Sample records for naphthenic acids removal

  1. Evaluation of Military Field-Water Quality. Volume 3. Opportunity Poisons

    DTIC Science & Technology

    1987-12-01

    Acidic chemical cleaners fluoric acid, nitric acid, perchloric Spent acid acid, sulfuric acid Alkalies Miscellaneous caustic products Ammonia, lime...calcium oxide), potassium Alkaline battery fluid hydroxide, sodium hydroxide, sodium Caustic wastewater silicate Cleaning solutions Lye Nonhalogenated...Laboratory chemicals chloride, polychlorinated biphenyls, zinc Paint and varnish removers naphthenate , copper naphthenate , dichloro- Capacitors and

  2. Permittivity of naphthenic acid-water mixture.

    PubMed

    Mishra, Sabyasachi; Meda, Venkatesh; Dalai, Ajay

    2007-01-01

    Naphthenic acid (NA) is predominantly a mono-carboxylic acid obtained as a by-product of petroleum refining with variable composition and ingredients. It is reported that water affected by processes in the petroleum industries generally contains 40-120 mg IL of naphthenic acid which is considered to be in the range of toxicity to human consumption [Clemente et. al, 2005; McMartin, 2003]. This contaminated water needs treatment before its use as drinking water by remote communities. Recent literature suggests that NAs could be separated from diesel fuel using microwave radiation [Lingzhao et. al, 2004]. Removal of naphthenic acid from vacuum cut #1 distillate oil of Daqing using microwaves has also been reported by Huang et. al [2006]. The microwave treatment can be applied to drinking water containing small concentrations of naphthenic acid. In this case permittivity information is useful in designing a microwave applicator and modeling studies. Permittivity measurements were done using a HP 8510 Vector Network Analyzer and coaxial probe reflection method to study the dielectric properties of naphthenic acid in water. The effects of process variables such as frequency, concentration and temperature on dielectric properties were determined.

  3. Pro-static Agents in Jet Fuels

    DTIC Science & Technology

    1976-08-16

    1000 10,000 CHARGE DENSITY (juC/ms) Fig. 5- Effect otpolar compounds on charging tendency of silica-gel-treated n-heptane Naphthenic acid is neither a...Eastmant Naphthenic acids Practical Eastman t 30 NRL REPORT 8021 Compound Purity Supplier Pararosandine hydrochloride Not available Eastmant...silica gel to remove moisture and polar contaminants that might interfere with the compound or additive being screened. This treatment Manuscript

  4. Fuel Lubricity--Survey of the Literature

    DTIC Science & Technology

    1981-01-01

    composition of sulfur com- pounds in the fuel, and the presence of naphthenic acids and finely dispersed free water. 16 Contrary to the results when using...compounds in the fuel, and the presence of naphthenic acids and finely dispersed free water was determined. The experiments employed a friction tester which...served to reduce/ remove the polar, surface-active constituents of the fuel which are believed to provide improved lubricating characterstics. The

  5. Improved Processes to Remove Naphthenic Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aihua Zhang; Qisheng Ma; Kangshi Wang

    2005-12-09

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorptionmore » experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.« less

  6. Removal of dicyclohexyl acetic acid from aqueous solution using ultrasound, ozone and their combination.

    PubMed

    Kumar, Pardeep; Headley, John; Peru, Kerry; Bailey, Jon; Dalai, Ajay

    2014-01-01

    Naphthenic acids are a complex mixture of organic components, some of which include saturated alkyl-substituted cycloaliphatic carboxylic acids and acyclic aliphatic acids. They are naturally found in hydrocarbon deposits like oil sand, petroleum, bitumen and crude oil. In this study, the oxidation of a relatively high molecular weight naphthenic acid (Dicyclohexyl acetic acid) was investigated using ozonation, ultrasonication and hydrogen peroxide alone and their combinations. Effects on oxidation of dicyclohexyl acetic acid (DAA) were measured for different concentrations of ozone ranging between 0.7 to 3.3 mg L(-1) and pH in the range 6 to 10. Ultrasonication and hydrogen peroxide alone were not effective to oxidize dicyclohexyl acetic acid, but combining ultrasonication with H2O2 had a significant effect on oxidation of dicyclohexyl acetic acid with maximum removal reaching to 84 ± 2.2% with 81 ± 2.1% reduction in chemical oxygen demand (COD). Synergistic effects were observed for combining ultrasonication with ozonation and resulted in 100% DAA removal with 98 ± 0.8% reduction in COD within 15 min at 3.3 mg L(-1) ozone concentration and 130 Watts ultrasonication power. The reaction conditions obtained for the maximum oxidation of DAA and COD removal were used for the degradation of naphthenic acids mixture extracted from oil sands process water (OSPW). The percentage oxidation of NAs mixture extracted from OSPW was 89.3 ± 1.1% in ozonation and combined ozonation and ultrasonication, but COD removal observed was 65 ± 1.2% and 78 ± 1.4% for ozonation and combined ozonation and ultrasonication treatments, respectively.

  7. Fate and behavior of oil sands naphthenic acids in a pilot-scale treatment wetland as characterized by negative-ion electrospray ionization Orbitrap mass spectrometry.

    PubMed

    Ajaero, Chukwuemeka; Peru, Kerry M; Simair, Monique; Friesen, Vanessa; O'Sullivan, Gwen; Hughes, Sarah A; McMartin, Dena W; Headley, John V

    2018-08-01

    Large volumes of oil sands process-affected water (OSPW) are generated during the extraction of bitumen from oil sands in the Athabasca region of northeastern Alberta, Canada. As part of the development of treatment technologies, molecular characterization of naphthenic acids (NAs) and naphthenic acid fraction compounds (NAFC) in wetlands is a topic of research to better understand their fate and behavior in aquatic environments. Reported here is the application of high-resolution negative-ion electrospray Orbitrap-mass spectrometry for molecular characterization of NAs and NAFCs in a non-aerated constructed treatment wetland. The effectiveness of the wetlands to remove OSPW-NAs and NAFCs was evaluated by monitoring the changes in distributions of NAFC compounds in the untreated sample and non-aerated treatment system. After correction for measured evapotranspiration, the removal rate of the classical NAs followed approximately first-order kinetics, with higher rates observed for structures with relatively higher number of carbon atoms. These findings indicate that constructed wetland treatment is a viable method for removal of classical NAs in OSPW. Work is underway to evaluate the effects of wetland design on water quality improvement, preferential removal of different NAFC species, and reduction in toxicity. Copyright © 2018. Published by Elsevier B.V.

  8. Detection of naphthenic acids in fish exposed to commercial naphthenic acids and oil sands process-affected water.

    PubMed

    Young, R F; Orr, E A; Goss, G G; Fedorak, P M

    2007-06-01

    Naphthenic acids are a complex mixture of carboxylic acids that occur naturally in petroleum. During the extraction of bitumen from the oil sands in northeastern Alberta, Canada, naphthenic acids are released into the aqueous phase and these acids become the most toxic components in the process-affected water. Although previous studies have exposed fish to naphthenic acids or oil sands process-affected waters, there has been no analytical method to specifically detect naphthenic acids in fish. Here, we describe a qualitative method to specifically detect these acids. In 96-h static renewal tests, rainbow trout (Oncorhynchus mykiss) fingerlings were exposed to three different treatments: (1) fed pellets that contained commercial naphthenic acids (1.5mg g(-1) of food), (2) kept in tap water that contained commercial naphthenic acids (3mg l(-1)) and (3) kept in an oil sands process-affected water that contained 15mg naphthenic acids l(-1). Five-gram samples of fish were homogenized and extracted, then the mixture of free fatty acids and naphthenic acids was isolated from the extract using strong anion exchange chromatography. The mixture was derivatized and analyzed by gas chromatography-mass spectrometry. Reconstructed ion chromatograms (m/z=267) selectively detected naphthenic acids. These acids were present in each fish that was exposed to naphthenic acids, but absent in fish that were not exposed to naphthenic acids. The minimum detectable concentration was about 1microg naphthenic acids g(-1) of fish.

  9. X-Ray Photoelectron Spectroscopy Study of the Chemisorption of Lead Naphthenate to Nucleophilic Surfaces.

    DTIC Science & Technology

    1980-09-10

    naphthenic acid is 1-methylcyclopentane- carboxylic acid . Lead naphthenate is not one unique compound but a mixture of several naphthenates with various alkane...chain lengths and an average molecu- lar weight of 662 g/mol. It contains no free naphthenic acid . Solutions of 1% by weight lead naphthenate in...particularly on surface acidity . The influence of the pH of the pretreatment bath used for the substrate on the existence of chemi- sorbed lead naphthenate

  10. Photocatalytic degradation of commercially sourced naphthenic acids by TiO2-graphene composite nanomaterial.

    PubMed

    Liu, Juncheng; Wang, Lin; Tang, Jingchun; Ma, Jianli

    2016-04-01

    Naphthenic acids (NAs) are a major contributor to the toxicity in oil sands process-affected water (OSPW), which is produced by hot water extraction of bitumen. NAs are extremely difficult to be degraded due to its complex ring and side chain structure. Photocatalysis is recognized as a promising technology in the removal of refractory organic pollutants. In this work, TiO2-graphene (P25-GR) composites were synthesized by means of solvothermal method. The results showed that P25-GR composite exhibited better photocatalytic activity than pure P25. The removal efficiency of naphthenic acids in acid solution was higher than that in neutral and alkaline solutions. It was the first report ever known on the photodegradation of NAs based on graphene, and this process achieved a higher removal rate than other photocatalysis degradation of NAs in a shorter reaction time. LC/MS analysis showed that macromolecular NAs (carbon number 17-22, z value -2) were easy to be degraded than the micromolecular ones (carbon number 11-16, z value -2). Furthermore, the reactive oxygen species that play the main role in the photocatalysis system were studied. It was found that holes and ·OH were the main reactive species in the UV/P25-GR photocatalysis system. Given the high removal efficiency of refractory organic pollutants and the short degradation time, photodegradation based on composite catalysts has a broad and practical prospect. The study on the photodegradation of commercially sourced NAs may provide a guidance for the degradation of OSPW NAs by this method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Using ultrahigh-resolution mass spectrometry and toxicity identification techniques to characterize the toxicity of oil sands process-affected water: The case for classical naphthenic acids.

    PubMed

    Hughes, Sarah A; Mahaffey, Ashley; Shore, Bryon; Baker, Josh; Kilgour, Bruce; Brown, Christine; Peru, Kerry M; Headley, John V; Bailey, Howard C

    2017-11-01

    Previous assessments of oil sands process-affected water (OSPW) toxicity were hampered by lack of high-resolution analytical analysis, use of nonstandard toxicity methods, and variability between OSPW samples. We integrated ultrahigh-resolution mass spectrometry with a toxicity identification evaluation (TIE) approach to quantitatively identify the primary cause of acute toxicity of OSPW to rainbow trout (Oncorhynchus mykiss). The initial characterization of OSPW toxicity indicated that toxicity was associated with nonpolar organic compounds, and toxicant(s) were further isolated within a range of discrete methanol fractions that were then subjected to Orbitrap mass spectrometry to evaluate the contribution of naphthenic acid fraction compounds to toxicity. The results showed that toxicity was attributable to classical naphthenic acids, with the potency of individual compounds increasing as a function of carbon number. Notably, the mass of classical naphthenic acids present in OSPW was dominated by carbon numbers ≤16; however, toxicity was largely a function of classical naphthenic acids with ≥17 carbons. Additional experiments found that acute toxicity of the organic fraction was similar when tested at conductivities of 400 and 1800 μmhos/cm and that rainbow trout fry were more sensitive to the organic fraction than larval fathead minnows (Pimephales promelas). Collectively, the results will aid in developing treatment goals and targets for removal of OSPW toxicity in water return scenarios both during operations and on mine closure. Environ Toxicol Chem 2017;36:3148-3157. © 2017 SETAC. © 2017 SETAC.

  12. Impact of peroxydisulfate in the presence of zero valent iron on the oxidation of cyclohexanoic acid and naphthenic acids from oil sands process-affected water.

    PubMed

    Drzewicz, Przemysław; Perez-Estrada, Leonidas; Alpatova, Alla; Martin, Jonathan W; Gamal El-Din, Mohamed

    2012-08-21

    Large volumes of oil sands process-affected water (OSPW) are produced during the extraction of bitumen from oil sands in Alberta, Canada. The degradation of a model naphthenic acid, cyclohexanoic acid (CHA), and real naphthenic acids (NAs) from OSPW were investigated in the presence of peroxydisulfate (S(2)O(8)(2-)) and zerovalent iron (ZVI). For the model compound CHA (50 mg/L), in the presence of ZVI and 500 mg/L S(2)O(8)(2-), the concentration decreased by 45% after 6 days of treatment at 20 °C, whereas at 40, 60, and 80 °C the concentration decreased by 20, 45 and 90%, respectively, after 2 h of treatment. The formation of chloro-CHA was observed during ZVI/S(2)O(8)(2-) treatment of CHA in the presence of chloride. For OSPW NAs, in the presence of ZVI alone, a 50% removal of NAs was observed after 6 days of exposure at 20 °C. The addition of 100 mg/L S(2)O(8)(2-) to the solution increased the removal of OSPW NAs from 50 to 90%. In absence of ZVI, a complete NAs removal from OSPW was observed in presence of 2000 mg/L S(2)O(8)(2-) at 80 °C. The addition of ZVI increased the efficiency of NAs oxidation by S(2)O(8)(2-) near room temperature. Thus, ZVI/S(2)O(8)(2-) process was found to be a viable option for accelerating the degradation of NAs present in OSPW.

  13. Distribution of naphthenic acids in tissues of laboratory-exposed fish and in wild fishes from near the Athabasca oil sands in Alberta, Canada.

    PubMed

    Young, Rozlyn F; Michel, Lorelei Martínez; Fedorak, Phillip M

    2011-05-01

    Naphthenic acids, which have a variety of commercial applications, occur naturally in conventional crude oil and in highly biodegraded petroleum such as that found in the Athabasca oil sands in Alberta, Canada. Oil sands extraction is done using a caustic aqueous extraction process. The alkaline pH releases the naphthenic acids from the oil sands and dissolves them into water as their soluble naphthenate forms, which are anionic surfactants. These aqueous extracts contain concentrations of naphthenates that are acutely lethal to fishes and other aquatic organisms. Previous research has shown that naphthenic acids can be taken up by fish, but the distribution of these acids in various tissues of the fish has not been determined. In this study, rainbow trout (Oncorhynchus mykiss) were exposed to commercial (Merichem) naphthenic acids in the laboratory. After a 10-d exposure to approximately 3mg naphthenic acids/L, the fish were dissected and samples of gills, heart, liver, kidney, muscle, and eggs were extracted and analyzed for free (unconjugated) naphthenic acids by a gas chromatography-mass spectrometry method. Each of the tissues contained naphthenic acids and non-parametric statistical analyses showed that gills and livers contained higher concentrations than the muscles and that the livers had higher concentrations than the hearts. Four different species of fish (two fish of each species) were collected from the Athabasca River near two oil sands mining and extraction operations. No free naphthenic acids were detected in the muscle or liver of these fish. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Quantitative analysis of naphthenic acids in water by liquid chromatography-accurate mass time-of-flight mass spectrometry.

    PubMed

    Hindle, Ralph; Noestheden, Matthew; Peru, Kerry; Headley, John

    2013-04-19

    This study details the development of a routine method for quantitative analysis of oil sands naphthenic acids, which are a complex class of compounds found naturally and as contaminants in oil sands process waters from Alberta's Athabasca region. Expanding beyond classical naphthenic acids (CnH2n-zO2), those compounds conforming to the formula CnH2n-zOx (where 2≥x≤4) were examined in commercial naphthenic acid and environmental water samples. HPLC facilitated a five-fold reduction in ion suppression when compared to the more commonly used flow injection analysis. A comparison of 39 model naphthenic acids revealed significant variability in response factors, demonstrating the necessity of using naphthenic acid mixtures for quantitation, rather than model compounds. It was also demonstrated that naphthenic acidic heterogeneity (commercial and environmental) necessitates establishing a single NA mix as the standard against which all quantitation is performed. The authors present the first ISO17025 accredited method for the analysis of naphthenic acids in water using HPLC high resolution accurate mass time-of-flight mass spectrometry. The method detection limit was 1mg/L total oxy-naphthenic acids (Sigma technical mix). Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids.

    PubMed

    Clemente, Joyce S; Fedorak, Phillip M

    2005-07-01

    Naphthenic acids occur naturally in crude oils and in oil sands bitumens. They are toxic components in refinery wastewaters and in oil sands extraction waters. In addition, there are many industrial uses for naphthenic acids, so there is a potential for their release to the environment from a variety of activities. Studies have shown that naphthenic acids are susceptible to biodegradation, which decreases their concentration and reduces toxicity. This is a complex group of carboxylic acids with the general formula CnH(2n+Z)O2, where n indicates the carbon number and Z specifies the hydrogen deficiency resulting from ring formation. Measuring the concentrations of naphthenic acids in environmental samples and determining the chemical composition of a naphthenic acids mixture are huge analytical challenges. However, new analytical methods are being applied to these problems and progress is being made to better understand this mixture of chemically similar compounds. This paper reviews a variety of analytical methods and their application to assessing biodegradation of naphthenic acids.

  16. Military Training Lands Historic Context: Large Arms Ranges

    DTIC Science & Technology

    2010-03-01

    materials. The associated materials used with flamethrowers included gasoline and Diesel oil, and coconut fatty acids , oleic acids , and naphthenic acids ...The supply of loaded ammunition clips was replenished. At the command CEASE FIRING, the firer removed his foot from the 40mm anti-aircraft gun firing...to fire. If the misfired round could not be extracted in the normal manner, it was removed under the direct supervision of an officer using a

  17. Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals.

    PubMed

    Frankel, Mathew L; Bhuiyan, Tazul I; Veksha, Andrei; Demeter, Marc A; Layzell, David B; Helleur, Robert J; Hill, Josephine M; Turner, Raymond J

    2016-09-01

    This study evaluated the efficacy of using a combined biofilm-biochar approach to remove organic (naphthenic acids (NAs)) and inorganic (metals) contaminants from process water (OSPW) generated by Canada's oil sands mining operations. A microbial community sourced from an OSPW sample was cultured as biofilms on several carbonaceous materials. Two biochar samples, from softwood bark (SB) and Aspen wood (N3), facilitated the most microbial growth (measured by protein assays) and were used for NA removal studies performed with and without biofilms, and in the presence and absence of contaminating metals. Similar NA removal was seen in 6-day sterile N3 and SB assays (>30%), while biodegradation by SB-associated biofilms increased NA removal to 87% in the presence of metals. Metal sorption was also observed, with up to four times more immobilization of Fe, Al, and As on biofilm-associated biochar. These results suggest this combined approach may be a promising treatment for OSPW. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Mechanistic investigation of industrial wastewater naphthenic acids removal using granular activated carbon (GAC) biofilm based processes.

    PubMed

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2016-01-15

    Naphthenic acids (NAs) found in oil sands process-affected waters (OSPW) have known environmental toxicity and are resistant to conventional wastewater treatments. The granular activated carbon (GAC) biofilm treatment process has been shown to effectively treat OSPW NAs via combined adsorption/biodegradation processes despite the lack of research investigating their individual contributions. Presently, the NAs removals due to the individual processes of adsorption and biodegradation in OSPW bioreactors were determined using sodium azide to inhibit biodegradation. For raw OSPW, after 28 days biodegradation and adsorption contributed 14% and 63% of NA removal, respectively. For ozonated OSPW, biodegradation removed 18% of NAs while adsorption reduced NAs by 73%. Microbial community 454-pyrosequencing of bioreactor matrices indicated the importance of biodegradation given the diverse carbon degrading families including Acidobacteriaceae, Ectothiorhodospiraceae, and Comamonadaceae. Overall, results highlight the ability to determine specific processes of NAs removals in the combined treatment process in the presence of diverse bacteria metabolic groups found in GAC bioreactors. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Comparison of GC-MS and FTIR methods for quantifying naphthenic acids in water samples.

    PubMed

    Scott, Angela C; Young, Rozlyn F; Fedorak, Phillip M

    2008-11-01

    The extraction of bitumen from the oil sands in Canada releases toxic naphthenic acids into the process-affected waters. The development of an ideal analytical method for quantifying naphthenic acids (general formula C(n)H(2n+Z)O(2)) has been impeded by the complexity of these mixtures and the challenges of differentiating naphthenic acids from other naturally-occurring organic acids. The oil sands industry standard FTIR method was compared with a newly-developed GC-MS method. Naphthenic acids concentrations were measured in extracts of surface and ground waters from locations within the vicinity of and away from the oil sands deposits and in extracts of process-affected waters. In all but one case, FTIR measurements of naphthenic acids concentrations were greater than those determined by GC-MS. The detection limit of the GC-MS method was 0.01 mg L(-1) compared to 1 mg L(-1) for the FTIR method. The results indicated that the GC-MS method is more selective for naphthenic acids, and that the FTIR method overestimates their concentrations.

  20. Model development for naphthenic acids ozonation process.

    PubMed

    Al Jibouri, Ali Kamel H; Wu, Jiangning

    2015-02-01

    Naphthenic acids (NAs) are toxic constituents of oil sands process-affected water (OSPW) which is generated during the extraction of bitumen from oil sands. NAs consist mainly of carboxylic acids which are generally biorefractory. For the treatment of OSPW, ozonation is a very beneficial method. It can significantly reduce the concentration of NAs and it can also convert NAs from biorefractory to biodegradable. In this study, a factorial design (2(4)) was used for the ozonation of OSPW to study the influences of the operating parameters (ozone concentration, oxygen/ozone flow rate, pH, and mixing) on the removal of a model NAs in a semi-batch reactor. It was found that ozone concentration had the most significant effect on the NAs concentration compared to other parameters. An empirical model was developed to correlate the concentration of NAs with ozone concentration, oxygen/ozone flow rate, and pH. In addition, a theoretical analysis was conducted to gain the insight into the relationship between the removal of NAs and the operating parameters.

  1. Naphthenic acids in athabasca oil sands tailings waters are less biodegradable than commercial naphthenic acids.

    PubMed

    Scott, Angela C; MacKinnon, Michael D; Fedorak, Phillip M

    2005-11-01

    Naphthenic acids (NAs) are natural constituents in many petroleum sources, including bitumen in the oil sands of Northern Alberta, Canada. Bitumen extraction processes produce tailings waters that cannot be discharged to the environment because NAs are acutely toxic to aquatic species. However, aerobic biodegradation reduces the toxic character of NAs. In this study, four commercial NAs and the NAs in two oil sands tailings waters were characterized by gas chromatography-mass spectrometry. These NAs were also incubated with microorganisms in the tailings waters under aerobic, laboratory conditions. The NAs in the commercial preparations had lower molecular masses than the NAs in the tailings waters. The commercial NAs were biodegraded within 14 days, but only about 25% of the NAs native to the tailings waters were removed after 40-49 days. These results show that low molecular mass NAs (C < or =17) are more readily biodegraded than high molecular mass NAs (C > or =18). Moreover, the results indicate that biodegradation studies using commercial NAs alone will not accurately reflect the potential biodegradability of NAs in the oil sands tailings waters.

  2. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  3. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    NASA Astrophysics Data System (ADS)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  4. Removal and toxicity reduction of naphthenic acids by ozonation and combined ozonation-aerobic biodegradation.

    PubMed

    Vaiopoulou, Eleni; Misiti, Teresa M; Pavlostathis, Spyros G

    2015-03-01

    A commercial naphthenic acids (NAs) mixture (TCI Chemicals) and five model NA compounds were ozonated in a semibatch mode. Ozonation of 25 and 35 mg/L NA mixture followed pseudo first-order kinetics (k(obs)=0.11±0.008 min(-1); r(2)=0.989) with a residual NAs concentration of about 5 mg/L. Ozone reacted preferentially with NAs of higher cyclicity and molecular weight and decreased both cyclicity and the acute Microtox® toxicity by 3.3-fold. The ozone reactivity with acyclic and monocyclic model NAs varied and depended on other structural features, such as branching and the presence of tertiary or quaternary carbons. Batch aerobic degradation of unozonated NA mixture using a NA-enriched culture resulted in 83% NA removal and a 6.7-fold decrease in toxicity, whereas a combination of ozonation-biodegradation resulted in 89% NA removal and a 15-fold decrease in toxicity. Thus, ozonation of NA-bearing waste streams coupled with biodegradation are effective treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Development of naphthenic acid fractionation with supercritical fluid extraction for use in wood decay testing

    Treesearch

    Brett Niemi; Wayne St. John; Bessie Woodward; Rodney DeGroot; Gary McGinnis

    2000-01-01

    In recent years, the performance of copper naphthenate as a wood preservative has been in question. To understand the varying results of copper naphthenate in preventing wood decay, a closer look at eight naphthenic acid (NA) supplies was undertaken. Initial studies of NA samples from individual suppliers revealed large differences in chemical composition and wood...

  6. Chemical fingerprinting of naphthenic acids at an oil sands end pit lake by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC/TOFMS)

    NASA Astrophysics Data System (ADS)

    Bowman, D. T.; Arriaga, D.; Morris, P.; Risacher, F.; Warren, L. A.; McCarry, B. E.; Slater, G.

    2016-12-01

    Naphthenic acids (NAs) are naturally occurring in Athabasca oil sands and accumulate in tailings as a result of water-based extraction processes. NAs contribute to the toxicity of tailings and oil sands process-affected water (OSPW). NAs exist as a complex mixture, so the development of an analytical technique to characterize them has been an on-going challenge. The monitoring of individual NAs and their associated isomers through multidimensional chromatography has the potential to provide greater insight into the behavior of NAs in the environment. For NAs whose proportions do not change during environmental processing, NA ratios may provide a means to develop fingerprints characteristic of specific sources. Alternatively, relative changes in the proportions of NAs may provide a tracer of their occurrence and extent of removal. As yet, only a few studies have begun to explore these possibilities. In this study, comprehensive two dimensional gas chromatography/time-of-flight mass spectrometry was used to monitor individual naphthenic acids in an end pit lake in Alberta, Canada. NA profiles from different depths and sampling locations were compared to evaluate the spatial variations at the site.

  7. Comparison of four advanced oxidation processes for the removal of naphthenic acids from model oil sands process water.

    PubMed

    Liang, Xiaoming; Zhu, Xingdong; Butler, Elizabeth C

    2011-06-15

    Four advanced oxidation processes (UV/TiO(2), UV/IO(4)(-), UV/S(2)O(8)(2-), and UV/H(2)O(2)) were tested for their ability to mineralize naphthenic acids to inorganic carbon in a model oil sands process water containing high dissolved and suspended solids at pH values ranging from 8 to 12. A medium pressure mercury (Hg) lamp was used, and a Quartz immersion well surrounded the lamp. The treatment goal of 5mg/L naphthenic acids (3.4 mg/L total organic carbon (TOC)) was achieved under four conditions: UV/S(2)O(8)(2-) (20mM) at pH 8 and 10, and UV/H(2)O(2) (50mM) at pH 8 (all with the Quartz immersion well). Values of electrical energy required to meet the treatment goal were about equal for UV/S(2)O(8)(2-) (20mM) and UV/H(2)O(2) (50mM) at pH 8, but three to four times larger for treatment by UV/S(2)O(8)(2-) (20mM) at pH 10. The treatment goal was also achieved using UV/S(2)O(8)(2-) (20mM) at pH 10 when using a Vycor filter that transmits light primarily in the mid and near UV, suggesting that that treatment of naphthenic acids by UV/S(2)O(8)(2-) using low pressure Hg lamps may be feasible. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Modified biopolymers as sorbents for the removal of naphthenic acids from oil sands process affected water (OSPW).

    PubMed

    Arshad, Muhammad; Khosa, M A; Siddique, Tariq; Ullah, Aman

    2016-11-01

    Oil sands operations consume large volumes of water in bitumen extraction process and produce tailings that express pore water to the surface of tailings ponds known as oil sands process-affected water (OSPW). The OSPW is toxic and cannot be released into the environment without treatment. In addition to metals, dissolved solids, dissolved gases, hydrocarbons and polyaromatic compounds etc., OSPW also contains a complex mixture of dissolved organic acids, referred to as naphthenic acids (NAs). The NAs are highly toxic and react with metals to develop highly corrosive functionalities which cause corrosion in the oil sands processing and refining processes. We have chemically modified keratin biopolymer using polyhedral oligomeric silsesquioxanes (POSS) nanocages and goethite dopant to unfold keratinous structure for improving functionality. The untreated neat keratin and two modified sorbents were characterized to investigate structural, morphological, dimensional and thermal properties. These sorbents were then tested for the removal of NAs from OSPW. The NAs were selectively extracted and quantified before and after sorption process. The biosorption capacity (Q), rejection percentage (R%) and isotherm models were studied to investigate NAs removal efficiency of POSS modified keratin biopolymer (PMKB) and goethite modified keratin biopolymer (GMKB) from aliquots of OSPW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Evaluation of algal phytodegradation of petroleum naphthenic acids.

    PubMed

    Headley, John V; Du, Jing Long; Peru, Kerry M; Gurprasad, Narine; McMartin, Dena W

    2008-02-15

    The algal phytodegradation of a model naphthenic acid (4-methylcyclohexaneacetic acid) and an oilsands mixture of naphthenic acids (NAs) were evaluated in support of studies to remediate recalcitrant NAs in soils and water. The algae investigated included blue-green algae (Oscillatoria sp.; Aphanizomenon sp.; Anbaena sp.) green algae (Selenastrum sp.; Nannochloris sp.; Ankistrodesmus sp.; Scenedesmus sp.; Haematococcus sp.; Chlorella sp.) and diatoms (Naviculla (1), Naviculla (2) and Nitzschia sp.). Both the cis- and trans-isomers of the model NA were completely uptaken and presumed phytodegraded by the diatom algae Naviculla (2) sp. at a concentration of approximately 5.5 mg/L within a period of 14 days. However, there was no evidence for the phytodegradation of the petroleum oilsands naphthenic acids mixtures, except for possibly experiments utilizing the green algae, Selenastrum sp. The differences in the phytodegradation of the model NA by the diatoms appears to be linked to differences in transport mechanisms by the algae along with differences in the concentration and structure of the respective naphthenic acids.

  10. A novel solid-state fractionation of naphthenic acid fraction components from oil sands process-affected water.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Shah, Jaimin R; Bailey, Jon; Peru, Kerry M; Headley, John V

    2015-10-01

    Various sorbent materials were evaluated for the fractionation of naphthenic acid fraction components (NAFCs) from oil sand process-affected water (OSPW). The solid phase materials include activated carbon (AC), cellulose, iron oxides (magnetite and goethite), polyaniline (PANI) and three types of biochar derived from biomass (BC-1; rice husks, BC-2; acacia low temperature and BC-3; acacia high temperature). NAFCs were semi-quantified using electrospray ionization high resolution Orbitrap mass spectrometry (ESI-MS) and the metals were assessed by inductively coupled plasma optical emission spectrometry (ICP-OES). The average removal efficacy of NAFCs by AC was 95%. The removal efficacy decreased in the following order: AC, BC-1>BC-2, BC-3, goethite>PANI>cellulose, magnetite. The removal of metals did not follow a clear trend; however, there was notable leaching of potassium by AC and biochar samples. The bound NAFCs by AC were desorbed efficiently with methanol. Methanol regeneration and recycling of AC revealed 88% removal on the fourth cycle; a 4.4% decrease from the first cycle. This fractionation method represents a rapid, cost-effective, efficient, and green strategy for NAFCs from OSPW, as compared with conventional solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Investigation of aggregation in solvent extraction of lanthanides by acidic extractants (organophosphorus and naphthenic acid)

    USGS Publications Warehouse

    Zhou, N.; Wu, J.; Yu, Z.; Neuman, R.D.; Wang, D.; Xu, G.

    1997-01-01

    Three acidic extractants (I) di(2-ethylhexyl) phosphoric acid (HDEHP), (II) 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEHPEHE) and (III) naphthenic acid were employed in preparing the samples for the characterization of the coordination structure of lanthanide-extractant complexes and the physicochemical nature of aggregates formed in the organic diluent of the solvent extraction systems. Photo correlation spectroscopy (PCS) results on the aggregates formed by the partially saponified HDEHP in n-heptane showed that the hydrodynamic radius of the aggregates was comparable to the molecular dimensions of HDEHP. The addition of 2-octanol into the diluent, by which the mixed solvent was formed, increased the dimensions of the corresponding aggregates. Aggregates formed from the lanthanide ions and HDEHP in the organic phase of the extraction systems were found very unstable. In the case of naphthenic acid, PCS data showed the formation of w/o microemulsion from the saponified naphthenic acid in the mixed solvent. The extraction of lanthanides by the saponified naphthenic acid in the mixed solvent under the given experimental conditions was a process of destruction of the w/o microemulsion. A possible mechanism of the breakdown of the w/o microemulsion droplets is discussed.

  12. Indigenous microbes survive in situ ozonation improving biodegradation of dissolved organic matter in aged oil sands process-affected waters.

    PubMed

    Brown, Lisa D; Pérez-Estrada, Leonidas; Wang, Nan; El-Din, Mohamed Gamal; Martin, Jonathan W; Fedorak, Phillip M; Ulrich, Ania C

    2013-11-01

    The oil sands industry faces significant challenges in developing effective remediation technologies for process-affected water stored in tailings ponds. Naphthenic acids, a complex mixture of cycloaliphatic carboxylic acids, have been of particular concern because they concentrate in tailings ponds and are a component of the acutely toxic fraction of process water. Ozone treatment has been demonstrated as an effective means of rapidly degrading naphthenic acids, reducing process water toxicity, and increasing its biodegradability following seeding with the endogenous process water bacteria. This study is the first to examine subsequent in situ biodegradation following ozone pretreatment. Two aged oil sands process-affected waters from experimental reclamation tailings ponds were ozonated to reduce the dissolved organic carbon, to which naphthenic acids contributed minimally (<1mgL(-1)). Treatment with an ozone dose of 50mgL(-1) improved the 84d biodegradability of remaining dissolved organic carbon during subsequent aerobic incubation (11-13mgL(-1) removed from aged process-affected waters versus 5mgL(-1) when not pretreated with ozone). The ozone-treated indigenous microbial communities were as capable of degrading organic matter as the same community not exposed to ozone. This supports ozonation coupled with biodegradation as an effective and feasible treatment option. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Characterization of naphthenic acids from athabasca oil sands using electrospray ionization: the significant influence of solvents.

    PubMed

    Headley, John V; Peru, Kerry M; Barrow, Mark P; Derrick, Peter J

    2007-08-15

    There is a need to develop routine and rugged methods for the characterization of oil sands naphthenic acids present in natural waters and contaminated soils. Mass spectra of naphthenic acids, obtained using a variant of electrospray ionization coupled with a Fourier transform ion cyclotron resonance mass spectrometer, are shown here to vary greatly, reflecting their dependence on solubilities of the acids in organic solvents. The solubilities of components in, for example, 1-octanol (similar solvent to fatty tissue) compared to polar solvents such as methanol or acetonitrile are used here as a surrogate to indicate the more bioavailable or toxic components of naphthenic acids in natural waters. Monocarboxylic compounds (CnH2n+zO2) in the z=-4, -6, and -12 (2-, 3-, and 6-ring naphthenic acids, respectively) family in the carbon number range of 13-19 were prevalent in all solvent systems. The surrogate method is intended to serve as a guide in the isolation of principle toxic components, which in turn supports efforts to remediate oil sands contaminated soils and groundwater.

  14. Biodegradation of naphthenic acids in oils sands process waters in an immobilized soil/sediment bioreactor.

    PubMed

    McKenzie, Natalie; Yue, Siqing; Liu, Xudong; Ramsay, Bruce A; Ramsay, Juliana A

    2014-08-01

    Aqueous extraction of bitumen in the Alberta oil sands industry produces large volumes of oil sands process water (OSPW) containing naphthenic acids (NAs), a complex mixture of carboxylic acids that are acutely toxic to aquatic organisms. Although aerobic biodegradation reduces NA concentrations and OSPW toxicity, treatment times are long, however, immobilized cell reactors have the potential to improve NA removal rates. In this study, two immobilized soil/sediment bioreactors (ISBRs) operating in series were evaluated for treatment of NAs in OSPW. A biofilm was established from microorganisms associated with sediment particles from an OSPW contaminated wetland on a non-woven textile. At 16 months of continuous operation with OSPW as the sole source of carbon and energy, 38±7% NA removal was consistently achieved at a residence time of 160 h at a removal rate of 2.32 mg NAs L(-1)d(-1). The change in NA profile measured by gas chromatography-mass spectrometry indicated that biodegradability decreased with increasing cyclicity. These results indicate that such treatment can significantly reduce NA removal rates compared to most studies, and the treatment of native process water in a bioreactor has been demonstrated. Amplification of bacterial 16S rRNA genes and sequencing using Ion Torrent sequencing characterized the reactors' biofilm populations and found as many as 235 and 198 distinct genera in the first and second bioreactor, respectively, with significant populations of ammonium- and nitrite-oxidizers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Adsorption of naphthenic acids on high surface area activated carbons.

    PubMed

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC.

  16. Kinetics of liquid-solid reactions in naphthenic acid conversion and Kraft pulping

    NASA Astrophysics Data System (ADS)

    Yang, Ling

    Two liquid-solid reactions, in which the morphology of the solid changes as the reactions proceeds, were examined. One is the NA conversion in oil by decarboxylation on metal oxides and carbonates, and the other is the Kraft pulping in which lignin removal by delignification reaction. In the study of the NA conversion, CaO was chosen as the catalyst for the kinetic study from the tested catalysts based on NA conversion. Two reaction mixtures, carrier oil plus commercial naphthenic acids and heavy vacuum gas oil (HVGO) from Athabasca bitumen, were applied in the kinetic study. The influence of TAN, temperature, and catalyst loading on the NA conversion and decarboxylation were studied systematically. The results showed that the removal rate of TAN and the decarboxylation of NA were both independent of the concentration of NA over the range studied, and significantly dependent on reaction temperature. The data from analyzing the spent catalyst demonstrated that calcium naphthenate was an intermediate of the decarboxylation reaction of NA, and the decomposition of calcium naphthenate was a rate-determining step. In the study on the delignification of the Kraft pulping, a new mechanism was proposed for the heterogeneous delignification reaction during the Kraft pulping process. In particular, the chemical reaction mechanism took into account the heterogeneous nature of Kraft pulping. Lignin reacted in parallel with sodium hydroxide and sodium sulfide. The mechanism consists of three key kinetic steps: (1) adsorption of hydroxide and hydrosulfide ions on lignin; (2) surface reaction on the solid surface to produce degraded lignin products; and (3) desorption of degradation products from the solid surface. The most important step for the delignification process is the surface reaction, rather than the reactions occurring in the liquid phase. A kinetic model has, thus, been developed based on the proposed mechanism. The derived kinetic model showed that the mechanism could be employed to predict the pulping behavior under a variety of conditions with good accuracy.

  17. In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae-bacteria consortium.

    PubMed

    Mahdavi, Hamed; Prasad, Vinay; Liu, Yang; Ulrich, Ania C

    2015-01-01

    In this study, the biodegradation of total acid-extractable organics (TAOs), commonly called naphthenic acids (NAs), was investigated. An indigenous microbial culture containing algae and bacteria was taken from the surface of a tailings pond and incubated over the course of 120days. The influence of light, oxygen and the presence of indigenous algae and bacteria, and a diatom (Navicula pelliculosa) on the TAO removal rate were elucidated. The highest biodegradation rate was observed with bacteria growth only (without light exposure) with a half-life (t(1/2)) of 203days. The algae-bacteria consortium enhanced the detoxification process, however, bacterial biomass played the main role in toxicity reduction. Principal component analysis (PCA) conducted on FT-IR spectra, identified functional groups and bonds (representing potential markers for biotransformation of TAOs) as follows: hydroxyl, carboxyl and amide groups along with CH, arylH, arylOH and NH bonds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Characterization of Magnetite Scale Formed in Naphthenic Acid Corrosion

    NASA Astrophysics Data System (ADS)

    Jin, Peng; Robbins, Winston; Bota, Gheorghe; Nesic, Srdjan

    2017-02-01

    Naphthenic acid corrosion (NAC) is one of the major concerns for corrosion engineers in refineries. Traditionally, the iron sulfide (FeS) scale, formed when sulfur compounds in crudes corrode the metal, is expected to be protective and limit the NAC. Nevertheless, no relationship has been found between protectiveness and the characteristics of FeS scale. In this study, lab scale tests with model sulfur compounds and naphthenic acids replicated corrosive processes of refineries with real crude fractions behavior. The morphology and chemical composition of scales were analyzed with scanning electron microscopy and transmission electron microscopy. These high-resolution microscopy techniques revealed the presence of an iron oxide (Fe3O4 or magnetite) scale and discrete particulates on metal surfaces under FeS scales, especially on a low chrome steel. The presence of the iron oxide was correlated with the naphthenic acid activity during the experiments. It is postulated that the formation of the magnetite scale resulted from the decomposition of iron naphthenates at high temperatures. It is further postulated that a nano-particulate form of magnetite may be providing corrosion resistance.

  19. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3

    PubMed Central

    Xiao, Jingfa; Hao, Lirui; Crowley, David E.; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592

  20. Efficient Atomization and Combustion of Emulsified Crude Oil

    DTIC Science & Technology

    2014-09-18

    2.26 Naphthenes , vol % 50.72 Aromatics, vol % 16.82 Freezing Point, °F -49.7 Freezing Point, °C -45.4 Smoke Point, mm (ASTM) 19.2 Acid ...needed by the proposed method for capturing and oil removal , in particular the same vessels and booms used to herd the floating crude oil into a thick...slicks need to be removed more rapidly than they can be transported, in situ burning offers a rapid disposal method that minimizes risk to marine life

  1. Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water.

    PubMed

    Leshuk, Tim; Wong, Timothy; Linley, Stuart; Peru, Kerry M; Headley, John V; Gu, Frank

    2016-02-01

    Bitumen mining in the Canadian oil sands creates large volumes of oil sands process-affected water (OSPW), the toxicity of which is due in part to naphthenic acids (NAs) and other acid extractable organics (AEO). The objective of this work was to evaluate the potential of solar photocatalysis over TiO2 to remove AEO from OSPW. One day of photocatalytic treatment under natural sunlight (25 MJ/m(2) over ∼14 h daylight) eradicated AEO from raw OSPW, and acute toxicity of the OSPW toward Vibrio fischeri was eliminated. Nearly complete mineralization of organic carbon was achieved within 1-7 day equivalents of sunlight exposure, and degradation was shown to proceed through a superoxide-mediated oxidation pathway. High resolution mass spectrometry (HRMS) analysis of oxidized intermediate compounds indicated preferential degradation of the heavier and more cyclic NAs (higher number of double bond equivalents), which are the most environmentally persistent fractions. The photocatalyst was shown to be recyclable for multiple uses, and thus solar photocatalysis may be a promising "green" advanced oxidation process (AOP) for OSPW treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mechanism of Corrosion by Naphthenic Acids and Organosulfur Compounds at High Temperatures

    NASA Astrophysics Data System (ADS)

    Jin, Peng

    Due to the law of supply and demand, the last decade has witnessed a skyrocketing in the price of light sweet crude oil. Therefore, refineries are increasingly interested in "opportunity crudes", characterized by their discounted price and relative ease of procurement. However, the attractive economics of opportunity crudes come with the disadvantage of high acid/organosulfur compound content, which could lead to corrosion and even failure of facilities in refineries. However, it is generally accepted that organosulfur compounds may form protective iron sulfide layers on the metal surface and decrease the corrosion rate. Therefore, it is necessary to investigate the corrosive property of crudes at high temperatures, the mechanism of corrosion by acids (naphthenic acids) in the presence of organosulfur compounds, and methods to mitigate its corrosive effect. In 2004, an industrial project was initiated at the Institute for Corrosion and Multiphase Technology to investigate the corrosion by naphthenic acids and organosulfur compounds. In this project, for each experiment there were two experimentation phases: pretreatment and challenge. In the first pretreatment phase, a stirred autoclave was filled with a real crude oil fraction or model oil of different acidity and organosulfur compound concentration. Then, the stirred autoclave was heated to high temperatures to examine the corrosivity of the oil to different materials (specimens made from CS and 5% Cr containing steel were used). During the pretreatment, corrosion product layers were formed on the metal surface. In the second challenge phase, the steel specimens pretreated in the first phase were inserted into a rotating cylinder autoclave, called High Velocity Rig (HVR). The HVR was fed with a high-temperature oil solution of naphthenic acids to attack the iron sulfide layers. Based on the difference of specimen weight loss between the two steps, the net corrosion rate could be calculated and the protectiveness of corrosion product layer against naphthenic acid corrosion could be assessed. Routinely, the layers generated in pretreatment and challenge phases were investigated with SEM/EDS (Scanning Electron Microscopy/Energy Dispersive Spectroscopy). Selectively, some thin layers formed in the first or second phase were analyzed with FIB-TEM (Focused Ion Beam - Transmission Electron Microscopy). FIB-TEM analysis revealed that there was an iron oxide layer beneath the iron sulfide layer. Experimental results showed that the iron oxide layer was closely related to the layer protectiveness against naphthenic acid corrosion and its formation was due to the presence of naphthenic acids in the fluid. Finally, a new mechanism of naphthenic acid/organosulfur compound corrosion was proposed based on properties of crudes, results of corrosion experimentation, and microscopic analysis of developed surface layers.

  3. Impact of ozonation on naphthenic acids speciation and toxicity of oil sands process-affected water to Vibrio fischeri and mammalian immune system.

    PubMed

    Wang, Nan; Chelme-Ayala, Pamela; Perez-Estrada, Leonidas; Garcia-Garcia, Erick; Pun, Jonathan; Martin, Jonathan W; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2013-06-18

    Oil sands process-affected water (OSPW) is the water contained in tailings impoundment structures in oil sands operations. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. In this study, ozonation followed by biodegradation was used to remediate OSPW. The impacts of the ozone process evolution on the naphthenic acids (NAs) speciation and acute toxicity were evaluated. Ion-mobility spectrometry (IMS) was used to preliminarily separate isomeric and homologous species. The results showed limited effects of the ozone reactor size on the treatment performance in terms of contaminant removal. In terms of NAs speciation, high reactivity of NAs with higher number of carbons and rings was only observed in a region of high reactivity (i.e., utilized ozone dose lower than 50 mg/L). It was also found that nearly 0.5 mg/L total NAs was oxidized per mg/L of utilized ozone dose, at utilized ozone doses lower than 50 mg/L. IMS showed that ozonation was able to degrade NAs, oxidized NAs, and sulfur/nitrogenated NAs. Complete removal of toxicity toward Vibrio fischeri was achieved after ozonation followed by 28-day biodegradation period. In vitro and in vivo assays indicated that ozonation reduced the OSPW toxicity to mice.

  4. Army Experience and Requirements for Stability and Cleanliness of Diesel Fuels.

    DTIC Science & Technology

    1980-07-01

    following: Iron Oxide 30 g/1000 gal Quartz Dust 4 g/1 0 0 0 gal Arizona Road Dust = 8 g/1000 gal Cotton Liners 0.1 g/1 0 0 0 gal Naphthenic Acid = 0.03...are then removed , dried, and weighed on a 9 torsion balance. Sediment content is determined by comparing the increase in weight of the test membrane...and thermal instability on the particular diesel fuels would Corrosion in Vehicle create (I) acidic impurities leading to corrosion and water Fuel Tanks

  5. Evaluation of biologically mediated changes in oil sands naphthenic acid composition by Chlamydomonas reinhardtii using negative-ion electrospray orbitrap mass spectrometry.

