Astrophysics Data System (ADS)

    Biswas, Subhajit; Doherty, Jessica; Saladukha, Dzianis; Ramasse, Quentin; Majumdar, Dipanwita; Upmanyu, Moneesh; Singha, Achintya; Ochalski, Tomasz; Morris, Michael A.; Holmes, Justin D.

    2016-04-01

    The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1-xSnx alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour-liquid-solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth.

  4. One-dimensional zinc oxide nanomaterials synthesis and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Weintraub, Benjamin A.

    As humanly engineered materials systems approach the atomic scale, top-down manufacturing approaches breakdown and following nature's example, bottom-up or self-assembly methods have the potential to emerge as the dominant paradigm. Synthesis of one-dimensional nanomaterials takes advantage of such self-assembly manufacturing techniques, but until now most efforts have relied on high temperature vapor phase schemes which are limited in scalability and compatibility with organic materials. The solution-phase approach is an attractive low temperature alternative to overcome these shortcomings. To this end, this thesis is a study of the rationale solution-phase synthesis of ZnO nanowires and applications in photovoltaics. The following thesis goals have been achieved: rationale synthesis of a single ZnO nanowire on a polymer substrate without seeding, design of a wafer-scale technique to control ZnO nanowire array density using layer-by-layer polymers, determination of optimal nanowire field emitter density to maximize the field enhancement factor, design of bridged nanowires across metal electrodes to order to circumvent post-synthesis manipulation steps, electrical characterization of bridged nanowires, rationale solution-phase synthesis of long ZnO nanowires on optical fibers, fabrication of ZnO nanowire dye-sensitized solar cells on optical fibers, electrical and optical characterization of solar cell devices, comparison studies of 2-D versus 3-D nanowire dye-sensitized solar cell devices, and achievement of 6-fold solar cell power conversion efficiency enhancement using a 3-D approach. The thesis results have implications in nanomanufacturing scale-up and next generation photovoltaics.

  5. Electrochemical fabrication of SrTiO3 nanowires with nanoporous alumina template.

    PubMed

    Kang, Jinwook; Ryu, Jaemin; Ko, Eunseong; Tak, Yongsug

    2007-11-01

    Strontium titanate nanowires were electrochemically synthesized with nanoporous alumina template. Both chemical and electrical variables such as electrolyte pH, temperature, and current waveform were modulated to investigate the synthesis process of SrTiO3 nanowires. Superimposed cathodic pulse and diffusion time accelerated the growth of SrTiO3 nanowires, which suggested that the concentration of H+ and Sr2+ ion inside alumina template had a strong influence on the formation of SrTiO3 nanowires. Morphology and crystallinity of SrTiO3 nanowires were investigated with scanning electron microscope, X-ray diffractometer and energy dispersive X-ray spectroscopy.

  6. Synthesis and cathodoluminescence of beta-Ga2O3 nanowires with holes.

    PubMed

    Zhang, Xitian; Liu, Zhuang; Hark, Suikong

    2008-03-01

    Gallium oxide nanowires were synthesized on Si (001) substrate by chemical vapor deposition, using a Ga/Ga2O3 mixture as a precursor and Au as a catalyst. The structure of the as-synthesized products was examined by X-ray powder diffraction and high-resolution transmission electron microscopy, and found to be monoclinic beta-Ga2O3. The morphologies of the beta-Ga2O3 nanowires were characterized by scanning electron microscopy. The majority of the nanowires contain holes along their length, but a few were also found without holes. The holes are believed to be formed by the reaction of adsorbed Ga droplets on reactive terminating surfaces of the nanowires. For nanowires where these reactive surfaces are not exposed, the reaction of Ga is retarded. Cathodoluminescence (CL) of the nanowires was measured. Three emission bands centered at 376, 454, and 666 nm, respectively, were observed.

  7. Fullerene nanowires as a versatile platform for organic electronics

    PubMed Central

    Maeyoshi, Yuta; Saeki, Akinori; Suwa, Shotaro; Omichi, Masaaki; Marui, Hiromi; Asano, Atsushi; Tsukuda, Satoshi; Sugimoto, Masaki; Kishimura, Akihiro; Kataoka, Kazunori; Seki, Shu

    2012-01-01

    The development of organic semiconducting nanowires that act as charge carrier transport pathways in flexible and lightweight nanoelectronics is a major scientific challenge. We report on the fabrication of fullerene nanowires that is universally applicable to its derivatives (pristine C60, methanofullerenes of C61 and C71, and indene C60 bis-adduct), realized by the single particle nanofabrication technique (SPNT). Nanowires with radii of 8–11 nm were formed via a chain polymerization reaction induced by a high-energy ion beam. Fabrication of a poly(3-hexylthiophene) (P3HT): [6,6]-phenyl C61 butyric acid methyl ester (PC61BM) bulk heterojunction organic photovoltaic cell including PC61BM nanowires with precisely-controlled length and density demonstrates how application of this methodology can improve the power conversion efficiency of these inverted cells. The proposed technique provides a versatile platform for the fabrication of continuous and uniform n-type fullerene nanowires towards a wide range of organic electronics applications. PMID:22934128

  8. Testing CuO nanowires as a novel X-ray to electron converter for gas-filled radiation detectors

    NASA Astrophysics Data System (ADS)

    Zarei, H.; Saramad, S.; Razaghi, S.

    2017-10-01

    Nanowires, due to their special physical properties and also high surface to volume ratio, can have considerable applications in designing and development of novel nanodevices. For the radiation shielding, higher absorption coefficient of nanostructures in comparison to bulk ones is an advantage. In gas detectors, designing a proper converter that absorbs higher energy of gamma and X-rays and convert it to more free electrons is one of the major problems. Since the nanowires have higher surface to volume ratio in comparison to the bulk one, so it is expected that by optimizing the thickness, the generated electrons can have higher chance to escape from the surface. In this work, the random CuO nanowires with diameter of 40 nm are deposited on thin glass slide. This nanostructure with different thicknesses are tested by plastic and CsI scintillators by X-ray tube with HVs in the range of 16 to 25 kV. The results show that for the same thickness, the CuO nanowires can release electrons six times more than the bulk ones and for the same energy the optimum QE of nanoconverter can be three times greater than the bulk converter. This novel nanoconverter with higher detection efficiency can have applications in high energy physics, medical imaging and also astronomy.

  9. Simple synthetic route to manganese-containing nanowires with the spinel crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lei; Zhang, Yan; Hudak, Bethany M.

    This report describes a new route to synthesize single-crystalline manganese-containing spinel nanowires (NWs) by a two-step hydrothermal and solid-state synthesis. Interestingly, a nanowire or nanorod morphology is maintained during conversion from MnO{sub 2}/MnOOH to CuMn{sub 2}O{sub 4}/Mg{sub 2}MnO{sub 4}, despite the massive structural rearrangement this must involve. Linear sweep voltammetry (LSV) curves of the products give preliminary demonstration that CuMn{sub 2}O{sub 4} NWs are catalytically active towards the oxygen evolution reaction (OER) in alkaline solution, exhibiting five times the magnitude of current density found with pure carbon black. - Highlights: • Synthesis of single-crystalline manganese-containing spinel nanowires. • Binary oxidemore » nanowire converted to ternary oxide wire through solid state reaction. • Approach to structure conversion with shape retention could be generally applicable. • Copper and Manganese display multiple oxidation states with potential for catalysis. • CuMn{sub 2}O{sub 4} nanowires show promise as catalysts for the oxygen evolution reaction.« less

  10. Growth Mechanism of Nanowires: Ternary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Coriell, S. R.; Hopkins, R. H.; Su, Ching Hua; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    In the past two decades there has been a large rise in the investment and expectations for nanotechnology use. Almost every area of research has projected improvements in sensors, or even a promise for the emergence of some novel device technologies. For these applications major focuses of research are in the areas of nanoparticles and graphene. Although there are some near term applications with nanowires in photodetectors and other low light detectors, there are few papers on the growth mechanism and fabrication of nanowire-based devices. Semiconductor nanowires exhibit very favorable and promising optical properties, including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here an overview of the mechanism of nanowire growth from the melt, and some preliminary results for the thallium arsenic selenide material system. Thallium arsenic selenide (TAS) is a multifunctional material combining excellent acousto-optical, nonlinear and radiation detection properties. We observed that small units of (TAS) nanocubes arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. In some cases very long wires (less than mm) are formed. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places.

  11. Microwave-Assisted Rapid Synthesis of Self-Assembled T-Nb2 O5 Nanowires for High-Energy Hybrid Supercapacitors.

    PubMed

    Yang, Huiling; Xu, Henghui; Wang, Libin; Zhang, Lei; Huang, Yunhui; Hu, Xianluo

    2017-03-23

    Recently ion-intercalation hybrid supercapacitors, with high energy density at high power density, have been widely investigated to meet ever-increasing practical demands. Here, a unique hybrid supercapacitor has been designed and fabricated using self-assembled orthorhombic-phase niobium oxide@carbon (T-Nb 2 O 5 @C) nanowires as an anode and commercially available activated carbon as a cathode. The 3D-interconnected T-Nb 2 O 5 @C nanowires have been synthesized through a highly efficient microwave-solvothermal method, combined with subsequent thermal treatment. The experimental parameters (e.g., time and temperature) can be easily programmed, and the synthesis time can be significantly shortened, thus enabling the buildup of abundant recipes for the engineering of scaled-up production. The Li-ion intercalation pseudocapacitance electrode, made from the as-formed self-assembled T-Nb 2 O 5 @C nanowires, shows excellent charge storage and transfer capability. When assembled into a hybrid supercapacitor with a cathode of activated carbon, a high energy density of 60.6 Wh kg -1 and a high power density of 8.5 kW kg -1 with outstanding stability are achieved. In virtue of easy optimization and programmability of the synthetic strategy, and the remarkable electrochemical performance, the self-assembled T-Nb 2 O 5 @C nanowires offer a promising anode for asymmetric hybrid supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of confinement on anharmonic phonon scattering and thermal conductivity in pristine silicon nanowires

    NASA Astrophysics Data System (ADS)

    Rashid, Zahid; Zhu, Liyan; Li, Wu

    2018-02-01

    The effect of confinement on the anharmonic phonon scattering rates and the consequences thereof on the thermal transport properties in ultrathin silicon nanowires with a diameter of 1-4 nm have been characterized using atomistic simulations and the phonon Boltzmann transport equation. The phonon density of states (PDOS) for ultrathin nanowires approaches a constant value in the vicinity of the Γ point and increases with decreasing diameter, which indicates the increasing importance of the low-frequency phonons as heat carriers. The anharmonic phonon scattering becomes dramatically enhanced with decreasing thickness of the nanowires. In the thinnest nanowire, the scattering rates for phonons above 1 THz are one order of magnitude higher than those in the bulk Si. Below 1 THz, the increase in scattering rates is even much more appreciable. Our numerical calculations revealed that the scattering rates for transverse (longitudinal) acoustic modes follow √{ω } (1 /√{ω } ) dependence at the low-frequency limit, whereas those for the degenerate flexural modes asymptotically approach a constant value. In addition, the group velocities of phonons are reduced compared with bulk Si except for low-frequency phonons (<1 -2 THz depending on the thickness of the nanowires). The increased scattering rates combined with reduced group velocities lead to a severely reduced thermal conductivity contribution from the high-frequency phonons. Although the thermal conductivity contributed by those phonons with low frequencies is instead increased mainly due to the increased PDOS, the total thermal conductivity is still reduced compared to that of the bulk. This work reveals an unexplored mechanism to understand the measured ultralow thermal conductivity of silicon nanowires.

  13. MICROWAVE-ASSISTED SHAPE-CONTROLLED BULK SYNTHESIS OF NOBLE NANOCRYSTALS AND THEIR CATALYTIC PROPERTIES

    EPA Science Inventory

    Bulk and shape-controlled synthesis of gold (Au) nanostructures with various shapes such as prisms, cubes and hexagons is described that occurs via microwave-assisted spontaneous reduction of noble metal salts using an aqueous solution of α-D-glucose, sucrose and maltose. The exp...

  14. Burnout current density of bismuth nanowires

    NASA Astrophysics Data System (ADS)

    Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.; Völklein, F.; Karim, S.; Duan, J. L.

    2008-05-01

    Single bismuth nanowires with diameters ranging from 100nmto1μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density the wires are able to carry was investigated by ramping up the current until failure occurred. It increases by three to four orders of magnitude for nanowires embedded in the template compared to bulk bismuth and rises with diminishing diameter. Simulations show that the wires are heated up electrically to the melting temperature. Since the surface-to-volume ratio rises with diminishing diameter, thinner wires dissipate the heat more efficiently to the surrounding polymer matrix and, thus, can tolerate larger current densities.

  15. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1−xSnx nanowires

    PubMed Central

    Biswas, Subhajit; Doherty, Jessica; Saladukha, Dzianis; Ramasse, Quentin; Majumdar, Dipanwita; Upmanyu, Moneesh; Singha, Achintya; Ochalski, Tomasz; Morris, Michael A.; Holmes, Justin D.

    2016-01-01

    The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1−xSnx alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour–liquid–solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth. PMID:27095012

  16. Monolithic carbon structures including suspended single nanowires and nanomeshes as a sensor platform

    PubMed Central

    2013-01-01

    With the development of nanomaterial-based nanodevices, it became inevitable to develop cost-effective and simple nanofabrication technologies enabling the formation of nanomaterial assembly in a controllable manner. Herein, we present suspended monolithic carbon single nanowires and nanomeshes bridging two bulk carbon posts, fabricated in a designed manner using two successive UV exposure steps and a single pyrolysis step. The pyrolysis step is accompanied with a significant volume reduction, resulting in the shrinkage of micro-sized photoresist structures into nanoscale carbon structures. Even with the significant elongation of the suspended carbon nanowire induced by the volume reduction of the bulk carbon posts, the resultant tensional stress along the nanowire is not significant but grows along the wire thickness; this tensional stress gradient and the bent supports of the bridge-like carbon nanowire enhance structural robustness and alleviate the stiction problem that suspended nanostructures frequently experience. The feasibility of the suspended carbon nanostructures as a sensor platform was demonstrated by testing its electrochemical behavior, conductivity-temperature relationship, and hydrogen gas sensing capability. PMID:24256942

  17. Theoretical research on bandgap of H-saturated Ga1-xAlxN nanowires

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Kong, Yike; Wang, Honggang; Wang, Meishan

    2017-01-01

    Based on first-principles plane-wave ultra-soft pseudopotential method, bandgaps of Ga1-xAlxN nanowires with different diameters and different Al constituents are calculated. After the optimization of the model, the bandgaps are achieved. According to the results, the bandgap of Ga1-xAlxN decreases with increasing diameter and finally, closed to that of the bulk. In addition, with increasing Al constituent, the bandgaps of Ga1-xAlxN nanowires increase. However, the amount of the increase is lower than that of the bulk Ga1-xAlxN with the increase of Al constituent.

  18. Two phase microstructure for Ag-Ni nanowires

    NASA Astrophysics Data System (ADS)

    Srivastava, Chandan; Rai, Rajesh Kumar

    2013-03-01

    In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of ˜200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase.

  19. Surface State-Dominated Photoconduction and THz Generation in Topological Bi2Te2Se Nanowires

    PubMed Central

    2017-01-01

    Topological insulators constitute a fascinating class of quantum materials with nontrivial, gapless states on the surface and insulating bulk states. By revealing the optoelectronic dynamics in the whole range from femto- to microseconds, we demonstrate that the long surface lifetime of Bi2Te2Se nanowires allows us to access the surface states by a pulsed photoconduction scheme and that there is a prevailing bolometric response of the surface states. The interplay of the surface and bulk states dynamics on the different time scales gives rise to a surprising physical property of Bi2Te2Se nanowires: their pulsed photoconductance changes polarity as a function of laser power. Moreover, we show that single Bi2Te2Se nanowires can be used as THz generators for on-chip high-frequency circuits at room temperature. Our results open the avenue for single Bi2Te2Se nanowires as active modules in optoelectronic high-frequency and THz circuits. PMID:28081604

  20. Guided Growth of Horizontal p-Type ZnTe Nanowires

    PubMed Central

    2016-01-01

    A major challenge toward large-scale integration of nanowires is the control over their alignment and position. A possible solution to this challenge is the guided growth process, which enables the synthesis of well-aligned horizontal nanowires that grow according to specific epitaxial or graphoepitaxial relations with the substrate. However, the guided growth of horizontal nanowires was demonstrated for a limited number of materials, most of which exhibit unintentional n-type behavior. Here we demonstrate the vapor–liquid–solid growth of guided horizontal ZnTe nanowires and nanowalls displaying p-type behavior on four different planes of sapphire. The growth directions of the nanowires are determined by epitaxial relations between the nanowires and the substrate or by a graphoepitaxial effect that guides their growth along nanogrooves or nanosteps along the surface. We characterized the crystallographic orientations and elemental composition of the nanowires using transmission electron microscopy and photoluminescence. The optoelectronic and electronic properties of the nanowires were studied by fabricating photodetectors and top-gate thin film transistors. These measurements showed that the guided ZnTe nanowires are p-type semiconductors and are photoconductive in the visible range. The guided growth of horizontal p-type nanowires opens up the possibility of parallel nanowire integration into functional systems with a variety of potential applications not available by other means. PMID:27885331

  1. Guided Growth of Horizontal p-Type ZnTe Nanowires.

    PubMed

    Reut, Gilad; Oksenberg, Eitan; Popovitz-Biro, Ronit; Rechav, Katya; Joselevich, Ernesto

    2016-08-04

    A major challenge toward large-scale integration of nanowires is the control over their alignment and position. A possible solution to this challenge is the guided growth process, which enables the synthesis of well-aligned horizontal nanowires that grow according to specific epitaxial or graphoepitaxial relations with the substrate. However, the guided growth of horizontal nanowires was demonstrated for a limited number of materials, most of which exhibit unintentional n-type behavior. Here we demonstrate the vapor-liquid-solid growth of guided horizontal ZnTe nanowires and nanowalls displaying p-type behavior on four different planes of sapphire. The growth directions of the nanowires are determined by epitaxial relations between the nanowires and the substrate or by a graphoepitaxial effect that guides their growth along nanogrooves or nanosteps along the surface. We characterized the crystallographic orientations and elemental composition of the nanowires using transmission electron microscopy and photoluminescence. The optoelectronic and electronic properties of the nanowires were studied by fabricating photodetectors and top-gate thin film transistors. These measurements showed that the guided ZnTe nanowires are p-type semiconductors and are photoconductive in the visible range. The guided growth of horizontal p-type nanowires opens up the possibility of parallel nanowire integration into functional systems with a variety of potential applications not available by other means.

  2. Catalyst–substrate interaction and growth delay in vapor–liquid–solid nanowire growth

    NASA Astrophysics Data System (ADS)

    Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš

    2018-05-01

    Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.

  3. Catalyst-substrate interaction and growth delay in vapor-liquid-solid nanowire growth.

    PubMed

    Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš

    2018-05-18

    Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.

  4. Synthesis and photoelectric properties of cadmium hydroxide and cadmium hydroxide/cadmium sulphide ultrafine nanowires

    NASA Astrophysics Data System (ADS)

    Dou, Baoli; Jiang, Xiaohong; Wang, Xiaohong; Tang, Liping; Du, Zuliang

    2017-07-01

    Cd(OH)2 ultrafine nanowires with a high aspect ratio were fabricated by the hydrothermal method and were subsequently used as a sacrificial template to generate Cd(OH)2/CdS nanowires. The transmission electron microscopy results show that the length of the nanowires reached several micrometres, and the diameter of the nanowires was approximately 10-20.0 nm. The charge transport properties of the Cd(OH)2 and Cd(OH)2/CdS nanowires assembled on comb Au electrodes was also investigated. The I-V results showed that the current intensity of the Cd(OH)2/CdS nanowires was increased by four orders of magnitude compared with the Cd(OH)2 nanowires, achieving 10-10A.

  5. Single n+-i-n+ InP nanowires for highly sensitive terahertz detection.

    PubMed

    Peng, Kun; Parkinson, Patrick; Gao, Qian; Boland, Jessica L; Li, Ziyuan; Wang, Fan; Mokkapati, Sudha; Fu, Lan; Johnston, Michael B; Tan, Hark Hoe; Jagadish, Chennupati

    2017-03-24

    Developing single-nanowire terahertz (THz) electronics and employing them as sub-wavelength components for highly-integrated THz time-domain spectroscopy (THz-TDS) applications is a promising approach to achieve future low-cost, highly integrable and high-resolution THz tools, which are desirable in many areas spanning from security, industry, environmental monitoring and medical diagnostics to fundamental science. In this work, we present the design and growth of n + -i-n + InP nanowires. The axial doping profile of the n + -i-n + InP nanowires has been calibrated and characterized using combined optical and electrical approaches to achieve nanowire devices with low contact resistances, on which the highly-sensitive InP single-nanowire photoconductive THz detectors have been demonstrated. While the n + -i-n + InP nanowire detector has a only pA-level response current, it has a 2.5 times improved signal-to-noise ratio compared with the undoped InP nanowire detector and is comparable to traditional bulk THz detectors. This performance indicates a promising path to nanowire-based THz electronics for future commercial applications.

  6. A theoretical approach to study the melting temperature of metallic nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Neha; Joshi, Deepika P.

    2016-05-23

    The physical properties of any material change with the change of its size from bulk range to nano range. A theoretical study to account for the size and shape effect on melting temperature of metallic nanowires has been done. We have studied zinc (Zn), indium (In), lead (Pb) and tin (Sn) nanowires with three different cross sectional shapes like regular triangular, square and regular hexagonal. Variation of melting temperature with the size and shape is graphically represented with the available experimental data. It was found that melting temperature of the nanowires decreases with decrement in the size of nanowire, duemore » to surface effect and at very small size the most probable shape also varies with material.« less

  7. DNA Binding Peptide Directed Synthesis of Continuous DNA Nanowires for Analysis of Large DNA Molecules by Scanning Electron Microscope.

    PubMed

    Kim, Kyung-Il; Lee, Seonghyun; Jin, Xuelin; Kim, Su Ji; Jo, Kyubong; Lee, Jung Heon

    2017-01-01

    Synthesis of smooth and continuous DNA nanowires, preserving the original structure of native DNA, and allowing its analysis by scanning electron microscope (SEM), is demonstrated. Gold nanoparticles densely assembled on the DNA backbone via thiol-tagged DNA binding peptides work as seeds for metallization of DNA. This method allows whole analysis of DNA molecules with entangled 3D features. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gibbs-Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth.

    PubMed

    Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L; Dayeh, Shadi A; Wu, Tom

    2016-07-13

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.

  9. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  10. Thermoelectric Power Factor Limit of a 1D Nanowire

    NASA Astrophysics Data System (ADS)

    Chen, I.-Ju; Burke, Adam; Svilans, Artis; Linke, Heiner; Thelander, Claes

    2018-04-01

    In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effects in practice. Here we point out that there is an upper limit to the thermoelectric power factor of nonballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasiballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I -V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit allows the prediction of the achievable power factor of a specific nanowire material system with 1D electronic transport based on the nanowire dimension and mean free path. The power factor of state-of-the-art semiconductor nanowires with small cross section and high crystal quality can be expected to be highly competitive (on the order of mW /m K2 ) at low temperatures. However, they have no clear advantage over bulk materials at, or above, room temperature.

  11. Thermoelectric Power Factor Limit of a 1D Nanowire.

    PubMed

    Chen, I-Ju; Burke, Adam; Svilans, Artis; Linke, Heiner; Thelander, Claes

    2018-04-27

    In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effects in practice. Here we point out that there is an upper limit to the thermoelectric power factor of nonballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasiballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I-V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit allows the prediction of the achievable power factor of a specific nanowire material system with 1D electronic transport based on the nanowire dimension and mean free path. The power factor of state-of-the-art semiconductor nanowires with small cross section and high crystal quality can be expected to be highly competitive (on the order of mW/m K^{2}) at low temperatures. However, they have no clear advantage over bulk materials at, or above, room temperature.

  12. Synthesis, fabrication and characterization of Ge/Si axial nanowire heterostructure tunnel FETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picraux, Samuel T; Dayeh, Shadi A

    2010-01-01

    Axial Ge/Si heterostructure nanowires allow energy band-edge engineering along the axis of the nanowire, which is the charge transport direction, and the realization of asymmetric devices for novel device architectures. This work reports on two advances in the area of heterostructure nanowires and tunnel FETs: (i) the realization of 100% compositionally modulated Si/Ge axial heterostructure nanowires with lengths suitable for device fabrication and (ii) the design and implementation of Schottky barrier tunnel FETs on these nanowires for high-on currents and suppressed ambipolar behavior. Initial prototype devices resulted in a current drive in excess of 100 {micro}A/{micro}m (I/{pi}D) and 10{sup 5}more » I{sub on}/I{sub off} ratios. These results demonstrate the potential of such asymmetric heterostructures (both in the semiconductor channel and metal-semiconductor barrier heights) for low-power and high performance electronics.« less

  13. Controlled synthesis of MnOOH multilayer nanowires as anode materials for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yue; Yue, Kaiqiang; Wang, Yuanxin

    MnOOH multilayer nanowires have been successfully synthesized by a hydrothermal method. It is found that the uniform multilayer structure of nanowires ran through the entire nanowire, which is formed via a layer by layer. The electrochemical properties of MnOOH multilayer nanowires as an anode material for Li-ion batteries (LIB) were investigated, and excellent capacity retention, superior cycling performance, and high rate capability were achieved. Specifically, the reversible capacity of MnOOH multilayer nanowires is 521 mAh/g after 500 cycles at 0.1 C, with excellent electrochemical stability. The multilayer nanowire electrodes exhibit short electron path lengths, high internal dislocation densities and largemore » surface to volume ratio, resulting in increased specific capacity, cycling stability and rate performance in the energy storage devices, which serves as an indication of their potential application in LIBs. - Highlights: •MnOOH multilayer nanowires were synthesized by a hydrothermal method. •The uniform multilayer structure of nanowires was formed via layer by layer. •The reversible capacity of product shows 521 mAh/g after 500 cycles at 0.1 C. •MnOOH multilayer nanowires showed higher property as anode material in LIB.« less

  14. Understanding the vapor-liquid-solid growth and composition of ternary III-V nanowires and nanowire heterostructures

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.

    2017-11-01

    Based on the recent achievements in vapor-liquid-solid (VLS) synthesis, characterization and modeling of ternary III-V nanowires and axial heterostructures within such nanowires, we try to understand the major trends in their compositional evolution from a general theoretical perspective. Clearly, the VLS growth of ternary materials is much more complex than in standard vapor-solid epitaxy techniques, and even maintaining the necessary control over the composition of steady-state ternary nanowires is far from straightforward. On the other hand, VLS nanowires offer otherwise unattainable material combinations without introducing structural defects and hence are very promising for next-generation optoelectronic devices, in particular those integrated with a silicon electronic platform. In this review, we consider two main problems. First, we show how and by means of which parameters the steady-state composition of Au-catalyzed or self-catalyzed ternary III-V nanowires can be tuned to a desired value and why it is generally different from the vapor composition. Second, we present some experimental data and modeling results for the interfacial abruptness across axial nanowire heterostructures, both in Au-catalyzed and self-catalyzed VLS growth methods. Refined modeling allows us to formulate some general growth recipes for suppressing the unwanted reservoir effect in the droplet and sharpening the nanowire heterojunctions. We consider and refine two approaches developed to date, namely the regular crystallization model for a liquid alloy with a critical size of only one III-V pair at high supersaturations or classical binary nucleation theory with a macroscopic critical nucleus at modest supersaturations.

  15. Angular dependence of switching behaviour in template released isolated NiFe nanowires

    NASA Astrophysics Data System (ADS)

    Sultan, Musaab Salman

    2017-12-01

    In this article, the magnetisation behaviour and magnetisation reversal process of both single and bundles of 3 and 7 closely-packed template released Ni60Fe40 nanowires were investigated using high-sensitivity Magneto-Optical Kerr Effect (MOKE) magnetometry. The nanowires were deposited from a dilute suspension onto gold pre-patterned silicon substrates. They were typically 9 μm in length with a diameter of approximately 200 nm. By increasing the number of clumped wires a reduction in the switching field was observed, suggesting that overall the bundle behaves like a single system and decreasing the effective external field required to switch the magnetisation. Square hysteresis loops with a sharp jump in the Kerr signal were seen for all MOKE measurement angles. This result may reflect the surface magnetisation of the nanowire, compared to their bulk behaviour as compared with the literature that adopted the same and different investigative techniques on comparable compositions and dimensions of wires. The influence of applying the magnetic field at different angles with respect to the long axis of the nanowire on the switching behaviour was analysed and compared with the theoretical calculations of non-uniform rotation of the curling model of domain reversal. An agreement and disagreement with this model was seen, respectively, for low and high angles, indicating the complexity of the magnetic state of such isolated nanowires. To confirm the results presented here, further studies are recommended using a combination of techniques sensitive to surface and bulk magnetisation on similar isolated ferromagnetic nanowires.

  16. Localized temperature and chemical reaction control in nanoscale space by nanowire array.

    PubMed

    Jin, C Yan; Li, Zhiyong; Williams, R Stanley; Lee, K-Cheol; Park, Inkyu

    2011-11-09

    We introduce a novel method for chemical reaction control with nanoscale spatial resolution based on localized heating by using a well-aligned nanowire array. Numerical and experimental analysis shows that each individual nanowire could be selectively and rapidly Joule heated for local and ultrafast temperature modulation in nanoscale space (e.g., maximum temperature gradient 2.2 K/nm at the nanowire edge; heating/cooling time < 2 μs). By taking advantage of this capability, several nanoscale chemical reactions such as polymer decomposition/cross-linking and direct and localized hydrothermal synthesis of metal oxide nanowires were demonstrated.

  17. Uniformly sized gold nanoparticles derived from PS-b-P2VP block copolymer templates for the controllable synthesis of Si nanowires.

    PubMed

    Lu, Jennifer Q; Yi, Sung Soo

    2006-04-25

    A monolayer of gold-containing surface micelles has been produced by spin-coating solution micelles formed by the self-assembly of the gold-modified polystyrene-b-poly(2-vinylpyridine) block copolymer in toluene. After oxygen plasma removed the block copolymer template, highly ordered and uniformly sized nanoparticles have been generated. Unlike other published methods that require reduction treatments to form gold nanoparticles in the zero-valent state, these as-synthesized nanoparticles are in form of metallic gold. These gold nanoparticles have been demonstrated to be an excellent catalyst system for growing small-diameter silicon nanowires. The uniformly sized gold nanoparticles have promoted the controllable synthesis of silicon nanowires with a narrow diameter distribution. Because of the ability to form a monolayer of surface micelles with a high degree of order, evenly distributed gold nanoparticles have been produced on a surface. As a result, uniformly distributed, high-density silicon nanowires have been generated. The process described herein is fully compatible with existing semiconductor processing techniques and can be readily integrated into device fabrication.

  18. Pressure induced phase transition in CdTe nanowire: A DFT study

    NASA Astrophysics Data System (ADS)

    Bhatia, Manjeet; Khan, Md. Shahzad; Srivastava, Anurag

    2018-05-01

    We have studied structural phase transition and electronic properties of CdTe nanowires in their wurtzite (B4) to rocksalt (B1) phase by first principles density functional calculations using SIESTA code. Nanowires are derived from wurtzite and rocksalt phase of bulk CdTe with growth direction along 100 planes. We observed structural phase transition from B4→B1 at 4.79 GPa. Wurtzite structure is found to have band gap 2.30 eV while rocksalt is metallic in nature. Our calculated lattice constant (4.55 Å for B4 and 5.84 Å for B1), transition pressure (4.79 GPa) and electronic structure results are in close agreement with the previous calculations on bulk and nanostructures.

  19. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    PubMed

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of high aspect ratio ZnO nanowires with an inexpensive handcrafted electrochemical setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taheri, Ali, E-mail: at1361@aut.ac.ir, E-mail: atahery@aeoi.org.ir; Saramad, Shahyar; Setayeshi, Saeed

    In this work, high aspect ratio zinc oxide nanowires are synthesized using templated one-step electrodeposition technique. Electrodeposition of the nanowires is done using a handcrafted electronic system. Nuclear track-etched polycarbonate membrane is used as a template to form the high aspect ratio nanowires. The result of X-ray diffraction and scanning electron microscopy shows that nanowires with a good crystallinity and an aspect ratio of more than 30 can be achieved in a suitable condition. The height of electrodeposited nanowires reaches to about 11 μm. Based on the obtained results, high aspect ratio ZnO nanowires can be formed using inexpensive electrodepositionmore » setup with an acceptable quality.« less

  1. Controllable Synthesis of Ordered Mesoporous Mo2C@Graphitic Carbon Core-Shell Nanowire Arrays for Efficient Electrocatalytic Hydrogen Evolution.

    PubMed

    Zhu, Jiahui; Yao, Yan; Chen, Zhi; Zhang, Aijian; Zhou, Mengyuan; Guo, Jun; Wu, Winston Duo; Chen, Xiao Dong; Li, Yanguang; Wu, Zhangxiong

    2018-06-06

    Mo 2 C is a possible substitute to Pt-group metals for electrocatalytic hydrogen evolution reaction (HER). Both support-free and carbon-supported Mo 2 C nanomaterials with improved HER performance have been developed. Herein, distinct from prior research, novel ordered mesoporous core-shell nanowires with Mo 2 C cores and ultrathin graphitic carbon (GC) shells are rationally synthesized and demonstrated to be excellent for HER. The synthesis is fulfilled via a hard-templating approach combining in situ carburization and localized carbon deposition. Phosphomolybdic acid confined in the SBA-15 template is first converted to MoO 2 , which is then in situ carburized to Mo 2 C nanowires with abundant surface defects. Simultaneously, GC layer (the thickness is down to ∼1.0 nm in most areas) is controlled to be locally deposited on the Mo 2 C surface because of its strong affinity with carbon and catalytic effect on graphitization. Removal of the template results in the Mo 2 C@GC core-shell nanowire arrays with the structural properties well-characterized. They exhibit excellent performance for HER with a low overpotential of 125 mV at 10 mA cm -2 , a small Tafel slope of 66 mV dec -1 , and an excellent stability in acidic electrolytes. The influences of several factors, especially the spatial configuration and relative contents of the GC and Mo 2 C components, on HER performance are elucidated with control experiments. The excellent HER performance of the mesoporous Mo 2 C@GC core-shell nanowire arrays originates from the rough Mo 2 C nanowires with diverse active sites and short charge-transfer paths and the ultrathin GC shells with improved surface area, electronic conductivity, and stabilizing effect on Mo 2 C.

  2. Synthesis and characterization of axial heterojunction inorganic-organic semiconductor nanowire arrays.

    PubMed

    Chen, Nan; Qian, Xuemin; Lin, Haowei; Liu, Huibiao; Li, Yongjun; Li, Yuliang

    2011-11-07

    The end-to-end P-N heterojunction nanowire arrays combined organic (poly[1,4-bis(pyrrol-2-yl)benzene], BPB) and inorganic (CdS) molecules have been successfully designed and fabricated. The electrical properties of P-N heterojunctions of organic-inorganic nanowire arrays were investigated. The diode nature and rectifying feature of P-N heterojunction nanowire arrays were observed. The rectification ratio of the diode increased from 29.9 to 129.7 as the illumination intensity increased. The material exhibits a new property, which is an improvement in the integration of the physical and chemical properties of the two independent components.

  3. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    DOE PAGES

    Shen, Youde; Chen, Renjie; Yu, Xuechao; ...

    2016-06-02

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor–liquid–solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. In this paper, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs–Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed tomore » impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs–Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. Finally, these results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.« less

  4. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    PubMed Central

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-01-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081

  5. hcp-Co nanowires grown on metallic foams as catalysts for the Fischer-Tropsch synthesis.

    PubMed

    Soulantica, Katerina; Harmel, Justine; Peres, Laurent; Estrader, Marta; Berliet, Adrien; Maury, Sylvie; Fécant, Antoine; Chaudret, Bruno; Serp, Philippe

    2018-06-12

    The possibility to control the structural characteristics of the active phase of supported catalysts offers the opportunity to improve catalyst performance, especially in structure sensitive catalytic reactions. In parallel, heat management is of critical importance for the catalytic performance in highly endo- or exothermic reactions. The Fisher-Tropsch synthesis (FTS) is a structure sensitive exothermic reaction, which enables catalytic transformation of syngas to high quality liquid fuels. We have elaborated monolithic cobalt based heterogeneous catalysts through a wet chemistry approach that allows control over nanocrystal shape and crystallographic phase, while at the same time enables heat management. Copper and nickel foams have been employed as supports for the epitaxial growth of hcp-Co nanowires, directly from a solution containing a coordination compound of cobalt and stabilizing ligands. The Co/Cufoam catalyst has been tested for the Fischer-Tropsch synthesis in fixed bed reactor, showing stability, and significantly superior activity and selectivity towards C5+ compared to a Co/SiO2-Al2O3 reference catalyst under the same conditions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Density Functional Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando

    2013-03-14

    We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, inducedmore » by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less

  7. Synthesis, structural and optical properties of silver nanoparticles uniformly decorated ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Ke-Xin; Wen, Xing; Yao, Cheng-Bao; Li, Jin; Zhang, Meng; Li, Qiang-Hua; Sun, Wen-Jun; Wu, Jia-Da

    2018-04-01

    Silver (Ag) nanoparticles decorated Zinc oxide (A-ZnO) nanowires have been successfully synthesized by two-step chemical vapour deposition and magnetron sputtering method. The X-ray diffraction patterns revealed their hexagonal wurtzite structure. SEM images indicated the Ag nanoparticles are distributed uniformly on the surface of A-ZnO nanowires. By extending the sputtering time, the atomic percent of Ag increased gradually. Moreover, the photoluminescence results demonstrated two major emission peaks for the A-ZnO nanowires. Where, the visible emission peaks were stronger than those of unmodified ZnO nanowires. These studies promise their potential applications in multifunctional optical devices.

  8. Boron doped graphene wrapped silver nanowires as an efficient electrocatalyst for molecular oxygen reduction

    NASA Astrophysics Data System (ADS)

    Nair, Anju K.; Thazhe Veettil, Vineesh; Kalarikkal, Nandakumar; Thomas, Sabu; Kala, M. S.; Sahajwalla, Veena; Joshi, Rakesh K.; Alwarappan, Subbiah

    2016-12-01

    Metal nanowires exhibit unusually high catalytic activity towards oxygen reduction reaction (ORR) due to their inherent electronic structures. However, controllable synthesis of stable nanowires still remains as a daunting challenge. Herein, we report the in situ synthesis of silver nanowires (AgNWs) over boron doped graphene sheets (BG) and demonstrated its efficient electrocatalytic activity towards ORR for the first time. The electrocatalytic ORR efficacy of BG-AgNW is studied using various voltammetric techniques. The BG wrapped AgNWs shows excellent ORR activity, with very high onset potential and current density and it followed four electron transfer mechanism with high methanol tolerance and stability towards ORR. The results are comparable to the commercially available 20% Pt/C in terms of performance.

  9. Boron doped graphene wrapped silver nanowires as an efficient electrocatalyst for molecular oxygen reduction

    PubMed Central

    Nair, Anju K.; Thazhe veettil, Vineesh; Kalarikkal, Nandakumar; Thomas, Sabu; Kala, M. S.; Sahajwalla, Veena; Joshi, Rakesh K.; Alwarappan, Subbiah

    2016-01-01

    Metal nanowires exhibit unusually high catalytic activity towards oxygen reduction reaction (ORR) due to their inherent electronic structures. However, controllable synthesis of stable nanowires still remains as a daunting challenge. Herein, we report the in situ synthesis of silver nanowires (AgNWs) over boron doped graphene sheets (BG) and demonstrated its efficient electrocatalytic activity towards ORR for the first time. The electrocatalytic ORR efficacy of BG-AgNW is studied using various voltammetric techniques. The BG wrapped AgNWs shows excellent ORR activity, with very high onset potential and current density and it followed four electron transfer mechanism with high methanol tolerance and stability towards ORR. The results are comparable to the commercially available 20% Pt/C in terms of performance. PMID:27941954

  10. Conductive Au nanowires regulated by silk fibroin nanofibers

    NASA Astrophysics Data System (ADS)

    Dong, Bo-Ju; Lu, Qiang

    2014-03-01

    Conductive Au-biopolymer composites have promising applications in tissue engineering such as nerve tissue regeneration. In this study, silk fibroin nanofibers were formed in aqueous solution by regulating silk self-assembly process and then used as template for Au nanowire fabrication. We performed the synthesis of Au seeds by repeating the seeding cycles for several times in order to increase the density of Au seeds on the nanofibers. After electroless plating, densely decorated Au seeds grew into irregularly shaped particles following silk nanofiber to fill the gaps between particles and finally form uniform continuous nanowires. The conductive property of the Au-silk fibroin nanowires was studied with current-voltage ( I-V) measurement. A typical ohmic behavior was observed, which highlighted their potential applications in nerve tissue regeneration.