    PubMed

    Goff, Kira L; Peru, Kerry; Wilson, Kenneth E; Headley, John V

    2014-08-01

    Industrial activity associated with oil-sands extraction in Canada's Athabasca region produces a variety of contaminants of concern, including naphthenic acid fraction components (NAFCs). NAFCs are a complex mixture of organic compounds that are poorly understood both in terms of their chemical composition and effects on the environment. NAFC toxicity in the unicellular green algae Chlamydomonas reinhardtii P.A.Dangeard was correlated with the presence of the algal cell wall. It was suggested that the toxicity of NAFCs in C. reinhardtii was due to surfactant effects. Surfactant-cell wall interactions are specific and governed by the compound class and structure, and by the nature of the biological material. Here, we investigate the effects of wildtype (WT) C. reinhardtii and two cell-wall mutants on specific classes of NAFCs when growing cultures were treated with a 100 mg · L(-1) solution of NAFCs. Changes in the NAFC composition in the media were examined using high resolution mass spectrometry over a period of 4 d. Algal mediated changes in the NAFCs were limited to specific classes of NAFCs. In particular, the removal of large, classical naphthenic acids, with a double bond equivalent of 8, was observed in WT C. reinhardtii cultures. The observed algal mediated changes in NAFC composition would have been masked by low resolution mass spectrometry and highlight the importance of this tool in examining bioremediation of complex mixtures of NAFCs. © 2014 Phycological Society of America.

  6. Modeling the Fate of Groundwater Contaminants Resulting from Leakage of Butanol-blended Fuel

    DTIC Science & Technology

    2010-03-01

    aviation turbine and automotive engines is an organic liquid comprised of numerous hydrocarbons that may include paraffins, naphthenes , and aromatics...process, known as either hydroprocessing or hydrotreating, consists of two stages. In the first stage, oxygen is removed from oil. In the second...66. Namocatcat, J.A., J. Fang, M.J. Barcelona, A.T.O. Quibuyen, and T.A. Abrajano. Trimethylbenzoic acids as metabolite signatures in the

  7. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.

    PubMed

    Zhang, Ying; Chelme-Ayala, Pamela; Klamerth, Nikolaus; Gamal El-Din, Mohamed

    2017-07-01

    Naphthenic acids (NAs) are a highly complex mixture of organic compounds naturally present in bitumen and identified as the primary toxic constituent of oil sands process-affected water (OSPW). This work investigated the degradation of cyclohexanoic acid (CHA), a model NA compound, and natural occurring NAs during the UV photolysis of Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton processes. The results indicated that in the UV-Fe(III)NTA process at pH 8, the CHA removal increased with increasing NTA dose (0.18, 0.36 and 0.72 mM), while it was independent of the Fe(III) dose (0.09, 0.18 and 0.36 mM). Moreover, the three Fe concentrations had no influence on the photolysis of the Fe(III)NTA complex. The main responsible species for the CHA degradation was hydroxyl radical (OH), and the role of dissolved O 2 in the OH generation was found to be negligible. Real OSPW was treated with the UV-Fe(III)NTA and UV-NTA-Fenton advanced oxidation processes (AOPs). The removals of classical NAs (O 2 -NAs), oxidized NAs with one additional oxygen atom (O 3 -NAs) and with two additional oxygen atoms (O 4 -NAs) were 44.5%, 21.3%, and 25.2% in the UV-Fe(III)NTA process, respectively, and 98.4%, 86.0%, and 81.0% in the UV-NTA-Fenton process, respectively. There was no influence of O 2 on the NA removal in these two processes. The results also confirmed the high reactivity of the O 2 -NA species with more carbons and increasing number of rings or double bond equivalents. This work opens a new window for the possible treatment of OSPW at natural pH using these AOPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Potential of capillary electrophoresis mass spectrometry for the characterization and monitoring of amine-derivatized naphthenic acids from oil sands process-affected water.

    PubMed

    MacLennan, Matthew S; Tie, Cai; Kovalchik, Kevin; Peru, Kerry M; Zhang, Xinxiang; Headley, John V; Chen, David D Y

    2016-11-01

    Capillary electrophoresis coupled to mass spectrometry (CE-MS) was used for the analysis of naphthenic acid fraction compounds (NAFCs) of oil sands process-affected water (OSPW). A standard mixture of amine-derivatized naphthenic acids is injected directly onto the CE column and analyzed by CE-MS in less than 15min. Time of flight MS analysis (TOFMS), optimized for high molecular weight ions, showed NAFCs between 250 and 800m/z. With a quadrupole mass analyzer, only low-molecular weight NAFCs (between 100 and 450m/z) are visible under our experimental conditions. Derivatization of NAFCs consisted of two-step amidation reactions mediated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), or mediated by a mixture of EDC and N-hydroxysuccinimide, in dimethyl sulfoxide, dichloromethane or ethyl acetate. The optimum background electrolyte composition was determined to be 30% (V/V) methanol in water and 2% (V/V) formic acid. NAFCs extracted from OSPW in the Athabasca oil sands region were used to demonstrate the feasibility of CE-MS for the analysis of NAFCs in environmental samples, showing that the labeled naphthenic acids are in the mass range of 350 to 1500m/z. Copyright © 2016. Published by Elsevier B.V.

  9. Assessment of ANFO on the Environment

    DTIC Science & Technology

    2010-01-01

    cycloalkanes ( naphthenes ) are hydrogen-saturated and compose approximately 80 to 90% of the fuel oils. Aromatics (e.g., benzene) and olefins (e.g...well as methane. NOx will also contribute to the production of acid rain. DRDC Valcartier TM 2009-195 5 Other combustion products of ANFO have...weighed, placed in a hole, sealed, and kept at 55 oC during testing, after which it was removed from the boreholes and weighed at 1-, 2-, 6-, 8-, 9

  10. Naphthenic acids removal from high TDS produced water by persulfate mediated iron oxide functionalized catalytic membrane, and by nanofiltration.

    PubMed

    Aher, Ashish; Papp, Joseph; Colburn, Andrew; Wan, Hongyi; Hatakeyama, Evan; Prakash, Prakhar; Weaver, Ben; Bhattacharyya, Dibakar

    2017-11-01

    Oil industries generate large amounts of produced water containing organic contaminants, such as naphthenic acids (NA) and very high concentrations of inorganic salts. Recovery of potable water from produced water can be highly energy intensive is some cases due to its high salt concentration, and safe discharge is more suitable. Here, we explored catalytic properties of iron oxide (Fe x O y nanoparticles) functionalized membranes in oxidizing NA from water containing high concentrations of total dissolved solids (TDS) using persulfate as an oxidizing agent. Catalytic decomposition of persulfate by Fe x O y functionalized membranes followed pseudo-first order kinetics with an apparent activation energy of 18 Kcal/mol. Fe x O y functionalized membranes were capable of lowering the NA concentrations to less than discharge limits of 10 ppm at 40 °C. Oxidation state of iron during reaction was quantified. Membrane performance was investigated for extended period of time. A coupled process of advanced oxidation catalyzed by membrane and nanofiltration was also evaluated. Commercially available nanofiltration membranes were found capable of retaining NA from water containing high concentrations of dissolved salts. Commercial NF membranes, Dow NF270 (Dow), and NF8 (Nanostone) had NA rejection of 79% and 82%, respectively. Retentate for the nanofiltration was further treated with advanced oxidation catalyzed by Fe x O y functionalized membrane for removal of NA.

  11. Mass spectrometric characterization of naphthenic acids in environmental samples: a review.

    PubMed

    Headley, John V; Peru, Kerry M; Barrow, Mark P

    2009-01-01

    There is a growing need to develop mass spectrometric methods for the characterization of oil sands naphthenic acids (structural formulae described by C(n)H(2n+z)O(2) where n is the number of carbon atoms and "z" is referred to as the "hydrogen deficiency" and is equal to zero, or is a negative, even integer) present in environmental samples. This interest stems from the need to better understand their contribution to the total acid number of oil sands acids; along with assessing their toxicity in aquatic environments. Negative-ion electrospray ionization has emerged as the analytical technique of choice. For infusion samples, matrix effects are particularly evident for quantification in the presence of salts and co-elutants. However, such effects can be minimized for methods that employ chromatographic separation prior to mass spectrometry (MS) detection. There have been several advances for accurate identification of classes of naphthenic acid components that employ a range of MS hyphenated techniques. General trends measured for degradation of the NAs in the environment appear to be similar to those obtained with either low- or high-resolution MS. Future MS research will likely focus on (i) development of more reliable quantitative methods that use chromatography and internal standards, (ii) the utility of representative model naphthenic acids as surrogates for the complex NA mixtures, and (iii) development of congener-specific analysis of the principal toxic components.

  12. Removal of naphthenic acids using adsorption process and the effect of the addition of salt.

    PubMed

    Azad, Fakhry Seyedeyn; Abedi, Jalal; Iranmanesh, Sobhan

    2013-01-01

    In this study, various types of adsorbents were examined for the removal of Naphthenic acids (NAs) in the preliminary stage of this study. Among them, activated carbon and nickel (Ni) based alumina (Ni-Al2O3) possess relatively high adsorption capacity of NAs. The removal of NAs was evaluated comparing the total organic carbon (TOC) of the solution before and after the adsorption process. The effect of Ni loading was investigated using Ni-Al2O4 with various nickel loadings. The highest adsorption capacity (20 mg of TOC/1 mg of adsorbent) was belong to Ni-Al2O4 with 10.7% Ni loading. By the addition of salt (1500 ppm NaCl) to NAs solutions having concentrations from of 15 to 38 ppm, it was observed that the adsorption decreased dramatically (up to 80%) depending on the concentration of TOC. The kinetics of the adsorption of TOC on Ni-based alumina was also investigated. The decrease of TOC was more that 40% in the first half hour, indicating that adsorption was very rapid in the beginning. The adsorption increased slightly for up to 5 h and then leveled off when the TOC reached to 50% of initial TOC concentration. However, when sodium chloride (NaCl) was added to the solution, the adsorption decreased to almost 9% within the first half hour, reaching to almost 5% after 3 h. These phenomena suggest that the effectiveness of adsorbents may be improved by decreasing the total dissolved salts in tailings pond wastewater.

  13. Preparation of activated petroleum coke for removal of naphthenic acids model compounds: Box-Behnken design optimization of KOH activation process.

    PubMed

    Niasar, Hojatallah Seyedy; Li, Hanning; Das, Sreejon; Kasanneni, Tirumala Venkateswara Rao; Ray, Madhumita B; Xu, Chunbao Charles

    2018-04-01

    This study employed Box-Behnken design and response surface methodology to optimize activation parameters for the production of activated petroleum coke (APC) adsorbent from petroleum coke (PC) to achieve highest adsorption capacity for three model naphthenic acids. Activated petroleum coke (APC) adsorbent with a BET surface area of 1726 m 2 /g and total pore volume of 0.85 cc/g was produced at the optimum activation conditions (KOH/coke mass ratio) of 3.0, activation temperature 790 °C, and activation time 3.47 h). Effects of the activation parameters on the adsorption pefromances (adsortion capaciy and kinetics) were investigated. With the APC obtained at the optimum activation condition, the maximum adsorption capacity of 451, 362, and 320 (mg/g) was achieved for 2-naphthoic acid, diphenylacetic acid and cyclohexanepentanoic acid (CP), respectively. Although, generally APC adsorbents with a higher specific surface area and pore volume provide better adsorption capacity, the textural properties (surface areas and pore volume) are not the only parameters determining the APC adsorbents' adsorption capacity. Other parameters such as surface functionalities play effective roles on the adsorption capacity of the produced APC adsorbents for NAs. The KOH activation process, in particular the acid washing step, distinctly reduced the sulfur and metals contents in the raw PC, decreasing the leaching potential of metals from APC adsorbents during adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Kinetics study on the degradation of a model naphthenic acid by ethylenediamine-N,N'-disuccinic acid-modified Fenton process.

    PubMed

    Zhang, Ying; Klamerth, Nikolaus; Messele, Selamawit Ashagre; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-11-15

    Naphthenic acids (NAs) are reported to be the main species responsible for the oil sands process-affected water (OSPW) toxicity. In this study, the degradation of cyclohexanoic acid (CHA) as a model compound for NAs by an ethylenediamine-N,N'-disuccinic acid (EDDS)-modified Fenton process was investigated at pH 8. Optimum dose for Fe-EDDS (EDDS:Fe=2:1) was 0.45mM, and 2.94mM for hydrogen peroxide (H2O2). The time profiles of the main species in the process were studied, including CHA, H2O2, Fe(II), total Fe, and Fe-EDDS (in the main form of Fe(III)EDDS). The second-order rate constant between EDDS and hydroxyl radical (OH) at pH 8 was obtained as 2.48±0.43×10(9)M(-1)s(-1). OH was proved to be the main species responsible for the CHA degradation, while superoxide radical (O2(-)) played a minor role. The consecutive addition of H2O2 and Fe-EDDS led to a higher removal of CHA compared to that achieved by adding the reagents at a time. The half-wave potential of Fe(III/II)EDDS was measured at pH 7-9. The EDDS-modified Fenton process is a promising alternative to degrade NAs. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Effects of Carbon Nanotube Reinforcement on Adhesive Joints for Naval Applications

    DTIC Science & Technology

    2009-12-01

    ACRONYMS AND ABBREVIATIONS CNT Carbon Nanotube CoNap Cobalt Naphthenate DMA Dimethylaniline IR Infared MEKP Methyl Ethyl Ketone Peroxide... removed prior to use. The selection of cold rolled steel significantly reduced the surface preparation required for each sample. The steel was one...6% Cobalt Naphthenate (CoNap), as well as an accelerator, dimethylaniline (DMA), can be varied to control gel time of the resign based on ambient

  16. Salting-out effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization.

    PubMed

    Headley, John V; Barrow, Mark P; Peru, Kerry M; Derrick, Peter J

    2011-01-01

    There is growing interest in the mass spectrometric characterization of oil sands acids present in natural waters and contaminated soils. This interest stems from efforts to isolate the principal toxic components of oil sands acid extractable organics in aquatic environment. Salting-out effects are demonstrated for nanospray ionization mass spectra of Athabasca oil sands acid extractable organics (naphthenic acids), using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The differences in spectra obtained for the sodium naphthenates in dichloromethane/acetonitrile cosolvents compared to spectra obtained in the absence of saturated sodium chloride salts, are used here as a surrogate to indicate the more bioavailable or toxic components in natural waters. Whereas, monocarboxylic compounds (C(n)H(2n+Z)O(2)) were prevalent in the Z =-4, -6, and -12 (2, 3 and 6-ring naphthenic acids respectively) family in the carbon number range of 13 to 19 in the dichloromethane/acetonitrile cosolvent systems, salting-out effects resulted in a general enhancement of Z =-4 species, relative to others. Likewise, the shift in relative intensities of species containing O(1), O(3), O(4), O(2)S and O(3)S was dramatic for systems with and without saturated salts present. The O(4) and O(3)S species for example, were prevalent in the dichloromethane/acetonitrile cosolvent but were non-detected in the presence of saturated salts. Interactions of oil sands acids with salts are expected to occur in oil sands processed waters and natural saline waters. As evident by the distribution of species observed, salting-out effects will play a major role in limiting the bioavailability of oil sands acids in aquatic systems.

  17. Biodegradation of a surrogate naphthenic acid under denitrifying conditions.

    PubMed

    Gunawan, Yetty; Nemati, Mehdi; Dalai, Ajay

    2014-03-15

    Extraction of bitumen from the shallow oil sands generates extremely large volumes of waters contaminated by naphthenic acid which pose severe environmental and ecological risks. Aerobic biodegradation of NA in properly designed bioreactors has been investigated in our earlier works. In the present work, anoxic biodegradation of trans-4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA) coupled to denitrification was investigated as a potential ex situ approach for the treatment of oil sand process waters in bioreactors whereby excessive aeration cost could be eliminated, or as an in situ alternative for the treatment of these waters in anoxic stabilization ponds amended with nitrate. Using batch and continuous reactors (CSTR and biofilm), effects of NA concentration (100-750mgL(-1)), NA loading rate (up to 2607.9mgL(-1)h(-1)) and temperature (10-35°C) on biodegradation and denitrification processes were evaluated. In the batch system biodegradation of trans-4MCHCA coupled to denitrification occurred even at the highest concentration of 750mgL(-1). Consistent with the patterns reported for aerobic biodegradation, increase in initial concentration of NA led to higher biodegradation and denitrification rates and the optimum temperature was determined as 23-24°C. In the CSTR, NA removal and nitrate reduction rates passed through a maximum due to increases in NA loading rate. NA loading rate of 157.8mgL(-1)h(-1) at which maximum anoxic NA and nitrate removal rates (105.3mgL(-1)h(-1) and 144.5mgL(-1)h(-1), respectively) occurred was much higher than those reported for the aerobic alternative (NA loading and removal rates: 14.2 and 9.6mgL(-1)h(-1), respectively). In the anoxic biofilm reactor removal rates of NA and nitrate were dependent on NA loading rate in a linear fashion for the entire range of applied loading rates. The highest loading and removal rates for NA were 2607.9 and 2028.1mgL(-1)h(-1), respectively which were at least twofold higher than the values reported for the aerobic biofilm reactor. The highest nitrate removal rate coincided with maximum removal rate of NA and was 3164.7mgL(-1)h(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Metal Residue Deposition from Military Pyrotechnic Devices and Field Sampling Guidance

    DTIC Science & Technology

    2012-05-01

    given NA 0.002 NA NA Chromium Oxide 1308-38-9 NA NA NA 0.015 Cobalt Naphthenate 61789-51-3 NA NA NA 0.017 Copper Oxide Black 1317-38-0 NA 1.32 NA...the whistling booby trap simulators included 73% potassium perchlorate, 24% gallic acid , and 3 % red gum (McIntyre 1980). Whereas the booby-trap...M21 Flash Artillery Simulator 50 3785.8 2/5/10 All – indicates the entire volume of stained snow was removed . MI – multi-increment. Rep

  19. Metal Residue Deposition from Military Pyrotechnic Devices and Field Sampling Guidance

    DTIC Science & Technology

    2012-05-01

    0.002 26.4 NA 0.082 Cerium none given NA 0.002 NA NA Chromium Oxide 1308-38-9 NA NA NA 0.015 Cobalt Naphthenate 61789-51-3 NA NA NA 0.017 Copper...the 1980s, the constituents in the whistling booby trap simulators included 73% potassium perchlorate, 24% gallic acid , and 3 % red gum (McIntyre...Test 3, MI snow sample, Rep 3 M21 Flash Artillery Simulator 50 3785.8 2/5/10 All – indicates the entire volume of stained snow was removed . MI

  20. Fire Safety Tests Comparing Synthetic Jet and Diesel Fuels with JP-8 (POSTPRINT)

    DTIC Science & Technology

    2010-04-01

    about 25% aromatics and 75% saturated (paraffin and naphthene ) hydro- carbons [5]. JP-8 is produced from jet fuel A by adding a corrosion inhibitor...4529a 43.9 44.2 Lubricity (mm) ASTM D – 5001 0.58 0.92 Acidity (mg KOH/g) ASTM D – 3242 0.004 0.003 SPK fuels taken from Moses [7], diesel fuels taken...this occurred the burnback pan was removed from the agent pan. The flames in the agent pan were allowed to break up the foam blanket and propagate until

  1. Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant.

    PubMed

    Wang, Beili; Wan, Yi; Gao, Yingxin; Zheng, Guomao; Yang, Min; Wu, Song; Hu, Jianying

    2015-05-05

    Naphthenic acids (NAs) are one class of compounds in wastewaters from petroleum industries that are known to cause toxic effects, and their removal from oilfield wastewater is an important challenge for remediation of large volumes of petrochemical effluents. The present study investigated occurrences and behaviors of total NAs and aromatic NAs in a refinery wastewater treatment plant, located in north China, which combined physicochemical and biological processes. Concentrations of total NAs were semiquantified to be 113-392 μg/L in wastewater from all the treatment units, and the percentages of aromatic NAs in total NAs was estimated to be 2.1-8.8%. The mass reduction for total NAs and aromatic NAs was 15±16% and 7.5±24% after the physicochemical treatment, respectively. Great mass reduction (total NAs: 65±11%, aromatic NAs: 86±5%) was observed in the biological treatment units, and antiestrogenic activities observed in wastewater from physicochemical treatment units disappeared in the effluent of the activated sludge system. The distributions of mass fractions of NAs demonstrated that biodegradation via activated sludge was the major mechanism for removing alicyclic NAs, aromatic NAs, and related toxicities in the plant, and the polycyclic NA congener classes were relatively recalcitrant to biodegradation, which is a complete contrast to the preferential adsorption of NAs with higher cyclicity (low Z value). Removal efficiencies of total NAs were 73±17% in summer, which were higher than those in winter (53±15%), and the seasonal variation was possibly due to the relatively high microbial biotransformation activities in the activated sludge system in summer (indexed by O3-NAs/NAs). The results of the investigations indicated that biotransformation of NA mixtures by the activated sludge system were largely affected by temperature, and employing an efficient adsorbent together with biodegradation processes would help cost-effectively remove NAs in petroleum effluents.

  2. Population impacts in white sucker (Catostomus commersonii) exposed to oil sands-derived contaminants in the Athabasca River.

    PubMed

    Arens, Collin J; Arens, Jennifer C; Hogan, Natacha S; Kavanagh, Richard J; Berrue, Fabrice; Van Der Kraak, Glen J; van den Heuvel, Michael R

    2017-08-01

    Biological and chemical endpoints were measured in white sucker collected downstream of Athabasca oil sands developments (AB, Canada) and compared with those at Calling Lake (AB, Canada), a reference location upstream of the Athabasca oil sands deposit. Naphthenic acid concentrations were also measured at 14 sites in the Athabasca River watershed. Concentrations of naphthenic acids were elevated in tributaries adjacent to oil sands mining developments. Tributary naphthenic acid profiles were more similar to aged oil sands process water than samples from the Athabasca River, suggesting an influence of tailings in the tributaries. White sucker showed higher energy storage in the Athabasca River as indicated by significantly higher condition and liver size. White sucker were not investing that energy into reproductive effort as measured by gonad size and fecundity, which were significantly reduced relative to the reference location. White sucker showed increased exposure to polycyclic aromatic hydrocarbons as indicated by hepatic cytochrome P4501A (CYP1A) activity and fluorescent bile metabolites, as well as higher concentrations of naphthenic acids in bile. Cadmium, copper, nickel, and selenium were also elevated in white sucker liver tissue compared with the reference location. Based on the exposure profile and response pattern observed, effects on energy storage and utilization in white sucker from the Athabasca River most likely resulted from exposure to polycyclic aromatic hydrocarbons derived from petrogenic and pyrolytic sources. Environ Toxicol Chem 2017;36:2058-2067. © 2017 SETAC. © 2017 SETAC.

  3. Degradation of recalcitrant naphthenic acids from raw and ozonated oil sands process-affected waters by a semi-passive biofiltration process.

    PubMed

    Zhang, Lei; Zhang, Yanyan; Gamal El-Din, Mohamed

    2018-04-15

    In this study, a fixed-bed biofiltration system (biofilter) that utilized indigenous microorganisms was developed for the reclamation of oil sands process-affected water (OSPW). With the assistance of quantitative polymerase chain reaction (qPCR) and confocal laser scanning microscopy (CLSM), indigenous microorganisms from OSPW were able to attach to the surface of sand media and form biofilms. The number of total bacteria on the biofilter media reached a steady state (10 9 /g) after 23 days of operation. Ultra Performance Liquid Chromatography/High Resolution Mass Spectrometry (UPLC/HRMS) analysis showed that 21.8% of the classical naphthenic acids (NAs) removal was achieved through the circulation of raw OSPW on the biofilter for 8 times (equivalent to a hydraulic retention time of 16 h). When ozonation with utilized ozone dose of 30 mg/L was applied as pretreatment, the classical NAs in the ozonated OSPW were removed by 89.3% with an accelerated biodegradation rate of 0.5 mg/L/h. Compared with other biofilm reactors such as moving bed biofilm reactor (MBBR), ozonation pretreatment could benefit the biodegradation of NAs in the biofilter more (classical NA removal: 89.3% vs. 34.4%), especially for those with high carbon number and cyclicity. The combined ozonation-biofiltration process could remove 92.7% of classical NAs from raw OSPW in 16 h. Although both ozonation and biofiltration alone did not show degradation of oxidized NAs from raw OSPW, the combined process led to a 52.9% and 42.6% removal for O 3 -NAs and O 4 -NAs, respectively, which were the dominant oxidized NA species in OSPW. Metagenomic sequencing analysis showed that Rhodococcus was the dominant bacterial genus on the sand media, which may play a crucial role during the NA biodegradation. With the advantage of high NA removal efficiency, the combined ozonation-biofiltration process is a promising approach for NA degradation and shows high potential to be scaled up for in-situ OSPW treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Chemical fingerprinting of naphthenic acids and oil sands process waters-A review of analytical methods for environmental samples.

    PubMed

    Headley, J V; Peru, K M; Mohamed, M H; Frank, R A; Martin, J W; Hazewinkel, R R O; Humphries, D; Gurprasad, N P; Hewitt, L M; Muir, D C G; Lindeman, D; Strub, R; Young, R F; Grewer, D M; Whittal, R M; Fedorak, P M; Birkholz, D A; Hindle, R; Reisdorph, R; Wang, X; Kasperski, K L; Hamilton, C; Woudneh, M; Wang, G; Loescher, B; Farwell, A; Dixon, D G; Ross, M; Pereira, A Dos Santos; King, E; Barrow, M P; Fahlman, B; Bailey, J; McMartin, D W; Borchers, C H; Ryan, C H; Toor, N S; Gillis, H M; Zuin, L; Bickerton, G; Mcmaster, M; Sverko, E; Shang, D; Wilson, L D; Wrona, F J

    2013-01-01

    This article provides a review of the routine methods currently utilized for total naphthenic acid analyses. There is a growing need to develop chemical methods that can selectively distinguish compounds found within industrially derived oil sands process affected waters (OSPW) from those derived from the natural weathering of oil sands deposits. Attention is thus given to the characterization of other OSPW components such as oil sands polar organic compounds, PAHs, and heavy metals along with characterization of chemical additives such as polyacrylamide polymers and trace levels of boron species. Environmental samples discussed cover the following matrices: OSPW containments, on-lease interceptor well systems, on- and off-lease groundwater, and river and lake surface waters. There are diverse ranges of methods available for analyses of total naphthenic acids. However, there is a need for inter-laboratory studies to compare their accuracy and precision for routine analyses. Recent advances in high- and medium-resolution mass spectrometry, concomitant with comprehensive mass spectrometry techniques following multi-dimensional chromatography or ion-mobility separations, have allowed for the speciation of monocarboxylic naphthenic acids along with a wide range of other species including humics. The distributions of oil sands polar organic compounds, particularly the sulphur containing species (i.e., OxS and OxS2) may allow for distinguishing sources of OSPW. The ratios of oxygen- (i.e., Ox) and nitrogen-containing species (i.e., NOx, and N2Ox) are useful for differentiating organic components derived from OSPW from natural components found within receiving waters. Synchronous fluorescence spectroscopy also provides a powerful screening technique capable of quickly detecting the presence of aromatic organic acids contained within oil sands naphthenic acid mixtures. Synchronous fluorescence spectroscopy provides diagnostic profiles for OSPW and potentially impacted groundwater that can be compared against reference groundwater and surface water samples. Novel applications of X-ray absorption near edge spectroscopy (XANES) are emerging for speciation of sulphur-containing species (both organic and inorganic components) as well as industrially derived boron-containing species. There is strong potential for an environmental forensics application of XANES for chemical fingerprinting of weathered sulphur-containing species and industrial additives in OSPW.

  5. Nanopyroxene Grafting with β-Cyclodextrin Monomer for Wastewater Applications.

    PubMed

    Nafie, Ghada; Vitale, Gerardo; Carbognani Ortega, Lante; Nassar, Nashaat N

    2017-12-06

    Emerging nanoparticle technology provides opportunities for environmentally friendly wastewater treatment applications, including those in the large liquid tailings containments in the Alberta oil sands. In this study, we synthesize β-cyclodextrin grafted nanopyroxenes to offer an ecofriendly platform for the selective removal of organic compounds typically present in these types of applications. We carry out computational modeling at the micro level through molecular mechanics and molecular dynamics simulations and laboratory experiments at the macro level to understand the interactions between the synthesized nanomaterials and two-model naphthenic acid molecules (cyclopentanecarboxylic and trans-4-pentylcyclohexanecarboxylic acids) typically existing in tailing ponds. The proof-of-concept computational modeling and experiments demonstrate that monomer grafted nanopyroxene  or nano-AE of the sodium iron-silicate aegirine are found to be promising candidates for the removal of polar organic compounds from wastewater, among other applications. These nano-AE offer new possibilities for treating tailing ponds generated by the oil sands industry.

  6. Treatment of oil sands process-affected water using moving bed biofilm reactors: With and without ozone pretreatment.

    PubMed

    Shi, Yijing; Huang, Chunkai; Rocha, Ketley Costa; El-Din, Mohamed Gamal; Liu, Yang

    2015-09-01

    Two moving bed biofilm reactors (MBBRs) were operated to treat raw (untreated) and 30 mg/L ozone-treated oil sands process-affected water (OSPW). After 210 days, the MBBR process showed 18.3% of acid-extractable fraction (AEF) and 34.8% of naphthenic acids (NAs) removal, while the ozonation combined MBBR process showed higher removal of AEF (41.0%) and NAs (78.8%). Biodegradation of raw and ozone treated OSPW showed similar performance. UPLC/HRMS analysis showed a highest NAs removal efficiency with a carbon number of 14 and a -Z number of 4. Confocal laser scanning microscopy (CLSM) showed thicker biofilms in the raw OSPW MBBR (97 ± 5 μm) than in the ozonated OSPW MBBR (71 ± 12 μm). Quantitative polymerase chain reaction (q-PCR) results showed higher abundance of gene copies of total bacteria and nitrogen removal relevant bacteria in the ozonated OSPW MBBR, but no significant difference was found. MiSeq sequencing showed Proteobacteria, Nitrospirae, and Acidobacteria were dominant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Role of Naphthenic Acids in Controlling Self-Aggregation of a Polyaromatic Compound in Toluene.

    PubMed

    Teklebrhan, Robel B; Jian, Cuiying; Choi, Phillip; Xu, Zhenghe; Sjöblom, Johan

    2016-04-14

    In this work, a series of molecular dynamics simulations were performed to investigate the effect of naphthenic acids (NAs) in early stage self-assembly of polyaromatic (PA) molecules in toluene. By exploiting NA molecules of the same polar functional group but different aliphatic/cycloaliphatic nonpolar tails, it was found that irrespective of the presence of the NA molecules in the system, the dominant mode of π-π stacking is a twisted, offset parallel stacking of a slightly larger overlapping area. Unlike large NA molecules, the presence of small NA molecules enhanced the number of π-π stacked PA molecules by suppressing the hydrogen bonding interactions among the PA molecules. Smaller NA molecules were found to have a higher tendency to associate with PA molecules than larger NA molecules. Moreover, the size and distribution of π-π stacking structures were affected to different degrees by changing the size and structural features of the NA molecules in the system. It was further revealed that the association between NA and PA molecules, mainly through hydrogen bonding, creates a favorable local environment for the overlap of PA cores (i.e., π-π stacking growth) by depressing the hydrogen bonding between PA molecules, which results in the removal of some toluene molecules from the vicinity of the PA molecules.

  8. Profiling Jet Fuel on Neurotoxic Components With Comprehensive Two-Dimensional GC

    DTIC Science & Technology

    2007-11-01

    nitrogen gas to remove possible contaminants that might interfere in the GCxGC-ToF-MS analysis. The generated JP-8 vapor was lead through the...dimension (min) S ec on d di m en si on (s ) Mono Aromatics Polycyclic Aromatic Hydrocarbons Naphthens Sulfur components Alkanes Figure 14...10.0 20.0 30.0 40.0 50.0 60.0 70.0 First dimension (min) S ec on d di m en si on (s ) Mono Aromatics Polycyclic Aromatic Hydrocarbons Naphthens

  9. Used Oil and Its Regulation in the United States

    DTIC Science & Technology

    1988-09-30

    product containing significant quantities of alkyl, naphthenic , and aromatic hydrocarbons. The oil may also contain additives to improve its...delivered to the re-refiners each year is disposed of primarily in the process residues including spent clay, acid sludge, and wastewater.13 8 13 7 Frank...hydrocarbon structure into three main groups: parafinic, naphthenic , and aromatic. Paraffinic (alkanic) crude oils contain mostly saturated straight and

  10. Naphthenic acids speciation and removal during petroleum-coke adsorption and ozonation of oil sands process-affected water.

    PubMed

    Gamal El-Din, Mohamed; Fu, Hongjing; Wang, Nan; Chelme-Ayala, Pamela; Pérez-Estrada, Leonidas; Drzewicz, Przemysław; Martin, Jonathan W; Zubot, Warren; Smith, Daniel W

    2011-11-01

    The Athabasca Oil Sands industry produces large volumes of oil sands process-affected water (OSPW) as a result of bitumen extraction and upgrading processes. Constituents of OSPW include chloride, naphthenic acids (NAs), aromatic hydrocarbons, and trace heavy metals, among other inorganic and organic compounds. To address the environmental issues associated with the recycling and/or safe return of OSPW into the environment, water treatment technologies are required. This study examined, for the first time, the impacts of pretreatment steps, including filtration and petroleum-coke adsorption, on ozonation requirements and performance. The effect of the initial OSPW pH on treatment performance, and the evolution of ozonation and its impact on OSPW toxicity and biodegradability were also examined. The degradation of more than 76% of total acid-extractable organics was achieved using a semi-batch ozonation system at a utilized ozone dose of 150 mg/L. With a utilized ozone dose of 100 mg/L, the treated OSPW became more biodegradable and showed no toxicity towards Vibrio fischeri. Changes in the NA profiles in terms of carbon number and number of rings were observed after ozonation. The filtration of the OSPW did not improve the ozonation performance. Petroleum-coke adsorption was found to be effective in reducing total acid-extractable organics by a 91%, NA content by an 84%, and OSPW toxicity from 4.3 to 1.1 toxicity units. The results of this study indicate that the combination of petroleum-coke adsorption and ozonation is a promising treatment approach to treat OSPW. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Engineering Design Handbook - Military Pyrotechnics Series. Part Four. Design of Ammunition for Pyrotechnic Effects

    DTIC Science & Technology

    1974-03-15

    Type 1) is a mixture of 88.5 percent gasoline and 11.5 percent napalm thickener. Napalm thickener is a granular base aluminum soap of naphthenic ...methacrylate polymer AE (IM) 5.0 5.0 2.0 3.0 3.0 3.0 3.0 Stearic acid 3.0 — — 1.0 4.0 3.0 4.5 Fatty acids - 2.5 3.0 - — — — Naphthenic acid - 2.5...3.0 3.0 — 1.0 0.5 Calcium oxide 2.0 — — 3.1 4.0 3.5 _ Caustic soda (40% solution) — 3.0 4.5 — — — — Ammonium hydroxide (27% solution

  12. Assessment of Oil Pretreatment Technologies to Improve Performance of Reverse Osmosis Systems

    DTIC Science & Technology

    1992-06-19

    CVHIZ H H 14 1C H2 NH 1 cnxz I I C, C-C - C-H H H 1 H-C-H N NAPHTHENES Cyclhe zaoa. C Hsa CH, CHa CnHZn CH2 C > CH, CH, CH2 AROMATICS (no general...aromatics, and naphthenes , plus related hydrocarbon derivatives of sulfur, oxygen, and nitrogen that were not removed by refining. Olefins are absent...magnesium (Davidson, 1978). Lime, caustic soda or magnesium in the oxide or carbonate form are usually used. Figure 3.14. presents a typical flow diagram

  13. Silver-Ion Solid Phase Extraction Separation of Classical, Aromatic, Oxidized, and Heteroatomic Naphthenic Acids from Oil Sands Process-Affected Water.

    PubMed

    Huang, Rongfu; Chen, Yuan; Gamal El-Din, Mohamed

    2016-06-21

    The separation of classical, aromatic, oxidized, and heteroatomic (sulfur-containing) naphthenic acid (NA) species from unprocessed and ozone-treated oil sands process-affected water (OSPW) was performed using silver-ion (Ag-ion) solid phase extraction (SPE) without the requirement of pre-methylation for NAs. OSPW samples before SPE and SPE fractions were characterized using ultra performance liquid chromatography ion mobility time-of-flight mass spectrometry (UPLC-IM-TOFMS) to corroborate the separation of distinct NA species. The mass spectrum identification applied a mass tolerance of ±1.5 mDa due to the mass errors of NAs were measured within this range, allowing the identification of O2S-NAs from O2-NAs. Moreover, separated NA species facilitated the tandem mass spectrometry (MS/MS) characterization of NA compounds due to the removal of matrix and a simplified composition. MS/MS results showed that classical, aromatic, oxidized, and sulfur-containing NA compounds were eluted into individual SPE fractions. Overall results indicated that the separation of NA species using Ag-ion SPE is a valuable method for extracting individual NA species that are of great interest for environmental toxicology and wastewater treatment research, to conduct species-specific studies. Furthermore, the separated NA species on the milligram level could be widely used as the standard materials for environmental monitoring of NAs from various contamination sites.

  14. Electrochemical mineralization and detoxification of naphthenic acids on boron-doped diamond anodes.

    PubMed

    Diban, Nazely; Urtiaga, Ane

    2018-01-05

    Electrochemical oxidation (ELOX) with boron-doped diamond (BDD) anodes was successfully applied to degrade a model aqueous solution of a mixture of commercial naphthenic acids (NAs). The model mixture was prepared resembling the NA and salt composition of oil sands process-affected water (OSPW) as described in the literature. The initial concentration of NAs between 70 and 120 mg/L did not influence the electrooxidation kinetics. However, increasing the applied current density from 20 to 100 A/m 2 and the initial chloride concentration from 15 to 70 and 150 mg/L accelerated the rate of NA degradation. At higher chloride concentration, the formation of indirect oxidative species could contribute to the faster oxidation of NAs. Complete chemical oxygen demand removal at an initial NA concentration of 120 mg/L, 70 mg/L of chloride and applied 50 A/m 2 of current density was achieved, and 85% mineralization, defined as the decrease of the total organic carbon (TOC) content, was attained. Moreover, after 6 h of treatment and independently on the experimental conditions, the formation of more toxic species, i.e. perchlorate and organochlorinated compounds, was not detected. Finally, the use of ELOX with BDD anodes produced a 7 to 11-fold reduction of toxicity (IC 50 towards Vibrio fischeri) after 2 h of treatment.

  15. The impacts of ozonation on oil sands process-affected water biodegradability and biofilm formation characteristics in bioreactors.

    PubMed

    Hwang, Geelsu; Dong, Tao; Islam, Md Sahinoor; Sheng, Zhiya; Pérez-Estrada, Leónidas A; Liu, Yang; Gamal El-Din, Mohamed

    2013-02-01

    To examine the effects of the ozonation process (as an oxidation treatment for water and wastewater treatment applications) on microbial biofilm formation and biodegradability of organic compounds present in oil sands process-affected water (OSPW), biofilm reactors were operated continuously for 6weeks. Two types of biofilm substrate materials: polyethylene (PE) and polyvinylchloride (PVC), and two types of OSPW-fresh and ozonated OSPWs-were tested. Endogenous microorganisms, in OSPW, quickly formed biofilms in the reactors. Without ozonation, the bioreactor (using endogenous microorganisms) removed 13.8% of the total acid-extractable organics (TAO) and 18.5% of the parent naphthenic acids (NAs) from fresh OSPW. The combined ozonation and biodegradation process removed 87.2% of the OSPW TAO and over 99% of the OSPW parent NAs. Further UPLC/HRMS analysis showed that NA biodegradability decreased as the NA cyclization number increased. Microbial biofilm formation was found to depend on the biofilm substrate type. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The impact of metallic coagulants on the removal of organic compounds from oil sands process-affected water.

    PubMed

    Pourrezaei, Parastoo; Drzewicz, Przemysław; Wang, Yingnan; Gamal El-Din, Mohamed; Perez-Estrada, Leonidas A; Martin, Jonathan W; Anderson, Julie; Wiseman, Steve; Liber, Karsten; Giesy, John P

    2011-10-01

    Coagulation/flocculation (CF) by use of alum and cationic polymer polyDADMAC, was performed as a pretreatment for remediation of oil sands process-affected water (OSPW). Various factors were investigated and the process was optimized to improve efficiency of removal of organic carbon and turbidity. Destabilization of the particles occurred through charge neutralization by adsorption of hydroxide precipitates. Scanning electron microscope images revealed that the resultant flocs were compact. The CF process significantly reduced concentrations of naphthenic acids (NAs) and oxidized NAs by 37 and 86%, respectively, demonstrating the applicability of CF pretreatment to remove a persistent and toxic organic fraction from OSPW. Concentrations of vanadium and barium were decreased by 67-78% and 42-63%, respectively. Analysis of surface functional groups on flocs also confirmed the removal of the NAs compounds. Flocculation with cationic polymer compared to alum, caused toxicity toward the benthic invertebrate, Chironoums dilutus, thus application of the polymer should be limited.

  17. Phytotoxicity and naphthenic acid dissipation from oil sands fine tailings treatments planted with the emergent macrophyte Phragmites australis.

    PubMed

    Armstrong, Sarah A; Headley, John V; Peru, Kerry M; Mikula, Randy J; Germida, James J

    2010-01-01

    During reclamation the water associated with the runoff or groundwater flushing from dry stackable tailings technologies may become available to the reclaimed environment within an oil sands lease. Here we evaluate the performance of the emergent macrophyte, common reed (Phragmites australis), grown in chemically amended mature fine tailings (MFT) and simulated runoff/seepage water from different MFT drying treatments. The present study also investigated the phytotoxicity of the concentration of oil sands naphthenic acids (NAs) in different MFT drying chemical treatments, in both planted and unplanted systems. We demonstrate that although growth was reduced, the emergent macrophyte common reed was capable of growing in diluted unamended MFT runoff, as well as in diluted runoff from MFT amended with either 0.25% lime and gypsum or 0.5% gypsum. Common reed can thus assist in the dewatering process of oil sands MFT. However, simulated runoff or seepage waters from chemically amended and dried MFT were phytotoxic, due to combined levels of salts, naphthenic acids and pH. Phytoremediation of runoff water/ground water seepage from dry-land applied MFT will thus require pre-treatment in order to make conditions more favorable for plant growth.

  18. Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry.

    PubMed

    Holowenko, Fervone M; MacKinnon, Michael D; Fedorak, Phillip M

    2002-06-01

    The water produced during the extraction of bitumen from oil sands is toxic to aquatic organisms due largely to a group of naturally occurring organic acids, naphthenic acids (NAs), that are solubilized from the bitumen during processing. NAs are a complex mixture of alkyl-substituted acyclic and cycloaliphatic carboxylic acids, with the general chemical formula CnH(2n + Z)O2, where n is the carbon number and Z specifies a homologous family. Gas chromatography-electron impact mass spectrometry was used to characterize NAs in nine water samples derived from oil sands extraction processes. For each sample, the analysis provided the relative abundances for up to 156 base peaks, with each representing at least one NA structure. Plotting the relative abundances of NAs as three-dimensional bar graphs showed differences among samples. The relative abundance of NAs with carbon numbers < or = 21 to those in the "C22 + cluster" (sum of all NAs with carbon numbers > or = 22 in Z families 0 to -12) proved useful for comparing the water samples that had a range of toxicities. A decrease in toxicity of process-affected waters accompanied an increase in the proportion of NAs in the "C22 + cluster", likely caused by biodegradation of NAs with carbon numbers of < or = 21. In addition, an increase in the proportion of NAs in the "C22 + cluster" accompanied a decrease in the total NAs in the process-affected waters, again suggesting the selective removal of NAs with carbon numbers of < or = 21. This is the first investigation in which changes in the fingerprint of the NA fraction of process-affected waters from the oil sands operations has corresponded with measured toxicity in these waters.

  19. Engine Tests Using High-Sulfur Diesel Fuel

    DTIC Science & Technology

    1980-09-01

    0.5 wt% sulfur because "too high a sulfur content results in excessive cylinder wear due to acid build-up in the lubricating oil" (Ref 1). Previous...that the addition of 0.3 vol% of an organo-zinc complex fuel additive (zinc naphthenate ) to high-sulfur diesel fuel was an effective means of...disulfide. Addition of 0.3 vol% zinc naphthenate to high- sulfur fuel increased the fuel ash to 0.035 wt% while the cetane number re- mained unchanged

  20. Optimization of bio-mineral lubricants

    NASA Astrophysics Data System (ADS)

    Osama, M.; Rashmi, W.; Khalid, M.; Gupta, TCSM; Yin, Wong W.

    2017-10-01

    Lubricants in metalworking play an essential role in controlling the quality of the final product. Different approaches have been researched to improve the performance of metalworking fluids. The use of vegetable oil such as groundnut oil and fatty acid methyl esters such as palm oil methyl ester (POME) has demonstrated improvements in machining operation parameters. These two types of lubricants provide environmental and lubricating advantages over conventional mineral oil based lubricants. In this study, naphthenic and groundnut oils were blended in three different ratios (3:1, 1:1, 3:1) to study viscosity index, thermal conductivity and evaporation losses with respect to temperature ranging from 24°C - 100°C. In addition, another set of samples were prepared by adding POME to the aforementioned blend ratios with volume fractions of 0.03, 0.05 and 0.07. The evaporation loss was evaluated using the TGA Noack test. Furthermore, results obtained on the viscosity index, thermal conductivity and evaporation losses were modeled using quadratic functions under experimental setup of full factorial design. The models generated are proposed to be used for variety of optimization problems of the groundnut oil and POME contents for this class of lubricants. The results show that as the content of the groundnut oil and POME increase, the viscosity index also increases. Moreover, groundnut oil showed higher thermal conductivity enhancement of about 36% compared to naphthenic oil which depicts that groundnut oil is capable of removing the heat generated during machining operation more efficiently than the naphthenic base oil. In contrast, POME content and temperature did not show strong influence on thermal conductivity. Along with this, it was also found that by increasing the content of the groundnut oil, the evaporation losses are reduced which could be due to the higher viscosity of the groundnut oil.

  1. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    PubMed

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Colloidal properties of single component naphthenic acids and complex naphthenic acid mixtures.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Peru, Kerry M; Headley, John V

    2013-04-01

    Tensiometry was used to provide estimates of the critical micelle concentration (cmc) values for three sources of naphthenic acids (NAs) and three examples of single component NAs (S1-S3) in aqueous solution at pH 10.5 and 295 K. Two commercially available mixtures of NAs and an industrially derived mixture of NAs obtained from Alberta oil sands process water (OSPW) were investigated. The three examples of single component NAs (C(n)H(2n+z)O2) were chosen with variable z-series to represent chemical structures with 0-2 rings, as follows: 2-hexyldecanoic acid (z=0; S1), trans-4-pentylcyclohexanecarboxylic acid (z=-2; S2) and dicyclohexylacetic acid (z=-4; S3). The estimated cmc values for S1 (35.6 μM), S2 (0.545 mM), and S3 (4.71 mM) vary over a wide range according to their relative lipophile characteristics of each carboxylate anion. The cmc values for the three complex mixtures of NAs were evaluated. Two disctinct cmc values were observed (second listed in brackets) as follows: Commercial sample 1; 50.9 μM (109 μM), Commercial sample 2; 22.3 μM (52.2 μM), and Alberta derived OSPW; 154 μM (417 μM). These results provide strong support favouring two general classes of NAs in the mixtures investigated with distinct cmc values. We propose that the two groups may be linked to a recalcitrant fraction with a relatively large range of cmc values (52.2-417 μM) and a readily biodegradable fraction with a relatively low range of cmc values (22.3-154 μM) depending on the source of NAs in a given mixture. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Effect of alkyl side chain location and cyclicity on the aerobic biotransformation of naphthenic acids.

    PubMed

    Misiti, Teresa M; Tezel, Ulas; Pavlostathis, Spyros G

    2014-07-15

    Aerobic biodegradation of naphthenic acids is of importance to the oil industry for the long-term management and environmental impact of process water and wastewater. The effect of structure, particularly the location of the alkyl side chain as well as cyclicity, on the aerobic biotransformation of 10 model naphthenic acids (NAs) was investigated. Using an aerobic, mixed culture, enriched with a commercial NA mixture (NA sodium salt; TCI Chemicals), batch biotransformation assays were conducted with individual model NAs, including eight 8-carbon isomers. It was shown that NAs with a quaternary carbon at the α- or β-position or a tertiary carbon at the β- and/or β'-position are recalcitrant or have limited biodegradability. In addition, branched NAs exhibited lag periods and lower degradation rates than nonbranched or simple cyclic NAs. Two NA isomers used in a closed bottle, aerobic biodegradation assay were mineralized, while 21 and 35% of the parent compound carbon was incorporated into the biomass. The NA biodegradation probability estimated by two widely used models (BIOWIN 2 and 6) and a recently developed model (OCHEM) was compared to the biodegradability of the 10 model NAs tested in this study as well as other related NAs. The biodegradation probability estimated by the OCHEM model agreed best with the experimental data and was best correlated with the measured NA biodegradation rate.