  11. Growth and Physical Property Study of Single Nanowire (Diameter ~45 nm) of Half Doped Manganite

    DOE PAGES

    Datta, Subarna; Chandra, Sayan; Samanta, Sudeshna; ...

    2013-01-01

    We repormore » t here the growth and characterization of functional oxide nanowire of hole doped manganite of La 0.5 Sr 0.5 MnO 3 (LSMO). We also report four-probe electrical resistance measurement of a single nanowire of LSMO (diameter ~45 nm) using focused ion beam (FIB) fabricated electrodes. The wires are fabricated by hydrothermal method using autoclave at a temperature of 270 °C. The elemental analysis and physical property like electrical resistivity are studied at an individual nanowire level. The quantitative determination of Mn valency and elemental mapping of constituent elements are done by using Electron Energy Loss Spectroscopy (EELS) in the Transmission Electron Microscopy (TEM) mode. We address the important issue of whether as a result of size reduction the nanowires can retain the desired composition, structure, and physical properties. The nanowires used are found to have a ferromagnetic transition ( T C ) at around 325 K which is very close to the bulk value of around 330 K found in single crystal of the same composition. It is confirmed that the functional behavior is likely to be retained even after size reduction of the nanowires to a diameter of 45 nm. The electrical resistivity shows insulating behavior within the measured temperature range which is similar to the bulk system.« less

  12. Synthesis of hexagonal ultrathin tungsten oxide nanowires with diameters below 5 nm for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng

    2018-04-01

    Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.

  13. Oriented epitaxial TiO2 nanowires for water splitting

    NASA Astrophysics Data System (ADS)

    Hou, Wenting; Cortez, Pablo; Wuhrer, Richard; Macartney, Sam; Bozhilov, Krassimir N.; Liu, Rong; Sheppard, Leigh R.; Kisailus, David

    2017-06-01

    Highly oriented epitaxial rutile titanium dioxide (TiO2) nanowire arrays have been hydrothermally grown on polycrystalline TiO2 templates with their orientation dependent on the underlying TiO2 grain. Both the diameter and areal density of the nanowires were tuned by controlling the precursor concentration, and the template surface energy and roughness. Nanowire tip sharpness was influenced by precursor solubility and diffusivity. A new secondary ion mass spectrometer technique has been developed to install additional nucleation sites in single crystal TiO2 templates and the effect on nanowire growth was probed. Using the acquired TiO2 nanowire synthesis knowhow, an assortment of nanowire arrays were installed upon the surface of undoped TiO2 photo-electrodes and assessed for their photo-electrochemical water splitting performance. The key result obtained was that the presence of short and dispersed nanowire arrays significantly improved the photocurrent when the illumination intensity was increased from 100 to 200 mW cm-2. This is attributed to the alignment of the homoepitaxially grown nanowires to the [001] direction, which provides the fastest charge transport in TiO2 and an improved pathway for photo-holes to find water molecules and undertake oxidation. This result lays a foundation for achieving efficient water splitting under conditions of concentrated solar illumination.

  14. Diameter-controlled and surface-modified Sb₂Se₃ nanowires and their photodetector performance.

    PubMed

    Choi, Donghyeuk; Jang, Yamujin; Lee, JeeHee; Jeong, Gyoung Hwa; Whang, Dongmok; Hwang, Sung Woo; Cho, Kyung-Sang; Kim, Sang-Wook

    2014-10-22

    Due to its direct and narrow band gap, high chemical stability, and high Seebeck coefficient (1800 μVK(-1)), antimony selenide (Sb2Se3) has many potential applications, such as in photovoltaic devices, thermoelectric devices, and solar cells. However, research on the Sb2Se3 materials has been limited by its low electrical conductivity in bulk state. To overcome this challenge, we suggest two kinds of nano-structured materials, namely, the diameter-controlled Sb2Se3 nanowires and Ag2Se-decorated Sb2Se3 nanowires. The photocurrent response of diameter-controlled Sb2Se3, which depends on electrical conductivity of the material, increases non-linearly with the diameter of the nanowire. The photosensitivity factor (K = I(light)/I(dark)) of the intrinsic Sb2Se3 nanowire with diameter of 80-100 nm is highly improved (K = 75). Additionally, the measurement was conducted using a single nanowire under low source-drain voltage. The dark- and photocurrent of the Ag2Se-decorated Sb2Se3 nanowire further increased, as compared to that of the intrinsic Sb2Se3 nanowire, to approximately 50 and 7 times, respectively.

  15. Lasing in robust cesium lead halide perovskite nanowires

    PubMed Central

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong

    2016-01-01

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  16. Lasing in robust cesium lead halide perovskite nanowires

    DOE PAGES

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; ...

    2016-02-09

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic-inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored andmore » handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry-Pérot lasing occurs in CsPbBr 3 nanowires with an onset of 5 μJ cm -2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 10 9 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication.« less

  17. First-principles simulation on Seebeck coefficient in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Nakamura, Koichi

    2017-06-01

    The Seebeck coefficients of silicon nanowires (SiNWs) were simulated on the basis of first-principles calculation using various atomistic structure models. The electronic band structures of fully hydrogen-terminated SiNW models give the correct image of quantum mechanical confinement from bulk silicon to SiNW for each axial direction, and the change in the density of states by dimensional reduction to SiNW enhances the thermoelectric performance in terms of the Seebeck coefficient, compared with those of bulk silicon and silicon nanosheets. The uniaxial tensile strain for the SiNW models does not strongly affect the Seebeck coefficient even for the SiNW system with giant piezoresistivity. In contrast, dangling bonds on a wire wall sharply reduce the Seebeck coefficient of SiNW and totally degrade thermoelectric performance from the viewpoint of the power factor. The exclusion of dangling bonds is a key element for the design and application of high-performance thermoelectric nanowires of semiconducting materials.

  18. Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation

    PubMed Central

    Liu, Mingzhao; Nam, Chang-Yong; Zhang, Lihua

    2015-01-01

    Here a seedless and template-free technique is demonstrated to scalably grow bismuth nanowires, through thermal evaporation in high vacuum at RT. Conventionally reserved for the fabrication of metal thin films, thermal evaporation deposits bismuth into an array of vertical single crystalline nanowires over a flat thin film of vanadium held at RT, which is freshly deposited by magnetron sputtering or thermal evaporation. By controlling the temperature of the growth substrate the length and width of the nanowires can be tuned over a wide range. Responsible for this novel technique is a previously unknown nanowire growth mechanism that roots in the mild porosity of the vanadium thin film. Infiltrated into the vanadium pores, the bismuth domains (~ 1 nm) carry excessive surface energy that suppresses their melting point and continuously expels them out of the vanadium matrix to form nanowires. This discovery demonstrates the feasibility of scalable vapor phase synthesis of high purity nanomaterials without using any catalysts. PMID:26709727

  19. Scalable hydrothermal synthesis of free-standing VO₂ nanowires in the M1 phase.

    PubMed

    Horrocks, Gregory A; Singh, Sujay; Likely, Maliek F; Sambandamurthy, G; Banerjee, Sarbajit

    2014-09-24

    VO2 nanostructures derived from solution-phase methods are often plagued by broadened and relatively diminished metal-insulator transitions and adventitious doping due to imperfect control of stoichiometry. Here, we demonstrate a stepwise scalable hydrothermal and annealing route for obtaining VO2 nanowires exhibiting almost 4 orders of magnitude abrupt (within 1 °C) metal-insulator transitions. The prepared nanowires have been characterized across their structural and electronic phase transitions using single-nanowire Raman microprobe analysis, ensemble differential scanning calorimetry, and single-nanowire electrical transport measurements. The electrical band gap is determined to be 600 meV and is consistent with the optical band gap of VO2, and the narrowness of differential scanning calorimetry profiles indicates homogeneity of stoichiometry. The preparation of high-quality free-standing nanowires exhibiting pronounced metal-insulator transitions by a solution-phase process allows for scalability, further solution-phase processing, incorporation within nanocomposites, and integration onto arbitrary substrates.

  20. Long exciton lifetimes in stacking-fault-free wurtzite GaAs nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furthmeier, Stephan, E-mail: stephan.furthmeier@ur.de; Dirnberger, Florian; Hubmann, Joachim

    We present a combined photoluminescence and transmission electron microscopy study of single GaAs nanowires. Each wire was characterized both in microscopy and spectroscopy, allowing a direct correlation of the optical and the structural properties. By tuning the growth parameters, the nanowire crystal structure is optimized from a highly mixed zincblende–wurtzite structure to pure wurtzite. We find the latter one to be stacking-fault-free over nanowire lengths up to 4.1 μm. We observe the emission of purely wurtzite nanowires to occur only with polarization directions perpendicular to the wurtzite c{sup ^}-axis, as expected from the hexagonal unit cell symmetry. The free exciton recombinationmore » energy in the wurtzite structure is 1.518 eV at 5 K with a narrow linewidth of 4 meV. Most notably, these pure wurtzite nanowires display long carrier recombination lifetimes of up to 11.2 ns, exceeding reported lifetimes in bulk GaAs and state-of-the-art 2D GaAs/AlGaAs heterostructures.« less

  1. Surface physics of semiconducting nanowires

    NASA Astrophysics Data System (ADS)

    Amato, Michele; Rurali, Riccardo

    2016-02-01

    Semiconducting nanowires (NWs) are firm candidates for novel nanoelectronic devices and a fruitful playground for fundamental physics. Ultra-thin nanowires, with diameters below 10 nm, present exotic quantum effects due to the confinement of the wave functions, e.g. widening of the electronic band-gap, deepening of the dopant states. However, although several reports of sub-10 nm wires exist to date, the most common NWs have diameters that range from 20 to 200 nm, where these quantum effects are absent or play a very minor role. Yet, the research activity on this field is very intense and these materials still promise to provide an important paradigm shift for the design of emerging electronic devices and different kinds of applications. A legitimate question is then: what makes a nanowire different from bulk systems? The answer is certainly the large surface-to-volume ratio. In this article we discuss the most salient features of surface physics and chemistry in group-IV semiconducting nanowires, focusing mostly on Si NWs. First we review the state-of-the-art of NW growth to achieve a smooth and controlled surface morphology. Next we discuss the importance of a proper surface passivation and its role on the NW electronic properties. Finally, stressing the importance of a large surface-to-volume ratio and emphasizing the fact that in a NW the surface is where most of the action takes place, we discuss molecular sensing and molecular doping.

  2. Synthesis and characterization of barium silicide (BaSi2) nanowire arrays for potential solar applications.

    PubMed

    Pokhrel, Ankit; Samad, Leith; Meng, Fei; Jin, Song

    2015-11-07

    In order to utilize nanostructured materials for potential solar and other energy-harvesting applications, scalable synthetic techniques for these materials must be developed. Herein we use a vapor phase conversion approach to synthesize nanowire (NW) arrays of semiconducting barium silicide (BaSi2) in high yield for the first time for potential solar applications. Dense arrays of silicon NWs obtained by metal-assisted chemical etching were converted to single-crystalline BaSi2 NW arrays by reacting with Ba vapor at about 930 °C. Structural characterization by X-ray diffraction and high-resolution transmission electron microscopy confirm that the converted NWs are single-crystalline BaSi2. The optimal conversion reaction conditions allow the phase-pure synthesis of BaSi2 NWs that maintain the original NW morphology, and tuning the reaction parameters led to a controllable synthesis of BaSi2 films on silicon substrates. The optical bandgap and electrochemical measurements of these BaSi2 NWs reveal a bandgap and carrier concentrations comparable to previously reported values for BaSi2 thin films.

  3. Silicon Nanowire Growth at Chosen Positions and Orientations

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie A.

    2009-01-01

    It is now possible to grow silicon nanowires at chosen positions and orientations by a method that involves a combination of standard microfabrication processes. Because their positions and orientations can be chosen with unprecedented precision, the nanowires can be utilized as integral parts of individually electronically addressable devices in dense arrays. Nanowires made from silicon and perhaps other semiconductors hold substantial promise for integration into highly miniaturized sensors, field-effect transistors, optoelectronic devices, and other electronic devices. Like bulk semiconductors, inorganic semiconducting nanowires are characterized by electronic energy bandgaps that render them suitable as means of modulating or controlling electronic signals through electrostatic gating, in response to incident light, or in response to molecules of interest close to their surfaces. There is now potential for fabricating arrays of uniform, individually electronically addressable nanowires tailored to specific applications. The method involves formation of metal catalytic particles at the desired positions on a substrate, followed by heating the substrate in the presence of silane gas. The figure illustrates an example in which a substrate includes a silicon dioxide surface layer that has been etched into an array of pillars and the catalytic (in this case, gold) particles have been placed on the right-facing sides of the pillars. The catalytic thermal decomposition of the silane to silicon and hydrogen causes silicon columns (the desired nanowires) to grow outward from the originally catalyzed spots on the substrate, carrying the catalytic particles at their tips. Thus, the position and orientation of each silicon nanowire is determined by the position of its originally catalyzed spot on the substrate surface, and the orientation of the nanowire is perpendicular to the substrate surface at the originally catalyzed spot.

  4. Structure of assemblies of metal nanowires in mesoporous alumina membranes studied by EXAFS, XANES, X-ray diffraction and SAXS.

    PubMed

    Benfield, Robert E; Grandjean, Didier; Dore, John C; Esfahanian, Hamid; Wu, Zhonghua; Kröll, Michael; Geerkens, Marcus; Schmid, Günter

    2004-01-01

    Mesoporous alumina membranes ("anodic aluminium oxide", or "AAO") are made by anodic oxidation of aluminium metal. These membranes contain hexagonal arrays of parallel non-intersecting cylindrical pores perpendicular to the membrane surface. By varying the anodisation voltage, the pore diameters are controllable within the range 5-250 nm. We have used AAO membranes as templates for the electrochemical deposition of metals within the pores to produce nanowires. These represent assemblies of one-dimensional quantum wires with prospective applications in electronic, optoelectronic and magnetic devices. Detailed characterisation of the structures of these nanowire assemblies on a variety of length scales is essential to understand their physical properties and evaluate their possible applications. We have used EXAFS, XANES, WAXS, high energy X-ray diffraction and SAXS to study their structure and bonding. In this paper we report the results of our studies of four different nanowire systems supported in AAO membranes. These are the ferromagnetic metals iron and cobalt, the superconducting metal tin, and the semiconductor gallium nitride. Iron nanowires in pores of diameter over the range 12 nm-72 nm are structurally very similar to bcc bulk iron. They have a strong preferred orientation within the alumina pores. Their XANES shows significant differences from that of bulk iron, showing that the electronic structure of the iron nanowires depends systematically on their diameter. Cobalt nanowires are composed of a mixture of hcp and fcc phases, but the ratio of the two phases does not depend in a simple way on the pore diameter or preparation conditions. In bulk cobalt, the fcc beta-phase is normally stable only at high temperatures. Strong preferred orientation of the c-axis in the pores was found. Tin nanowires in alumina membranes with pores diameters between 12 nm and 72 nm have a tetragonal beta-structure at ambient temperature and also at 80 K. Magnetic

  5. Ultrasonication-assisted synthesis of high aspect ratio gold nanowires on a graphene template and investigation of their growth mechanism.

    PubMed

    Xin, Wenbo; De Rosa, Igor M; Cao, Yang; Yin, Xunqian; Yu, Hang; Ye, Peiyi; Carlson, Larry; Yang, Jenn-Ming

    2018-04-19

    We report a facile synthesis of Au nanowires (AuNWs) with a high aspect ratio (l/D) of up to 5000 on a plasma activated graphene template with ultrasound assistance. We demonstrate that the ultrasonication induced symmetry breaking of Au clusters facilitates the growth of AuNWs from the embryonic stages. Furthermore, the growth mechanism of AuNWs is systematically investigated using high resolution electron transmission microscopy (HRTEM), which reveals the unique role of the defective graphene template in directing the growth of AuNWs.

  6. Fabrication of ZnCoO nanowires and characterization of their magnetic properties

    PubMed Central

    2014-01-01

    Hydrogen-treated ZnCoO shows magnetic behavior, which is related to the formation of Co-H-Co complexes. However, it is not well known how the complexes are connected to each other and with what directional behavior they are ordered. In this point of view, ZnCoO nanowire is an ideal system for the study of the magnetic anisotropy. ZnCoO nanowire was fabricated by trioctylamine solution method under different ambient gases. We found that the oxidation of trioctylamine plays an essential role on the synthesis of high-quality ZnCoO nanowires. The hydrogen injection to ZnCoO nanowires induced ferromagnetism with larger magnetization than ZnCoO powders, while becoming paramagnetic after vacuum heat treatment. Strong ferromagnetism of nanowires can be explained by the percolation of Co-H-Co complexes along the c-axis. PMID:24910575

  7. Growth of Gallium Nitride Nanowires: A Study Using In Situ Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Diaz Rivas, Rosa Estela

    Owing to their special characteristics, group III-Nitride semiconductors have attracted special attention for their application in a wide range of optoelectronic devices. Of particular interest are their direct and wide band gaps that span from ultraviolet to the infrared wavelengths. In addition, their stronger bonds relative to the other compound semiconductors makes them thermally more stable, which provides devices with longer life time. However, the lattice mismatch between these semiconductors and their substrates cause the as-grown films to have high dislocation densities, reducing the life time of devices that contain these materials. One possible solution for this problem is to substitute single crystal semiconductor nanowires for epitaxial films. Due to their dimensionality, semiconductor nanowires typically have stress-free surfaces and better physical properties. In order to employ semiconductor nanowires as building blocks for nanoscale devices, a precise control of the nanowires' crystallinity, morphology, and chemistry is necessary. This control can be achieved by first developing a deeper understanding of the processes involved in the synthesis of nanowires, and then by determining the effects of temperature and pressure on their growth. This dissertation focuses on understanding of the growth processes involved in the formation of GaN nanowires. Nucleation and growth events were observed in situ and controlled in real-time using an environmental transmission electron microscope. These observations provide a satisfactory elucidation of the underlying growth mechanism during the formation of GaN nanowires. Nucleation of these nanowires appears to follow the vapor-liquid-solid mechanism. However, nanowire growth is found to follow both the vapor-liquid-solid and vapor-solid-solid mechanisms. Direct evidence of the effects of III/V ratio on nanowire growth is also reported, which provides important information for tailoring the synthesis of Ga

  8. Large scale synthesis of α-Si3N4 nanowires through a kinetically favored chemical vapour deposition process

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Huang, Zhaohui; Zhang, Xiaoguang; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Min, Xin

    2018-01-01

    Understanding the kinetic barrier and driving force for crystal nucleation and growth is decisive for the synthesis of nanowires with controllable yield and morphology. In this research, we developed an effective reaction system to synthesize very large scale α-Si3N4 nanowires (hundreds of milligrams) and carried out a comparative study to characterize the kinetic influence of gas precursor supersaturation and liquid metal catalyst. The phase composition, morphology, microstructure and photoluminescence properties of the as-synthesized products were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and room temperature photoluminescence measurement. The yield of the products not only relates to the reaction temperature (thermodynamic condition) but also to the distribution of gas precursors (kinetic condition). As revealed in this research, by controlling the gas diffusion process, the yield of the nanowire products could be greatly improved. The experimental results indicate that the supersaturation is the dominant factor in the as-designed system rather than the catalyst. With excellent non-flammability and high thermal stability, the large scale α-Si3N4 products would have potential applications to the improvement of strength of high temperature ceramic composites. The photoluminescence spectrum of the α-Si3N4 shows a blue shift which could be valued for future applications in blue-green emitting devices. There is no doubt that the large scale products are the base of these applications.

  9. Synthesis and characterization of group IV semiconductor nanowires by vapor-liquid-solid growth

    NASA Astrophysics Data System (ADS)

    Lew, Kok-Keong

    There is currently intense interest in one-dimensional nanostructures, such as nanotubes and nanowires, due to their potential to test fundamental concepts of dimensionality and to serve as building blocks for nanoscale devices. Vapor-liquid-solid (VLS) growth, which is one of the most common fabrication methods, has been used to produce single crystal semiconductor nanowires such as silicon (Si), germanium (Ge), and gallium arsenide (GaAs). In the VLS growth of Group IV semiconductor nanowires, a metal, such as gold (Au) is used as a catalyst agent to nucleate whisker growth from a Si-containing (silane (SIH4)) or Ge-containing vapor (germane (GeH 4)). Au and Si/Ge form a liquid alloy that has a eutectic temperature of around 360°C, which, upon supersaturation, nucleates the growth of a Si or Ge wire. The goal of this work is to develop a more fundamental understanding of VLS growth kinetics and intentional doping of Group IV semiconductor nanowires in order to better control the properties of the nanowires. The fabrication of p-type and n-type Si nanowires will be studied via the addition of dopant gases such as diborane (B2H 6), trimethylboron (TMB), and phosphine (PH3) during growth. The use of gaseous dopant sources provides more flexibility in growth, particularly for the fabrication of p-n junctions and structures with axial dopant variations (e.g. p+-p- p+). The study is then extended to fabricate SiGe alloy nanowires by mixing SiH4 and GeH4. Bandgap engineering in Si/SiGe heterostructures can lead to novel devices with improved performance compared to those made entirely of Si. The scientific findings will lead to a better understanding of the fabrication of Si/SiGe axial and radial heterostructure nanowires for functional nanowire device structures, such as heterojunction bipolar transistors (HBTs) and high electron mobility transistors (HEMTs). Eventually, the central theme of this research is to provide a scientific knowledge base and foundation for

  10. Silicon nanowire arrays as thermoelectric material for a power microgenerator

    NASA Astrophysics Data System (ADS)

    Dávila, D.; Tarancón, A.; Fernández-Regúlez, M.; Calaza, C.; Salleras, M.; San Paulo, A.; Fonseca, L.

    2011-10-01

    A novel design of a silicon-based thermoelectric power microgenerator is presented in this work. Arrays of silicon nanowires, working as thermoelectric material, have been integrated in planar uni-leg thermocouple microstructures to convert waste heat into electrical energy. Homogeneous, uniformly dense, well-oriented and size-controlled arrays of silicon nanowires have been grown by chemical vapor deposition using the vapor-liquid-solid mechanism. Compatibility issues between the nanowire growth method and microfabrication techniques, such as electrical contact patterning, are discussed. Electrical measurements of the nanowire array electrical conductivity and the Seebeck voltage induced by a controlled thermal gradient or under harvesting operation mode have been carried out to demonstrate the feasibility of the microdevice. A resistance of 240 Ω at room temperature was measured for an array of silicon nanowires 10 µm -long, generating a Seebeck voltage of 80 mV under an imposed thermal gradient of 450 °C, whereas only 4.5 mV were generated under a harvesting operation mode. From the results presented, a Seebeck coefficient of about 150-190 µV K-1 was estimated, which corresponds to typical values for bulk silicon.

  11. Synthesis, Spray Deposition, and Hot-Press Transfer of Copper Nanowires for Flexible Transparent Electrodes.

    PubMed

    Deshmukh, Rupali; Calvo, Micha; Schreck, Murielle; Tervoort, Elena; Sologubenko, Alla S; Niederberger, Markus

    2018-06-20

    We report a solution-phase approach to the synthesis of crystalline copper nanowires (Cu NWs) with an aspect ratio >1000 via a new catalytic mechanism comprising copper ions. The synthesis involves the reaction between copper(II) chloride and copper(II) acetylacetonate in a mixture of oleylamine and octadecene. Reaction parameters such as the molar ratio of precursors as well as the volume ratio of solvents offer the possibility to tune the morphology of the final product. A simple low-cost spray deposition method was used to fabricate Cu NW films on a glass substrate. Post-treatment under reducing gas (5% H 2 + 95% N 2 ) atmosphere resulted in Cu NW films with a low sheet resistance of 24.5 Ω/sq, a transmittance of T = 71% at 550 nm (including the glass substrate), and a high oxidation resistance. Moreover, the conducting Cu NW networks on a glass substrate can easily be transferred onto a polycarbonate substrate using a simple hot-press transfer method without compromising on the electrical performance. The resulting flexible transparent electrodes show excellent flexibility ( R/ R o < 1.28) upon bending to curvatures of 1 mm radius.

  12. Impurity and phonon scattering in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Persson, M. P.; Mera, H.; Delerue, C.; Niquet, Y. M.; Allan, G.; Wang, E.

    2011-03-01

    We model the scattering of electrons by phonons and dopant impurities in ultimate [110]-oriented gate-all-around silicon nanowires with an atomistic valence force field and tight-binding approach. All electron-phonons interactions are included. We show that impurity scattering can reduce with decreasing nanowire diameter due to the enhanced screening by the gate. Donors and acceptors however perform very differently : acceptors behave as tunnel barriers for the electrons, while donors behave as quantum wells which introduce Fano resonances in the conductance. As a consequence the acceptors are much more limiting the mobility than the donors. The resistances of single acceptors are also very dependent on their radial position in the nanowire, which might be a significant source of variability in ultimate silicon nanowire devices. Concerning phonons, we show that, as a result of strong confinement, i) electrons couple to a wide and complex distribution of phonons modes, and ii) the mobility has a non-monotonic variation with wire diameter and is strongly reduced with respect to bulk. French National Research Agency ANR project QUANTAMONDE Contract No. ANR-07-NANO-023-02 and by the Délégation Générale pour l'Armement, French Ministry of Defense under Grant No. 2008.34.0031.

  13. Synthesis of zirconia (ZrO2) nanowires via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Baek, M. K.; Park, S. J.; Choi, D. J.

    2017-02-01

    Monoclinic zirconia nanowires were synthesized by chemical vapor deposition using ZrCl4 powder as a starting material at 1200 °C and 760 Torr. Graphite was employed as a substrate, and an Au thin film was pre-deposited on the graphite as a catalyst. The zirconia nanostructure morphology was observed through scanning electron microscopy and transmission electron microscopy. Based on X-ray diffraction, selected area electron diffraction, and Raman spectroscopy data, the resulting crystal structure was found to be single crystalline monoclinic zirconia. The homogeneous distributions of Zr, O and Au were studied by scanning transmission electron microscopy with energy dispersive X-ray spectroscopy mapping, and there was no metal droplet at the nanowire tips despite the use of an Au metal catalyst. This result is apart from that of conventional metal catalyzed nanowires.

  14. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    DOE PAGES

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; ...

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires-orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm 3 that is almost one order ofmore » larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This research provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.« less

  15. Facile synthesis of PdAgTe nanowires with superior electrocatalytic activity

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-12-01

    In this work, ultrathin Te nanowires (NWs) with high-aspect-ratio are prepared by a simple hydrothermal method. By using Te NWs as the sacrificial template, we demonstrate a facile and efficient method for the synthesis of PdAgTe NWs with high-quality through the partly galvanic replacement between Te NWs and the corresponding noble metal salts precursors in an aqueous solution. The compositions of PdAgTe NWs can be tuned by simply altering the concentration of the precursors. After cyclic voltammetry treatment, multi-component PdAgTe NW with a highly active and stable surface can be obtained. The structure and composition of the as-prepared nanomaterials are analyzed by transmission electron microscope, X-ray diffraction, energy dispersive X-ray spectroscopy, inductively coupled plasma-mass spectroscopy and X-ray photoelectron spectroscopy. Electrochemical catalytic measurement results prove that the as synthesized PdAgTe NWs present superior catalytic activity toward ethanol electrooxidation in alkaline solution than the commercial Pd/C catalyst, which making them can be used as effective catalysts for the direct ethanol fuel cells.

  16. Excellent field emission properties of vertically oriented CuO nanowire films

    NASA Astrophysics Data System (ADS)

    Feng, Long; Yan, Hui; Li, Heng; Zhang, Rukang; Li, Zhe; Chi, Rui; Yang, Shuaiyu; Ma, Yaya; Fu, Bin; Liu, Jiwen

    2018-04-01

    Oriented CuO nanowire films were synthesized on a large scale using simple method of direct heating copper grids in air. The field emission properties of the sample can be enhanced by improving the aspect ratio of the nanowires just through a facile method of controlling the synthesis conditions. Although the density of the nanowires is large enough, the screen effect is not an important factor in this field emission process because few nanowires sticking out above the rest. Benefiting from the unique geometrical and structural features, the CuO nanowire samples show excellent field emission (FE) properties. The FE measurements of CuO nanowire films illustrate that the sample synthesized at 500 °C for 8 h has a comparatively low turn-on field of 0.68 V/μm, a low threshold field of 1.1 V/μm, and a large field enhancement factor β of 16782 (a record high value for CuO nanostructures, to the best of our knowledge), indicating that the samples are promising candidates for field emission applications.

  17. Control of the ZnO nanowires nucleation site using microfluidic channels.

    PubMed

    Lee, Sang Hyun; Lee, Hyun Jung; Oh, Dongcheol; Lee, Seog Woo; Goto, Hiroki; Buckmaster, Ryan; Yasukawa, Tomoyuki; Matsue, Tomokazu; Hong, Soon-Ku; Ko, HyunChul; Cho, Meoung-Whan; Yao, Takafumi

    2006-03-09

    We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.

  18. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jie; Cullen, David A.; Forest, Robert V.

    2015-01-15

    The sluggish kinetics of methanol oxidation reaction (MOR) is a major barrier to the commercialization of direct methanol fuel cells (DMFCs). In this study, we report a facile synthesis of platinum–ruthenium nanotubes (PtRuNTs) and platinum–ruthenium-coated copper nanowires (PtRu/CuNWs) by galvanic displacement reaction using copper nanowires as a template. The PtRu compositional effect on MOR is investigated; the optimum Pt/Ru bulk atomic ratio is about 4 and surface atomic ratio about 1 for both PtRuNTs and PtRu/CuNWs. Enhanced specific MOR activities are observed on both PtRuNTs and PtRu/CuNWs compared with the benchmark commercial carbon-supported PtRu catalyst (PtRu/C, Hispec 12100). Finally, x-raymore » photoelectron spectroscopy (XPS) reveals a larger extent of electron transfer from Ru to Pt on PtRu/CuNWs, which may lead to a modification of the d-band center of Pt and consequently a weaker bonding of CO (the poisoning intermediate) on Pt and a higher MOR activity on PtRu/CuNWs.« less

  19. Synthesis and characterization of silver nanowires with zigzag morphology in N, N-dimethylformamide

    NASA Astrophysics Data System (ADS)

    He, Xin; Zhao, Xiujian; Chen, Yunxia; Feng, Jinyang; Sun, Zhenya

    2007-08-01

    Zigzag silver nanowires with a uniform diameter of 20±5 nm were prepared by reducing silver nitrate (AgNO 3) with N, N-dimethylformamide (DMF) in the presence of tetrabutyl titanate (TBT) and acetylacetone (AcAc) at 373 K for 18 h. X-ray and selected area electron diffraction (XRD and SAED) patterns reveal that the prepared product is made of pure silver with face centered cubic structure. Transmission electron microscopy (TEM) investigations suggest that the amount of silver nanowires is enhanced with increase in reaction time, and the end-to-end assemblies of silver nanorods are observed during the reaction process. After 18 h reaction, silver nanowires with zigzag morphology are obtained. In this paper, a possible growth process of silver nanowires with this interesting shape is described. Silver nanoparticles with small sizes were obtained by reducing Ag + ions with DMF, providing seeds for homogeneous growth of silver nanorods. With the extending reaction time, the synthesized silver nanorods were connected in an end-to-end manner, and the interface between the connections of two nanorods gradually disappeared. The final product shows zigzag morphology with various angles. The angles between two connecting straight parts of zigzag nanowires exhibit an alterable range of 74-151°. These silver nanowires show tremendous potential applications in future nanoscale electronic circuits.

  20. Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires.

    PubMed

    Zardo, I; Yu, L; Conesa-Boj, S; Estradé, S; Alet, Pierre Jean; Rössler, J; Frimmer, M; Roca I Cabarrocas, P; Peiró, F; Arbiol, J; Morante, J R; Fontcuberta I Morral, A

    2009-04-15

    Silicon nanowires have been grown with gallium as catalyst by plasma enhanced chemical vapor deposition. The morphology and crystalline structure has been studied by electron microscopy and Raman spectroscopy as a function of growth temperature and catalyst thickness. We observe that the crystalline quality of the wires increases with the temperature at which they have been synthesized. The crystalline growth direction has been found to vary between <111> and <112>, depending on both the growth temperature and catalyst thickness. Gallium has been found at the end of the nanowires, as expected from the vapor-liquid-solid growth mechanism. These results represent good progress towards finding alternative catalysts to gold for the synthesis of nanowires.

  1. Pb(core)/ZnO(shell) nanowires obtained by microwave-assisted method

    PubMed Central

    2011-01-01

    In this study, Pb-filled ZnO nanowires [Pb(core)/ZnO(shell)] were synthesized by a simple and novel one-step vapor transport and condensation method by microwave-assisted decomposition of zinc ferrite. The synthesis was performed using a conventional oven at 1000 W and 5 min of treatment. After synthesis, a spongy white cotton-like material was obtained in the condensation zone of the reaction system. HRTEM analysis revealed that product consists of a Pb-(core) with (fcc) cubic structure that preferentially grows in the [111] direction and a hexagonal wurtzite ZnO-(Shell) that grows in the [001] direction. Nanowire length was more than 5 μm and a statistical analysis determined that the shell and core diameters were 21.00 ± 3.00 and 4.00 ± 1.00 nm, respectively. Experimental, structural details, and synthesis mechanism are discussed in this study. PMID:21985637

  2. Theoretical Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando

    2012-10-10

    We use density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5- 1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, nonhollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity towards the oxygen reduction reaction of platinum nanowires was addressed by studying the change in the chemisorption energies of oxygen and hydroxyl groups, inducedmore » by inserting the inner chain of platinum atoms into the hollow nanotubes. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Nanotubes with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less

  3. Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties.

    PubMed

    Lin, Jing; Huang, Yang; Bando, Yoshio; Tang, Chengchun; Li, Chun; Golberg, Dmitri

    2010-04-27

    We report on the synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures via a simple catalyst-free method. A typical heterostructure, where an In2O3 nanowire forms a sort of a "dorsal fin" on the Ga2O3 nanobelt, exhibits the T-shaped cross-section. The structure, electrical porperties, and field-emission properties of this material are systematically investigated. The heterostructures possess a typical n-type semiconducting behavior with enhanced conductivity. Field-emission measurements show that they have a low turn-on field (approximately 1.31 V/microm) and a high field-enhancement factor (over 4000). The excellent field-emission characteristics are attributed to their special geometry and good electrical properties. The present In2O3-decorated Ga2O3 heterostructures are envisaged to be decent field-emitters useful in advanced electronic and optoelectronic nanodevices.

  4. Biodegradable porous silicon barcode nanowires with defined geometry

    PubMed Central

    Chiappini, Ciro; Liu, Xuewu; Fakhoury, Jean Raymond; Ferrari, Mauro

    2010-01-01

    Silicon nanowires are of proven importance in diverse fields such as energy production and storage, flexible electronics, and biomedicine due to the unique characteristics emerging from their one-dimensional semiconducting nature and their mechanical properties. Here we report the synthesis of biodegradable porous silicon barcode nanowires by metal assisted electroless etch of single crystal silicon with resistivity ranging from 0.0008 Ω-cm to 10 Ω-cm. We define the geometry of the barcode nanowiresby nanolithography and we characterize their multicolor reflectance and photoluminescence. We develop phase diagrams for the different nanostructures obtained as a function of metal catalyst, H2O2 concentration, ethanol concentration and silicon resistivity, and propose a mechanism that explains these observations. We demonstrate that these nanowires are biodegradable, and their degradation time can be modulated by surface treatments. PMID:21057669

  5. Surface oxidation and thermoelectric properties of indium-doped tin telluride nanowires.

    PubMed

    Li, Zhen; Xu, Enzhi; Losovyj, Yaroslav; Li, Nan; Chen, Aiping; Swartzentruber, Brian; Sinitsyn, Nikolai; Yoo, Jinkyoung; Jia, Quanxi; Zhang, Shixiong

    2017-09-14

    The recent discovery of excellent thermoelectric properties and topological surface states in SnTe-based compounds has attracted extensive attention in various research areas. Indium doped SnTe is of particular interest because, depending on the doping level, it can either generate resonant states in the bulk valence band leading to enhanced thermoelectric properties, or induce superconductivity that coexists with topological states. Here we report on the vapor deposition of In-doped SnTe nanowires and the study of their surface oxidation and thermoelectric properties. The nanowire growth is assisted by Au catalysts, and their morphologies vary as a function of substrate position and temperature. Transmission electron microscopy characterization reveals the formation of an amorphous surface in single crystalline nanowires. X-ray photoelectron spectroscopy studies suggest that the nanowire surface is composed of In 2 O 3 , SnO 2 , Te and TeO 2 which can be readily removed by argon ion sputtering. Exposure of the cleaned nanowires to atmosphere leads to rapid oxidation of the surface within only one minute. Characterization of electrical conductivity σ, thermopower S, and thermal conductivity κ was performed on the same In-doped nanowire which shows suppressed σ and κ but enhanced S yielding an improved thermoelectric figure of merit ZT compared to the undoped SnTe.

  6. Synthesis and high temperature stability of amorphous Si(B)CN-MWCNT composite nanowires

    NASA Astrophysics Data System (ADS)

    Bhandavat, Romil; Singh, Gurpreet

    2012-02-01

    We demonstrate synthesis of a hybrid nanowire structure consisting of an amorphous polymer-derived silicon boron-carbonitride (Si-B-C-N) shell with a multiwalled carbon nanotube core. This was achieved through a novel process involving preparation of a boron-modified liquid polymeric precursor through a reaction of trimethyl borate and polyureasilazane under atmospheric conditions; followed by conversion of polymer to glass-ceramic on carbon nanotube surfaces through controlled heating. Chemical structure of the polymer was studied by liquid-NMR while evolution of various ceramic phases was studied by Raman spectroscopy, solid-NMR, Fourier transform infrared and X-ray photoelectron spectroscopy. Electron microscopy and X-ray diffraction confirms presence of amorphous Si(B)CN coating on individual nanotubes for all specimen processed below 1400 degree C. Thermogravimetric analysis, followed by TEM revealed high temperature stability of the carbon nanotube core in flowing air up to 1300 degree C.

  7. Theory of space charge limited currents in films and nanowires with dopants

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoguang; Pantelides, Sokrates

    2015-03-01

    We show that proper description of the space charge limited currents (SCLC) in a homogeneous bulk material must account fully for the effect of the dopants and the interplay between dopants and traps. The sharp rise in the current at the trap-filled-limit (TFL) is partially mitigated by the dopant energy levels and the Frenkel effect, namely the lowering of the ionization energy by the electric field, which is screened by the free carriers. In nanowires, lack of effective screening causes the trap occupation at small biases to reach a high level comparable to the TFL in bulk. This explains the high current density in SCLCs observed in nanowires. This work is supported by the LDRD program at ORNL. Portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  8. Synthesis and magnetic properties of bundled and dispersed Co{sub 3}O{sub 4} nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.B.; Wang, P.F.; Xu, J.C.

    Highlights: • Co{sub 3}O{sub 4} nanowires possessed the same diameter and the different interwires distance. • All samples possessed antiferromagnetism and superparamagnetism at high temperature. • The exchange bias effect was observed at low temperature. • The surface spin coupling restrained the surface effect of magnetic nanostructures. - Abstract: The magnetic Co{sub 3}O{sub 4} nanowires were synthesized using the templates of SBA-15, and then the well-dispersed nanowires (D-wires) were separated from the bundled ordered nanowires (B-wires) with the centrifugal technique. TEM images indicated that D-wires were highly dispersed Co{sub 3}O{sub 4} nanowires and B-wires existed in bundles. All samples possessedmore » the antiferromagnetism and superparamagnetism at high temperature. After revealing the intrinsic magnetic properties of Co{sub 3}O{sub 4} nanowires with D-wires, the magnetic behavior of B-wires was discussed in detail, and then the magnetic interaction between neighboring nanowires could be deduced. The exchange bias effect from the body Co{sub 3}O{sub 4} antiferromagnetism and surface ferromagnetism was observed at low temperature. The magnetization of B-wires was higher than that of D-wires, which was attributed to the constraint of the surface spin coupling between the neighboring nanowires to the surface affect of nanostructures.« less

  9. Tailoring the vapor-liquid-solid growth toward the self-assembly of GaAs nanowire junctions.

    PubMed

    Dai, Xing; Dayeh, Shadi A; Veeramuthu, Vaithianathan; Larrue, Alexandre; Wang, Jian; Su, Haibin; Soci, Cesare

    2011-11-09

    New insights into understanding and controlling the intriguing phenomena of spontaneous merging (kissing) and the self-assembly of monolithic Y- and T-junctions is demonstrated in the metal-organic chemical vapor deposition growth of GaAs nanowires. High-resolution transmission electron microscopy for determining polar facets was coupled to electrostatic-mechanical modeling and position-controlled synthesis to identify nanowire diameter, length, and pitch, leading to junction formation. When nanowire patterns are designed so that the electrostatic energy resulting from the interaction of polar surfaces exceeds the mechanical energy required to bend the nanowires to the point of contact, their fusion can lead to the self-assembly of monolithic junctions. Understanding and controlling this phenomenon is a great asset for the realization of dense arrays of vertical nanowire devices and opens up new ways toward the large scale integration of nanowire quantum junctions or nanowire intracellular probes.