  4. Toxicity of naphthenic acids to invertebrates: Extracts from oil sands process-affected water versus commercial mixtures.

    PubMed

    Bartlett, Adrienne J; Frank, Richard A; Gillis, Patricia L; Parrott, Joanne L; Marentette, Julie R; Brown, Lisa R; Hooey, Tina; Vanderveen, Ruth; McInnis, Rodney; Brunswick, Pamela; Shang, Dayue; Headley, John V; Peru, Kerry M; Hewitt, L Mark

    2017-08-01

    The toxicity of oil sands process-affected water (OSPW) has been primarily attributed to polar organic constituents, including naphthenic acid fraction components (NAFCs). Our objective was to assess the toxicity of NAFCs derived from fresh and aged OSPW, as well as commercial naphthenic acid (NA) mixtures. Exposures were conducted with three aquatic species: Hyalella azteca (freshwater amphipod), Vibrio fischeri (marine bacterium, Microtox ® assay), and Lampsilis cardium (freshwater mussel larvae (glochidia)). Commercial NAs were more toxic than NAFCs, with differences of up to 30-, 4-, and 120-fold for H. azteca, V. fischeri, and L. cardium, respectively, demonstrating that commercial NAs are not reliable surrogates for assessing the toxicity of NAFCs. Differences in toxicity between species were striking for both commercial NAs and NAFCs. Overall, V. fischeri was the least sensitive and H. azteca was the most sensitive organism. Responses of V. fischeri and H. azteca to NAFC exposures were consistent (< 2-fold difference) regardless of source and age of OSPW; however, effects on L. cardium ranged 17-fold between NAFCs. NAFCs derived from fresh OSPW sources were similarly or less toxic to those from aged OSPW. Our results support the need to better characterize the complex mixtures associated with bitumen-influenced waters, both chemically and toxicologically. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    PubMed

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors.

  6. Opportunistic disease in yellow perch in response to decadal changes in the chemistry of oil sands-affected waters.

    PubMed

    Hogan, Natacha S; Thorpe, Karen L; van den Heuvel, Michael R

    2018-03-01

    Oil sands-affected water from mining must eventually be incorporated into the reclaimed landscape or treated and released. However, this material contains petrogenic organic compounds, such as naphthenic acids and traces of polycyclic aromatic hydrocarbons. This has raised concerns for impacts of oil sands process-affected waters on the heath of wildlife and humans downstream of receiving environments. The objective of this study was to evaluate the temporal association of disease states in fish with water chemistry of oil sands-affected waters over more than a decade and determine the pathogens associated with disease pathologies. Yellow perch (Perca flavescens) captured from nearby lakes were stocked into two experimental ponds during 1995-1997 and 2008-2010. South Bison Pond is a drainage basin that has received unextracted oil sands-contaminated material. Demonstration Pond is a constructed pond containing mature fine tailings capped with fresh water. Two disease pathologies, fin erosion for which a suspected bacterial pathogen (Acinetobacter Iwoffi) is identified, and lymphocystis (confirmed using a real-time PCR) were associated with oil sands-affected water exposure. From 1995 to 1997 pathologies were most prevalent in the South Bison Pond; however, from 2008 to 2009, disease was more frequently observed in the Demonstration Pond. CYP1A activity was 3-16 fold higher in fish from experimental ponds as compared to reference populations and this pattern was consistent across all sampling years. Bile fluorescence displayed a gradient of exposure with experimental ponds being elevated over local perch populations. Naphthenic acids decreased in the Bison Pond from approximately 12 mg/L to <4 mg/L while naphthenic acids increased in the Demonstration Pond from 6 mg/L to 12 mg/L due to tailings densification. Temporal changes in naphthenic acid levels, CYP1A activity and bile fluorescent metabolites correlate positively with incidence of disease pathologies whereas all inorganic water quality changes (major ions, pH, metals) were not associated with disease responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Preignition and Autoignition Behavior of the Xylene Isomers

    DTIC Science & Technology

    2010-03-01

    of the carbon-carbon bond at the carbon atom one removed from the radical site (Law, 2006). 10 ketohydroperoxide produces another hydroxyl radical...paraffin, naphthene , and aromatic content of jet fuel samples fairly well (Holley et al., 2007). A more detailed chemical speciation has been...an intermediate from toluene oxidation in the PFR facility. This also removes concern that phenol may have reacted during the quenching process, if

  8. Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke.

    PubMed

    Pourrezaei, Parastoo; Alpatova, Alla; Khosravi, Kambiz; Drzewicz, Przemysław; Chen, Yuan; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2014-06-15

    The oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW. While the application of 25 g/L ZVI to OSPW resulted in 58.4% removal of NAs in the presence of oxygen, the addition of 25 g petroleum coke (PC) as an electron conductor enhanced the NAs removal up to 90.9%. The increase in ZVI concentration enhanced the removals of NAs, AEF, and fluorophore compounds from OSPW. It was suggested that the electrons generated from the oxidation of ZVI were transferred to oxygen, resulting in the production of hydroxyl radicals and oxidation of NAs. When OSPW was de-oxygenated, the NAs removal decreased to 17.5% and 65.4% during treatment with ZVI and CZVI, respectively. The removal of metals in ZVI samples was similar to that obtained during CZVI treatment. Although an increase in ZVI concentration did not enhance the removal of metals, their concentrations effectively decreased at all ZVI loadings. The Microtox(®) bioassay with Vibrio fischeri showed a decrease in the toxicity of ZVI- and CZVI-treated OSPW. The results obtained in this study showed that the application of ZVI in combination with PC is a promising technology for OSPW treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Preignition and Autoignition Behavior of the Xylene Isomers

    DTIC Science & Technology

    2010-03-01

    3 β-scission is the breaking of the carbon-carbon bond at the carbon atom one removed from the radical site (Law, 2006). 10...jet fuel (TS-1); this sample matches the average paraffin, naphthene , and aromatic content of jet fuel samples fairly well (Holley et al., 2007). A...Moreover, Lenhert et al. (2009) identified phenol as an intermediate from toluene oxidation in the PFR facility. This also removes concern that phenol may

  10. Combustion of Drops and Sprays of Heavy Fuel Oils and Their Emulsions.

    DTIC Science & Technology

    1980-12-01

    Details of the Injector Mount .... .............. ... 144 5. Arrangement to Remove Soot from Windows .. ......... ... 145 6. Modified Injector Plug...the carbon deposits could be attributed to the increased residual carbon Residual fuel oils are known to contain polynuclear aromatic and naphthenic ...cleaned to remove the fine soot which clings to the windows and can- not be blown away by the jets. (iv ) For spray combustion tests, as the nozzles

  11. Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids.

    PubMed

    Celsie, Alena; Parnis, J Mark; Mackay, Donald

    2016-03-01

    The effects of temperature, pH, and salinity change on naphthenic acids (NAs) present in oil-sands process wastewater were modeled for 55 representative NAs. COSMO-RS was used to estimate octanol-water (KOW) and octanol-air (KOA) partition ratios and Henry's law constants (H). Validation with experimental carboxylic acid data yielded log KOW and log H RMS errors of 0.45 and 0.55 respectively. Calculations of log KOW, (or log D, for pH-dependence), log KOA and log H (or log HD, for pH-dependence) were made for model NAs between -20 °C and 40 °C, pH between 0 and 14, and salinity between 0 and 3 g NaCl L(-1). Temperature increase by 60 °C resulted in 3-5 log unit increase in H and a similar magnitude decrease in KOA. pH increase above the NA pKa resulted in a dramatic decrease in both log D and log HD. Salinity increase over the 0-3 g NaCl L(-1) range resulted in a 0.3 log unit increase on average for KOW and H values. Log KOW values of the sodium salt and anion of the conjugate base were also estimated to examine their potential for contribution to the overall partitioning of NAs. Sodium salts and anions of naphthenic acids are predicted to have on average 4 log units and 6 log units lower log KOW values, respectively, with respect to the corresponding neutral NA. Partitioning properties are profoundly influenced by the by the relative prevailing pH and the substance's pKa at the relevant temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Comparison of biomass from integrated fixed-film activated sludge (IFAS), moving bed biofilm reactor (MBBR) and membrane bioreactor (MBR) treating recalcitrant organics: Importance of attached biomass.

    PubMed

    Huang, Chunkai; Shi, Yijing; Xue, Jinkai; Zhang, Yanyan; Gamal El-Din, Mohamed; Liu, Yang

    2017-03-15

    This study compared microbial characteristics and oil sands process-affected water (OSPW) treatment performance of five types of microbial biomass (MBBR-biofilm, IFAS-biofilm, IFAS-floc, MBR-aerobic-floc, and MBR-anoxic-floc) cultivated from three types of bioreactors (MBBR, IFAS, and MBR) in batch experiments. Chemical oxygen demand (COD), ammonium, acid extractable fraction (AEF), and naphthenic acids (NAs) removals efficiencies were distinctly different between suspended and attached bacterial aggregates and between aerobic and anoxic suspended flocs. MBR-aerobic-floc and MBR-anoxic-floc demonstrated COD removal efficiencies higher than microbial aggregates obtained from MBBR and IFAS, MBBR and IFAS biofilm had higher AEF removal efficiencies than those obtained using flocs. MBBR-biofilm demonstrated the most efficient NAs removal from OSPW. NAs degradation efficiency was highly dependent on the carbon number and NA cyclization number according to UPLC/HRMS analysis. Mono- and di-oxidized NAs were the dominant oxy-NA species in OSPW samples. Microbial analysis with quantitative polymerase chain reaction (q-PCR) indicated that the bacterial 16S rRNA gene abundance was significantly higher in the batch bioreactors with suspended flocs than in those with biofilm, the NSR gene abundance in the MBR-anoxic bioreactor was significantly lower than that in aerobic batch bioreactors, and denitrifiers were more abundant in the suspended phase of the activated sludge flocs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. High Density Jet Fuel Supply and Specifications

    DTIC Science & Technology

    1986-01-01

    34 • • . * , • •, " " . . • • . • , . • • "vj" , j, , • * List of Illustrations Page Figure 1 U.S. Naphthenic Crude Oil Fields 8 Figure 2 JP-8X Production from Naphthenic Crude 12 Figure...Indicates which crude oil samples were requested and obtained. The process of classifying these fields as naphthenic involves some risk, since different... fields . Table 3 shows the largest naphthenic crude oil production by far is in California (85% of naphthenic production), and particularly in the San

  14. 21 CFR 524.463 - Copper naphthenate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Copper naphthenate. 524.463 Section 524.463 Food... DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.463 Copper naphthenate. (a) Amount. The drug is a 37.5 percent solution of copper naphthenate. (b) Sponsors. See Nos...

  15. 21 CFR 524.463 - Copper naphthenate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Copper naphthenate. 524.463 Section 524.463 Food... DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.463 Copper naphthenate. (a) Amount. The drug is a 37.5 percent solution of copper naphthenate. (b) Sponsors. See Nos...

  16. Aquatic plant-derived changes in oil sands naphthenic acid signatures determined by low-, high- and ultrahigh-resolution mass spectrometry.

    PubMed

    Headley, John V; Peru, Kerry M; Armstrong, Sarah A; Han, Xiumei; Martin, Jonathan W; Mapolelo, Mmilili M; Smith, Donald F; Rogers, Ryan P; Marshall, Alan G

    2009-02-01

    Mass spectrometry is a common tool for studying the fate of complex organic compound mixtures in oil sands processed water (OSPW), but a comparison of low-, high- ( approximately 10 000), and ultrahigh-resolution ( approximately 400 000) instrumentation for this purpose has not previously been made. High-resolution quadrupole time-of-flight mass spectrometry (QTOF MS) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), with negative-ion electrospray ionization, provided evidence for the selective dissipation of components in OSPW. Dissipation of oil sands naphthenic acids (NAs with general formula C(n)H(2n+z)O(2) where n is the number of carbon atoms, and Z is zero or a negative even number describing the number of rings) was masked (by components such as fatty acids, O(3), O(5), O(6), O(7), SO(2), SO(3), SO(4), SO(5), SO(6), and NO(4) species) at low resolution (1000) when using a triple quadrupole mass spectrometer. Changes observed in the relative composition of components in OSPW appear to be due primarily to the presence of plants, specifically cattails (Typha latifolia) and their associated microorganisms. The observed dissipation included a range of heteratomic species containing O(2), O(3), O(4), and O(5), present in Athabasca oil sands acid extracts. For the heteratomic O(2) species, namely naphthenic acids, an interesting structural relationship suggests that low and high carbon number NAs are dissipated by the plants preferentially, with a minimum around C(14)/C(15). Other heteratomic species containing O(6), O(7), SO(2), SO(3), SO(4), SO(5), SO(6), and NO(4) appear to be relatively recalcitrant to the cattails and were not dissipated to the same extent in planted systems. Copyright 2009 John Wiley & Sons, Ltd.

  17. LBP Concerns in Producing Recycled Concrete Aggregate from Former Fort Ord Family Housing

    DTIC Science & Technology

    2007-01-01

    that hasten drying. They pull oxygen through the wet paint film to oxidize and cure the paint. These driers include lead naphthenate , lead resinates...They were out of the way of the active demolition work, and they were among the last to be removed . CCC took floor wipes at the three buildings...preceded by an “abate- ment activity” whereby all identified LBP was to be removed . However, the scope and effectiveness of this activity is

  18. Characterization of dicarboxylic naphthenic acid fraction compounds utilizing amide derivatization: Proof of concept.

    PubMed

    Kovalchik, Kevin A; MacLennan, Matthew S; Peru, Kerry M; Ajaero, Chukwuemeka; McMartin, Dena W; Headley, John V; Chen, David D Y

    2017-12-30

    The characterization of naphthenic acid fraction compounds (NAFCs) in oil sands process affected water (OSPW) is of interest for both toxicology studies and regulatory reasons. Previous studies utilizing authentic standards have identified dicarboxylic naphthenic acids using two-dimensional gas chromatography hyphenated to time-of-flight mass spectrometry (GC × GC/TOFMS). The selective derivatization of hydroxyl groups has also recently aided in the characterization of oxy-NAFCs, and indirectly the characterization of dicarboxylic NAFCs. However, there has been no previous report of derivatization being used to directly aid in the standard-free characterization of NAFCs with multiple carboxylic acid functional groups. Herein we present proof-of-concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization. Carboxylic acid groups in OSPW extract and in a dicarboxylic acidstandard were derivatized to amides using a previously described method. The derivatized extract and derivatized standard were analyzed by direct-injection positive-mode electrospray ionization ((+)ESI) high-resolution mass spectrometry (HRMS), and the underivatized extract was analyzed by (-)ESI MS. Tandem mass spectrometry (MS/MS) was carried out on selected ions of the derivatized standard and derivatized OSPW. Data analysis was carried out using the Python programming language. The distribution of monocarboxylic NAFCs observed in the amide-derivatized OSPW sample by (+)ESI-MS was generally similar to that seen in underivatized OSPW by (-)ESI-MS. The dicarboxylic acid standard shows evidence of being doubly derivatized, although the second derivatization appears to be inefficient. Furthermore, a spectrum of potential diacid NAFCs is presented, identified by both charge state and derivatization mass. Interference due to the presence of multiple derivatization products is noted, but can be eliminated using on-line separation or an isotopically labelled derivatization reagent. Proof of concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization is demonstrated. Furthermore, (+)ESI-HRMS of the derivatized monocarboxylic NAFCS yields similar information to (-)ESI-MS analysis of underivatized NAFCs, with the benefit of added selectivity for carboxylic acid species and the characterization of diacids. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Oxidation of Oil Sands Process-Affected Water by Potassium Ferrate(VI).

    PubMed

    Wang, Chengjin; Klamerth, Nikolaus; Huang, Rongfu; Elnakar, Haitham; Gamal El-Din, Mohamed

    2016-04-19

    This paper investigates the oxidation of oil sands process-affected water (OSPW) by potassium ferrate(VI). Due to the selectivity of ferrate(VI) oxidation, two-ring and three-ring fluorescing aromatics were preferentially removed at doses <100 mg/L Fe(VI), and one-ring aromatics were removed only at doses ≥100 mg/L Fe(VI). Ferrate(VI) oxidation achieved 64.0% and 78.4% removal of naphthenic acids (NAs) at the dose of 200 mg/L and 400 mg/L Fe(VI) respectively, and NAs with high carbon number and ring number were removed preferentially. (1)H nuclear magnetic resonance ((1)H NMR) spectra indicated that the oxidation of fluorescing aromatics resulted in the opening of some aromatic rings. Electron paramagnetic resonance (EPR) analysis detected signals of organic radical intermediates, indicating that one-electron transfer is one of the probable mechanisms in the oxidation of NAs. The inhibition effect of OSPW on Vibrio fischeri and the toxicity effect on goldfish primary kidney macrophages (PKMs) were both reduced after ferrate(VI) oxidation. The fluorescing aromatics in OSPW were proposed to be an important contributor to this acute toxicity. Degradation of model compounds with ferrate(VI) was also investigated and the results confirmed our findings in OSPW study.

  20. Treatment of oil sands process-affected water (OSPW) using ozonation combined with integrated fixed-film activated sludge (IFAS).

    PubMed

    Huang, Chunkai; Shi, Yijing; Gamal El-Din, Mohamed; Liu, Yang

    2015-11-15

    Two integrated fixed-film activated sludge (IFAS) reactors were operated continuously to treat raw (untreated) and ozonated (30 mg/L) oil sands process-affected water (OSPW). After 11 months, 12.1% of the acid extractable fraction (AEF) and 43.1% of the parent naphthenic acids (NAs) were removed in the raw OSPW IFAS, while 42.0% AEF and 80.2% of parent NAs were removed in the ozonated OSPW IFAS. UPLC/HRMS analysis showed that NA biodegradation significantly decreased as the NA cyclization number increased. Confocal laser scanning microscopy (CLSM) results showed that the biofilm in the ozonated OSPW IFAS was significantly thicker (94 ± 1.6 μm) than the biofilm in the raw OSPW IFAS (72 ± 2.8 μm) after 283 days of cultivation. The quantitative polymerase chain reaction (q-PCR) revealed that the abundance proportions of both nitrifier genes (AomA, NSR and Nitro) and denitrifier genes (narG, nirS, nirK and nosZ) within total bacteria were significantly higher in biofilms than in flocs in the raw OSPW IFAS system, but a different trend was observed in the ozonated OSPW IFAS system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Petroleum coke adsorption as a water management option for oil sands process-affected water.

    PubMed

    Zubot, Warren; MacKinnon, Michael D; Chelme-Ayala, Pamela; Smith, Daniel W; Gamal El-Din, Mohamed

    2012-06-15

    Water is integral to both operational and environmental aspects of the oil sands industry. A water treatment option based on the use of petroleum coke (PC), a by-product of bitumen upgrading, was examined as an opportunity to reduce site oil sands process-affected water (OSPW) inventories and net raw water demand. Changes in OSPW quality when treated with PC included increments in pH levels and concentrations of vanadium, molybdenum, and sulphate. Constituents that decreased in concentration after PC adsorption included total acid-extractable organics (TAO), bicarbonate, calcium, barium, magnesium, and strontium. Changes in naphthenic acids (NAs) speciation were observed after PC adsorption. A battery of bioassays was used to measure the OSPW toxicity. The results indicated that untreated OSPW was toxic towards Vibrio fischeri and rainbow trout. However, OSPW treated with PC at appropriate dosages was not acutely toxic towards these test organisms. Removal of TAO was found to be an adsorption process, fitting the Langmuir and Langmuir-Freundlich isotherm models. For TAO concentrations of 60 mg/L, adsorption capacities ranged between 0.1 and 0.46 mg/g. This study demonstrates that freshly produced PC from fluid cokers provides an effective treatment of OSPW in terms of key constituents' removal and toxicity reduction. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Toxicity of naphthenic acid fraction components extracted from fresh and aged oil sands process-affected waters, and commercial naphthenic acid mixtures, to fathead minnow (Pimephales promelas) embryos.

    PubMed

    Marentette, Julie R; Frank, Richard A; Bartlett, Adrienne J; Gillis, Patricia L; Hewitt, L Mark; Peru, Kerry M; Headley, John V; Brunswick, Pamela; Shang, Dayue; Parrott, Joanne L

    2015-07-01

    Naphthenic acids (NAs) are constituents of oil sands process-affected water (OSPW). These compounds can be both toxic and persistent and thus are a primary concern for the ultimate remediation of tailings ponds in northern Alberta's oil sands regions. Recent research has focused on the toxicity of NAs to the highly vulnerable early life-stages of fish. Here we examined fathead minnow embryonic survival, growth and deformities after exposure to extracted NA fraction components (NAFCs), from fresh and aged oil sands process-affected water (OSPW), as well as commercially available NA mixtures. Commercial NA mixtures were dominated by acyclic O2 species, while NAFCs from OSPW were dominated by bi- and tricyclic O2 species. Fathead minnow embryos less than 24h old were reared in tissue culture plates terminating at hatch. Both NAFC and commercial NA mixtures reduced hatch success, although NAFCs from OSPW were less toxic (EC50=5-12mg/L, nominal concentrations) than commercial NAs (2mg/L, nominal concentrations). The toxicities of NAFCs from aged and fresh OSPW were similar. Embryonic heart rates at 2 days post-fertilization (dpf) declined with increasing NAFC exposure, paralleling patterns of hatch success and rates of cardiovascular abnormalities (e.g., pericardial edemas) at hatch. Finfold deformities increased in exposures to commercial NA mixtures, not NAFCs. Thus, commercial NA mixtures are not appropriate surrogates for NAFC toxicity. Further work clarifying the mechanisms of action of NAFCs in OSPW, as well as comparisons with additional aged sources of OSPW, is merited. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  3. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John Howard; Alvare, Javier

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or onemore » or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.« less

  4. The role of ozone pretreatment on optimization of membrane bioreactor for treatment of oil sands process-affected water.

    PubMed

    Zhang, Yanyan; Xue, Jinkai; Liu, Yang; Gamal El-Din, Mohamed

    2018-04-05

    Previously, anoxic-aerobic membrane bioreactor (MBR) coupled with mild ozonation pretreatment has been applied to remove toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW). To further improve MBR performance, the optimal operation conditions including hydraulic retention time (HRT) and initial ammonia nitrogen (NH 4 + -N) need to be explored. In this study, the role of ozone pretreatment on MBR optimization was investigated. Compared with MBR treating raw OSPW, MBR treating ozonated OSPW had the same optimal operation conditions (HRT of 12 h and NH 4 + -N concentration of 25 mg/L). Nevertheless, MBR performance benefited from HRT adjustment more after ozone pretreatment. HRT adjustment resulted in NA removal in the range of 33-50% for the treatment of ozonated OSPW whereas NA removal for raw OSPW only fluctuated between 27% and 38%. Compared with the removal of classical NAs, the degradation of oxidized NAs was more sensitive to the adjustment of operation conditions. Adjusting HRT increased the removal of oxidized NAs in ozonated OSPW substantially (from 6% to 35%). It was also noticed that microbial communities in MBR treating ozonated OSPW were more responsive to the adjustment of operation conditions as indicated by the noticeable increase of Shannon index and extended genetic distances. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Comparison of Nitrilotriacetic Acid and [S,S]-Ethylenediamine-N,N'-disuccinic Acid in UV-Fenton for the Treatment of Oil Sands Process-Affected Water at Natural pH.

    PubMed

    Zhang, Ying; Klamerth, Nikolaus; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-10-04

    The application of UV-Fenton processes with two chelating agents, nitrilotriacetic acid (NTA) and [S,S]-ethylenediamine-N,N'-disuccinic acid ([S,S]-EDDS), for the treatment of oil sands process-affected water (OSPW) at natural pH was investigated. The half-wave potentials of Fe(III/II)NTA and Fe(III/II)EDDS and the UV photolysis of the complexes in Milli-Q water and OSPW were compared. Under optimum conditions, UV-NTA-Fenton exhibited higher efficiency than UV-EDDS-Fenton in the removal of acid extractable organic fraction (66.8% for the former and 50.0% for the latter) and aromatics (93.5% for the former and 74.2% for the latter). Naphthenic acids (NAs) removals in the UV-NTA-Fenton process (98.4%, 86.0%, and 81.0% for classical NAs, NAs + O (oxidized NAs with one additional oxygen atom), and NAs + 2O (oxidized NAs with two additional oxygen atoms), respectively) under the experimental conditions were much higher than those in the UV-H 2 O 2 (88.9%, 48.7%, and 54.6%, correspondingly) and NTA-Fenton (69.6%, 35.3%, and 44.2%, correspondingly) processes. Both UV-NTA-Fenton and UV-EDDS-Fenton processes presented promoting effect on the acute toxicity of OSPW toward Vibrio fischeri. No significant change of the NTA toxicity occurred during the photolysis of Fe(III)NTA; however, the acute toxicity of EDDS increased as the photolysis of Fe(III)EDDS proceeded. NTA is a much better agent than EDDS for the application of UV-Fenton process in the treatment of OSPW.

  6. Diaromatic sulphur-containing 'naphthenic' acids in process waters.

    PubMed

    West, Charles E; Scarlett, Alan G; Tonkin, Andrew; O'Carroll-Fitzpatrick, Devon; Pureveen, Jos; Tegelaar, Erik; Gieleciak, Rafal; Hager, Darcy; Petersen, Karina; Tollefsen, Knut-Erik; Rowland, Steven J

    2014-03-15

    Polar organic compounds found in industrial process waters, particularly those originating from biodegraded petroleum residues, include 'naphthenic acids' (NA). Some NA have been shown to have acute toxicity to fish and also to produce sub-lethal effects. Whilst some of these toxic effects are produced by identifiable carboxylic acids, acids such as sulphur-containing acids, which have been detected, but not yet identified, may produce others. Therefore, in the present study, the sulphur-containing acids in oil sands process water were studied. A fraction (ca 12% by weight of the total NA containing ca 1.5% weight sulphur) was obtained by elution of methylated NA through an argentation solid phase extraction column with diethyl ether. This was examined by multidimensional comprehensive gas chromatography-mass spectrometry (GCxGC-MS) in both nominal and high resolution mass accuracy modes and by GCxGC-sulphur chemiluminescence detection (GCxGC-SCD). Interpretation of the mass spectra and retention behaviour of methyl esters of several synthesised sulphur acids and the unknowns allowed delimitation of the structures, but not complete identification. Diaromatic sulphur-containing alkanoic acids were suggested. Computer modelling of the toxicities of some of the possible acids suggested they would have similar toxicities to one another and to dehydroabietic acid. However, the sulphur-rich fraction was not toxic or estrogenic to trout hepatocytes, suggesting the concentrations of sulphur acids in this sample were too low to produce any such effects in vitro. Further samples should probably be examined for these compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Estimates of Octanol-Water Partitioning for Thousands of Dissolved Organic Species in Oil Sands Process-Affected Water.

    PubMed

    Zhang, Kun; Pereira, Alberto S; Martin, Jonathan W

    2015-07-21

    In this study, the octanol-water distribution ratios (DOW, that is, apparent KOW at pH 8.4) of 2114 organic species in oil sands process-affected water were estimated by partitioning to polydimethylsiloxane (PDMS) coated stir bars and analysis by ultrahigh resolution orbitrap mass spectrometry in electrospray positive ((+)) and negative ((-)) ionization modes. At equilibrium, the majority of species in OSPW showed negligible partitioning to PDMS (i.e., DOW <1), however estimated DOW's for some species ranged up to 100,000. Most organic acids detected in ESI- had negligible partitioning, although some naphthenic acids (O2(-) species) had estimated DOW ranging up to 100. Polar neutral and basic compounds detected in ESI+ generally partitioned to PDMS to a greater extent than organic acids. Among these species, DOW was greatest among 3 groups: up to 1000 for mono-oxygenated species (O(+) species), up to 127,000 for NO(+) species, and up to 203,000 for SO(+) species. A positive relationship was observed between DOW and carbon number, and a negative relationship was observed with the number of double bonds (or rings). The results highlight that nonacidic compounds in OSPW are generally more hydrophobic than naphthenic acids and that some may be highly bioaccumulative and contribute to toxicity.

  8. Electrospray ionization mass spectrometry of the photodegradation of naphthenic acids mixtures irradiated with titanium dioxide.

    PubMed

    Headley, John V; Du, Jing-Long; Peru, Kerry M; McMartin, Dena W

    2009-05-01

    Electrospray ionization mass spectrometry was used to study the photodegradation of an oil sands naphthenic acid (NA) mixture, a commercial Fluka NA mixture and a candidate NA, 4-Methyl-cyclohexaneaceticic acid (4-MCHAA) irradiated with TiO(2) (P25) suspension under both fluorescent and natural sunlight. Under natural sunlight irradiation over the TiO(2) suspension, approximately 75% of compounds in the NA mixtures and 100% of 4-MCHAA were degraded in 8 h. No degradation was observed under dark conditions, regardless of the presence or absence of TiO(2). The structural formula of the NAs is given by C(n)H(2n + z)O(2), where n represents the carbon number and z specifies a homologous family with 0-6 rings (z = 0 to -12). The degree of degradation was noted to vary among the NA mixtures and the candidate NA compound with more efficient degradation achieved for molecules with -z values from 0 to 6. The difference in the efficacy of the photocatalysis was likely due to the structure and size of the compounds. In the case of -z = 6 to 12, steric constraints are a key factor what hinders photocatalysis.

  9. Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching

    PubMed Central

    Johnson, Richard J; Smith, Ben E; Sutton, Paul A; McGenity, Terry J; Rowland, Steven J; Whitby, Corinne

    2011-01-01

    Naphthenic acids (NAs) occur naturally in oil sands and enter the environment through natural and anthropogenic processes. NAs comprise toxic carboxylic acids that are difficult to degrade. Information on NA biodegradation mechanisms is limited, and there are no studies on alkyl branched aromatic alkanoic acid biodegradation, despite their contribution to NA toxicity and recalcitrance. Increased alkyl side chain branching has been proposed to explain NA recalcitrance. Using soil enrichments, we examined the biodegradation of four aromatic alkanoic acid isomers that differed in alkyl side chain branching: (4′-n-butylphenyl)-4-butanoic acid (n-BPBA, least branched); (4′-iso-butylphenyl)-4-butanoic acid (iso-BPBA); (4′-sec-butylphenyl)-4-butanoic acid (sec-BPBA) and (4′-tert-butylphenyl)-4-butanoic acid (tert-BPBA, most branched). n-BPBA was completely metabolized within 49 days. Mass spectral analysis confirmed that the more branched isomers iso-, sec- and tert-BPBA were transformed to their butylphenylethanoic acid (BPEA) counterparts at 14 days. The BPEA metabolites were generally less toxic than BPBAs as determined by Microtox assay. n-BPEA was further transformed to a diacid, showing that carboxylation of the alkyl side chain occurred. In each case, biodegradation of the carboxyl side chain proceeded through beta-oxidation, which depended on the degree of alkyl side chain branching, and a BPBA degradation pathway is proposed. Comparison of 16S rRNA gene sequences at days 0 and 49 showed an increase and high abundance at day 49 of Pseudomonas (sec-BPBA), Burkholderia (n-, iso-, tert-BPBA) and Sphingomonas (n-, sec-BPBA). PMID:20962873

  10. Effects of environmental conditions on aerobic degradation of a commercial naphthenic acid.

    PubMed

    Kinley, Ciera M; Gaspari, Daniel P; McQueen, Andrew D; Rodgers, John H; Castle, James W; Friesen, Vanessa; Haakensen, Monique

    2016-10-01

    Naphthenic acids (NAs) are problematic constituents in energy-derived waters, and aerobic degradation may provide a strategy for mitigating risks to aquatic organisms. The overall objective of this study was to determine the influence of concentrations of N (as ammonia) and P (as phosphate), and DO, as well as pH and temperatures on degradation of a commercial NA in bench-scale reactors. Commercial NAs provided replicable compounds necessary to compare influences of environmental conditions on degradation. NAs were quantified using high performance liquid chromatography. Microbial diversity and relative abundance were measured in treatments as explanatory parameters for potential effects of environmental conditions on microbial populations to support analytically measured NA degradation. Environmental conditions that positively influenced degradation rates of Fluka NAs included nutrients (C:N 10:1-500:1, C:P 100:1-5000:1), DO (4.76-8.43 mg L(-1)), pH (6-8), and temperature (5-25 °C). Approximately 50% removal of 61 ± 8 mg L(-1) was achieved in less than 2 d after NA introduction, achieving the method detection limit (5 mg L(-1)) by day 6 of the experiment in treatments with a C:N:P ratio of 100:10:1, DO > 8 mg L(-1), pH ∼8-9, and temperatures >23 °C. Microbial diversity was lowest in lower temperature treatments (6-16 °C), which may have resulted in observed slower NA degradation. Based on results from this study, when macro- and micronutrients were available, DO, pH, and temperature (within environmentally relevant ranges) influenced rates of aerobic degradation of Fluka NAs. This study could serve as a model for systematically evaluating environmental factors that influence NA degradation in field scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fate and abundance of classical and heteroatomic naphthenic acid species after advanced oxidation processes: Insights and indicators of transformation and degradation.

    PubMed

    Meshref, Mohamed N A; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2017-11-15

    The toxicological effects from all components in oil sands process-affected water (OSPW) are not known. Alternatively, monitoring the variations and abundance of different classes and compounds after treatments might be a useful approach in OSPW remediation. In this study, the variations in the compositions of classical and heteroatomic naphthenic acids (NAs) after treatment using advanced oxidation processes (AOPs), mainly ozone and peroxone, and two different mass spectrometry methods; ultra-performance liquid chromatography time-of-flight (UPLC-TOFMS) and Fourier transform ion cyclotron resonance (FTICR-MS), were examined. Two markers (O 2 S:O 3 S:O 4 S and O 2 :O 4 ratios) were used to reveal changes and similarities of the treated water characteristics with those in natural waters. Both ratios decreased after all treatments, from 2.7:4.8:2.1 and 3.59 in raw OSPW to 0:1.4:0.5 and 0.7, respectively, in peroxone (1:2), becoming close to the reported ratios in natural waters. Toxicity toward Vibrio fischeri showed residual toxic effects after AOPs, suggesting that part of OSPW toxicity may be caused by specific compounds of NAs (i.e., similar reduction (50%) was achieved in both toxicity and abundance in O 2 species with carbon 15-26) and/or generated by-products (e.g., O 3 S classes at double bond equivalent (DBE) = 4 and C 9 H 12 O 2 at DBE = 4). Although by-products were generated, the best biodegradability enhancement and chemical oxygen demand reduction were achieved in peroxone (1:2) compared to ozone, suggesting the possibility of using combined OSPW remediation approaches (i.e., peroxone coupled with biological process). The recommended indicators can assist in evaluating the treatments' performance and in examining the best removal levels to accomplish significant toxicity reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of classical fenton, nitrilotriacetic acid (NTA)-Fenton, UV-Fenton, UV photolysis of Fe-NTA, UV-NTA-Fenton, and UV-H2O2 for the degradation of cyclohexanoic acid.

    PubMed

    Zhang, Ying; Klamerth, Nikolaus; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2017-05-01

    The treatment of a naphthenic acid model compound, cyclohexanoic acid, with classical Fenton, UV-H 2 O 2 , UV-Fenton, nitrilotriacetic acid (NTA)-Fenton, UV-NTA-Fenton, and UV photolysis of Fe-NTA processes at pHs 3 and 8 was investigated. At 1.47 mM H 2 O 2 , 0.089 mM Fe, and 0.18 mM NTA, the UV-NTA-Fenton process at pH 3 exhibited the highest H 2 O 2 decomposition (100% in 25 min), CHA removal (100% in 12 min) with a rate constant of 0.27 ± 0.025 min -1 , and NTA degradation (100% in 6 min). Due to the formation of H 2 O 2 -Fe(III)NTA adduct, the total Fe concentration in the UV-NTA-Fenton system (0.063 mM at the end of the reaction) at pH 8 was much higher than that in the UV photolysis of Fe(III)NTA process (0.024 mM). The co-complexing effect of borate buffer helped to keep iron soluble; however, it imposed a negative influence on the CHA degradation in the UV-NTA-Fenton process (68% CHA removal in 60 min in the borate buffer compared to 92% in MilliQ water). The results demonstrated that the most efficient process for the CHA degradation under the experimental conditions was the UV-NTA-Fenton process at pH 3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Treatment of oil sands process-affected water (OSPW) using a membrane bioreactor with a submerged flat-sheet ceramic microfiltration membrane.

    PubMed

    Xue, Jinkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2016-01-01

    The release of oil sands process-affected water (OSPW) into the environment is a concern because it contains persistent organic pollutants that are toxic to aquatic life. A modified Ludzack-Ettinger membrane bioreactor (MLE-MBR) with a submerged ceramic membrane was continuously operated for 425 days to evaluate its feasibility on OSPW treatment. A stabilized biomass concentration of 3730 mg mixed liquor volatile suspended solids per litre and a naphthenic acid (NA) removal of 24.7% were observed in the reactor after 361 days of operation. Ultra Performance Liquid Chromatography/High Resolution Mass Spectrometry analysis revealed that the removal of individual NA species declined with increased ring numbers. Pyrosequencing analysis revealed that Betaproteobacteria were dominant in sludge samples from the MLE-MBR, with microorganisms such as Rhodocyclales and Sphingobacteriales capable of degrading hydrocarbon and aromatic compounds. During 425 days of continuous operation, no severe membrane fouling was observed as the transmembrane pressure (TMP) of the MLE-MBR never exceeded -20 kPa given that the manufacturer's suggested critical TMP for chemical cleaning is -35 kPa. Our results indicated that the proposed MLE-MBR has a good potential for removing recalcitrant organics in OSPW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Hazardous Waste Reduction Naval Air Station Oceana

    DTIC Science & Technology

    1991-06-01

    their inherent nature and/or quantities, require special handling during disposal. Hazardous waste under this definition includes paints, acids, caustics ...including naphthenes ), 2% aromatics with less than 0.1% benzene. The boiling range is fror 3130 to 4040 F. It has a petroleum odor and the threshold limit in...7ulfide sludge is generated in the battery during its lifetime. .- second sludge is generated by pretreatment of the spent battery acids. Both of these

  15. Growth, development and incidence of deformities in amphibian larvae exposed as embryos to naphthenic acid concentrations detected in the Canadian oil sands region.

    PubMed

    Melvin, Steven D; Trudeau, Vance L

    2012-08-01

    Naphthenic acids (NA) have been identified as harmful environmental contaminants that influence survival, growth and development of wildlife. Amphibian larvae are particularly susceptible to waterborne contaminants, but little information exists regarding exposure of amphibian embryos or tadpoles to NA. Our results demonstrate that embryos of Lithobates pipiens and Silurana tropicalis exposed to 2-4 mg/l of a commercial NA blend suffer significant reductions (32% and 25%, respectively) in growth and development upon hatching. Increased incidences of deformities were observed in exposed individuals of both species, but were only significant in L. pipiens. Embryos suffered 100% mortality following exposure to 6 mg/l NAs, and narcosis at lower concentrations. LC50 estimates were 4.10 mg/l for 72-h exposure in L. pipiens and 4.13, 3.51, and 2.95 mg/l for 24-, 48-, and 72-h exposure in S. tropicalis. These data suggest that exposure to NAs at environmentally realized concentrations may negatively affect tadpole populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Quaternized Cellulose Hydrogels as Sorbent Materials and Pickering Emulsion Stabilizing Agents

    PubMed Central

    Udoetok, Inimfon A.; Wilson, Lee D.; Headley, John V.

    2016-01-01

    Quaternized (QC) and cross-linked/quaternized (CQC) cellulose hydrogels were prepared by cross-linking native cellulose with epichlorohydrin (ECH), with subsequent grafting of glycidyl trimethyl ammonium chloride (GTMAC). Materials characterization via carbon, hydrogen and nitrogen (CHN) analysis, thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR)/13C solid state NMR spectroscopy provided supportive evidence of the hydrogel synthesis. Enhanced thermal stability of the hydrogels was observed relative to native cellulose. Colloidal stability of octanol and water mixtures revealed that QC induces greater stabilization over CQC, as evidenced by the formation of a hexane–water Pickering emulsion system. Equilibrium sorption studies with naphthenates from oil sands process water (OSPW) and 2-naphthoxy acetic acid (NAA) in aqueous solution revealed that CQC possess higher affinity relative to QC with the naphthenates. According to the Langmuir isotherm model, the sorption capacity of CQC for OSPW naphthenates was 33.0 mg/g and NAA was 69.5 mg/g. CQC displays similar affinity for the various OSPW naphthenate component species in aqueous solution. Kinetic uptake of NAA at variable temperature, pH and adsorbent dosage showed that increased temperature favoured the uptake process at 303 K, where Qm = 76.7 mg/g. Solution conditions at pH 3 or 9 had a minor effect on the sorption process, while equilibrium was achieved in a shorter time at lower dosage (ca. three-fold lower) of hydrogel (100 mg vs. 30 mg). The estimated activation parameters are based on temperature dependent rate constants, k1, which reveal contributions from enthalpy-driven electrostatic interactions. The kinetic results indicate an ion-based associative sorption mechanism. This study contributes to a greater understanding of the adsorption and physicochemical properties of cellulose-based hydrogels. PMID:28773767

  17. Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil--A review.

    PubMed

    Headley, John V; Peru, Kerry M; Barrow, Mark P

    2016-01-01

    There has been a recent surge in the development of mass spectrometric methods for detailed characterization of naphthenic acid fraction compounds (all C(c)H(h)N(n)O(o)S(s), species, including heteroatomic and aromatic components in the acid-extractable fraction) in environmental samples. This surge is driven by the increased activity in oil sands environmental monitoring programs in Canada, the exponential increase in research studies on the isolation and toxicity identification of components in oil sands process water (OSPW), and the analytical requirements for development of technologies for treatment of OSPW. There has been additional impetus due to the parallel studies to control corrosion from naphthenic acids during the mining and refining of heavy bitumen and crude oils. As a result, a range of new mass spectrometry tools have been introduced since our last major review of this topic in 2009. Of particular significance are the developments of combined mass spectrometric methods that incorporate technologies such as gas chromatography, liquid chromatography, and ion mobility. There has been additional progress with respect to improved visualization methods for petroleomics and oil sands environmental forensics. For comprehensive coverage and more reliable characterization of samples, an approach based on multiple-methods that employ two or more ionization modes is recommended. On-line or off-line fractionation of isolated extracts, with or without derivatization, might also be used prior to mass spectrometric analyses. Individual ionization methods have their associated strengths and weaknesses, including biases, and thus dependence upon a single ionization method is potentially misleading. There is also a growing trend to not rely solely on low-resolution mass spectrometric methods (<20,000 resolving power at m/z 200) for characterization of complex samples. Future research is anticipated to focus upon (i) structural elucidation of components to determine the correlation with toxicity or corrosion, (ii) verification of characterization studies based on authentic reference standards and reference materials, and (iii) integrated approaches based on multiple-methods and ionization methods for more-reliable oil sands environmental forensics. © 2015 Wiley Periodicals, Inc.

  18. Partitioning and bioaccumulation of metals from oil sands process affected water in indigenous Parachlorella kessleri.

    PubMed

    Mahdavi, Hamed; Liu, Yang; Ulrich, Ania C

    2013-02-01

    This paper studies the partitioning and bioaccumulation of ten target metals ((53)Cr, Mn, Co, (60)Ni, (65)Cu, (66)Zn, As, (88)Sr, (95)Mo and Ba) from oil sands tailings pond water (TPW) by indigenous Parachlorella kessleri. To determine the role of extracellular and intracellular bioaccumulation in metal removal by P. kessleri, TPW samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.) were enriched with nutrient supplements. Results indicate that intracellular bioaccumulation played the main role in metal removal from TPW; whereas extracellular bioaccumulation was only observed to some extent for Mn, Co, (60)Ni, (65)Cu, (88)Sr, (95)Mo and Ba. The FTIR scan and titration of functional groups on the cell surface indicated low metal binding capacity by indigenous P. kessleri. However, it is believed that the dissolved cations and organic ligand content in TPW (such as naphthenic acids) may interfere with metal binding on the cell surface and lower extracellular bioaccumulation. In addition, the total bioaccumulation and bioconcentration factor (BCF) varied during the cultivation period in different growth regimes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Naphthenic acids in groundwater overlying undeveloped shale gas and tight oil reservoirs.

    PubMed

    Ahad, Jason M E; Pakdel, Hooshang; Lavoie, Denis; Lefebvre, René; Peru, Kerry M; Headley, John V

    2018-01-01

    The acid extractable organics (AEOs) containing naphthenic acids (NAs) in groundwater overlying undeveloped shale gas (Saint-Édouard region) and tight oil (Haldimand sector, Gaspé) reservoirs in Québec, Canada, were analysed using high resolution Orbitrap mass spectrometry and thermal conversion/elemental analysis - isotope ratio mass spectrometry. As classically defined by C n H 2n+Z O 2 , the most abundant NAs detected in the majority of groundwater samples were straight-chain (Z = 0) or monounsaturated (Z = -2) C 16 and C 18 fatty acids. Several groundwater samples from both study areas, however, contained significant proportions of presumably alicyclic bicyclic NAs (i.e., Z = -4) in the C 10 -C 18 range. These compounds may have originated from migrated waters containing a different distribution of NAs, or are the product of in situ microbial alteration of shale organic matter and petroleum. In most groundwater samples, intramolecular carbon isotope values generated by pyrolysis (δ 13 C pyr ) of AEOs were on average around 2-3‰ heavier than those generated by bulk combustion (δ 13 C) of AEOs, providing further support for microbial reworking of subsurface organic carbon. Although concentrations of AEOs were very low (<2.0 mg/L), the detection of potentially toxic bicyclic acids in groundwater overlying unconventional hydrocarbon reservoirs points to a natural background source of organic contaminants prior to any large-scale commercial hydrocarbon development. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. Production of High Density Aviation Fuels via Novel Zeolite Catalyst Routes

    DTIC Science & Technology

    1989-10-23

    range fraction of a naphthenic crude; saturation of an aromatic FCC cycle stock I the appropriate boiling range: saturation of an appropriate boiling...aromatic hydrocarbons and selected aromatic feedstocks to the corresponding mono- and dicyclic naphthenes in the aviation turbine fuel boiling range; and...Paraffins from Naphthenic Refinery Feed Streams .......... 8 Solvent Extraction ........................................... 8 Shape Selective Catalytic

  1. Embryonic exposure to model naphthenic acids delays growth and hatching in the pond snail Lymnaea stagnalis.

    PubMed

    Johnston, Christina U; Clothier, Lindsay N; Quesnel, Dean M; Gieg, Lisa M; Chua, Gordon; Hermann, Petra M; Wildering, Willem C

    2017-02-01

    Naphthenic acids (NAs), a class of structurally diverse carboxylic acids with often complex ring structures and large aliphatic tail groups, are important by-products of many petrochemical processes including the oil sands mining activity of Northern Alberta. While it is evident that NAs have both acute and chronic harmful effects on many organisms, many aspects of their toxicity remain to be clarified. Particularly, while substantive data sets have been collected on NA toxicity in aquatic prokaryote and vertebrate model systems, to date, nothing is known about the toxic effects of these compounds on the embryonic development of aquatic invertebrate taxa, including freshwater mollusks. This study examines under laboratory conditions the toxicity of NAs extracted from oil sands process water (OSPW) and the low-molecular weight model NAs cyclohexylsuccinic acid (CHSA), cyclohexanebutyric acid (CHBA), and 4-tert-butylcyclohexane carboxylic acid (4-TBCA) on embryonic development of the snail Lymnaea stagnalis, a common freshwater gastropod with a broad Palearctic distribution. Evidence is provided for concentration-dependent teratogenic effects of both OSPW-derived and model NAs with remarkably similar nominal threshold concentrations between 15 and 20 mg/L and 28d EC 50 of 31 mg/L. In addition, the data provide evidence for substantial toxicokinetic differences between CHSA, CHBA and 4-TBCA. Together, our study introduces Lymnaea stagnalis embryonic development as an effective model to assay NA-toxicity and identifies molecular architecture as a potentially important toxicokinetic parameter in the toxicity of low-molecular weight NA in embryonic development of aquatic gastropods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of nitrogenous bases on the thermal stability of jet fuels

    NASA Technical Reports Server (NTRS)

    Englin, B. A.; Alekseyeva, M. P.; Gasanova, Z. I.; Isaev, A. V.; Skovorodin, G. B.; Borisova, S. M.