  10. Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires

    PubMed Central

    Piccione, Brian; Aspetti, Carlos O.; Cho, Chang-Hee; Agarwal, Ritesh

    2014-01-01

    Understanding interactions between light and matter is central to many fields, providing invaluable insights into the nature of matter. In its own right, a greater understanding of light-matter coupling has allowed for the creation of tailored applications, resulting in a variety of devices such as lasers, switches, sensors, modulators, and detectors. Reduction of optical mode volume is crucial to enhancing light-matter coupling strength, and among solid-state systems, self-assembled semiconductor and hybrid-plasmonic nanowires are amenable to creation of highly-confined optical modes. Following development of unique spectroscopic techniques designed for the nanowire morphology, carefully engineered semiconductor nanowire cavities have recently been tailored to enhance light-matter coupling strength in a manner previously seen in optical microcavities. Much smaller mode volumes in tailored hybrid-plasmonic nanowires have recently allowed for similar breakthroughs, resulting in sub-picosecond excited-state lifetimes and exceptionally high radiative rate enhancement. Here, we review literature on light-matter interactions in semiconductor and hybrid-plasmonic monolithic nanowire optical cavities to highlight recent progress made in tailoring light-matter coupling strengths. Beginning with a discussion of relevant concepts from optical physics, we will discuss how our knowledge of light-matter coupling has evolved with our ability to produce ever-shrinking optical mode volumes, shifting focus from bulk materials to optical microcavities, before moving on to recent results obtained from semiconducting nanowires. PMID:25093385

  11. Template Synthesis and Magnetic Manipulation of Nickel Nanowires

    ERIC Educational Resources Information Center

    Bentley, Anne K.; Crone, Wendy C.; Farhoud, Mohammed; Ellis, Arthur B.; Lisensky, George C.; Nickel, Anne-Marie L.

    2005-01-01

    An experiment that highlights the role electrochemistry plays in the fabrication of nanoscale structures is presented. The movement and alignment of the nickel nanowires were observed, when manipulated using magnetic fields through the lens of an optical microscope using common magnets to alter the applied magnetic field.

  12. Differences in optoelectronic properties between H-saturated and unsaturated GaN nanowires with DFT method

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike

    2017-05-01

    To investigate the influences of dangling bonds on GaN nanowires surface, the differences in optoelectronic properties between H-saturated and unsaturated GaN nanowires are researched through first-principles study. The GaN nanowires along the [0001] growth direction with diameters of 3.7, 7.5 and 9.5 Å are considered. According to the results, H-saturated GaN nanowires are more stable than the unsaturated ones. With increasing nanowire diameter, unsaturated GaN nanowires become more stable, while the stability of H-saturated GaN nanowires has little change. After geometry optimization, the atomic displacements of unsaturated and H-saturated models are almost reversed. In (0001) crystal plane, Ga atoms tend to move inwards and N atoms tend to move outwards slightly for the unsaturated nanowires, while Ga atoms tend to move outwards and N atoms tend to move inwards slightly for the H-saturated nanowires. Besides, with increasing nanowire diameter, the conduction band minimum of H-saturated nanowire moves to the lower energy side, while that of the unsaturated nanowire changes slightly. The bandgaps of H-saturated nanowires are approaching to bulk GaN as the diameter increases. Absorption curves and reflectivity curves of the unsaturated and H-saturated nanowires exhibit the same trend with the change of energy except the H-saturated models which show larger variations. Through all the calculated results above, we can better understand the effects of dangling bonds on the optoelectronic properties of GaN nanowires and select more proper calculation models and methods for other calculations.

  13. As-Grown Gallium Nitride Nanowire Electromechanical Resonators

    NASA Astrophysics Data System (ADS)

    Montague, Joshua R.

    Technological development in recent years has led to a ubiquity of micro- and nano-scale electromechanical devices. Sensors for monitoring temperature, pressure, mass, etc., are now found in nearly all electronic devices at both the industrial and consumer levels. As has been true for integrated circuit electronics, these electromechanical devices have continued to be scaled down in size. For many nanometer-scale structures with large surface-to-volume ratio, dissipation (energy loss) becomes prohibitively large causing a decreasing sensitivity with decreasing sensor size. In this work, gallium nitride (GaN) nanowires are investigated as singly-clamped (cantilever) mechanical resonators with typical mechanical quality factors, Q (equal to the ratio of resonance frequency to peak full-width-at-half-maximum-power) and resonance frequencies, respectively, at or above 30,000, and near 1 MHz. These Q values---in vacuum at room temperature---indicate very low levels of dissipation; they are essentially the same as those for bulk quartz crystal resonators that form the basis of simple clocks and mass sensors. The GaN nanowires have lengths and diameters, respectively, of approximately 15 micrometers and hundreds of nanometers. As-grown GaN nanowire Q values are larger than other similarly-sized, bottom-up, cantilever resonators and this property makes them very attractive for use as resonant sensors. We demonstrate the capability of detecting sub-monolayer levels of atomic layer deposited (ALD) films, and the robust nature of the GaN nanowires structure that allows for their 'reuse' after removal of such layers. In addition to electron microscope-based measurement techniques, we demonstrate the successful capacitive detection of a single nanowire using microwave homodyne reflectometry. This technique is then extended to allow for simultaneous measurements of large ensembles of GaN nanowires on a single sample, providing statistical information about the distribution of

  14. Bulk and Thin Film Synthesis of Compositionally Variant Entropy-stabilized Oxides.

    PubMed

    Sivakumar, Sai; Zwier, Elizabeth; Meisenheimer, Peter Benjamin; Heron, John T

    2018-05-29

    Here, we present a procedure for the synthesis of bulk and thin film multicomponent (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (Co variant) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (Cu variant) entropy-stabilized oxides. Phase pure and chemically homogeneous (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (x = 0.20, 0.27, 0.33) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (x = 0.11, 0.27) ceramic pellets are synthesized and used in the deposition of ultra-high quality, phase pure, single crystalline thin films of the target stoichiometry. A detailed methodology for the deposition of smooth, chemically homogeneous, entropy-stabilized oxide thin films by pulsed laser deposition on (001)-oriented MgO substrates is described. The phase and crystallinity of bulk and thin film materials are confirmed using X-ray diffraction. Composition and chemical homogeneity are confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The surface topography of thin films is measured with scanning probe microscopy. The synthesis of high quality, single crystalline, entropy-stabilized oxide thin films enables the study of interface, size, strain, and disorder effects on the properties in this new class of highly disordered oxide materials.

  15. Diameter-Controlled and Surface-Modified Sb2Se3 Nanowires and Their Photodetector Performance

    NASA Astrophysics Data System (ADS)

    Choi, Donghyeuk; Jang, Yamujin; Lee, Jeehee; Jeong, Gyoung Hwa; Whang, Dongmok; Hwang, Sung Woo; Cho, Kyung-Sang; Kim, Sang-Wook

    2014-10-01

    Due to its direct and narrow band gap, high chemical stability, and high Seebeck coefficient (1800 μVK-1), antimony selenide (Sb2Se3) has many potential applications, such as in photovoltaic devices, thermoelectric devices, and solar cells. However, research on the Sb2Se3 materials has been limited by its low electrical conductivity in bulk state. To overcome this challenge, we suggest two kinds of nano-structured materials, namely, the diameter-controlled Sb2Se3 nanowires and Ag2Se-decorated Sb2Se3 nanowires. The photocurrent response of diameter-controlled Sb2Se3, which depends on electrical conductivity of the material, increases non-linearly with the diameter of the nanowire. The photosensitivity factor (K = Ilight/Idark) of the intrinsic Sb2Se3 nanowire with diameter of 80-100 nm is highly improved (K = 75). Additionally, the measurement was conducted using a single nanowire under low source-drain voltage. The dark- and photocurrent of the Ag2Se-decorated Sb2Se3 nanowire further increased, as compared to that of the intrinsic Sb2Se3 nanowire, to approximately 50 and 7 times, respectively.

  16. Self-supported supercapacitor membrane through incorporating MnO2 nanowires into carbon nanotube networks.

    PubMed

    Fang, Yueping; Liu, Jianwei; Li, Jun

    2010-08-01

    We report on a study on the development of a self-supported membrane of carbon nanotube (CNT) mixed with MnO2 nanowires as supercapacitors. Both single-walled CNTs (SWCNTs) and multiwalled CNTs (MWCNTs) have been explored to serve as the electrically conductive networks to connect redox active MnO2 nanowires. High-quality alpha-MnO2 nanowires were synthesized using bulk alpha-MnO2 crystals as the precursor by a facile hydrothermal method. The morphology and structure of the as-prepared alpha-MnO2 nanowires were characterized by X-ray and electron diffraction, transmission electron microscopy, and scanning electron microscopy. Supercapacitor membranes were prepared by filtration of mixture solutions of MnO2 nanowires and CNTs at various ratios, forming entangled networks which are self-supported and directly used as supercapacitor electrodes without binders or backing metals. Cyclic voltammetry at various scan rates and charge--discharging measurements are used to characterize the supercapacitance of the CNT-MnO2 nanowire membranes. The specific capacitance has been found to be increased by several times over that of pure CNT membranes after incorporation of MnO2 nanowires.

  17. Synthesis of bulk-size transparent gadolinium oxide–polymer nanocomposites for gamma ray spectroscopy

    PubMed Central

    Cai, Wen; Chen, Qi; Cherepy, Nerine; Dooraghi, Alex; Kishpaugh, David; Chatziioannou, Arion; Payne, Stephen; Xiang, Weidong

    2015-01-01

    Heavy element loaded polymer composites have long been proposed to detect high energy X- and γ-rays upon scintillation. The previously reported bulk composite scintillators have achieved limited success because of the diminished light output resulting from fluorescence quenching and opacity. We demonstrate the synthesis of a transparent nanocomposite comprising gadolinium oxide nanocrystals uniformly dispersed in bulk-size samples at a high loading content. The strategy to avoid luminescence quenching and opacity in the nanocomposite was successfully deployed, which led to the radioluminescence light yield of up to 27 000/MeV, about twice as much as standard commercial plastic scintillators. Nanocomposites monoliths (14 mm diameter by 3 mm thickness) with 31 wt% loading of nanocrystals generated a photoelectric peak for Cs-137 gamma (662 keV) with 11.4% energy resolution. PMID:26478816

  18. Solution-phase synthesis of nanomaterials at low temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Yongchun; Qian, Yitai

    2009-01-01

    This paper reviews the solution-phase synthesis of nanoparticles via some routes at low temperatures, such as room temperature route, wave-assisted synthesis (γ-irradiation route and sonochemical route), directly heating at low temperatures, and hydrothermal/solvothermal methods. A number of strategies were developed to control the shape, the size, as well as the dispersion of nanostructures. Using diethylamine or n-butylamine as solvent, semiconductor nanorods were yielded. By the hydrothermal treatment of amorphous colloids, Bi2S3 nanorods and Se nanowires were obtained. CdS nanowires were prepared in the presence of polyacrylamide. ZnS nanowires were obtained using liquid crystal. The polymer poly (vinyl acetate) tubule acted as both nanoreactor and template for the CdSe nanowire growth. Assisted by the surfactant of sodium dodecyl benzenesulfonate (SDBS), nickel nanobelts were synthesized. In addition, Ag nanowires, Te nanotubes and ZnO nanorod arrays could be prepared without adding any additives or templates.

  19. Boron nitride nanowires synthesis via a simple chemical vapor deposition at 1200 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd

    2015-04-24

    A very simple chemical vapor deposition technique is used to synthesize high quality boron nitride nanowires at 1200 °C within a short growth duration of 30 min. FESEM micrograph shows that the as-synthesized boron nitride nanowires have a clear wire like morphology with diameter in the range of ∼20 to 150 nm. HR-TEM confirmed the wire-like structure of boron nitride nanowires, whereas XPS and Raman spectroscopy are used to find out the elemental composition and phase of the synthesized material. The synthesized boron nitride nanowires have potential applications as a sensing element in solid state neutron detector, neutron capture therapy and microelectronicmore » devices with uniform electronic properties.« less

  20. Vertical power MOS transistor as a thermoelectric quasi-nanowire device

    NASA Astrophysics Data System (ADS)

    Roizin, Gregory; Beeri, Ofer; Peretz, Mor Mordechai; Gelbstein, Yaniv

    2016-12-01

    Nano-materials exhibit superior performance over bulk materials in a variety of applications such as direct heat to electricity thermoelectric generators (TEGs) and many more. However, a gap still exists for the integration of these nano-materials into practical applications. This study explores the feasibility of utilizing the advantages of nano-materials' thermo-electric properties, using regular bulk technology. Present-day TEGs are often applied by dedicated thermoelectric materials such as semiconductor alloys (e.g., PbTe, BiTe) whereas the standard semiconductor materials such as the doped silicon have not been widely addressed, with limited exceptions of nanowires. This study attempts to close the gap between the nano-materials' properties and the well-established bulk devices, approached for the first time by exploiting the nano-metric dimensions of the conductive channel in metal-oxide-semiconductor (MOS) structures. A significantly higher electrical current than expected from a bulk silicon device has been experimentally measured as a result of the application of a positive gate voltage and a temperature gradient between the "source" and the "drain" terminals of a commercial NMOS transistor. This finding implies on a "quasi-nanowire" behaviour of the transistor channel, which can be easily controlled by the transistor's gate voltage that is applied. This phenomenon enables a considerable improvement of silicon based TEGs, fabricated by traditional silicon technology. Four times higher ZT values (TEG quality factor) compared to conventional bulk silicon have been observed for an off-the-shelf silicon device. By optimizing the device, it is believed that even higher ZT values can be achieved.

  1. Surface properties of anatase TiO2 nanowire films grown from a fluoride-containing solution.

    PubMed

    Berger, Thomas; Anta, Juan A; Morales-Flórez, Víctor

    2013-06-03

    Controlling the surface chemistry of nucleating seeds during wet-chemical synthesis allows for the preparation of morphologically well-defined nanostructures. Synthesis conditions play a key role in the surface properties, which directly affect the functional properties of the material. Therefore, it is important to establish post-synthesis treatments to facilitate the optimization of surface properties with respect to a specific application, without losing the morphological peculiarity of the nanostructure. We studied the surface properties of highly crystalline and porous anatase TiO2 nanowire (NW) electrodes, grown by chemical-bath deposition in fluoride-containing solutions, using a combined electrochemical and spectroscopic approach. As-deposited films showed low capacity for catechol adsorption and a poor photoelectrocatalytic activity for water oxidation. Mild thermal annealing at 200 °C resulted in a significant improvement of the electrode photoelectrocatalytic activity, whereas the bulk properties of the NWs (crystal structure, band-gap energy) remained unchanged. Enhancement of the functional properties of the material is discussed on the basis of adsorption capacity and electronic properties. The temperature-induced decrease of recombination centers, along with the concomitant increase of adsorption and reaction sites upon thermal annealing are called to be responsible for such improved performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates.

    PubMed

    Yang, Yi; Ling, Yichuan; Wang, Gongming; Lu, Xihong; Tong, Yexiang; Li, Yat

    2013-03-07

    We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices.

  3. Ambient synthesis, characterization, and electrochemical activity of LiFePO₄ nanomaterials derived from iron phosphate intermediates

    DOE PAGES

    Patete, Jonathan M.; Wong, Stanislaus S.; Scofield, Megan E.; ...

    2015-05-30

    LiFePO₄ materials have become increasingly popular as a cathode material due to the many benefits they possess including thermal stability, durability, low cost, and long life span. Nevertheless, to broaden the general appeal of this material for practical electrochemical applications, it would be useful to develop a relatively mild, reasonably simple synthesis method of this cathode material. Herein, we describe a generalizable, 2-step methodology of sustainably synthesizing LiFePO₄ by incorporating a template-based, ambient, surfactantless, seedless, U-tube protocol in order to generate size and morphologically tailored, crystalline, phase-pure nanowires. The purity, composition, crystallinity, and intrinsic quality of these wires were systematicallymore » assessed using transmission electron microscopy TEM, HRTEM, SEM, XRD, SAED, EDAX and high-resolution synchrotron XRD. From these techniques, we were able to determine that there is an absence of defects present in our wires, supporting the viability of our synthetic approach. Electrochemical analysis was also employed to assess their electrochemical activity. Although our nanowires do not contain any noticeable impurities, we attribute their less than optimal electrochemical rigor to differences in the chemical bonding between our LiFePO₄ nanowires and their bulk-like counterparts. Specifically, we demonstrate for the first time experimentally that the Fe-O3 chemical bond plays an important role in determining the overall conductivity of the material, an assertion which is further supported by recent first principles calculations. Nonetheless, our ambient, solution-based synthesis technique is capable of generating highly crystalline and phase-pure energy-storage-relevant nanowires that can be tailored so as to fabricate different sized materials of reproducible, reliable morphology.« less

  4. Probing spin helical surface states in topological HgTe nanowires

    NASA Astrophysics Data System (ADS)

    Ziegler, J.; Kozlovsky, R.; Gorini, C.; Liu, M.-H.; Weishäupl, S.; Maier, H.; Fischer, R.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N.; Dvoretsky, S. A.; Richter, K.; Weiss, D.

    2018-01-01

    Nanowires with helical surface states represent key prerequisites for observing and exploiting phase-coherent topological conductance phenomena, such as spin-momentum locked quantum transport or topological superconductivity. We demonstrate in a joint experimental and theoretical study that gated nanowires fabricated from high-mobility strained HgTe, known as a bulk topological insulator, indeed preserve the topological nature of the surface states, that moreover extend phase-coherently across the entire wire geometry. The phase-coherence lengths are enhanced up to 5 μ m when tuning the wires into the bulk gap, so as to single out topological transport. The nanowires exhibit distinct conductance oscillations, both as a function of the flux due to an axial magnetic field and of a gate voltage. The observed h /e -periodic Aharonov-Bohm-type modulations indicate surface-mediated quasiballistic transport. Furthermore, an in-depth analysis of the scaling of the observed gate-dependent conductance oscillations reveals the topological nature of these surface states. To this end we combined numerical tight-binding calculations of the quantum magnetoconductance with simulations of the electrostatics, accounting for the gate-induced inhomogeneous charge carrier densities around the wires. We find that helical transport prevails even for strongly inhomogeneous gating and is governed by flux-sensitive high-angular momentum surface states that extend around the entire wire circumference.

  5. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate.

    PubMed

    Kim, Taegeon; Canlier, Ali; Kim, Geun Hong; Choi, Jaeho; Park, Minkyu; Han, Seung Min

    2013-02-01

    In this work, a modified polyol synthesis by adding KBr and by replacing the AgCl with NaCl seed was used to obtain high quality silver nanowires with long aspect ratios with an average length of 13.5 μm in length and 62.5 nm in diameter. The Ag nanowires suspended in methanol solution after removing any unwanted particles using a glass filter system were then deposited on a flexible polycarbonate substrate using an electrostatic spray system. Transmittance of 92.1% at wavelength of 550 nm with sheet resistance of 20 Ω/sq and haze of 4.9% were measured for the electrostatic sprayed Ag nanowire transparent electrode.

  6. Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources.

    PubMed

    Kuykendall, Tevye R; Schwartzberg, Adam M; Aloni, Shaul

    2015-10-14

    Gallium-nitride-based light-emitting diodes have enabled the commercialization of efficient solid-state lighting devices. Nonplanar nanomaterial architectures, such as nanowires and nanowire-based heterostructures, have the potential to significantly improve the performance of light-emitting devices through defect reduction, strain relaxation, and increased junction area. In addition, relaxation of internal strain caused by indium incorporation will facilitate pushing the emission wavelength into the red. This could eliminate inefficient phosphor conversion and enable color-tunable emission or white-light emission by combining blue, green, and red sources. Utilizing the waveguiding modes of the individual nanowires will further enhance light emission, and the properties of photonic structures formed by nanowire arrays can be implemented to improve light extraction. Recent advances in synthetic methods leading to better control over GaN and InGaN nanowire synthesis are described along with new concept devices leading to efficient white-light emission. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel

    NASA Astrophysics Data System (ADS)

    Moon, Hyunjin; Won, Phillip; Lee, Jinhwan; Ko, Seung Hwan

    2016-07-01

    Since transparent conducting films based on silver nanowires (AgNWs) have shown higher transmittance and electrical conductivity compared to those of indium tin oxide (ITO) films, the electronics industry has recognized them as promising substitutes. However, due to the higher haze value of AgNW transparent conducting films compared to ITO films, the clarity is decreased when AgNW films are applied to optoelectronic devices. In this study, we develop a highly transparent, low-haze, very long AgNW percolation network. Moreover, we confirm that analyzed chemical roles can easily be applied to different AgNW synthesis methods, and that they have a direct impact on the nanowire shape. Consequently, the lengths of the wires are increased up to 200 μm and the diameters of the wires are decreased up to 45 nm. Using these results, we fabricate highly transparent (96%) conductors (100 Ω/sq) with low-haze (2%) without any annealing process. This electrode shows enhanced clarity compared to previous results due to the decreased diffusive transmittance and scattering. In addition, a flexible touchscreen using a AgNW network is demonstrated to show the performance of modified AgNWs.

  8. Water-dissolvable sodium sulfate nanowires as a versatile template for the fabrication of polyelectrolyte- and metal-based nanotubes.

    PubMed

    Pu, Ying-Chih; Hwu, Jih Ru; Su, Wu-Chou; Shieh, Dar-Bin; Tzeng, Yonhua; Yeh, Chen-Sheng

    2006-09-06

    This study presents the synthesis of water-dissolvable sodium sulfate nanowires, where Na(2)SO(4) nanowires were produced by an easy reflux process in an organic solvent, N,N-dimethylformamide (DMF) and formed from the coexistence of AgNO(3), SnCl(2), dodecylsodium sulfate (SDS), and cetyltrimethylammonium bromide (CTAB). Na(2)SO(4) nanowires were derived from SDS, and the morphology control of the Na(2)SO(4) nanowires was established by the cooperative effects of Sn and NO(3)(-), while CTAB served as the template and led to homogeneous nanowires with a smooth surface. Since the as-synthesized sodium sulfate nanowires are readily dissolved in water, these nanowires can be treated as soft templates for the fabrication of nanotubes by removing the Na(2)SO(4) core. This process is therefore significantly better than other reported methodologies to remove the templates under harsh condition. We have demonstrated the preparation of biocompatible polyelectrolyte (PE) nanotubes using a layer-by-layer (LbL) method on the Na(2)SO(4) nanowires and the formation of Au nanotubes by the self-assembly of Au nanoparticles. In both nanotube synthesis processes, PEI (polyethylenimine), PAA (poly(acrylic acid)), and Au nanoparticles served as the building blocks on the Na(2)SO(4) templates, which were then rinsed with water to remove the core templates. This unique water-dissolvable template is anticipated to bring about versatile and flexible downstream applications.

  9. Synthesis and excellent field emission properties of three-dimensional branched GaN nanowire homostructures

    NASA Astrophysics Data System (ADS)

    Li, Enling; Sun, Lihe; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin

    2016-10-01

    Three-dimensional branched GaN nanowire homostructures have been synthesized on the Si substrate via a two-step approach by chemical vapor deposition. Structural characterization reveals that the single crystal GaN nanowire trunks have hexagonal wurtzite characteristics and grow along the [0001] direction, while the homoepitaxial single crystal branches grow in a radial direction from the six-sided surfaces of the trunks. The field emission measurements demonstrate that the branched GaN nanowire homostructures have excellent field emission properties, with low turn-on field at 2.35 V/μm, a high field enhancement factor of 2938, and long emission current stability. This indicates that the present branched GaN nanowire homostructures will become valuable for practical field emission applications.

  10. Dramatic enhancement of superconductivity in single-crystalline nanowire arrays of Sn

    PubMed Central

    Zhang, Ying; Wong, Chi Ho; Shen, Junying; Sze, Sin Ting; Zhang, Bing; Zhang, Haijing; Dong, Yan; Xu, Hui; Yan, Zifeng; Li, Yingying; Hu, Xijun; Lortz, Rolf

    2016-01-01

    Sn is a classical superconductor on the border between type I and type II with critical temperature of 3.7 K. We show that its critical parameters can be dramatically increased if it is brought in the form of loosely bound bundles of thin nanowires. The specific heat displays a pronounced double phase transition at 3.7 K and 5.5 K, which we attribute to the inner ‘bulk’ contribution of the nanowires and to the surface contribution, respectively. The latter is visible only because of the large volume fraction of the surface layer in relation to the bulk volume. The upper transition coincides with the onset of the resistive transition, while zero resistance is gradually approached below the lower transition. In contrast to the low critical field Hc = 0.03 T of Sn in its bulk form, a magnetic field of more than 3 T is required to fully restore the normal state. PMID:27595646

  11. Synthesis of p-type GaN nanowires.

    PubMed

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  12. Synthesis and electrochemical performance of polyaniline-MnO2 nanowire composites for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Song, Zhaoxia; Liu, Guichang; Qiu, Jieshan; Yu, Chang; Qin, Jiwei; Ma, Lin; Tian, Fengqin; Liu, Wei

    2013-02-01

    Polyaniline-MnO2 nanowire (PANI-MNW) composites were prepared by in situ chemical oxidative polymerization of aniline monomer in a suspension of MnO2 nanowires. The structure and morphology of the PANI-MNW composites were characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their electrochemical properties were investigated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 mol/L KOH electrolyte. The PANI-MNW composites show significantly better specific capacity and redox performance in comparison to the untreated MnO2 nanowires. The enhanced properties can be mainly attributed to the composite structure wherein high porosity is created between MnO2 nanowires and PANI during the process of fabricating the PANI-MNW nanocomposites. A specific capacitance as high as 256 F/g is obtained at a current density of 1 A/g for PANI-MNW-5, and the composite also shows a good cyclic performance and coulomb efficiency.

  13. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Chengwei; Xu, Lianbin; Yan, Yushan; Chen, Jianfeng

    2016-08-01

    Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m2 g-1), a high mass activity (398 mA mg-1) and specific activity (0.98 mA cm-2), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst.

  14. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods.

    PubMed

    Xu, Weizhe; Tan, Furui; Liu, Xiansheng; Zhang, Weifeng; Qu, Shengchun; Wang, Zhijie; Wang, Zhanguo

    2017-12-01

    Constructing a highly efficient bulk-heterojunction is of critical importance to the hybrid organic/inorganic solar cells. Here in this work, we introduce a novel hybrid architecture containing P3HT nanowire and CdSe nanotetrapod as bicontinuous charge channels for holes and electrons, respectively. Compared to the traditionally applied P3HT molecules, the well crystallized P3HT nanowires qualify an enhanced light absorption at the long wavelength as well as strengthened charge carrier transport in the hybrid active layer. Accordingly, based on efficient dissociation of photogenerated excitons, the interpercolation of these two nano-building blocks allows a photovoltaic conversion efficiency of 1.7% in the hybrid solar cell, up to 42% enhancement compared to the reference solar cell with traditional P3HT molecules as electron donor. Our work provides a promising hybrid structure for efficient organic/inorganic bulk-heterojunction solar cells.

  15. Unit cell parameters of wurtzite InP nanowires determined by x-ray diffraction.

    PubMed

    Kriegner, D; Wintersberger, E; Kawaguchi, K; Wallentin, J; Borgström, M T; Stangl, J

    2011-10-21

    High resolution x-ray diffraction is used to study the structural properties of the wurtzite polytype of InP nanowires. Wurtzite InP nanowires are grown by metal-organic vapor phase epitaxy using S-doping. From the evaluation of the Bragg peak position we determine the lattice parameters of the wurtzite InP nanowires. The unit cell dimensions are found to differ from the ones expected from geometric conversion of the cubic bulk InP lattice constant. The atomic distances along the c direction are increased whereas the atomic spacing in the a direction is reduced in comparison to the corresponding distances in the zinc-blende phase. Using core/shell nanowires with a thin core and thick nominally intrinsic shells we are able to determine the lattice parameters of wurtzite InP with a negligible influence of the S-doping due to the much larger volume in the shell. The determined material properties will enable the ab initio calculation of electronic and optical properties of wurtzite InP nanowires.

  16. Synthesis and crystal structures of gold nanowires with Gemini surfactants as directing agents.

    PubMed

    Xu, Feng; Hou, Hao; Gao, Zhinong

    2014-12-15

    The preparation of crystalline gold nanowires (NWs) by using gemini surfactants as directing agents through a three-step seed-mediated method is reported. Unlike the nanorods with relatively low aspect ratios (typically below 20) obtained by using cetyltrimethylammonium bromide as a directing agent, the NWs obtained in this investigation can reach up to 4.4 μm, and the largest aspect ratio is calculated to be 210. For this, each of seven different gemini surfactants are utilized as directing agents, and the length and/or aspect ratio of the NWs can be tuned by varying the hydrocarbon chain lengths of the gemini surfactants. Both single and twinned crystalline structures are elucidated by selected-area electron diffraction and high-resolution transmission electron microscopy studies. The use of gemini surfactants not only advances the synthesis of gold nanostructures, but improves the understanding of the growth mechanism for seed-mediated growth. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis and high catalytic properties of mesoporous Pt nanowire array by novel conjunct template method

    NASA Astrophysics Data System (ADS)

    Zhong, Yi; Xu, Cai-Ling; Kong, Ling-Bin; Li, Hu-Lin

    2008-12-01

    A novel conjunct template method for fabricating mesoporous Pt nanowire array through direct current (DC) electrodeposition of Pt into the pores of anodic aluminum oxide (AAO) template on Ti/Si substrate from hexagonal structured lyotropic liquid crystalline phase is demonstrated in this paper. The morphology and structure of as-prepared Pt nanowire array are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt nanowire array for methanol are also investigated in detail. The results indicate that Pt nanowire array has the unique mesoporous structure of approximate 40-50 nm in diameter, which resulted in the high surface area and greatly improved electrocatalytic activity for methanol. The mesoporous Pt nanowire array synthesized by the new conjunct template method has a very promising application in portable fuel cell power sources.

  18. Solid-phase diffusion mechanism for GaAs nanowire growth.

    PubMed

    Persson, Ann I; Larsson, Magnus W; Stenström, Stig; Ohlsson, B Jonas; Samuelson, Lars; Wallenberg, L Reine

    2004-10-01

    Controllable production of nanometre-sized structures is an important field of research, and synthesis of one-dimensional objects, such as nanowires, is a rapidly expanding area with numerous applications, for example, in electronics, photonics, biology and medicine. Nanoscale electronic devices created inside nanowires, such as p-n junctions, were reported ten years ago. More recently, hetero-structure devices with clear quantum-mechanical behaviour have been reported, for example the double-barrier resonant tunnelling diode and the single-electron transistor. The generally accepted theory of semiconductor nanowire growth is the vapour-liquid-solid (VLS) growth mechanism, based on growth from a liquid metal seed particle. In this letter we suggest the existence of a growth regime quite different from VLS. We show that this new growth regime is based on a solid-phase diffusion mechanism of a single component through a gold seed particle, as shown by in situ heating experiments of GaAs nanowires in a transmission electron microscope, and supported by highly resolved chemical analysis and finite element calculations of the mass transport and composition profiles.

  19. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Wen; Ting, Chi-Feng; Hung, Miao-Ken; Chiou, Chwei-Huann; Liu, Ying-Ling; Liu, Zongwen; Ratinac, Kyle R.; Ringer, Simon P.

    2009-02-01

    Dye-sensitized solar cells (DSSCs) show promise as a cheaper alternative to silicon-based photovoltaics for specialized applications, provided conversion efficiency can be maximized and production costs minimized. This study demonstrates that arrays of nanowires can be formed by wet-chemical methods for use as three-dimensional (3D) electrodes in DSSCs, thereby improving photoelectric conversion efficiency. Two approaches were employed to create the arrays of ITO (indium-tin-oxide) nanowires or arrays of ITO/TiO2 core-shell nanowires; both methods were based on electrophoretic deposition (EPD) within a polycarbonate template. The 3D electrodes for solar cells were constructed by using a doctor-blade for coating TiO2 layers onto the ITO or ITO/TiO2 nanowire arrays. A photoelectric conversion efficiency as high as 4.3% was achieved in the DSSCs made from ITO nanowires; this performance was better than that of ITO/TiO2 core-shell nanowires or pristine TiO2 films. Cyclic voltammetry confirmed that the reaction current was significantly enhanced when a 3D ITO-nanowire electrode was used. Better separation of charge carriers and improved charge transport, due to the enlarged interfacial area, are thought to be the major advantages of using 3D nanowire electrodes for the optimization of DSSCs.

  20. Equivalence of the equilibrium and the nonequilibrium molecular dynamics methods for thermal conductivity calculations: From bulk to nanowire silicon

    NASA Astrophysics Data System (ADS)

    Dong, Haikuan; Fan, Zheyong; Shi, Libin; Harju, Ari; Ala-Nissila, Tapio

    2018-03-01

    Molecular dynamics (MD) simulations play an important role in studying heat transport in complex materials. The lattice thermal conductivity can be computed either using the Green-Kubo formula in equilibrium MD (EMD) simulations or using Fourier's law in nonequilibrium MD (NEMD) simulations. These two methods have not been systematically compared for materials with different dimensions and inconsistencies between them have been occasionally reported in the literature. Here we give an in-depth comparison of them in terms of heat transport in three allotropes of Si: three-dimensional bulk silicon, two-dimensional silicene, and quasi-one-dimensional silicon nanowire. By multiplying the correlation time in the Green-Kubo formula with an appropriate effective group velocity, we can express the running thermal conductivity in the EMD method as a function of an effective length and directly compare it to the length-dependent thermal conductivity in the NEMD method. We find that the two methods quantitatively agree with each other for all the systems studied, firmly establishing their equivalence in computing thermal conductivity.

  1. Metallic nanospheres embedded in nanowires initiated on nanostructures and methods for synthesis thereof

    DOEpatents

    Zaidi, Saleem [Albuquerque, NM; Tringe, Joseph W [Walnut Creek, CA; Vanamu, Ganesh [Sunnyvale, CA; Prinja, Rajiv [Albuquerque, NM

    2012-01-10

    A nanostructure includes a nanowire having metallic spheres formed therein, the spheres being characterized as having at least one of about a uniform diameter and about a uniform spacing there between. A nanostructure in another embodiment includes a substrate having an area with a nanofeature; and a nanowire extending from the nanofeature, the nanowire having metallic spheres formed therein, the spheres being characterized as having at least one of about a uniform diameter and about a uniform spacing there between. A method for forming a nanostructure is also presented. A method for reading and writing data is also presented. A method for preparing nanoparticles is also presented.

  2. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide.

    PubMed

    Kaleva, Aaretti; Saarimaa, Ville; Heinonen, Saara; Nikkanen, Juha-Pekka; Markkula, Antti; Väisänen, Pasi; Levänen, Erkki

    2017-07-11

    In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications.

  3. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide

    PubMed Central

    Saarimaa, Ville; Heinonen, Saara; Nikkanen, Juha-Pekka; Markkula, Antti; Väisänen, Pasi; Levänen, Erkki

    2017-01-01

    In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications. PMID:28696374

  4. In situ biasing and off-axis electron holography of a ZnO nanowire

    NASA Astrophysics Data System (ADS)

    den Hertog, Martien; Donatini, Fabrice; McLeod, Robert; Monroy, Eva; Sartel, Corinne; Sallet, Vincent; Pernot, Julien

    2018-01-01

    Quantitative characterization of electrically active dopants and surface charges in nano-objects is challenging, since most characterization techniques using electrons [1-3], ions [4] or field ionization effects [5-7] study the chemical presence of dopants, which are not necessarily electrically active. We perform cathodoluminescence and voltage contrast experiments on a contacted and biased ZnO nanowire with a Schottky contact and measure the depletion length as a function of reverse bias. We compare these results with state-of-the-art off-axis electron holography in combination with electrical in situ biasing on the same nanowire. The extension of the depletion length under bias observed in scanning electron microscopy based techniques is unusual as it follows a linear rather than square root dependence, and is therefore difficult to model by bulk equations or finite element simulations. In contrast, the analysis of the axial depletion length observed by holography may be compared with three-dimensional simulations, which allows estimating an n-doping level of 1 × 1018 cm-3 and negative sidewall surface charge of 2.5 × 1012 cm-2 of the nanowire, resulting in a radial surface depletion to a depth of 36 nm. We found excellent agreement between the simulated diameter of the undepleted core and the active thickness observed in the experimental data. By combining TEM holography experiments and finite element simulation of the NW electrostatics, the bulk-like character of the nanowire core is revealed.

  5. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect

    PubMed Central

    Liang, Dong; DeGrave, John P.; Stolt, Matthew J.; Tokura, Yoshinori; Jin, Song

    2015-01-01

    Skyrmions hold promise for next-generation magnetic storage as their nanoscale dimensions may enable high information storage density and their low threshold for current-driven motion may enable ultra-low energy consumption. Skyrmion-hosting nanowires not only serve as a natural platform for magnetic racetrack memory devices but also stabilize skyrmions. Here we use the topological Hall effect (THE) to study phase stability and current-driven dynamics of skyrmions in MnSi nanowires. THE is observed in an extended magnetic field-temperature window (15–30 K), suggesting stabilization of skyrmions in nanowires compared with the bulk. Furthermore, we show in nanowires that under the high current density of 108–109 A m−2, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field in the extended skyrmion phase region. These results open up the exploration of skyrmions in nanowires for fundamental physics and magnetic storage technologies. PMID:26400204

  6. Directed growth of horizontally aligned gallium nitride nanowires for nanoelectromechanical resonator arrays.

    PubMed

    Henry, Tania; Kim, Kyungkon; Ren, Zaiyuan; Yerino, Christopher; Han, Jung; Tang, Hong X

    2007-11-01

    We report the growth of horizontally aligned arrays and networks of GaN nanowires (NWs) as resonant components in nanoelectromechanical systems (NEMS). A combination of top-down selective area growth (SAG) and bottom-up vapor-liquid-solid (VLS) synthesis enables flexible fabrication of highly ordered nanowire arrays in situ with no postgrowth dispersion. Mechanical resonance of free-standing nanowires are measured, with quality factors (Q) ranging from 400 to 1000. We obtained a Young's modulus (E) of approximately 338 GPa from an array of NWs with varying diameters and lengths. The measurement allows detection of nanowire motion with a rotating frame and reveals dual fundamental resonant modes in two orthogonal planes. A universal ratio between the resonant frequencies of these two fundamental modes, irrespective of their dimensions, is observed and attributed to an isosceles cross section of GaN NWs.

  7. Benzoin Radicals as Reducing Agent for Synthesizing Ultrathin Copper Nanowires.

    PubMed

    Cui, Fan; Dou, Letian; Yang, Qin; Yu, Yi; Niu, Zhiqiang; Sun, Yuchun; Liu, Hao; Dehestani, Ahmad; Schierle-Arndt, Kerstin; Yang, Peidong

    2017-03-01

    In this work, we report a new, general synthetic approach that uses heat driven benzoin radicals to grow ultrathin copper nanowires with tunable diameters. This is the first time carbon organic radicals have been used as a reducing agent in metal nanowire synthesis. In-situ temperature dependent electron paramagnetic resonance (EPR) spectroscopic studies show that the active reducing agent is the free radicals produced by benzoins under elevated temperature. Furthermore, the reducing power of benzoin can be readily tuned by symmetrically decorating functional groups on the two benzene rings. When the aromatic rings are modified with electron donating (withdrawing) groups, the reducing power is promoted (suppressed). The controllable reactivity gives the carbon organic radical great potential as a versatile reducing agent that can be generalized in other metallic nanowire syntheses.

  8. Dimensionality Effects in FeGe 2 Nanowires: Enhanced Anisotropic Magnetization and Anomalous Electrical Transport

    DOE PAGES

    Mandrus, D.; Gai, Zheng; Ward, Thomas Zac; ...