    1977-01-01

    Fuels from naphthenic petroleums were evaluated, and it was found that they had more N bases than those paraffinic ones (0.00024 and 0.000009% N, respectively). The removal of the N bases improved significantly the thermal stability and reduced the residue formation during oxidation of the fuel. The improvement depended on both content and composition of the bases. Thus, fuels with similar content of N bases (0.00058% N) and thermal stability had oxidation residues of 17.5 and 5.6 and sol. gum of 13 and 1.5 mg/100 ml, before and after removing the N bases, respectively.

  3. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water.

    PubMed

    Zhang, Yanyan; McPhedran, Kerry N; Gamal El-Din, Mohamed

    2015-07-15

    Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHDα) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Biodegradation of naphthenic acid surrogates by axenic cultures.

    PubMed

    Yue, Siqing; Ramsay, Bruce A; Ramsay, Juliana A

    2015-07-01

    This is the first study to report that bacteria from the genera Ochrobactrum, Brevundimonas and Bacillus can be isolated by growth on naphthenic acids (NAs) extracted from oil sands process water (OSPW). These pure cultures were screened for their ability to use a range of aliphatic, cyclic and aromatic NA surrogates in 96-well microtiter plates using water-soluble tetrazolium redox dyes (Biolog Redox Dye H) as the indicator of metabolic activity. Of the three cultures, Ochrobactrum showed most metabolic activity on the widest range of NA surrogates. Brevundomonas and especially Ochrobactrum had higher metabolic activity on polycyclic aromatic compounds than other classes of NA surrogates. Bacillus also oxidized a wide range of NA surrogates but not as well as Ochrobactrum. Using this method to characterize NA utilisation, one can identify which NAs or NA classes in OSPW are more readily degraded. Since aromatic NAs have been shown to have an estrogenic effect and polycyclic monoaromatic compounds have been suggested to pose the greatest environmental threat among the NAs, these bacterial genera may play an important role in detoxification of OSPW. Furthermore, this study demonstrates that bacteria belonging to the genera Ochrobactrum and Bacillus can also degrade surrogates of tricyclic NAs.

  5. Petroleomic analysis of the treatment of naphthenic organics in oil sands process-affected water with buoyant photocatalysts.

    PubMed

    Leshuk, Tim; Peru, Kerry M; de Oliveira Livera, Diogo; Tripp, Austin; Bardo, Patrick; Headley, John V; Gu, Frank

    2018-05-10

    The persistence of toxicity associated with the soluble naphthenic organic compounds (NOCs) of oil sands process-affected water (OSPW) implies that a treatment solution may be necessary to enable safe return of this water to the environment. Due to recent advances in high-resolution mass spectrometry (HRMS), the majority of the toxicity of OSPW is currently understood to derive from a subset of toxic classes, comprising only a minority of the total NOCs. Herein, oxidative treatment of OSPW with buoyant photocatalysts was evaluated under a petroleomics paradigm: chemical changes across acid-, base- and neutral-extractable organic fractions were tracked throughout the treatment with both positive and negative ion mode electrospray ionization (ESI) Orbitrap MS. Elimination of detected OS + and NO + classes of concern in the earliest stages of the treatment, along with preferential degradation of high carbon-numbered O 2 - acids, suggest that photocatalysis may detoxify OSPW with higher efficiency than previously thought. Application of petroleomic level analysis offers unprecedented insights into the treatment of petroleum impacted water, allowing reaction trends to be followed across multiple fractions and thousands of compounds simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Structure-reactivity relationship of naphthenic acids in the photocatalytic degradation process.

    PubMed

    de Oliveira Livera, Diogo; Leshuk, Tim; Peru, Kerry M; Headley, John V; Gu, Frank

    2018-06-01

    Bitumen extraction in Canada's oil sands generates oil sands process-affected water (OSPW) as a toxic by-product. Naphthenic acids (NAs) contribute to the water's toxicity, and treatment methods may need to be implemented to enable safe discharge. Heterogeneous photocatalysis is a promising advanced oxidation process (AOP) for OSPW remediation, however, its successful implementation requires understanding of the complicated relationship between structure and reactivity of NAs. This work aimed to study the effect of various structural properties of model compounds on the photocatalytic degradation kinetics via high resolution mass spectrometry (HRMS), including diamondoid structures, heteroatomic species, and degree of unsaturation. The rate of photocatalytic treatment increased significantly with greater structural complexity, namely with carbon number, aromaticity and degree of cyclicity, properties that render particular NAs recalcitrant to biodegradation. It is hypothesized that a superoxide radical-mediated pathway explains these observations and offers additional benefits over traditional hydroxyl radical-based AOPs. Detailed structure-reactivity investigations of NAs in photocatalysis have not previously been undertaken, and the results described herein illustrate the potential benefit of combining photocatalysis and biodegradation as a complete OSPW remediation technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A traceable reference for direct comparative assessment of total naphthenic acid concentrations in commercial and acid extractable organic mixtures derived from oil sands process water.

    PubMed

    Brunswick, Pamela; Hewitt, L Mark; Frank, Richard A; Kim, Marcus; van Aggelen, Graham; Shang, Dayue

    2017-02-23

    The advantage of using naphthenic acid (NA) mixtures for the determination of total NA lies in their chemical characteristics and identification of retention times distinct from isobaric interferences. However, the differing homolog profiles and unknown chemical structures of NA mixtures do not allow them to be considered a traceable reference material. The current study provides a new tool for the comparative assessment of different NA mixtures by direct reference to a single, well-defined and traceable compound, decanoic-d 19 acid. The method employed an established liquid chromatography time-of-flight mass spectrometry (LC/QToF) procedure that was applicable both to the classic O2 NA species dominating commercial mixtures and additionally to the O4 species known to be present in acid extractable organics (AEOs) derived from oil sands process water (OSPW). Four different commercial NA mixtures and one OSPW-derived AEOs mixture were comparatively assessed. Results showed significant difference among Merichem Technical, Aldrich, Acros, and Kodak commercial NA mixtures with respect to "equivalent to decanoic-d 19 acid" concentration ratios to nominal. Furthermore, different lot numbers of single commercial NA mixtures were found to be inconsistent with respect to their homolog content by percent response. Differences in the observed homolog content varied significantly, particularly at the lower (n = 9-14) and higher (n = 20-23) carbon number ranges. Results highlighted the problem between using NA mixtures from different sources and different lot numbers but offered a solution to the problem from a concentration perspective. It is anticipated that this tool may be utilized in review of historical data in addition to future studies, such as the study of OSPW derived acid extractable organics (AEOs) and fractions employed during toxicological studies.

  8. The effect of oil sands process-affected water and model naphthenic acids on photosynthesis and growth in Emiliania huxleyi and Chlorella vulgaris.

    PubMed

    Beddow, Jessica; Johnson, Richard J; Lawson, Tracy; Breckels, Mark N; Webster, Richard J; Smith, Ben E; Rowland, Steven J; Whitby, Corinne

    2016-02-01

    Naphthenic acids (NAs) are among the most toxic organic pollutants present in oil sands process waters (OSPW) and enter marine and freshwater environments through natural and anthropogenic sources. We investigated the effects of the acid extractable organic (AEO) fraction of OSPW and individual surrogate NAs, on maximum photosynthetic efficiency of photosystem II (PSII) (FV/FM) and cell growth in Emiliania huxleyi and Chlorella vulgaris as representative marine and freshwater phytoplankton. Whilst FV/FM in E. huxleyi and C. vulgaris was not inhibited by AEO, exposure to two surrogate NAs: (4'-n-butylphenyl)-4-butanoic acid (n-BPBA) and (4'-tert-butylphenyl)-4-butanoic acid (tert-BPBA), caused complete inhibition of FV/FM in E. huxleyi (≥10 mg L(-1)n-BPBA; ≥50 mg L(-1)tert-BPBA) but not in C. vulgaris. Growth rates and cell abundances in E. huxleyi were also reduced when exposed to ≥10 mg L(-1)n- and tert-BPBA; however, higher concentrations of n- and tert-BPBA (100 mg L(-1)) were required to reduce cell growth in C. vulgaris. AEO at ≥10 mg L(-1) stimulated E. huxleyi growth rate (p ≤ 0.002), yet had no apparent effect on C. vulgaris. In conclusion, E. huxleyi was generally more sensitive to NAs than C. vulgaris. This report provides a better understanding of the physiological responses of phytoplankton to NAs which will enable improved monitoring of NA pollution in aquatic ecosystems in the future. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Quantitative and qualitative analysis of naphthenic acids in natural waters surrounding the Canadian oil sands industry.

    PubMed

    Ross, Matthew S; Pereira, Alberto dos Santos; Fennell, Jon; Davies, Martin; Johnson, James; Sliva, Lucie; Martin, Jonathan W

    2012-12-04

    The Canadian oil sands industry stores toxic oil sands process-affected water (OSPW) in large tailings ponds adjacent to the Athabasca River or its tributaries, raising concerns over potential seepage. Naphthenic acids (NAs; C(n)H(2n-Z)O(2)) are toxic components of OSPW, but are also natural components of bitumen and regional groundwaters, and may enter surface waters through anthropogenic or natural sources. This study used a selective high-resolution mass spectrometry method to examine total NA concentrations and NA profiles in OSPW (n = 2), Athabasca River pore water (n = 6, representing groundwater contributions) and surface waters (n = 58) from the Lower Athabasca Region. NA concentrations in surface water (< 2-80.8 μg/L) were 100-fold lower than previously estimated. Principal components analysis (PCA) distinguished sample types based on NA profile, and correlations to water quality variables identified two sources of NAs: natural fatty acids, and bitumen-derived NAs. Analysis of NA data with water quality variables highlighted two tributaries to the Athabasca River-Beaver River and McLean Creek-as possibly receiving OSPW seepage. This study is the first comprehensive analysis of NA profiles in surface waters of the region, and demonstrates the need for highly selective analytical methods for source identification and in monitoring for potential effects of development on ambient water quality.

  10. The effect of naphthenic acids on physiological characteristics of the microalgae Phaeodactylum tricornutum and Platymonas helgolandica var. tsingtaoensis.

    PubMed

    Zhang, Huanxin; Tang, Xuexi; Shang, Jiagen; Zhao, Xinyu; Qu, Tongfei; Wang, Ying

    2018-05-11

    Naphthenic acids (NAs) account for 1-2% of crude oil and represent its main acidic component. However, the aquatoxic effects of NAs on marine phytoplankton and their ecological risks have remained largely unknown. Using the marine microalgae Phaeodactylum tricornutum and Platymonas helgolandica var. tsingtaoensis as the target, we studied the effects of NAs on their growth, cell morphology and physiological characteristics. The cell density decreased as the concentrations of NAs increased, indicating that they had an adverse effect on growth of the investigated algae in a concentration-dependent manner. Moreover, scanning electron microscopy revealed NAs exposure caused damage such as deformed cells, shrunken surface and ruptured cell structures. Exposure to NAs at higher concentrations for 48 h significantly increased the content of chlorophyll (Chl) a and b in P. tricornutum, but decreased their levels in P. helgolandica var. tsingtaoensis. NAs with concentrations no higher than 4 mg/L gradually enhanced the Chl fluorescence (ChlF) parameters and decreased the ChlF parameters at higher concentrations for the two marine microalgae. Additionally, NAs induced hormesis on photosynthetic efficiency of the two microalgae and also have the species difference in their aquatic toxicity. Overall, the results of this study provide a better understanding of the physiological responses of phytoplankton and will enable better risk assessments of NAs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Characterization of Athabasca lean oil sands and mixed surficial materials: Comparison of capillary electrophoresis/low-resolution mass spectrometry and high-resolution mass spectrometry.

    PubMed

    MacLennan, Matthew S; Peru, Kerry M; Swyngedouw, Chris; Fleming, Ian; Chen, David D Y; Headley, John V

    2018-05-15

    Oil sands mining in Alberta, Canada, requires removal and stockpiling of considerable volumes of near-surface overburden material. This overburden includes lean oil sands (LOS) which cannot be processed economically but contain sparingly soluble petroleum hydrocarbons and naphthenic acids, which can leach into environmental waters. In order to measure and track the leaching of dissolved constituents and distinguish industrially derived organics from naturally occurring organics in local waters, practical methods were developed for characterizing multiple sources of contaminated water leakage. Capillary electrophoresis/positive-ion electrospray ionization low-resolution time-of-flight mass spectrometry (CE/LRMS), high-resolution negative-ion electrospray ionization Orbitrap mass spectrometry (HRMS) and conventional gas chromatography/flame ionization detection (GC/FID) were used to characterize porewater samples collected from within Athabasca LOS and mixed surficial materials. GC/FID was used to measure total petroleum hydrocarbon and HRMS was used to measure total naphthenic acid fraction components (NAFCs). HRMS and CE/LRMS were used to characterize samples according to source. The amounts of total petroleum hydrocarbon in each sample as measured by GC/FID ranged from 0.1 to 15.1 mg/L while the amounts of NAFCs as measured by HRMS ranged from 5.3 to 82.3 mg/L. Factors analysis (FA) on HRMS data visually demonstrated clustering according to sample source and was correlated to molecular formula. LRMS coupled to capillary electrophoresis separation (CE/LRMS) provides important information on NAFC isomers by adding analyte migration time data to m/z and peak intensity. Differences in measured amounts of total petroleum hydrocarbons by GC/FID and NAFCs by HRMS indicate that the two methods provide complementary information about the nature of dissolved organic species in a soil or water leachate samples. NAFC molecule class O x S y is a possible tracer for LOS seepage. CE/LRMS provides complementary information and is a feasible and practical option for source evaluation of NAFCs in water. Copyright © 2018 John Wiley & Sons, Ltd.

  12. The immunological effects of oil sands surface waters and naphthenic acids on rainbow trout (Oncorhynchus mykiss).

    PubMed

    Leclair, Liane A; MacDonald, Gillian Z; Phalen, Laura J; Köllner, Bernd; Hogan, Natacha S; van den Heuvel, Michael R

    2013-10-15

    There is concern surrounding the immunotoxic potential of naphthenic acids (NAs), a major organic constituent in waters influenced by oil sands contamination. To assess the immunological response to NAs, rainbow trout (Oncorhynchus mykiss) waterborne exposures were conducted with oil sands-influenced waters, NAs extracted and purified from oil sands tailings waters, and benzo[a]pyrene (BaP) as a positive control. After a 7d exposure, blood, spleen, head kidney, and gill samples were removed from a subset of fish in order to evaluate the distribution of thrombocytes, B-lymphocytes, myeloid cells, and T-lymphocytes using fluorescent antibodies specific for those cell types coupled with flow cytometry. The remaining trout in each experimental tank were injected with inactivated Aeromonas salmonicida and held in laboratory water for 21 d and subjected to similar lymphatic cell evaluation in addition to evaluation of antibody production. Fluorescent metabolites in bile as well as liver CYP1A induction were also determined after the 7 and 21 d exposure. Oil sands waters and extracted NAs exposures resulted in an increase in bile fluorescence at phenanthrene wavelengths, though liver CYP1A was not induced in those treatments as it was with the BaP positive control. Trout in the oil sands-influenced water exposure showed a decrease in B- and T-lymphocytes in blood as well as B-lymphocytes and myeloid cells in spleen and an increase in B-lymphocytes in head kidney. The extracted NAs exposure showed a decrease in thrombocytes in spleen at 8 mg/L and an increase in T-lymphocytes at 1mg/L in head kidney after 7d. There was a significant decrease in antibody production against A. salmonicida in both oil sands-influenced water exposures. Because oil sands-influenced waters affected multiple immune parameters, while extracted NAs impacts were limited, the NAs tested here are likely not the cause of immunotoxicity found in the oil sands-influenced water. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Tooele Army Depot - South Area Suspected Release Units. RCRA Facility Investigation - Phase 2, for SWMUs 1, 25, and 27

    DTIC Science & Technology

    1995-11-01

    Thickener (25% naphthenic acids) (25% oleic acid) Source: NUS 1987, Departments of the Army and Air Force 1963 2-8 TOO/TBL0025 07/21/94 11:45 am bpw S-60...Assessment does not state whether incineration occurred at SWMU 1 or elsewhere. The AC containers were decontaminated at SWMU 1 by rinsing with caustic ... caustic decontaminating agents that may have been applied during disposal. Decontaminating agents used include DANC (a mixture of sodium hydroxide and

  14. Comparative Study of Alternative Fuel Icing Inhibitor Additive Properties & Chemical Analysis of Metal Speciation in Aviation Fuels

    DTIC Science & Technology

    2010-08-01

    paraffins, olefins, cyclo-parafins ( naphthenes ), aromatics and a host of trace species. Petroleum distillates such as jet fuels are also a complex...LC method consisted of: Mobile Phase: 95% CH3OH + 0.1% (vol) Acetic Acid 5% De-Ionized H2O Injection Volume: 5 µL Needle Wash in Flush...Port for 20 seconds using mobile phase CH3OH + 0.1% (vol) Acetic- Acid Run Time: 10 minute Post Time: 1 minute Binary Pump SL Flow Rate: 0.3 ml/min

  15. A Health and Environmental Effects Data Base Assessment of U.S. Army Waste Material, Phase 2

    DTIC Science & Technology

    1986-03-04

    10380-28-6 copper 8-quinolinolate 14 L 1338-02-9 copper naphthenate 15 108-94-1 cyclohexanoue 16 106-19-4 dipropyl adipate 17 ; 4682-03-5...Chemical Formulas and Molecular Weight Several compounds, such as calcium resinate, copper naphthenate and zinc * naphthenate , do not have defined...chemical present in spent Latteries. This chemical was chosen because it is most likely to be present in disposal of batteries and is most likely to be

  16. Ozonation of oil sands process-affected water accelerates microbial bioremediation.

    PubMed

    Martin, Jonathan W; Barri, Thaer; Han, Xiumei; Fedorak, Phillip M; El-Din, Mohamed Gamal; Perez, Leonidas; Scott, Angela C; Jiang, Jason Tiange

    2010-11-01

    Ozonation can degrade toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW), but even after extensive treatment a residual NA fraction remains. Here we hypothesized that mild ozonation would selectively oxidize the most biopersistent NA fraction, thereby accelerating subsequent NA biodegradation and toxicity removal by indigenous microbes. OSPW was ozonated to achieve approximately 50% and 75% NA degradation, and the major ozonation byproducts included oxidized NAs (i.e., hydroxy- or keto-NAs). However, oxidized NAs are already present in untreated OSPW and were shown to be formed during the microbial biodegradation of NAs. Ozonation alone did not affect OSPW toxicity, based on Microtox; however, there was a significant acceleration of toxicity removal in ozonated OSPW following inoculation with native microbes. Furthermore, all residual NAs biodegraded significantly faster in ozonated OSPW. The opposite trend was found for ozonated commercial NAs, which are known to contain no significant biopersistent fraction. Thus, we suggest that ozonation preferentially degraded the most biopersistent OSPW NA fraction, and that ozonation is complementary to the biodegradation capacity of microbial populations in OSPW. The toxicity of ozonated OSPW to higher organisms needs to be assessed, but there is promise that this technique could be applied to accelerate the bioremediation of large volumes of OSPW in Northern Alberta, Canada.

  17. Tunable polymeric sorbent materials for fractionation of model naphthenates.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Headley, John V

    2013-04-04

    The sorption properties are reported for several examples of single-component carboxylic acids representing naphthenic acids (NAs) with β-cyclodextrin (β-CD) based polyurethane sorbents. Seven single-component examples of NAs were chosen with variable z values, carbon number, and chemical structure as follows: 2-hexyldecanoic acid (z = 0 and C = 16; S1), n-caprylic acid (z = 0 and C = 8; S2), trans-4-pentylcyclohexanecarboxylic acid (z = -2 and C = 12; S3), 4-methylcyclohexanecarboxylic acid (z = -2 and C = 8; S4), dicyclohexylacetic acid (z = -4; C = 14; S5), 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid (z = -4; C = 14; S6), and lithocholic acid (z = -6; C = 24; S7). The copolymer sorbents were synthesized at three relative β-CD:diisocyanate mole ratios (i.e., 1:1, 1:2, and 1:3) using 4,4'-dicyclohexylmethane diisocyanate (CDI) and 4,4'-diphenylmethane diisocyanate (MDI). The sorption properties of the copolymer sorbents were characterized using equilibrium sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry. The equilibrium fraction of the unbound carboxylate anions was monitored in the aqueous phase. The sorption properties of the copolymer sorbents (i.e., Qm) were obtained from the Sips isotherm model. The Qm values generally decrease as the number of accessible β-CD inclusion sites in the copolymer framework decreases. The chemical structure of the adsorbates played an important role in their relative uptake, as evidenced by the adsorbate lipophilic surface area (LSA) and the involvement of hydrophobic effects. The copolymers exhibit molecular selective sorption of the single-component carboxylates in mixtures which suggests their application as sorbents for fractionation of mixtures of NAs. By comparison, granular activated carbon (GAC) and chitosan sorbents did not exhibit any significant molecular selective sorption relative to the copolymer materials; however, evidence of variable sorption capacity was observed among the sorbents investigated.

  18. Impact of polymeric membrane filtration of oil sands process water on organic compounds quantification.

    PubMed

    Moustafa, Ahmed M A; Kim, Eun-Sik; Alpatova, Alla; Sun, Nian; Smith, Scott; Kang, Seoktae; Gamal El-Din, Mohamed

    2014-01-01

    The interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.7. However, the adsorption of AEF on the membranes increased as the pH of OSPW decreased due to hydrophobic interactions between the membrane surfaces and the protonated molecules. The use of ultra pressure liquid chromatography-high resolution mass spectrometry (UPLC/HRMS) showed insignificant adsorption of NAs on the tested membranes at pH 8.7. However, 26±2.4% adsorption of NAs was observed at pH 5.3 following the protonation of NAs species. For the nylon membrane, excessive carboxylic acids in the commercial NAs caused the formation of negatively charged assisted hydrogen bonds, resulting in increased adsorption at pH 8.2 (25%) as compared to OSPW (0%). The use of membranes for filtration of soluble compounds from complex oily wastewaters before quantification analysis of AEF and NAs should be examined prior to application.

  19. 77 FR 1679 - Notice of Receipt of Requests To Voluntarily Cancel Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    .... II. 075341-00012 Hollow Heart CF.. Copper naphthenate; Sodium fluoride. 075341-00013 COP-R-Plastic II Copper naphthenate; Wood Preserving Sodium fluoride. Compound. CA110009 Ethylene......... Ethylene...

  20. Non-Destructive Inspection Methods for Propulsion Systems and Components

    DTIC Science & Technology

    1979-04-01

    debris on a microfilter, followed by X-ray examination of the deposits and atomic absorption analysis of the deposits dissolved in hydrochloric acid ...thickness. A single naphthenic mineral oil was used for all tests in a once through system to avoid particle contamination. It was found that: the total...Superalliage. Alliage nickel. Acier inoxydable. Mesure expdrimentale. Transformation phase. Oxydation . Carbonisation. Aube turbine. Ddtection ddfaut. Contr6le

  1. Comparison of methods for determination of total oil sands-derived naphthenic acids in water samples.

    PubMed

    Hughes, Sarah A; Huang, Rongfu; Mahaffey, Ashley; Chelme-Ayala, Pamela; Klamerth, Nikolaus; Meshref, Mohamed N A; Ibrahim, Mohamed D; Brown, Christine; Peru, Kerry M; Headley, John V; Gamal El-Din, Mohamed

    2017-11-01

    There are several established methods for the determination of naphthenic acids (NAs) in waters associated with oil sands mining operations. Due to their highly complex nature, measured concentration and composition of NAs vary depending on the method used. This study compared different common sample preparation techniques, analytical instrument methods, and analytical standards to measure NAs in groundwater and process water samples collected from an active oil sands operation. In general, the high- and ultrahigh-resolution methods, namely high performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) and Orbitrap mass spectrometry (Orbitrap-MS), were within an order of magnitude of the Fourier transform infrared spectroscopy (FTIR) methods. The gas chromatography mass spectrometry (GC-MS) methods consistently had the highest NA concentrations and greatest standard error. Total NAs concentration was not statistically different between sample preparation of solid phase extraction and liquid-liquid extraction. Calibration standards influenced quantitation results. This work provided a comprehensive understanding of the inherent differences in the various techniques available to measure NAs and hence the potential differences in measured amounts of NAs in samples. Results from this study will contribute to the analytical method standardization for NA analysis in oil sands related water samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Refining of Military Jet Fuels from Shale Oil. Part II. Volume II. (In Situ Shale Oil Process Data).

    DTIC Science & Technology

    1982-03-01

    SPEC Meeting Specifications OXY Test Series on In Situ Shale Oil z P Pressure (P + N) Paraffins and Naphthenes PRO Test Series on Above Ground Shale Oil...LV 6/ 12.0 Naphthenes , LV% (Aromatics, LV %/ 11.8 Gross Heating Value, Btu/lb 19,720 19,068 -73- TABLE 111-29. CRUDE SHALE: OIL HYDROTREATING SERIES M...Wt % - Ramabottomn Carbon -1.34 IParaffins (P-IN), LV % (71.1) -IOlef ins, LV % 9.4 i ~ Naphthenes , LV% - Aromatics, LV % 19.5 - Gross Heating Value

  3. Inert Reassessment Document for Copper Naphthenate - CAS No. 1338-02-9

    EPA Pesticide Factsheets

    Copper naphthenate is approved by the Food and Drug Administration (FDA) as an indirect food additive, and for use in veterinary topical applications to the surface of horse and pony hooves that have Thrush.

  4. Photocatalytic degradation kinetics of naphthenic acids in oil sands process-affected water: Multifactorial determination of significant factors.

    PubMed

    Leshuk, Tim; de Oliveira Livera, Diogo; Peru, Kerry M; Headley, John V; Vijayaraghavan, Sucharita; Wong, Timothy; Gu, Frank

    2016-12-01

    Oil sands process-affected water (OSPW) is generated as a byproduct of bitumen extraction in Canada's oil sands. Due to the water's toxicity, associated with dissolved acid extractable organics (AEO), especially naphthenic acids (NAs), along with base-neutral organics, OSPW may require treatment to enable safe discharge to the environment. Heterogeneous photocatalysis is a promising advanced oxidation process (AOP) for OSPW remediation, however, predicting treatment efficacy can be challenging due to the unique water chemistry of OSPW from different tailings ponds. The objective of this work was to study various factors affecting the kinetics of photocatalytic AEO degradation in OSPW. The rate of photocatalytic treatment varied significantly in two different OSPW sources, which could not be accounted for by differences in AEO composition, as studied by high resolution mass spectrometry (HRMS). The effects of inorganic water constituents were investigated using factorial and response surface experiments, which revealed that hydroxyl (HO) radical scavenging by iron (Fe 3+ ) and bicarbonate (HCO 3 - ) inhibited the NA degradation rate. The effects of NA concentration and temperature on the treatment kinetics were also evaluated in terms of Langmuir-Hinshelwood and Arrhenius models; pH and temperature were identified as weak factors, while dissolved oxygen (DO) was critical to the photo-oxidation reaction. Accounting for all of these variables, a general empirical kinetic expression is proposed, enabling prediction of photocatalytic treatment performance in diverse sources of OSPW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Coagulation/flocculation process with polyaluminum chloride for the remediation of oil sands process-affected water: Performance and mechanism study.

    PubMed

    Wang, Chengjin; Alpatova, Alla; McPhedran, Kerry N; Gamal El-Din, Mohamed

    2015-09-01

    This study investigated the application of polyaluminum chloride (PACl) for the treatment of the oil sands process-affected water (OSPW). These coagulants are commonly used in water treatment with the most effective species reported to be Al13. PACl with 83.6% Al13 was synthesized using the slow base titration method and compared with a commercially available PACl in terms of aluminum species distribution, coagulation/flocculation (CF) performance, floc morphology, and contaminant removal. Both coagulants were effective in removing suspended solids, achieving over 96% turbidity removal at all applied coagulant doses (0.5-3.0 mM Al). The removal efficiencies of metals varied among different metals depending on their pKa values with metal cations having pKa values (Fe, Al, Ga, and Ti) below OSPW pH of 6.9-8.1 (dose dependent) being removed by more than 90%, while cations with higher pKa values (K, Na, Ca, Mg and Ni) had removals of less than 40%. Naphthenic acids were not removed due to their low molecular weights, negative charges, and hydrophilic characteristics at the OSPW pH. At the highest applied coagulant dose of 3.0 mM Al, the synthetic PACl reduced Vibrio fischeri inhibition effect to 43.3 ± 3.0% from 49.5 ± 0.4% in raw OSPW. In contrast, no reduction of toxicity was found for OSPW treated with the commercial PACl. Based on water quality and floc analyses, the dominant CF mechanism for particle removal during OSPW treatment was considered to be enmeshment in the precipitates (i.e., sweep flocculation). Overall, the CF using synthesized PACl can be a valuable pretreatment process for OSPW to create wastewater that is more easily treated by downstream processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Biostimulation of Oil Sands Process-Affected Water with Phosphate Yields Removal of Sulfur-Containing Organics and Detoxification.

    PubMed

    Quesnel, Dean M; Oldenburg, Thomas B P; Larter, Stephen R; Gieg, Lisa M; Chua, Gordon

    2015-11-03

    The ability to mitigate toxicity of oil sands process-affected water (OSPW) for return into the environment is an important issue for effective tailings management in Alberta, Canada. OSPW toxicity has been linked to classical naphthenic acids (NAs), but the toxic contribution of other acid-extractable organics (AEOs) remains unknown. Here, we examine the potential for in situ bioremediation of OSPW AEOs by indigenous algae. Phosphate biostimulation was performed in OSPW to promote the growth of indigenous photosynthetic microorganisms and subsequent toxicity and chemical changes were determined. After 12 weeks, the AEO fraction of phosphate-biostimulated OSPW was significantly less toxic to the fission yeast Schizosaccharomyces pombe than unstimulated OSPW. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) analysis of the AEO fraction in phosphate-biostimulated OSPW showed decreased levels of SO3 class compounds, including a subset that may represent linear arylsulfonates. A screen with S. pombe transcription factor mutant strains for growth sensitivity to the AEO fraction or sodium dodecylbenzenesulfonate revealed a mode of toxic action consistent with oxidative stress and detrimental effects on cellular membranes. These findings demonstrate a potential algal-based in situ bioremediation strategy for OSPW AEOs and uncover a link between toxicity and AEOs other than classical NAs.

  7. Retardation effect of different alcohols on the cement coagulation in polycarboxylate- and naphthalene-based cement admixtures

    NASA Astrophysics Data System (ADS)

    Huang, S. M.; Zhou, F. L.

    2017-12-01

    Alcohol has great potential to delay the coagulation of cement. The effects of alcohol on paste fluidity and normal consistency coagulation time have been studied for polycarboxylate superplasticizer and naphthene cement admixture. Seven alcohols were combined with polycarboxylate superplasticizer and naphthene at a concentration of 0.01-0.09%, respectively, including n-propanol, methanol, sorbitol, ethylene glycol, glycerol, ethanol, and mannitol. The fluidity and normal consistency coagulation time of each cement admixture were measured. The performance of both polycarboxylate superplasticizer and naphthene cement admixtures were compared to develop cement admixture with delayed coagulation.

  8. Comparison of UV/hydrogen peroxide, potassium ferrate(VI), and ozone in oxidizing the organic fraction of oil sands process-affected water (OSPW).

    PubMed

    Wang, Chengjin; Klamerth, Nikolaus; Messele, Selamawit Ashagre; Singh, Arvinder; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2016-09-01

    The efficiency of three different oxidation processes, UV/H2O2 oxidation, ferrate(VI) oxidation, and ozonation with and without hydroxyl radical (OH) scavenger tert-butyl alcohol (TBA) on the removal of organic compounds from oil sands process-affected water (OSPW) was investigated and compared. The removal of aromatics and naphthenic acids (NAs) was explored by synchronous fluorescence spectra (SFS), ion mobility spectra (IMS), proton and carbon nuclear magnetic resonance ((1)H and (13)C NMR), and ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC TOF-MS). UV/H2O2 oxidation occurred through radical reaction and photolysis, transforming one-ring, two-ring, and three-ring fluorescing aromatics simultaneously and achieving 42.4% of classical NAs removal at 2.0 mM H2O2 and 950 mJ/cm(2) UV dose provided with medium pressure mercury lamp. Ferrate(VI) oxidation exhibited high selectivity, preferentially removing two-ring and three-ring fluorescing aromatics, sulfur-containing NAs (NAs + S), and NAs with high carbon and high hydrogen deficiency. At 2.0 mM Fe(VI), 46.7% of classical NAs was removed. Ozonation achieved almost complete removal of fluorescing aromatics, NAs + S, and classical NAs (NAs with two oxygen atoms) at the dose of 2.0 mM O3. Both molecular ozone reaction and OH reaction were important pathways in transforming the organics in OSPW as supported by ozonation performance with and without TBA. (1)H NMR analyses further confirmed the removal of aromatics and NAs both qualitatively and quantitatively. All the three oxidation processes reduced the acute toxicity towards Vibrio fischeri and on goldfish primary kidney macrophages (PKMs), with ozonation being the most efficient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Influence of commercial (Fluka) naphthenic acids on acid volatile sulfide (AVS) production and divalent metal precipitation.

    PubMed

    McQueen, Andrew D; Kinley, Ciera M; Rodgers, John H; Friesen, Vanessa; Bergsveinson, Jordyn; Haakensen, Monique C

    2016-12-01

    Energy-derived waters containing naphthenic acids (NAs) are complex mixtures often comprising a suite of potentially problematic constituents (e.g. organics, metals, and metalloids) that need treatment prior to beneficial use, including release to receiving aquatic systems. It has previously been suggested that NAs can have biostatic or biocidal properties that could inhibit microbially driven processes (e.g. dissimilatory sulfate reduction) used to transfer or transform metals in passive treatment systems (i.e. constructed wetlands). The overall objective of this study was to measure the effects of a commercially available (Fluka) NA on sulfate-reducing bacteria (SRB), production of sulfides (as acid-volatile sulfides [AVS]), and precipitation of divalent metals (i.e. Cu, Ni, Zn). These endpoints were assessed following 21-d aqueous exposures of NAs using bench-scale reactors. After 21-days, AVS molar concentrations were not statistically different (p<0.0001; α=0.05) among NA treatments (10, 20, 40, 60, and 80mg NA/L) and an untreated control (no NAs). Extent of AVS production was sufficient in all NA treatments to achieve ∑SEM:AVS <1, indicating that conditions were conducive for treatment of metals, with sulfide ligands in excess of SEM (Cu, Ni, and Zn). In addition, no adverse effects to SRB (in terms of density, relative abundance, and diversity) were measured following exposures of a commercial NA. In this bench-scale study, dissimilatory sulfate reduction and subsequent metal precipitation were not vulnerable to NAs, indicating passive treatment systems utilizing sulfide production (AVS) could be used to treat metals occurring in NAs affected waters. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Application of a solar UV/chlorine advanced oxidation process to oil sands process-affected water remediation.

    PubMed

    Shu, Zengquan; Li, Chao; Belosevic, Miodrag; Bolton, James R; El-Din, Mohamed Gamal

    2014-08-19

    The solar UV/chlorine process has emerged as a novel advanced oxidation process for industrial and municipal wastewaters. Currently, its practical application to oil sands process-affected water (OSPW) remediation has been studied to treat fresh OSPW retained in large tailings ponds, which can cause significant adverse environmental impacts on ground and surface waters in Northern Alberta, Canada. Degradation of naphthenic acids (NAs) and fluorophore organic compounds in OSPW was investigated. In a laboratory-scale UV/chlorine treatment, the NAs degradation was clearly structure-dependent and hydroxyl radical-based. In terms of the NAs degradation rate, the raw OSPW (pH ∼ 8.3) rates were higher than those at an alkaline condition (pH = 10). Under actual sunlight, direct solar photolysis partially degraded fluorophore organic compounds, as indicated by the qualitative synchronous fluorescence spectra (SFS) of the OSPW, but did not impact NAs degradation. The solar/chlorine process effectively removed NAs (75-84% removal) and fluorophore organic compounds in OSPW in the presence of 200 or 300 mg L(-1) OCl(-). The acute toxicity of OSPW toward Vibrio fischeri was reduced after the solar/chlorine treatment. However, the OSPW toxicity toward goldfish primary kidney macrophages after solar/chlorine treatment showed no obvious toxicity reduction versus that of untreated OSPW, which warrants further study for process optimization.

  11. Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Barrow, Mark P; Peru, Kerry M; Fahlman, Brian; Hewitt, L Mark; Frank, Richard A; Headley, John V

    2015-09-01

    There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.

  12. Effects-Directed Analysis of Dissolved Organic Compounds in Oil Sands Process-Affected Water.

    PubMed

    Morandi, Garrett D; Wiseman, Steve B; Pereira, Alberto; Mankidy, Rishikesh; Gault, Ian G M; Martin, Jonathan W; Giesy, John P

    2015-10-20

    Acute toxicity of oil sands process-affected water (OSPW) is caused by its complex mixture of bitumen-derived organics, but the specific chemical classes that are most toxic have not been demonstrated. Here, effects-directed analysis was used to determine the most acutely toxic chemical classes in OSPW collected from the world's first oil sands end-pit lake. Three sequential rounds of fractionation, chemical analysis (ultrahigh resolution mass spectrometry), and acute toxicity testing (96 h fathead minnow embryo lethality and 15 min Microtox bioassay) were conducted. Following primary fractionation, toxicity was primarily attributable to the neutral extractable fraction (F1-NE), containing 27% of original organics mass. In secondary fractionation, F1-NE was subfractionated by alkaline water washing, and toxicity was primarily isolated to the ionizable fraction (F2-NE2), containing 18.5% of the original organic mass. In the final round, chromatographic subfractionation of F2-NE2 resulted in two toxic fractions, with the most potent (F3-NE2a, 11% of original organic mass) containing predominantly naphthenic acids (O2(-)). The less-toxic fraction (F3-NE2b, 8% of original organic mass) contained predominantly nonacid species (O(+), O2(+), SO(+), NO(+)). Evidence supports naphthenic acids as among the most acutely toxic chemical classes in OSPW, but nonacidic species also contribute to acute toxicity of OSPW.

  13. Isotherm and kinetic studies on adsorption of oil sands process-affected water organic compounds using granular activated carbon.

    PubMed

    Islam, Md Shahinoor; McPhedran, Kerry N; Messele, Selamawit A; Liu, Yang; Gamal El-Din, Mohamed

    2018-07-01

    The production of oil from oil sands in northern Alberta has led to the generation of large volumes of oil sands process-affected water (OSPW) that was reported to be toxic to aquatic and other living organisms. The toxicity of OSPW has been attributed to the complex nature of OSPW matrix including the inorganic and organic compounds primarily naphthenic acids (NAs: C n H 2n+Z O x ). In the present study, granular activated carbon (GAC) adsorption was investigated for its potential use to treat raw and ozonated OSPW. The results indicated that NA species removal increased with carbon number (n) for a fixed Z number; however, the NA species removal decreased with Z number for a fixed carbon number. The maximum adsorption capacities obtained from Langmuir adsorption isotherm based on acid-extractable fraction (AEF) and NAs were 98.5 mg and 60.9 mg AEF/g GAC and 60 mg and 37 mg NA/g GAC for raw and ozonated OSPW, respectively. It was found that the Freundlich isotherm model best fits the AEF and NA equilibrium data (r 2  ≥ 0.88). The adsorption kinetics showed that the pseudo-second order and intraparticle diffusion models were both appropriate in modeling the adsorption kinetics of AEF and NAs to GAC (r 2  ≥ 0.97). Although pore diffusion was the rate limiting step, film diffusion was still significant for assessing the rate of diffusion of NAs. This study could be helpful to model, design and optimize the adsorption treatment technologies of OSPW and to assess the performance of other adsorbents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Direct patterning of highly-conductive graphene@copper composites using copper naphthenate as a resist for graphene device applications.

    PubMed

    Bi, Kaixi; Xiang, Quan; Chen, Yiqin; Shi, Huimin; Li, Zhiqin; Lin, Jun; Zhang, Yongzhe; Wan, Qiang; Zhang, Guanhua; Qin, Shiqiao; Zhang, Xueao; Duan, Huigao

    2017-11-09

    We report an electron-beam lithography process to directly fabricate graphene@copper composite patterns without involving metal deposition, lift-off and etching processes using copper naphthenate as a high-resolution negative-tone resist. As a commonly used industrial painting product, copper naphthenate is extremely cheap with a long shelf time but demonstrates an unexpected patterning resolution better than 10 nm. With appropriate annealing under a hydrogen atmosphere, the produced graphene@copper composite patterns show high conductivity of ∼400 S cm -1 . X-ray diffraction, conformal Raman spectroscopy and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the final patterns. With the properties of high resolution and high conductivity, the patterned graphene@copper composites could be used as conductive pads and interconnects for graphene electronic devices with ohmic contacts. Compared to common fabrication processes involving metal evaporation and lift-off steps, this pattern-transfer-free fabrication process using copper naphthenate resist is direct and simple but allows comparable device performance in practical device applications.

  15. Aerobic Growth of Rhodococcus aetherivorans BCP1 Using Selected Naphthenic Acids as the Sole Carbon and Energy Sources

    PubMed Central

    Presentato, Alessandro; Cappelletti, Martina; Sansone, Anna; Ferreri, Carla; Piacenza, Elena; Demeter, Marc A.; Crognale, Silvia; Petruccioli, Maurizio; Milazzo, Giorgio; Fedi, Stefano; Steinbüchel, Alexander; Turner, Raymond J.; Zannoni, Davide

    2018-01-01

    Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL-1. The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survival on NAs included changes in cell morphology, production of intracellular bodies and changes in fatty acid composition. Transmission electron microscopy (TEM) analysis of BCP1 cells grown on CHCA or CPCA showed a slight reduction in the cell size, the production of EPS-like material and intracellular electron-transparent and electron-dense inclusion bodies. The electron-transparent inclusions increased in the amount and size in NA-grown BCP1 cells under nitrogen limiting conditions and contained storage lipids as suggested by cell staining with the lipophilic Nile Blue A dye. Lipidomic analyses revealed significant changes with increases of methyl-branched (MBFA) and polyunsaturated fatty acids (PUFA) examining the fatty acid composition of NAs-growing BCP1 cells. PUFA biosynthesis is not usual in bacteria and, together with MBFA, can influence structural and functional processes with resulting effects on cell vitality. Finally, through the use of RT (Reverse Transcription)-qPCR, a gene cluster (chcpca) was found to be transcriptionally induced during the growth on CHCA and CPCA. Based on the expression and bioinformatics results, the predicted products of the chcpca gene cluster are proposed to be involved in aerobic NA degradation in R. aetherivorans BCP1. This study provides first insights into the genetic and metabolic mechanisms allowing a Rhodococcus strain to aerobically degrade NAs. PMID:29706937

  16. Physiological effects and tissue residues from exposure of leopard frogs to commercial naphthenic acids.

    PubMed

    Smits, Judit E G; Hersikorn, Blair D; Young, Rozlyn F; Fedorak, Phillip M

    2012-10-15

    Naphthenic acids (NAs) have been cited as one of the main causes of the toxicity related to oil sands process-affected materials and have recently been measured in biological tissues (fish). However, adverse effects have not been a consistent finding in toxicology studies on vertebrates. This study set out to determine two factors: 1) whether exposure to commercial NAs (Refined Merichem) resulted in detectable tissue residues in native amphibians (northern leopard frogs, Lithobates pipiens), and 2) whether such exposure would produce clinical or subclinical toxicity. Frogs were kept in NA solutions (0, 20, or 40 mg/L) under saline conditions comparable to that on reclaimed wetlands in the Athabasca oil sands for 28 days. These exposures resulted in proportional NA concentrations in muscle tissue of the frogs, estimated by gas chromatography-mass spectrometry analyses. Detailed studies determined if the increasing concentrations of NAs, and subsequently increased tissue NA levels, caused a proportional compromise in the health of the experimental animals. Physiological investigations included innate immune function, thyroid hormone levels, and hepatic detoxification enzyme induction, none of which differed in response to increased exposures or tissue concentrations of NAs. Body mass did increase in both the salt- and NA-exposed animals, likely related to osmotic pressure and uptake of water through the skin. Our results demonstrate that commercial NAs are absorbed and deposited in muscle tissue, yet they show few negative physiological or toxicological effects on the frogs. Copyright © 2012. Published by Elsevier B.V.

  17. Differences in phytotoxicity and dissipation between ionized and nonionized oil sands naphthenic acids in wetland plants.

    PubMed

    Armstrong, Sarah A; Headley, John V; Peru, Kerry M; Germida, James J

    2009-10-01

    Naphthenic acids (NAs) are composed of alkyl-substituted acyclic and cycloaliphatic carboxylic acids and, because they are acutely toxic to fish, are of toxicological concern. During the caustic hot-water extraction of oil from the bitumen in oil sands deposits, NAs become concentrated in the resulting tailings pond water. The present study investigated if dissipation of NAs occurs in the presence of hydroponically grown emergent macrophytes (Typha latifolia, Phragmites australis, and Scirpus acutus) to determine the potential for phytoremediation of these compounds. Plants were grown with oil sands NAs (pKa approximately 5-6) in medium at pH 7.8 (predominantly ionized NAs) and pH 5.0 (predominantly nonionized NAs) to determine if, by altering their chemical form, NAs may be more accessible to plants and, thus, undergo increased dissipation. Whereas the oil sands NA mixture in its nonionized form was more toxic to wetland plants than its ionized form, neither form appeared to be sequestered by wetland plants. The present study demonstrated that plants may selectively enhance the dissipation of individual nonionized NA compounds, which contributes to toxicity reduction but does not translate into detectable total NA dissipation within experimental error and natural variation. Plants were able to reduce the toxicity of a NA system over 30 d, increasing the median lethal concentration (LC50; % of hydroponic solution) of the medium for Daphnia magna by 23.3% +/- 8.1% (mean +/- standard error; nonionized NAs) and 37.0% +/- 2.7% (ionized NAs) as determined by acute toxicity bioassays. This reduction in toxicity was 7.3% +/- 2.6% (nonionized NAs) and 45.0% +/- 6.8% (ionized NAs) greater than that in unplanted systems.

  18. Microbial turnover and incorporation of organic compounds in oil sand mining reclamation sites

    NASA Astrophysics Data System (ADS)

    Lappé, M.; Kallmeyer, J.

    2013-12-01

    Microorganisms play an important role in the development of new soils and in the reclamation of disturbed landscapes. Especially in hydrocarbon-contaminated soils their ability to degrade organic matter and pollutants makes them essential to re-establish full ecosystem functionality. Microbes are also involved in the mobilization of nutrients for plant growth and in the production of greenhouse gases. Reclamation sites from oil sand mining activities in Alberta, Canada, contain residual bitumen as well as other hydrocarbons. So, these areas provide a great opportunity to study microbial degradation of residual contaminants from oil sand. To get an impression of degradation rates as well as metabolic pathways, incubation experiments were performed in the lab. We measured microbial turnover (catabolic metabolism) and incorporation (anabolic metabolism) rates of different common organic compounds in samples from differently treated reclamation sites - with plant cover and without plant cover. About 10 g of sample material was suspended in 10 mL of a solution that mimics the in-situ concentration of dissolved ions. Radioactively labelled 14C-acetate was added as a common substrate, whereas 14C-naphthenic acid was chosen to investigate the microbial community's capability to utilize a typical hydrocarbon pollutant in oil sand tailings as a nutrient source. To test for the influence of fertilizers on microbial activity, phosphate, nitrate and potassium were added to some samples in different combinations. Incubations were run over two different time periods (7 and 14 days). At the end of each incubation experiment, the amount of produced 14CO2, 14C incorporated into the cells and the remaining unreacted 14C in the slurry were measured. First results show that most of the added 14C-acetate is used for respiration as it is mostly released as 14CO2. In upper soil layers only about 3% of 14C is incorporated into cells, whereas in deeper horizons with lower cell abundances about 14% of 14C is used to build up biomass. The results also show that microorganisms use 14C-naphthenic acid as a carbon source, but at a lower rate. About half of the degraded naphthenic acid is incorporated into cells; the other half is released as 14CO2. The results give an impression of how fast and to what amount microorganisms can degrade residual oil compounds. Additionally, our study allows for rough estimates of greenhouse gas emissions of reclamation areas.

  19. Bioreactors for oil sands process-affected water (OSPW) treatment: A critical review.

    PubMed

    Xue, Jinkai; Huang, Chunkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2018-06-15

    Canada has the world's largest oil sands reservoirs. Surface mining and subsequent caustic hot water extraction of bitumen lead to an enormous quantity of tailings (volumetric ratio bitumen:water=9:1). Due to the zero-discharge approach and the persistency of the complex matrix, oil producers are storing oil sands tailings in vast ponds in Northern Alberta. Oil sands tailings are comprised of sand, clay and process-affected water (OSPW). OSPW contains an extremely complex matrix of organic contaminants (e.g., naphthenic acids (NAs), residual bitumen, and polycyclic aromatic hydrocarbons (PAHs)), which has proven to be toxic to a variety of aquatic species. Biodegradation, among a variety of examined methods, is believed to be one of the most cost effective and practical to treat OSPW. A number of studies have been published on the removal of oil sands related contaminants using biodegradation-based practices. This review focuses on the treatment of OSPW using various bioreactors, comparing bioreactor configurations, operating conditions, performance evaluation and microbial community dynamics. Effort is made to identify the governing biotic and abiotic factors in engineered biological systems receiving OSPW. Generally, biofilms and elevated suspended biomass are beneficial to the resilience and degradation performance of a bioreactor. The review therefore suggests that a hybridization of biofilms and membrane technology (to ensure higher suspended microbial biomass) is a more promising option to remove OSPW organic constituents. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Treatment of raw and ozonated oil sands process-affected water under decoupled denitrifying anoxic and nitrifying aerobic conditions: a comparative study.

    PubMed

    Xue, Jinkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2016-11-01

    Batch experiments were performed to evaluate biodegradation of raw and ozonated oil sands process-affected water (OSPW) under denitrifying anoxic and nitrifying aerobic conditions for 33 days. The results showed both the anoxic and aerobic conditions are effective in degrading OSPW classical and oxidized naphthenic acids (NAs) with the aerobic conditions demonstrating higher removal efficiency. The reactors under nitrifying aerobic condition reduced the total classical NAs of raw OSPW by 69.1 %, with better efficiency for species of higher hydrophobicity. Compared with conventional aerobic reactor, nitrifying aerobic condition substantially shortened the NA degradation half-life to 16 days. The mild-dose ozonation remarkably accelerated the subsequent aerobic biodegradation of classical NAs within the first 14 days, especially for those with long carbon chains. Moreover, the ozone pretreatment enhanced the biological removal of OSPW classical NAs by leaving a considerably lower final residual concentration of 10.4 mg/L under anoxic conditions, and 5.7 mg/L under aerobic conditions. The combination of ozonation and nitrifying aerobic biodegradation removed total classical NAs by 76.5 % and total oxy-NAs (O3-O6) by 23.6 %. 454 Pyrosequencing revealed that microbial species capable of degrading recalcitrant hydrocarbons were dominant in all reactors. The most abundant genus in the raw and ozonated anoxic reactors was Thauera (~56 % in the raw OSPW anoxic reactor, and ~65 % in the ozonated OSPW anoxic reactor); whereas Rhodanobacter (~40 %) and Pseudomonas (~40 %) dominated the raw and ozonated aerobic reactors, respectively. Therefore, the combination of mild-dose ozone pretreatment and subsequent biological process could be a competent choice for OSPW treatment.

  1. Fate and effect of naphthenic acids on oil refinery activated sludge wastewater treatment systems.

    PubMed

    Misiti, Teresa; Tezel, Ulas; Pavlostathis, Spyros G

    2013-01-01

    Naphthenic acids (NAs) are a complex group of alkyl-substituted acyclic, monocyclic and polycyclic carboxylic acids present in oil sands process waters, crude oil, refinery wastewater and petroleum products. Crude oil, desalter brine, influent, activated sludge mixed liquor and effluent refinery samples were received from six United States refineries. The total acid number (TAN) of the six crudes tested ranged from 0.12 to 1.5 mg KOH/g crude oil and correlated to the total NA concentration in the crudes. The total NA concentration in the desalter brine, influent, activated sludge mixed liquor and effluent samples ranged from 4.2 to 40.4, 4.5 to 16.6, 9.6 to 140.3 and 2.8 to 11.6 mg NA/L, respectively. The NAs in all wastewater streams accounted for less than 16% of the total COD, indicating that many other organic compounds are present and that NAs are a minor component in refinery wastewaters. Susceptibility tests showed that none of the activated sludge heterotrophic microcosms was completely inhibited by NAs up to 400 mg/L. Growth inhibition ranging from 10 to 59% was observed in all microcosms at and above 100 mg NA/L. NAs chronically-sorbed to activated sludge mixed liquor biomass and powdered activated carbon (PAC) were recalcitrant and persistent. More than 80% of the total NAs remained in the solid phase at the end of the 10-day desorption period (five successive desorption steps). Throughout a 90-day incubation period, the total NA concentration decreased by 33 and 51% in PAC-free and PAC-containing mixed liquor microcosms, respectively. The lower molecular weight fraction of NAs was preferentially degraded in both mixed liquors. The persistence of the residual, higher molecular weight NAs is likely a combination of molecular recalcitrance and decreased bioavailability when chronically-sorbed to the biomass and/or PAC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Composition and structure of asphaltenes in oils of various chemical nature

    NASA Astrophysics Data System (ADS)

    Sergun, Valeriy P.; Cheshkova, Tatiana V.; Kovalenko, Elena Yu.; Min, Raisa S.; Sagachenko, Tatiana A.

    2017-12-01

    The asphaltene substances of methane-naphthenic and naphthenic-aromatic oils are characterized via methods of extraction, adsorption chromatography, IR and NMR spectroscopy, and chromatography-mass spectrometry. The data on the composition of their high-molecular components and compounds adsorbed/occluded by molecules of asphaltenes are represented. The role of nitrogenous compounds in the course of structuring of asphaltene components is shown.

  3. Comprehensive analysis of oil sands processed water by direct-infusion Fourier-transform ion cyclotron resonance mass spectrometry with and without offline UHPLC sample prefractionation.

    PubMed

    Nyakas, Adrien; Han, Jun; Peru, Kerry M; Headley, John V; Borchers, Christoph H

    2013-05-07

    Oil sands processed water (OSPW) is the main byproduct of the large-scale bitumen extraction activity in the Athabasca oil sands region (Alberta, Canada). We have investigated the acid-extractable fraction (AEF) of OSPW by extraction-only (EO) direct infusion (DI) negative-ion mode electrospray ionization (ESI) on a 12T-Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS), as well as by offline ultrahigh performance liquid chromatography (UHPLC) followed by DI-FTICR-MS. A preliminary offline UHPLC separation into 8 fractions using a reversed-phase C4 column led to approximately twice as many detected peaks and identified compounds (973 peaks versus 2231 peaks, of which 856 and 1734 peaks, respectively, could be assigned to chemical formulas based on accurate mass measurements). Conversion of these masses to the Kendrick mass scale allowed the straightforward recognition of homologues. Naphthenic (CnH2n+zO2) and oxy-naphthenic (CnH2n+zOx) acids represented the largest group of molecules with assigned formulas (64%), followed by sulfur-containing compounds (23%) and nitrogen-containing compounds (8%). Pooling of corresponding fractions from two consecutive offline UHPLC runs prior to MS analysis resulted in ~50% more assignments than a single injection, resulting in 3-fold increase of identifications compared to EO-DI-FTICR-MS using the same volume of starting material. Liquid-liquid extraction followed by offline UHPLC fractionation thus holds enormous potential for a more comprehensive profiling of OSPW, which may provide a deeper understanding of its chemical nature and environmental impact.

  4. Aerobic biodegradation process of petroleum and pathway of main compounds in water flooding well of Dagang oil field.

    PubMed

    Cai, Minmin; Yao, Jun; Yang, Huaijun; Wang, Ruixia; Masakorala, Kanaji

    2013-09-01

    Aerobic biodegradation of crude oil and its pathways were investigated via in vitro culture and GC-MS analysis in water flooding wells of Dagang oil field. The in vitro aerobic culture lasted 90 days when 99.0% of n-alkanes and 43.03-99.9% of PAHs were degraded and the biomarkers and their ratios were changed. The spectra of components in the residual oil showed the similar biodegradation between aerobic process of 90 days and degradation in reservoir which may last for some millions years, and the potential of serious aerobic biodegradation of petroleum in reservoir. 24 Metabolites compounds were separated and identified from aerobic culture, including fatty acid, naphthenic acid, aromatic carboxylic acid, unsaturated acid, alcohols, ketones and aldehydes. The pathways of alkanes and aromatics were proposed, which suggests that oxidation of hydrocarbon to organic acid is an important process in the aerobic biodegradation of petroleum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. FT-IR Spectroscopic Evidence Of Phase Transition For NaA-ROH-Kerosine-H2O Microemulsion System Containing Nd3+ Ions

    NASA Astrophysics Data System (ADS)

    Liao, Hua; Xu, Zhen-Hua; Shi, Nai; Wu, Jin-Guang; Xu, Guang-Xian

    1989-12-01

    In the previous investigation, the saponification of naphthenic acid extractant system has been proved to be a process of the formation of a microemulsion of 14/0 type, and its full extraction of rare earths is a process of destruction of the W/O microemulsion[1]. When NdCl3 is partially extracted with NaA (sodium naphthenate) secoctylalcohol-- kerosine-- water microemulsion system (ME), both the NdA3 and the NaA co-exist in the same organic phase. However,the formation mechanism of microemulsion containing neodymium has not been much studied. In this paper, 10 aliquots of fully saponificated extractants were equilibrated with various amounts of NdC13 solutions respectively, then ten organic phases with different extraction efficiencies of neodymium from 094 to 9094 were obtained. After extraction,the volume of neodymium containing organic phase increased by 5 to 4594, because of the transfer of water molecules. The appearance of these organic phase still remained clear and transparent. The average hydrodynamic radius of the drops were found to be 100-300 Angstrom by using light scattering techniques. The results give a direct evidence of the microemulsion formation in the organic phase. Their FT-IR spectra were measured with CaFa liquid cells utilizing a Nicolet 7199B FT-IR spectrometer. The presence of various amounts of water in the organic phases was clearly detected from the relative intensity changes of 1644 cm-I, which is assigned to the bending mode of 1110 molecules. Fig.1 shows the change of water contents to the percent extraction of neodymium. Comparsion with the FT-IR spectra, it is seen that the 1560 cm-1 peak of the full saponificated extractant is attributed to the asym. stretching vibration of COO''' group, it shifted to 1536 for 100% extration of Nd ions, indicating the formation of neodymium naphthenate (NdA ) from ionic sodium naphthenate. The sym. strethching vibration of COO''' located at 1406 cm-1, it shifted to 1408 cm in 45% Nd extration. and disappeared when the percentage extration of Nd3+ was larger than 50%, at the same time, the water content dropped sharply (Fig.1).These results suggested that a series of microemulsion containing Nd ions formed in these organic phases, at the transition region ( more than 50 percentage extration of neodymium), a morphological change of the W/0 dispersion system might occur.

  6. Measurement of total acid number (TAN) and TAN boiling point distribution in petroleum products by electrospray ionization mass spectrometry.

    PubMed

    Qian, Kuangnan; Edwards, Kathleen E; Dechert, Gary J; Jaffe, Stephen B; Green, Larry A; Olmstead, William N

    2008-02-01

    We report a new method for rapid measurement of total acid number (TAN) and TAN boiling point (BP) distribution for petroleum crude and products. The technology is based on negative ion electrospray ionization mass spectrometry (ESI-MS) for selective ionization of petroleum acid and quantification of acid structures and molecular weight distributions. A chip-based nanoelectrospray system enables microscale (<200 mg) and higher throughput (20 samples/h) measurement. Naphthenic acid structures were assigned based on nominal masses of a set of predefined acid structures. Stearic acid is used as an internal standard to calibrate ESI-MS response factors for quantification purposes. With the use of structure-property correlations, boiling point distributions of TAN values can be calculated from the composition. The rapid measurement of TAN BP distributions by ESI is demonstrated for a series of high-TAN crudes and distillation cuts. TAN values determined by the technique agree well with those by the titration method. The distributed properties compare favorably with those measured by distillation and measurement of TAN of corresponding cuts.

  7. Fire Safety Aspects of Polymeric Materials. Volume 5. Elements of Polymer Fire Safety and Guide to the Designer

    DTIC Science & Technology

    1979-01-01

    usually aided by the addition of certain "driers" such as cobalt naphthenate and lead soaps. Alkyd coatings are of value because of their...effort has been spent on the synthesis of polymers that retain their properties at high temperatures. The impetus for this work arose from the...Japan) has announced developmental quantities of polyethylene naphthenate ) (PEN) in film form ("Q" film), which might be expected to have greater

  8. Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS.

    PubMed

    Han, Xiumei; MacKinnon, Michael D; Martin, Jonathan W

    2009-06-01

    The oil sands industry in Northern Alberta produces large volumes of oil sands process water (OSPW) containing high concentrations of persistent naphthenic acids (NAs; C(n)H(2n+Z)O(2)). Due to the growing volumes of OSPW that need to be reclaimed, it is important to understand the fate of NAs in aquatic systems. A recent laboratory study revealed several potential markers of microbial biodegradation for NAs; thus here we examined for these signatures in field-aged OSPW on the site of Syncrude Canada Ltd. (Fort McMurray, AB). NA concentrations were lower in older OSPW; however parent NA signatures were remarkably similar among all OSPW samples examined, with no discernible enrichment of the highly cyclic fraction as was observed in the laboratory. Comparison of NA signatures in fresh oil sands ore extracts to OSPW in active settling basins, however, suggested that the least cyclic fraction (i.e. Z=0 and Z=-2 homologues) may undergo relatively rapid biodegradation in active settling basins. Further evidence for biodegradation of NAs came from a significantly higher proportion of oxidized NAs (i.e. C(n)H(2n+Z)O(3)+C(n)H(2n+Z)O(4)) in the oldest OSPW from experimental reclamation ponds. Taken together, there is indirect evidence for rapid biodegradation of relatively labile Z=0 and Z=-2 NAs in active settling basins, but the remaining steady-state fraction of NAs in OSPW appear to be very recalcitrant, with half-lives on the order of 12.8-13.6 years. Alternative fate mechanisms to explain the slow disappearance of parent NAs from OSPW are discussed, including adsorption and atmospheric partitioning.

  9. Molecular profiling of naphthenic acids in technical mixtures and oil sands process-affected water using polar reversed-phase liquid chromatography-mass spectrometry.

    PubMed

    Han, Jun; Yi, Yi; Lin, Karen; Birks, S Jean; Gibson, John J; Borchers, Christoph H

    2016-12-01

    In this work, a reversed-phase ultra-HPLC (UHPLC) ultrahigh resolution MS (UHRMS) method was evaluated for the comprehensive profiling of NAs containing two O atoms in each molecule (O2NAs; general formula C n H 2n + z O 2 , where n is the number of carbon atoms and z represents hydrogen deficiency). Using a polar cyanopropyl-bonded phase column and negative-ion electrospray ionization mass spectrometric detection at 120,000 FWHM (m/z 400), 187 and 226 O2NA species were found in two naphthenic acid technical mixtures, and 424 and 198 species with molecular formulas corresponding to O2NAs were found in two oil sands process-affected water samples (one from a surface mining operation and the other from a steam-assisted gravity drainage operation), respectively. To our knowledge, these are the highest numbers of molecular compositions of O2NAs that have been profiled thus far in environmental samples. Assignments were based on accurate mass measurements (≤3 ppm) combined with rational molecular formula generation, correlation of chromatographic behavior of O2NA homologues with their elemental compositions, and confirmation with carboxyl group-specific chemical derivatization using 3-nitrophenylhydrazine. Application of this UHPLC-UHRMS method to the quantitation of O2NAs in the surface mining operation-derived water sample showed excellent linearity (R 2 = 0.9999) with external calibration, a linear range of 256-fold in concentration, and quantitation accuracies of 64.9 and 69.4% at two "standard substance" spiking levels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Production of Jet Fuels from Coal Derived Liquids. Volume 6. Preliminary Analysis of Upgrading Alternatives for the Great Plains Liquid By-Production Streams

    DTIC Science & Technology

    1988-09-01

    be easily hydrogenated to produce highly naphthenic JP-4 blendstock, but the hydrogen consumption is very high, around 5,000 SCFB. Distillation...The naphtha stream is characterized by analyses shown in Table 4 and distillation results in Figure 7. Comparison of as-received and caustic ... Naphthenes , min. 70 it , max. 90 Reid Vapor Pressure,min. 2.0 f to it ,max. 3.0 Flash Point, OF, min. 100 122 Pour Point, OF, max. -72 -62 Gasoline

  11. Next-generation pyrosequencing analysis of microbial biofilm communities on granular activated carbon in treatment of oil sands process-affected water.

    PubMed

    Islam, M Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-06-15

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>10(9) gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Next-Generation Pyrosequencing Analysis of Microbial Biofilm Communities on Granular Activated Carbon in Treatment of Oil Sands Process-Affected Water

    PubMed Central

    Islam, M. Shahinoor; Zhang, Yanyan; McPhedran, Kerry N.

    2015-01-01

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>109 gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. PMID:25841014

  13. Liquefaction process wherein solvents derived from the material liquefied and containing increased concentrations of donor species are employed

    DOEpatents

    Fant, B. T.; Miller, John D.; Ryan, D. F.

    1982-01-01

    An improved process for the liquefaction of solid carbonaceous materials wherein a solvent or diluent derived from the solid carbonaceous material being liquefied is used to form a slurry of the solid carbonaceous material and wherein the solvent or diluent comprises from about 65 to about 85 wt. % hydroaromatic components. The solvent is prepared by first separating a solvent or diluent distillate fraction from the liquefaction product, subjecting this distillate fraction to hydrogenation and then extracting the naphthenic components from the hydrogenated product. The extracted naphthenic components are then dehydrogenated and hydrotreated to produce additional hydroaromatic components. These components are combined with the solvent or diluent distillate fraction. The solvent may also contain hydroaromatic constituents prepared by extracting naphthenic components from a heavy naphtha, dehydrogenating the same and then hydrotreating the dehydrogenated product. When the amount of solvent produced in this manner exceeds that required for steady state operation of the liquefaction process a portion of the solvent or diluent distillated fraction will be withdrawn as product.

  14. Structural health monitoring of localized internal corrosion in high temperature piping for oil industry

    NASA Astrophysics Data System (ADS)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2015-03-01

    Crude oil is becoming more corrosive with higher sulfur concentration, chloride concentration, and acidity. The increasing presence of naphthenic acids in oils with various environmental conditions at temperatures between 150°C and 400°C can lead to different internal degradation morphologies in refineries that are uniform, non-uniform, or localized pitting. Improved corrosion measurement technology is needed to better quantify the integrity risk associated with refining crude oils of higher acid concentration. This paper first reports a consolidated review of corrosion inspection technology to establish the foundation for structural health monitoring of localized internal corrosion in high temperature piping. An approach under investigation is to employ flexible ultrasonic thin-film piezoelectric transducer arrays fabricated by the sol-gel manufacturing process for monitoring localized internal corrosion at temperatures up to 400°C. A statistical analysis of sol-gel transducer measurement accuracy using various time of flight thickness calculation algorithms on a flat calibration block is demonstrated.

  15. Biodegradation and detoxification of naphthenic acids in oil sands process affected waters.

    PubMed

    Yue, Siqing; Ramsay, Bruce A; Wang, Jiaxi; Ramsay, Juliana A

    2016-12-01

    After oil sands process affected water (OSPW) was treated in a continuous flow biofilm reactor, about 40% of the organic compounds in the acid extractable fraction (AEF) including naphthenic acids (NAs) were degraded resulting in a reduction of 73% in the Microtox acute toxicity and of 22% in the yeast estrogenic assay. Using effect directed analysis, treated and untreated OSPW were fractionated by solid phase extraction and the fractions with the largest decrease in toxicity and estrogenicity were selected for analysis by electrospray ionization combined with linear ion trap and a high-resolution Orbitrap mass spectrometer (negative ion mode). The aim of this study was to determine whether compositional changes between the untreated and treated fractions provide insight related to biodegradation and detoxification of NAs. The O2S, O3S and O4S compounds were either not major contributors of toxicity or estrogenicity or the more toxic or estrogenic ones were biodegraded. The O3- and O4-NAs seem to be more readily metabolized than O2NAs and their degradation would contribute to detoxification. The decrease in acute toxicity may be associated with the degradation of C12 and C13 bicyclic and C12-C14 tricyclic NAs while the decrease in estrogenicity may be linked to the degradation of C16 O2-NAs with double bond equivalents (DBE)=5 and 6, C16 and 17 O2-NAs with DBE=7, and C19-O2-NAs with DBE=8. The residual acute toxicity may be caused by recalcitrant components and/or degradation products such as the O2 bicyclic and tricyclic NAs, particularly the C14 and C15 bicyclic and C14-C16 tricyclic NAs as well as the polycyclic aromatic NAs (DBE≥5 compounds). The decrease in estrogenicity may be linked to the degradation of the O3 and O4 oxidized NAs while much of the residual estrogenicity may be due to the recalcitrant polycyclic aromatic O2-NAs. Hence, treatment to further detoxify OSPW should target these compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation

    PubMed Central

    Demeter, Marc A.; Lemire, Joseph A.; Yue, Gordon; Ceri, Howard; Turner, Raymond J.

    2015-01-01

    Oil sands surface mining for bitumen results in the formation of oil sands process water (OSPW), containing acutely toxic naphthenic acids (NAs). Potential exists for OSPW toxicity to be mitigated by aerobic degradation of the NAs by microorganisms indigenous to the oil sands tailings ponds, the success of which is dependent on the methods used to exploit the metabolisms of the environmental microbial community. Having hypothesized that the xenobiotic tolerant biofilm mode-of-life may represent a feasible way to harness environmental microbes for ex situ treatment of OSPW NAs, we aerobically grew OSPW microbes as single and mixed species biofilm and planktonic cultures under various conditions for the purpose of assaying their ability to tolerate and degrade NAs. The NAs evaluated were a diverse mixture of eight commercially available model compounds. Confocal microscopy confirmed the ability of mixed and single species OSPW cultures to grow as biofilms in the presence of the NAs evaluated. qPCR enumeration demonstrated that the addition of supplemental nutrients at concentrations of 1 g L-1 resulted in a more numerous population than 0.001 g L-1 supplementation by approximately 1 order of magnitude. GC-FID analysis revealed that mixed species cultures (regardless of the mode of growth) are the most effective at degrading the NAs tested. All constituent NAs evaluated were degraded below detectable limits with the exception of 1-adamantane carboxylic acid (ACA); subsequent experimentation with ACA as the sole NA also failed to exhibit degradation of this compound. Single species cultures degraded select few NA compounds. The degradation trends highlighted many structure-persistence relationships among the eight NAs tested, demonstrating the effect of side chain configuration and alkyl branching on compound recalcitrance. Of all the isolates, the Rhodococcus spp. degraded the greatest number of NA compounds, although still less than the mixed species cultures. Overall, these observations lend support to the notion that harnessing a community of microorganisms as opposed to targeted isolates can enhance NA degradation ex situ. Moreover, the variable success caused by NA structure related persistence emphasized the difficulties associated with employing bioremediation to treat complex, undefined mixtures of toxicants such as OSPW NAs. PMID:26388865

  17. Detection of Chemicals Inhibiting Photorespiratory Senescence in a Large Scale Survival Chamber

    PubMed Central

    Manning, David T.; Campbell, Andrew J.; Chen, Tsong Meng; Tolbert, N. E.; Smith, E. Wayne

    1984-01-01

    A large scale survival chamber was developed as a screen for detecting chemical treatments that extend the survival time of illuminated soybean seedlings at CO2 concentrations below the compensation point. In theory, extended survival should indicate potential for improved crop performance via decreased photorespiration and increased photosynthetic efficiency. An automated control system regulated CO2 concentrations, temperature and plant watering during a continuous CO2-removal photoperiod of 72 hours. An endogenously controlled circadian rhythm of net photosynthesis occurred throughout the continuous light treatment. Spray applications of 3.49 millimolar 2-(4-chlorophenoxy)-2-methylpropanoic acid (CPMP) significantly decreased leaf chlorophyll loss, compared with the control, after 72 hours of subcompensation-point stress. Treatment with CPMP also consistently increased leaf chlorophyll per unit area under nonstress greenhouse conditions. These effects may be due to increases in specific leaf weight produced by CPMP although the compound did not consistently act as a height retardant. The compound, 3-butyl-2-hydroxy-4H-pyrido[1,2-a]pyrimidin-4-one (BHPP), inhibited senescence under low CO2 conditions but did not decrease leaf light transmission at ambient CO2 levels. The cytokinin N6-benzyladenine (BA) retarded low CO2 stress senescence although greening effects were not observed. Neither 2-hydroxy-3-butynoic acid (HBA) nor its butyl ester, inhibitors of glycolate oxidase, influenced low CO2 survival. Cyclohexanecarboxylic acid (CHCA) and sodium naphthenate had no effect upon subcompensation-point senescence. Antisenescence effects of CPMP, BHPP, and BA do not appear to be directly attributable to effects upon the competing carbon paths of photosynthesis and photorespiration. Protection against low CO2 stress and increased chlorophyll synthesis under nonstress conditions may represent separate effects upon plastids by some of the compounds. This screen will identify compounds which inhibit photorespiratory senescence without decreasing the CO2 compensation point. Images Fig. 1 PMID:16663949

  18. Understanding the similarities and differences between ozone and peroxone in the degradation of naphthenic acids: Comparative performance for potential treatment.

    PubMed

    Meshref, Mohamed N A; Klamerth, Nikolaus; Islam, Md Shahinoor; McPhedran, Kerry N; Gamal El-Din, Mohamed

    2017-08-01

    Ozonation at high doses is a costly treatment for oil sands process-affected water (OSPW) naphthenic acids (NAs) degradation. To decrease costs and limit doses, different peroxone (hydrogen peroxide/ozone; H 2 O 2 :O 3 ) processes using mild-ozone doses of 30 and 50 mg/L were investigated. The degradation efficiency of O x -NAs (classical (O 2 -NAs) + oxidized NAs) improved from 58% at 30 mg/L ozone to 59%, 63% and 76% at peroxone (1:1), 50 mg/L ozone, and peroxone (1:2), respectively. Suppressing the hydroxyl radical (•OH) pathway by adding tert-butyl alcohol did significantly reduce the degradation in all treatments, while molecular ozone contribution was around 50% and 34% for O 2 -NAs and O x -NAs, respectively. Structure reactivity toward degradation was observed with degradation increase for both O 2 -NAs and O x -NAs with increase of both carbon (n) and hydrogen deficiency/or |-Z| numbers in all treatments. However, the combined effect of n and Z showed specific insights and differences between ozone and peroxone treatments. The degradation pathway for |-Z|≥10 isomers in ozone treatments through molecular ozone was significant compared to •OH. Though peroxone (1:2) highly reduced the fluorophore organics and toxicity to Vibrio fischeri, the best oxidant utilization in the degradation of O 2 -NAs (mg/L) per ozone dose (mg/L) was observed in the peroxone (1:1) (0.91) and 30 mg/L ozone treatments (0.92). At n = 9-11, peroxone (1:1) had similar or enhanced effect on the O 2 -NAs degradation compared to 50 mg/L ozone. Enhancing •OH pathway through peroxone versus ozone may be an effective OSPW treatment that will allow its safe release into receiving environments with marginal cost addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Characterization and determination of naphthenic acids species in oil sands process-affected water and groundwater from oil sands development area of Alberta, Canada.

    PubMed

    Huang, Rongfu; Chen, Yuan; Meshref, Mohamed N A; Chelme-Ayala, Pamela; Dong, Shimiao; Ibrahim, Mohamed D; Wang, Chengjin; Klamerth, Nikolaus; Hughes, Sarah A; Headley, John V; Peru, Kerry M; Brown, Christine; Mahaffey, Ashley; Gamal El-Din, Mohamed

    2018-01-01

    This work reports the monitoring and assessment of naphthenic acids (NAs) in oil sands process-affected water (OSPW), Pleistocene channel aquifer groundwater (PLCA), and oil sands basal aquifer groundwater (OSBA) from an active oil sands development in Alberta, Canada, using ultra performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) analysis with internal standard (ISTD) and external standard (ESTD) calibration methods and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) for compositional analysis. PLCA was collected at 45-51 m depth and OSBA was collected at 67-144 m depth. Results of O x -NA concentrations follow an order as OSPW > OSBA > PLCA, indicating that occurrences of NAs in OSBA were likely related to natural bitumen deposits instead of OSPW. Liquid-liquid extraction (LLE) was applied to avoid the matrix effect for the ESTD method. Reduced LLE efficiency accounted for the divergence of the ISTD and ESTD calibrated results for oxidized NAs. Principle component analysis results of O 2 and O 4 species could be employed for differentiation of water types, while classical NAs with C13-15 and Z (-4)-(-6) and aromatic O 2 -NAs with C16-18 and Z (-14)-(-16) could be measured as marker compounds to characterize water sources and potential temporal variations of samples, respectively. FTICR-MS results revealed that compositions of NA species varied greatly among OSPW, PLCA, and OSBA, because of NA transfer and transformation processes. This work contributed to the understanding of the concentration and composition of NAs in various types of water, and provided a useful combination of analytical and statistical tools for monitoring studies, in support of future safe discharge of treated OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Dynamics of two methanogenic microbiomes incubated in polycyclic aromatic hydrocarbons, naphthenic acids, and oil field produced water.

    PubMed

    Oko, Bonahis J; Tao, Yu; Stuckey, David C

    2017-01-01

    Oil field produced water (OFPW) is widely produced in large volumes around the world. Transforming the organic matter in OFPW into bioenergy, such as biomethane, is one promising way to sustainability. However, OFPW is difficult to biologically degrade because it contains complex compounds such as naphthenic acids (NAs), or polycyclic aromatic hydrocarbons (PAHs). Although active microbial communities have been found in many oil reservoirs, little is known about how an exotic microbiome, e.g. the one which originates from municipal wastewater treatment plants, would evolve when incubated with OFPW. In this study, we harvested methanogenic biomass from two sources: a full-scale anaerobic digester (AD) treating oil and gas processing wastewater (named O&G sludge), and from a full-scale AD reactor treating multiple fractions of municipal solid wastes (named MS, short for mixed sludge). Both were incubated in replicate microcosms fed with PAHs, NAs, or OFPW. The results showed that the PAHs, NAs, and OFPW feeds could rapidly alter the methanogenic microbiomes, even after 14 days, while the O&G sludge adapted faster than the mixed sludge in all the incubations. Two rarely reported microorganisms, a hydrogenotrophic methanogen Candidatus methanoregula and a saccharolytic fermenter Kosmotoga , were found to be prevalent in the PAHs and OFPW microcosms, and are likely to play an important role in the syntrophic degradation of PAHs and OFPW, cooperating with methanogens such as Methanoregula, Methanosarcina, or Methanobacterium . The dominant phyla varied in certain patterns during the incubations, depending on the biomass source, feed type, and variation in nutrients. The sludge that originated from the oil and gas processing wastewater treatment (O&G) reactor adapted faster than the one from municipal solid waste reactors, almost certainly because the O&G biomass had been "pre-selected" by the environment. This study reveals the importance of biomass selection for other crude oil-waste-related bioengineering studies, such as bioaugmentation and bioremediation.

  1. The role of the resid solvent in coprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, C.W.

    1995-12-31

    The objective of this project is to determine the role of petroleum resid in coprocessing of coal and resid. The question being asked is whether the resid is a reactant in the system or whether the resid is a merely a diluent that is being simultaneously upgraded? To fulfill the objective the hydrogen transfer from model compounds, naphthenes that represent petroleum resids to model acceptors is being determined. The specificity of different catalytic systems for promoting the hydrogen transfer from naphthenes to model acceptors and to coal is also being determined. In addition the efficacy of hydrogen transfer from andmore » solvancy of whole and specific resid fractions under coprocessing conditions is being determined.« less

  2. Bioprocessing-Based Approach for Bitumen/Water/Fines Separation and Hydrocarbon Recovery from Oil Sands Tailings

    DOE PAGES

    Brigmon, Robin L.; Berry, Christopher J.; Wade, Arielle; ...

    2016-05-04

    Oil sands are a major source of oil, but their industrial processing generates tailings ponds that are an environmental hazard. The main concerns are mature fine tailings (MFT) composed of residual hydrocarbons, water, and fine clay. Tailings ponds include toxic contaminants such as heavy metals, and toxic organics including naphthenics. Naphthenic acids and polyaromatic hydrocarbons (PAHs) degrade very slowly and pose a long-term threat to surface and groundwater, as they can be transported in the MFT. Research into improved technologies that would enable densification and settling of the suspended particles is ongoing. In batch tests, BioTiger™, a microbial consortium thatmore » can metabolize PAHs, demonstrated improved oil sands tailings settling from a Canadian tailings pond. Results also showed, depending on the timing of the measurements, lower suspended solids and turbidity. Elevated total organic carbon was observed in the first 48 hours in the BioTiger™-treated columns and then decreased in overlying water. Oil sands tailings mixed with BioTiger™ showed a two-fold reduction in suspended solids within 24 hours as compared to abiotic controls. The tailings treated with BioTiger™ increased in microbial densities three orders of magnitude from 8.5 × 105 CFU/mL to 1.2 × 108 CFU/mL without any other carbon or energy source added, indicating metabolism of hydrocarbons and other available nutrients. Results demonstrated that bioaugmentation of BioTiger™ increased separation of organic carbon from particles in oil sands and enhanced settling with tailings with improved water quality.« less

  3. EPDM plasticizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godail, M.J.

    1983-08-01

    The properties of paraffinic, naphthenic, and aromatic extender oils used as EPDM plasticizers are discussed in detail. Particular attention is given to viscosity, volatility, specific gravity, and aromatic content.

  4. Adsorption of acid-extractable organics from oil sands process-affected water onto biomass-based biochar: Metal content matters.

    PubMed

    Bhuiyan, Tazul I; Tak, Jin K; Sessarego, Sebastian; Harfield, Don; Hill, Josephine M

    2017-02-01

    The impact of biochar properties on acid-extractable organics (AEO) adsorption from oil sands process-affected water (OSPW) was studied. Biochar from wheat straw with the highest ash content (14%) had the highest adsorption capacity (0.59 mg/g) followed by biochar from pulp mill sludge, switchgrass, mountain pine, hemp shives, and aspen wood. The adsorption capacity had no obvious trend with surface area, total pore volume, bulk polarity and aromaticity. The large impact of metal content was consistent with the carboxylates (i.e., naphthenate species) in the OSPW binding to the metals (mainly Al and Fe) on the carbon substrate. Although the capacity of biochar is still approximately two orders of magnitude lower than that of a commercial activated carbon, confirming the property (i.e., metal content) that most influenced AEO adsorption, may allow biochar to become competitive with activated carbon after normalizing for cost, especially if this cost includes environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions.

    PubMed

    Hasegawa, R; Toyama, K; Miyanaga, K; Tanji, Y

    2014-02-01

    Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.

  6. Can two-dimensional gas chromatography/mass spectrometric identification of bicyclic aromatic acids in petroleum fractions help to reveal further details of aromatic hydrocarbon biotransformation pathways?

    PubMed

    West, Charles E; Pureveen, Jos; Scarlett, Alan G; Lengger, Sabine K; Wilde, Michael J; Korndorffer, Frans; Tegelaar, Erik W; Rowland, Steven J

    2014-05-15

    The identification of key acid metabolites ('signature' metabolites) has allowed significant improvements to be made in our understanding of the biodegradation of petroleum hydrocarbons, in reservoir and in contaminated natural systems, such as aquifers and seawater. On this basis, anaerobic oxidation is now more widely accepted as one viable mechanism, for instance. However, identification of metabolites in the complex acid mixtures from petroleum degradation is challenging and would benefit from use of more highly resolving analytical methods. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GCxGC/TOFMS) with both nominal mass and accurate mass measurement was used to study the complex mixtures of aromatic acids (as methyl esters) in petroleum fractions. Numerous mono- and di-aromatic acid isomers were identified in a commercial naphthenic acids fraction from petroleum and in an acids fraction from a biodegraded petroleum. In many instances, compounds were identified by comparison of mass spectral and retention time data with those of authentic compounds. The identification of a variety of alkyl naphthalene carboxylic and alkanoic and alkyl tetralin carboxylic and alkanoic acids, plus identifications of a range of alkyl indane acids, provides further evidence for 'signature' metabolites of biodegradation of aromatic petroleum hydrocarbons. Identifications such as these now offer the prospect of better differentiation of metabolites of bacterial processes (e.g. aerobic, methanogenic, sulphate-reducing) in polar petroleum fractions. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Benefits and risks of emerging technologies: integrating life cycle assessment and decision analysis to assess lumber treatment alternatives.

    PubMed

    Tsang, Michael P; Bates, Matthew E; Madison, Marcus; Linkov, Igor

    2014-10-07

    Assessing the best options among emerging technologies (e.g., new chemicals, nanotechnologies) is complicated because of trade-offs across benefits and risks that are difficult to quantify given limited and fragmented availability of information. This study demonstrates the integration of multicriteria decision analysis (MCDA) and life cycle assessment (LCA) to address technology alternative selection decisions. As a case study, prioritization of six lumber treatment alternatives [micronized copper quaternary (MCQ); alkaline copper quaternary (ACQ); water-borne copper naphthenate (CN); oil-borne copper naphthenate (CNo); water-borne copper quinolate (CQ); and water-borne zinc naphthenate (ZN)] for military use are considered. Multiattribute value theory (MAVT) is used to derive risk and benefit scores. Risk scores are calculated using a cradle-to-gate LCA. Benefit scores are calculated by scoring of cost, durability, and corrosiveness criteria. Three weighting schemes are used, representing Environmental, Military and Balanced stakeholder perspectives. Aggregated scores from all three perspectives show CQ to be the least favorable alterative. MCQ is identified as the most favorable alternative from the Environmental stakeholder perspective. From the Military stakeholder perspective, ZN is determined to be the most favorable alternative, followed closely by MCQ. This type of scoring and ranking of multiple heterogeneous criteria in a systematic and transparent way facilitates better justification of technology selection and regulation.

  8. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOEpatents

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  9. Cellulosic Biomass Sugars to Advantaged Jet Fuel – Catalytic Conversion of Corn Stover to Energy Dense, Low Freeze Point Paraffins and Naphthenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortright, Randy

    The purpose of this project was to demonstrate the technical and commercial feasibility of producing liquid fuels, particularly jet fuel, from lignocellulosic materials, such as corn stover. This project was led by Virent, Inc. (Virent) which has developed a novel chemical catalytic process (the BioForming ® platform) capable of producing “direct replacement” liquid fuels from biomass-derived feedstocks. Virent has shown it is possible to produce an advantaged jet fuel from biomass that meets or exceeds specifications for commercial and military jet fuel through Fuel Readiness Level (FRL) 5, Process Validation. This project leveraged The National Renewable Energy Lab’s (NREL) expertisemore » in converting corn stover to sugars via dilute acid pretreatment and enzymatic hydrolysis. NREL had previously developed this deconstruction technology for the conversion of corn stover to ethanol. In this project, Virent and NREL worked together to condition the NREL generated hydrolysate for use in Virent’s catalytic process through solids removal, contaminant reduction, and concentration steps. The Idaho National Laboratory (INL) was contracted in this project for the procurement, formatting, storage and analysis of corn stover and Northwestern University developed fundamental knowledge of lignin deconstruction that can help improve overall carbon recovery of the combined technologies. Virent conducted fundamental catalytic studies to improve the performance of the catalytic process and NREL provided catalyst characterization support. A technoeconomic analysis (TEA) was conducted at each stage of the project, with results from these analyses used to inform the direction of the project.« less

  10. Ab initio investigation of the thermal decomposition of n-butylcyclohexane.

    PubMed

    Ali, Mohamad Akbar; Dillstrom, V Tyler; Lai, Jason Y W; Violi, Angela

    2014-02-13

    Environmental and energy security concerns have motivated an increased focus on developing clean, efficient combustors, which increasingly relies on insight into the combustion chemistry of fuels. In particular, naphthenes (cycloalkanes and alkylcycloalkanes) are important chemical components of distillate fuels, such as diesel and jet fuels. As such, there is a growing interest in describing napthene reactivity with kinetic mechanisms. Use of these mechanisms in predictive combustion models aids in the development of combustors. This study focuses on the pyrolysis of n-butylcyclohexane (n-BCH), an important representative of naphthenes in jet fuels. Seven different unimolecular decomposition pathways of C-C bond fission were explored utilizing ab initio/DFT methods. Accurate reaction energies were computed using the high-level quantum composite G3B3 method. Variational transition state theory, Rice-Ramsperger-Kassel-Marcus/master equation simulations provided temperature- and pressure-dependent rate constants. Implementation of these pathways into an existing chemical kinetic mechanism improved the prediction of experimental OH radical and H2O speciation in shock tube oxidation. Simulations of this combustion showed a change in the expected decomposition chemistry of n-BCH, predicting increased production of cyclic alkyl radicals instead of straight-chain alkenes. The most prominent reaction pathway for the decomposition of n-BCH is n-BCH = C3H7 + C7H13. The results of this study provide insight into the combustion of n-BCH and will aid in the future development of naphthene kinetic mechanisms.

  11. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    PubMed

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation. © 2015 SETAC.

  12. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling.

    PubMed

    Duncan, Kyle D; Volmer, Dietrich A; Gill, Chris G; Krogh, Erik T

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  13. SIMULATION OF ECOLOGICALLY CONSCIOUS CHEMICAL PROCESSES: FUGITIVE EMISSIONS VERSUS OPERATING CONDITIONS

    EPA Science Inventory

    Catalytic reforming is an important refinery process for the conversion of low-octane naphtha (mostly paraffins) into high-octane motor fuels (isoparaffins, naphthenes and aromatics), light gases and hydrogen. In this study the catalytic reforming process is analyzed under differ...

  14. Application of thin layer activation technique for monitoring corrosion of carbon steel in hydrocarbon processing environment.

    PubMed

    Saxena, R C; Biswal, Jayashree; Pant, H J; Samantray, J S; Sharma, S C; Gupta, A K; Ray, S S

    2018-05-01

    Acidic crude oil transportation and processing in petroleum refining and petrochemical operations cause corrosion in the pipelines and associated components. Corrosion monitoring is invariably required to test and prove operational reliability. Thin Layer Activation (TLA) technique is a nuclear technique used for measurement of corrosion and erosion of materials. The technique involves irradiation of material with high energy ion beam from an accelerator and measurement of loss of radioactivity after the material is subjected to corrosive environment. In the present study, TLA technique has been used to monitor corrosion of carbon steel (CS) in crude oil environment at high temperature. Different CS coupons were irradiated with a 13 MeV proton beam to produce Cobalt-56 radioisotope on the surface of the coupons. The corrosion studies were carried out by subjecting the irradiated coupons to a corrosive environment, i.e, uninhibited straight run gas oil (SRGO) containing known amount of naphthenic acid (NA) at high temperature. The effects of different parameters, such as, concentration of NA, temperature and fluid velocity (rpm) on corrosion behaviour of CS were studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. 21 CFR 181.25 - Driers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... migrating from food-packaging material shall include: Cobalt caprylate. Cobalt linoleate. Cobalt naphthenate... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Driers. 181.25 Section 181.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) PRIOR-SANCTIONED FOOD...

  16. 76 FR 54932 - TSCA Inventory Update Reporting Modifications; Chemical Data Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... neutralized light naphthenic. 64742-36-5 Distillates (petroleum), clay- treated heavy paraffinic. 64742-37-6 Distillates (petroleum), clay- treated light paraffinic. 64742-38-7 Distillates (petroleum), clay- treated... agents (petroleum), spent sodium hydroxide. 64742-41-2 Residual oils (petroleum), clay- treated. 64742-42...

  17. Petroleomics by electrospray ionization FT-ICR mass spectrometry coupled to partial least squares with variable selection methods: prediction of the total acid number of crude oils.

    PubMed

    Terra, Luciana A; Filgueiras, Paulo R; Tose, Lílian V; Romão, Wanderson; de Souza, Douglas D; de Castro, Eustáquio V R; de Oliveira, Mirela S L; Dias, Júlio C M; Poppi, Ronei J

    2014-10-07

    Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.

  18. Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification.

    PubMed

    Frank, Richard A; Roy, James W; Bickerton, Greg; Rowland, Steve J; Headley, John V; Scarlett, Alan G; West, Charles E; Peru, Kerry M; Parrott, Joanne L; Conly, F Malcolm; Hewitt, L Mark

    2014-01-01

    The objective of this study was to identify chemical components that could distinguish chemical mixtures in oil sands process-affected water (OSPW) that had potentially migrated to groundwater in the oil sands development area of northern Alberta, Canada. In the first part of the study, OSPW samples from two different tailings ponds and a broad range of natural groundwater samples were assessed with historically employed techniques as Level-1 analyses, including geochemistry, total concentrations of naphthenic acids (NAs) and synchronous fluorescence spectroscopy (SFS). While these analyses did not allow for reliable source differentiation, they did identify samples containing significant concentrations of oil sands acid-extractable organics (AEOs). In applying Level-2 profiling analyses using electrospray ionization high resolution mass spectrometry (ESI-HRMS) and comprehensive multidimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF/MS) to samples containing appreciable AEO concentrations, differentiation of natural from OSPW sources was apparent through measurements of O2:O4 ion class ratios (ESI-HRMS) and diagnostic ions for two families of suspected monoaromatic acids (GC × GC-TOF/MS). The resemblance between the AEO profiles from OSPW and from 6 groundwater samples adjacent to two tailings ponds implies a common source, supporting the use of these complimentary analyses for source identification. These samples included two of upward flowing groundwater collected <1 m beneath the Athabasca River, suggesting OSPW-affected groundwater is reaching the river system.

  19. MODELING SUPPRESSION OF DIOXIN FORMATION DURING COAL COMBUSTION

    EPA Science Inventory

    The paper discusses a homogeneous, gas-phase reaction mechanism that has been developed to explain sulfur (S) and chlorine (Cl) interactions in an industrial, fire-tube boiler, using No. 2 fuel oil (0.03%S) doped with copper naphthenate (CuNA) and 1,2-dichlorobenzene (1,2-diClBz)...

  20. 40 CFR 710.46 - Chemical substances for which information is not required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... neutralized light naphthenic 64742-36-5 Distillates (petroleum), clay-treated heavy paraffinic 64742-37-6 Distillates (petroleum), clay-treated light paraffinic 64742-38-7 Distillates (petroleum), clay-treated middle... (petroleum), spent sodium hydroxide 64742-41-2 Residual oils (petroleum), clay-treated 64742-42-3 Hydrocarbon...