    2017-08-02

    Here, we report the synthesis of single-crystal iron germanium nanowires via chemical vapor deposition without the assistance of any catalysts. The assembly of single-crystal FeGe 2 nanowires with tetragonal C16 crystal structure shows anisotropic magnetic behavior along the radial direction or the growth axial direction, with both antiferromagnetic and ferromagnetic orders. Single FeGe 2 nanowire devices were fabricated using e-beam lithography. Electronic transport measurement in these devices show two resistivity anomalies near 250 K and 200 K which are likely signatures of the two spin density wave states in FeGe 2.

  9. Dimensionality Effects in FeGe 2 Nanowires: Enhanced Anisotropic Magnetization and Anomalous Electrical Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandrus, D.; Gai, Zheng; Ward, Thomas Zac

    Here, we report the synthesis of single-crystal iron germanium nanowires via chemical vapor deposition without the assistance of any catalysts. The assembly of single-crystal FeGe 2 nanowires with tetragonal C16 crystal structure shows anisotropic magnetic behavior along the radial direction or the growth axial direction, with both antiferromagnetic and ferromagnetic orders. Single FeGe 2 nanowire devices were fabricated using e-beam lithography. Electronic transport measurement in these devices show two resistivity anomalies near 250 K and 200 K which are likely signatures of the two spin density wave states in FeGe 2.

  10. Surface effect on resonant properties of nanowires predicted by an elastic theory for nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yin; Chen, Shaohua, E-mail: chenshaohua72@hotmail.com, E-mail: shchen@LNM.imech.ac.cn

    2015-07-28

    A recently developed continuum theory considering surface effect in nanomaterials is adopted to investigate the resonant properties of nanowires with different boundary conditions in the present paper. The main feature of the adopted theory is that the surface effect in nanomaterials is characterized by the surface energy density of the corresponding bulk materials and the surface relaxation parameter in nanoscale. Based on a fixed-fixed beam model and a cantilever one, the governing equation of resonant frequency for corresponding nanowires is obtained. Numerical calculation of the fundamental resonant frequency is carried out, the result of which is well consistent with themore » existing numerical ones. Comparing to the result predicted by the conventionally structural dynamics, the resonant frequency of a fixed-fixed nanowire is improved, while that of a cantilever nanowire is weakened due to the surface effect. Both a decreasing characteristic size (height or diameter) and an increasing aspect ratio could further enhance the varying trend of resonant properties for both kinds of nanowires. The present result should be helpful for the design of nano-devices and nanostructures related to nanowires.« less

  11. Morphology control of layer-structured gallium selenide nanowires.

    PubMed

    Peng, Hailin; Meister, Stefan; Chan, Candace K; Zhang, Xiao Feng; Cui, Yi

    2007-01-01

    Layer-structured group III chalcogenides have highly anisotropic properties and are attractive materials for stable photocathodes and battery electrodes. We report the controlled synthesis and characterization of layer-structured GaSe nanowires via a catalyst-assisted vapor-liquid-solid (VLS) growth mechanism during GaSe powder evaporation. GaSe nanowires consist of Se-Ga-Ga-Se layers stacked together via van der Waals interactions to form belt-shaped nanowires with a growth direction along the [11-20], width along the [1-100], and height along the [0001] direction. Nanobelts exhibit a variety of morphologies including straight, zigzag, and saw-tooth shapes. These morphologies are realized by controlling the growth temperature and time so that the actual catalysts have a chemical composition of Au, Au-Ga alloy, or Ga. The participation of Ga in the VLS catalyst is important for achieving different morphologies of GaSe. In addition, GaSe nanotubes are also prepared by a slow growth process.

  12. Reconstruction of perfect ZnO nanowires facets with high optical quality

    NASA Astrophysics Data System (ADS)

    Zehani, E.; Hassani, S.; Lusson, A.; Vigneron, J.; Etcheberry, A.; Galtier, P.; Sallet, V.

    2017-07-01

    ZnO nanowires were grown on sapphire substrates using metalorganic chemical vapor deposition. The samples were subsequently annealed under zinc pressure in a vacuum-sealed ampoule, at temperature ranging from 500 to 800 °C. The originality and the main motivation to provide a zinc-rich atmosphere were to prevent the out-diffusion of zinc from the nanowires. In doing so, the perfect structural properties and the morphology of the nanowires are kept. Interestingly, photoluminescence experiments performed on nanowires annealed in a narrow window of temperature [580-620 °C] show a spectacular improvement of the optical quality, as transitions commonly observable in high quality bulk samples are found. In addition, the intensity of the so-called "surface excitons" (SX) is strongly decreased. To accurately investigate the chemical modifications of the surface, XPS experiments were carried out and show that zinc hydroxide species and/or Zn(OH)2 sublayer were partially removed from the surface. These results suggest that the annealing process in zinc vapor helps to properly reconstruct the surface of ZnO nanowires, and improves the optical quality of their core. Such a thermal treatment at moderate temperature should be beneficial to nanodevices involving surface reaction, e.g. gas sensors.

  13. Seeded Nanowire and Microwire Growth from Lithium Alloys.

    PubMed

    Han, Sang Yun; Boebinger, Matthew G; Kondekar, Neha P; Worthy, Trevor J; McDowell, Matthew T

    2018-06-06

    Although vapor-liquid-solid (VLS) growth of nanowires from alloy seed particles is common in various semiconductor systems, related wire growth in all-metal systems is rare. Here, we report the spontaneous growth of nano- and microwires from metal seed particles during the cooling of Li-rich bulk alloys containing Au, Ag, or In. The as-grown wires feature Au-, Ag-, or In-rich metal tips and LiOH shafts; the results indicate that the wires grow as Li metal and are converted to polycrystalline LiOH during and/or after growth due to exposure to H 2 O and O 2 . This new process is a simple way to create nanostructures, and the findings suggest that metal nanowire growth from alloy seeds is possible in a variety of systems.

  14. Nonlinear electronic transport and enhanced catalytic behavior caused by native oxides on Cu nanowires

    NASA Astrophysics Data System (ADS)

    Hajimammadov, Rashad; Csendes, Zita; Ojakoski, Juha-Matti; Lorite, Gabriela Simone; Mohl, Melinda; Kordas, Krisztian

    2017-09-01

    Electrical transport properties of individual nanowires (both in axial and transversal directions) and their random networks suggest rapid oxidation when Cu is exposed to ambient conditions. The oxidation process is elucidated by thorough XRD, XPS and Raman analyzes conducted for a period of 30 days. Based on the obtained experimental data, we may conclude that first, cuprous oxide and copper hydroxide form that finally transform to cupric oxide. In electrical applications, oxidation of copper is not a true problem as long as thin films or bulk metal is concerned. However, as highlighted in our work, this is not the case for nanowires, since the oxidized surface plays quite important role in the contact formation and also in the conduction of percolated nanowire networks. On the other hand, by taking advantage of the mixed surface oxide states present on the nanowires along with their large specific surface area, we tested and found excellent catalytic activity of the oxidized nanowires in phenol oxidation, which suggests further applications of these materials in catalysis.

  15. Influence of surface pre-treatment on the electronic levels in silicon MaWCE nanowires.

    PubMed

    Venturi, Giulia; Castaldini, Antonio; Schleusener, Alexander; Sivakov, Vladimir; Cavallini, Anna

    2015-05-15

    Deep level transient spectroscopy (DLTS) was performed on n-doped silicon nanowires grown by metal-assisted wet chemical etching (MaWCE) with gold as the catalyst in order to investigate the energetic scheme inside the bandgap. To observe the possible dependence of the level scheme on the processing temperature, DLTS measurements were performed on the nanowires grown on a non-treated Au/Si surface and on a thermally pre-treated Au/Si surface. A noticeable modification of the configuration of the energy levels was observed, induced by the annealing process. Based on our results on these MaWCE nanowires and on literature data about deep levels in bulk silicon, some hypotheses were advanced regarding the identification of the defects responsible of the energy levels revealed.

  16. Solution-Based Electro-Orientation Spectroscopy (EOS) for Contactless Measurement of Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Wuhan; Mohabir, Amar; Tutuncuoglu, Gozde; Filler, Michael; Feldman, Leonard; Shan, Jerry

    2017-11-01

    Solution-based, contactless methods for determining the electrical conductivity of nanowires and nanotubes have unique advantages over conventional techniques in terms of high throughput and compatibility with further solution-based processing and assembly methods. Here, we describe the solution-based electro-orientation spectroscopy (EOS) method, in which nanowire conductivity is measured from the AC-electric-field-induced alignment rate of the nanowire in a suspending fluid. The particle conductivity is determined from the measured crossover frequency between conductivity-dominated, low-frequency alignment to the permittivity-dominated, high-frequency regime. We discuss the extension of the EOS measurement range by an order-of-magnitude, taking advantage of the high dielectric constant of deionized water. With water and other fluids, we demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 7-order-of-magnitude range, 10-5 to 102 S/m. We highlight the efficiency and utility of EOS for nanomaterial characterization by statistically characterizing the variability of semiconductor nanowires of the same nominal composition, and studying the connection between synthesis parameters and properties. NSF CBET-1604931.

  17. Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires.

    PubMed

    Dawood, M K; Liew, T H; Lianto, P; Hong, M H; Tripathy, S; Thong, J T L; Choi, W K

    2010-05-21

    We report a simple and cost effective method for the synthesis of large-area, precisely located silicon nanocones from nanowires. The nanowires were obtained from our interference lithography and catalytic etching (IL-CE) method. We found that porous silicon was formed near the Au catalyst during the fabrication of the nanowires. The porous silicon exhibited enhanced oxidation ability when exposed to atmospheric conditions or in wet oxidation ambient. Very well located nanocones with uniform sharpness resulted when these oxidized nanowires were etched in 10% HF. Nanocones of different heights were obtained by varying the doping concentration of the silicon wafers. We believe this is a novel method of producing large-area, low cost, well defined nanocones from nanowires both in terms of the control of location and shape of the nanocones. A wide range of potential applications of the nanocone array can be found as a master copy for nanoimprinted polymer substrates for possible biomedical research; as a candidate for making sharp probes for scanning probe nanolithography; or as a building block for field emitting tips or photodetectors in electronic/optoelectronic applications.

  18. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Suwen; Wehmschulte, Rudolf J.; Lian Guoda

    2006-03-15

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 {mu}m, some even more than 100 {mu}m, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silvermore » nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)« less

  19. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    NASA Astrophysics Data System (ADS)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  20. Self-assembled phase-change nanowire for nonvolatile electronic memory

    NASA Astrophysics Data System (ADS)

    Jung, Yeonwoong

    One of the most important subjects in nanosciences is to identify and exploit the relationship between size and structural/physical properties of materials and to explore novel material properties at a small-length scale. Scale-down of materials is not only advantageous in realizing miniaturized devices but nanometer-sized materials often exhibit intriguing physical/chemical properties that greatly differ from their bulk counterparts. This dissertation studies self-assembled phase-change nanowires for future nonvolatile electronic memories, mainly focusing on their size-dependent memory switching properties. Owing to the one-dimensional, unique geometry coupled with the small and tunable sizes, bottom-designed nanowires offer great opportunities in terms for both fundamental science and practical engineering perspectives, which would be difficult to realize in conventional top-down based approaches. We synthesized chalcogenide phase-change nanowires of different compositions and sizes, and studied their electronic memory switching owing to the structural change between crystalline and amorphous phases. In particular, we investigated nanowire size-dependent memory switching parameters, including writing current, power consumption, and data retention times, as well as studying composition-dependent electronic properties. The observed size and composition-dependent switching and recrystallization kinetics are explained based on the heat transport model and heterogeneous nucleation theories, which help to design phase-change materials with better properties. Moreover, we configured unconventional heterostructured phase-change nanowire memories and studied their multiple memory states in single nanowire devices. Finally, by combining in-situ/ex-situ electron microscopy techniques and electrical measurements, we characterized the structural states involved in electrically-driven phase-change in order to understand the atomistic mechanism that governs the electronic

  1. "Hot spots" growth on single nanowire controlled by electric charge.

    PubMed

    Xi, Shaobo; Liu, Xuehua; He, Ting; Tian, Lei; Wang, Wenhui; Sun, Rui; He, Weina; Zhang, Xuetong; Zhang, Jinping; Ni, Weihai; Zhou, Xiaochun

    2016-06-09

    "Hot spots" - a kind of highly active site, which are usually composed of some unique units, such as defects, interfaces, catalyst particles or special structures - can determine the performance of nanomaterials. In this paper, we study a model system, i.e. "hot spots" on a single Ag nanowire in the galvanic replacement reaction (GRR), by dark-field microscopy. The research reveals that electric charge can be released by the formation reaction of AgCl, and consequently the electrochemical potential on Ag nanowire drops. The electric charge could induce the reduction of Ag(+) to form the "hot spots" on the nanowire during the GRR. The appearance probability of "hot spots" is almost even along the Ag nanowire, while it is slightly lower near the two ends. The spatial distance between adjacent "hot spots" is also controlled by the charge, and obeys a model based on Boltzmann distribution. In addition, the distance distribution here has an advantage in electron transfer and energy saving. Therefore, it's necessary to consider the functions of electric charge during the synthesis or application of nanomaterials.

  2. Field electron extraction from surface modified Cd(OH)2 nanowires

    NASA Astrophysics Data System (ADS)

    Bagal, Vivekanand S.; Patil, Girish P.; Jadhav, Chandradip; Sharma, Malvika; Shivhare, Sugam; Chavan, Padmakar G.

    2018-04-01

    The Cd(OH)2 nanowires were grown on Silicon(Si) substrate by simple chemical bath deposition technique and gold(Au) nanoparticles were decorated on surface of the Cd(OH)2 nanowiresby sputtering method. Detail characterization such as morphological and structural analysis of Au/Cd(OH)2 nanowires has been carried out using Field Emission Scanning Electron Microscope and X-ray Diffraction. Low turn-on field of 0.75 V/μm was found forthe emission current density of 10 µA/cm2 and high currentdensity of 1.478mA/cm2 was drawn at an applied field of 1.6 V/μm from Au/Cd(OH)2 nanowires, observed low turn-on field was found superior to other metal nanoparticles decorated semiconducting nanostructures reported in the literature. Also the field emission current stability for the preset value of 10 µA over the period of 3 hr is found to be good. To the best of our knowledge, this is the first report on the synthesis and field emission studies Au/Cd(OH)2 nanowires.

  3. Co-electrospun lead selenide/titania-core/sheath nanowires for photovoltaic applications.

    DOT National Transportation Integrated Search

    2012-12-01

    This study presents a novel, low-cost, all-inorganic lead selenide-titania (PbSe/TiO2) nanowire : heterostructure material synthesis for photovoltaic applications. PbSe nanorods (NRs) have been coelectrospun : within a TiO2 nanotube with high connect...

  4. Structural and optical characterization of ZnO nanowires grown on alumina by thermal evaporation method.

    PubMed

    Mute, A; Peres, M; Peiris, T C; Lourenço, A C; Jensen, Lars R; Monteiro, T

    2010-04-01

    Zinc oxide nanowires have been grown on alumina substrate by thermal evaporation of zinc nanopowder in the presence of oxygen flow. The growth was performed under ambient pressure and without the use of foreign catalyst. Scanning electron microscopy (SEM) observation showed that the as-grown sample consists of bulk ZnO crystal on the substrate surface with nanowires growing from this base. Growth mechanism of the observed morphology is suggested to be governed by the change of zinc vapour supersaturation during the growth process. X-ray diffraction (XRD) measurement was used to identify the crystalline phase of the nanowires. Optical properties of the nanowires were investigated using Raman scattering and photoluminescence (PL). The appearance of dominant, Raman active E2 (high) phonon mode in the Raman spectrum has confirmed the wurtzite hexagonal phase of the nanowires. With above bandgap excitation the low temperature PL recombination is dominated by donor bound exciton luminescence at -3.37 eV with a narrow full width at half maximum. Free exciton emission is also seen at low temperature and can be observed up to room temperature. The optical data indicates that the grown nanowires have high optical quality.

  5. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes.

    PubMed

    Qian, Fang; Gradecak, Silvija; Li, Yat; Wen, Cheng-Yen; Lieber, Charles M

    2005-11-01

    We report the growth and characterization of core/multishell nanowire radial heterostructures, and their implementation as efficient and synthetically tunable multicolor nanophotonic sources. Core/multishell nanowires were prepared by metal-organic chemical vapor deposition with an n-GaN core and InxGa1-xN/GaN/p-AlGaN/p-GaN shells, where variation of indium mole fraction is used to tune emission wavelength. Cross-sectional transmission electron microscopy studies reveal that the core/multishell nanowires are dislocation-free single crystals with a triangular morphology. Energy-dispersive X-ray spectroscopy clearly shows shells with distinct chemical compositions, and quantitatively confirms that the thickness and composition of individual shells can be well controlled during synthesis. Electrical measurements show that the p-AlGaN/p-GaN shell structure yields reproducible hole conduction, and electroluminescence measurements demonstrate that in forward bias the core/multishell nanowires function as light-emitting diodes, with tunable emission from 365 to 600 nm and high quantum efficiencies. The ability to synthesize rationally III-nitride core/multishell nanowire heterostructures opens up significant potential for integrated nanoscale photonic systems, including multicolor lasers.

  6. Debye temperature of metallic nanowires--an experimental determination from the resistance of metallic nanowires in the temperature range 4.2 K-300 K.

    PubMed

    Bid, Aveek; Bora, Achyut; Raychaudhuri, A K

    2007-06-01

    We have studied the resistance of metallic nanowires (silver and copper) as a function of the wire diameter in the temperature range 4.2 K-300 K. The nanowires with an average diameter of 15 nm-200 nm and length 6 microm were electrochemically deposited using polycarbonate membranes as template from AgNO3 and CuSO4, respectively. The wires after growth were removed from the membranes by dissolving the polymer in dichloromethane and their crystalline nature confirmed by XRD and TEM studies. The TEM study establishes that the nanowires are single crystalline and can have twin in them. The resistivity data was fitted to Bloch-Gruneisen theorem with the values of Debye temperature and the electron-acoustic phonon coupling constant as the two fit variables. The value of the Debye temperature obtained for the Ag wires was seen to match well with that of the bulk while for Cu wires a significant reduction was observed. The observed increase in resistivity with a decrease in the wire diameter could be explained as due to diffuse surface scattering of the conduction electrons.

  7. Facet-selective nucleation and conformal epitaxy of Ge shells on Si nanowires

    DOE PAGES

    Nguyen, Binh -Minh; Swartzentruber, Brian; Ro, Yun Goo; ...

    2015-10-08

    Knowledge of nanoscale heteroepitaxy is continually evolving as advances in material synthesis reveal new mechanisms that have not been theoretically predicted and are different than what is known about planar structures. In addition to a wide range of potential applications, core/shell nanowire structures offer a useful template to investigate heteroepitaxy at the atomistic scale. We show that the growth of a Ge shell on a Si core can be tuned from the theoretically predicted island growth mode to a conformal, crystalline, and smooth shell by careful adjustment of growth parameters in a narrow growth window that has not been exploredmore » before. In the latter growth mode, Ge adatoms preferentially nucleate islands on the {113} facets of the Si core, which outgrow over the {220} facets. Islands on the low-energy {111} facets appear to have a nucleation delay compared to the {113} islands; however, they eventually coalesce to form a crystalline conformal shell. As a result, synthesis of epitaxial and conformal Si/Ge/Si core/multishell structures enables us to fabricate unique cylindrical ring nanowire field-effect transistors, which we demonstrate to have steeper on/off characteristics than conventional core/shell nanowire transistors.« less

  8. Ab initio design of nanostructures for solar energy conversion: a case study on silicon nitride nanowire.

    PubMed

    Pan, Hui

    2014-01-01

    Design of novel materials for efficient solar energy conversion is critical to the development of green energy technology. In this work, we present a first-principles study on the design of nanostructures for solar energy harvesting on the basis of the density functional theory. We show that the indirect band structure of bulk silicon nitride is transferred to direct bandgap in nanowire. We find that intermediate bands can be created by doping, leading to enhancement of sunlight absorption. We further show that codoping not only reduces the bandgap and introduces intermediate bands but also enhances the solubility of dopants in silicon nitride nanowires due to reduced formation energy of substitution. Importantly, the codoped nanowire is ferromagnetic, leading to the improvement of carrier mobility. The silicon nitride nanowires with direct bandgap, intermediate bands, and ferromagnetism may be applicable to solar energy harvesting.

  9. Viral assembly of oriented quantum dot nanowires

    NASA Astrophysics Data System (ADS)

    Mao, Chuanbin; Flynn, Christine E.; Hayhurst, Andrew; Sweeney, Rozamond; Qi, Jifa; Georgiou, George; Iverson, Brent; Belcher, Angela M.

    2003-06-01

    The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly, heterostructured nucleation was achieved with a dual-peptide virus engineered to express two distinct peptides within the same viral capsid. This work represents a genetically controlled biological synthesis route to a semiconductor nanoscale heterostructure.

  10. Viral assembly of oriented quantum dot nanowires.

    PubMed

    Mao, Chuanbin; Flynn, Christine E; Hayhurst, Andrew; Sweeney, Rozamond; Qi, Jifa; Georgiou, George; Iverson, Brent; Belcher, Angela M

    2003-06-10

    The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly, heterostructured nucleation was achieved with a dual-peptide virus engineered to express two distinct peptides within the same viral capsid. This work represents a genetically controlled biological synthesis route to a semiconductor nanoscale heterostructure.

  11. Template-grown NiFe/Cu/NiFe nanowires for spin transfer devices.

    PubMed

    Piraux, Luc; Renard, Krystel; Guillemet, Raphael; Matéfi-Tempfli, Stefan; Matéfi-Tempfli, Maria; Antohe, Vlad Andrei; Fusil, Stéphane; Bouzehouane, Karim; Cros, Vincent

    2007-09-01

    We have developed a new reliable method combining template synthesis and nanolithography-based contacting technique to elaborate current perpendicular-to-plane giant magnetoresistance spin valve nanowires, which are very promising for the exploration of electrical spin transfer phenomena. The method allows the electrical connection of one single nanowire in a large assembly of wires embedded in anodic porous alumina supported on Si substrate with diameters and periodicities to be controllable to a large extent. Both magnetic excitations and switching phenomena driven by a spin-polarized current were clearly demonstrated in our electrodeposited NiFe/Cu/ NiFe trilayer nanowires. This novel approach promises to be of strong interest for subsequent fabrication of phase-locked arrays of spin transfer nano-oscillators with increased output power for microwave applications.

  12. Nanodevices based on silicon nanowires.

    PubMed

    Wan, Yuting; Sha, Jian; Chen, Bo; Fang, Yanjun; Wang, Zongli; Wang, Yewu

    2009-01-01

    Silicon nanowires (SiNWs) have been demonstrated as one of the promising building blocks for future nanodevices such as field effect transistors, solar cells, sensors and lithium battery; much progress has been made in this field during last decades. In this review paper, the synthesis and physical properties of SiNWs are introduced briefly. Significant advances of SiNWs-related nanodevices reported in recent literature and registered patents are reviewed. The latest development and prospects of SiNWs-related nanodevices are also discussed.

  13. Investigation of mechanical properties and deformation behavior of single-crystal Al-Cu core-shell nanowire generated using non-equilibrium molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Sarkar, Jit

    2018-06-01

    Molecular dynamics (MD) simulation studies were carried out to generate a cylindrical single-crystal Al-Cu core-shell nanowire and its mechanical properties like yield strength and Young's modulus were evaluated in comparison to a solid aluminum nanowire and hollow copper nanowire which combines to constitute the core-shell structure respectively. The deformation behavior due to changes in the number of Wigner-Seitz defects and dislocations during the entire tensile deformation process was thoroughly studied for the Al-Cu core-shell nanowire. The single-crystal Al-Cu core-shell nanowire shows much higher yield strength and Young's modulus in comparison to the solid aluminum core and hollow copper shell nanowire due to tangling of dislocations caused by lattice mismatch between aluminum and copper. Thus, the Al-Cu core-shell nanowire can be reinforced in different bulk matrix to develop new type of light-weight nanocomposite materials with greatly enhanced material properties.

  14. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth

    NASA Astrophysics Data System (ADS)

    Lu, Haiming; Meng, Xiangkang

    2015-06-01

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size.

  15. Advancements in Copper Nanowires: Synthesis, Purification, Assemblies, Surface Modification, and Applications.

    PubMed

    Zhao, Songfang; Han, Fei; Li, Jinhui; Meng, Xiangying; Huang, Wangping; Cao, Duxia; Zhang, Guoping; Sun, Rong; Wong, Ching-Ping

    2018-06-01

    Copper nanowires (CuNWs) are attracting a myriad of attention due to their preponderant electric conductivity, optoelectronic and mechanical properties, high electrocatalytic efficiency, and large abundance. Recently, great endeavors are undertaken to develop controllable and facile approaches to synthesize CuNWs with high dispersibility, oxidation resistance, and zero defects for future large-scale nano-enabled materials. Herein, this work provides a comprehensive review of current remarkable advancements in CuNWs. The Review starts with a thorough overview of recently developed synthetic strategies and growth mechanisms to achieve single-crystalline CuNWs and fivefold twinned CuNWs by the reduction of Cu(I) and Cu(II) ions, respectively. Following is a discussion of CuNW purification and multidimensional assemblies comprising films, aerogels, and arrays. Next, several effective approaches to protect CuNWs from oxidation are highlighted. The emerging applications of CuNWs in diverse fields are then focused on, with particular emphasis on optoelectronics, energy storage/conversion, catalysis, wearable electronics, and thermal management, followed by a brief comment on the current challenges and future research directions. The central theme of the Review is to provide an intimate correlation among the synthesis, structure, properties, and applications of CuNWs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. ZnO nanowires: Synthesis and charge transfer mechanism in the detection of ammonia vapour

    NASA Astrophysics Data System (ADS)

    Nancy Anna Anasthasiya, A.; Ramya, S.; Rai, P. K.; Jeyaprakash, B. G.

    2018-01-01

    ZnO nanowires with hexagonal wurtzite structure were grown on the glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method. Both experimental and theoretical studies demonstrated that NH3 chemisorbed and transferred the charge to the surface of the nanowire via its nitrogen site to the zinc site of ZnO nanowires, leading to the detection of NH3 vapour. The adsorbed ammonia dissociated into NH2 and H due to steric repulsion, and then into N2 and H2 gas. The formation of the N2 gas during the desorption process confirmed by observing peak at 14 and 28 m/z in the GC-MS spectrum.

  17. Electrodeposition of Rhodium Nanowires Arrays and Their Morphology-Dependent Hydrogen Evolution Activity

    PubMed Central

    Zhang, Liqiu; Liu, Lichun; Wang, Hongdan; Shen, Hongxia; Cheng, Qiong; Yan, Chao; Park, Sungho

    2017-01-01

    This work reports on the electrodeposition of rhodium (Rh) nanowires with a controlled surface morphology synthesized using an anodic aluminum oxide (AAO) template. Vertically aligned Rh nanowires with a smooth and coarse morphology were successfully deposited by adjusting the electrode potential and the concentration of precursor ions and by involving a complexing reagent in the electrolyte solution. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses were used to follow the morphological evolution of Rh nanowires. As a heterogeneous electrocatalyst for hydrogen evolution reactions (HER), the coarse Rh nanowire array exhibited an enhanced catalytic performance respect to smooth ones due to the larger surface area to mass ratio and the higher density of catalytically active defects, as evidenced by voltammetric measurements and TEM. Results suggest that the morphology of metallic nanomaterials could be readily engineered by electrodeposition. The controlled electrodeposition offers great potential for the development of an effective synthesis tool for heterogeneous catalysts with a superior performance for wide applications. PMID:28467375

  18. Efficient Terahertz Emission from InAs Nanowires

    DTIC Science & Technology

    2011-09-16

    are specific to high aspect ratio geometries. DOI: 10.1103/PhysRevB.84.115421 PACS number(s): 73.21.−b, 81.07.Gf I . MOTIVATION Manipulation of...43 The symmetric nature of the I -V curve in Fig. 4(b) afforded by the two ohmic41,42 contacts despite their geometrically asymmetric nature, is...consistent with SCLC (a bulk-limited regime). This is in marked contrast to rectifying I -V characteristics observed for Au catalyst/Ge nanowire contacts

  19. Nanowire-based detector

    DOEpatents

    Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele

    2014-06-24

    Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.

  20. Novel Crystal Structure C60 Nanowire

    NASA Astrophysics Data System (ADS)

    Mickelson, William; Aloni, Shaul; Han, Weiqiang; Cumings, John; Zettl, Alex

    2003-03-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride (BN) nanotubes. For small-diameter BN tubes, the wire consists of a linear chain of C60's. With increasing BN tube inner diameter, novel C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) which are unknown for bulk or thin film forms of C60. C60 in BN nanotubes presents a model system for studying the properties of new dimensionally-constrained "silo" crystal structures.

  1. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies.

    PubMed

    Constantino, Nicolas G N; Anwar, Muhammad Shahbaz; Kennedy, Oscar W; Dang, Manyu; Warburton, Paul A; Fenton, Jonathan C

    2018-06-16

    Superconducting nanowires undergoing quantum phase-slips have potential for impact in electronic devices, with a high-accuracy quantum current standard among a possible toolbox of novel components. A key element of developing such technologies is to understand the requirements for, and control the production of, superconducting nanowires that undergo coherent quantum phase-slips. We present three fabrication technologies, based on using electron-beam lithography or neon focussed ion-beam lithography, for defining narrow superconducting nanowires, and have used these to create nanowires in niobium nitride with widths in the range of 20⁻250 nm. We present characterisation of the nanowires using DC electrical transport at temperatures down to 300 mK. We demonstrate that a range of different behaviours may be obtained in different nanowires, including bulk-like superconducting properties with critical-current features, the observation of phase-slip centres and the observation of zero conductance below a critical voltage, characteristic of coherent quantum phase-slips. We observe critical voltages up to 5 mV, an order of magnitude larger than other reports to date. The different prominence of quantum phase-slip effects in the various nanowires may be understood as arising from the differing importance of quantum fluctuations. Control of the nanowire properties will pave the way for routine fabrication of coherent quantum phase-slip nanowire devices for technology applications.

  2. Electrochemical deposited nickel nanowires: influence of deposition bath temperature on the morphology and physical properties

    NASA Astrophysics Data System (ADS)

    Sofiah, A. G. N.; Kananathan, J.; Samykano, M.; Ulakanathan, S.; Lah, N. A. C.; Harun, W. S. W.; Sudhakar, K.; Kadirgama, K.; Ngui, W. K.; Siregar, J. P.

    2017-10-01

    This paper investigates the influence of the electrolytic bath temperature on the morphology and physical properties of nickel (Ni) nanowires electrochemically deposited into the anodic alumina oxide porous membrane (AAO). The synthesis was performed using nickel sulfate hexahydrate (NiSO4.6H2O) and boric acid (H3BO3) as an electrolytic bath for the electrochemical deposition of Ni nanowires. During the experiment, the electrolyte bath temperature varied from 40°C, 80°C, and 120°C. After the electrochemical deposition process, AAO templates cleaned with distilled water preceding to dissolution in sodium hydroxide (NaOH) solution to obtain free-standing Ni nanowires. Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD) analysis were employed to characterize the morphology and physical properties of the synthesized Ni nanowires. Finding reveals the electrodeposition bath temperature significantly influences the morphology and physical properties of the synthesized Ni nanowires. Rougher surface texture, larger crystal size, and longer Ni nanowires obtained as the deposition bath temperature increased. From the physical properties properties analysis, it can be concluded that deposition bath temperature influence the physical properties of Ni nanowires.

  3. Chip-to-chip SnO2 nanowire network sensors for room temperature H2 detection

    NASA Astrophysics Data System (ADS)

    Köck, A.; Brunet, E.; Mutinati, G. C.; Maier, T.; Steinhauer, S.

    2012-06-01

    The employment of nanowires is a very powerful strategy to improve gas sensor performance. We demonstrate a gas sensor device, which is based on silicon chip-to-chip synthesis of ultralong tin oxide (SnO2) nanowires. The sensor device employs an interconnected SnO2 nanowire network configuration, which exhibits a huge surface-to-volume ratio and provides full access of the target gas to the nanowires. The chip-to-chip SnO2 nanowire device is able to detect a H2 concentration of only 20 ppm in synthetic air with ~ 60% relative humidity at room temperature. At an operating temperature of 300°C a concentration of 50 ppm H2 results in a sensitivity of 5%. At this elevated temperature the sensor shows a linear response in a concentration range between 10 ppm and 100 ppm H2. The SnO2-nanowire fabrication procedure based on spray pyrolysis and subsequent annealing is performed at atmospheric pressure, requires no vacuum and allows upscale of the substrate to a wafer size. 3D-integration with CMOS chips is proposed as viable way for practical realization of smart nanowire based gas sensor devices for the consumer market.

  4. In situ electron microscopy four-point electromechanical characterization of freestanding metallic and semiconducting nanowires.

    PubMed

    Bernal, Rodrigo A; Filleter, Tobin; Connell, Justin G; Sohn, Kwonnam; Huang, Jiaxing; Lauhon, Lincoln J; Espinosa, Horacio D

    2014-02-26

    Electromechanical coupling is a topic of current interest in nanostructures, such as metallic and semiconducting nanowires, for a variety of electronic and energy applications. As a result, the determination of structure-property relations that dictate the electromechanical coupling requires the development of experimental tools to perform accurate metrology. Here, a novel micro-electro-mechanical system (MEMS) that allows integrated four-point, uniaxial, electromechanical measurements of freestanding nanostructures in-situ electron microscopy, is reported. Coupled mechanical and electrical measurements are carried out for penta-twinned silver nanowires, their resistance is identified as a function of strain, and it is shown that resistance variations are the result of nanowire dimensional changes. Furthermore, in situ SEM piezoresistive measurements on n-type, [111]-oriented silicon nanowires up to unprecedented levels of ∼7% strain are demonstrated. The piezoresistance coefficients are found to be similar to bulk values. For both metallic and semiconducting nanowires, variations of the contact resistance as strain is applied are observed. These variations must be considered in the interpretation of future two-point electromechanical measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells.

    PubMed

    José Andrés, Luis; Fe Menéndez, María; Gómez, David; Luisa Martínez, Ana; Bristow, Noel; Paul Kettle, Jeffrey; Menéndez, Armando; Ruiz, Bernardino

    2015-07-03

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  6. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells

    NASA Astrophysics Data System (ADS)

    José Andrés, Luis; Menéndez, María Fe; Gómez, David; Martínez, Ana Luisa; Bristow, Noel; Kettle, Jeffrey Paul; Menéndez, Armando; Ruiz, Bernardino

    2015-07-01

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  7. Mechanical behavior enhancement of ZnO nanowire by embedding different nanowires

    NASA Astrophysics Data System (ADS)

    Vazinishayan, Ali; Yang, Shuming; Lambada, Dasaradha Rao; Wang, Yiming

    2018-06-01

    In this work, we employed commercial finite element modeling (FEM) software package ABAQUS to analyze mechanical properties of ZnO nanowire before and after embedding with different kinds of nanowires, having different materials and cross-section models such as Au (circular), Ag (pentagonal) and Si (rectangular) using three point bending technique. The length and diameter of the ZnO nanowire were measured to be 12,280 nm and 103.2 nm, respectively. In addition, Au, Ag and Si nanowires were considered to have the length of 12,280 nm and the diameter of 27 nm. It was found that after embedding Si nanowire with rectangular cross-section into the ZnO nanowire, the distribution of Von Misses stresses criterion, displacement and strain were decreased than the other nanowires embedded. The highest stiffness, the elastic deformation and the high strength against brittle failure have been made by Si nanowire comparison to the Au and Ag nanowires, respectively.

  8. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  9. Self assembly of organic nanostructures and dielectrophoretic assembly of inorganic nanowires.

    NASA Astrophysics Data System (ADS)

    Dholakia, Geetha; Kuo, Steven; Allen, E. L.

    2007-03-01

    Self assembly techniques enable the organization of organic molecules into nanostructures. Currently engineering strategies for efficient assembly and routine integration of inorganic nanoscale objects into functional devices is very limited. AC Dielectrophoresis is an efficient technique to manipulate inorganic nanomaterials into higher dimensional structures. We used an alumina template based sol-gel synthesis method for the growth of various metal oxide nanowires with typical diameters of 100-150 nm, ranging in length from 3-10 μm. Here we report the dielectrophoretic assembly of TiO2 nanowires, an important material for photocatalysis and photovoltaics, onto interdigitated devices. Self assembly in organic nanostructures and its dependence on structure and stereochemistry of the molecule and dielectrophoretic field dependence in the assembly of inorganic nanowires will be compared and contrasted. Tunneling spectroscopy and DOS of these nanoscale systems will also be discussed.

  10. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation.

    PubMed

    Agrawal, Ravi; Espinosa, Horacio D

    2011-02-09

    Nanowires made of materials with noncentrosymmetric crystal structure are under investigation for their piezoelectric properties and suitability as building blocks for next-generation self-powered nanodevices. In this work, we investigate the size dependence of piezoelectric coefficients in nanowires of two such materials - zinc oxide and gallium nitride. Nanowires, oriented along their polar axis, ranging from 0.6 to 2.4 nm in diameter were modeled quantum mechanically. A giant piezoelectric size effect is identified for both GaN and ZnO nanowires. However, GaN exhibits a larger and more extended size dependence than ZnO. The observed size effect is discussed in the context of charge redistribution near the free surfaces leading to changes in local polarization. The study reveals that local changes in polarization and reduction of unit cell volume with respect to bulk values lead to the observed size effect. These results have strong implication in the field of energy harvesting, as piezoelectric voltage output scales with the piezoelectric coefficient.

  11. Nondestructive Complete Mechanical Characterization of Zinc Blende and Wurtzite GaAs Nanowires Using Time-Resolved Pump-Probe Spectroscopy.

    PubMed

    Mante, Pierre-Adrien; Lehmann, Sebastian; Anttu, Nicklas; Dick, Kimberly A; Yartsev, Arkady

    2016-08-10

    We have developed and demonstrated an experimental method, based on the picosecond acoustics technique, to perform nondestructive complete mechanical characterization of nanowires, that is, the determination of the complete elasticity tensor. By means of femtosecond pump-probe spectroscopy, coherent acoustic phonons were generated in an ensemble of nanowires and their dynamics was resolved. Specific phonon modes were identified and the detection mechanism was addressed via wavelength dependent experiments. We calculated the exact phonon dispersion relation of the nanowires by fitting the experimentally observed frequencies, thus allowing the extraction of the complete elasticity tensor. The elasticity tensor and the nanowire diameter were determined for zinc blende GaAs nanowires and were found to be in a good agreement with literature data and independent measurements. Finally, we have applied this technique to characterize wurtzite GaAs nanowires, a metastable phase in bulk, for which no experimental values of elastic constants are currently available. Our results agree well with previous first principle calculations. The proposed approach to the complete and nondestructive mechanical characterization of nanowires will allow the efficient mechanical study of new crystal phases emerging in nanostructures, as well as size-dependent properties of nanostructured materials.

  12. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.

    PubMed

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-28

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (<1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients ηS and ηT, based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in

  13. Synthesis of polycrystalline Co{sub 3}O{sub 4} nanowires with excellent ammonium perchlorate catalytic decomposition property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hai; University of Chinese Academy of Sciences, Beijing 100049; Lv, Baoliang, E-mail: lbl604@sxicc.ac.cn

    2014-12-15

    Graphical abstract: Co{sub 3}O{sub 4} nanowires with excellent ammonium perchlorate catalytic decomposition property were synthesized via a methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process in the presence of methanamide. - Abstract: Co{sub 3}O{sub 4} nanowires, with the length of tens of micrometers and the width of several hundred nanometers, were produced by a hydrothermal treatment and a post-anneal process. X-ray diffraction (XRD) result showed that the Co{sub 3}O{sub 4} nanowires belong to cubic crystal system. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that the Co{sub 3}O{sub 4} nanowires, composed by single crystalline nanoparticles, were of polycrystallinemore » nature. On the basis of time-dependent experiments, methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process were used to explain the precursors' formation process of the polycrystalline Co{sub 3}O{sub 4} nanowires. The TGA experiments showed that the as-obtained Co{sub 3}O{sub 4} nanowires can catalyze the thermal decomposition of ammonium perchlorate (AP) effectively.« less

  14. The ITO-capped WO3 nanowires biosensor based on field-effect transistor in label-free protein sensing

    NASA Astrophysics Data System (ADS)

    Shariati, Mohsen

    2017-05-01

    The fabrication of ITO-capped WO3 nanowires associated with their bio-sensing properties in field-effect transistor diagnostics basis as a biosensor has been reported. The bio-sensing property for manipulated nanowires elucidated that the grown nanostructures were very sensitive to protein. The ITO-capped WO3 nanowires biosensor showed an intensive bio-sensing activity against reliable protein. Polylysine strongly charged bio-molecule was applied as model system to demonstrate the implementation of materialized biosensor. The employed sensing mechanism was `label-free' and depended on bio-molecule's intrinsic charge. For nanowires synthesis, the vapor-liquid-solid mechanism was used. Nanowires were beyond a few hundred nanometers in lengths and around 15-20 nm in diameter, while the globe cap's size on the nanowires was around 15-25 nm. The indium tin oxide (ITO) played as catalyst in nanofabrication for WO3 nanowires growth and had outstanding role in bio-sensing especially for bio-molecule adherence. In applied electric field presence, the fabricated device showed the great potential to enhance medical diagnostics.