  1. Impacts of oil sands process water on fen plants: implications for plant selection in required reclamation projects.

    PubMed

    Pouliot, Rémy; Rochefort, Line; Graf, Martha D

    2012-08-01

    Fen plant growth in peat contaminated with groundwater discharges of oil sands process water (OSPW) was assessed in a greenhouse over two growing seasons. Three treatments (non-diluted OSPW, diluted OSPW and rainwater) were tested on five vascular plants and four mosses. All vascular plants tested can grow in salinity and naphthenic acids levels currently produced by oil sands activity in northwestern Canada. No stress sign was observed after both seasons. Because of plant characteristics, Carex species (C. atherodes and C. utriculata) and Triglochin maritima would be more useful for rapidly restoring vegetation and creating a new peat-accumulating system. Groundwater discharge of OSPW proved detrimental to mosses under dry conditions and ensuring adequate water levels would be crucial in fen creation following oil sands exploitation. Campylium stellatum would be the best choice to grow in contaminated areas and Bryum pseudotriquetrum might be interesting as it has spontaneously regenerated in all treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Extreme Pressure Synergistic Mechanism of Bismuth Naphthenate and Sulfurized Isobutene Additives

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Hu, Jianqiang; Yang, Shizhao; Xie, Feng; Guo, Li

    A four-ball tester was used to evaluate the tribological performances of bismuth naphthenate (BiNap), sulfurized isobutene (VSB), and their combinations. The results show that the antiwear properties of BiNap and VSB are not very visible, but they possess good extreme pressure (EP) properties, particularly sulfur containing bismuth additives. Synergistic EP properties of BiNap with various sulfur-containing additives were investigated. The results indicate that BiNap exhibits good EP synergism with sulfur-containing additives. The surface analytical tools, such as X-ray photoelectron spectrometer (XPS) scanning electron microscope (SEM) and energy dispersive X-ray (EDX), were used to investigate the topography, composition contents, and depth profile of some typical elements on the rubbing surface. Smooth topography of wear scar further confirms that the additive showed good EP capacities, and XPS and EDX analyzes indicate that tribochemical mixed protective films composed of bismuth, bismuth oxides, sulfides, and sulfates are formed on the rubbing surface, which improves the tribological properties of lubricants. In particular, a large number of bismuth atoms and bismuth sulfides play an important role in improving the EP properties of oils.

  3. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    PubMed

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  4. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    PubMed Central

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-01-01

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance. PMID:28772570

  5. Production of white oil from West Siberian crudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasenkov, L.A.; Popova, L.V.; Radchenko, K.A.

    White oils, such as pharmaceutical white mineral oil, perfume oil, solvent for initiator of ethylene polymerization reaction, oil for the lubrication of high-pressure compressors in polyethylene production, and cable oils, are finding more and more industrial applications. The distinguishing feature of all of these oils is their high degree of dearomatization. The content of naphthenes plus paraffins, as determined by adsorptive separation on silica gel, is at least 98%. White oils are produced by multistage sulfonation of the original raw material (oil) with oleum or gaseous sulfur trioxide with subsequent neutralization and clay contact finishing. The advantages of gaseous sulfurmore » trioxide over oleum are the lower consumption of sulfonating agent and the smaller amount of acid tar that is formed, giving higher yields of sulfonic acid that are in turn a raw material for the production of sulfonate additives. This paper presents results of a research program in which crude from West Siberia was tested as raw materials for the production of white oils. Results are presented which demonstrate suitability of crude tested for the production of perfume oil, pharmaceutical white mineral oil, S-220 cable oil, oil for use in polyethylene production (solvent for initiator of ethylene polymerization reaction), and compressor oil. 9 refs.« less

  6. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  7. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Treesearch

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  8. Effects of surfactants on low-molecular-weight organic acids to wash soil zinc.

    PubMed

    Chen, Yue; Zhang, Shirong; Xu, Xiaoxun; Yao, Ping; Li, Ting; Wang, Guiyin; Gong, Guoshu; Li, Yun; Deng, Ouping

    2016-03-01

    Soil washing is an effective approach to the removal of heavy metals from contaminated soil. In this study, the effects of the surfactants sodium dodecyl sulfate, Triton X-100, and non-ionic polyacrylamide (NPAM) on oxalic acid, tartaric acid, and citric acid used to remove zinc from contaminated soils were investigated. The Zn removal efficiencies of all washing solutions showed a logarithmic increase with acid concentrations from 0.5 to 10.0 g/L, while they decreased as pH increased from 4 to 9. Increasing the reaction time enhanced the effects of surfactants on Zn removal efficiencies by the acids during washing and significantly (P < 0.05) improved the removal under some mixed cases. Oxalic acid suffered antagonistic effects from the three surfactants and seriously damaged soil nutrients during the removal of soil Zn. Notably, the three surfactants caused synergistic effects on tartaric and citric acid during washing, with NPAM leading to an increase in Zn removal by 5.0 g/L citric acid of 10.60 % (P < 0.05) within 2 h. NPAM also alleviated the loss of cation exchange capacity of washed soils and obviously improved soil nitrogen concentrations. Overall, combining citric acid with NPAM offers a promising approach to the removal of zinc from contaminated soil.

  9. Anoxic and oxic removal of humic acids with Fe@Fe2O3 core-shell nanowires: a comparative study.

    PubMed

    Wu, Hao; Ai, Zhihui; Zhang, Lizhi

    2014-04-01

    In this study we comparatively investigate the removal of humic acids with Fe@Fe2O3 core-shell nanowires under anoxic and oxic conditions. The products of humic acids after reacting with Fe@Fe2O3 core-shell nanowires under anoxic and oxic conditions were carefully examined with three-dimensional excitation emission matrix fluorescence spectroscopy and gas chromatography mass spectrometry. It was found that humic acids were removed by Fe@Fe2O3 core-shell nanowires via adsorption under anoxic condition. Langmuir adsorption isotherm was applicable to describe the adsorption processes. Kinetics of humic acids adsorption onto Fe@Fe2O3 core-shell nanowires was found to follow pseudo-second-order rate equation. By contrast, the oxic removal of humic acids with Fe@Fe2O3 core-shell nanowires involved adsorption and subsequent oxidation of humic acids because Fe@Fe2O3 core-shell nanowires could activate molecular oxygen to produce reactive oxygen species to oxidize humic acids. This subsequent oxidation of humic acids could improve the oxic removal rate to 2.5 times that of anoxic removal, accompanying with about 8.4% of mineralization. This study provides a new method for humic acids removal and also sheds light on the effects of humic acids on the pollutant removal by nano zero-valent iron. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil.

    PubMed

    Meng, Fansheng; Xue, Hao; Wang, Yeyao; Zheng, Binghui; Wang, Juling

    2018-02-01

    Electrokinetic experiments were conducted on chromium-residue-contaminated soils collected from a chemical plant in China. Acidification-electrokinetic remediation technology was proposed in order to solve the problem of removing inefficient with ordinary electrokinetic. The results showed that electrokinetic remediation removal efficiency of chromium from chromium-contaminated soil was significantly enhanced with acidizing pretreatment. The total chromium [Cr(T)] and hexavalent chromium [Cr(VI)] removal rate of the group acidized by citric acid (0.9 mol/L) for 5 days was increased from 6.23% and 19.01% in the acid-free experiments to 26.97% and 77.66% in the acidification-treated experiments, respectively. In addition, part of chromium with the state of carbonate-combined will be converted into water-soluble state through acidification to improve the removal efficiency. Within the appropriate concentration range, the higher concentration of acid was, the more chromium was released. So the removal efficiency of chromium depended on the acid concentration. The citric acid is also a kind of complexing agent, which produced complexation with Cr that was released by the electrokinetic treatment and then enhanced the removal efficiency. The major speciation of chromium that was removed from soils by acidification-electrokinetics remediation was acid-soluble speciation, revivification speciation and oxidation speciation, which reduced biological availability of chromium.

  11. Evaluation of nonpressure wood preservatives for military applications

    Treesearch

    Stan T. Lebow; Samuel L. Zelinka; Rachel A. Arango; Bessie M. Woodward; Patricia K. Lebow; Katie M. Ohno; Nathaniel P. Chotlos

    2017-01-01

    Zinc naphthenate (ZnN) has been widely used for dip treatment of Department of Defense wood packaging materials but is no longer available. Research was conducted to evaluate the preservative efficacy and corrosiveness of U.S. Environmental Protection Agency (EPA) registered alternatives to ZnN. Efficacy of “green” preservatives (defined here as not containing...

  12. Valorization of aluminum scrap via an acid-washing treatment for reductive removal of toxic bromate from water.

    PubMed

    Lin, Kun-Yi Andrew; Lin, Jia-Yin; Lien, Hsing-Lung

    2017-04-01

    Aluminum scrap (AS) is adopted for the first time as a readily available aluminum source to prepare zero-valent aluminum (ZVAl) for removing bromate from water via a reductive reaction. Since aluminum is easily oxidized to aluminum oxide (Al 2 O 3 ) on exposure to air, an acid-washing pretreatment on AS is developed to remove the layer of Al 2 O 3 . HCl is found as the most effective acid to pretreat AS and the HCl-pretreated or acid-washed AS (AWAS) is able to remove bromate from water and convert it to bromide. Factors, such as temperature, pH, co-existing anions, and particle size, which influence the bromate removal using AWAS are also investigated. The mechanism of bromate removal by AWAS can be attributed to both reduction and adsorption. The elevated temperature also significantly improves bromate removal capacity of AWAS as well as the reaction kinetics. The bromate removal capacity of AWAS is substantially improved under acidic conditions. However, the basic conditions and co-existing anions suppress or interfere with the interaction between bromate and AWAS, leading to much lower removal capacities. The recyclability of AWAS is also evaluated and the acid-washing regeneration is necessary to restore its capacity. However, the mass of AWAS can gradually decrease due to multi-cycle acid-washing regeneration. Through this study, the valorization of AS via acid-washing is demonstrated and optimization of acid-washing parameters is presented. Our findings reveal that the acid-washing is a useful technique to utilize AS as an inexpensive and efficient material for removing bromate from water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Comparative study of humic acid removal and floc characteristics by electrocoagulation and chemical coagulation.

    PubMed

    Semerjian, Lucy; Damaj, Ahmad; Salam, Darine

    2015-11-01

    The current study aims at investigating the efficiency of electrocoagulation for the removal of humic acid from contaminated waters. In parallel, conventional chemical coagulation was conducted to asses humic acid removal patterns. The effect of varying contributing parameters (matrix pH, humic acid concentration, type of electrode (aluminum vs. iron), current density, solution conductivity, and distance between electrodes) was considered to optimize the electrocoagulation process for the best attainable humic acid removal efficiencies. Optimum removals were recorded at pH of 5.0-5.5, an electrical conductivity of 3000 μS/cm at 25 °C, and an electrode distance of 1 cm for both electrode types. With aluminum electrodes, a current density of 0.05 mA/cm2 outperformed 0.1 mA/cm2 yet not higher densities, whereas a current density of 0.8 mA/cm2 was needed for iron electrodes to exhibit comparable performance. With both electrode types, higher initial humic acid concentrations were removed at a slower rate but ultimately attained almost complete removals. On the other hand, the best humic acid removals (∼90%) by chemical coagulation were achieved at 4 mg/L for both coagulants. Also, higher removals were attained at elevated initial humic acid concentrations. Humic acid removals of 90% or higher at an initial HA concentration of 40 mg/L were exhibited, yet alum performed better at the highest experimented concentration. It was evident that iron flocs were larger, denser, and more geometrical in shape compared to aluminum flocs.

  14. Heavy metal pollution among autoworkers. I. Lead.

    PubMed Central

    Clausen, J; Rastogi, S

    1977-01-01

    Lead pollution was evaluated in 216 individuals working in 10 garages on the Island of Funen, Denmark and related to data from biochemical and medical examinations. Clinical symptoms were recorded by means of a questionnaire. Increased blood test lead levels were foun in 59% with 9% having above 80 microgram lead/100 ml (3-86mumol/1) whole blood. Mechanics in eight out of ten garages had significantly increased blood lead levels. A decrease in delta-aminolevulinic acid dehydratase (ALAD) activity was associated with increased blood lead levels but the latter were not related to haematological changes, tobacco consumption or to length of service in the trade. Particulate lead air pollution was not the sole cause of increased blood lead levels. Raised lead values were maximal among diesel engine workers who are exposed to high pressure-resistant lubricants containing lead naphthenate. As these workers complained of skin damage, lead absorption may have occurred through the skin. Assay of lead content showed 9290 ppm in gear oil and 1500-3500 ppm in used motor oils. The data are discussed in relation to the occupational risks in auto repair shops. PMID:911691

  15. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  16. Biodegradation of potato slops from a rural distillery by thermophilic aerobic bacteria.

    PubMed

    Cibis, Edmund; Kent, Christopher A; Krzywonos, Malgorzata; Garncarek, Zbigniew; Garncarek, Barbara; Miśkiewicz, Tadeusz

    2002-10-01

    A study has been made of thermophilic aerobic biodegradation of the liquid fraction of potato slops (distillation residue) from a rural distillery. The COD of this fraction ranged from 49 to 104 g O2/l, the main contributions to the COD coming from organic acids, reducing substances, and glycerol. It was found that biodegradation could be divided into the following stages: organic acids were removed first, followed by reducing substances and glycerol. The extent of removal varied according to the process temperature. At 50 degrees C, acetic and malic acids were removed completely, but the amount of isobutyric acid increased. At 60 degrees C, organic acid removal ranged from 51.2% (isobutyric acid) to 99.6% (lactic acid). Removals of glycerol and reducing substances were 86.2% and 87.4%, respectively. COD reduction was also temperature dependent, the highest removal efficiency (76.7%) being achieved at 60 degrees C. Dissolved oxygen may have limited the biodegradation process, as indicated by the DOT-versus-time profile.

  17. Passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material: experimental and modelling.

    PubMed

    Zvimba, John N; Siyakatshana, Njabulo; Mathye, Matlhodi

    2017-03-01

    This study investigated passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material over 90 days, with monitoring of the parameters' quality and assessment of their removal kinetics. The quality was observed to significantly improve over time with most parameters removed from the influent during the first 10 days. In this regard, removal of acidity, Fe(II), Mn, Co, Ni and Zn was characterized by fast kinetics while removal kinetics for Mg and SO 4 2- were observed to proceed slowly. The fast removal kinetics of acidity was attributed to fast release of alkalinity from slag minerals under mildly acidic conditions of the influent water. The removal of acidity through generation of alkalinity from the passive treatment system was also observed to generally govern the removal of metallic parameters through hydroxide formation, with overall percentage removals of 88-100% achieved. The removal kinetics for SO 4 2- was modelled using two approaches, yielding rate constant values of 1.56 and 1.53 L/(day mol) respectively, thereby confirming authenticity of SO 4 2- removal kinetics experimental data. The study findings provide insights into better understanding of the potential use of slags and their limitations, particularly in mine closure, as part of addressing this challenge in South Africa.

  18. Assessing spatial and temporal variability of acid-extractable organics in oil sands process-affected waters.

    PubMed

    Frank, Richard A; Milestone, Craig B; Rowland, Steve J; Headley, John V; Kavanagh, Richard J; Lengger, Sabine K; Scarlett, Alan G; West, Charles E; Peru, Kerry M; Hewitt, L Mark

    2016-10-01

    The acid-extractable organic compounds (AEOs), including naphthenic acids (NAs), present within oil sands process-affected water (OSPW) receive great attention due to their known toxicity. While recent progress in advanced separation and analytical methodologies for AEOs has improved our understanding of the composition of these mixtures, little is known regarding any variability (i.e., spatial, temporal) inherent within, or between, tailings ponds. In this study, 5 samples were collected from the same location of one tailings pond over a 2-week period. In addition, 5 samples were collected simultaneously from different locations within a tailings pond from a different mine site, as well as its associated recycling pond. In both cases, the AEOs were analyzed using SFS, ESI-MS, HRMS, GC×GC-ToF/MS, and GC- & LC-QToF/MS (GC analyses following conversion to methyl esters). Principal component analysis of HRMS data was able to distinguish the ponds from each other, while data from GC×GC-ToF/MS, and LC- and GC-QToF/MS were used to differentiate samples from within the temporal and spatial sample sets, with the greater variability associated with the latter. Spatial differences could be attributed to pond dynamics, including differences in inputs of tailings and surface run-off. Application of novel chemometric data analyses of unknown compounds detected by LC- and GC-QToF/MS allowed further differentiation of samples both within and between data sets, providing an innovative approach for future fingerprinting studies. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Lubricants for Hydraulic Structures

    DTIC Science & Technology

    1989-08-01

    significant difference is the fact that paraffinics provide a higher pour point. Although this is of little con- cern in warm climates , it could be...significant in very cold climates . 194. Lubricating oils may be either paraffinic or naphthenic depending on intended use, but there are no restrictions...geographical and climatic conditions, freedom to adjust to local conditions is recommended. 59 Table 1 Common Additives for Industrial Oils Rust

  20. Thermophysical Properties of Matter - the TPRC Data Series. Volume 11. Viscosity

    DTIC Science & Technology

    1975-01-01

    he monumental accomplishment in themselves, re- has spent enough time looking. Now with the quiring for their production the combined knowledge...Thodos for naphthenic hydrocarbons Thodos [1201] have represented the reduced viscosity (701], aromatic hydrocarbons (702], and unsaturated integral by...thefluidatoneatmospherepressureat thetemperature mixtures of liquids, and examined the case of caustic of interest, and p, is the value of p at the critical soda

  1. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis.

    PubMed

    Jones, Rhys Jon; Massanet-Nicolau, Jaime; Guwy, Alan; Premier, Giuliano C; Dinsdale, Richard M; Reilly, Matthew

    2015-08-01

    Hydrogen production during dark fermentation is inhibited by the co-production of volatile fatty acids (VFAs) such as acetic and n-butyric acid. In this study, the effectiveness of conventional electrodialysis (CED) in reducing VFA concentrations in model solutions and hydrogen fermentation broths is evaluated. This is the first time CED has been reported to remove VFAs from hydrogen fermentation broths. During 60 min of operation CED removed up to 99% of VFAs from model solutions, sucrose-fed and grass-fed hydrogen fermentation broths, containing up to 1200 mg l(-1) each of acetic acid, propionic acid, i-butyric acid, n-butyric acid, i-valeric acid, and n-valeric acid. CED's ability to remove VFAs from hydrogen fermentation broths suggests that this technology is capable of improving hydrogen yields from dark fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Optimized Extraction Method To Remove Humic Acid Interferences from Soil Samples Prior to Microbial Proteome Measurements.

    PubMed

    Qian, Chen; Hettich, Robert L

    2017-07-07

    The microbial composition and their activities in soil environments play a critical role in organic matter transformation and nutrient cycling. Liquid chromatography coupled to high-performance mass spectrometry provides a powerful approach to characterize soil microbiomes; however, the limited microbial biomass and the presence of abundant interferences in soil samples present major challenges to proteome extraction and subsequent MS measurement. To this end, we have designed an experimental method to improve microbial proteome measurement by removing the soil-borne humic substances coextraction from soils. Our approach employs an in situ detergent-based microbial lysis/TCA precipitation coupled to an additional cleanup step involving acidified precipitation and filtering at the peptide level to remove most of the humic acid interferences prior to proteolytic peptide measurement. The novelty of this approach is an integration to exploit two different characteristics of humic acids: (1) Humic acids are insoluble in acidic solution but should not be removed at the protein level, as undesirable protein removal may also occur. Rather it is better to leave the humics acids in the samples until the peptide level, at which point the significant differential solubility of humic acids versus peptides at low pH can be exploited very efficiently. (2) Most of the humic acids have larger molecule weights than the peptides. Therefore, filtering a pH 2 to 3 peptide solution with a 10 kDa filter will remove most of the humic acids. This method is easily interfaced with normal proteolytic processing approaches and provides a reliable and straightforward protein extraction method that efficiently removes soil-borne humic substances without inducing proteome sample loss or biasing protein identification in mass spectrometry. In general, this humic acid removal step is universal and can be adopted by any workflow to effectively remove humic acids to avoid them negatively competing with peptides for binding with reversed-phase resin or ionization in the electrospray.

  3. REMOVAL OF RADIUM FROM DRINKING WATER

    EPA Science Inventory

    This report summarizes processes for removal of radium from drinking water. Ion exchange, including strong acid and weak acid resin, is discussed. Both processes remove better than 95 percent of the radium from the water. Weak acid ion exchange does not add sodium to the water...

  4. Tuning the pH-shift protein-isolation method for maximum hemoglobin-removal from blood rich fish muscle.

    PubMed

    Abdollahi, Mehdi; Marmon, Sofia; Chaijan, Manat; Undeland, Ingrid

    2016-12-01

    A main challenge preventing optimal use of protein isolated from unconventional raw materials (e.g., small pelagic fish and fish by-products) using the pH-shift method is the difficulty to remove enough heme-pigments. Here, the distribution of hemoglobin (Hb) in the different fractions formed during pH-shift processing was studied using Hb-fortified cod mince. Process modifications, additives and prewashing were then investigated to further facilitate Hb-removal. The alkaline pH-shift process version could remove considerably more Hb (77%) compared to the acidic version (37%) when proteins were precipitated at pH 5.5; most Hb was removed during dewatering. Protein precipitation at pH 6.5 improved total Hb removal up to 91% and 74% during alkaline and acid processing, respectively. Adding phytic acid to the first supernatant of the alkaline process version yielded 93% Hb removal. Combining one prewash with phytic acid at pH 5.5 followed by alkaline/acid pH-shift processing increased Hb removal up to 96/92%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Industry - Military Energy Symposium, held 21-23 October 1980, San Antonio, Texas

    DTIC Science & Technology

    1980-10-21

    unless the best available technology is applied to many sources including those the size of airports . Further discussion of these issues will hopefully...particularly with naphthenic fuels. A similar weakness applies to correlations of net heat of combustion. Some additional correlating parameters...Viscosity Boost pump power Line size and weight Thermal Stability Gum, deposits, nozzle coking Specific Heat Avionics and engine oil cooling Aromatics

  6. Removal of lead by apatite and its stability in the presence of organic acids.

    PubMed

    Katoh, Masahiko; Makimura, Akihiko; Sato, Takeshi

    2016-12-01

    In this study, lead sorption and desorption tests were conducted with apatite and organic acids (i.e. citric, malic, and formic acids) to understand lead removal by apatite in the presence of an organic acid and lead dissolution from the lead- and organic-acid-sorbed apatite by such organic acid exposure. The lead sorption test showed that the amount of lead removed by apatite in the presence of organic acid varied depending on the type of acid used. The molar amounts of calcium dissolved from apatite in the presence and absence of organic acid were exactly the same as those of lead removed even under different pH conditions as well as different organic acid concentrations, indicating that the varying amount of lead removal in the presence of different organic acids resulted from the magnitude of the dissolution of apatite and the precipitation of lead phosphate minerals. The percentages of lead dissolved from the organic-acid-sorbed and non-organic-acid-sorbed apatite by all the organic acid extractions were equal and higher than those by water extraction. In particular, the highest extractions were observed in the non-organic-acid-sorbed apatite by citric and malic acids. These results suggest that to immobilize lead by the use of apatite in the presence of organic acids, much more apatite must be added than in the absence of organic acid, and that measures must be taken to ensure that the immobilized lead is not dissolved.

  7. Removal of inhibitors from lignocellulosic hydrolyzates by vacuum membrane distillation.

    PubMed

    Chen, Jingwen; Zhang, Yaqin; Wang, Yafei; Ji, Xiaosheng; Zhang, Lin; Mi, Xigeng; Huang, He

    2013-09-01

    In this study, vacuum membrane distillation (VMD) was used to remove two prototypical fermentation inhibitors (acetic acid and furfural) from lignocellulose hydrolyzates. The effect of operating parameters, such as feed temperature and feed velocity, on the removal efficiencies of inhibitors was investigated. Under optimal conditions, more than 98% of furfural could be removed by VMD. However, the removal efficiency of acetic acid was considerably lower. After furfural and acetic acid were selectively removed from hydrolyzates by VMD, ethanol production efficiency increased by 17.8% compared to original hydrolyzates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Effect and removal mechanisms of 6 different washing agents for building wastes containing chromium.

    PubMed

    Xing-run, Wang; Yan-xia, Zhang; Qi, Wang; Jian-min, Shu

    2012-01-01

    With the building wastes contaminated by chromium in Haibei Chemical Plan in China as objects, we studied the contents of total Cr and Cr (VI) of different sizes, analyzed the effect of 6 different washing agents, discussed the removal mechanisms of 6 different washing agents for Cr in various forms, and finally selected applicable washing agent. As per the results, particle size had little impact on the contents of total Cr and Cr (VI); after one washing with water, the removal rate of total Cr and Cr (VI) was 75% and 78%, respectively, and after the second washing with 6 agents, the removal rate of citric acid was the highest, above 90% for total Cr and above 99% for hexavalent chromium; the pH of building wastes were reduced by citric acid, and under acid condition, hexavalent chromium was reduced to trivalent chromium spontaneously by organic acid, which led to better removal rate of acid soluble Cr and reducible Cr; due to the complexing action, citric acid had best removal rate for oxidizable trivalent chromium. In conclusion, citric acid is the most applicable second washing agent for building wastes.

  9. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals.

    PubMed

    Falås, P; Baillon-Dhumez, A; Andersen, H R; Ledin, A; la Cour Jansen, J

    2012-03-15

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to the pharmaceutical removal, the nitrification capacity per unit biomass was lower for the carriers than the sludges, which suggests that neither the nitrite nor the ammonia oxidizing bacteria are primarily responsible for the observed differences in pharmaceutical removal. The low ability of ammonia oxidizing bacteria to degrade or transform the target pharmaceuticals was further demonstrated by the limited pharmaceutical removal in an experiment with continuous nitritation and biofilm carriers from a partial nitritation/anammox sludge liquor treatment process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Treatment of purified terephthalic acid wastewater using a bio-waste-adsorbent bagasse fly ash (BFA).

    PubMed

    Verma, Shilpi; Prasad, Basheshwar; Mishra, Indra Mani

    2017-01-01

    Purified terephthalic acid (PTA) plant of a petrochemical unit generates wastewater having high pollution load. Acid treatment of this wastewater reduces the chemical oxygen demand (COD) load by more than 50%, still leaving substantial COD load (>1500 mg/L) which should be removed. The present study reports on the use of a bio-waste-adsorbent bagasse fly ash (BFA) for the reduction of COD and other recalcitrant acids from this wastewater. The BFA showed basic character and was mesoporous with a BET specific surface area of 82.4 m 2 /g. Optimum conditions for the adsorptive treatment of acid-pretreated PTA wastewater were found to be as follows: initial pH (pH i ) = 4, BFA dosage = 15 g/L, and contact time = 3 h. Adsorption treatment resulted in 58.2% removal of COD, 96.3% removal of terephthalic acid (TA), and 99.9% removal of benzoic acid (BA). TA and BA were removed from the pretreated PTA wastewater through precipitation and sedimentation of un-dissociated acid molecules inside the mesopores of the BFA. The results showed that the COD removed by the BFA followed pseudo-second-order kinetics. Equilibrium sorption data were best correlated by the Freundlich isotherm. The process of adsorptive removal of COD was found to be exothermic. The change in the Gibbs free energy was found to be negative, suggesting that the adsorption process is spontaneous and feasible for the treatment of PTA wastewater.

  11. Simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewater by zero-valent iron.

    PubMed

    Yoshino, Hiroyuki; Tokumura, Masahiro; Kawase, Yoshinori

    2014-01-01

    The zero-valent iron (ZVI) wastewater treatment has been applied to simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewaters. The simultaneous removal occurs by the reactions performed due to the sequential transformation of ZVI under the acidic condition. Fortunately the solution pH of semiconductor acidic wastewaters is low which is effective for the sequential transformation of ZVI. Firstly the reduction of nitrate is taken place by electrons generated by the corrosion of ZVI under acidic conditions. Secondly the ferrous ion generated by the corrosion of ZVI reacts with hydrogen peroxide and generates ·OH radical (Fenton reaction). The Fenton reaction consists of the degradation of hydrogen peroxide and the generation of ferric ion. Finally phosphate precipitates out with iron ions. In the simultaneous removal process, 1.6 mM nitrate, 9.0 mM hydrogen peroxide and 1.0 mM phosphate were completely removed by ZVI within 100, 15 and 15 min, respectively. The synergy among the reactions for the removal of nitrate, hydrogen peroxide and phosphate was found. In the individual pollutant removal experiment, the removal of phosphate by ZVI was limited to 80% after 300 min. Its removal rate was considerably improved in the presence of hydrogen peroxide and the complete removal of phosphate was achieved after 15 min.

  12. Correlation of Laboratory Flame Propagation Testing Results with Ballistic Testing Utilizing Several Threats with Varying Explosive Energies

    DTIC Science & Technology

    2011-09-01

    hydrocarbons, i.e.; paraffins , olefins , aromatics, and naphthenics. Because of the chemical complexity of fuels, they are classified on the basis of... Technologies Warren, Michigan Contract No. DAAE-07-99-C-L053 (WD38) UNCLASSIFIED: Distribution Statement A. Approved for public release September...Government employee(s), this document was only reviewed for export controls, and improper Army association or emblem usage considerations. All other

  13. Biodegradation of six haloacetic acids in drinking water.

    PubMed

    Bayless, Walt; Andrews, Robert C

    2008-03-01

    Haloacetic acids (HAAs) are produced by the reaction of chlorine with natural organic matter and are regulated disinfection by-products of health concern. Biofilms in drinking water distribution systems and in filter beds have been associated with the removal of some HAAs, however the removal of all six routinely monitored species (HAA(6)) has not been previously reported. In this study, bench-scale glass bead columns were used to investigate the ability of a drinking water biofilm to degrade HAA(6). Monochloroacetic acid (MCAA) and monobromoacetic acid (MBAA) were the most readily degraded of the halogenated acetic acids. Trichloroacetic acid (TCAA) was not removed biologically when examined at a 90% confidence level. In general, di-halogenated species were removed to a lesser extent than the mono-halogenated compounds. The order of biodegradability by the biofilm was found to be monobromo > monochloro > bromochloro > dichloro > dibromo > trichloroacetic acid.

  14. Removal of heavy metals from contaminated soil by electrodialytic remediation enhanced with organic acids.

    PubMed

    Merdoud, Ouarda; Cameselle, Claudio; Boulakradeche, Mohamed Oualid; Akretche, Djamal Eddine

    2016-11-09

    The soil from an industrial area in Algeria was contaminated with Cr (8370 mg kg -1 ), Ni (1135 mg kg -1 ) and zinc (1200 mg kg -1 ). The electrodialytic remediation of this soil was studied using citric acid and EDTA as facilitating agents. 0.1 M citric acid or EDTA was added directly to the soil before it was introduced in an electrodialytic cell in an attempt to enhance the heavy metal solubility in the interstitial fluid. The more acidic pH in the soil when citric acid was used as the facilitating agent was not enough to mobilize and remove the metals from the soil. Only 7.2% of Ni and 6.7% of Zn were removed from the soil in the test with citric acid. The best results were found with EDTA, which was able to solubilize and complex Zn and Ni forming negatively charged complexes that were transported and accumulated in the anolyte. Complete removal was observed for Ni and Zn in the electrodialytic treatment with EDTA. Minor amounts of Cr were removed with both EDTA and citric acid.

  15. Structural health monitoring ultrasonic thickness measurement accuracy and reliability of various time-of-flight calculation methods

    NASA Astrophysics Data System (ADS)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2016-02-01

    The accuracy, precision, and reliability of ultrasonic thickness structural health monitoring systems are discussed in-cluding the influence of systematic and environmental factors. To quantify some of these factors, a compression wave ultrasonic thickness structural health monitoring experiment is conducted on a flat calibration block at ambient temperature with forty four thin-film sol-gel transducers and various time-of-flight thickness calculation methods. As an initial calibration, the voltage response signals from each sensor are used to determine the common material velocity as well as the signal offset unique to each calculation method. Next, the measurement precision of the thickness error of each method is determined with a proposed weighted censored relative maximum likelihood analysis technique incorporating the propagation of asymmetric measurement uncertainty. The results are presented as upper and lower confidence limits analogous to the a90/95 terminology used in industry recognized Probability-of-Detection assessments. Future work is proposed to apply the statistical analysis technique to quantify measurement precision of various thickness calculation methods under different environmental conditions such as high temperature, rough back-wall surface, and system degradation with an intended application to monitor naphthenic acid corrosion in oil refineries.

  16. Effect of Fuel on Performance of a Single Combustor of an I-16 Turbojet Engine at Simulated Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Zettle, Eugene V; Bolz, Ray E; Dittrich, R T

    1947-01-01

    As part of a study of the effects of fuel composition on the combustor performance of a turbojet engine, an investigation was made in a single I-16 combustor with the standard I-16 injection nozzle, supplied by the engine manufacturer, at simulated altitude conditions. The 10 fuels investigated included hydrocarbons of the paraffin olefin, naphthene, and aromatic classes having a boiling range from 113 degrees to 655 degrees F. They were hot-acid octane, diisobutylene, methylcyclohexane, benzene, xylene, 62-octane gasoline, kerosene, solvent 2, and Diesel fuel oil. The fuels were tested at combustor conditions simulating I-16 turbojet operation at an altitude of 45,000 feet and at a rotor speed of 12,200 rpm. At these conditions the combustor-inlet air temperature, static pressure, and velocity were 60 degrees F., 12.3 inches of mercury absolute, and 112 feet per second respectively, and were held approximately constant for the investigation. The reproducibility of the data is shown by check runs taken each day during the investigation. The combustion in the exhaust elbow was visually observed for each fuel investigated.

  17. Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.

    PubMed

    Tong, Xuejiao; Xu, Renkou

    2013-04-01

    The removal efficiency of copper (Cu(II)) from an actual acidic electroplating effluent by biochars generated from canola, rice, soybean and peanut straws was investigated. The biochars simultaneously removed Cu(II) from the effluent, mainly through the mechanisms of adsorption and precipitation, and neutralized its acidity. The removal efficiency of Cu(II) by the biochars followed the order: peanut straw char > soybean straw char > canola straw char > rice straw char > a commercial activated carbonaceous material, which is consistent with the alkalinity of the biochars. The pH of the effluent was a key factor determining the removal efficiency of Cu(II) by biochars. Raising the initial pH of the effluent enhanced the removal of Cu(II) from it. The optimum pyrolysis temperature was 400 degrees C for producing biochar from crop straws for acidic wastewater treatment, and the optimum reaction time was 8 hr.

  18. Techno-economic Analysis of Acid Gas Removal and Liquefaction for Pressurized LNG

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Seo, Y. K.; Chang, D. J.

    2018-05-01

    This study estimated the life cycle cost (LCC) of an acid gas removal and a liquefaction processes for Pressurized LNG (PLNG) production and compared the results with the cost of normal LNG production. PLNG is pressurized LNG that is liquefied at a higher pressure and temperature than normal LNG. Due to the high temperature, the energy for liquefaction is reduced. The allowable CO2 concentration in PLNG is increased up to 3 mol% when the product pressure 25 bar. An amine process with 35 wt% of diethanolamine (DEA) aqueous solution and a nitrogen expansion cycle were selected for the acid gas removal and the liquefaction processes, respectively. Two types of CO2 concentration in the feed gas were investigated to analyze their impacts on the acid gas removal unit. When the CO2 concentration was 5 mol%, the acid gas removal unit was required for both LNG and PLNG production. However, the acid gas removal unit was not necessary in PLNG when the concentration was 0.5 mol% and the pressure was higher than 15 bar. The results showed that the LCC of PLNG was reduced by almost 35% relative to that of LNG when the PLNG pressure was higher than 15 bar.

  19. Subtask 3.11 - Production of CBTL-Based Jet Fuels from Biomass-Based Feedstocks and Montana Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Ramesh

    The Energy & Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from Exxon Mobil, undertook Subtask 3.11 to use a recently installed bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. The process involves liquefaction of Rosebud mine coal (Montana coal) coupled with an upgrading scheme to produce a naphthenic fuel. The upgrading comprises catalytic hydrotreating and saturation to produce naphthenic fuel. A synthetic jet fuel was preparedmore » by blending equal volumes of naphthenic fuel with similar aliphatic fuel derived from biomass and 11 volume % of aromatic hydrocarbons. The synthetic fuel was tested using standard ASTM International techniques to determine compliance with JP-8 fuel. The composite fuel thus produced not only meets but exceeds the military aviation fuel-screening criteria. A 500-milliliter synthetic jet fuel sample which met internal screening criteria was submitted to the Air Force Research Laboratory (AFRL) at Wright–Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with U.S. Air Force-prescribed alternative aviation fuel initial screening criteria. The results show that this fuel meets or exceeds the key specification parameters for JP-8, a petroleum-based jet fuel widely used by the U.S. military. JP-8 specifications include parameters such as freeze point, density, flash point, and others; all of which were met by the EERC fuel sample. The fuel also exceeds the thermal stability specification of JP-8 fuel as determined by the quartz crystalline microbalance (QCM) test also performed at an independent laboratory as well as AFRL. This means that the EERC fuel looks and acts identically to petroleum-derived jet fuel and can be used interchangeably without any special requirements and thus provides a pathway to energy security to the U.S. military and the entire nation. This subtask was funded through the EERC–DOE Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26- 08NT43291. Nonfederal funding was provided by Accelergy Corporation.« less

  20. Alkali, thermo and halo tolerant fungal isolate for the removal of textile dyes.

    PubMed

    Kaushik, Prachi; Malik, Anushree

    2010-11-01

    In the present study potential of a fungal isolate Aspergillus lentulusFJ172995, was investigated for the removal of textile dyes. The removal percentages of dyes such as Acid Navy Blue, Orange-HF, Fast Red A, Acid Sulphone Blue and Acid Magenta were determined as 99.43, 98.82, 98.75, 97.67 and 69.98, respectively. None of the dyes inhibited the growth of A. lentulus. Detailed studies on growth kinetics, mechanism of dye removal and effect of different parameters on dye removal were conducted using Acid Navy Blue dye. It was observed that A. lentulus could completely remove Acid Navy Blue even at high initial dye concentrations, up to 900 mg/L. Highest uptake capacity of 212.92 mg/g was observed at an initial dye concentration of 900 mg/L. Dye removing efficiency was not altered with the variation of pH; and biomass production as well as dye removal was favored at higher temperatures. Dye removal was also efficient even at high salt concentration. Through growth kinetics studies it was observed that the initial exponential growth phase coincided with the phase of maximal dye removal. Microscopic studies suggest that bioaccumulation along with biosorption is the principle mechanism involved in dye removal by A. lentulus. Thus, it is concluded that being alkali, thermo and halo tolerant, A. lentulus isolate has a great potential to be utilized for the treatment of dye bearing effluents which are usually alkaline, hot and saline. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. Controlled core removal from a D-shaped optical fiber.

    PubMed

    Markos, Douglas J; Ipson, Benjamin L; Smith, Kevin H; Schultz, Stephen M; Selfridge, Richard H; Monte, Thomas D; Dyott, Richard B; Miller, Gregory

    2003-12-20

    The partial removal of a section of the core from a continuous D-shaped optical fiber is presented. In the core removal process, selective chemical etching is used with hydrofluoric (HF) acid. A 25% HF acid solution removes the cladding material above the core, and a 5% HF acid solution removes the core. A red laser with a wavelength of 670 nm is transmitted through the optical fiber during the etching. The power transmitted through the optical fiber is correlated to the etch depth by scanning electron microscope imaging. The developed process provides a repeatable method to produce an optical fiber with a specific etch depth.

  2. Varying Conditions for Hexanoic Acid Degradation with BioTiger™

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foreman, Koji; Milliken, Charles; Brigmon, Robin

    BioTiger™ (BT) is a consortium of 12 bacteria designed for petroleum waste biodegradation. BT is currently being studied and could be considered for bioremediation of the Athabasca oil sands refineries in Canada and elsewhere. The run-off ponds from the petroleum extraction processes, called tailings ponds, are a mixture of polycyclic aromatic hydrocarbons, naphthenic acids, hydrocarbons, toxic chemicals like heavy metals, water, and sand. Due to environmental regulations the oil industry would like to separate and degrade the hazardous chemical species from the tailings ponds while recycling the water. It has been shown that BT at 30 C° is able tomore » completely degrade 10 mM hexanoic acid (HA) co-metabolically with 0.2% yeast extract (w/v) in 48 hours when starting at 0.4 OD 600nm. After establishing this stable degradation capability, variations were tested to explore the wider parameters of BT activity in temperature, pH, intermediate degradation, co-metabolic dependence, and transfer stability. Due to the vast differences in temperature at various points in the refineries, a wide range of temperatures were assessed. The results indicate that BT retains the ability to degrade HA, a model surrogate for tailings pond contaminants, at temperatures ranging from 15°C to 35°C. Hexanamide (HAM) was shown to be an intermediate generated during the degradation of HA in an earlier work and HAM is completely degraded after 48 hours, indicating that HAM is not the final product of HA degradation. Various replacements for yeast extract were attempted. Glucose, a carbon source; casein amino acids, a protein source; additional ammonia, mimicking known media; and additional phosphate with Wolffe’s vitamins and minerals all showed no significant degradation of HA compared to control. Decreasing the yeast extract concentration (0.05%) demonstrated limited but significant degradation. Finally, serial inoculations of BT were performed to determine the stability of degradation over several generations. Overall, BT has shown to be moderately flexible for HA co-metabolic biodegradation.« less

  3. Pharmaceutical removal in tropical subsurface flow constructed wetlands at varying hydraulic loading rates.

    PubMed

    Zhang, Dong Qing; Gersberg, Richard M; Hua, Tao; Zhu, Junfei; Tuan, Nguyen Anh; Tan, Soon Keat

    2012-04-01

    Determining the fate of emerging organic contaminants in an aquatic ecosystem is important for developing constructed wetlands (CWs) treatment technology. Experiments were carried out in subsurface flow CWs in Singapore to evaluate the fate and transport of eight pharmaceutical compounds. The CW system included three parallel horizontal subsurface flow CWs and three parallel unplanted beds fed continuously with synthetic wastewater at different hydraulic retention times (HRTs). The findings of the tests at 2-6 d HRTs showed that the pharmaceuticals could be categorized as (i) efficiently removed compounds with removal higher than 85% (ketoprofen and salicylic acid); (ii) moderately removed compounds with removal efficiencies between 50% and 85% (naproxen, ibuprofen and caffeine); and (iii) poorly removed compounds with efficiency rate lower than 50% (carbamazepine, diclofenac, and clofibric acid). Except for carbamazepine and salicylic acid, removal efficiencies of the selected pharmaceuticals showed significant (p<0.05) enhancement in planted beds as compared to the unplanted beds. Removal of caffeine, ketoprofen and clofibric acid were found to follow first order decay kinetics with decay constants higher in the planted beds than the unplanted beds. Correlations between pharmaceutical removal efficiencies and log K(ow) were not significant (p>0.05), implying that their removal is not well related to the compound's hydrophobicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of aliphatic acids has been identified in the wood hydrolyzate studied. They are potential fermentation inhibitors probably similar to acetic acid. Ethyl acetate extraction has also been demonstrated to be a possible method to remove fermentation inhibitors from hydrolyzates. (Abstract shortened by UMI.)

  5. DISSOLUTION METHOD OF REMOVING BONDING AGENTS

    DOEpatents

    Hyman, H.H.

    1960-04-19

    A method is given for removing residual aluminumsilicon bonding agents from uranium slugs after the removal of aluminum coatings. To accomplish this the slug is immersed in an aqueous solution about 0.75 N in hydrofluoric acid and about 7 N in nitric acid.

  6. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid.

    PubMed

    Wan, Jinzhong; Meng, Die; Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils.

  7. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid

    PubMed Central

    Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils. PMID:26087302

  8. Removal of toxic metals from vanadium-contaminated soils using a washing method: Reagent selection and parameter optimization.

    PubMed

    Jiang, Jianguo; Yang, Meng; Gao, Yuchen; Wang, Jiaming; Li, Dean; Li, Tianran

    2017-08-01

    Vanadium (V) contamination in soils is an increasing worldwide concern facing human health and environmental conservation. The fractionation of a metal influences its mobility and biological toxicity. We analyzed the fractionations of V and several other metals using the BCR three-step sequential extraction procedure. Among methods for removing metal contamination, soil washing is an effective permanent treatment. We conducted experiments to select the proper reagents and to optimize extraction conditions. Citric acid, tartaric acid, oxalic acid, and Na 2 EDTA all exhibited high removal rates of the extractable state of V. With a liquid-to-solid ratio of 10, washing with 0.4 mol/L citric acid, 0.4 mol/L tartaric acid, 0.4 mol/L oxalic acid, and 0.12 mol/L Na 2 EDTA led to removal rates of 91%, 88%, 88%, and 61%, respectively. The effect of multiple washing on removal rate was also explored. According to the changes observed in metal fractionations, differences in removal rates among reagents is likely associated with their pK a value, pH in solution, and chemical structure. We concluded that treating with appropriate washing reagents under optimal conditions can greatly enhance the remediation of vanadium-contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Purification Or Organic Acids Using Anion Exchange Chromatography.

    DOEpatents

    Ponnampalam; Elankovan

    2001-09-04

    Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.

  10. Acidic gas capture by diamines

    DOEpatents

    Rochelle, Gary [Austin, TX; Hilliard, Marcus [Missouri City, TX

    2011-05-10

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  11. Development of Acetic Acid Removal Technology for the UREX+Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for themore » removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.« less

  12. Novel one-pot synthesis of dicarboxylic acids mediated alginate-zirconium biopolymeric complex for defluoridation of water.

    PubMed

    Prabhu, Subbaiah Muthu; Meenakshi, Sankaran

    2015-04-20

    The present investigation explains the fluoride removal from aqueous solution using alginate-zirconium complex prepared with respective dicarboxylic acids like oxalic acid (Ox), malonic acid (MA) and succinic acid (SA) as a medium. The complexes viz., alginate-oxalic acid-zirconium (Alg-Ox-Zr), alginate-malonic acid-zirconium (Alg-MA-Zr) and alginate-succinic acid-zirconium (Alg-SA-Zr) were synthesized and studied for fluoride removal. The synthesized complexes were characterized by FTIR, XRD, SEM with EDAX and mapping images. The effects of various operating parameters were optimized. The result showed that the maximum removal of fluoride 9653mgF(-)/kg was achieved by Alg-Ox-Zr complex at acidic pH in an ambient atmospheric condition. Equilibrium data of Alg-Ox-Zr complex was fitted well with Freundlich isotherm. The calculated values of thermodynamic parameters indicated that the fluoride adsorption is spontaneous and endothermic in nature. The mechanism of fluoride removal behind Alg-Ox-Zr complex has been proposed in detail. The suitability of the Alg-Ox-Zr complex has been tested with the field sample collected in a nearby fluoride endemic area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Removal of humic acid from aqueous solution using dual PMMA/PVDF composite nanofiber: kinetics study

    NASA Astrophysics Data System (ADS)

    Zulfikar, M. A.; Afrianingsih, I.; Bahri, A.; Nasir, M.; Alni, A.; Setiyanto, H.

    2018-05-01

    The removal of humic acid from aqueous solution using dual poly(methyl methacrylate)/polyvinyl difluoride composite nanofiber under the influence of concentration has been studied. The experiments were performed using humic acid (HA) as an adsorbate at concentration in the range of 50-200 mg/L. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were used to describe the kinetic data and the rate constants were evaluated. It was observed that the amount of humic acid removed decrease with increasing concentration. The kinetic study revealed that pseudo-second order model fitted well the kinetic data, while the external diffusion or boundary layer diffusion was the main rate determining step in the removal process.

  14. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    The types and quantities of wear particles generated during accelerated ball rolling contact fatigue tests were determined. Ball specimens were made of AMS 5749, a corrosion resistant, high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.215 times 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed; normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  15. The Clouds and the Earth's Radiant Energy System Elevation Bearing Assembly Life Test

    NASA Technical Reports Server (NTRS)

    Brown, Phillip L.; Miller, James B.; Jones, William R., Jr.; Rasmussen, Kent; Wheeler, Donald R.; Rana, Mauro; Peri, Frank

    1999-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) elevation scan bearings lubricated with Pennzane SHF X2000 and 2% lead naphthenate (PbNp) were life tested for a seven-year equivalent Low Earth Orbit (LEO) operation. The bearing life assembly was tested continuously at an accelerated and normal rate using the scanning patterns developed for the CERES Earth Observing System AM-1 mission. A post-life-test analysis was performed on the collected data, bearing wear, and lubricant behavior.

  16. Refining of Military Jet Fuels from Shale Oil. Volume I. Part II. Preparation of Laboratory-Scale Fuel Samples.

    DTIC Science & Technology

    1982-03-01

    ON SPEC Meeting Specifications *1 OXY Test Series on In Situ Shale Oil P Pressure (P + N) Paraffins and Naphthenes PHO Test Series on Above-Ground...material, the crude shale is heated and processed through caustic desalt- ing similar to conventional technology. The desalted oil is mixed with recycle...with hot regenerated catalyst. Spent catalyst and oil vapors are disengaqed by -.eans of high temperature cyclones. The spent catalyst first passes

  17. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits.

    PubMed

    Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala

    2016-05-01

    Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation.

  18. REMOVAL BY COAGULATION OF TRACE ORGANICS FROM MISSISSIPPI RIVER WATER

    EPA Science Inventory

    In the study alum and ferric sulfate were evaluated for their effectiveness in removing four low-molecular-weight organic compounds - C14-labeled octanoic acid, salicylic acid, phenol, and benzoic acid - from Mississippi River water and from water samples free of natural organic ...

  19. Removal of furan and phenolic compounds from simulated biomass hydrolysates by batch adsorption and continuous fixed-bed column adsorption methods.

    PubMed

    Lee, Sang Cheol; Park, Sunkyu

    2016-09-01

    It has been proposed to remove all potential inhibitors and sulfuric acid in biomass hydrolysates generated from dilute-acid pretreatment of biomass, based on three steps of sugar purification process. This study focused on its first step in which furan and phenolic compounds were selectively removed from the simulated hydrolysates using activated charcoal. Batch adsorption experiments demonstrated that the affinity of activated charcoal for each component was highest in the order of vanillic acid, 4-hydroxybenzoic acid, furfural, acetic acid, sulfuric acid, and xylose. The affinity of activated charcoal for furan and phenolic compounds proved to be significantly higher than that of the other three components. Four separation strategies were conducted with a combination of batch adsorption and continuous fixed-bed column adsorption methods. It was observed that xylose loss was negligible with near complete removal of furan and phenolic compounds, when at least one fixed-bed column adsorption was implemented in the strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dechlorination of pentachlorophenol, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid in anaerobic freshwater sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, F.O.; Rogers, J.E.

    1990-02-01

    Pentachlorophenol, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid were transformed by microbial reductive dechlorination in freshwater, anaerobic sediments from such diverse locations as Georgia, Florida, New York and the Soviet Union. The reductive dechlorination process involves removal of a chlorine and replacement with a hydrogen. Sediments previously adapted to dechlorinate dichlorophenols were found to mediate dechlorination at much faster rates than unadapted sediments. Pentachlorophenol dechlorination in dichlorophenol-adapted sediments generated tetra-, tri-, di-, and monochlorophenol and phenol. Concentrations of pentachlorophenol, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid up to 100 ppm were dechlorinated by adapted sediments. Reductive dechlorination of PCP, 2,4-D, and 2,4,5-T was regionmore » specific for chlorine removal as determined by the dichlorophenol isomer used to adapt the sediment. Sediment adapted to 2,4-dichlorophenol preferentially removed chlorines from the ortho position; whereas sediment adapted to 3,4-dichlorophenol preferentially removed chlorines from the para position.« less

  1. Reactivity of clay minerals with acids and alkalies

    USGS Publications Warehouse

    Carroll, Dorothy; Starkey, Harry C.

    1971-01-01

    One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6⋅45 N, 1:1), acetic acid (4⋅5 N, 1:3), sodium hydroxide (2⋅8 N), sodium chloride solution (pH 6⋅10; Na = 35‰; Cl = 21⋅5‰), and natural sea water (pH 7⋅85; Na = 35⋅5‰; Cl = 21⋅ 5‰) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective.

  2. Removal of an acid fume system contaminated with perchlorates located within hot cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, K.E.; Henslee, S.P.; Vroman, W.R.

    1992-09-01

    An add scrubbing system located within the confines of a highly radioactive hot cell at Argonne National Laboratory-West (ANL-W) was remotely removed. The acid scrubbing system was routinely used for the dissolution of irradiated reactor fuel samples and structural materials. Perchloric acid was one of the acids used in the dissolution process and remained in the system with its inherent risks. Personnel could not enter the hot cell to perform the dismantling of the acid scabbing system due to the high radiation field and the explosion potential associated with the perchlorates. A robot was designed and built at ANL-W andmore » used to dismantle the system without the need for personnel entry into the hot cell. The robot was also used for size reduction of removed components and loading of the removed components into waste containers.« less

  3. Spectroscopic characterization of DOM and the nitrogen removal mechanism during wastewater reclamation plant.

    PubMed

    Wang, Lei; Li, Ying-Jun; Xiong, Ying; Tan, Wen-Bing; Zhang, Lie-Yu; Li, Xiang; Wang, Xiao-Shu; Xu, Jian-Feng; Li, Tong-Tong; Wang, Jin-Sheng; Cai, Ming-Xuan; Xi, Bei-Dou; Wang, Di-Hua

    2017-01-01

    The performance of the Sha-he wastewater reclamation plant was evaluated in this study. To remove residual nitrogen after Anaerobic-Anoxic-Oxic (A2O) treatment, three multistage Anoxic-Oxic (A/O) were added to investigate the nitrogen removal efficiency and its mechanism. In addition, the constituents and evolution of dissolved organic matter (DOM) during wastewater reclamation was also investigated using a method combining fluorescence spectroscopy with fluorescence regional integration (FRI). The results suggested that multistage A/O treatment can effectively improve the nitrogen removal ability under low concentrations of carbon sources. The total nitrogen (TN) exhibits significantly positive correlation with fulvic acid-like materials and humic acid-like materials. The correlation coefficient for TN and fulvic acid-like substances (R2 = 0.810, P < 0.01) removal was greater than that of humic acid-like substances (R2 = 0.636, P < 0.05). The results indicate that nitrogen removal may be achieved with the fulvic-like and humic-like substances, and the removal effects were higher by fulvic acid-like substances than humic-like substances, mostly due to that the latter were relatively more difficult to be utilized as carbon source during the nitrogen removal process. The effluent water quality of biological treatment reached the first grade A standard of "Cities sewage treatment plant pollutant discharge standard" (GB18918-2002). In addition, the effluent from the membrane bioreactor reached the "Standards of reclaimed water quality" (SL368-2006).

  4. Spectroscopic characterization of DOM and the nitrogen removal mechanism during wastewater reclamation plant

    PubMed Central

    Wang, Lei; Li, Ying-Jun; Xiong, Ying; Tan, Wen-Bing; Zhang, Lie-Yu; Li, Xiang; Wang, Xiao-Shu; Xu, Jian-feng; Li, Tong-Tong; Wang, Jin-Sheng; Cai, Ming-Xuan; Xi, Bei-Dou; Wang, Di-Hua

    2017-01-01

    The performance of the Sha-he wastewater reclamation plant was evaluated in this study. To remove residual nitrogen after Anaerobic-Anoxic-Oxic (A2O) treatment, three multistage Anoxic-Oxic (A/O) were added to investigate the nitrogen removal efficiency and its mechanism. In addition, the constituents and evolution of dissolved organic matter (DOM) during wastewater reclamation was also investigated using a method combining fluorescence spectroscopy with fluorescence regional integration (FRI). The results suggested that multistage A/O treatment can effectively improve the nitrogen removal ability under low concentrations of carbon sources. The total nitrogen (TN) exhibits significantly positive correlation with fulvic acid-like materials and humic acid-like materials. The correlation coefficient for TN and fulvic acid-like substances (R2 = 0.810, P < 0.01) removal was greater than that of humic acid-like substances (R2 = 0.636, P < 0.05). The results indicate that nitrogen removal may be achieved with the fulvic-like and humic-like substances, and the removal effects were higher by fulvic acid-like substances than humic-like substances, mostly due to that the latter were relatively more difficult to be utilized as carbon source during the nitrogen removal process. The effluent water quality of biological treatment reached the first grade A standard of “Cities sewage treatment plant pollutant discharge standard” (GB18918-2002). In addition, the effluent from the membrane bioreactor reached the “Standards of reclaimed water quality” (SL368-2006). PMID:29149172

  5. Detailed Analysis of Alternatives Report. Version 2.0. Technology Descriptions. Volume 7.

    DTIC Science & Technology

    1993-07-01

    capacity is 25 to 50 tons/hour. Off-gas treatment consists of a partial quench, baghouse, and venturi scrubber . The quench blowdown stream is treated...particulate removal, and a caustic quench step to remove acid gases with a venturi scrubber for additional particulate removal (Figure 7.1-1). The sequence can...quench step to remove acid gases with a venturi scrubber for additional particulate removal. The sequence can be modified to include off gas to stack gas

  6. Catalyst regeneration process including metal contaminants removal

    DOEpatents

    Ganguli, Partha S.

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  7. Removal of heavy metal species from industrial sludge with the aid of biodegradable iminodisuccinic acid as the chelating ligand.

    PubMed

    Wu, Qing; Duan, Gaoqi; Cui, Yanrui; Sun, Jianhui

    2015-01-01

    High level of heavy metals in industrial sludge was the obstacle of sludge disposal and resource recycling. In this study, iminodisuccinic acid (IDS), a biodegradable chelating ligand, was used to remove heavy metals from industrial sludge generated from battery industry. The extraction of cadmium, copper, nickel, and zinc from battery sludge with aqueous solution of IDS was studied under various conditions. It was found that removal efficiency greatly depends on pH, chelating agent's concentration, as well as species distribution of metals. The results showed that mildly acidic and neutral systems were not beneficial to remove cadmium. About 68 % of cadmium in the sample was extracted at the molar ratio of IDS to heavy metals 7:1 without pH adjustment (pH 11.5). Copper of 91.3 % and nickel of 90.7 % could be removed by IDS (molar ratio, IDS: metals = 1:1) with 1.2 % phosphoric acid effectively. Removal efficiency of zinc was very low throughout the experiment. Based on the experimental results, IDS could be a potentially useful chelant for heavy metal removal from battery industry sludge.

  8. Removal of highly elevated nitrate from drinking water by pH-heterogenized heterotrophic denitrification facilitated with ferrous sulfide-based autotrophic denitrification.

    PubMed

    Huang, Bin; Chi, Guangyu; Chen, Xin; Shi, Yi

    2011-11-01

    The performance of acetic acid-supported pH-heterogenized heterotrophic denitrification (HD) facilitated with ferrous sulfide-based autotrophic denitrification (AD) was investigated in upflow activated carbon-packed column reactors for reliable removal of highly elevated nitrate (42 mg NO(3)-Nl(-1)) in drinking water. The use of acetic acid as substrate provided sufficient internal carbon dioxide to completely eliminate the need of external pH adjustment for HD, but simultaneously created vertically heterogenized pH varying from 4.8 to 7.8 in the HD reactor. After 5-week acclimation, the HD reactor developed a moderate nitrate removal capacity with about one third of nitrate removal occurring in the acidic zone (pH 4.8-6.2). To increase the treatment reliability, acetic acid-supported HD was operated under 10% carbon limitation to remove >85% of nitrate, and ferrous sulfide-based AD was supplementally operated to remove residual nitrate and formed nitrite without excess of soluble organic carbon, nitrite or sulfate in the final effluent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, R.E.; McKay, D.M.; Moses, V.

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  10. Methods for removing contaminants from algal oil

    DOEpatents

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  11. Successful Initial Development of Styrene Substitutes and Suppressants for Vinyl Ester Resin Formulations

    DTIC Science & Technology

    2003-08-01

    into a separatory funnel. Distilled water was added to remove the acid from the ether phase. The layers were allowed to separate, and the water layer...The reaction mixtures were removed from the heat 2 hr after the last acrylic acid aliquot was added. The acrylated oils were purified via ether... remove inhibitor and any unreacted acid , the reaction mixture was ether extracted (25). The mixture was dissolved in diethyl ether and poured into a

  12. Tannic acid for smear layer removal: pilot study with scanning electron microscope.

    PubMed

    Bitter, N C

    1989-04-01

    The effects of a 25% tannic acid solution applied to the surface of prepared dentin was compared with untreated prepared dentin surfaces. The following results were demonstrated by electron microscope observation: (1) cavity preparations created an amorphous dentinal smear layer, (2) placement of a 25% tannic acid solution for 15 seconds removed the smear layer, (3) the contents of the dentinal tubules were not removed and no enlargement of dentinal tubules was found, and (3) a clean dentinal surface was observed.

  13. Effectiveness of Three Different Irrigants - 17% Ethylenediaminetetraacetic Acid, Q-MIX, and Phytic Acid in Smear Layer Removal: A Comparative Scanning Electron Microscope Study.

    PubMed

    Jagzap, Janhavi Balasaheb; Patil, Sanjay S; Gade, Vandana Jaykumar; Chandhok, Deepika J; Upagade, Madhura A; Thakur, Deepa A

    2017-01-01

    Removal of smear layer from the root canal walls is important for long-standing endodontic success. The aim of this study is to evaluate and compare smear layer removing ability among 17% ethylenediaminetetraacetic acid (EDTA), Q-MIX, and phytic acid by scanning electron microscopy (SEM). This in-vitro experimental study assessed smear layer removal using three different irrigants. Thirty single-rooted freshly extracted human permanent premolars were collected, disinfected, and decoronated to a standardized root length of 13 mm. Root canals were cleaned and shaped till F2 universal rotary protaper at working length 1 mm short of the apex. They were randomly divided into three groups, and final irrigation was done accordingly. Group 1 ( n = 10): with 1 ml of 17% EDTA, Group 2 ( n = 10): with 1 ml of Q-MIX, Group 3 ( n = 10): with 1 ml of phytic acid. Samples were then longitudinally sectioned and evaluated under SEM at coronal, middle, and apical levels. Two-way analysis of variance and Tukey's post hoc test were performed. The level of significance was set at 0.05. Smear layer removing ability among irrigants and sections in descending order: 17 EDTA > Q-MIX > phytic acid; coronal > middle > apical. 17% EDTA showed better and promising results followed by Q-MIX and then phytic acid.

  14. Preparation of the 3-monosulphates of cholic acid, chenodeoxycholic acid and deoxycholic acid.

    PubMed Central

    Haslewood, E S; Haslewood, G A

    1976-01-01

    1. The 3-sulphates of cholic, chenodeoxycholic and deoxycholic acids were prepared as crystalline disodium salts. 2. The method described shows that it is possible to prepare specific sulphate esters of polyhydroxy bile acids and to remove protecting acyl groups without removing the sulphate. 3. A study of bile acid sulphate solvolysis showed that none of the usual methods give the original bile acid in major yield in a single step. 4. An understanding of the preparation, properties and methods of solvolysis of bile acid sulphates is basic for investigations of cholestasis and liver disease. PMID:938488

  15. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria.

    PubMed

    Teemu, Halttunen; Seppo, Salminen; Jussi, Meriluoto; Raija, Tahvonen; Kalle, Lertola

    2008-07-15

    Extensive cadmium and lead contamination of water has been reported to occur locally as a result of human activities. Lactic acid bacteria have been reported to remove cadmium and lead from water. The aim of this work was to clarify the mechanisms of cadmium and lead removal from water. In addition, the effect of other metals, reversibility of binding and recyclability of the biomass was assessed. Based on our earlier data, the two most promising lactic acid bacteria, Lactobacillus fermentum ME3 and Bifidobacterium longum 46, were selected for these experiments. The results showed that the presence of other cationic metals and blocking of carboxyl and phosphoryl groups reduced cadmium and lead removal. These results suggest involvement of electrostatic interactions in cadmium and lead removal, and support our earlier findings. Transmission electron micrographs showed large deposits of lead on the bacterial surface suggesting formation of metallic lead precipitates. Both cadmium and lead removal were reversible processes established by full recovery of removed metal after desorption with dilute solutions of EDTA and HNO(3). Resorption capacity of both biomasses tested was reduced after regeneration with 10 mM EDTA and 15 mM HNO(3). Taken together, the results suggest involvement of several reversible mechanisms such as ion exchange and precipitation in cadmium and lead binding by lactic acid bacteria. The results show that specific lactic acid bacteria have the potential for removal of cadmium and lead from water although reduction in resorption capacity after regeneration of the biomass may form a problem. Since the studies so far have mainly focused on removal of single metals from pure water, metal removal in conditions of natural waters should be assessed in further experiments.

  16. Soft Ultraviolet (UV) Photopatterning and Metallization of Self-Assembled Monolayers (SAMs) Formed from the Lipoic Acid Ester of α-Hydroxy-1-acetylpyrene: The Generality of Acid-Catalyzed Removal of Thiol-on-Gold SAMs using Soft UV Light.

    PubMed

    Pukenas, Laurynas; Prompinit, Panida; Nishitha, Boda; Tate, Daniel J; Singh, N D Pradeep; Wälti, Christoph; Evans, Stephen D; Bushby, Richard J

    2017-05-31

    Under a layer of 0.1 M HCl in isopropanol, soft ultraviolet (UV) (365 nm) photolysis of the thiol-on-gold self-assembled monolayer (SAM) derived from the lipoic acid ester of α-hydroxy-1-acetylpyrene results in the expected removal of the acetylpyrene protecting group. When photolyzing through a mask, this can be used to produce a patterned surface and, at a controlled electrochemical potential, it is then possible to selectively and reversibly electrodeposit copper on the photolyzed regions. Rather surprisingly, under these photolysis conditions, there is not only the expected photodeprotection of the ester but also partial removal of the lipoic acid layer which has been formed. In further studies, it is shown that this type of acid-catalyzed photoremoval of SAM layers by soft UV is a rather general phenomenon and results in the partial removal of the thiol-on-gold SAM layers derived from other ω-thiolated carboxylic acids. However, this phenomenon is chain-length dependent. Under conditions in which there is a ∼60% reduction in the thickness of the SAM derived from dithiobutyric acid, the SAM derived from mercaptoundecanoic acid is almost unaffected. The process by which the shorter-chain SAM layers are partially removed is not fully understood because these compounds do not absorb significantly in the 365 nm region of the spectrum! Significantly, this study shows that acid catalysis photolysis of thiol-on-gold SAMs needs to be used with caution.

  17. Bimodal electricity generation and aromatic compounds removal from purified terephthalic acid plant wastewater in a microbial fuel cell.

    PubMed

    Marashi, Seyed Kamran Foad; Kariminia, Hamid-Reza; Savizi, Iman Shahidi Pour

    2013-02-01

    Wastewater of purified terephthalic acid (PTA) from a petrochemical plant was examined in a membrane-less single chamber microbial fuel cell for the first time. Time course of voltage during the cell operation cycle had two steady phases, which refers to the fact that metabolism of microorganisms was shifted from highly to less biodegradable carbon sources. The produced power density was 31.8 mW m(-2) (normalized per cathode area) and the calculated coulombic efficiency was 2.05 % for a COD removal of 74 % during 21 days. The total removal rate of different pollutants in the PTA wastewater was observed in the following order: (acetic acid) > (benzoic acid) > (phthalic acid) > (terephthalic acid) > (p-toluic acid). The cyclic voltammetry results revealed that the electron transfer mechanism was dominated by mediators which were produced by bacteria.

  18. Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies.

    PubMed

    Gurram, Raghu N; Datta, Saurav; Lin, Yupo J; Snyder, Seth W; Menkhaus, Todd J

    2011-09-01

    Within the biorefinery paradigm, many non-monomeric sugar compounds have been shown to be inhibitory to enzymes and microbial organisms that are used for hydrolysis and fermentation. Here, two novel separation technologies, polyelectrolyte polymer adsorption and resin-wafer electrodeionization (RW-EDI), have been evaluated to detoxify a dilute acid pretreated biomass slurry. Results showed that detoxification of a dilute acid pretreated ponderosa pine slurry by sequential polyelectrolyte and RW-EDI treatments was very promising, with significant removal of acetic acid, 5-hydroxymethyl furfural, and furfural (up to 77%, 60%, and 74% removed, respectively) along with >97% removal of sulfuric acid. Removal of these compounds increased the cellulose conversion to 94% and elevated the hydrolysis rate to 0.69 g glucose/L/h. When using Saccharomyces cerevisiae D(5)A for fermentation of detoxified slurry, the process achieved 99% of the maximum theoretical ethanol yield and an ethanol production rate nearly five-times faster than untreated slurry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Isolation of nonvolatile, organic solutes from natural waters by zeotrophic distillation of water from N,N-dimethylformamide

    USGS Publications Warehouse

    Leenheer, J.A.; Brown, P.A.; Stiles, E.A.

    1987-01-01

    Nonvolatile, organic solutes that comprise the dissolved organic carbon (DOC) in saline waters were isolated by removal of the water by distillation from a N,N-dimethylformamideformic acid-acetonitrile mixture. Salts isolated with the DOC were removed by crystallization of sodium chloride and sodium sulfate from the solvent mixture, removal of silicic acid by acidification and precipitation, removal of boric acid by methylation and volatilization, and removal of phosphate by zinc acetate precipitation. Chemical alteration of the organic solutes was minimized during evaporative concentration steps by careful control of acid concentrations in the solvent mixture and was minimized during drying by conversion of the samples to pyridinium and sodium salts. Recoveries of various hydrophilic organic standards from aqueous salt solutions and recoveries of natural organic solutes from various water samples varied from 60 to 100%. Losses of organic solutes during the isolation procedure were nonselective and related to the number of salt- and precipitate-washing cycles in the procedure.

  20. NO removal by nonthermal plasma with modified sepiolite catalyst

    NASA Astrophysics Data System (ADS)

    Chen, M. G.; Yu, D. X.; Rong, J. F.; Wan, Y. L.; Li, G. C.; Ni, Y. M.; Fan, X.; Hou, G. H.; Xu, N.

    2013-03-01

    Non-Thermal Plasma (NTP) combined with a catalyst is one of the effective ways to remove NO from auto exhaust gas. Sepiolite Ore Powder (SOP), which was modified by acid washing, copper nitrate soaking, drying and calcinations, served as the Modified Sepiolite Catalyst (MSC) for NO removal in a rod-cylinder Dielectric Barrier Discharge (DBD) reactor. The characteristic of the MSC was characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The experiment showed that the acid concentration, washing time, the packed site of MSC and input voltage of the NTP impacted the NO removal rate effectively. The NO removal rate increased and then decreased with an increase in the acid concentration and the washing time, and the NO removal rate increased monotonously with the increased input voltage. The NO removal rate was higher at the beginning, decreased gradually then maintained stability after 10 min. Thus, the result indicated that MSC has a good ability for adsorption and storage of NO.

  1. Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA, oxalic and phosphoric acid: Optimization conditions, removal effectiveness and ecological risks.

    PubMed

    Wei, Meng; Chen, Jiajun; Wang, Xingwei

    2016-08-01

    Testing of sequential soil washing in triplicate using typical chelating agent (Na2EDTA), organic acid (oxalic acid) and inorganic weak acid (phosphoric acid) was conducted to remediate soil contaminated by heavy metals close to a mining area. The aim of the testing was to improve removal efficiency and reduce mobility of heavy metals. The sequential extraction procedure and further speciation analysis of heavy metals demonstrated that the primary components of arsenic and cadmium in the soil were residual As (O-As) and exchangeable fraction, which accounted for 60% and 70% of total arsenic and cadmium, respectively. It was determined that soil washing agents and their washing order were critical to removal efficiencies of metal fractions, metal bioavailability and potential mobility due to different levels of dissolution of residual fractions and inter-transformation of metal fractions. The optimal soil washing option for arsenic and cadmium was identified as phosphoric-oxalic acid-Na2EDTA sequence (POE) based on the high removal efficiency (41.9% for arsenic and 89.6% for cadmium) and the minimal harmful effects of the mobility and bioavailability of the remaining heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Germanium oxide removal by citric acid and thiol passivation from citric acid-terminated Ge(100).

    PubMed

    Collins, Gillian; Aureau, Damien; Holmes, Justin D; Etcheberry, Arnaud; O'Dwyer, Colm

    2014-12-02

    Many applications of germanium (Ge) are underpinned by effective oxide removal and surface passivation. This important surface treatment step often requires H-X (X = Cl, Br, I) or HF etchants. Here, we show that aqueous citric acid solutions are effective in the removal of GeOx. The stability of citric acid-treated Ge(100) is compared to HF and HCl treated surfaces and analyzed by X-ray photoelectron spectroscopy. Further Ge surface passivation was investigated by thiolation using alkane monothiols and dithiols. The organic passivation layers show good stability with no oxide regrowth observed after 3 days of ambient exposure.

  3. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOEpatents

    Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.

    1958-10-01

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.

  4. Oxidation of aqueous EDTA and associated organics and coprecipitation of inorganics by ambient iron-mediated aeration.

    PubMed

    Englehardt, James D; Meeroff, Daniel E; Echegoyen, Luis; Deng, Yang; Raymo, Françisco M; Shibata, Tomoyuki

    2007-01-01

    Cationic metal and radionuclide contaminants can be extracted from soils to groundwater with sequestering agents such as EDTA. However, EDTA must then be removed fromthe groundwater, by advanced oxidation or specialized biological treatment. In this work, aqueous individual metal-EDTA solutions were aerated with steel wool for 25 h, at ambient pH, temperature, and pressure. Removal of approximately 99% of EDTA (0.09-1.78 mM); glyoxylic acid (0.153 mM); chelated Cd2+ (0.94 and 0.0952 mM), Pb2+ (0.0502 mM), and Hg2+ (0.0419 mM); and free chromate and vanadate was shown. EDTA was oxidized to glyoxylic acid and formaldehyde, and metals/metalloids were coprecipitated together with iron oxyhydroxide floc. Free arsenite and arsenate were each removed at 99.97%. Free Sr2+, and chelated Ni2+ were removed at 92% and 63%, respectively. Similar removals were obtained from mixtures, including 99.996+/-0.004% removal of total arsenic (95% confidence). Traces of iminodiacetic acid, nitrilotriacetic acid, and ethylenediaminetriacetic acid were detected after 25 h. Results are consistent with first-order, solution-phase oxidation of EDTA and glyoxylic acid by ferryl ion and H202, respectively, with inhibition due to sludge accumulation, and equilibrium metal coprecipitation. This ambient process, to our knowledge previously unknown, agrees with recently reported findings and shows promise for remediation of metals, metalloids, and radionuclides in wastewater, soil, and sediment.

  5. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    USGS Publications Warehouse

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  6. Highly effective ammonia removal in a series of Brønsted acidic porous polymers: investigation of chemical and structural variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barin, Gokhan; Peterson, Gregory W.; Crocellà, Valentina

    Efficient removal of ammonia from air is demonstrated in a series of Brønsted acidic porous polymers under dry and humid conditions. The impact of acidic group strength and their spatial distribution on the ammonia uptake is investigated systematically.

  7. Highly effective ammonia removal in a series of Brønsted acidic porous polymers: investigation of chemical and structural variations

    DOE PAGES

    Barin, Gokhan; Peterson, Gregory W.; Crocella, Valentina; ...

    2017-04-27

    Efficient removal of ammonia from air is demonstrated in a series of Brønsted acidic porous polymers under dry and humid conditions. The impact of acidic group strength and their spatial distribution on the ammonia uptake is investigated systematically.

  8. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  9. The effect of amino acids on lipid production and nutrient removal by Rhodotorula glutinis cultivation in starch wastewater.

    PubMed

    Liu, Meng; Zhang, Xu; Tan, Tianwei

    2016-10-01

    In this paper, the components of amino acids in mixed starch wastewater (corn steep water/corn gluten water=1/3, v/v) were analyzed by GC-MS. Effects of amino acids on lipid production by Rhodotorula glutinis and COD removal were studied. The results showed that mixed starch wastewater contained 9 kinds of amino acids and these amino acids significantly improved the biomass (13.63g/L), lipid yield (2.48g/L) and COD removal compared to the basic medium (6.23g/L and 1.56g/L). In a 5L fermentor containing mixed starch wastewater as substrate to culture R. glutinis, the maximum biomass, lipid content and lipid yield reached 26.38g/L, 28.90% and 7.62g/L, with the associated removal rates of COD, TN and TP reaching 77.41%, 69.12% and 73.85%, respectively. The results revealed a promising approach for lipid production with using amino acids present in starch wastewater as an alternative nitrogen source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of organic matter on cyanide removal by illuminated titanium dioxide or zinc oxide nanoparticles

    PubMed Central

    2013-01-01

    Effect of different type of organic compounds (humic acid, oxalate, ethylenediaminetetraacetic acid, nitrilotriacetic acid, phenol) on the photocatalytic removal of cyanide with TiO2 or ZnO was studied in this work with variation of the solution pH, contact time, initial cyanide concentration and type of organic compounds. Photocatalytic oxidation efficiency of cyanide with TiO2 was greatly affected by the solution pH. It increased as the solution pH decreased. Also maximum removal of cyanide by ZnO was observed near at neutral pH because of the reduced photocatalytic activity of ZnO at exceedingly low and high pH values originated from either acidic/photochemical corrosion of the catalyst and/or surface passivation with Zn(OH)2. Removal efficiency of cyanide greatly decreased in the presence of humic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid compared to that without presence of organic compound because of the competitive oxidation as well as surface blocking by relatively large organic compounds. The oxidation pattern of cyanide was better described by first-order kinetic model. Finally photocatalytic reaction with TiO2 or ZnO can be effectively applied to treat synthetic wastewater contaminated with cyanide. PMID:24499704

  11. Removal of Acid Orange 7 dye from aqueous solutions by adsorption onto Kenya tea pulps; granulated shape

    PubMed Central

    Naraghi, Behnaz; Zabihi, Fahimeh; Narooie, Mohammad Reza; Saeidi, Mahdi; Biglari, Hamed

    2017-01-01

    Background and Aim Water resources pollution control is one of the main challenges of our time for researchers. Colored wastewater discharges caused by textile industry activities has added to the concern. In this study, removal of Acid Orange 7 dye (AO7) using Kenya Tea residue absorbent (granular) has been studied. Methods This cross-sectional study was conducted in 2016. In this work, initially, tea residue was prepared in three forms of raw, treated with concentrated phosphoric acid, and carbonated, at temperatures of 350, 450 and 500 °C in the chemistry laboratory of Gonabad University of Medical Sciences. Then, efficiency of the above absorbents in the removal of Acid Orange 7 dye in initial concentrations of dye as 50–500 mg/l from water samples in terms of pH 2–10 and 1–10 g/l of adsorbent dose within 20 to 300 minutes was investigated. In addition, their subordination from Langmuir and Freundlich absorption isotherms was also determined. Concentration changes in Acid Orange 7 dye at a wavelength of 483 nm was determined by spectrophotometry and results were reported using descriptive statistics. Results Results showed that efficiency of Acid Orange 7 dye removal is higher in acidic pH and higher adsorbent dosage. The highest efficiency of Acid Orange 7 dye removal was 98.41% by raw tea residue absorbent at pH 2, reaction time was 120 minutes and initial concentration of dye was 50 mg/l, which was obtained at adsorbent dosage of 10 g/l. It was determined that the mechanism of absorption acceptably follows Freundlich absorption isotherm (R2=0.97). Conclusion Due to the availability and very low price, optimal performance of Kenya tea raw residue (granular) in Acid Orange 7 dye removal, it can be used as an efficient surface absorber in an absorber from colored wastewater. PMID:28713501

  12. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose.

    PubMed

    Yang, Bin; Wyman, Charles E

    2004-04-05

    Compared with batch systems, flowthrough and countercurrent reactors have important potential advantages for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility, and reduced chemical additions. Unfortunately, they suffer from high water and energy use. To better understand these trade-offs, comparative data are reported on xylan and lignin removal and enzymatic digestibility of cellulose for corn stover pretreated in batch and flowthrough reactors over a range of flow rates between 160 degrees and 220 degrees C, with water only and also with 0.1 wt% sulfuric acid. Increasing flow with just water enhanced the xylan dissolution rate, more than doubled total lignin removal, and increased cellulose digestibility. Furthermore, adding dilute sulfuric acid increased the rate of xylan removal for both batch and flowthrough systems. Interestingly, adding acid also increased the lignin removal rate with flow, but less lignin was left in solution when acid was added in batch. Although the enzymatic hydrolysis of pretreated cellulose was related to xylan removal, as others have shown, the digestibility was much better for flowthrough compared with batch systems, for the same degree of xylan removal. Cellulose digestibility for flowthrough reactors was related to lignin removal as well. These results suggest that altering lignin also affects the enzymatic digestibility of corn stover. Copyright 2004 Wiley Periodicals, Inc.

  13. Evaluation of Environmentally Benign New Chemical Rust Removing Agent- Hydroxy Ethane Diphosphonic Acid (HEDPA)

    DTIC Science & Technology

    2012-12-15

    Removing Agent – Hydroxy Ethane Diphosphonic Acid (HEDPA) 1, A. Sarada Rao, 2, A. Yashodhara Rao, 3, Appajosula S. Rao Naval Surface Warfare...Abstract------------------------------------------------------------ In order to evaluate the adaptability of hydroxyethane diphosphonic acid (HEDPA...function of acid concentration in the range 2-20 vol. % and at different temperatures in the temperature range 23 o C -55°C. The results suggest

  14. Removal of Pb and Zn from contaminated soil by different washing methods: the influence of reagents and ultrasound.

    PubMed

    Wang, Jiaming; Jiang, Jianguo; Li, Dean; Li, Tianran; Li, Kaimin; Tian, Sicong

    2015-12-01

    Pb and Zn contamination in agricultural soils has become an important issue for human health and the environment. Washing is an effective method for remediating polluted soil. Here, we compare several washing materials and methods in the treatment of Pb- and Zn-polluted farmland soil. We examined four washing reagents, hydrochloric acid, citric acid, Na2EDTA, and tartaric acid, all of which independently removed Zn at rates >65 %. Combining washing reagents markedly enhanced heavy metal removal, by using Na2EDTA and either tartaric acid or lactate in sequence: Pb and Zn removal rates improved to 84.1 and 82.1 % for Na2EDTA-tartaric acid; and to 88.3 and 89.9 % for Na2EDTA-lactate, respectively. Additionally, combining ultrasound with conventional washing methods markedly improved washing efficiency, by shortening washing duration by 96 %. We achieved similar removal rates using ultrasound for 10 min, compared with traditional mechanical vibration alone for 4 h. We concluded that treating Pb- and Zn-contaminated soil with appropriate washing reagents under optimal conditions can greatly enhance the remediation of polluted farmland soils.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nexant, Inc., San Francisco, California

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosenmore » for detailed study because of the available resources.« less

  16. [Effects on phenol removal in the process of enhanced coagulation by manganese dioxide formed in situ].

    PubMed

    Zhang, Li-Zhu; Chen, Xiao-Dong; Ma, Jun; Yu, Min; Li, Xin

    2011-10-01

    Phenol was selected as a model compound. Factors, such as Ca2+, tannic acid, dose of kaolinite, dose of manganese dioxide formed in situ and pH, were invested on phenol removal in the process of enhanced coagulation by manganese dioxide formed in situ. Results showed that the addition of Ca2+ is beneficial for phenol removal. In the range of Ca2+ varied from 0 to 1.0 mmol x L(-1), the efficiency of phenol removal was enhanced more than 10%. Tannic acid can enhance phenol removal significantly when they are coexisted in water. As tannic acid was added to 10 mg x L(-1), phenol removal can be increased about 30% and 50% in the process of coagulation by AlCl3 and enhanced coagulation by manganese dioxide formed in situ, respectively. The dose of coagulant can be reduced in the process of enhanced coagulation with the addition of manganese dioxide formed in situ. The point of 1 mg x L(-1) manganese dioxide formed in situ linked with 30 mg x L(-1) AlCl3 can have the same phenol removal efficiency as the addition of 50 mg x L(-1) AlCl3. In the range of pH varied from 5 to 9, phenol can be removed with the high efficiency in the process of enhanced coagulation by manganese dioxide formed in situ. While under the strong acid condition and strong basic condition, phenol has lower removal efficiency.

  17. Removal of humic acid by a new type of electrical hollow-fiber microfiltration (E-HFMF)

    NASA Astrophysics Data System (ADS)

    Shang, Ran; Deng, Hui-ping; Hu, Jing-yi

    2010-11-01

    Low pressure membrane filtration, such as microfiltration, was widely used in the field of drinking water purification in the past few decades. Traditional microfiltration membranes are not efficient enough in the removal of natural organic matters (NOM) from raw water. Moreover, they tend to be fouled by the NOM and the filtration age of the membranes is thus shrinked. To tackle these problems, a new type of electrical hollow-fiber microfiltration module (E-HFMF) was designed. In the E-HFMF module, the hollow-fiber microfiltration membranes were placed into the radialized electrical field which functioned from the centre to the exterior of the cylindrical cavity. The main goal of the present study was to evaluate the efficiency of E-HFMF to remove the humic acid (HA, one of the main components of NOM). According to the parallel tests compared with the traditional microfiltration, the removal rate of humic acid was raised to 70%˜85% in terms of UV-254 and to 60%˜75% in terms of DOC when filtrating with the E-HFMF, while the removal rates of humic acid were 10%˜20% and 1%˜10% respectively when filtrating with the traditional microfiltration. The negative charged humic acid moved to the anode because of the electrophoresis, so few humic acid could be able to permeate through the membrane. The electrophoresis mobility of the humic acid permeating through the traditional microfiltration decreased by 19%, while the same index from the E-HFMF decreased by 75%. This indicated that the electrophoresis played a significant role on removing the humic acid. According to the gel permeate chromatograph analysis, humic acid aggregated in an electric field and thus forms loose and permeable cake layer on the membrane surface, which also relieved membrane fouling. Meanwhile, the negative charged humic acid migrating to the anode at the center minimized the deposition onto the membrane surface, and eliminated the membrane fouling as a result. During the E-HFMF filtration, the humic acid was not oxidized observably in the electrical field, according to the FT-IR analysis.

  18. Sequential electrokinetic treatment and oxalic acid extraction for the removal of Cu, Cr and As from wood.

    PubMed

    Isosaari, Pirjo; Marjavaara, Pieti; Lehmus, Eila

    2010-10-15

    Removal of Cu, Cr and As from utility poles treated with chromated copper arsenate (CCA) was investigated using different one- to three-step combinations of oxalic acid extraction and electrokinetic treatment. The experiments were carried out at room temperature, using 0.8% oxalic acid and 30 V (200 V/m) of direct current (DC) or alternating current in combination (DC/AC). Six-hour extraction removed only 15%, 11% and 28% and 7-day electrokinetic treatment 57%, 0% and 17% of Cu, Cr and As from wood chips, respectively. The best combination for all the metals was a three-step process consisting of pre-extraction, electrokinetics and post-extraction steps, yielding removals of 67% for Cu, 64% for Cr and 81% for As. Oxalic acid extraction prior to electrokinetic treatment was deleterious to further removal of Cu, but it was necessary for Cr and As removal. Chemical equilibrium modelling was used to explain the differences in the behaviour of Cu, Cr and As. Due to the dissimilar nature of these metals, it appeared that even more process sequences and/or stricter control of the process conditions would be needed to obtain the >99% removals required for safe recycling of the purified wood material. 2010 Elsevier B.V. All rights reserved.

  19. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Method for removing chlorine compounds from hydrocarbon mixtures

    DOEpatents

    Janoski, Edward J.; Hollstein, Elmer J.

    1985-12-31

    A process for removing halide ions from a hydrocarbon feedstream containing halogenated hydrocarbons wherein the contaminated feedstock is contacted with a solution of a suitable oxidizing acid containing a lanthanide oxide, the acid being present in a concentration of at least about 50 weight percent for a time sufficient to remove substantially all of the halide ion from the hydrocarbon feedstock.

  1. Method for removing chlorine compounds from hydrocarbon mixtures

    DOEpatents

    Janoski, E.J.; Hollstein, E.J.

    1984-09-29

    A process for removing halide ions from a hydrocarbon feedstream containing halogenated hydrocarbons wherein the contaminated feedstock is contacted with a solution of a suitable oxidizing acid containing a lanthanide oxide, the acid being present in a concentration of at least about 50 weight percent for a time sufficient to remove substantially all of the halide ion from the hydrocarbon feedstock.

  2. Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment.

    PubMed

    Matamoros, Víctor; Nguyen, Loc Xuan; Arias, Carlos A; Salvadó, Victòria; Brix, Hans

    2012-08-01

    Microcosm wetland systems (5 L containers) planted with Salvinia molesta, Lemna minor, Ceratophyllum demersum, and Elodea canadensis were investigated for the removal of diclofenac, triclosan, naproxen, ibuprofen, caffeine, clofibric acid and MCPA. After 38 days of incubation, 40-99% of triclosan, diclofenac, and naproxen were removed from the planted and unplanted reactors. In covered control reactors no removal was observed. Caffeine and ibuprofen were removed from 40% to 80% in planted reactors whereas removals in control reactors were much lower (2-30%). Removal of clofibric acid and MCPA were negligible in both planted and unplanted reactors. The findings suggested that triclosan, diclofenac, and naproxen were removed predominantly by photodegradation, whereas caffeine and naproxen were removed by biodegradation and/or plant uptake. Pseudo-first-order removal rate constants estimated from nonlinear regressions of time series concentration data were used to describe the contaminant removals. Removal rate constants ranged from 0.003 to 0.299 d(-1), with half-lives from 2 to 248 days. The formation of two major degradation products from ibuprofen, carboxy-ibuprofen and hydroxy-ibuprofen, and a photodegradation product from diclofenac, 1-(8-Chlorocarbazolyl)acetic acid, were followed as a function of time. This study emphasizes that plants contribute to the elimination capacity of microcontaminants in wetlands systems through biodegradation and uptake processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Process for the removal of radium from acidic solutions containing same

    DOEpatents

    Scheitlin, F.M.

    The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of /sup 226/Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.

  4. Removal of radium from acidic solutions containing same by adsorption on coal fly ash

    DOEpatents

    Scheitlin, Frank M.

    1984-01-01

    The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of .sup.226 Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.

  5. New Approach to Remove Metals from Chromated Copper Arsenate (CCA)-Treated Wood

    Treesearch

    Todd F. Shupe; Chung Y. Hse; Hui Pan

    2012-01-01

    Recovery of metals from chromated copper arsenate (CCA)-treated southern pine wood particles was investigated using binary acid solutions consisting of acetic, oxalic, and phosphoric acids in a microwave reactor. Formation of an insoluble copper oxalate complex in the binary solution containing oxalic acid was the major factor for low copper removal. Furthermore, the...

  6. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment.

    PubMed

    Song, Yue; Ammami, Mohamed-Tahar; Benamar, Ahmed; Mezazigh, Salim; Wang, Huaqing

    2016-06-01

    In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L(-1)), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal-chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS.

  7. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    Ferrographic analysis was used to determine the types and quantities of wear particles generated during accelerated rolling contact fatigue tests. The NASA five-ball rolling contact fatigue tester was used. Ball specimens were made of AMS 5749, a corrosion-resistant high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 billion Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed: normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  8. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.

  9. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, G.E.; Adamson, A.W.; Schubert, J.

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This processmore » provides a convenient and efficient means for isolating plutonium.« less

  10. Removal of radioactive and other hazardous material from fluid waste

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Knecht, Dieter A [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Burchfield, Larry A [W. Richland, WA; Anshits, Alexander G [Krasnoyarsk, RU; Vereshchagina, Tatiana [Krasnoyarsk, RU; Tretyakov, Alexander A [Zheleznogorsk, RU; Aloy, Albert S [St. Petersburg, RU; Sapozhnikova, Natalia V [St. Petersburg, RU

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  11. Rapid microwave-assisted acid extraction of southern pine waste wood to remove metals from chromated copper arsenate (CCA) treatment

    Treesearch

    Chung-Yun Hse; Todd F. Shupe; Bin Yu

    2013-01-01

    Recovery of metals from chromated copper arsenate (CCA)-treated southern pine wood particles was investigated by extraction in a microwave reactor with binary combinations of acetic acid (AA), oxalic acid (OxA), and phosphoric acid (PhA). Use of OxA was not successful, as insoluble copper oxalate complexes impeded copper removal. The combination of OxA and AA also had...

  12. Benthic Flux Sampling Device. Operations, Methods, and Procedures

    DTIC Science & Technology

    1993-02-01

    nitric acid (HNO3) overnight, then rinse with D.I. water. When in doubt, consult with the chemist for proper cleaning protocols. CHARGE BATTERIES...sis being performed. The system will be flushed with methanol to remove organic com- pounds and with nitric acid to remove metals. The nitric acid ... acid -washed, 500-me Teflon (TFE) sampling bottles aboard the BFSD. After each deployment, blank ferrules are fitted in place of the sampling lines and

  13. Effects of acetic acid, ethanol, and SO(2) on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains.

    PubMed

    Vilela-Moura, Alice; Schuller, Dorit; Mendes-Faia, Arlete; Côrte-Real, Manuela

    2010-07-01

    Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 gl(-1) acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by strains S26 and S29 was associated with a decrease in ethanol concentration of 0.7 and 1.2% (v/v), respectively. Strain S26 revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic wines. Sulfur dioxide (SO(2)) in the concentration range 95-170 mg l(-1)inhibits the ability of both strains to reduce the volatile acidity of the acidic wine used under our experimental conditions. Therefore, deacidification should be carried out either in wines stabilized by filtration or in wines with SO(2)concentrations up to 70 mg l(-1). Deacidification of wines with the better performing strain S26 was associated with changes in the concentration of volatile compounds. The most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. The acetaldehyde concentration of the deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. Moreover, deacidification led to increased fatty acids concentration, but still within the range of values described for spontaneous fermentations, and with apparently no negative impact on the organoleptical properties.

  14. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, Yongkoo; Javandel, Iraj

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varyingmore » H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.« less

  15. Citric acid-modified Fenton's reaction for the oxidation of chlorinated ethylenes in soil solution systems.

    PubMed

    Seol, Yongkoo; Javandel, Iraj

    2008-06-01

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H2O2 concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H2O2 relative to iron catalysts (Fe2+/H2O2<1/330) would result in lowering the efficiency of contaminant removal by iron chelation in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  16. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    DOE PAGES

    Zhang, Libing; Yan, Lishi; Wang, Zheming; ...

    2015-12-01

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL),more » recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change during hot water and dilute acid flowthrough pretreatment.« less

  17. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Libing; Yan, Lishi; Wang, Zheming

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL),more » recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change during hot water and dilute acid flowthrough pretreatment.« less

  18. Using a Simulated Industrial Setting for the Development of an Improved Solvent System for the Recrystallization of Benzoic Acid: A Student-Centered Project

    ERIC Educational Resources Information Center

    Hightower, Timothy R.; Heeren, Jay D.

    2006-01-01

    Recrystallization of benzoic acid is an excellent way to remove insoluble impurities. In a traditional organic laboratory experiment, insoluble impurities are removed through the recrystallization of benzoic acid utilizing water as the recrystallization solvent. It was our goal to develop a peer-led, problem-solving organic laboratory exercise…

  19. Hydrolytic cleavage of pyroglutamyl-peptide bond. V. selective removal of pyroglutamic acid from biologically active pyroglutamylpeptides in high concentrations of aqueous methanesulfonic acid.

    PubMed

    Kobayashi, Junko; Ohki, Kazuhiro; Okimura, Keiko; Hashimoto, Tadashi; Sakura, Naoki

    2006-06-01

    Application of aqueous methanesulfonic acid (MSA) for selective chemical removal of pyroglutamic acid (pGlu) residue from five biologically active pyroglutamyl-peptides (pGlu-X-peptides, X=amino acid residue at position 2) was examined. Gonadotropin releasing hormone (Gn-RH), dog neuromedin U-8 (d-NMU-8), physalaemin (PH), a bradykinin potentiating peptide (BPP-5a) and neurotensin (NT) as pGlu-X-peptides were incubated in either 70% or 90% aqueous MSA at 25 degrees C. HPLC analysis of the incubation solutions showed that the main decomposition product was H-X-peptide derived from each pGlu-X-peptide by the removal of pGlu. The results revealed that the pGlu-X peptide bond had higher susceptibility than various internal amide bonds in the five peptides examined, including the Trp-Ser bond in Gn-RH, the C-terminal Asn-NH(2) in d-NMU-8, and the Asp-Pro bond in PH, whose acid susceptibility is well known. Thus, mild hydrolysis with high concentrations of aqueous MSA may be applicable to chemically selective removal of pGlu from pGlu-X-peptides for structural examinations.