  15. Subeutectic Synthesis of Epitaxial Si-NWs with Diverse Catalysts Using a Novel Si Precursor

    PubMed Central

    2010-01-01

    The applicability of a novel silicon precursor with respect to reasonable nanowire (NW) growth rates, feasibility of epitaxial NW growth and versatility with respect to diverse catalysts was investigated. Epitaxial growth of Si-NWs was achieved using octochlorotrisilane (OCTS) as Si precursor and Au as catalyst. In contrast to the synthesis approach with SiCl4 as precursor, OCTS provides Si without the addition of H2. By optimizing the growth conditions, effective NW synthesis is shown for alternative catalysts, in particular, Cu, Ag, Ni, and Pt with the latter two being compatible to complementary metal-oxide-semiconductor technology. As for these catalysts, the growth temperatures are lower than the lowest liquid eutectic; we suggest that the catalyst particle is in the solid state during NW growth and that a solid-phase diffusion process, either in the bulk, on the surface, or both, must be responsible for NW nucleation. PMID:20843058

  16. Si-H induced synthesis of Si/Cu2O nanowire arrays for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoyang; She, Guangwei; Li, Shengyang; Mu, Lixuan; Shi, Wensheng

    2018-01-01

    We report a facile and low-cost method to synthesize Si/Cu2O heterojunction nanowire arrays, without SiOx, at the Si/Cu2O interface. The reductive Si-H bonds on the surface of Si nanowires plays a key role in situ by reducing Cu(II) ions to Cu2O nanocubes and avoiding the SiOx interface layer. Different pH values would vary the electrochemical potential of reactions and as a result, different products would be formed. Utilized as a photoanode for water splitting, Si/Cu2O nanowire arrays exhibit good photoelectrochemical performance.

  17. Ultralong copper phthalocyanine nanowires with new crystal structure and broad optical absorption.

    PubMed

    Wang, Hai; Mauthoor, Soumaya; Din, Salahud; Gardener, Jules A; Chang, Rio; Warner, Marc; Aeppli, Gabriel; McComb, David W; Ryan, Mary P; Wu, Wei; Fisher, Andrew J; Stoneham, Marshall; Heutz, Sandrine

    2010-07-27

    The development of molecular nanostructures plays a major role in emerging organic electronic applications, as it leads to improved performance and is compatible with our increasing need for miniaturization. In particular, nanowires have been obtained from solution or vapor phase and have displayed high conductivity or large interfacial areas in solar cells. In all cases however, the crystal structure remains as in films or bulk, and the exploitation of wires requires extensive postgrowth manipulation as their orientations are random. Here we report copper phthalocyanine (CuPc) nanowires with diameters of 10-100 nm, high directionality, and unprecedented aspect ratios. We demonstrate that they adopt a new crystal phase, designated eta-CuPc, where the molecules stack along the long axis. The resulting high electronic overlap along the centimeter length stacks achieved in our wires mediates antiferromagnetic couplings and broadens the optical absorption spectrum. The ability to fabricate ultralong, flexible metal phthalocyanine nanowires opens new possibilities for applications of these simple molecules.

  18. Enhanced electronic and electrochemical properties of core-shelled V2O5-Pt nanowires

    NASA Astrophysics Data System (ADS)

    Pan, Ko-Ying; Wei, Da-Hua

    2018-01-01

    Platinum nanoparticles (Pt NPs) were decorated on vanadium pentoxide nanowires (V2O5 NWs) to form the core-shelled vanadium-platinum nanowires (Pt@V2O5 NWs) and their electrochemical activities for methanol oxidation were investigated. The synthetic procedure involved the synthesis of abundant vanadium pentoxide nanowires (V2O5 NWs) by a direct vapor-solid growth process (VS method), followed by atomic layer depositions (ALD) of platinum nanoparticles (Pt NPs) onto the V2O5 NWs. After the physical examinations, three designed deposition parameters (50, 100 and 150 cycles) of Pt NPs onto the V2O5 NWs by ALD process were successful. From the measurements of current-voltage (I-V) and cyclic voltammetry (CV) curves respectively, both the conductivity and the ratio of the forward anodic peak current (IF) to the reverse anodic peak current (IR) are enhancing proportionately to the deposition cycles of ALD process, which denotes that coating Pt atomic layers onto V2O5 nanowires indeed improves the catalytic performances than that of pure V2O5 nanowires.

  19. Predicting the optoelectronic properties of nanowire films based on control of length polydispersity

    NASA Astrophysics Data System (ADS)

    Large, Matthew J.; Burn, Jake; King, Alice A.; Ogilvie, Sean P.; Jurewicz, Izabela; Dalton, Alan B.

    2016-05-01

    We demonstrate that the optoelectronic properties of percolating thin films of silver nanowires (AgNWs) are predominantly dependent upon the length distribution of the constituent AgNWs. A generalized expression is derived to describe the dependence of both sheet resistance and optical transmission on this distribution. We experimentally validate the relationship using ultrasonication to controllably vary the length distribution. These results have major implications where nanowire-based films are a desirable material for transparent conductor applications; in particular when application-specific performance criteria must be met. It is of particular interest to have a simple method to generalize the properties of bulk films from an understanding of the base material, as this will speed up the optimisation process. It is anticipated that these results may aid in the adoption of nanowire films in industry, for applications such as touch sensors or photovoltaic electrode structures.

  20. Anomalous magnetic properties of 7 nm single-crystal Co3O4 nanowires

    NASA Astrophysics Data System (ADS)

    Lv, Ping; Zhang, Yan; Xu, Rui; Nie, Jia-Cai; He, Lin

    2012-01-01

    We present a study of magnetic properties of single-crystal Co3O4 nanowires with diameter about 7 nm. The nanowires expose (111) planes composed of plenty of Co3+ cations and exhibit two order temperatures at 56 K (TN of wire cores) and 73 K (order temperature of wire shells), which are far above TN = 40 K of bulk Co3O4. This novel behavior is attributed to symmetry breaking of surface Co3+ cations and magnetic proximity effect. The nanowire shells show macroscopic residual magnetic moments. Cooling in a magnetic field, a fraction of the residual moments are tightly pinned to the antiferromagnetic lattice, which results in an obvious horizontal and vertical shift of hysteresis loop. Our experiment demonstrates that the exchange bias field HE and the pinned magnetic moments Mpin follow a simple expression HE = aMpin with a a constant.

  1. Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application.

    PubMed

    Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H

    2012-04-27

    Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.

  2. Facile synthesis of Ag@ZIF-8 core-shell heterostructure nanowires for improved antibacterial activities

    NASA Astrophysics Data System (ADS)

    Guo, Yu-Feng; Fang, Wei-Jun; Fu, Jie-Ru; Wu, Yun; Zheng, Jun; Gao, Gui-Qi; Chen, Cheng; Yan, Rui-Wen; Huang, Shou-Guo; Wang, Chun-Chang

    2018-03-01

    Compared with pure MOFs, core-shell heterostructures of noble-metal@MOFs have attracted tremendous interest due to their unique structure and extensive applications. In the present study, we have successfully synthesized well-defined core-shell Ag@ZIF-8 nanowires. The products growth process has been investigated by examining the products obtained at different intervals and the thickness of ZIF-8 shell ranging from 30 to 100 nm can be technically obtained by tuning the quantity of Ag nanowires. Ag@ZIF-8 has been proven to possess large specific surfaces and high thermal stability. Additionally, the antibacterial activity of Ag@ZIF-8 is further tested against Bacillus subtilis and Escherichia coli BL21. The results reveal that Ag@ZIF-8 core-shell heterostructure nanowires have effective activities against the two types of bacterial strains.

  3. InP Nanoflag Growth from a Nanowire Template by in Situ Catalyst Manipulation.

    PubMed

    Kelrich, Alexander; Sorias, Ofir; Calahorra, Yonatan; Kauffmann, Yaron; Gladstone, Ran; Cohen, Shimon; Orenstein, Meir; Ritter, Dan

    2016-04-13

    Quasi-two-dimensional semiconductor materials are desirable for electronic, photonic, and energy conversion applications as well as fundamental science. We report on the synthesis of indium phosphide flag-like nanostructures by epitaxial growth on a nanowire template at 95% yield. The technique is based on in situ catalyst unpinning from the top of the nanowire and its induced migration along the nanowire sidewall. Investigation of the mechanism responsible for catalyst movement shows that its final position is determined by the structural defect density along the nanowire. The crystal structure of the "flagpole" nanowire is epitaxially transferred to the nanoflag. Pure wurtzite InP nanomembranes with just a single stacking fault originating from the defect in the flagpole that pinned the catalyst were obtained. Optical characterization shows efficient highly polarized photoluminescence at room temperature from a single nanoflag with up to 90% degree of linear polarization. Electric field intensity enhancement of the incident light was calculated to be 57, concentrated at the nanoflag tip. The presented growth method is general and thus can be employed for achieving similar nanostructures in other III-V semiconductor material systems with potential applications in active nanophotonics.

  4. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-07-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  5. Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes.

    PubMed

    Carnevale, Santino D; Yang, Jing; Phillips, Patrick J; Mills, Michael J; Myers, Roberto C

    2011-02-09

    Bottom-up nanostructure assembly has been a central theme of materials synthesis over the past few decades. Semiconductor quantum dots and nanowires provide additional degrees of freedom for charge confinement, strain engineering, and surface sensitivity-properties that are useful to a wide range of solid state optical and electronic technologies. A central challenge is to understand and manipulate nanostructure assembly to reproducibly generate emergent structures with the desired properties. However, progress is hampered due to the interdependence of nucleation and growth phenomena. Here we show that by dynamically adjusting the growth kinetics, it is possible to separate the nucleation and growth processes in spontaneously formed GaN nanowires using a two-step molecular beam epitaxy technique. First, a growth phase diagram for these nanowires is systematically developed, which allows for control of nanowire density over three orders of magnitude. Next, we show that by first nucleating nanowires at a low temperature and then growing them at a higher temperature, height and density can be independently selected while maintaining the target density over long growth times. GaN nanowires prepared using this two-step procedure are overgrown with three-dimensionally layered and topologically complex heterostructures of (GaN/AlN). By adjusting the growth temperature in the second growth step either vertical or coaxial nanowire superlattices can be formed. These results indicate that a two-step method allows access to a variety of kinetics at which nanowire nucleation and adatom mobility are adjustable.

  6. Magnetic Behavior of Ni-Fe Core-Shell and Alloy Nanowires

    NASA Astrophysics Data System (ADS)

    Tripathy, Jagnyaseni; Vargas, Jose; Spinu, Leonard; Wiley, John

    2013-03-01

    Template assisted synthesis was used to fabricate a series of Ni-Fe core-shell and alloy nanowires. By controlling reaction conditions as well as pore structure, both systems could be targeted and magnetic properties followed as a function of architectures. In the core-shell structure coercivity increases with decrease in shell thickness while for the alloys, coercivity squareness improve with increase pore diameter. Details on the systematic studies of these materials will be presented in terms of hysteretic measurements, including first order reversal curves (FORC), and FMR data. Magnetic variation as a function of structure and nanowire aspect ratios will be presented and the origins of these behaviors discussed. Advanced Material Research Institute

  7. Controlled synthesis of α-MnO{sub 2} nanowires and their catalytic performance for toluene combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Gao; Yu, Lin, E-mail: gych@gdut.edu.cn; Lan, Bang

    Highlights: • One-dimensional α-MnO{sub 2} nanowires were prepared by a facile hydrothermal route. • Shape and crystal phase of the products were controlled by tuning reaction conditions. • A possible formation mechanism of the α-MnO{sub 2} nanowires was discussed. • The α-MnO{sub 2} nanowires showed great catalytic activity for toluene combustion. - Abstract: α-MnO{sub 2} nanowires with a length about 6–10 μm and an average diameter of 20 nm were synthesized through a facile hydrothermal process without any templates or surfactants. The products were characterized by X-ray powder diffraction, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, hydrogenmore » temperature-programmed reduction techniques, X-ray photoelectron spectroscopy and surface area analysis. The effects of the hydrothermal temperature and the concentration of CH{sub 3}COOH on the crystal phase and morphology of the final products were studied in detail. The hydrothermal temperature and the concentration of CH{sub 3}COOH play crucial roles in determining the crystal phase and morphology of the products. The possible formation mechanism of the α-MnO{sub 2} nanowires was investigated and discussed. Additionally, the as-prepared α-MnO{sub 2} nanowires showed higher catalytic activity for toluene combustion than the commercial MnO{sub 2}, suggesting their potential applications in the elimination of volatile organic compounds.« less

  8. Modal analysis of the thermal conductivity of nanowires: examining unique thermal transport features.

    PubMed

    Samaraweera, Nalaka; Larkin, Jason M; Chan, Kin L; Mithraratne, Kumar

    2018-06-06

    In this study, unique thermal transport features of nanowires over bulk materials are investigated using a combined analysis based on lattice dynamics and equilibrium molecular dynamics (EMD). The evaluation of the thermal conductivity (TC) of Lenard-Jones nanowires becomes feasible due to the multi-step normal mode decomposition (NMD) procedure implemented in the study. A convergence issue of the TC of nanowires is addressed by the NMD implementation for two case studies, which employ pristine nanowires (PNW) and superlattice nanowires. Interestingly, mode relaxation times at low frequencies of acoustic branches exhibit signs of approaching constant values, thus indicating the convergence of TC. The TC evaluation procedure is further verified by implementing EMD-based Green-Kubo analysis, which is based on a fundamentally different physical perspective. Having verified the NMD procedure, the non-monotonic trend of the TC of nanowires is addressed. It is shown that the principal cause for the observed trend is due to the competing effects of long wavelength phonons and phonon-surface scatterings as the nanowire's cross-sectional width is changed. A computational procedure is developed to decompose the different modal contribution to the TC of shell alloy nanowires (SANWs) using virtual crystal NMD and the Allen-Feldman theory. Several important conclusions can be drawn from the results. A propagons to non-propagons boundary appeared, resulting in a cut-off frequency (ω cut ); moreover, as alloy atomic mass is increased, ω cut shifts to lower frequencies. The existence of non-propagons partly causes the low TC of SANWs. It can be seen that modes with low frequencies demonstrate a similar behavior to corresponding modes of PNWs. Moreover, lower group velocities associated with higher alloy atomic mass resulted in a lower TC of SANWs.

  9. Phosphorus-Rich Copper Phosphide Nanowires for Field-Effect Transistors and Lithium-Ion Batteries.

    PubMed

    Li, Guo-An; Wang, Chiu-Yen; Chang, Wei-Chung; Tuan, Hsing-Yu

    2016-09-27

    Phosphorus-rich transition metal phosphide CuP2 nanowires were synthesized with high quality and high yield (∼60%) via the supercritical fluid-liquid-solid (SFLS) growth at 410 °C and 10.2 MPa. The obtained CuP2 nanowires have a high aspect ratio and exhibit a single crystal structure of monoclinic CuP2 without any impurity phase. CuP2 nanowires have progressive improvement for semiconductors and energy storages compared with bulk CuP2. Being utilized for back-gate field effect transistor (FET) measurement, CuP2 nanowires possess a p-type behavior intrinsically with an on/off ratio larger than 10(4) and its single nanowire electrical transport property exhibits a hole mobility of 147 cm(2) V(-1) s(-1), representing the example of a CuP2 transistor. In addition, CuP2 nanowires can serve as an appealing anode material for a lithium-ion battery electrode. The discharge capacity remained at 945 mA h g(-1) after 100 cycles, showing a good capacity retention of 88% based on the first discharge capacity. Even at a high rate of 6 C, the electrode still exhibited an outstanding result with a capacity of ∼600 mA h g(-1). Ex-situ transmission electron microscopy and CV tests demonstrate that the stability of capacity retention and remarkable rate capability of the CuP2 nanowires electrode are attributed to the role of the metal phosphide conversion-type lithium storage mechanism. Finally, CuP2 nanowire anodes and LiFePO4 cathodes were assembled into pouch-type lithium batteries offering a capacity over 60 mA h. The full cell shows high capacity and stable capacity retention and can be used as an energy supply to operate electronic devices such as mobile phones and mini 4WD cars.

  10. ZnxCd1-xSe alloy nanowires covering the entire compositional range grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shan, C. X.; Liu, Z.; Ng, C. M.; Hark, S. K.

    2005-07-01

    We show that preferentially oriented, single-crystalline ZnxCd1-xSe alloy nanowires can be grown on GaAs (100) surface using Au as a catalyst over the entire compositional range in a metalorganic chemical vapor deposition system. The composition of the alloy nanowires can be simply adjusted through the ratio of the flow rates of group-II precursors. Electron microscopy shows that the nanowires are smooth and uniform in shape; their diameters range from 20 to 80 nm and lengths exceed a few micrometers. Nanowires containing more than 13% Zn are zinc blende structured and grow along the ⟨110⟩ direction. Those containing less Zn are wurtzite structured and grow along the ⟨210⟩ direction. Compared with the bulk alloy, the change from zinc blende to wurtzite structure in nanowires occurs at far smaller x. The preferred orientation and the persistence of the zinc blende structure both reflect the influence of the substrate on the growth of the nanowires. Photoluminescence measurements identify a strong near-band-edge emission for all samples and show that its peak energy tracks the band gap of ZnxCd1-xSe epilayer for x>0.13. The growth of alloy nanowires at many compositions opens up the possibility of realizing quasi-one-dimensional heterojunctions.

  11. Chemical synthesis of oriented ferromagnetic LaSr-2 × 4 manganese oxide molecular sieve nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carretero-Genevrier, Adrián; Gazquez, Jaume; Magen, Cesar

    2012-04-25

    Here we report a chemical solution based method using nanoporous track-etched polymer templates for producing long and oriented LaSr-2 × 4 manganese oxide molecular sieve nanowires. Scanning transmission electron microscopy and electron energy loss spectroscopy analyses show that the nanowires are ferromagnetic at room temperature, single crystalline, epitaxially grown and self-aligned.

  12. High density group IV semiconductor nanowire arrays fabricated in nanoporous alumina templates

    NASA Astrophysics Data System (ADS)

    Redwing, Joan M.; Dilts, Sarah M.; Lew, Kok-Keong; Cranmer, Alexana E.; Mohney, Suzanne E.

    2005-11-01

    The fabrication of high density arrays of semiconductor nanowires is of interest for nanoscale electronics, chemical and biological sensing and energy conversion applications. We have investigated the synthesis, intentional doping and electrical characterization of Si and Ge nanowires grown by the vapor-liquid-solid (VLS) method in nanoporous alumina membranes. Nanoporous membranes provide a convenient platform for nanowire growth and processing, enabling control of wire diameter via pore size and the integration of contact metals for electrical testing. For VLS growth in nanoporous materials, reduced pressures and temperatures are required in order to promote the diffusion of reactants into the pore without premature decomposition on the membrane surface or pore walls. The effect of growth conditions on the growth rate of Si and Ge nanowires from SiH 4 and GeH 4 sources, respectively, was investigated and compared. In both cases, the measured activation energies for nanowire growth were substantially lower than activation energies typically reported for Si and Ge thin film deposition under similar growth conditions, suggesting that gold plays a catalytic role in the VLS growth process. Intentionally doped SiNW arrays were also prepared using trimethylboron (TMB) and phosphine (PH 3) as p-type and n-type dopant sources, respectively. Nanowire resistivities were calculated from plots of the array resistance as a function of nanowire length. A decrease in resistivity was observed for both n-type and p-type doped SiNW arrays compared to those grown without the addition of a dopant source.

  13. Geometric effects on surface states in topological insulator Bi2Te3 nanowire

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Kubis, Tillman; Povolotskyi, Michael; Klimeck, Gerhard

    2012-02-01

    Bismuth Telluride (BT) is a 3D topological insulator (TI) with surface states that have energy dispersion linear in momentum and forms a Dirac cone at low energy. In this work we investigate the surface properties of a BT nanowire and demonstrate the existence of TI states. We also show how such states vanish under certain geometric conditions. An atomistic model (sp3d5s* TB) is used to compute the energy dispersion in a BT nanowire. Penetration depth of the surface states is estimated by ratio of Fermi velocity and band-gap. BT possesses a tiny band-gap, which creates small localization of surface states and greater penetration in to the bulk. To offset this large spatial penetration, which is undesirable to avoid a direct coupling between surfaces, we expect that bigger cross-sections of BT nanowires would be needed to obtain stable TI states. Our numerical work validates this prediction. Furthermore, geometry of the nanowire is shown to influence the TI states. Using a combined analytical and numerical approach our results reveal that surface roughness impact electronic structure leading to Rashba type splits along z-direction. Cylindrical and square cross-sections are given as illustrative examples.

  14. Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly

    DOE PAGES

    Yan, Hao; Hohman, J. Nathan; Li, Fei Hua; ...

    2016-12-26

    Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal–organic frameworks and coordination polymers. However, the lack of ‘solid’ inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal–organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on additionmore » of precursors for nanowire elongation. These nanowires have band-like electronic properties, low effective carrier masses and three orders-of-magnitude conductivity modulation by hole doping. Furthermore, this discovery highlights a previously unexplored regime of structure-directing agents compared with traditional surfactant, block copolymer or metal–organic framework linkers.« less

  15. Nanowire Ice of Phase VI and Distorted VII in Mesoporous Silica Nanotorus Superlattice

    NASA Astrophysics Data System (ADS)

    Zhu, Jinlong; Zhang, Jianzhong; Zhao, Yusheng

    2014-03-01

    The motivation of nano H2O realization and characterization is the highly polarized nature of H2O molecules and the spatial hydrogen bonded networks both in liquid and solid form. The hydrogen bonding character of water molecules results in a remarkably rich phase diagram in the pressure-temperature space. Water/Ice confined in nanochannels showed novel structures and properties as results of hydrophobic and hydrophilic interactions and hydrogen bonding interaction between water molecule and the surface of nanochannel. Studies on nano H2O can provide potential pathway to understand the complicated structure evolutions of ice in the P- T space, because the interplay between nano-confinement and strong intermolecular hydrogen interactions can lead to even richer ice structures which were not found in the none-confined bulk form. The high pressure experiment indicated that the pressure of nanowire ice VI and VII shifted up to 1.7 GPa and 2.5 GPa, and about ~ 0.65 GPa and 0.4 GPa higher than that of normal ice. The nano size effect and the strength of mesoporous silica nanotorus are responsible for the pressure shifts of ice phase regions. More pronounced, the cubic ice VII changed into a tetragonal distorted ``psuedocubic'' structure of the nanowire ice when confined in the mesoporous tubes. The degree of tetragonality increased with increasing pressure, which is resulted from the uniaxial pressure nanowire ice felt, and the anisotropic hydrogen bonding interactions including the H2O-H2O hydrogen bonds in the bulk of the ice and the H2O-silica -OH hydrogen bonds between the interface of nanowire ice and mesoporous silica. The experimental work has benefited from the use of CHESS at Cornell University, which is supported by the NSF award DMR-0936384.

  16. Suspended tungsten-based nanowires with enhanced mechanical properties grown by focused ion beam induced deposition

    NASA Astrophysics Data System (ADS)

    Córdoba, Rosa; Lorenzoni, Matteo; Pablo-Navarro, Javier; Magén, César; Pérez-Murano, Francesc; María De Teresa, José

    2017-11-01

    The implementation of three-dimensional (3D) nano-objects as building blocks for the next generation of electro-mechanical, memory and sensing nano-devices is at the forefront of technology. The direct writing of functional 3D nanostructures is made feasible by using a method based on focused ion beam induced deposition (FIBID). We use this technique to grow horizontally suspended tungsten nanowires and then study their nano-mechanical properties by three-point bending method with atomic force microscopy. These measurements reveal that these nanowires exhibit a yield strength up to 12 times higher than that of the bulk tungsten, and near the theoretical value of 0.1 times the Young’s modulus (E). We find a size dependence of E that is adequately described by a core-shell model, which has been confirmed by transmission electron microscopy and compositional analysis at the nanoscale. Additionally, we show that experimental resonance frequencies of suspended nanowires (in the MHz range) are in good agreement with theoretical values. These extraordinary mechanical properties are key to designing electro-mechanically robust nanodevices based on FIBID tungsten nanowires.

  17. In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J Y; Zhong, L; Wang, C M

    2010-12-09

    We report the creation of a nanoscale electrochemical device inside a transmission electron microscope—consisting of a single tin dioxide (SnO{sub 2}) nanowire anode, an ionic liquid electrolyte, and a bulk lithium cobalt dioxide (LiCoO{sub 2}) cathode—and the in situ observation of the lithiation of the SnO{sub 2} nanowire during electrochemical charging. Upon charging, a reaction front propagated progressively along the nanowire, causing the nanowire to swell, elongate, and spiral. The reaction front is a “Medusa zone” containing a high density of mobile dislocations, which are continuously nucleated and absorbed at the moving front. This dislocation cloud indicates large in-plane misfitmore » stresses and is a structural precursor to electrochemically driven solid-state amorphization. Because lithiation-induced volume expansion, plasticity, and pulverization of electrode materials are the major mechanical effects that plague the performance and lifetime of high-capacity anodes in lithium-ion batteries, our observations provide important mechanistic insight for the design of advanced batteries.« less

  18. Surface state-dominated photoconduction and THz-generation in topological Bi2Te2Se-nanowires

    NASA Astrophysics Data System (ADS)

    Seifert, Paul; Vaklinova, Kristina; Kern, Klaus; Burghard, Marko; Holleitner, Alexander

    Topological insulators constitute a fascinating class of quantum materials with non-trivial, gapless states on the surface and trivial, insulating bulk states. In revealing the optoelectronic dynamics in the whole range from femto- to microseconds, we demonstrate that the long surface lifetime of Bi2Te2Se-nanowires allows to access the surface states by a pulsed photoconduction scheme and that there is a prevailing bolometric response of the surface states. The interplay of the surface state dynamics on the different timescales gives rise to a surprising physical property of Bi2Te2Se-nanowires: their pulsed photoconductance changes polarity as a function of laser power. Moreover, we show that single Bi2Te2Se-nanowires can be used as THz-generators for on-chip high-frequency circuits at room temperature. Our results open the avenue for single Bi2Te2Se-nanowires as active modules in optoelectronic high-frequency and THz-circuits. We acknowledge financial support by the ERC Grant NanoReal (n306754).

  19. Facile Synthesis of Vanadium-Doped Ni3S2 Nanowire Arrays as Active Electrocatalyst for Hydrogen Evolution Reaction.

    PubMed

    Qu, Yuanju; Yang, Mingyang; Chai, Jianwei; Tang, Zhe; Shao, Mengmeng; Kwok, Chi Tat; Yang, Ming; Wang, Zhenyu; Chua, Daniel; Wang, Shijie; Lu, Zhouguang; Pan, Hui

    2017-02-22

    Ni 3 S 2 nanowire arrays doped with vanadium(V) are directly grown on nickel foam by a facile one-step hydrothermal method. It is found that the doping can promote the formation of Ni 3 S 2 nanowires at a low temperature. The doped nanowires show excellent electrocatalytic performance toward hydrogen evolution reaction (HER), and outperform pure Ni 3 S 2 and other Ni 3 S 2 -based compounds. The stability test shows that the performance of V-doped Ni 3 S 2 nanowires is improved and stabilized after thousands of linear sweep voltammetry test. The onset potential of V-doped Ni 3 S 2 nanowire can be as low as 39 mV, which is comparable to platinum. The nanowire has an overpotential of 68 mV at 10 mA cm -2 , a relatively low Tafel slope of 112 mV dec -1 , good stability and high Faradaic efficiency. First-principles calculations show that the V-doping in Ni 3 S 2 extremely enhances the free carrier density near the Fermi level, resulting in much improved catalytic activities. We expect that the doping can be an effective way to enhance the catalytic performance of metal disulfides in hydrogen evolution reaction and V-doped Ni 3 S 2 nanowire is one of the most promising electrocatalysts for hydrogen production.

  20. Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao-Lin, E-mail: liu_x_l@sina.cn; Zhu, Ying-Jie; Zhang, Qian

    2012-12-15

    Graphical abstract: Cadmium sulfide polycrystalline nanotubes have been successfully synthesized by microwave-assisted transformation method using Cd–cysteine precursor nanowires as the source material and template in ethylene glycol at 160 °C or ethanol at 60 °C. Display Omitted Highlights: ► Cd–cysteine precursor nanowires were successfully synthesized in alkaline solution. ► CdS nanotubes were prepared by templated microwave-assisted transformation method. ► CdS nanotubes can well duplicate the size and morphology of precursor nanowires. ► This method has the advantages of the simplicity and low cost. -- Abstract: We report the Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes. In thismore » method, the Cd–cysteine precursor nanowires are synthesized using CdCl{sub 2}·2.5H{sub 2}O, L-cysteine and ethanolamine in water at room temperature. The Cd–cysteine precursor nanowires are used as the source material and template for the subsequent preparation of CdS nanotubes by a microwave-assisted transformation method using ethylene glycol or ethanol as the solvent. This method has the advantages of the simplicity and low cost, and may be extended to the synthesis of nanotubes of other compounds. The products are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).« less

  1. Study of transmission function and electronic transport in one dimensional silver nanowire: Ab-initio method using density functional theory (DFT)

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Kashyap, Rajinder

    2018-05-01

    Single nanowire electrode devices have their application in variety of fields which vary from information technology to solar energy. Silver nanowires, made in an aqueous chemical reduction process, can be reacted with gold salt to create bimetallic nanowires. Silver nanowire can be used as electrodes in batteries and have many other applications. In this paper we investigated structural and electronic transport properties of Ag nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Ag nanowire have been studied theoretically. First of all an optimized geometry for Ag nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations respectively. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Bulk properties of Ag are in agreement with experimental values which make the study of electronic and transport properties in silver nanowires interesting because they are promising materials as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Ag nano wire reveals that silver nanowire can be used as an electrode device.

  2. Controllable synthesis of organic-inorganic hybrid MoOx/polyaniline nanowires and nanotubes.

    PubMed

    Wang, Sinong; Gao, Qingsheng; Zhang, Yahong; Gao, Jing; Sun, Xuhui; Tang, Yi

    2011-02-01

    A novel chemical oxidative polymerization approach has been proposed for the controllable preparation of organic-inorganic hybrid MoO(x)/polyaniline (PANI) nanocomposites based on the nanowire precursor of Mo(3)O(10)(C(6)H(8)N)(2)·2H(2)O with sub-nanometer periodic structures. The nanotubes, nanowires, and rambutan-like nanoparticles of MoO(x)/PANI were successfully obtained through simply modulating the pH values to 2.5-3.5, ≈2.0 and ≈1.0, respectively. Through systematic physicochemical characterization, such as scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and so forth, the composition and structure of MoO(x)/PANI hybrid nanocomposites are well confirmed. It is found that the nanowire morphology of the precursor is the key to achieve the one-dimensional (1D) structures of final products. A new polymerization-dissolution mechanism is proposed to explain the formation of such products with different morphologies, in which the match between polymerization and dissolution processes of the precursor plays the important role. This approach will find a new way to controllably prepare various organic-inorganic hybrid 1D nanomaterials especially for polymer-hybrid nanostructures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Remarks on the thermal stability of an Ohmic-heated nanowire

    NASA Astrophysics Data System (ADS)

    Timsit, Roland S.

    2018-05-01

    The rise in temperature of a wire made from specific materials, due to ohmic heating by a DC electrical current, may lead to uncontrollable thermal runaway with ensuing melting. Thermal runaway stems from a steep decrease with increasing temperature of the thermal conductivity of the conducting material and subsequent trapping of the ohmic heat in the wire, i.e., from the inability of the wire to dissipate the heat sufficiently quickly by conduction to the cooler ends of the wire. In this paper, we show that the theory used to evaluate the temperature of contacting surfaces in a bulk electrical contact may be applied to calculate the conditions for thermal runaway in a nanowire. Implications of this effect for electrical contacts are addressed. A possible implication for memory devices using ohmic-heated nanofilms or nanowires is also discussed.

  4. Highly transparent and thermal-stable silver nanowire conductive film covered with ZnMgO by atomic-layer-deposition

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Huang, Dongchen; Li, Min; Xu, Hua; Zou, Jianhua; Tao, Hong; Peng, Junbiao; Xu, Miao

    2017-12-01

    Solution-processed silver nanowires (AgNWs) have been considered as a promising material for next generation flexible transparent conductive electrodes. However AgNWs films have several intrinsic drawbacks, such as thermal stability and storage stability. Herein, we demonstrate a laminated ZnO/MgO (ZnMgO, ZMO) as a protective layer on the AgNWs films using atomic layer deposition (ALD). The fabricated films exhibited a low sheet resistance of 16 Ω/sq with high transmittance of 91% at 550 nm, an excellent thermal stability and bending property. The ZMO film grows perpendicularly on the surface of the AgNWs, making a perfect coverage of bulk silver nanowires and junction, which can effectively prompt the electrical transport behavior and enhance stability of the silver nanowires network.

  5. All-in-One Nanowire-Decorated Multifunctional Membrane for Rapid Cell Lysis and Direct DNA Isolation

    PubMed Central

    2015-01-01

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour. PMID:25420232

  6. Influence factors of the inter-nanowire thermal contact resistance in the stacked nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Dongxu; Huang, Congliang; Zhong, Jinxin; Lin, Zizhen

    2018-05-01

    The inter-nanowire thermal contact resistance is important for tuning the thermal conductivity of a nanocomposite for thermoelectric applications. In this paper, the stacked copper nanowires are applied for studying the thermal contact resistance. The stacked copper nanowires are firstly made by the cold-pressing method, and then the nanowire stacks are treated by sintering treatment. With the effect of the volumetric fraction of nanowires in the stack and the influence of the sintering-temperature on the thermal contact resistance discussed, results show that: The thermal conductivity of the 150-nm copper nanowires can be enlarged almost 2 times with the volumetric fraction increased from 32 to 56% because of the enlarged contact-area and contact number of a copper nanowire. When the sintering temperature increases from 293 to 673 K, the thermal conductivity of the stacked 300-nm nanowires could be enlarged almost 2.5 times by the sintering treatment, because of the improved lattice property of the contact zone. In conclusion, application of a high volumetric fraction or/and a sintering-treatment are effectivity to tune the inter-nanowire thermal contact resistance, and thus to tailor the thermal conductivity of a nanowire network or stack.

  7. Plasmon-enhanced tilted fiber Bragg gratings with oriented silver nanowire coatings

    NASA Astrophysics Data System (ADS)

    Renoirt, J.-M.; Debliquy, M.; Albert, J.; Ianoul, A.; Caucheteur, C.

    2014-05-01

    (TFBG) covered by silver nanowires aligned perpendicularly to the fiber axis. TBFGs are a convenient way to measure surrounding refractive index, as they provide intrinsic temperature-insensitivity and preserve the optical fiber structural integrity. With bare TFBGs, sensitivity is about 60 nm/RIU (refractive index unit) while when coated with a gold thin film, surface plasmon resonance can be excited leading to a sensitivity about 600 nm/RIU. In our case, we show that localized plasmon resonances can be excited on silver nanowires. These nanowires (100 nm diameter and about 2.5 µm length) were synthetized by polyol process (ethylene glycol reducing silver nitrate in the presence of poly (vinyl pyrrolidone and sodium chloride). The nanowires were aligned and deposited perpendicularly to the fiber axis on the gratings using the Langmuir-Blodgett technique in order to maximise the coupling between azimuthally polarized light modes and the localized plasmons. Excitation of surface plasmons at wavelengths around 1.5 µm occurred, leading to a dip in the polarization dependent losses of the grating. This dip is highly dependent of the surrounding refractive index, leading to a sensitivity of 650 nm/RIU, which is a 10-fold increase compared to bare gratings. We obtain results equal or slightly higher than those obtained using a gold layer on TFBGs. In spite of the comparable bulk refractometric sensitivity, the use of these oriented nanowire layers provide significantly higher contact surface area for biochemical analysis using bioreceptors, and benefit from stronger polarization selectivity between azimuthal and radially polarized modes.

  8. Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires

    NASA Astrophysics Data System (ADS)

    Subramania, A.; Vijaya Kumar, G.; Sathiya Priya, A. R.; Vasudevan, T.

    2007-06-01

    The main aim of this work is to prepare MgO nanoparticles and nanowires by a novel polyol-mediated thermolysis (PMT) process. The influence of different mole concentration of magnesium acetate, polyvinyl pyrrolidone (PVP; capping agent) and ethylene glycol (EG; solvent as well as reducing agent) on the formation of nanoparticles and nanowires and the effect of calcination on the crystalline size of the samples were also examined. The resultant oxide structure, thermal behaviour, size and shape have been studied using x-ray diffraction (XRD) studies, thermal (TG/DTA) analysis and scanning electron microscopy (SEM)/transmission electron microscopy (TEM) respectively.

  9. Enhancement of Si solar cell efficiency using ZnO nanowires with various diameters

    NASA Astrophysics Data System (ADS)

    Gholizadeh, A.; Reyhani, A.; Parvin, P.; Mortazavi, S. Z.; Mehrabi, M.

    2018-01-01

    Here, Zinc Oxide nanowires are synthesized using thermal chemical vapor deposition of a Zn granulate source and used to enhance a significant Si-solar cell efficiency with simple and low cost method. The nanowires are grown in various O2 flow rates. Those affect the shape, yield, structure and the quality of ZnO nanowires according to scanning electron microscopy and x-ray diffraction analyses. This delineates that the ZnO nanostructure is dependent on the synthesis conditions. The photoluminescence spectroscopy of ZnO indicates optical emission at the Ultra-Violet and blue-green regions whose intensity varies as a function of diameter of ZnO nano-wires. The optical property of ZnO layer is measured by UV-visible and diffuse reflection spectroscopy that demonstrate high absorbance at 280-550 nm. Furthermore, the photovoltaic characterization of ZnO nanowires is investigated based on the drop casting on Si-solar cell. The ZnO nanowires with various diameters demonstrate different effects on the efficiency of Si-solar cells. We have shown that the reduction of the spectral reflectance and down-shifting process as well as the reduction of photon trapping are essential parameters on the efficiency of Si-solar cells. However, the latter is dominated here. In fact, the trapped photons during the electron-hole generation are dominant due to lessening the absorption rate in ZnO nano-wires. The results indicate that the mean diameters reduction of ZnO nanowires is also essential to improve the fill factor. The external and internal quantum efficiency analyses attest the efficiency improvement over the blue region which is related to the key parameters above.

  10. Current-Driven Dynamics of Skyrmions Stabilized in MnSi Nanowires Revealed by Topological Hall Effect

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Degrave, John; Stolt, Matthew; Tokura, Yoshinori; Jin, Song

    2015-03-01

    Skyrmions, novel topologically stable spin vortices, hold promise for next-generation high-density magnetic storage technologies due to their nanoscale domains and ultralow energy consumption. One-dimensional (1D) nanowires are ideal hosts for skyrmions since they not only serve as a natural platform for magnetic racetrack memory devices but also can potentially stabilize skyrmions. We use the topological Hall effect (THE) to study the phase stability and current-driven dynamics of the skyrmions in MnSi nanowires. The THE was observed in an extended magnetic field-temperature window (15 to 30 K), suggesting stabilization of skyrmion phase in nanowires compared with the bulk (27 to 29.5 K). Furthermore, we study skyrmion dynamics in this extended skyrmion phase region and found that under the high current-density of 108-109Am-2 enabled by nanowire geometry, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field. These results open up the exploration of nanowires as an attractive platform for investigating skyrmion physics in 1D systems and exploiting skyrmions in magnetic storage concepts. This work is supported by US National Science Foundation (ECCS-1231916) and JSPS Grant-in-Aid for Scientific Research No. 24224009.

  11. Analysis of effect of nanoporous alumina substrate coated with polypyrrole nanowire on cell morphology based on AFM topography.

    PubMed

    El-Said, Waleed Ahmed; Yea, Cheol-Heon; Jung, Mi; Kim, Hyuncheol; Choi, Jeong-Woo

    2010-05-01

    In this study, in situ electrochemical synthesis of polypyrrole nanowires with nanoporous alumina template was described. The formation of highly ordered porous alumina substrate was demonstrated with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). In addition, Fourier transform infrared analysis confirmed that polypyrrole (PP) nanowires were synthesized by direct electrochemical oxidation of pyrrole. HeLa cancer cells and HMCF normal cells were immobilized on the polypyrrole nanowires/nanoporous alumina substrates to determine the effects of the substrate on the cell morphology, adhesion and proliferation as well as the biocompatibility of the substrate. Cell adhesion and proliferation were characterized using a standard MTT assay. The effects of the polypyrrole nanowires/nanoporous alumina substrate on the cell morphology were studied by AFM. The nanoporous alumina coated with polypyrrole nanowires was found to exhibit better cell adhesion and proliferation than polystyrene petridish, aluminum foil, 1st anodized and uncoated 2nd anodized alumina substrate. This study showed the potential of the polypyrrole nanowires/nanoporous alumina substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures applications.

  12. Characterization of NiSi nanowires as field emitters and limitations of Fowler-Nordheim model at the nanoscale

    NASA Astrophysics Data System (ADS)

    Belkadi, Amina B.; Gale, E.; Isakovic, A. F.

    2015-03-01

    Nanoscale field emitters are of technological interest because of the anticipated faster turn-on time, better sustainability and compactness. This report focuses on NiSi nanowires as field emitters for two reasons: (a) possible enhancement of field emission in nanoscale field emitters over bulk, and (b) achieving the same field emission properties as in bulk, but at a lower energy cost. To this end, we have grown, fabricated and characterized NiSi nanowires as field emitters. Depending on the geometry of the NiSi nanowires (aspect ratio, shape etc.), the relevant major field emission parameters, such as (1) the turn-on field, (2) the work function, and (3) the field enhancement factor, can be comparable or even superior to other recently explored nanoscale field emitters, such as CdS and ZnO. We also report on a comparative performance of various nanoscale field emitters and on the difficulties in the performance comparison in the light of relatively poor applicability of the standard Folwer-Nordheim model for field emission analysis for the case of the nanoscale field emitters. Proposed modifications are discussed. This work is supported through SRC-ATIC Grant 2011-KJ-2190. We also acknoweldge BNL-CFN and Cornell CNF facilities and staff.

  13. MOCVD growth and characterization of gallium nitride and gallium antimonide nanowires

    NASA Astrophysics Data System (ADS)

    Burke, Robert Alan

    Group-III nitride and group-III antimonide thin films have been used for years in optoelectronic, high-speed applications, and high power/high temperature applications such as light emitting diodes (LEDs), microwave power devices, and thermovoltaics. In recent years, nanowires have gained interest due to the ability to take advantage of their geometry for increased light absorption and the synthesis of radial heterostructures. Several growth techniques have been explored for the growth of GaN and GaSb nanowires. Metal-organic chemical vapor deposition (MOCVD) is of particular interest due to its use in the commercial growth and fabrication of GaN-based and GaSb-based devices. The first part of this thesis focused on addressing several key issues related to the growth of GaN nanowires by MOCVD. Preliminary studies investigated the effect of growth conditions on GaN nanowire formation in a hot wall MOCVD reactor. A computational fluid dynamics-based model was developed to predict the gas phase velocity, temperature and concentration profiles in the reactor. The results demonstrate a strong dependence of GaN nanowire growth on substrate position within the reactor which is due to the rapid reaction and depletion of precursors near the gas inlet of the reactor. Ni-catalyzed GaN nanowire growth was observed to occur over the temperature range of 800-900°C, which is significantly lower than typical GaN thin film temperatures. The nanowires, however, exhibited a tapered diameter due to thin film deposition which occurred simultaneously with nanowire growth. Based on the low growth temperatures, TEM characterization was carried out to investigate the nature of the catalyst. Through these studies, the catalyst was found to consist of Ni3Ga, indicating the presence of a vapor-solid-solid growth mechanism. In an attempt to improve the nanowire growth selectivity, GeCl4 was added during growth resulting in a drastic increase in nanowire density and a reduction in the tapering

  14. An Overview of Metallic Nanowire Networks, Promising Building Blocks for Next Generation Transparent Conductors: Emergence, Fundamentals and Challenges

    NASA Astrophysics Data System (ADS)

    Pirsalami, Sedigheh; Zebarjad, Seyed Mojtaba; Daneshmanesh, Habib

    2017-08-01

    Transparent conductors (TCs) have a wide range of applications in numerous electronic and optoelectronic devices. This review provides an overview of the emergence of metallic nanowire networks (MNNs) as promising building blocks for the next generation transparent conductors. The fundamental aspects, structure-property relations, fabrication techniques and the corresponding challenges are reviewed. Theoretical and experimental researches suggest that nanowires with smaller diameter, longer length and higher aspect ratio have higher performance. Yet, the development of an efficient synthesis technique for the production of MNNs has remained a challenge. The synthesis method is also crucial to the scalability and the commercial potential of these emerging TCs. The most promising techniques for the synthesis together with their advantages, limitations and the recent findings are here discussed. Finally, we will try to show the promising future research trends in MNNs to have an approach to design the next generation TCs.

  15. Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature

    NASA Astrophysics Data System (ADS)

    Ren, Dingding; Ahtapodov, Lyubomir; Nilsen, Julie S.; Yang, Jianfeng; Gustafsson, Anders; Huh, Junghwan; Conibeer, Gavin J.; van Helvoort, Antonius T. J.; Fimland, Bjørn-Ove; Weman, Helge

    2018-04-01

    Semiconductor nanowire lasers can produce guided coherent light emission with miniaturized geometry, bringing about new possibility for a variety of applications including nanophotonic circuits, optical sensing, and on-chip and chip-to-chip optical communications. Here, we report on the realization of single-mode room-temperature lasing from 890 nm to 990 nm utilizing a novel design of single nanowires with GaAsSb-based multiple superlattices as gain medium under optical pumping. The wavelength tunability with comprehensively enhanced lasing performance is shown to result from the unique nanowire structure with efficient gain materials, which delivers a lasing quality factor as high as 1250, a reduced lasing threshold ~ 6 kW cm-2 and a high characteristic temperature ~ 129 K. These results present a major advancement for the design and synthesis of nanowire laser structures, which can pave the way towards future nanoscale integrated optoelectronic systems with stunning performance.

  16. Copper Nanowires as Fully Transparent Conductive Electrodes

    PubMed Central

    Guo, Huizhang; Lin, Na; Chen, Yuanzhi; Wang, Zhenwei; Xie, Qingshui; Zheng, Tongchang; Gao, Na; Li, Shuping; Kang, Junyong; Cai, Duanjun; Peng, Dong-Liang

    2013-01-01

    In pondering of new promising transparent conductors to replace the cost rising tin-doped indium oxide (ITO), metal nanowires have been widely concerned. Herein, we demonstrate an approach for successful synthesis of long and fine Cu nanowires (NWs) through a novel catalytic scheme involving nickel ions. Such Cu NWs in high aspect ratio (diameter of 16.2 ± 2 nm and length up to 40 μm) provide long distance for electron transport and, meanwhile, large space for light transmission. Transparent electrodes fabricated using the Cu NW ink achieve a low sheet resistance of 1.4 Ohm/sq at 14% transmittance and a high transparency of 93.1% at 51.5 Ohm/sq. The flexibility and stability were tested with 100-timebending by 180°and no resistance change occurred. Ohmic contact was achieved to the p- and n-GaN on blue light emitting diode chip and bright electroluminescence from the front face confirmed the excellent transparency. PMID:23900572

  17. New insights on the synthesis and electronic transport in bulk polycrystalline Pr-doped SrTiO3-δ

    NASA Astrophysics Data System (ADS)

    Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; Darroudi, Taghi; Alshareef, Husam N.; Tritt, Terry M.

    2015-02-01

    Recently, we have reported a significant enhancement in the electronic and thermoelectric properties of bulk polycrystalline SrTiO3 ceramics via praseodymium doping. This improvement was originated from the simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity, which was contributed to the non-uniform distribution of Pr dopants. In order to further understand the underlying mechanism, we herein investigate the role of praseodymium doping source (Pr2O3 versus Pr6O11) on the synthesis and electronic transport in Pr-doped SrTiO3 ceramics. It was observed that the high-temperature electronic transport properties are independent of the choice of praseodymium doping source for samples prepared following our synthesis strategy. Theoretical calculations were also performed in order to estimate the maximum achievable power factor and the corresponding optimal carrier concentration. The result suggests the possibility of further improvement of the power factor. This study should shed some light on the superior electronic transport in bulk polycrystalline Pr-doped SrTiO3 ceramics and provide new insight on further improvement of the thermoelectric power factor.

  18. An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks

    PubMed Central

    2011-01-01

    Amorphous Si nanowires have been directly synthesized by a thermal processing of Si substrates. This method involves the deposition of an anodic aluminum oxide mask on a crystalline Si (100) substrate. Fe, Au, and Pt thin films with thicknesses of ca. 30 nm deposited on the anodic aluminum oxide-Si substrates have been used as catalysts. During the thermal treatment of the samples, thin films of the metal catalysts are transformed in small nanoparticles incorporated within the pore structure of the anodic aluminum oxide mask, directly in contact with the Si substrate. These homogeneously distributed metal nanoparticles are responsible for the growth of Si nanowires with regular diameter by a simple heating process at 800°C in an Ar-H2 atmosphere and without an additional Si source. The synthesized Si nanowires have been characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman. PMID:21849077

  19. Computational design of co-assembling protein-DNA nanowires

    NASA Astrophysics Data System (ADS)

    Mou, Yun; Yu, Jiun-Yann; Wannier, Timothy M.; Guo, Chin-Lin; Mayo, Stephen L.

    2015-09-01

    Biomolecular self-assemblies are of great interest to nanotechnologists because of their functional versatility and their biocompatibility. Over the past decade, sophisticated single-component nanostructures composed exclusively of nucleic acids, peptides and proteins have been reported, and these nanostructures have been used in a wide range of applications, from drug delivery to molecular computing. Despite these successes, the development of hybrid co-assemblies of nucleic acids and proteins has remained elusive. Here we use computational protein design to create a protein-DNA co-assembling nanomaterial whose assembly is driven via non-covalent interactions. To achieve this, a homodimerization interface is engineered onto the Drosophila Engrailed homeodomain (ENH), allowing the dimerized protein complex to bind to two double-stranded DNA (dsDNA) molecules. By varying the arrangement of protein-binding sites on the dsDNA, an irregular bulk nanoparticle or a nanowire with single-molecule width can be spontaneously formed by mixing the protein and dsDNA building blocks. We characterize the protein-DNA nanowire using fluorescence microscopy, atomic force microscopy and X-ray crystallography, confirming that the nanowire is formed via the proposed mechanism. This work lays the foundation for the development of new classes of protein-DNA hybrid materials. Further applications can be explored by incorporating DNA origami, DNA aptamers and/or peptide epitopes into the protein-DNA framework presented here.

  20. Low temperature synthesis of seed mediated CuO bundle of nanowires, their structural characterisation and cholesterol detection.

    PubMed

    Ibupoto, Z H; Khun, K; Liu, X; Willander, M

    2013-10-01

    In this study, we have successfully synthesised CuO bundle of nanowires using simple, cheap and low temperature hydrothermal growth method. The growth parameters such as precursor concentration and time for duration of growth were optimised. The field emission scanning electron microscopy (FESEM) has demonstrated that the CuO bundles of nanowires are highly dense, uniform and perpendicularly oriented to the substrate. The high resolution transmission electron microscopy (HRTEM) has demonstrated that the CuO nanostructures consist of bundle of nanowires and their growth pattern is along the [010] direction. The X-ray diffraction (XRD) technique described that CuO bundle of nanowires possess the monoclinic crystal phase. The surface and chemical composition analyses were carried out with X-ray photoelectron spectroscopy (XPS) technique and the obtained results suggested the pure crystal state of CuO nanostructures. In addition, the CuO nanowires were used for the cholesterol sensing application by immobilising the cholesterol oxidase through electrostatic attraction. The infrared reflection absorption spectroscopy study has also revealed that CuO nanostructures are consisting of only CuO bonding and has also shown the possible interaction of cholesterol oxidase with the sharp edge surface of CuO bundle of nanowires. The proposed cholesterol sensor has demonstrated the wide range of detection of cholesterol with good sensitivity of 33.88±0.96 mV/decade. Moreover, the CuO bundle of nanowires based sensor electrode has revealed good repeatability, reproducibility, stability, selectivity and a fast response time of less than 10s. The cholesterol sensor based on the immobilised cholesterol oxidase has good potential applicability for the determination of cholesterol from the human serum and other biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. New method for MBE growth of GaAs nanowires on silicon using colloidal Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Bouravleuv, A.; Ilkiv, I.; Reznik, R.; Kotlyar, K.; Soshnikov, I.; Cirlin, G.; Brunkov, P.; Kirilenko, D.; Bondarenko, L.; Nepomnyaschiy, A.; Gruznev, D.; Zotov, A.; Saranin, A.; Dhaka, V.; Lipsanen, H.

    2018-01-01

    We present a new method for the deposition of colloidal Au nanoparticles on the surface of silicon substrates based on short-time Ar plasma treatment without the use of any polymeric layers. The elaborated method is compatible with molecular beam epitaxy, which allowed us to carry out the detailed study of GaAs nanowire synthesis on Si(111) substrates using colloidal Au nanoparticles as seeds for their growth. The results obtained elucidated the causes of the difference between the initial nanoparticle sizes and the diameters of the grown nanowires.

  2. Modal analysis of the thermal conductivity of nanowires: examining unique thermal transport features

    NASA Astrophysics Data System (ADS)

    Samaraweera, Nalaka; Larkin, Jason M.; Chan, Kin L.; Mithraratne, Kumar

    2018-06-01

    In this study, unique thermal transport features of nanowires over bulk materials are investigated using a combined analysis based on lattice dynamics and equilibrium molecular dynamics (EMD). The evaluation of the thermal conductivity (TC) of Lenard–Jones nanowires becomes feasible due to the multi-step normal mode decomposition (NMD) procedure implemented in the study. A convergence issue of the TC of nanowires is addressed by the NMD implementation for two case studies, which employ pristine nanowires (PNW) and superlattice nanowires. Interestingly, mode relaxation times at low frequencies of acoustic branches exhibit signs of approaching constant values, thus indicating the convergence of TC. The TC evaluation procedure is further verified by implementing EMD-based Green–Kubo analysis, which is based on a fundamentally different physical perspective. Having verified the NMD procedure, the non-monotonic trend of the TC of nanowires is addressed. It is shown that the principal cause for the observed trend is due to the competing effects of long wavelength phonons and phonon–surface scatterings as the nanowire’s cross-sectional width is changed. A computational procedure is developed to decompose the different modal contribution to the TC of shell alloy nanowires (SANWs) using virtual crystal NMD and the Allen–Feldman theory. Several important conclusions can be drawn from the results. A propagons to non-propagons boundary appeared, resulting in a cut-off frequency (ω cut); moreover, as alloy atomic mass is increased, ω cut shifts to lower frequencies. The existence of non-propagons partly causes the low TC of SANWs. It can be seen that modes with low frequencies demonstrate a similar behavior to corresponding modes of PNWs. Moreover, lower group velocities associated with higher alloy atomic mass resulted in a lower TC of SANWs.

  3. A Preliminary Study on the Synthesis and Characterization of Multilayered Ag/Co Magnetic Nanowires Fabricated via the Electrodeposition Method

    PubMed Central

    Peng, Cheng-Hsiung; Wu, Tsung-Yung; Hwang, Chyi-Ching

    2013-01-01

    A single-bath electrodeposition method was developed to integrate multilayer Ag/Co nanowires with a commercial anodic alumina oxide (AAO) template with a pore diameter of 100–200 nm. An electrolyte system containing silver nitride and cobalt sulfide was studied using cyclic voltammetry, and the electrodeposition rate was varied to optimize the electrodeposition conditions. A constant stepwise potential and a variable cation ratio of [Co2+]/[Ag+] were used during electrodeposition. After the dissolution of the template in aqueous NaOH solution, multilayered Ag/Co nanowires were obtained with a composition of [Co]/[Ag80Co20], as identified by XRD and TEM, when [Co2+]/[Ag+] = 150. By annealing at 200°C for 1 h, uniformly structured (Co99.57/Ag100) nanowires were obtained. Compared with pure Co nanowires, the magnetic hysteresis loops showed a greater magnetic anisotropy for (Co99.57/Ag100) nanowires than for pure Co nanowires, corresponding to a change in the easy axis upon magnetization. PMID:24072985

  4. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics.

    PubMed

    Long, Yun-Ze; Yu, Miao; Sun, Bin; Gu, Chang-Zhi; Fan, Zhiyong

    2012-06-21

    Semiconducting inorganic nanowires (NWs), nanotubes and nanofibers have been extensively explored in recent years as potential building blocks for nanoscale electronics, optoelectronics, chemical/biological/optical sensing, and energy harvesting, storage and conversion, etc. Besides the top-down approaches such as conventional lithography technologies, nanowires are commonly grown by the bottom-up approaches such as solution growth, template-guided synthesis, and vapor-liquid-solid process at a relatively low cost. Superior performance has been demonstrated using nanowires devices. However, most of the nanowire devices are limited to the demonstration of single devices, an initial step toward nanoelectronic circuits, not adequate for production on a large scale at low cost. Controlled and uniform assembly of nanowires with high scalability is still one of the major bottleneck challenges towards the materials and device integration for electronics. In this review, we aim to present recent progress toward nanowire device assembly technologies, including flow-assisted alignment, Langmuir-Blodgett assembly, bubble-blown technique, electric/magnetic- field-directed assembly, contact/roll printing, planar growth, bridging method, and electrospinning, etc. And their applications in high-performance, flexible electronics, sensors, photovoltaics, bioelectronic interfaces and nano-resonators are also presented.

  5. Heterojunction metal-oxide-metal Au-Fe{sub 3}O{sub 4}-Au single nanowire device for spintronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, K. M., E-mail: mrkongara@boisestate.edu; Punnoose, Alex; Hanna, Charles

    2015-05-07

    In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe{sub 3}O{sub 4} interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120 K and a room temperature coercive field of 90 Oe. Current–voltage (I-V) characteristics of a single Au-Fe{sub 3}O{sub 4}-Au nanowire have exhibited Ohmic behavior. Anomalous positivemore » magnetoresistance of about 0.5% is observed on a single nanowire, which is attributed to the high spin polarization in nanowire device with pure Fe{sub 3}O{sub 4} phase and nanocontact barrier. This work demonstrates the ability to preserve the pristine Fe{sub 3}O{sub 4} and well defined electrode contact metal (Au)–magnetite interface, which helps in attaining high spin polarized current.« less

  6. Why self-catalyzed nanowires are most suitable for large-scale hierarchical integrated designs of nanowire nanoelectronics

    NASA Astrophysics Data System (ADS)

    Noor Mohammad, S.

    2011-10-01

    Nanowires are grown by a variety of mechanisms, including vapor-liquid-solid, vapor-quasiliquid-solid or vapor-quasisolid-solid, oxide-assisted growth, and self-catalytic growth (SCG) mechanisms. A critical analysis of the suitability of self-catalyzed nanowires, as compared to other nanowires, for next-generation technology development has been carried out. Basic causes of superiority of self-catalyzed (SCG) nanowires over other nanowires have been described. Polytypism in nanowires has been studied, and a model for polytypism has been proposed. The model predicts polytypism in good agreement with available experiments. This model, together with various evidences, demonstrates lower defects, dislocations, and stacking faults in SCG nanowires, as compared to those in other nanowires. Calculations of carrier mobility due to dislocation scattering, ionized impurity scattering, and acoustic phonon scattering explain the impact of defects, dislocations, and stacking faults on carrier transports in SCG and other nanowires. Analyses of growth mechanisms for nanowire growth directions indicate SCG nanowires to exhibit the most controlled growth directions. In-depth investigation uncovers the fundamental physics underlying the control of growth direction by the SCG mechanism. Self-organization of nanowires in large hierarchical arrays is crucial for ultra large-scale integration (ULSI). Unique features and advantages of self-organized SCG nanowires, unlike other nanowires, for this ULSI have been discussed. Investigations of nanowire dimension indicate self-catalyzed nanowires to have better control of dimension, higher stability, and higher probability, even for thinner structures. Theoretical calculations show that self-catalyzed nanowires, unlike catalyst-mediated nanowires, can have higher growth rate and lower growth temperature. Nanowire and nanotube characteristics have been found also to dictate the performance of nanoelectromechanical systems. Defects, such as

  7. High-Yield Synthesis and Applications of Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vigderman, Leonid

    This work will describe research directed towards the synthesis of anisotropic gold nanoparticles as well as their functionalization and biological applications. The thesis will begin by describing a new technique for the high-yield synthesis of gold nanorods using hydroquinone as a reducing agent. This addresses important limitations of the traditional nanorod synthesis including low yield of gold ions conversion to metallic form and inability to produce rods with longitudinal surface plasmon peak above 850 nm. The use of hydroquinone was also found to improve the synthesis of gold nanowires via the nanorod-seed mediated procedure developed in our lab. The thesis will next present the synthesis of novel starfruitshaped nanorods, mesorods, and nanowires using a modified nanorod-seed mediated procedure. The starfruit particles displayed increased activity as surfaceenhanced Raman spectroscopy (SERS) substrates as compared to smooth structures. Next, a method for the functionalization of gold nanorods using a cationic thiol, 16-mercaptohexadecyltrimethylammonium bromide (MTAB), will be described. By using this thiol, we were able to demonstrate the complete removal of toxic surfactant from the nanorods and were also able to precisely quantify the grafting density of thiol molecules on the nanorod surface through a combination of several analytical techniques. Finally, this thesis will show that MTABfunctionalized nanorods are nontoxic and can be taken up in extremely high numbers into cancer cells. The thesis will conclude by describing the surprising uptake of larger mesorods and nanowires functionalized with MTAB into cells in high quantities.

  8. An Innovative Electrolysis Approach for the Synthesis of Metal Matrix Bulk Nanocomposites: A Case Study on Copper-Niobium System

    NASA Astrophysics Data System (ADS)

    Shokrvash, Hussein; Rad, Rahim Yazdani; Massoudi, Abouzar

    2018-04-01

    Design and synthesis of a prototype Cu-Nb nanocomposite are presented. Oxygen-free Cu-Nb nanocomposites were prepared using an electrolysis facility with special emphasis on the cathodic deoxidation of Cu and nanometric Nb2O5 blends in a molten NaCl-CaCl2 electrolyte. The as-prepared nanocomposites were characterized by X-ray diffraction and energy-dispersive X-ray spectroscopy. The elemental analysis of the Cu matrix and Nb phase revealed the high solubility of Nb in the Cu structure (0.85 at. pct) and Cu in the Nb structure (10.59 at. pct) over short synthesis times (4-5 hours). Furthermore, precise analysis using field emission scanning electron microscopy and transmission electron microscopy confirmed the unique structure and nanocomposite morphology of the Cu-Nb nanocomposite. The successful synthesis of Cu-Nb nanocomposites offers a new conceptual and empirical outlook on the generation of bulk nanostructures of immiscible bimetals using electro-synthesis.

  9. One-dimensional Si/Ge nanowires and their heterostructures for multifunctional applications—a review

    NASA Astrophysics Data System (ADS)

    Ray, Samit K.; Katiyar, Ajit K.; Raychaudhuri, Arup K.

    2017-03-01

    Remarkable progress has been made in the field of one-dimensional semiconductor nanostructures for electronic and photonic devices. Group-IV semiconductors and their heterostructures have dominated the years of success in microelectronic industry. However their use in photonic devices is limited since they exhibit poor optical activity due to indirect band gap nature of Si and Ge. Reducing their dimensions below a characteristic length scale of various fundamental parameters like exciton Bohr radius, phonon mean free path, critical size of magnetic domains, exciton diffusion length etc result in the significant modification of bulk properties. In particular, light emission from Si/Ge nanowires due to quantum confinement, strain induced band structure modification and impurity doping may lead to the integration of photonic components with mature silicon CMOS technology in near future. Several promising applications based on Si and Ge nanowires have already been well established and studied, while others are now at the early demonstration stage. The control over various forms of energy and carrier transport through the unconstrained dimension makes Si and Ge nanowires a promising platform to manufacture advanced solid-state devices. This review presents the progress of the research with emphasis on their potential application of Si/Ge nanowires and their heterostructures for electronic, photonic, sensing and energy devices.

  10. Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources

    PubMed Central

    Zhao, S.; Connie, A. T.; Dastjerdi, M. H. T.; Kong, X. H.; Wang, Q.; Djavid, M.; Sadaf, S.; Liu, X. D.; Shih, I.; Guo, H.; Mi, Z.

    2015-01-01

    Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 – 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated. PMID:25684335

  11. An optimal thermal evaporation synthesis of c-axis oriented ZnO nanowires with excellent UV sensing and emission characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Tridib, E-mail: tridib.saha@monash.edu; Achath Mohanan, Ajay, E-mail: ajay.mohanan@monash.edu; Swamy, Varghese, E-mail: varghese.swamy@monash.edu

    Highlights: • c-Axis alignment of ZnO nanowires was optimized using self-seeding thermal evaporation method. • Influence of purified air on the morphology and optoelectronic properties were studied. • Nanowires grown under optimal conditions exhibit strong UV emission peak in PL spectrum. • Optimized growth condition establish nanowires of excellent UV sensing characteristics - Abstract: Well-aligned (c-axis oriented) ZnO nanowire arrays were successfully synthesized on Si (1 0 0) substrates through an optimized self-seeding thermal evaporation method. An open-ended chemical vapor deposition (CVD) setup was used in the experiment, with argon and purified air as reaction gases. Epitaxial growth of c-axismore » oriented ZnO nanowires was observed for 5 sccm flow rate of purified air, whereas Zn/Zn suboxide layers and multiple polycrystalline layers of ZnO were obtained for absence and excess of purified air, respectively. Ultraviolet (UV) sensing and emission properties of the as-grown ZnO nanostructures were investigated through the current–voltage (I–V) characteristics of the nanowires under UV (λ = 365 nm) illumination of 8 mW/cm{sup 2} and using photoluminescence spectra. Nanowires grown under optimum flow of air emitted four times higher intensity of 380 nm UV light as well as exhibited 34 times higher UV radiation sensitivity compared to that of other nanostructures synthesized in this study.« less

  12. Controllable synthesis of high aspect ratio Mg2B2O5 nanowires and their applications in reinforced polyhydroxyalkanoate composites

    NASA Astrophysics Data System (ADS)

    Mo, Zhao-Jun; Chen, Jin-Peng; Lin, Jing; Fan, Ying; Liang, Chun-Yong; Wang, Hong-Shui; Xu, Xue-Wen; Hu, Long; Tang, Cheng-Chun

    2014-05-01

    Highly pure magnesium borate (Mg2B2O5) nanowires with an average diameter of ~ 30 nm, an average length of ~ 15 μm, and a high aspect ratio of ~ 500 have been synthesized on a large scale via a two-step method. MgBO2(OH) nanowires with high aspect ratios were first prepared via a PVP-assisted hydrothermal technique. Using these nanowires as precursors, single crystalline Mg2B2O5 nanowires were synthesized by post-annealing treatment at a relatively low temperature of 700 °C. The important effect of the MgBO2(OH)—Mg2B2O5 conversion process on the morphology of the Mg2B2O5 nanowires was investigated and it was indicated that the recrystallization process plays an important role in the protection of the one-dimensional (1D) nanostructure. Moreover, the rigidity and the toughness of the Mg2B2O5 nanowire-reinforced PHA composites were tremendously improved compared to those of the pure PHA. Our results demonstrate the effectiveness of Mg2B2O5 nanowires for reinforcement applications in polymer composites.

  13. Thermal conductivity engineering in width-modulated silicon nanowires and thermoelectric efficiency enhancement

    NASA Astrophysics Data System (ADS)

    Zianni, Xanthippi

    2018-03-01

    Width-modulated nanowires have been proposed as efficient thermoelectric materials. Here, the electron and phonon transport properties and the thermoelectric efficiency are discussed for dimensions above the quantum confinement regime. The thermal conductivity decreases dramatically in the presence of thin constrictions due to their ballistic thermal resistance. It shows a scaling behavior upon the width-modulation rate that allows for thermal conductivity engineering. The electron conductivity also decreases due to enhanced boundary scattering by the constrictions. The effect of boundary scattering is weaker for electrons than for phonons and the overall thermoelectric efficiency is enhanced. A ZT enhancement by a factor of 20-30 is predicted for width-modulated nanowires compared to bulk silicon. Our findings indicate that width-modulated nanostructures are promising for developing silicon nanostructures with high thermoelectric efficiency.

  14. Texturing Silicon Nanowires for Highly Localized Optical Modulation of Cellular Dynamics.

    PubMed

    Fang, Yin; Jiang, Yuanwen; Acaron Ledesma, Hector; Yi, Jaeseok; Gao, Xiang; Weiss, Dara E; Shi, Fengyuan; Tian, Bozhi

    2018-06-18

    Engineered silicon-based materials can display photoelectric and photothermal responses under light illumination, which may lead to further innovations at the silicon-biology interfaces. Silicon nanowires have small radial dimensions, promising as highly localized cellular modulators, however the single crystalline form typically has limited photothermal efficacy due to the poor light absorption and fast heat dissipation. In this work, we report strategies to improve the photothermal response from silicon nanowires by introducing nanoscale textures on the surface and in the bulk. We next demonstrate high-resolution extracellular modulation of calcium dynamics in a number of mammalian cells including glial cells, neurons, and cancer cells. The new materials may be broadly used in probing and modulating electrical and chemical signals at the subcellular length scale, which is currently a challenge in the field of electrophysiology or cellular engineering.

  15. Nanowire structures and electrical devices

    DOEpatents

    Bezryadin, Alexey; Remeika, Mikas

    2010-07-06

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  16. Nanowire-based thermoelectrics

    NASA Astrophysics Data System (ADS)

    Ali, Azhar; Chen, Yixi; Vasiraju, Venkata; Vaddiraju, Sreeram

    2017-07-01

    Research on thermoelectrics has seen a huge resurgence since the early 1990s. The ability of tuning a material’s electrical and thermal transport behavior upon nanostructuring has led to this revival. Nevertheless, thermoelectric performances of nanowires and related materials lag far behind those achieved with thin-film superlattices and quantum dot-based materials. This is despite the fact that nanowires offer many distinct advantages in enhancing the thermoelectric performances of materials. The simplicity of the strategy is the first and foremost advantage. For example, control of the nanowire diameters and their surface roughnesses will aid in enhancing their thermoelectric performances. Another major advantage is the possibility of obtaining high thermoelectric performances using simpler nanowire chemistries (e.g., elemental and binary compound semiconductors), paving the way for the fabrication of thermoelectric modules inexpensively from non-toxic elements. In this context, the topical review provides an overview of the current state of nanowire-based thermoelectrics. It concludes with a discussion of the future vision of nanowire-based thermoelectrics, including the need for developing strategies aimed at the mass production of nanowires and their interface-engineered assembly into devices. This eliminates the need for trial-and-error strategies and complex chemistries for enhancing the thermoelectric performances of materials.

  17. Programmability of nanowire networks

    NASA Astrophysics Data System (ADS)

    Bellew, A. T.; Bell, A. P.; McCarthy, E. K.; Fairfield, J. A.; Boland, J. J.

    2014-07-01

    Electrical connectivity in networks of nanoscale junctions must be better understood if nanowire devices are to be scaled up from single wires to functional material systems. We show that the natural connectivity behaviour found in random nanowire networks presents a new paradigm for creating multi-functional, programmable materials. In devices made from networks of Ni/NiO core-shell nanowires at different length scales, we discover the emergence of distinct behavioural regimes when networks are electrically stressed. We show that a small network, with few nanowire-nanowire junctions, acts as a unipolar resistive switch, demonstrating very high ON/OFF current ratios (>105). However, large networks of nanowires distribute an applied bias across a large number of junctions, and thus respond not by switching but instead by evolving connectivity. We demonstrate that these emergent properties lead to fault-tolerant materials whose resistance may be tuned, and which are capable of adaptively reconfiguring under stress. By combining these two behavioural regimes, we demonstrate that the same nanowire network may be programmed to act both as a metallic interconnect, and a resistive switch device with high ON/OFF ratio. These results enable the fabrication of programmable, multi-functional materials from random nanowire networks.Electrical connectivity in networks of nanoscale junctions must be better understood if nanowire devices are to be scaled up from single wires to functional material systems. We show that the natural connectivity behaviour found in random nanowire networks presents a new paradigm for creating multi-functional, programmable materials. In devices made from networks of Ni/NiO core-shell nanowires at different length scales, we discover the emergence of distinct behavioural regimes when networks are electrically stressed. We show that a small network, with few nanowire-nanowire junctions, acts as a unipolar resistive switch, demonstrating very high ON

  18. Homoepitaxial n-core: p-shell gallium nitride nanowires: HVPE overgrowth on MBE nanowires.

    PubMed

    Sanders, Aric; Blanchard, Paul; Bertness, Kris; Brubaker, Matthew; Dodson, Christopher; Harvey, Todd; Herrero, Andrew; Rourke, Devin; Schlager, John; Sanford, Norman; Chiaramonti, Ann N; Davydov, Albert; Motayed, Abhishek; Tsvetkov, Denis

    2011-11-18

    We present the homoepitaxial growth of p-type, magnesium doped gallium nitride shells by use of halide vapor phase epitaxy (HVPE) on n-type gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy (MBE). Scanning electron microscopy shows clear dopant contrast between the core and shell of the nanowire. The growth of magnesium doped nanowire shells shows little or no effect on the lattice parameters of the underlying nanowires, as measured by x-ray diffraction (XRD). Photoluminescence measurements of the nanowires show the appearance of sub-bandgap features in the blue and the ultraviolet, indicating the presence of acceptors. Finally, electrical measurements confirm the presence of electrically active holes in the nanowires.

  19. High-performance supercapacitors of Cu-based porous coordination polymer nanowires and the derived porous CuO nanotubes.

    PubMed

    Wu, Meng-Ke; Zhou, Jiao-Jiao; Yi, Fei-Yan; Chen, Chen; Li, Yan-Li; Li, Qin; Tao, Kai; Han, Lei

    2017-12-12

    Electrode materials for supercapacitors with one-dimensional porous nanostructures, such as nanowires and nanotubes, are very attractive for high-efficiency storage of electrochemical energy. Herein, ultralong Cu-based porous coordination polymer nanowires (copper-l-aspartic acid) were used as the electrode material for supercapacitors, for the first time. The as-prepared material exhibits a high specific capacitance of 367 F g -1 at 0.6 A g -1 and excellent cycling stability (94% retention over 1000 cycles). Moreover, porous CuO nanotubes were successfully fabricated by the thermal decomposition of this nanowire precursor. The CuO nanotube exhibits good electrochemical performance with high rate capacity (77% retention at 12.5 A g -1 ) and long-term stability (96% retention over 1000 cycles). The strategy developed here for the synthesis of porous nanowires and nanotubes can be extended to the construction of other electrode materials for more efficient energy storage.

  20. Radiation Stability of Metal Fe0.56Ni0.44 Nanowires Exposed to Powerful Pulsed Ion Beams

    NASA Astrophysics Data System (ADS)

    Bedin, S. A.; Ovchinnikov, V. V.; Remnev, G. E.; Makhin'ko, F. F.; Pavlov, S. K.; Gushchina, N. V.; Zagorskiy, D. L.

    2018-01-01

    The resistance of Fe0.56Ni0.44 alloy nanowires (fabricated by template synthesis using polymer track membranes) 60 and 100 nm in diameter to radiation with powerful pulsed 85% C+ + 15% H+ ions ( E = 20 keV, j = 100 A/cm2, τ = 90 ns) has been investigated. The conclusion that nanosized regions of explosive energy release, so-called thermal spikes, which are thermalized regions of dense cascades of atomic displacements heated to several thousand degrees (in which the thermal pressure can reach several tens of GPa), play an important role in the nanowire structure change is drawn. These are observed as melted nanosized regions on the nanowire surface. Calculations have shown that energy supplied by an ion beam during the action of a single pulse in the used mode (provided that thermal radiation and thermal conductivity serve as energy sinks) can be both sufficient and insufficient to completely melt nanowires depending on their orientation with respect to the ion beam. The bending and failure of nonmelted nanowires is explained by the generation and propagation of post-cascade shock waves.

  1. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    NASA Astrophysics Data System (ADS)

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi

    2017-12-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.

  2. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    PubMed Central

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan

    2017-01-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials. PMID:29308265

  3. Highly-ordered supportless three-dimensional nanowire networks with tunable complexity and interwire connectivity for device integration.

    PubMed

    Rauber, Markus; Alber, Ina; Müller, Sven; Neumann, Reinhard; Picht, Oliver; Roth, Christina; Schökel, Alexander; Toimil-Molares, Maria Eugenia; Ensinger, Wolfgang

    2011-06-08

    The fabrication of three-dimensional assemblies consisting of large quantities of nanowires is of great technological importance for various applications including (electro-)catalysis, sensitive sensing, and improvement of electronic devices. Because the spatial distribution of the nanostructured material can strongly influence the properties, architectural design is required in order to use assembled nanowires to their full potential. In addition, special effort has to be dedicated to the development of efficient methods that allow precise control over structural parameters of the nanoscale building blocks as a means of tuning their characteristics. This paper reports the direct synthesis of highly ordered large-area nanowire networks by a method based on hard templates using electrodeposition within nanochannels of ion track-etched polymer membranes. Control over the complexity of the networks and the dimensions of the integrated nanostructures are achieved by a modified template fabrication. The networks possess high surface area and excellent transport properties, turning them into a promising electrocatalyst material as demonstrated by cyclic voltammetry studies on platinum nanowire networks catalyzing methanol oxidation. Our method opens up a new general route for interconnecting nanowires to stable macroscopic network structures of very high integration level that allow easy handling of nanowires while maintaining their connectivity.

  4. Liquid gallium columns sheathed with carbon: Bulk synthesis and manipulation.

    PubMed

    Zhan, Jinhua; Bando, Yoshio; Hu, Junqing; Golberg, Dmitri; Nakanishi, Haruyuki

    2005-06-16

    It is impossible to fabricate isolated gallium nanomaterials due to the low melting point of Ga (29.8 degrees C) and its high reactivity. We report the bulk synthesis of uniform liquid Ga columns encapsulated into carbon nanotubes through high-temperature chemical reaction between Ga and CH4. The diameter of filled Ga liquid columns is approximately 25 nm, and their length is up to several micrometers. The thickness of the carbon sheaths is approximately 6 nm. Simultaneous condensation of a Ga vapor and carbon clusters results in the generation of Ga-filled carbon nanotubes. A convergent 300 kV electron beam generated in a field emission high-resolution electron microscope is demonstrated to be a powerful tool for delicate manipulation of the liquid Ga nanocolumns: they can be gently joined, cut, and sealed within carbon nanotubes. The self-organization of a carbon sheath during the electron-beam irradiation is discussed. The electron-beam irradiation may also become a decent tool for Ga-filled carbon nanotube thermometer calibration.

  5. Thin-Film Nanowire Networks for Transparent Conductor Applications: Simulations of Sheet Resistance and Percolation Thresholds

    NASA Astrophysics Data System (ADS)

    Winey, Karen I.; Mutiso, Rose M.; Sherrott, Michelle C.; Rathmell, Aaron R.; Wiley, Benjamin J.

    2013-03-01

    Thin-film metal nanowire networks are being pursued as a viable alternative to the expensive and brittle indium tin oxide (ITO) for transparent conductors. For high performance applications, nanowire networks must exhibit high transmittance at low sheet resistance. Previously, we have used complimentary experimental, simulation and theoretical techniques to explore the effects of filler aspect ratio (L/D), orientation, and size-dispersity on the electrical conductivity of three-dimensional rod-networks in bulk polymer nanocomposites. We adapted our 3D simulation approach and analytical percolation model to study the electrical properties of thin-film rod-networks. By fitting our simulation results to experimental results, we determined the average effective contact resistance between silver nanowires. This contact resistance was then used to quantify how the sheet resistance depends on the aspect ratio of the rods and to show that networks made of nanowires with L/D greater than 100 yield sheet resistances lower than the required 100 Ohm/sq. We also report the critical area fraction of rods required to form a percolated network in thin-film networks and provide an analytical expression for the critical area fraction as a function of L/D.

  6. Controllable Synthesis of Copper Oxide/Carbon Core/Shell Nanowire Arrays and Their Application for Electrochemical Energy Storage

    PubMed Central

    Zhan, Jiye; Chen, Minghua; Xia, Xinhui

    2015-01-01

    Rational design/fabrication of integrated porous metal oxide arrays is critical for the construction of advanced electrochemical devices. Herein, we report self-supported CuO/C core/shell nanowire arrays prepared by the combination of electro-deposition and chemical vapor deposition methods. CuO/C nanowires with diameters of ~400 nm grow quasi-vertically to the substrates forming three-dimensional arrays architecture. A thin carbon shell is uniformly coated on the CuO nanowire cores. As an anode of lithium ion batteries, the resultant CuO/C nanowire arrays are demonstrated to have high specific capacity (672 mAh·g−1 at 0.2 C) and good cycle stability (425 mAh·g−1 at 1 C up to 150 cycles). The core/shell arrays structure plays positive roles in the enhancement of Li ion storage due to fast ion/electron transfer path, good strain accommodation and sufficient contact between electrolyte and active materials. PMID:28347084

  7. Synthesis of Bi nanowire networks and their superior photocatalytic activity for Cr(vi) reduction.

    PubMed

    Zhao, Jin; Han, Qiaofeng; Zhu, Junwu; Wu, Xiaodong; Wang, Xin

    2014-09-07

    Interconnected Bi nanowire networks were synthesized for the first time via a solvothermal route by using ethylene glycol (EG) as both a solvent and a reducing agent, and citric acid (CA) as a stabilizing agent at a molar ratio of CA/Bi(3+) = 5. Among various reaction conditions including the temperature, reaction time and precursor concentration, the molar ratio of CA/Bi(3+) was the dominant experimental parameter to influence the morphology and structures of the Bi crystals. Highly dispersed Bi microspheres and network-like Bi thick wires were obtained if the molar ratio of CA/Bi(3+) was changed to 2.5 and 10, respectively. As compared to other additives including trisodium citrate, cetyltrimethylammonium bromide (CTAB) and oxalic acid, good solubility of CA in EG together with its coordination effect played a crucial role in the formation of network-like Bi nanowires. The Bi nanowire networks exhibited excellent photocatalytic performance for Cr(vi) reduction. Cr(vi) was completely reduced to less toxic Cr(iii) after 8 min and 55 min of UV and visible-light irradiation, respectively.

  8. Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe

    NASA Astrophysics Data System (ADS)

    Sridhar, D.; Xie, Jining; Abraham, Jose K.; Varadan, Vijay K.

    2007-04-01

    In this paper, we present how the photonic properties of zinc oxide (ZnO) nanowires can be used to potentially advance the effectiveness of Photodynamic therapy (PDT), one of the most recent and promising approaches among cancer therapies. Presently, PDT employs laser light to activate intravenously or topically administered photosensitizers to give rise to highly reactive singlet oxygen which has a very short lifetime and is capable of biochemical damage to cell membranes of the tumor. A probe that can monitor in real time the penetration depth of the laser in the tumor and also the evolution of the singlet oxygen, which is critical for tumor eradication, is capable of improving the efficacy of PDT quite significantly. Such a probe, by providing real time feedback, can help us determine whether to increase or decrease the light exposure dose and also if further local administration of photosensitizers is required or not. ZnO nanowires are known to be photoconductive and recent research also demonstrated the temperature dependence of the photocurrent in the nanowires. They are also sensitive to blue and other near UV spectra which is same range of activation wavelengths of most photosensitizers, and hence making them a good candidate for a potential PDT monitoring probe. ZnO nanowires were fabricated on silicon substrates by vapor phase deposition using e-beam evaporated gold as a catalyst. Control of the dimensions of the nanowires could be achieved by varying the dimensions of the catalyst by means of e-beam evaporation process. Photoluminescence properties of ZnO nanowires were investigated at UV and near UV wavelengths. Further, ZnO is also known for its antimicrobial properties, thereby ruling out any possibility of bacterial infection because of the implanted probe. This study was done to compliment the existing expertise of our research group in the design and fabrication of several nanowire based probes and microsensors specifically for neuroelectronic and

  9. Nonequilibrium optical control of dynamical states in superconducting nanowire circuits.

    PubMed

    Madan, Ivan; Buh, Jože; Baranov, Vladimir V; Kabanov, Viktor V; Mrzel, Aleš; Mihailovic, Dragan

    2018-03-01

    Optical control of states exhibiting macroscopic phase coherence in condensed matter systems opens intriguing possibilities for materials and device engineering, including optically controlled qubits and photoinduced superconductivity. Metastable states, which in bulk materials are often associated with the formation of topological defects, are of more practical interest. Scaling to nanosize leads to reduced dimensionality, fundamentally changing the system's properties. In one-dimensional superconducting nanowires, vortices that are present in three-dimensional systems are replaced by fluctuating topological defects of the phase. These drastically change the dynamical behavior of the superconductor and introduce dynamical periodic long-range ordered states when the current is driven through the wire. We report the control and manipulation of transitions between different dynamically stable states in superconducting δ 3 -MoN nanowire circuits by ultrashort laser pulses. Not only can the transitions between different dynamically stable states be precisely controlled by light, but we also discovered new photoinduced hidden states that cannot be reached under near-equilibrium conditions, created while laser photoexcited quasi-particles are outside the equilibrium condition. The observed switching behavior can be understood in terms of dynamical stabilization of various spatiotemporal periodic trajectories of the order parameter in the superconductor nanowire, providing means for the optical control of the superconducting phase with subpicosecond control of timing.

  10. Optical analysis of a III-V-nanowire-array-on-Si dual junction solar cell.

    PubMed

    Chen, Yang; Höhn, Oliver; Tucher, Nico; Pistol, Mats-Erik; Anttu, Nicklas

    2017-08-07

    A tandem solar cell consisting of a III-V nanowire subcell on top of a planar Si subcell is a promising candidate for next generation photovoltaics due to the potential for high efficiency. However, for success with such applications, the geometry of the system must be optimized for absorption of sunlight. Here, we consider this absorption through optics modeling. Similarly, as for a bulk dual-junction tandem system on a silicon bottom cell, a bandgap of approximately 1.7 eV is optimum for the nanowire top cell. First, we consider a simplified system of bare, uncoated III-V nanowires on the silicon substrate and optimize the absorption in the nanowires. We find that an optimum absorption in 2000 nm long nanowires is reached for a dense array of approximately 15 nanowires per square micrometer. However, when we coat such an array with a conformal indium tin oxide (ITO) top contact layer, a substantial absorption loss occurs in the ITO. This ITO could absorb 37% of the low energy photons intended for the silicon subcell. By moving to a design with a 50 nm thick, planarized ITO top layer, we can reduce this ITO absorption to 5%. However, such a planarized design introduces additional reflection losses. We show that these reflection losses can be reduced with a 100 nm thick SiO 2 anti-reflection coating on top of the ITO layer. When we at the same time include a Si 3 N 4 layer with a thickness of 90 nm on the silicon surface between the nanowires, we can reduce the average reflection loss of the silicon cell from 17% to 4%. Finally, we show that different approximate models for the absorption in the silicon substrate can lead to a 15% variation in the estimated photocurrent density in the silicon subcell.

  11. High speed superconducting nanowire single-photon detector with nine interleaved nanowires

    NASA Astrophysics Data System (ADS)

    Huang, Jia; Zhang, Weijun; You, Lixing; Zhang, Chengjun; Lv, Chaolin; Wang, Yong; Liu, Xiaoyu; Li, Hao; Wang, Zhen

    2018-07-01

    Count rate (CR) is one of the key parameters of superconducting nanowire single-photon detectors (SNSPDs). The practical SNSPDs usually have a CR of a few MHz to a few tens of MHz owing to the large kinetic inductance originating from the long nanowire, which is necessary for effectively coupling the photons. A feasible approach to decrease the kinetic inductance and consequently increase the detection speed is to replace a long single nanowire with multiple individual nanowires in an array. In this study, we report an SNSPD of nine interleaved nanowires with 70% system detection efficiency (SDE) and 200 Hz dark count rate at the low-photon-flux limit of 1550 nm. Owing to the small dead time (<6 ns) of each nanowire, the SNSPD achieved a maximum CR of 0.93 GHz at a photon flux of 1.26 × 1010 photons s‑1 with an SDE of ∼7.4%, and a CR of 200 MHz with an SDE of over 50%. Furthermore, a photon number resolvability of up to nine photons was also demonstrated.

  12. Synthesis and interface structures of zinc sulfide sheathed zinc-cadmium nanowire heterojunctions.

    PubMed

    Shen, Guozhen; Bando, Yoshio; Gao, Yihua; Golberg, Dmitri

    2006-07-27

    Zinc sulfide (ZnS) sheathed zinc (Zn)-cadmium (Cd) nanowire heterojunctions have been prepared by thermal evaporating of ZnS and CdS powders in a vertical induction furnace at 1200 degrees C. Studies found that both the Zn and Cd subnanowires, within a single nanoheterojunction, are single-crystallines with the growth directions perpendicular to the [210] plane, whereas the sheathed ZnS is polycrystalline with a thickness of ca. 5 nm. The Zn/Cd interface structure in the ZnS sheathed Zn-Cd nanowire heterojunctions was thoroughly experimentally studied by high-resolution transmission electron microscopy and theoretically studied using a near-coincidence site lattice (NCSL) concept. The results show that the Cd and Zn have a crystalline orientation relationship as [0001]Zn//[0001]Cd, (10(-)10)Zn//(10(-)10)Cd, (01(-)10)Zn//(01(-)10)Cd, and ((-)1100)Zn//((-)1100)Cd.

  13. Vertical nanowire heterojunction devices based on a clean Si/Ge interface.

    PubMed

    Chen, Lin; Fung, Wayne Y; Lu, Wei

    2013-01-01

    Different vertical nanowire heterojunction devices were fabricated and tested based on vertical Ge nanowires grown epitaxially at low temperatures on (111) Si substrates with a sharp and clean Si/Ge interface. The nearly ideal Si/Ge heterojuctions with controlled and abrupt doping profiles were verified through material analysis and electrical characterizations. In the nSi/pGe heterojunction diode, an ideality factor of 1.16, subpicoampere reverse saturation current, and rectifying ratio of 10(6) were obtained, while the n+Si/p+Ge structure leads to Esaki tunnel diodes with a high peak tunneling current of 4.57 kA/cm(2) and negative differential resistance at room temperature. The large valence band discontinuity between the Ge and Si in the nanowire heterojunctions was further verified in the p+Si/pGe structure, which shows a rectifying behavior instead of an Ohmic contact and raises an important issue in making Ohmic contacts to heterogeneously integrated materials. A raised Si/Ge structure was further developed using a self-aligned etch process, allowing greater freedom in device design for applications such as the tunneling field-effect transistor (TFET). All measurement data can be well-explained and fitted with theoretical models with known bulk properties, suggesting that the Si/Ge nanowire system offers a very clean heterojunction interface with low defect density, and holds great potential as a platform for future high-density and high-performance electronics.

  14. Precise Placement of Metallic Nanowires on a Substrate by Localized Electric Fields and Inter-Nanowire Electrostatic Interaction

    PubMed Central

    2017-01-01

    Placing nanowires at the predetermined locations on a substrate represents one of the significant hurdles to be tackled for realization of heterogeneous nanowire systems. Here, we demonstrate spatially-controlled assembly of a single nanowire at the photolithographically recessed region at the electrode gap with high integration yield (~90%). Two popular routes, such as protruding electrode tips and recessed wells, for spatially-controlled nanowire alignment, are compared to investigate long-range dielectrophoretic nanowire attraction and short-range nanowire-nanowire electrostatic interaction for determining the final alignment of attracted nanowires. Furthermore, the post-assembly process has been developed and tested to make a robust electrical contact to the assembled nanowires, which removes any misaligned ones and connects the nanowires to the underlying electrodes of circuit. PMID:29048363

  15. Preparation and magnetic properties of nickel nanowires by reduction in ethylene glycol medium under the influence of magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Wanshuo; Cheng, Junsheng; Li, Lankai; Chen, Shunzhong; Chang, Kun

    2017-01-01

    Nickel nanowires have successfully been fabricated through a simple liquid reduction in ethylene glycol medium with a 0.3T magnetic field applied. The effect of uniform magnetic field and solvent on the morphology and the crystal structure of magnetic nickel were studied. Scanning electron microscope images and transmission electron scope images s how that the effect of the external magnetic field on the morphology of nickel nanowires. X-ray diffraction shows the crystal structure of as-prepared products. And a energy disperse spectroscopy and a vibrating sample magnetometer are used to analyze the composition and static magnetic properties. The results show that the straight wires with an average diameter of about 100 nm and a length of several microns were obtained and mainly composed by fcc structure in the solvent of ethylene glycol. Magnetic measurements show that the saturation magnetization of the as-obtained products in a 0.3 T external magnetic field is 36 emu/g, less than that of bulk nickel crystal, and the coercivity of them is 186 emu/g, larger than that of bulk crystal with the mole ratio of sodium borohydride to nickel sulfate is 1:1000. This kind of nanowires array has potential applications with the special one-dimensional structures.

  16. One-dimensional CuO nanowire: synthesis, electrical, and optoelectronic devices application

    PubMed Central

    2014-01-01

    In this work, we presented a surface mechanical attrition treatment (SMAT)-assisted approach to the synthesis of one-dimensional copper oxide nanowires (CuO NWs) for nanodevices applications. The as-prepared CuO NWs have diameter and the length of 50 ~ 200 nm and 5 ~ 20 μm, respectively, with a preferential growth orientation along [1 1¯ 0] direction. Interestingly, nanofield-effect transistor (nanoFET) based on individual CuO NW exhibited typical p-type electrical conduction, with a hole mobility of 0.129 cm2V-1 s-1 and hole concentration of 1.34 × 1018 cm-3, respectively. According to first-principle calculations, such a p-type electrical conduction behavior was related to the oxygen vacancies in CuO NWs. What is more, the CuO NW device was sensitive to visible light illumination with peak sensitivity at 600 nm. The responsitivity, conductive gain, and detectivity are estimated to be 2.0 × 102 A W-1, 3.95 × 102 and 6.38 × 1011 cm Hz1/2 W-1, respectively, which are better than the devices composed of other materials. Further study showed that nanophotodetectors assembled on flexible polyethylene terephthalate (PET) substrate can work under different bending conditions with good reproducibility. The totality of the above results suggests that the present CuO NWs are potential building blocks for assembling high-performance optoelectronic devices. PMID:25489288

  17. Nanowires of metal (Cd, Cu) halide complexes with 8-hydroxyquinoline for photoelectrochemical and electrochemiluminescence sensing

    NASA Astrophysics Data System (ADS)

    Huang, Shan; Pang, Guangming; Li, Xiangkui; Li, Jianping; Pan, Hongcheng

    2017-12-01

    Metal-hydroxyquinoline-halogen (MqX, M = Cd, Cu; q = 8-hydroxyquinoline; X = Cl, Br, I) nanowires are synthesized via a sonochemical-assisted method. The elemental analysis (EA), inductively coupled plasma-optical emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS) support an M/q/X ratio of 1:1:1. The electron microscope images reveal a typical CdqX and CuqX nanowire diameter of 30-50 nm and a nanowire length of 400-600 nm. In addition, the synthesis of the MqX nanowires is only observed when there is an excess of halide ions (X/q molar ratio of 3 or greater). This halide deficiency results in the formation of micrometer-sized Mq2 sheets. We demonstrated the conversion of the MqX nanowires to Mq2 micro-sheets in an ultrasonic bath of 1 M 8-Hq ethanol solutions (50%, w/ w) at 50 °C for 2 h, but not vice versa. The MqX nanowires exhibited excellent properties for photoluminescence, electrochemiluminescence (ECL), and photoelectrochemistry (PEC). The CdqBr and CdqI nanowires were coated onto a glass carbon and a fluorine-doped tin oxide glass electrode to develop the above ECL and PEC methods for the detection of H2O2 and Cu2+, respectively. In the range of 2 to 14 μM, the ECL intensity of the CdqBr nanowires was inversely proportional to the concentration of H2O2 with a detection limit of 0.26 μM. For Cu2+ sensing, the photocurrent of the CdqI nanowires exhibited a linear response to Cu2+ over the range of 2 to 16 μM of which a detection limit of 0.2 μM was observed.

  18. Controlled synthesis of organic single-crystalline nanowires via the synergy approach of the bottom-up/top-down processes.

    PubMed

    Zhuo, Ming-Peng; Zhang, Ye-Xin; Li, Zhi-Zhou; Shi, Ying-Li; Wang, Xue-Dong; Liao, Liang-Sheng

    2018-03-15

    The controlled fabrication of organic single-crystalline nanowires (OSCNWs) with a uniform diameter in the nanoscale via the bottom-up approach, which is just based on weak intermolecular interaction, is a great challenge. Herein, we utilize the synergy approach of the bottom-up and the top-down processes to fabricate OSCNWs with diameters of 120 ± 10 nm through stepwise evolution processes. Specifically, the evolution processes vary from the self-assembled organic micro-rods with a quadrangular pyramid-like end-structure bounded with {111}s and {11-1}s crystal planes to the "top-down" synthesized organic micro-rods with the flat cross-sectional {002}s plane, to the organic micro-tubes with a wall thickness of ∼115 nm, and finally to the organic nanowires. Notably, the anisotropic etching process caused by the protic solvent molecules (such as ethanol) is crucial for the evolution of the morphology throughout the whole top-down process. Therefore, our demonstration opens a new avenue for the controlled-fabrication of organic nanowires, and also contributes to the development of nanowire-based organic optoelectronics such as organic nanowire lasers.

  19. Large-Scale Automated Production of Highly Ordered Ultralong Hydroxyapatite Nanowires and Construction of Various Fire-Resistant Flexible Ordered Architectures.

    PubMed

    Chen, Feng; Zhu, Ying-Jie

    2016-12-27

    Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing.

  20. Predicting the growth of S i3N4 nanowires by phase-equilibrium-dominated vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng

    2017-09-01

    Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.

  1. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    PubMed

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  2. Fabrication and characterization of GaN nanowire doubly clamped resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maliakkal, Carina B., E-mail: carina@tifr.res.in; Mathew, John P.; Hatui, Nirupam

    2015-09-21

    Gallium nitride (GaN) nanowires (NWs) have been intensely researched as building blocks for nanoscale electronic and photonic device applications; however, the mechanical properties of GaN nanostructures have not been explored in detail. The rigidity, thermal stability, and piezoelectric properties of GaN make it an interesting candidate for nano-electromechanical systems. We have fabricated doubly clamped GaN NW electromechanical resonators on sapphire using electron beam lithography and estimated the Young's modulus of GaN from resonance frequency measurements. For wires of triangular cross section with side ∼90 nm, we obtained values for the Young's modulus to be about 218 and 691 GPa, which are ofmore » the same order of magnitude as the values reported for bulk GaN. We also discuss the role of residual strain in the nanowire on the resonant frequency and the orientation dependence of the Young's modulus in wurtzite crystals.« less

  3. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation.

    PubMed

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-06-25

    In recent years, direct ethanol fuel cells (DEFCs) are attracting increasing attention owing to their wide applications. However, a significant challenge in the development of DEFC technology is the urgent need for highly active anode catalysts for the ethanol oxidation reaction. In this work, a facile and reproducible method for the high-yield synthesis of PdAu nanowire networks is demonstrated. The whole synthetic process is very simple, just mixing Na2PdCl4, HAuCl4, and KBr in an aqueous solution and using polyvinylpyrrolidone as a protective reagent while sodium borohydride as a reductant. The whole synthetic process can be simply performed at room temperature and completed in 30 min, which can greatly simplify the synthetic process and lower the preparation cost. Electrochemical catalytic measurement results prove that the as-prepared catalysts exhibit dramatically enhanced electrocatalytic activity for ethanol electrooxidation in alkaline solution. The facile synthetic process and excellent catalytic performance of the as-prepared catalysts demonstrate that they can be used as a promising catalyst for DEFCs.

  4. III-Nitride Nanowire Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Jeremy Benjamin

    2014-07-01

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices.more » Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that

  5. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires.

    PubMed

    Sutter, Eli; Sutter, Peter

    2008-02-01

    We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries.

  6. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.

    PubMed

    Li, Changli; Yamahara, Hiroyasu; Lee, Yaerim; Tabata, Hitoshi; Delaunay, Jean-Jacques

    2015-07-31

    CuO nanowire/microflower structure on Cu foil is synthesized by annealing a Cu(OH)2 nanowire/CuO microflower structure at 250 °C in air. The nanowire/microflower structure with its large surface area leads to an efficient catalysis and charge transfer in glucose detection, achieving a high sensitivity of 1943 μA mM(-1) cm(-2), a wide linear range up to 4 mM and a low detection limit of 4 μM for amperometric glucose sensing in alkaline solution. With a second consecutive growth of CuO nanowires on the microflowers, the sensitivity of the obtained CuO nanowire/microflower/nanowire structure further increases to 2424 μA mM(-1) cm(-2), benefiting from an increased number of electrochemically active sites. The enhanced electrocatalytic performance of the CuO nanowire/microflower/nanowire electrode compared to the CuO nanowire/microflower electrode, CuO nanowire electrode and CuxO film electrode provides evidence for the significant role of available surface area for electrocatalysis. The rational combination of CuO nanowire and microflower nanostructures into a nanowire supporting microflower branching nanowires structure makes it a promising composite nanostructure for use in CuO based electrochemical sensors with promising analytical properties.

  7. Formation of crystalline InGaO₃(ZnO)n nanowires via the solid-phase diffusion process using a solution-based precursor.

    PubMed

    Guo, Yujie; Van Bilzen, Bart; Locquet, Jean Pierre; Seo, Jin Won

    2015-12-11

    One-dimensional single crystalline InGaO3(ZnO)n (IGZO) nanostructures have great potential for various electrical and optical applications. This paper demonstrates for the first time, to our knowledge, a non-vacuum route for the synthesis of IGZO nanowires by annealing ZnO nanowires covered with solution-based IGZO precursor. This method results in nanowires with highly periodic IGZO superlattice structure. The phase transition of IGZO precursor during thermal treatment was systematically studied. Transmission electron microscopy studies reveal that the formation of the IGZO structure is driven by anisotropic inter-diffusion of In, Ga, and Zn atoms, and also by the crystallization of the IGZO precursor. Optical measurements using cathodoluminescence and UV-vis spectroscopy confirm that the nanowires consist of the IGZO compound with wide optical band gap and suppressed luminescence.

  8. Diamond nanowires: a novel platform for electrochemistry and matrix-free mass spectrometry.

    PubMed

    Szunerits, Sabine; Coffinier, Yannick; Boukherroub, Rabah

    2015-05-27

    Over the last decades, carbon-based nanostructures have generated a huge interest from both fundamental and technological viewpoints owing to their physicochemical characteristics, markedly different from their corresponding bulk states. Among these nanostructured materials, carbon nanotubes (CNTs), and more recently graphene and its derivatives, hold a central position. The large amount of work devoted to these materials is driven not only by their unique mechanical and electrical properties, but also by the advances made in synthetic methods to produce these materials in large quantities with reasonably controllable morphologies. While much less studied than CNTs and graphene, diamond nanowires, the diamond analogue of CNTs, hold promise for several important applications. Diamond nanowires display several advantages such as chemical inertness, high mechanical strength, high thermal and electrical conductivity, together with proven biocompatibility and existence of various strategies to functionalize their surface. The unique physicochemical properties of diamond nanowires have generated wide interest for their use as fillers in nanocomposites, as light detectors and emitters, as substrates for nanoelectronic devices, as tips for scanning probe microscopy as well as for sensing applications. In the past few years, studies on boron-doped diamond nanowires (BDD NWs) focused on increasing their electrochemical active surface area to achieve higher sensitivity and selectivity compared to planar diamond interfaces. The first part of the present review article will cover the promising applications of BDD NWS for label-free sensing. Then, the potential use of diamond nanowires as inorganic substrates for matrix-free laser desorption/ionization mass spectrometry, a powerful label-free approach for quantification and identification of small compounds, will be discussed.

  9. Diamond Nanowires: A Novel Platform for Electrochemistry and Matrix-Free Mass Spectrometry

    PubMed Central

    Szunerits, Sabine; Coffinier, Yannick; Boukherroub, Rabah

    2015-01-01

    Over the last decades, carbon-based nanostructures have generated a huge interest from both fundamental and technological viewpoints owing to their physicochemical characteristics, markedly different from their corresponding bulk states. Among these nanostructured materials, carbon nanotubes (CNTs), and more recently graphene and its derivatives, hold a central position. The large amount of work devoted to these materials is driven not only by their unique mechanical and electrical properties, but also by the advances made in synthetic methods to produce these materials in large quantities with reasonably controllable morphologies. While much less studied than CNTs and graphene, diamond nanowires, the diamond analogue of CNTs, hold promise for several important applications. Diamond nanowires display several advantages such as chemical inertness, high mechanical strength, high thermal and electrical conductivity, together with proven biocompatibility and existence of various strategies to functionalize their surface. The unique physicochemical properties of diamond nanowires have generated wide interest for their use as fillers in nanocomposites, as light detectors and emitters, as substrates for nanoelectronic devices, as tips for scanning probe microscopy as well as for sensing applications. In the past few years, studies on boron-doped diamond nanowires (BDD NWs) focused on increasing their electrochemical active surface area to achieve higher sensitivity and selectivity compared to planar diamond interfaces. The first part of the present review article will cover the promising applications of BDD NWS for label-free sensing. Then, the potential use of diamond nanowires as inorganic substrates for matrix-free laser desorption/ionization mass spectrometry, a powerful label-free approach for quantification and identification of small compounds, will be discussed. PMID:26024422

  10. Combined flame and solution synthesis of nanoscale tungsten-oxide and zinc/tin-oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Dong, Zhizhong; Huo, Di; Kear, Bernard H.; Tse, Stephen D.

    2015-12-01

    Heterostructures of tungsten-oxide nanowires decorated with zinc/tin-oxide nanostructures are synthesized via a combined flame and solution synthesis approach. Vertically well-aligned tungsten-oxide nanowires are grown on a tungsten substrate by a flame synthesis method. Here, tetragonal WO2.9 nanowires (diameters of 20-50 nm, lengths >10 μm, and coverage density of 109-1010 cm-2) are produced by the vapor-solid mechanism at 1720 K. Various kinds of Zn/Sn-oxide nanostructures are grown or deposited on the WO2.9 nanowires by adjusting the Sn2+ : Zn2+ molar ratio in an aqueous ethylenediamine solution at 65 °C. With WO2.9 nanowires serving as the base structures, sequential growth or deposition on them of hexagonal ZnO nanoplates, Zn2SnO4 nanocubes, and SnO2 nanoparticles are attained for Sn2+ : Zn2+ ratios of 0 : 1, 1 : 10, and 10 : 1, respectively, along with different saturation conditions. High-resolution transmission electron microscopy of the interfaces at the nanoheterojunctions shows abrupt interfaces for ZnO/WO2.9 and Zn2SnO4/WO2.9, despite lattice mismatches of >20%.

  11. Growth of vertically aligned nanowires in metal-oxide nanocomposites: kinetic Monte-Carlo modeling versus experiments.

    PubMed

    Hennes, M; Schuler, V; Weng, X; Buchwald, J; Demaille, D; Zheng, Y; Vidal, F

    2018-04-26

    We employ kinetic Monte-Carlo simulations to study the growth process of metal-oxide nanocomposites obtained via sequential pulsed laser deposition. Using Ni-SrTiO3 (Ni-STO) as a model system, we reduce the complexity of the computational problem by choosing a coarse-grained approach mapping Sr, Ti and O atoms onto a single effective STO pseudo-atom species. With this ansatz, we scrutinize the kinetics of the sequential synthesis process, governed by alternating deposition and relaxation steps, and analyze the self-organization propensity of Ni atoms into straight vertically aligned nanowires embedded in the surrounding STO matrix. We finally compare the predictions of our binary toy model with experiments and demonstrate that our computational approach captures fundamental aspects of self-assembled nanowire synthesis. Despite its simplicity, our modeling strategy successfully describes the impact of relevant parameters like the concentration or laser frequency on the final nanoarchitecture of metal-oxide thin films grown via pulsed laser deposition.

  12. Analysis of benzylpenicillin in milk using MALDI-TOF mass spectrometry with top-down synthesized TiO2 nanowires as the solid matrix.

    PubMed

    Kim, Jo-Il; Park, Jong-Min; Noh, Joo-Yoon; Hwang, Seong-Ju; Kang, Min-Jung; Pyun, Jae-Chul

    2016-01-01

    In this work, the wet-corrosion process for the synthesis of titanium oxide (TiO2) nanowires in the anatase phase was optimized as the solid matrix in MALDI-TOF mass spectrometry, and the solid matrix of the TiO2 nanowires was applied to the detection of antibiotics in a daily milk sample. The influence of the alkali concentration and the heat treatment temperature on the crystal structure of the TiO2 nanowires was investigated. The ionization activity of the TiO2 nanowires was estimated for each synthetic condition using amino acids as model analytes with low molecular weights. For the detection of antibiotics in milk, benzylpenicillin was spiked in daily milk samples, and MALDI-TOF mass spectrometry with the TiO2 nanowires was demonstrated to detect the benzylpenicillin at the cut-off concentration of the EU directive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Swift adsorptive removal of Congo red from aqueous solution by K1.33Mn8O16 nanowires.

    PubMed

    Wu, Junshu; Li, Hongyi; Wang, Jinshu; Li, Zhifei

    2013-08-01

    A swift and efficient approach to converting organic dye effluents into fresh water could be of substantial benefit. In this study, we presented facile hydrothermal synthesis of K1.33Mn8O16 nanowires in ammonium fluoride (NH4F) aqueous solution. The crystallization process of K1.33Mn8O16 nanowires was investigated. The as-obtained K1.33Mn8O16 nanowires were used for swift adsorptive removal of Congo red from aqueous solution without adjusting pH value at room temperature. Adsorption kinetic experimental data are well described by pseudo-second-order rate kinetic model, and the adsorption isotherm fits Langmuir isotherm model. The present investigation provides an efficient approach to designing and fabricating manganese-based nanomaterials for environmental remediation.

  14. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Caicedo, Hector M.; Dempere, Luisa A.; Vermerris, Wilfred

    2012-03-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells.

  15. Room-temperature synthesis of two-dimensional ultrathin gold nanowire parallel array with tunable spacing.

    PubMed

    Morita, Clara; Tanuma, Hiromitsu; Kawai, Chika; Ito, Yuki; Imura, Yoshiro; Kawai, Takeshi

    2013-02-05

    A series of long-chain amidoamine derivatives with different alkyl chain lengths (CnAA where n is 12, 14, 16, or 18) were synthesized and studied with regard to their ability to form organogels and to act as soft templates for the production of Au nanomaterials. These compounds were found to self-assemble into lamellar structures and exhibited gelation ability in some apolar solvents. The gelation concentration, gel-sol phase transition temperature, and lattice spacing of the lamellar structures in organic solvent all varied on the basis of the alkyl chain length of the particular CnAA compound employed. The potential for these molecules to function as templates was evaluated through the synthesis of Au nanowires (NWs) in their organogels. Ultrathin Au NWs were obtained from all CnAA/toluene gel systems, each within an optimal temperature range. Interestingly, in the case of C12AA and C14AA, it was possible to fabricate ultrathin Au NWs at room temperature. In addition, two-dimensional parallel arrays of ultrathin Au NWs were self-assembled onto TEM copper grids as a result of the drying of dispersion solutions of these NWs. The use of CnAA compounds with differing alkyl chain lengths enabled precise tuning of the distance between the Au NWs in these arrays.

  16. Nickel/Platinum Dual Silicide Axial Nanowire Heterostructures with Excellent Photosensor Applications.

    PubMed

    Wu, Yen-Ting; Huang, Chun-Wei; Chiu, Chung-Hua; Chang, Chia-Fu; Chen, Jui-Yuan; Lin, Ting-Yi; Huang, Yu-Ting; Lu, Kuo-Chang; Yeh, Ping-Hung; Wu, Wen-Wei

    2016-02-10

    Transition metal silicide nanowires (NWs) have attracted increasing attention as they possess advantages of both silicon NWs and transition metals. Over the past years, there have been reported with efforts on one silicide in a single silicon NW. However, the research on multicomponent silicides in a single silicon NW is still rare, leading to limited functionalities. In this work, we successfully fabricated β-Pt2Si/Si/θ-Ni2Si, β-Pt2Si/θ-Ni2Si, and Pt, Ni, and Si ternary phase axial NW heterostructures through solid state reactions at 650 °C. Using in situ transmission electron microscope (in situ TEM), the growth mechanism of silicide NW heterostructures and the diffusion behaviors of transition metals were systematically studied. Spherical aberration corrected scanning transmission electron microscope (Cs-corrected STEM) equipped with energy dispersive spectroscopy (EDS) was used to analyze the phase structure and composition of silicide NW heterostructures. Moreover, electrical and photon sensing properties for the silicide nanowire heterostructures demonstrated promising applications in nano-optoeletronic devices. We found that Ni, Pt, and Si ternary phase nanowire heterostructures have an excellent infrared light sensing property which is absent in bulk Ni2Si or Pt2Si. The above results would benefit the further understanding of heterostructured nano materials.

  17. Effect of nanowire curviness on the percolation resistivity of transparent, conductive metal nanowire networks

    NASA Astrophysics Data System (ADS)

    Hicks, Jeremy; Li, Junying; Ying, Chen; Ural, Ant

    2018-05-01

    We study the effect of nanowire curviness on the percolation resistivity of transparent, conductive metal nanowire networks by Monte Carlo simulations. We generate curvy nanowires as one-dimensional sticks using 3rd-order Bézier curves. The degree of curviness in the network is quantified by the concept of curviness angle and curl ratio. We systematically study the interaction between the effect of curviness and five other nanowire/device parameters on the network resistivity, namely nanowire density, nanowire length, device length, device width, and nanowire alignment. We find that the resistivity exhibits a power law dependence on the curl ratio, which is a signature of percolation transport. In each case, we extract the power-law scaling critical exponents and explain the results using geometrical and physical arguments. The value of the curl ratio critical exponent is not universal, but increases as the other nanowire/device parameters drive the network toward the percolation threshold. We find that, for randomly oriented networks, curviness is undesirable since it increases the resistivity. For well-aligned networks, on the other hand, some curviness is highly desirable, since the resistivity minimum occurs for partially curvy nanowires. We explain these results by considering the two competing effects of curviness on the percolation resistivity. The results presented in this work can be extended to any network, film, or nanocomposite consisting of one-dimensional nanoelements. Our results show that Monte Carlo simulations are an essential predictive tool for both studying the percolation transport and optimizing the electronic properties of transparent, conductive nanowire networks for a wide range of applications.

  18. Batchwise growth of silica cone patterns via self-assembly of aligned nanowires.

    PubMed

    Luo, Shudong; Zhou, Weiya; Chu, Weiguo; Shen, Jun; Zhang, Zengxing; Liu, Lifeng; Liu, Dongfang; Xiang, Yanjuan; Ma, Wenjun; Xie, Sishen

    2007-03-01

    Silica-cone patterns self-assembled from well-aligned nanowires are synthesized using gallium droplets as the catalyst and silicon wafers as the silicon source. The cones form a triangular pattern array radially on almost the whole surface of the molten Ga ball. Detailed field-emission scanning electron microscopy (SEM) analysis shows that the cone-pattern pieces frequently slide off and are detached from the molten Ga ball surface, which leads to the exposure of the catalyst surface and the growth of a new batch of silicon oxide nanowires as well as the cone patterns. The processes of growth and detachment alternate, giving rise to the formation of a volcano-like or a flower-like structure with bulk-quantity pieces of cone patterns piled up around the Ga ball. Consequently, the cone-patterned layer grows batch by batch until the reaction is terminated. Different to the conventional metal-catalyzed growth model, the batch-by-batch growth of the triangular cone patterns proceeds on the molten Ga balls via alternate growth on and detachment from the catalyst surface of the patterns; the Ga droplet can be used continuously and circularly as an effective catalyst for the growth of amorphous SiO(x) nanowires during the whole growth period. The intriguing batchwise growth phenomena may enrich our understanding of the vapour-liquid-solid (VLS) growth mechanism for the catalyst growth of nanowires or other nanostructures and may offer a different way of self-assembling novel silica nanostructures.

  19. Evolution of microstructural disorder in annealed bismuth telluride nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Kristopher J.; Limmer, Steven J.; Yelton, W. Graham

    Controlling the distribution of structural defects in nanostructures is important since such defects can strongly affect critical properties, including thermal and electronic transport. However, characterizing the defect arrangements in individual nanostructures is difficult because of the small length scales involved. Here, we investigate the evolution of microstructural disorder with annealing in electrochemically deposited Bi2Te3 nanowires, which are of interest for thermoelectrics. We combine Convergent Beam Electron Diffraction (CBED) and Scanning Transmission Electron Microscopy (STEM) to provide the necessary spatial and orientational resolution. We find that despite their large initial grain sizes and strong Formula crystallographic texturing, the as-deposited nanowires stillmore » exhibit significant intragranular orientational disorder. Annealing drives both grain growth and a significant reduction in the intragranular disorder. The results are discussed in the context of the existing understanding of the initial microstructure of electrodeposited materials and the understanding of annealing microstructures in both electrochemically deposited and bulk-deformed materials. Finally, this analysis highlights the importance of assessing both the grain size and intragranular disorder in understanding the microstructural evolution of individual nanostructures.« less

  20. Evolution of microstructural disorder in annealed bismuth telluride nanowires

    DOE PAGES

    Erickson, Kristopher J.; Limmer, Steven J.; Yelton, W. Graham; ...

    2017-03-01

    Controlling the distribution of structural defects in nanostructures is important since such defects can strongly affect critical properties, including thermal and electronic transport. However, characterizing the defect arrangements in individual nanostructures is difficult because of the small length scales involved. Here, we investigate the evolution of microstructural disorder with annealing in electrochemically deposited Bi2Te3 nanowires, which are of interest for thermoelectrics. We combine Convergent Beam Electron Diffraction (CBED) and Scanning Transmission Electron Microscopy (STEM) to provide the necessary spatial and orientational resolution. We find that despite their large initial grain sizes and strong Formula crystallographic texturing, the as-deposited nanowires stillmore » exhibit significant intragranular orientational disorder. Annealing drives both grain growth and a significant reduction in the intragranular disorder. The results are discussed in the context of the existing understanding of the initial microstructure of electrodeposited materials and the understanding of annealing microstructures in both electrochemically deposited and bulk-deformed materials. Finally, this analysis highlights the importance of assessing both the grain size and intragranular disorder in understanding the microstructural evolution of individual nanostructures.« less

  1. Preparation of Cu2O nanowire-blended polysulfone ultrafiltration membrane with improved stability and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Xu, Zehai; Ye, Shuaiju; Fan, Zheng; Ren, Fanghua; Gao, Congjie; Li, Qingbiao; Li, Guoqing; Zhang, Guoliang

    2015-10-01

    Polysulfone (PSF) membranes have been widely applied in water and wastewater treatment, food-processing and biomedical fields. In this study, we report the preparation of modified PSF membranes by blending PSF with Cu2O nanowires (NWs) to improve their stability and antifouling activity. Synthesis of novel Cu2O NWs/PSF-blended ultrafiltration membrane was achieved via phase inversion method by dispersing one-dimensional Cu2O nanowires in PSF casting solutions. Various techniques such as XRD, SEM, TEM, and EDS were applied to characterize and investigate the properties of nanowires and membranes. The introduced Cu2O nanowires can firmly be restricted into micropores of PSF membranes, and therefore, they can effectively prevent the serious leaking problem of inorganic substances in separation process. The blended PSF membranes also provided enhanced antimicrobial activity and superior permeation property compared to pure PSF membrane. The overall work can not only provide a new way for preparation of novel blended membranes with multidimensional nanomaterials, but can also be beneficial to solve the annoying problem of biofouling.

  2. Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature.

    PubMed

    Ren, Dingding; Ahtapodov, Lyubomir; Nilsen, Julie S; Yang, Jianfeng; Gustafsson, Anders; Huh, Junghwan; Conibeer, Gavin J; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2018-04-11

    Semiconductor nanowire lasers can produce guided coherent light emission with miniaturized geometry, bringing about new possibilities for a variety of applications including nanophotonic circuits, optical sensing, and on-chip and chip-to-chip optical communications. Here, we report on the realization of single-mode and room-temperature lasing from 890 to 990 nm, utilizing a novel design of single nanowires with GaAsSb-based multiple axial superlattices as a gain medium under optical pumping. The control of lasing wavelength via compositional tuning with excellent room-temperature lasing performance is shown to result from the unique nanowire structure with efficient gain material, which delivers a low lasing threshold of ∼6 kW/cm 2 (75 μJ/cm 2 per pulse), a lasing quality factor as high as 1250, and a high characteristic temperature of ∼129 K. These results present a major advancement for the design and synthesis of nanowire laser structures, which can pave the way toward future nanoscale integrated optoelectronic systems with superior performance.

  3. Size- effect induced high thermoelectric figure of merit in PbSe and PbTe nanowires.

    PubMed

    Wrasse, Ernesto O; Torres, Alberto; Baierle, Rogério J; Fazzio, Adalberto; Schmidt, Tome M

    2014-05-07

    The fundamental properties that compose the thermoelectric figure of merit are investigated in the confined systems of PbSe and PbTe nanowires, with the goal to improve the thermoelectric efficiency. Using the Landauer electronic transport theory, we verify that the figure of merit can be several times larger than the bulk value for nanowires with diameters down to the one nanometer scale. This enhancement in the thermoelectric efficiency is primarily due to the reduction of the thermal conductivity and an increase in the power factor. The origin of these desireable properties, that enable the transformation of heat into electricity, comes from the confinement effect which increases the density of states around the Fermi level, either for an n- or p-type system.

  4. In Situ Integration of Ultrathin PtCu Nanowires with Reduced Graphene Oxide Nanosheets for Efficient Electrocatalytic Oxygen Reduction.

    PubMed

    Yan, Xiaoxiao; Chen, Yifan; Deng, Sihui; Yang, Yifan; Huang, Zhenna; Ge, Cunwang; Xu, Lin; Sun, Dongmei; Fu, Gengtao; Tang, Yawen

    2017-11-27

    Ultrathin Pt-based nanowires are considered as promising electrocatalysts owing to their high atomic utilization efficiency and structural robustness. Moreover, integration of Pt-based nanowires with graphene oxide (GO) could further increase the electrocatalytic performance, yet remains challenging to date. Herein, for the first time we demonstrate the in situ synthesis of ultrathin PtCu nanowires grown over reduced GO (PtCu-NWs/rGO) by a one-pot hydrothermal approach with the aid of amine-terminated poly(N-isopropyl acrylamide) (PNIPAM-NH 2 ). The judicious selection of PNIPAM-NH 2 facilitates the in situ nucleation and anisotropic growth of nanowires on the rGO surface and oriented attachment mechanism accounts for the formation of PtCu ultrathin nanowires. Owing to the synergy between PtCu NWs and rGO support, the PtCu-NWs/rGO outperforms the rGO supported PtCu nanoparticles (PtCu-NPs/rGO), PtCu-NWs, and commercial Pt/C toward the oxygen reduction reaction (ORR) with higher activity and better stability, making it a promising cathodic electrocatalyst for both fuel cells and metal-air cells. Moreover, the present synthetic strategy could inspire the future design of other metal alloy nanowires/carbon hybrid catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantum optics with nanowires (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zwiller, Val

    2017-02-01

    Nanowires offer new opportunities for nanoscale quantum optics; the quantum dot geometry in semiconducting nanowires as well as the material composition and environment can be engineered with unprecedented freedom to improve the light extraction efficiency. Quantum dots in nanowires are shown to be efficient single photon sources, in addition because of the very small fine structure splitting, we demonstrate the generation of entangled pairs of photons from a nanowire. By doping a nanowire and making ohmic contacts on both sides, a nanowire light emitting diode can be obtained with a single quantum dot as the active region. Under forward bias, this will act as an electrically pumped source of single photons. Under reverse bias, an avalanche effect can multiply photocurrent and enables the detection of single photons. Another type of nanowire under study in our group is superconducting nanowires for single photon detection, reaching efficiencies, time resolution and dark counts beyond currently available detectors. We will discuss our first attempts at combining semiconducting nanowire based single photon emitters and superconducting nanowire single photon detectors on a chip to realize integrated quantum circuits.

  6. Piezoresistive boron doped diamond nanowire

    DOEpatents

    Sumant, Anirudha V.; Wang, Xinpeng

    2017-07-04

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  7. Piezoresistive boron doped diamond nanowire

    DOEpatents

    Sumant, Anirudha V.; Wang, Xinpeng

    2016-09-13

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  8. Synthesis of Tapered CdS Nanobelts and CdSe Nanowires with Good Optical Property by Hydrogen-Assisted Thermal Evaporation

    PubMed Central

    2009-01-01

    The tapered CdS nanobelts and CdSe nanowires were prepared by hydrogen-assisted thermal evaporation method. Different supersaturation leads to two different kinds of 1D nanostructures. The PL measurements recorded from the as-prepared tapered CdS nanobelts and CdSe nanowires show only a bandgap emission with relatively narrow full-width half maximum, which means that they possess good optical property. The as-synthesized high-quality tapered CdS nanobelts and CdSe nanowires may be excellent building blocks for photonic devices. PMID:20596418

  9. Quantum Dot Sensitized Solar Cells Based on Ternary Metal Oxide Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenyong; Tang, Jinke; Dahnovsky, Yuri

    In Phase I of this project we investigate quantum dot sensitized solar cells (QDSSCs) based on ternary metal oxide nanowires and study the physical and chemical mechanisms that govern device operation. Our research has the following five objectives: (1) synthesis of ternary metal oxide nanowires, (2) synthesis of QDs and exploration of non-solution based QD deposition methods, (3) physical and electro-optical characterizations of fabricated solar devices, (4) device modeling and first-principle theoretical study of transport physics, and (5) investigation of long-term stability issues of QD sensitized solar cells. In Phase II of this project our first major research goal ismore » to investigate magnetically doped quantum dots and related spin polarization effect, which could improve light absorption and suppress electron relaxation in the QDs. We will utilize both physical and chemical methods to synthesize these doped QDs. We will also study magnetically modified nanowires and introduce spin-polarized transport into QDSSCs, and inspect its impact on forward electron injection and back electron transfer processes. Our second goal is to study novel solid-state electrolytes for QDSSCs. Specifically, we will inspect a new type of polymer electrolytes based on a modified polysulfide redox couple, and examine the effect of their electrical properties on QDSSC performance. These solid-state electrolytes could also be used as filler materials for in situ sample fracturing in STM and enable cross-sectional interface examination of QD/nanowire structures. Our third research goal is to examine the interfacial properties such as energy level alignment at QD/nanowire interfaces using the newly developed Cross-sectional Scanning Tunneling Microscopy and Spectroscopy technique for non-cleavable materials. This technique allows a direct probing of band structures and alignment at device interfaces, which could generate important insight into the mechanisms that govern QDSSC

  10. Nonequilibrium optical control of dynamical states in superconducting nanowire circuits

    PubMed Central

    Madan, Ivan; Baranov, Vladimir V.

    2018-01-01

    Optical control of states exhibiting macroscopic phase coherence in condensed matter systems opens intriguing possibilities for materials and device engineering, including optically controlled qubits and photoinduced superconductivity. Metastable states, which in bulk materials are often associated with the formation of topological defects, are of more practical interest. Scaling to nanosize leads to reduced dimensionality, fundamentally changing the system’s properties. In one-dimensional superconducting nanowires, vortices that are present in three-dimensional systems are replaced by fluctuating topological defects of the phase. These drastically change the dynamical behavior of the superconductor and introduce dynamical periodic long-range ordered states when the current is driven through the wire. We report the control and manipulation of transitions between different dynamically stable states in superconducting δ3-MoN nanowire circuits by ultrashort laser pulses. Not only can the transitions between different dynamically stable states be precisely controlled by light, but we also discovered new photoinduced hidden states that cannot be reached under near-equilibrium conditions, created while laser photoexcited quasi-particles are outside the equilibrium condition. The observed switching behavior can be understood in terms of dynamical stabilization of various spatiotemporal periodic trajectories of the order parameter in the superconductor nanowire, providing means for the optical control of the superconducting phase with subpicosecond control of timing. PMID:29670935

  11. Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors.

    PubMed

    Zhang, Na; Zhai, Dong; Chen, Lei; Zou, Zhaoyong; Lin, Kaili; Chang, Jiang

    2014-04-01

    In the absence of any organic surfactants and solvents, the silicon (Si) and strontium (Sr) co-substituted hydroxyapatite [Ca10(PO4)6(OH)2, Si/Sr-HAp] nanowires were synthesized via hydrothermal treatment of the Sr-containing calcium silicate (Sr-CS) powders as the precursors in trisodium phosphate (Na3PO4) aqueous solution. The morphology, phase, chemical compositions, lattice constants and the degradability of the products were characterized. The Si/Sr-HAp nanowires with diameter of about 60nm and up to 2μm in length were obtained after hydrothermal treatment of the Sr-CS precursors. The Sr and Si substitution amount of the HAp nanowires could be well regulated by facile tailoring the Sr substitution level of the precursors and the reaction ratio of the precursor/solution, respectively. The SiO4 tetrahedra and Sr(2+) ions occupied the crystal sites of the HAp, and the lattice constants increased apparently with the increase of the substitution amount. EDS mapping also suggested the uniform distribution of Si and Sr in the synthetic nanowires. Moreover, the Si/Sr-substitution apparently improved the degradability of the HAp materials. Our study suggested that the precursor transformation method provided a facile approach to synthesize the Si/Sr co-substituted HAp nanowires with controllable substitution amount, and the synthetic Si/Sr-HAp nanowires might be used as bioactive materials for hard tissue regeneration applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Synthesis and properties of ultra-long InP nanowires on glass.

    PubMed

    Dhaka, Veer; Pale, Ville; Khayrudinov, Vladislav; Kakko, Joona-Pekko; Haggren, Tuomas; Jiang, Hua; Kauppinen, Esko; Lipsanen, Harri

    2016-12-16

    We report on the synthesis of Au-catalyzed InP nanowires (NWs) on low-cost glass substrates. Ultra-dense and ultra-long (up to ∼250 μm) InP NWs, with an exceptionally high growth rate of ∼25 μm min -1 , were grown directly on glass using metal organic vapor phase epitaxy (MOVPE). Structural properties of InP NWs grown on glass were similar to the ones grown typically on Si substrates showing many structural twin faults but the NWs on glass always exhibited a stronger photoluminescence (PL) intensity at room temperature. The PL measurements of NWs grown on glass reveal two additional prominent impurity related emission peaks at low temperature (10 K). In particular, the strongest unusual emission peak with an activation energy of 23.8 ± 2 meV was observed at 928 nm. Different possibilities including the role of native defects (phosphorus and/or indium vacancies) are discussed but most likely the origin of this PL peak is related to the impurity incorporation from the glass substrate. Furthermore, despite the presence of suspected impurities, the NWs on glass show outstanding light absorption in a wide spectral range (60%-95% for λ = 300-1600 nm). The optical properties and the NW growth mechanism on glass is discussed qualitatively. We attribute the exceptionally high growth rate mostly to the atmospheric pressure growth conditions of our MOVPE reactor and stronger PL intensity on glass due to the impurity doping. Overall, the III-V NWs grown on glass are similar to the ones grown on semiconductor substrates but offer additional advantages such as low-cost and light transparency.

  13. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    PubMed

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  14. Influence of boric acid (H3BO3) concentration on the physical properties of electrochemical deposited nickel (Ni) nanowires

    NASA Astrophysics Data System (ADS)

    Kananathan, J.; Sofiah, A. G. N.; Samykano, M.; Ulakanathan, S.; Lah, N. A. C.; Harun, W. S. W.; Sudhakar, K.; Kadirgama, K.; Ngui, W. K.; Siregar, J. P.

    2017-10-01

    Authors have investigated the influence of the stabilizer (Boric Acid) concentration during the template-assisted electrochemical deposition of Nickel (Ni) nanowires in Anodic Alumina Oxide (AAO) templates. The synthesis was performed using Ni Sulfate Hexahydrate (NiSO4.6H2O) as metal salts and Boric Acid (H3BO3) as a stabilizer. The mixture of both solutions creates electrolyte and utilized for the electrochemical deposition of Ni nanowires. During the experiment, the boric acid concentration varied between 5 g/L, 37.5 g/L and 60 g/L with a deposition temperature of 80 °C (constant). After the electrochemical deposition process, AAO templates were cleaned with distilled water before dissolution in Sodium Hydroxide (NaOH) solution to obtain the freestanding Ni nanowires. Physical properties of the synthesized Ni nanowires were analyzed using Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD). The physical properties of obtained Ni nanowires has eloborated by taking into account the effect of boric acid concentration on the surface morphology, growth length, elemental composition and crystal orientation crystal of the synthesized nickel nanowires. The finding exposes that the boric acid concentration does not influence all aspects in the physicals properties of the synthesized Ni nanowires. The boric acid concentration did not affect the surface texture and crystal orientation. However, shorter Ni nanowires obtained as the concentration of boric acid increased.

  15. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units

    NASA Astrophysics Data System (ADS)

    Lin, Luchan; Zou, Guisheng; Liu, Lei; Duley, Walt W.; Zhou, Y. Norman

    2016-05-01

    We show that irradiation with femtosecond laser pulses can produce robust nanowire heterojunctions in coupled non-wetting metal-oxide Ag-TiO2 structures. Simulations indicate that joining arises from the effect of strong plasmonic localization in the region of the junction. Strong electric field effects occur in both Ag and TiO2 resulting in the modification of both surfaces and an increase in wettability of TiO2, facilitating the interconnection of Ag and TiO2 nanowires. Irradiation leads to the creation of a thin layer of highly defected TiO2 in the contact region between the Ag and TiO2 nanowires. The presence of this layer allows the formation of a heterojunction and offers the possibility of engineering the electronic characteristics of interfacial structures. Rectifying junctions with single and bipolar properties have been generated in Ag-TiO2 nanowire circuits incorporating asymmetrical and symmetrical interfacial structures, respectively. This fabrication technique should be applicable for the interconnection of other heterogeneous metal-oxide nanowire components and demonstrates that femtosecond laser irradiation enables interfacial engineering for electronic applications of integrated nanowire structures.

  16. Template-Assisted Scalable Nanowire Networks.

    PubMed

    Friedl, Martin; Cerveny, Kris; Weigele, Pirmin; Tütüncüoglu, Gozde; Martí-Sánchez, Sara; Huang, Chunyi; Patlatiuk, Taras; Potts, Heidi; Sun, Zhiyuan; Hill, Megan O; Güniat, Lucas; Kim, Wonjong; Zamani, Mahdi; Dubrovskii, Vladimir G; Arbiol, Jordi; Lauhon, Lincoln J; Zumbühl, Dominik M; Fontcuberta I Morral, Anna

    2018-04-11

    Topological qubits based on Majorana Fermions have the potential to revolutionize the emerging field of quantum computing by making information processing significantly more robust to decoherence. Nanowires are a promising medium for hosting these kinds of qubits, though branched nanowires are needed to perform qubit manipulations. Here we report a gold-free templated growth of III-V nanowires by molecular beam epitaxy using an approach that enables patternable and highly regular branched nanowire arrays on a far greater scale than what has been reported thus far. Our approach relies on the lattice-mismatched growth of InAs on top of defect-free GaAs nanomembranes yielding laterally oriented, low-defect InAs and InGaAs nanowires whose shapes are determined by surface and strain energy minimization. By controlling nanomembrane width and growth time, we demonstrate the formation of compositionally graded nanowires with cross-sections less than 50 nm. Scaling the nanowires below 20 nm leads to the formation of homogeneous InGaAs nanowires, which exhibit phase-coherent, quasi-1D quantum transport as shown by magnetoconductance measurements. These results are an important advance toward scalable topological quantum computing.

  17. Fabrication of Si3N4 nanowire membranes: free standing disordered nanopapers and aligned nanowire assemblies

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Fang, Minghao; Huang, Zhaohui; Huang, Juntong; Liu, Yan-gai; Wu, Xiaowen

    2016-08-01

    Herein, ultralong silicon nitride nanowires were synthesized via a chemical vapor deposition method by using the low-cost quartz and silicon powder as raw materials. Simple processes were used for the fabrication of disordered and ordered nanowire membranes of pure silicon nitride nanowires. The nanowires in the disordered nanopapers are intertwined with each other to form a paper-like structure which exhibit excellent flame retardancy and mechanical properties. Fourier-transform infrared spectroscopy and thermal gravity analysis were employed to characterize the refractory performance of the disordered nanopapers. Highly ordered nanowire membranes were also assembled through a three-phase assembly approach which make the Si3N4 nanowires have potential use in textured ceramics and semiconductor field. Moreover, the surface nanowires can also be modified to be hydrophobic; this characteristic make the as-prepared nanowires have the potential to be assembled by the more effective Langmuir-Blodgett method and also make the disordered nanopapers possess a super-hydrophobic surface.

  18. Hybrid Pd/Fe{sub 3}O{sub 4} nanowires: Fabrication, characterization, optical properties and application as magnetically reusable catalyst for the synthesis of N-monosubstituted ureas under ligand-free conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasrollahzadeh, Mahmoud, E-mail: mahmoudnasr81@gmail.com; Azarian, Abbas; Ehsani, Ali

    2014-07-01

    Highlights: • Preparation of Pd/Fe{sub 3}O{sub 4} nanowires as magnetically reusable catalysts. • The optical properties of the catalyst were studied using Gans theory. • N-arylation of benzylurea and in situ hydrogenolysis of 1-benzyl-3-arylureas. - Abstract: This paper reports the synthesis and use of Pd/Fe{sub 3}O{sub 4} nanowires, as magnetically separable catalysts for ligand-free amidation coupling reactions of aryl halides with benzylurea under microwave irradiation. Then, the in situ hydrogenolysis of the products was performed to afford the N-monosubstituted ureas from good to excellent yields. This method has the advantages of high yields, simple methodology and easy work up. Themore » catalyst can be recovered by using a magnet and reused several times without significant loss of its catalytic activity. The catalyst was characterized using the powder XRD, SEM, EDS and UV–vis spectroscopy. Experimental absorbance spectra was compared with results from the Gans theory.« less

  19. Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions.

    PubMed

    Gutsche, Christoph; Niepelt, Raphael; Gnauck, Martin; Lysov, Andrey; Prost, Werner; Ronning, Carsten; Tegude, Franz-Josef

    2012-03-14

    Axial GaAs nanowire p-n diodes, possibly one of the core elements of future nanowire solar cells and light emitters, were grown via the Au-assisted vapor-liquid-solid mode, contacted by electron beam lithography, and investigated using electron beam induced current measurements. The minority carrier diffusion lengths and dynamics of both, electrons and holes, were determined directly at the vicinity of the p-n junction. The generated photocurrent shows an exponential decay on both sides of the junction and the extracted diffusion lengths are about 1 order of magnitude lower compared to bulk material due to surface recombination. Moreover, the observed strong diameter-dependence is well in line with the surface-to-volume ratio of semiconductor nanowires. Estimating the surface recombination velocities clearly indicates a nonabrupt p-n junction, which is in essential agreement with the model of delayed dopant incorporation in the Au-assisted vapor-liquid-solid mechanism. Surface passivation using ammonium sulfide effectively reduces the surface recombination and thus leads to higher minority carrier diffusion lengths. © 2012 American Chemical Society

  20. Silver nanostructures from Ag(CN) 2 - reduction by citrate ions in the presence of dodecyl sulfate and Cu2+ ions. Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    López-Miranda, A.; Viramontes-Gamboa, G.; López-Valdivieso, A.

    2014-02-01

    The synthesis of silver nanoparticles has been investigated using Ag(CN) 2 - species as precursor, citrate ions as reducing agent, and dodecyl sulfate ions as stabilizer, at pH 11 and 97 °C, in a batch stirred glass reactor. The role of Cu2+ ions in the synthesis was also studied. Bird- of- paradise flower-type nanostructures composed of AgCN nanowires having inside Ag and AgCN nanoparticles were produced in the absence of Cu2+ ions. The nanostructures slowly grew and transformed to AgCN nanowires with embedded Ag and AgCN nanoparticles, having a mean size of 9.7 ± 3.6 nm. The presence of Cu2+ ions in the synthesis significantly enhanced the production of the nanostructures. Nanowires having a thickness of 63 ± 33 nm and length of up to 20 μm were produced. Cu2+ ions also simultaneously lead to the synthesis of ordinary free Ag nanoparticles with a bimodal size distribution (mean sizes of 9.9 ± 3.9 and 65.5 ± 27 nm) and a low experimental formation kinetic rate constant of 1.22 × 10-4 s-1. Feasible mechanisms are presented for the origin of the AgCN nanowires, Ag and AgCN nanoparticles inside the nanowires, and for the free Ag nanoparticles. UV/Vis spectrometry was used to measure the surface plasmon resonance of the nanoparticles and the synthesis kinetic rate constant of the free Ag nanoparticles. ATR-FTIR spectroscopy, EDS-SEM, EDS-TEM, and HRTEM were used to characterize the size, crystal structure, texture, and chemical composition of the synthesis products.

  1. Cu assisted synthesis of self-supported PdCu alloy nanowires with enhanced performances toward ethylene glycol electrooxidation

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Xu, Hui; Zhang, Ke; Li, Shujin; Wang, Jin; Shi, Yuting; Du, Yukou

    2018-03-01

    Self-supported PdCu alloy nanowires fabricated by a facile one-pot method have been reported, which copper assists in the morphological transformation from graininess to nanowires. The copper incorporated with palladium to form alloy structures cannot only cut down the usage of noble metal but also enhance their catalytic performances. The catalysts with self-supported structure and proper ratio of palladium to copper show great activity and long-term stability for the electrooxidation of ethylene glycol in alkaline solution. Especially for Pd43Cu57, its mass activity reaches to 5570.83 mA mg-1, which is 3.12 times as high as commercial Pd/C. This study highlights an accessible strategy to prepare self-supported PdCu alloy nanowires and their potential applications in renewable energy fields.

  2. Growing Oxide Nanowires and Nanowire Networks by Solid State Contact Diffusion into Solution-Processed Thin Films.

    PubMed

    Glynn, Colm; McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2016-11-01

    New techniques to directly grow metal oxide nanowire networks without the need for initial nanoparticle seed deposition or postsynthesis nanowire casting will bridge the gap between bottom-up formation and top-down processing for many electronic, photonic, energy storage, and conversion technologies. Whether etched top-down, or grown from catalyst nanoparticles bottom-up, nanowire growth relies on heterogeneous material seeds. Converting surface oxide films, ubiquitous in the microelectronics industry, to nanowires and nanowire networks by the incorporation of extra species through interdiffusion can provide an alternative deposition method. It is shown that solution-processed thin films of oxides can be converted and recrystallized into nanowires and networks of nanowires by solid-state interdiffusion of ionic species from a mechanically contacted donor substrate. NaVO 3 nanowire networks on smooth Si/SiO 2 and granular fluorine-doped tin oxide surfaces can be formed by low-temperature annealing of a Na diffusion species-containing donor glass to a solution-processed V 2 O 5 thin film, where recrystallization drives nanowire growth according to the crystal habit of the new oxide phase. This technique illustrates a new method for the direct formation of complex metal oxide nanowires on technologically relevant substrates, from smooth semiconductors, to transparent conducting materials and interdigitated device structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A silicon nanowire heater and thermometer

    NASA Astrophysics Data System (ADS)

    Zhao, Xingyan; Dan, Yaping

    2017-07-01

    In the thermal conductivity measurements of thermoelectric materials, heaters and thermometers made of the same semiconducting materials under test, forming a homogeneous system, will significantly simplify fabrication and integration. In this work, we demonstrate a high-performance heater and thermometer made of single silicon nanowires (SiNWs). The SiNWs are patterned out of a silicon-on-insulator wafer by CMOS-compatible fabrication processes. The electronic properties of the nanowires are characterized by four-probe and low temperature Hall effect measurements. The I-V curves of the nanowires are linear at small voltage bias. The temperature dependence of the nanowire resistance allows the nanowire to be used as a highly sensitive thermometer. At high voltage bias, the I-V curves of the nanowire become nonlinear due to the effect of Joule heating. The temperature of the nanowire heater can be accurately monitored by the nanowire itself as a thermometer.

  4. Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Kumar, Sudheer; Chauhan, Neha; Sakthi Kumar, D.; Kumar, Vikram; Singh, R.

    2017-08-01

    The formation of GaN nanowires from β-Ga2O3 nanowires and photoconduction in a fabricated single GaN nanowire device has been studied. Wurtzite phase GaN were formed from monoclinic β-Ga2O3 nanowires with or without catalyst particles at their tips. The formation of faceted nanostructures from catalyst droplets presented on a nanowire tip has been discussed. The nucleation of GaN phases in β-Ga2O3 nanowires and their subsequent growth due to interfacial strain energy has been examined using a high resolution transmission electron microscope. The high quality of the converted GaN nanowire is confirmed by fabricating single nanowire photoconducting devices which showed ultra high responsivity under ultra-violet illumination.

  5. Growth and applicability of radiation-responsive silica nanowires

    NASA Astrophysics Data System (ADS)

    Bettge, Martin

    Surface energetics play an important role in processes on the nanoscale. Nanowire growth via vapor-liquid-solid (VLS) mechanism is no exception in this regard. Interfacial and line energies are found to impose some fundamental limits during three-phase nanowire growth and lead to formation of stranded nanowires with fascinating characteristics such as high responsiveness towards ion irradiation. By using two materials with a relatively low surface energy (indium and silicon oxide) this is experimentally and theoretically demonstrated in this doctoral thesis. The augmentation of VLS nanowire growth with ion bombardment enables fabrication of vertically aligned silica nanowires over large areas. Synthesis of their arrays begins with a thin indium film deposited on a Si or SiO 2 surface. At temperatures below 200ºC, the indium film becomes a self-organized seed layer of molten droplets, receiving a flux of atomic silicon by DC magnetron sputtering. Simultaneous vigorous ion bombardment through substrate biasing aligns the growing nanowires vertically and expedites mixing of oxygen and silicon into the indium. The vertical growth rate can reach up to 1000 nm-min-1 in an environment containing only argon and traces of water vapor. Silicon oxide precipitates from each indium seed in the form of multiple thin strands having diameters less than 9 nm and practically independent of droplet size. The strands form a single loose bundle, eventually consolidating to form one vertically aligned nanowire. These observations are in stark contrast to conventional VLS growth in which one liquid droplet precipitates a single solid nanowire and in which the precipitated wire diameter is directly proportional to the droplet diameter. The origin of these differences is revealed through a detailed force balance analysis, analogous to Young's relation, at the three-phase line. The liquid-solid interfacial energy of indium/silica is found to be the largest energy contribution at the three

  6. Nanowire mesh solar fuels generator

    DOEpatents

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  7. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  8. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA

    2010-06-29

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  9. Nanowire Electron Scattering Spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian; Bronikowsky, Michael; Wong, Eric; VonAllmen, Paul; Oyafuso, Fablano

    2009-01-01

    Nanowire electron scattering spectroscopy (NESS) has been proposed as the basis of a class of ultra-small, ultralow-power sensors that could be used to detect and identify chemical compounds present in extremely small quantities. State-of-the-art nanowire chemical sensors have already been demonstrated to be capable of detecting a variety of compounds in femtomolar quantities. However, to date, chemically specific sensing of molecules using these sensors has required the use of chemically functionalized nanowires with receptors tailored to individual molecules of interest. While potentially effective, this functionalization requires labor-intensive treatment of many nanowires to sense a broad spectrum of molecules. In contrast, NESS would eliminate the need for chemical functionalization of nanowires and would enable the use of the same sensor to detect and identify multiple compounds. NESS is analogous to Raman spectroscopy, the main difference being that in NESS, one would utilize inelastic scattering of electrons instead of photons to determine molecular vibrational energy levels. More specifically, in NESS, one would exploit inelastic scattering of electrons by low-lying vibrational quantum states of molecules attached to a nanowire or nanotube.

  10. Seed-mediated synthesis of ultra-long copper nanowires and their application as transparent conducting electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Hyunhong; Choi, Seong-Hyeon; Kim, Mijung; Park, Jang-Ung; Bae, Joonwon; Park, Jongnam

    2017-11-01

    Owing to a recent push toward one-dimensional nanomaterials, in this study, we report a seed-mediated synthetic strategy for copper nanowires (Cu NWs) production involving thermal decomposition of metal-surfactant complexes in an organic medium. Ultra-long Cu NWs with a high aspect ratio and uniform diameter were obtained by separating nucleation and growth steps. The underlying mechanism for nanowire formation was investigated, in addition, properties of the obtained Cu NWs were also characterized using diverse analysis techniques. The performance of resulting Cu NWs as transparent electrodes was demonstrated for potential application. This article can provide information on both new synthetic pathway and potential use of Cu NWs.

  11. Photovoltaic devices based on quantum dot functionalized nanowire arrays embedded in an organic matrix

    NASA Astrophysics Data System (ADS)

    Kung, Patrick; Harris, Nicholas; Shen, Gang; Wilbert, David S.; Baughman, William; Balci, Soner; Dawahre, Nabil; Butler, Lee; Rivera, Elmer; Nikles, David; Kim, Seongsin M.

    2012-01-01

    Quantum dot (QD) functionalized nanowire arrays are attractive structures for low cost high efficiency solar cells. QDs have the potential for higher quantum efficiency, increased stability and lifetime compared to traditional dyes, as well as the potential for multiple electron generation per photon. Nanowire array scaffolds constitute efficient, low resistance electron transport pathways which minimize the hopping mechanism in the charge transport process of quantum dot solar cells. However, the use of liquid electrolytes as a hole transport medium within such scaffold device structures have led to significant degradation of the QDs. In this work, we first present the synthesis uniform single crystalline ZnO nanowire arrays and their functionalization with InP/ZnS core-shell quantum dots. The structures are characterized using electron microscopy, optical absorption, photoluminescence and Raman spectroscopy. Complementing photoluminescence, transmission electron microanalysis is used to reveal the successful QD attachment process and the atomistic interface between the ZnO and the QD. Energy dispersive spectroscopy reveals the co-localized presence of indium, phosphorus, and sulphur, suggestive of the core-shell nature of the QDs. The functionalized nanowire arrays are subsequently embedded in a poly-3(hexylthiophene) hole transport matrix with a high degree of polymer infiltration to complete the device structure prior to measurement.

  12. Five-minute synthesis of silver nanowires and their roll-to-roll processing for large-area organic light emitting diodes.

    PubMed

    Sim, Hwansu; Kim, Chanho; Bok, Shingyu; Kim, Min Ki; Oh, Hwisu; Lim, Guh-Hwan; Cho, Sung Min; Lim, Byungkwon

    2018-06-18

    Silver (Ag) nanowires (NWs) are promising building blocks for flexible transparent electrodes, which are key components in fabricating soft electronic devices such as flexible organic light emitting diodes (OLEDs). Typically, Ag NWs have been synthesized using a polyol method, but it still remains a challenge to produce high-aspect-ratio Ag NWs via a simple and rapid process. In this work, we developed a modified polyol method and newly found that the addition of propylene glycol to ethylene glycol-based polyol synthesis facilitated the growth of Ag NWs, allowing the rapid production of long Ag NWs with high aspect ratios of about 2000 in a high yield (∼90%) within 5 min. Transparent electrodes fabricated with our Ag NWs exhibited performance comparable to that of an indium tin oxide-based electrode. With these Ag NWs, we successfully demonstrated the fabrication of a large-area flexible OLED with dimensions of 30 cm × 15 cm using a roll-to-roll process.

  13. Fabrication of functional ultrathin single-crystal nanowires from quasi-one dimensional van der Waals crystals Ta2(Pd or Pt)3Se8

    NASA Astrophysics Data System (ADS)

    Liu, Xue; Liu, Jinyu; Hu, Jin; Yue, Chunlei; Mao, Zhiqiang; Wei, Jiang; Zhu, Yibo; Sanchez, Ana; Antipina, Liubov; Sorokin, Pavel

    Micromechanical exfoliation or wet exfoliation of two-dimensional van der Waals materials has triggered an explosive interest in 2D material research. In our work, we extend this idea to 1D van der Waals material. By using micromechanical exfoliation or wet exfoliation, 1D nanowire with size as small as six molecular ribbons can be readily achieved in the Ta2(Pd or Pt)3Se8 system. The semiconducting properties of exfoliated Ta2Pd3Se8 nanowires show n-type, whereas Ta2Pt3Se8 nanowires are p-type. Our electronic band structure calculation for Ta2Pd3Se8 nanowire reveals that from multi-ribbon to single-ribbon the band gap evolves from indirect 0.5eV in bulk to direct 1eV in single-ribbon. A functional ``NOT'' gate consisting of field-effect transistors based on these two types of complementary nanowires has also been successfully realized. Moreover, the photocurrent response of Ta2Pd3Se8 nanowire transistors has been studied as well. Ta2(Pd or Pt)3Se8 system, as an intrinsic quasi-1D material, provides a viable platform for the study of low dimensional condensed matter physics. We acknowledge the financial support from DOE and BoRSF.

  14. The controlled growth of GaN nanowires.

    PubMed

    Hersee, Stephen D; Sun, Xinyu; Wang, Xin

    2006-08-01

    This paper reports a scalable process for the growth of high-quality GaN nanowires and uniform nanowire arrays in which the position and diameter of each nanowire is precisely controlled. The approach is based on conventional metalorganic chemical vapor deposition using regular precursors and requires no additional metal catalyst. The location, orientation, and diameter of each GaN nanowire are controlled using a thin, selective growth mask that is patterned by interferometric lithography. It was found that use of a pulsed MOCVD process allowed the nanowire diameter to remain constant after the nanowires had emerged from the selective growth mask. Vertical GaN nanowire growth rates in excess of 2 mum/h were measured, while remarkably the diameter of each nanowire remained constant over the entire (micrometer) length of the nanowires. The paper reports transmission electron microscopy and photoluminescence data.

  15. The Mechanical Properties of Nanowires

    PubMed Central

    Wang, Shiliang; Shan, Zhiwei

    2017-01-01

    Applications of nanowires into future generation nanodevices require a complete understanding of the mechanical properties of the nanowires. A great research effort has been made in the past two decades to understand the deformation physics and mechanical behaviors of nanowires, and to interpret the discrepancies between experimental measurements and theoretical predictions. This review focused on the characterization and understanding of the mechanical properties of nanowires, including elasticity, plasticity, anelasticity and strength. As the results from the previous literature in this area appear inconsistent, a critical evaluation of the characterization techniques and methodologies were presented. In particular, the size effects of nanowires on the mechanical properties and their deformation mechanisms were discussed. PMID:28435775

  16. Fabrication and Synthesis of Highly Ordered Nickel Cobalt Sulfide Nanowire-Grown Woven Kevlar Fiber/Reduced Graphene Oxide/Polyester Composites.

    PubMed

    Hazarika, Ankita; Deka, Biplab K; Kim, DoYoung; Roh, Hyung Doh; Park, Young-Bin; Park, Hyung Wook

    2017-10-18

    Well-aligned NiCo 2 S 4 nanowires, synthesized hydrothermally on the surface of woven Kevlar fiber (WKF), were used to fabricate composites with reduced graphene oxide (rGO) dispersed in polyester resin (PES) by means of vacuum-assisted resin transfer molding. The NiCo 2 S 4 nanowires were synthesized with three precursor concentrations. Nanowire growth was characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Hierarchical and high growth density of the nanowires led to exceptional mechanical properties of the composites. Compared with bare WKF/PES, the tensile strength and absorbed impact energy were enhanced by 96.2% and 92.3%, respectively, for WKF/NiCo 2 S 4 /rGO (1.5%)/PES. The synergistic effect of NiCo 2 S 4 nanowires and rGO in the fabricated composites improved the electrical conductivity of insulating WKF/PES composites, reducing the resistance to ∼10 3 Ω. Joule heating performance depended strongly on the precursor concentration of the nanowires and the presence of rGO in the composite. A maximum surface temperature of 163 °C was obtained under low-voltage (5 V) application. The Joule heating performance of the composites was demonstrated in a surface deicing experiment; we observed that 17 g of ice melted from the surface of the composite in 14 min under an applied voltage of 5 V at -28 °C. The excellent performance of WKF/NiCo 2 S 4 /rGO/PES composites shows great potential for aerospace structural applications requiring outstanding mechanical properties and Joule heating capability for deicing of surfaces.

  17. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors.

    PubMed

    Mayousse, Céline; Celle, Caroline; Moreau, Eléonore; Mainguet, Jean-François; Carella, Alexandre; Simonato, Jean-Pierre

    2013-05-31

    Transparent flexible electrodes made of metallic nanowires, and in particular silver nanowires (AgNWs), appear as an extremely promising alternative to transparent conductive oxides for future optoelectronic devices. Though significant progresses have been made the last few years, there is still some room for improvement regarding the synthesis of high quality silver nanowire solutions and fabrication process of high performance electrodes. We show that the commonly used purification process can be greatly simplified through decantation. Using this process it is possible to fabricate flexible electrodes by spray coating with sheet resistance lower than 25 Ω sq⁻¹ at 90% transparency in the visible spectrum. These electrodes were used to fabricate an operative transparent flexible touch screen. To our knowledge this is the first reported AgNW based touch sensor relying on capacitive technology.

  18. Understanding the role of Si doping on surface charge and optical properties: Photoluminescence study of intrinsic and Si-doped InN nanowires

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Mi, Z.; Kibria, M. G.; Li, Q.; Wang, G. T.

    2012-06-01

    In the present work, the photoluminescence (PL) characteristics of intrinsic and Si-doped InN nanowires are studied in detail. For intrinsic InN nanowires, the emission is due to band-to-band carrier recombination with the peak energy at ˜0.64 eV (at 300 K) and may involve free-exciton emission at low temperatures. The PL spectra exhibit a strong dependence on optical excitation power and temperature, which can be well characterized by the presence of very low residual electron density and the absence or a negligible level of surface electron accumulation. In comparison, the emission of Si-doped InN nanowires is characterized by the presence of two distinct peaks located at ˜0.65 and ˜0.73-0.75 eV (at 300 K). Detailed studies further suggest that these low-energy and high-energy peaks can be ascribed to band-to-band carrier recombination in the relatively low-doped nanowire bulk region and Mahan exciton emission in the high-doped nanowire near-surface region, respectively; this is a natural consequence of dopant surface segregation. The resulting surface electron accumulation and Fermi-level pinning, due to the enhanced surface doping, are confirmed by angle-resolved x-ray photoelectron spectroscopy measurements on Si-doped InN nanowires, which is in direct contrast to the absence or a negligible level of surface electron accumulation in intrinsic InN nanowires. This work elucidates the role of charge-carrier concentration and distribution on the optical properties of InN nanowires.

  19. Single Nanowire Probe for Single Cell Endoscopy and Sensing

    NASA Astrophysics Data System (ADS)

    Yan, Ruoxue

    The ability to manipulate light in subwavelength photonic and plasmonic structures has shown great potentials in revolutionizing how information is generated, transformed and processed. Chemically synthesized nanowires, in particular, offers a unique toolbox not only for highly compact and integrated photonic modules and devices, including coherent and incoherent light sources, waveguides, photodetectors and photovoltaics, but also for new types of nanoscopic bio-probes for spot cargo delivery and in-situ single cell endoscopy and sensing. Such nanowire probes would enable us to carry out intracellular imaging and probing with high spatial resolution, monitor in-vivo biological processes within single living cells and greatly improve our fundamental understanding of cell functions, intracellular physiological processes, and cellular signal pathways. My work is aimed at developing a material and instrumental platform for such single nanowire probe. Successful optical integration of Ag nanowire plasmonic waveguides, which offers deep subwavelength mode confinement, and conventional photonic waveguides was demonstrated on a single nanowire level. The highest plasmonic-photonic coupling efficiency coupling was found at small coupling angles and low input frequencies. The frequency dependent propagation loss was observed in Ag nanowire and was confirmed by quantitative measurement and in agreement with theoretical expectations. Rational integration of dielectric and Ag nanowire waveguide components into hybrid optical-plasmonic routing devices has been demonstrated. This capability is essential for incorporating sub-100nm Ag nanowire waveguides into optical fiber based nanoprobes for single cell endoscopy. The nanoprobe system based on single nanowire waveguides was demonstrated by optically coupling semiconductor or metal nanowire with an optical fiber with tapered tip. This nanoprobe design requires minimal instrumentation which makes it cost efficient and readily

  20. Catalyst patterning for nanowire devices

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2004-01-01

    Nanowire devices may be provided that are based on carbon nanotubes or single-crystal semiconductor nanowires. The nanowire devices may be formed on a substrate. Catalyst sites may be formed on the substrate. The catalyst sites may be formed using lithography, thin metal layers that form individual catalyst sites when heated, collapsible porous catalyst-filled microscopic spheres, microscopic spheres that serve as masks for catalyst deposition, electrochemical deposition techniques, and catalyst inks. Nanowires may be grown from the catalyst sites.