  20. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    NASA Technical Reports Server (NTRS)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  1. Scanning Electron Microscopic Evaluation of Root Canal Irrigation with Saline, Sodium Hypochlorite, and Citric Acid,

    DTIC Science & Technology

    1983-12-01

    with six different irrigation regimens. Sodium hypochlorite (NaOCl) was significantly more effective than citric acid in "* removing superficial...EVALUATION OF ROOT CANAL IRRIGATION WITH SALINE, SODIUM HYPOCHLORITE , AND CITRIC ACID 4 *J. Craig Baumgartner, D.D.S., M.S. • **Carolyn M. Brown, D.D.S., M.S...preparation with six different irrigation regimens. Sodium hypochlorite (NaOCl) was significantly more effective than citric acid in removing superficial

  2. Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater.

    PubMed

    Song, Yonghui; Dai, Yunrong; Hu, Qiong; Yu, Xiaohua; Qian, Feng

    2014-04-01

    P recovery from swine wastewater has become a great concern as a result of the high demand for P resources and its potential eutrophication effects on water ecosystems. The method of magnesium ammonium phosphate (MAP) crystallization was used to recover P from simulated swine wastewater, and the effects of three organic acids (citric acid, succinic acid and acetic acid) on P removal efficiency and rate at different pH values were investigated. The results indicated that the P removal efficiency was worst affected by citric acid in the optimal pH range of 9.0-10.5, followed by succinic acid and acetic acid, and the influencing extent of organic acids decreased with the increasing pH value. Due to the complexation between organic acid and Mg(2+)/NH4(+), all of three organic acids could inhibit the P removal rate at the beginning of the reaction, which showed positive correlation between the inhibition effects and the concentration of organic acids. The high concentration of citric acid could completely suppress the MAP crystallization reaction. Moreover, citric acid and succinic acid brought obvious effects on the morphology of the crystallized products. The experimental results also demonstrated that MAP crystals could be obtained in the presence of different kinds and concentrations of organic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. One-step pretreatment of yellow poplar biomass using peracetic acid to enhance enzymatic digestibility.

    PubMed

    Lee, Hyeong Rae; Kazlauskas, Romas J; Park, Tai Hyun

    2017-09-22

    Pretreatment of biomass with dilute acid requires high temperatures of >160 °C to remove xylan and does not remove lignin. Here we report that the addition of peracetic acid, a strong oxidant, to mild dilute acid pretreatment reduces the temperature requirement to only 120 °C. Pretreatment of yellow poplar with peracetic acid (300 mM, 2.3 wt%) and dilute sulfuric acid (100 mM, 1.0 wt%) at 120 °C for 5 min removed 85.7% of the xylan and 90.4% of the lignin leaving a solid consisting of 75.6% glucan, 6.0% xylan and 4.7% lignin. Low enzyme loadings of 5 FPU/g glucan and 10 pNPGU/g glucan converted this solid to glucose with an 84.0% yield. This amount of glucose was 2.5 times higher than with dilute acid-pretreated solid and 13.8 times higher than with untreated yellow poplar. Thus, the addition of peracetic acid, easily generated from acetic acid and hydrogen peroxide, dramatically increases the effectiveness of dilute acid pretreatment of biomass.

  4. Acrylic acid removal by acrylic acid utilizing bacteria from acrylonitrile-butadiene-styrene resin manufactured wastewater treatment system.

    PubMed

    Wang, C C; Lee, C M

    2006-01-01

    The aim of this study is to isolate the acrylic acid utilizing bacteria from the ABS resin manufactured wastewater treatment system. The bacteria should have the ability to remove acrylic acid and tolerate the acrylonitrile and acrylamide toxicity. The aim is also to understand the performance of isolated pure strain for treating different initial acrylic acid concentrations from synthetic wastewater. The results are: twenty strains were isolated from the ABS resin manufactured wastewater treatment system and twelve of them could utilize 600 mg/l acrylic acid for growth. Seven of twelve strains could tolerate the acrylonitrile and acrylamide toxicity, when the concentration was below 300 mg/l. Bacillus thuringiensis was one of the seven strains and the optimum growth temperature was 32 degrees C. Bacillus thuringiensis could utilize acrylic acid for growth, when the initial acrylic acid concentration was below 1,690.4 mg/l. Besides this, when the initial acrylic acid concentration was below 606.8 mg/l, the acrylic acid removal efficiency exceeded 96.3%. Bacillus thuringiensis could tolerate 295.7 mg/l acrylamide and 198.4 mg/l acrylonitrile toxicity but could not tolerate 297.3 mg/l epsilon-caprolactam.

  5. A comparative evaluation of smear layer removal by using edta, etidronic acid, and maleic acid as root canal irrigants: An in vitro scanning electron microscopic study

    PubMed Central

    Kuruvilla, Aby; Jaganath, Bharath Makonahalli; Krishnegowda, Sahadev Chickmagaravalli; Ramachandra, Praveen Kumar Makonahalli; Johns, Dexton Antony; Abraham, Aby

    2015-01-01

    Aim: The purpose of this study is to evaluate and compare the efficacy of 17% EDTA, 18% etidronic acid, and 7% maleic acid in smear layer removal using scanning electron microscopic image analysis. Materials and Methods: Thirty, freshly extracted mandibular premolars were used. The teeth were decoronated to obtain working length of 17mm and instrumentation up to 40 size (K file) with 2.5% NaOCl irrigation between each file. The samples were divided into Groups I (17% ethylenediaminetetraacetic acid (EDTA)), II (18% etidronic acid), and III (7% maleic acid) containing 10 samples each. Longitudinal sectioning of the samples was done. Then the samples were observed under scanning electron microscope (SEM) at apical, middle, and coronal levels. The images were scored according to the criteria: 1. No smear layer, 2. moderate smear layer, and 3 heavy smear layer. Statistical Analysis: Data was analyzed statistically using Kruskal–Wallis analysis of variance (ANOVA) followed by Mann-Whitney U test for individual comparisons. The level for significance was set at 0.05. Results: The present study showed that all the three experimental irrigants removed the smear layer from different tooth levels (coronal, middle, and apical). Final irrigation with 7% maleic acid is more efficient than 17% EDTA and 18% etidronic acid in the removal of smear layer from the apical third of root canal. PMID:26069414

  6. Efficacy of sodium hypochlorite, ethylenediaminetetraacetic acid, citric acid and phosphoric acid in calcium hydroxide removal from the root canal: a microscopic cleanliness evaluation.

    PubMed

    da Silva, Juliana Melo; Silveira, Amanda; Santos, Elizandra; Prado, Laiìs; Pessoa, Oscar F

    2011-12-01

    Rooted molars were subjected to standardized canal instrumentation to a master apical file (MAF). The samples were dressed with Ca(OH)(2), and after 7 days, teeth were reopened and Ca(OH)(2) medication was removed by 1 of 4 different experimental procedures: 2.5% sodium hypochlorite (NaOCl) (n = 10); 17% EDTA-T (n = 10); 10% citric acid (n = 10); or 37% phosphoric acid (n = 10). This was followed by reinstrumentation with MAF plus 15 mL saline solution. The roots were prepared for scanning electron microscopic analysis of the cervical, middle, and apical thirds. Statistical analysis was performed with the Kruskal-Wallis test. EDTA-T and phosphoric acid gave the best results in the apical third, with significant statistical differences compared with other groups. NaOCl gave the worst results. Irrigation with 17% EDTA-T and 37% phosphoric acid is more effective than sodium hypochlorite and citric acid in the removal of calcium hydroxide from the apical third. Copyright © 2011 Mosby, Inc. All rights reserved.

  7. Electromigration of Mn, Fe, Cu and Zn with citric acid in contaminated clay.

    PubMed

    Pazos, M; Gouveia, S; Sanroman, M A; Cameselle, C

    2008-07-01

    Metal reactivity, speciation and solubility have an important influence in its transportation through a porous matrix by electrokinetics and, therefore, they dramatically affect the removal efficiency. This work deals with the effect of solubility and transport competition among several metals (Mn, Fe, Cu and Zn) during their transport through polluted clay. The unenhancement electrokinetic treatment results in a limited removal of the tested metals because they were retained into the kaolinite sample by the penetration of the alkaline front. Metals showed a removal degree in accordance with the solubility of the corresponding hydroxide and its formation pH. In 7 days of treatment, the removal results were: 75.6% of Mn; 68.5% of Zn, 40.6% of Cu and 14.8% of Fe. In order to avoid the negative effects of the basic front generated at the cathode, two different techniques were proposed and tested: the addition of citric acid as complexing agent to the polluted kaolinite sample and the use of citric acid to control de pH on the cathode chamber. Both techniques are based on the capability of citric acid to act as a complexing and neutralizing agent. Almost complete removal of Mn, Cu and Zn was achieved when citric acid was used (as neutralizing or complexing agent). But Fe only reached 33% of removal because it formed a negatively charged complex with citrate that retarded its transportation to the cathode.

  8. The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems.

    PubMed

    Inyang, Mandu; Dickenson, Eric R V

    2017-10-01

    Bench- and pilot-scale sorption tests were used to probe the performance of several biochars at removing perfluoroalkyl acids (PFAA) from field waters, compared to granular activated carbon (GAC). Screening tests using organic matter-free water resulted in hardwood (HWC) (K d  = 41 L g -1 ) and pinewood (PWC) (K d  = 49 L g -1 ) biochars having the highest perfluorooctanoic acid (PFOA) removal performance that was comparable to bituminous coal GAC (K d  = 41 L g -1 ). PWC and HWC had a stronger affinity for PFOA sorbed in Lake Mead surface water (K F  = 11 mg (1-n) L n g -1 ) containing a lower (2 mg L -1 ) dissolved organic carbon (DOC) concentration than in a tertiary-filtered wastewater (K F  = 8 mg (1-n) L n g -1 ) with DOC of 4.9 mg L -1 . A pilot-scale study was performed using three parallel adsorbers (GAC, anthracite, and HWC biochar) treating the same tertiary-filtered wastewater. Compared to HWC, and anthracite, GAC was the most effective in mitigating perfluoropentanoic acid (PFPnA), perfluorohexanoic acid (PHxA), PFOA, perfluorooctane sulfonic acid (PFOS), and DOC (45-67% removed at 4354 bed volumes) followed by HWC, and then anthracite. Based on bench- and pilot-scale results, shorter-chain PFAA [perfluorobutanoic acid (PFBA), PFPnA, or PFHxA] were more difficult to remove with both biochar and GAC than the longer-chain, PFOS and PFOA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Solvent Extraction of Furfural From Biomass

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.

    1984-01-01

    Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.

  10. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, Helena L.; Ratcliff, Matthew A.; Palasz, Peter D.

    1986-01-01

    A process for producing peracids from lactic acid-containing solutions derived from biomass processing systems comprising: adjusting the pH of the solution to about 8-9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids; oxidizing the solution to produce volatile lower aliphatic aldehydes; removing said aldehydes as they are generated; and converting said aldehydes to peracids.

  11. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Hyman, M.L.; Savolainen, J.E.

    1960-01-01

    A method is given for dissolving reactor fuel elements in which the uranium is associated with a relatively inert chromium-containing alloy such as stainless steel. An aqueous mixture of acids comprising 2 to 2.5 molar hydrochloric acid and 4 to 8 molar nitric acid is employed in dissolving the fuel element. In order io reduce corrosion in subsequent processing of the resulting solution, chloride values are removed from the solution by contacting it with concentrated nitric acid at an elevated temperature.

  12. Chelation in metal intoxication. VIII. Removal of chromium from organs of potassium chromate administered rats.

    PubMed

    Behari, J R; Tandon, S K

    1980-03-01

    Some polyaminocarboxylic acids were examined for their ability to mobilize chromium from certain vital organs, their subcellular fractions, and blood cells of potassium chromate administered rats. Hexamethylene 1,6-diamino tetraacetic acid (TDTA), triethylene tetramine hexaacetic acid (TTHA), and ethylene diamine di (O-hydroxylphenyl acetic acid) (EDDHA) may be useful in preventing or reducing chromate toxicity. No definite relationship could be observed between the structure of the chelating agents and their chromium-removing capacity.

  13. The effect of acidic pH and presence of metals as parameters in establishing a sulfidogenic process in anaerobic reactor.

    PubMed

    Vieira, Bárbara F; Couto, Pâmela T; Sancinetti, Giselle P; Klein, Bernhard; van Zyl, Dirk; Rodriguez, Renata P

    2016-08-23

    The successful use of anaerobic reactors for bioremediation of acid mine drainage has been shown in systems with neutral pH. However, the choice of an efficient and suitable process for such wastewater must consider the capability of operating at acidic pH and in the presence of metals. This work studies the performance of an anaerobic batch reactor, under conditions of varying initial pH for its efficiencies in sulfate removal and metal precipitation from synthetic acid mine drainage. The chemical oxygen demand/sulfate (COD/SO4(2-)) ratio used was 1.00, with ethanol chosen as the only energy and carbon source. The initial pH of the synthetic drainage was progressively set from 7.0 to 4.0 to make it as close as possible to that of real acid mine drainage. Metals were also added starting with iron, zinc, and finally copper. The effectiveness of sulfate and COD removal from the synthetic acid mine drainage increased as the initial pH was reduced. The sulfate removal increased from 38.5 ± 3.7% to 52.2 ± 3%, while the removal of organic matter started at 91.7 ± 2.4% and ended at 99 ± 1%. These results indicate that the sulfate reducing bacteria (SRB) community adapted to lower pH values. The metal removal observed was 88 ± 7% for iron, 98.0 ± 0.5% for zinc and 99 ± 1% for copper. At this stage, an increase in the sulfate removal was observed, which reaches up to 82.2 ± 5.8%. The kinetic parameters for sulfate removal were 0.22 ± 0.04 h(-1) with Fe, 0.26 ± 0.04 h(-1) with Fe and Zn and 0.44 ± 0.04 h(-1) with Fe, Zn, and Cu.

  14. A Novel Treatment for Acid Mine Drainage Utilizing Reclaimed Limestone Residual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horace K. Moo-Young; Charles E. Ochola

    2004-08-31

    The viability of utilizing Reclaimed Limestone Residual (RLR) to remediate Acid Mine Drainage (AMD) was investigated. Physical and chemical characterization of RLR showed that it is composed of various minerals that contain significant quantities of limestone or calcium bearing compounds that can be exploited for acid neutralization. Acid Neutralization Potential (ANP) test results showed that RLR has a neutralization potential of approximately 83% as calcium carbonate (CaCO{sub 3}). Neutralization tests with most of the heavy metals associated with AMD showed removal efficiencies of over 99%. An unexpected benefit of utilizing RLR was the removal of hexavalent chromium Cr (VI) frommore » the aqueous phase. Due to an elevation in pH by RLR most AMD heavy metals are removed from solution by precipitation as their metal hydroxides. Cr (VI) however is not removed by pH elevation and therefore subsequent ongoing tests to elucidate the mechanism responsible for this reaction were conducted.« less

  15. The application of bioflocculant for the removal of humic acids from stabilized landfill leachates.

    PubMed

    Zouboulis, Anastasios I; Chai, Xiao-Li; Katsoyiannis, Ioannis A

    2004-01-01

    The evaluation of bioflocculant, in comparison with traditional inorganic coagulants, for the removal of humic acids from landfill leachates stabilized by biological treatment, was performed using conventional jar-test coagulation experiments. The optimized conditions (pH and coagulant dosage) were identified for the treatment of synthetic solutions as well as for biologically pre-treated landfill leachates. It was found that the application of bioflocculant was quite efficient in the removal of humic acids from synthetic solutions as well as in the reduction of COD content from real landfill leachates. The optimal pH value was found to be between 7 and 7.5, while a 20 mg/l bioflocculant dosage was sufficient in providing more than 85% humic acid removal. The results were comparable with those obtained by the application of conventional coagulants such as alum or polyaluminum chloride; therefore, bioflocculant can be considered as a viable alternative in the treatment of landfill leachates applying coagulation.

  16. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review.

    PubMed

    Mansourizadeh, A; Ismail, A F

    2009-11-15

    Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber gas-liquid membrane contactors is a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy devise for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas-liquid membrane contactors for acid gas removal were also briefly discussed.

  17. METHOD OF RECOVERING THORIUM

    DOEpatents

    Fisher, R.W.

    1957-12-10

    A method is described for recovering thorium from impurities found in a slag containing thorium and said impurities, comprising leaching a composition containing thorium with water, removing the water solution, treating the residue with hydrochloric acid, separating the solution from the insoluble residue, adjusting its acidity to 1 to 3 normal, adding oxalic acid, and thereafter separating the precipitated thorium oxalate digesting the residue from the hydrochloric acid treatment with a strong solution of sodium hydroxide at an elevated temperature, removing said solution and treating the insoluble residue with hydrochloric acid, separating the solution from the insoluble residue, adjusting the acidity of this solution to 1 to 3 normal, adding nitric acid to oxidize the iron present, adding oxalic acid and thereafter separating the thorium oxalate thus precipitated.

  18. Improved pretreatment of lignocellulosic biomass using enzymatically-generated peracetic acid.

    PubMed

    Yin, DeLu Tyler; Jing, Qing; AlDajani, Waleed Wafa; Duncan, Shona; Tschirner, Ulrike; Schilling, Jonathan; Kazlauskas, Romas J

    2011-04-01

    Release of sugars from lignocellulosic biomass is inefficient because lignin, an aromatic polymer, blocks access of enzymes to the sugar polymers. Pretreatments remove lignin and disrupt its structure, thereby enhancing sugar release. In previous work, enzymatically generated peracetic acid was used to pretreat aspen wood. This pretreatment removed 45% of the lignin and the subsequent saccharification released 97% of the sugars remaining after pretreatment. In this paper, the amount of enzyme needed is reduced tenfold using first, an improved enzyme variant that makes twice as much peracetic acid and second, a two-phase reaction to generate the peracetic acid, which allows enzyme reuse. In addition, the eight pretreatment cycles are reduced to only one by increasing the volume of peracetic acid solution and increasing the temperature to 60 °C and the reaction time to 6h. For the pretreatment step, the weight ratio of peracetic acid to wood determines the amount of lignin removed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis.

    PubMed

    Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan

    2016-02-01

    Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Recovery process for electroless plating baths

    DOEpatents

    Anderson, Roger W.; Neff, Wayne A.

    1992-01-01

    A process for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO.sub.3. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths.

  1. Recovery process for electroless plating baths

    DOEpatents

    Anderson, R.W.; Neff, W.A.

    1992-05-12

    A process is described for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO[sub 3]. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths. 18 figs.

  2. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    PubMed

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. THE NATURE OF SERUM ANTITRYPSIN

    PubMed Central

    Jobling, James W.; Petersen, William

    1914-01-01

    1. The ferment-inhibiting action of the serum is due to the presence of compounds of the unsaturated fatty acids. 2. These fatty acid compounds may be removed from the serum by means of chloroform or ether. 3. Soaps prepared by saponifying the chloroform or ether extracts inhibit the action of trypsin. 4. The anti-enzyme action of the serum can be removed by filtering acid serum through kaolin, and can in part be restored by extracting the kaolin. 5. The decrease in strength of anti-enzyme in old sera is probably due to the action of the serum lipase. 6. Iodin, potassium iodide, or hydrogen peroxide remove the inhibiting action of the serum. 7. Soaps of the unsaturated fatty acids lose their ferment-inhibiting action when heated with serum at 70° C. PMID:19867786

  4. Reduction and removal of Cr(VI) from aqueous solutions using modified byproducts of beer production.

    PubMed

    Cui, Haojie; Fu, Minglai; Yu, Shen; Wang, Ming Kuang

    2011-02-28

    Biosorption, as an effective and low-cost technology treating industrial wastewaters containing Cr(VI), has become a significant concern worldwide. In this work, acid-modified byproducts of beer production (BBP) were used to remove Cr(VI) from aqueous solutions. Removal of Cr(VI) increases as the pH is decreased from 4.0 to 1.5, but the maximum of total Cr removal is obtained in a pH range from 2.0 to 2.5. Nearly 60% of the initial Cr(VI) (100 mg L(-1)) was adsorbed or reduced to Cr(III) within the first 10 min at pH 2.0. The Cr(VI) removal capability of acid-modified BBP materials was almost completely retained after regenerating with acid. FT-IR and XPS spectra revealed that carboxylate and carboxyl groups on the surface of modified BBP materials play a major role in Cr(VI) binding and reduction, whereas amide and other groups play a minor role in the Cr(VI) removal process. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Treatment of acidic sulfate-containing wastewater using revolving algae biofilm reactors: Sulfur removal performance and microbial community characterization.

    PubMed

    Zhou, Haoyuan; Sheng, Yanqing; Zhao, Xuefei; Gross, Martin; Wen, Zhiyou

    2018-05-18

    Industries such as mining operations are facing challenges of treating sulfur-containing wastewater such as acid mine drainage (AMD) generated in their plant. The aim of this work is to evaluate the use of a revolving algal biofilm (RAB) reactor to treat AMD with low pH (3.5-4) and high sulfate content (1-4 g/L). The RAB reactors resulted in sulfate removal efficiency up to 46% and removal rate up to 0.56 g/L-day, much higher than those obtained in suspension algal culture. The high-throughput sequencing revealed that the RAB reactor contained diverse cyanobacteria, green algae, diatoms, and acid reducing bacteria that contribute the sulfate removal through various mechanisms. The RAB reactors also showed a superior performance of COD, ammonia and phosphorus removal. Collectively, the study demonstrated that RAB-based process is an effective method to remove sulfate in wastewater with small footprint and can be potentially installed in municipal or industrial wastewater treatment facilities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Analysis of Carbohydrate and Fatty Acid Marker Abundance in Ricin Toxin Preparations for Forensic Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colburn, Heather A.; Wunschel, David S.; Kreuzer-Martin, Helen W.

    2010-07-15

    One challenge in the forensic analysis of ricin samples is determining the method and extent of sample preparation. Ricin purification from the source castor seeds is essentially a protein purification through removal of the non-protein fractions of the seed. Two major, non-protein constituents in the seed are the castor oil and carbohydrates. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil, which comprises roughly half the seed weight. The carbohydrate component comprises roughly half of the remaining “mash” left after oil and hull removal. We used derivatization of carbohydrate andmore » fatty acid markers followed by identification and quantification using gas chromatography/mass spectrometry (GC/MS) to assess compositional changes in ricin samples purified by different methods. The loss of ricinoleic acid indicated steps for oil removal had occurred. Changes to the carbohydrate content of the sample were also observed following protein precipitation. The differential loss of arabinose relative to mannose indicated removal of the major carbohydrate fraction of the seed and enrichment of the protein content. Taken together, these changes in fatty acid and carbohydrate abundance are indicative of the preparation method used for each sample.« less

  7. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation.

    PubMed

    González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús

    2016-05-01

    High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.

  8. Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 2. performance of treatment systems

    USGS Publications Warehouse

    Cravotta, Charles A.

    2010-01-01

    A variety of passive and semi-passive treatment systems were constructed by state and local agencies to neutralize acidic mine drainage (AMD) and reduce the transport of dissolved metals in the upper Swatara Creek Basin in the Southern Anthracite Coalfield in eastern Pennsylvania. To evaluate the effectiveness of selected treatment systems installed during 1995–2001, the US Geological Survey collected water-quality data at upstream and downstream locations relative to each system eight or more times annually for a minimum of 3 years at each site during 1996–2007. Performance was normalized among treatment types by dividing the acid load removed by the size of the treatment system. For the limestone sand, open limestone channel, oxic limestone drain, anoxic limestone drain (ALD), and limestone diversion well treatment systems, the size was indicated by the total mass of limestone; for the aerobic wetland systems, the size was indicated by the total surface area of ponds and wetlands. Additionally, the approximate cost per tonne of acid treated over an assumed service life of 20 years was computed. On the basis of these performance metrics, the limestone sand, ALD, oxic limestone drain, and limestone diversion wells had similar ranges of acid-removal efficiency and cost efficiency. However, the open limestone channel had lower removal efficiency and higher cost per ton of acid treated. The wetlands effectively attenuated metals transport but were relatively expensive considering metrics that evaluated acid removal and cost efficiency. Although the water-quality data indicated that all treatments reduced the acidity load from AMD, the ALD was most effective at producing near-neutral pH and attenuating acidity and dissolved metals. The diversion wells were effective at removing acidity and increasing pH of downstream water and exhibited unique potential to treat moderate to high flows associated with storm flow conditions.

  9. Comparative analysis of endodontic smear layer removal efficacy of 17% ethylenediaminetetraacetic acid, 7% maleic acid, and 2% chlorhexidine using scanning electron microscope: An in vitro study.

    PubMed

    Attur, Kailash; Joy, Mathew T; Karim, Riyas; Anil Kumar, V J; Deepika, C; Ahmed, Haseena

    2016-08-01

    The aim of the present study was to evaluate the efficiency of different endodontic irrigants in the removal of smear layer through scanning electron microscopic image analysis. The present in vitro study was carried out on 45 single-rooted extracted human mandibular premolar teeth with single canal and complete root formation. Teeth were randomly assigned to three groups with 15 teeth in each group. Group I samples were irrigated with 17% ethylenediaminetetraacetic (EDTA) irrigation, Group II with 7% maleic acid irrigation, and Group III with 2% chlorhexidine irrigation. Scanning electron microscope evaluation was done for the assessment of smear layer removal in the coronal, middle, and apical thirds. Comparison of the smear layer removal between the three different groups was done by Kruskal-Wallis test, followed by Mann-Whitney U test for comparing individual groups. A P value less than 0.05 was considered to be statistically significant. Statistically significant difference was seen between the two test groups (17% EDTA vs. 7% maleic acid and 17% EDTA vs. 2% chlorhexidine) in smear layer removal at coronal, middle, and apical thirds of the root canal. The most efficient smear layer removal was seen in Group I with 17% EDTA irrigation compared with other groups (P < 0.05) and the least by 2% chlorhexidine. The present study shows that 17% EDTA efficiently removes the smear layer from root canal walls.

  10. EVALUATION OF AN ELECTRODIALYTIC PROCESS FOR PURIFICATION OF HEXAVALENT CHROMIUM SOLUTIONS

    EPA Science Inventory

    This evaluation addresses the waste reduction and economics of an electrodialytic process that can be used to selectively remove impurities that build up in chromic acid solutions with use. The removal of impurities extends the useful life of the chromic acid solution and avoids ...

  11. An in vitro evaluation of passive ultrasonic agitation of different irrigants on smear layer removal after post space preparation: a scanning electron microscopic study.

    PubMed

    Srirekha, A; Rashmi, K; Hegde, Jayshree; Lekha, S; Rupali, K; Reshmi, George

    2013-09-01

    This study evaluated the removal of debris and smear layer after post space preparation using different irrigations and passive ultrasonic agitation. Sixty human premolars were decoronated and post space prepared after endodontic therapy. The samples were then randomly divided into three experimental groups (Groups A, B, C) and one control group (Group D) with fifteen samples in each group. Groups A and B samples were treated with 10 % citric acid and 17 % ethylenediamintetraacetic acid (EDTA), respectively and passive ultrasonic agitation was done, rinsed with sodium hypochlorite and finally flushed with saline. Group C samples were conditioned with 36 % phosphoric acid and then rinsed with saline. The control group was treated with 3 % sodium hypochlorite, passive ultrasonic agitation done and flushed with saline. The samples were sectioned and evaluated for debris and smear layer removal under scanning electron microscope. 10 % citric acid showed the best removal of smear layer when compared with 17 % EDTA and 36 % phosphoric acid, but was not statistically significant (p > 0.05). The difference in scoring for debris and smear layer removal in the coronal, middle and apical third of post space of experimental groups in comparison with control group was statistically significant (p < 0.001).

  12. Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes.

    PubMed

    Zhang, Tao; Zou, Hua; Ji, Minhui; Li, Xiaolin; Li, Liqiao; Tang, Tang

    2014-02-01

    Optimizing process parameters that affect the remediation time and power consumption can improve the treatment efficiency of the electrokinetic remediation as well as determine the cost of a remediation action. Lab-scale electrokinetic remediation of Pb-contaminated soils was investigated for the effect of complexant ethylenediaminetetraacetic acid (EDTA) and acetic acid and approaching anode on the removal efficiency of Pb. When EDTA was added to the catholyte, EDTA dissolved insoluble Pb in soils to form soluble Pb-EDTA complexes, increasing Pb mobility and accordingly removal efficiency. The removal efficiency was enhanced from 47.8 to 61.5 % when the EDTA concentration was increased from 0.1 to 0.2 M, showing that EDTA played an important role in remediation. And the migration rate of Pb was increased to 72.3 % when both EDTA and acetic acid were used in the catholyte. The "approaching anode electrokinetic remediation" process in the presence of both EDTA and acetic acid had a higher Pb-removal efficiency with an average efficiency of 83.8 %. The efficiency of electrokinetic remediation was closely related to Pb speciation. Exchangeable and carbonate-bounded Pb were likely the forms which could be removed. All results indicate that the approaching anode method in the presence of EDTA and acetic acid is an advisable choice for electrokinetic remediation of Pb-contaminated soil.

  13. Oxidative removal of aqueous steroid estrogens by manganese oxides.

    PubMed

    Xu, Lei; Xu, Chao; Zhao, Meirong; Qiu, Yuping; Sheng, G Daniel

    2008-12-01

    This study investigated the oxidative removal of steroid estrogens from water by synthetic manganese oxide (MnO2) and the factors influencing the reactions. Using 1 x 10(-5)M MnO2 at pH 4, estrone (E1), 17beta-estradiol (E2), estriol (E3) and 17alpha-ethinylestradiol (EE2), all at 4 x 10(-6)M, were rapidly removed within 220 min, indicating the effectiveness of MnO2 as an oxidizing agent towards estrogens. E2 removal increased with decreasing pH over the tested range of 4-8, due most likely to increased oxidizing power of MnO2 and a cleaner reactive surface in acidic solutions. Coexisting metal ions of 0.01 M (Cu(II), Zn(II), Fe(III) and Mn(II)) and Mn(II) released from MnO2 reduction competed with E2 for reactive sites leading to reduced E2 removal. Observed differential suppression on E2 removal may be related to different speciations of metals, as suggested by the MINTEQ calculations, and hence their different adsorptivities on MnO2. By suppressing the metal effect, humic acid substantially enhanced E2 removal. This was attributed to complexation of humic acid with metal ions. With 0.01 M ZnCl2 in solutions containing 1 mg l(-1) humic acid, the binding of humic acid for Zn(II) was determined at 251 mmol g(-1). An in vitro assay using human breast carcinoma MCF-7 cells indicated a near elimination of estrogenic activities without secondary risk of estrogen solutions treated with MnO2. Synthetic MnO2 is therefore a promising chemical agent under optimized conditions for estrogen removal from water. Metal chelators recalcitrant to MnO2 oxidation may be properly used to further enhance the MnO2 performance.

  14. Comparison of sodium naphthenate and air-ionization corona discharge as surface treatments for the ethylene-tetrafluoroethylene polymer (ETFE) to improve adhesion between ETFE and acrylonitrile-butadiene-styrene polymer (ABS) in the presence of a cyanoacrylate adhesive (CAA)

    NASA Astrophysics Data System (ADS)

    Lucía Johanning-Solís, Ana; Stradi-Granados, Benito A.

    2014-09-01

    This study compares two ethylene-tetrafluoroethylene (ETFE) surface activation treatments, namely chemical attack with a solution of sodium naphthenate and plasma erosion via air-ionization corona discharge in order to improve the adhesive properties of the ETFE. An experimental design was prepared for both treatments in order to assess the effect of the treatment characteristics on the tensile load needed to break the bond between the ETFE and the acrylonitrile-butadiene-styrene polymer (ABS) formed with a cyanoacrylate adhesive (CAA) applied between them. The reason for the selection of this problem is that both polymers are frequently used in the biomedical industry for their properties, and they need to be joined firmly in biomedical devices, and the cyanoacrylate adhesive is the adhesive traditionally used for fluoropolymers, in this case the ETFE, and the same CAA has also shown good adhesion with ABS. However, the strength of the bond for the triplet ETFE-CAA-ABS has not been reported and the improvement of the strength of the bond with surface treatments is not found in scholarly journals for modern medical devices such as stents and snares. Both treatments were compared based on the aforementioned design of experiments. The case where ETFE receives no surface treatment serves as the reference. The results indicated that the three factors evaluated (initial drying of the material, temperature of the chemical bath, and immersion time), and their interactions have no significant effect over the tensile load at failure (tensile strength) of the adhesive bond being evaluated. For the air-ionization corona discharge treatment, two factors were evaluated: discharge exposition time and air pressure. The results obtained from this experimental design indicate that there is no significant difference between the levels of the factors evaluated. These results were unexpected as the ranges used were representative of the maximum ranges permissible in manufacturing operations. As for the comparison of the treatments, it was determined that the treatments have statistically significant differences. It was also determined that there is a significant statistical difference between the processes where a surface treatment is performed and the process where no surface treatment is applied to the ETFE. The chemical treatment results in a higher tensile load at failure (tensile strength) of 276.6 N on average, the air ionization treatment has an average of 248.4 N, and the process with no treatment has the lower ultimate tensile strength average of 53 N. This comparison has demonstrated that the best treatment is the chemical treatment with sodium naphthenate under the conditions tested.

  15. Simultaneous measurement of volatile sulfur compounds using ascorbic acid for oxidant removal and gas chromatography-flame photometric detection.

    PubMed

    Inomata, Y; Matsunaga, K; Murai, Y; Osada, K; Iwasaka, Y

    1999-12-09

    A method for the simultaneous measurement of volatile sulfur compounds (COS, H2S, CS2, CH3SH, DMS) is established with preconcentration and GC-flame photometric detection (FPD). Prior to preconcentration of ambient air, it was necessary to remove SO2, water vapor and atmospheric oxidant. SO2 and water vapor were removed using a glass fiber filter and a cooled PTFE water trap loop, respectively. In order to remove atmospheric oxidant, the efficiency of an ascorbic acid scrubber was examined. It was found that an ascorbic acid scrubber enabled measurement of volatile sulfur compounds without adsorption and reaction loss. The detection limits for COS, H2S, CS2, CH3SH and DMS were 20, 34, 35, 263 and 44 pg of S, respectively.

  16. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    PubMed

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  17. pH-sensitive Itaconic acid based polymeric hydrogels for dye removal applications.

    PubMed

    Sakthivel, M; Franklin, D S; Guhanathan, S

    2016-12-01

    A series of Itaconic Acid (IA) based pH-sensitive polymeric hydrogels were synthesized by condensation polymerization of Itaconic Acid (IA) with Ethylene Glycol (EG) in the presence of an acid medium resulted into pre-polymer. Further, pre-polymer were co-polymerized with Acrylic Acid (AA) through free radical polymerization using Potassium persulphate (KPS). The structural and surface morphological characterizations of the synthesized hydrogels were studied using FT-IR spectroscopy and Scanning Electron Microscope (SEM) respectively. The swelling and swelling equilibrium were performed at varies pH (4.0-10.0). Further, the effects of IA, EG and AA on swelling properties have also been investigated. Thermal stability of synthesized hydrogels have been investigated by TGA, DTA and DSC. The synthesized hydrogels have shown good ability to uptake a Cationic dye. The Methylene blue has been chosen as a model cationic dye. The results of dye removal using IA hydrogels found to have excellent dye removal capacity. Such kind of IA based hydrogels may be recommended for eco-friendly environmental application. viz., removal of dyes and metal ions and sewage water treatment, purification of water etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Ultrasonically assisted extraction of calcium and ash from char

    NASA Astrophysics Data System (ADS)

    Mathumba, E. E.; Mbaya, R. K. K.; Kolesnikov, A.

    2018-03-01

    This study characterized and removed calcium and ash content from char to improve the chemical quality of char as reductant for titanium smelting application. Calcium in char can be classified in two parts: mineral matter and cationic metals associated with organic matrix. Virgin and chemically treated char was characterized by using ISO 1171, wet chemistry methods, ISO 19579, XRF, and B.E.T. methods. In this present work, demineralization of char with mild chemical leachants such as acetic acid, citric acid, gluconic acid and Ethylene Diamine Tetra Acetic acid with three different ultrasonic power input (150 W, 270 W and 300 W) and semi-dual frequency of 40 kHz tank was investigated. Actual power dissipated into the system was calculated from the calorimetric measurement. An optimum set of process parameters are identified and validated. The ultrasound technology was compared with soaking technology to determine the efficiency of ultrasound system for the removal of calcium. The removal of calcium was exponentially higher with ultrasonic treatment than without it. Results revealed that mild chemical reagents do not harm the carbon content of char. It is evident from the results that amongst the leachants used; acetic and citric acid has caused significant removal of mineral phases.

  19. Tannic acid as a means to remove peanut allergens

    USDA-ARS?s Scientific Manuscript database

    Tannic acid (TA) is a polyphenol (commonly found in tea and coffee) that has been used as a treatment for toxic substances and carpet allergens. The objectives were to determine the efficacy of TA’s binding and removal of peanut allergens from peanut butter extracts as insoluble precipitates, and to...

  20. Influence of multi-step washing using Na2EDTA, oxalic acid and phosphoric acid on metal fractionation and spectroscopy characteristics from contaminated soil.

    PubMed

    Wei, Meng; Chen, Jiajun

    2016-11-01

    A multi-step soil washing test using a typical chelating agent (Na 2 EDTA), organic acid (oxalic acid), and inorganic weak acid (phosphoric acid) was conducted to remediate soil contaminated with heavy metals near an arsenic mining area. The aim of the test was to improve the heavy metal removal efficiency and investigate its influence on metal fractionation and the spectroscopy characteristics of contaminated soil. The results indicated that the orders of the multi-step washing were critical for the removal efficiencies of the metal fractions, bioavailability, and potential mobility due to the different dissolution levels of mineral fractions and the inter-transformation of metal fractions by XRD and FT-IR spectral analyses. The optimal soil washing options were identified as the Na 2 EDTA-phosphoric-oxalic acid (EPO) and phosphoric-oxalic acid-Na 2 EDTA (POE) sequences because of their high removal efficiencies (approximately 45 % for arsenic and 88 % for cadmium) and the minimal harmful effects that were determined by the mobility and bioavailability of the remaining heavy metals based on the metal stability (I R ) and modified redistribution index ([Formula: see text]).

  1. Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15.

    PubMed

    Bui, Tung Xuan; Choi, Heechul

    2009-09-15

    The removal of five selected pharmaceuticals, viz., carbamazepine, clofibric acid, diclofenac, ibuprofen, and ketoprofen was examined by batch sorption experiments onto a synthesized mesoporous silica SBA-15. SBA-15 was synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N(2) adsorption-desorption measurement, and point of zero charge (PZC) measurement. Pharmaceutical adsorption kinetics was rapid and occurred on a scale of minutes, following a pseudo-second-order rate expression. Adsorption isotherms were best fitted by the Freundlich isotherm model. High removal rates of individual pharmaceuticals were achieved in acidic media (pH 3-5) and reached 85.2% for carbamazepine, 88.3% for diclofenac, 93.0% for ibuprofen, 94.3% for ketoprofen, and 49.0% for clofibric acid at pH 3 but decreased with increase in pH. SBA-15 also showed high efficiency for removal of a mixture of 5 pharmaceuticals. Except for clofibric acid (35.6%), the removal of pharmaceuticals in the mixture ranged from 75.2 to 89.3%. Based on adsorption and desorption results, the mechanism of the selected pharmaceuticals was found to be a hydrophilic interaction, providing valuable information for further studies to design materials for the purpose. The results of this study suggest that mesoporous-silica-based materials are promising adsorbents for removing pharmaceuticals from not only surface water but also wastewater of pharmaceutical industrial manufactures.

  2. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  3. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  4. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, H.L.; Palasz, P.D.; Ratcliff, M.A.

    1984-12-20

    A process is described for producing peracids from lactic acid-containing solutions derived from biomass processing systems. It consists of adjusting the pH of the solution to about 8 to 9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids. The solution is oxidized to produce volatile lower aliphatic aldehydes. The aldehydes are removed as they are generated and converted to peracids.

  5. Reactive mineral removal relative to soil organic matter heterogeneity and implications for organic contaminant sorption.

    PubMed

    Li, Fangfang; Pan, Bo; Liang, Ni; Chang, Zhaofeng; Zhou, Yuwei; Wang, Lin; Li, Hao; Xing, Baoshan

    2017-08-01

    Soil organic matter (SOM) is generally treated as a static compartment of soil in pollutant fate studies. However, SOM might be altered or fractionated in soil systems, and the details of SOM property/composition changes when coupled with contaminant behavior are unknown. In this study, a mild acid treatment was adopted to remove reactive minerals and partially remove SOM components. After acid treatment, biomarker signatures showed that lignin-derived phenols were released and black carbon (as suggested by benzene-polycarboxylic acids) and lipids were enriched. The biomarker information was consistent with common bulk chemical characterization. The sorption coefficient K d for PHE was two times higher after acid treatment, whereas K d for OFL was three times lower. The organic carbon normalized sorption coefficient K OC values for PHE were higher for soils after acid treatment, indicating stronger interactions between PHE and SOM. The linear regression line between K d and f OC for OFL showed lower intercepts and slopes after reactive mineral removal, suggesting a decreased contribution of minerals and reduced dependence on SOM. These results were attributed to the release of polar compositions in SOM accompanied by reactive mineral removal. Our results suggest that the mobility of ionic organic contaminants increases, whereas that of hydrophobic organic contaminants decreases after acid treatment with respect to reactive mineral depletion. This study emphasized that new insights into the coupling of SOM dynamics should be incorporated into organic contaminant behavior studies. SOM molecular biomarkers offer a useful technique for correlating SOM composition and sorption property changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Fenton treatment of bio-treated fermentation-based pharmaceutical wastewater: removal and conversion of organic pollutants as well as estimation of operational costs.

    PubMed

    Cheng, Yunqin; Chen, Yunlu; Lu, Juncheng; Nie, Jianxin; Liu, Yan

    2018-04-01

    The Fenton process is used as a tertiary treatment to remove organic pollutants from the effluent of bio-treated pharmaceutical wastewater (EBPW). The optimal and most appropriate Fenton conditions were determined by an orthogonal array test and single-factor experiments. The removal of chemical oxygen demand (COD) was influenced by the following factors in a descending order: H 2 O 2 /Fe(II) molar ratio > H 2 O 2 dosage > reaction time. Under the most appropriate Fenton conditions (H 2 O 2 /Fe(II) molar ratio of 1:1, H 2 O 2 dosage of 120 mg L -1 and reaction time of 10 min), the COD and dissolved organic carbon (DOC) were removed with efficiencies of 62 and 53%, respectively, which met the national discharge standard (GB 21903-2008) for the Lake Tai Basin, China. However, the Fenton treatment was inadequate for removal of N compounds, and the removal of organic nitrogen led to an increment in N-NH 3 from 3.28 to 19.71 mg L -1 . Proteins and polysaccharides were completely removed, and humic acids (HAs) were partly removed with an efficiency of 55%. Three-dimensional excitation/emission matrix spectra (3DEEMs) indicated complete removal of fulvic acid-like substances and 90% reduction in the florescence intensity of humic acid-like substances. Organic pollutants with molecular weights (MW) > 10 kDa were completely removed, MW 5-10 kDa were degraded into smaller MW ones, and some low molecular weight acids (MW 0.1-1 kDa) were mineralized during the Fenton process. Some species, including pharmaceutical intermediates and solvents were detected by gas chromatography-mass spectrometry (GC-MS). The operational costs of the Fenton's treatment were estimated to be 0.58 yuan RMB/m 3 EBPW based on reagent usage and iron sludge treatment and disposal.

  7. Soni-removal of nucleic acids from inclusion bodies.

    PubMed

    Neerathilingam, Muniasamy; Mysore, Sumukh; Gandham, Sai Hari A

    2014-05-23

    Inclusion bodies (IBs) are commonly formed in Escherichia coli due to over expression of recombinant proteins in non-native state. Isolation, denaturation and refolding of these IBs is generally performed to obtain functional protein. However, during this process IBs tend to form non-specific interactions with sheared nucleic acids from the genome, thus getting carried over into downstream processes. This may hinder the refolding of IBs into their native state. To circumvent this, we demonstrate a methodology termed soni-removal which involves disruption of nucleic acid-inclusion body interaction using sonication; followed by solvent based separation. As opposed to conventional techniques that use enzymes and column-based separations, soni-removal is a cost effective alternative for complete elimination of buried and/or strongly bound short nucleic acid contaminants from IBs. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Application of the target lipid model and passive samplers to characterize the toxicity of bioavailable organics in oil sands process-affected water.

    PubMed

    Redman, Aaron D; Parkerton, Thomas F; Butler, Josh David; Letinski, Daniel J; Frank, Richard A; Hewitt, L Mark; Bartlett, Adrienne J; Gillis, Patricia Leigh; Marentette, Julie R; Parrott, Joanne L; Hughes, Sarah A; Guest, Rodney; Bekele, Asfaw; Zhang, Kun; Morandi, Garrett; Wiseman, Steve B; Giesy, John P

    2018-06-14

    Oil sand operations in Alberta, Canada will eventually include returning treated process-affected waters to the environment. Organic constituents in oil sand process-affected water (OSPW) represent complex mixtures of nonionic and ionic (e.g. naphthenic acids) compounds, and compositions can vary spatially and temporally, which has impeded development of water quality benchmarks. To address this challenge, it was hypothesized that solid phase microextraction fibers coated with polydimethylsiloxane (PDMS) could be used as a biomimetic extraction (BE) to measure bioavailable organics in OSPW. Organic constituents of OSPW were assumed to contribute additively to toxicity, and partitioning to PDMS was assumed to be predictive of accumulation in target lipids, which were the presumed site of action. This method was tested using toxicity data for individual model compounds, defined mixtures, and organic mixtures extracted from OSPW. Toxicity was correlated with BE data, which supports the use of this method in hazard assessments of acute lethality to aquatic organisms. A species sensitivity distribution (SSD), based on target lipid model and BE values, was similar to SSDs based on residues in tissues for both nonionic and ionic organics. BE was shown to be an analytical tool that accounts for bioaccumulation of organic compound mixtures from which toxicity can be predicted, with the potential to aid in the development of water quality guidelines.

  9. Forward osmosis as an approach to manage oil sands tailings water and on-site basal depressurization water.

    PubMed

    Zhu, Shu; Li, Mingyu; Gamal El-Din, Mohamed

    2017-04-05

    As the volume of oil sands process-affected water (OSPW) stored in tailings ponds increases, it is urgent to seek for water management approaches to alleviate the environmental impact caused by large quantity of toxic water. Forward osmosis (FO) utilizes osmotic pressure difference between two solutions, thereby giving a potential to manage two wastewaters. In this study, FO was proposed to manage OSPW, using on-site waste basal depressurization water (BDW) as draw solution. To investigate its feasibility, both short and long-term OSPW desalination experiments were carried out. By applying this process, the volume of OSPW was decreased>40% and high rejections were achieved, especially, the major organic toxicity source - naphthenic acids (NAs). Although comparative low water flux (≤3L/m 2 h) was obtained, water flux caused by membrane fouling can be completely recovered using water physical cleaning. Moreover, calcium carbonate precipitation was observed on the OSPW-oriented membrane side. With respect to flux decline, the active layer facing the feed solution (FO mode) and active layer facing draw solution (PRO mode) did not demonstrate a significant difference on anti-fouling performance. The advantages provided by this approach include zero draw solution cost, less reversible membrane fouling and beneficial reuse/recycle of diluted BDW. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Chemical heat pump and chemical energy storage system

    DOEpatents

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  11. Performance assessment of dilute-acid leaching to improve corn stover quality for thermochemical conversion

    DOE PAGES

    Aston, John E.; Thompson, David N.; Westover, Tyler L.

    2016-08-30

    Lignocellulosic biomass is a sustainable energy source that can help meet the increasing demand for biofuels in the United States. However, the quality and availability of such feedstocks greatly affects their suitability for downstream conversion. This work reports the effects of dilute-acid leaching at various solid loadings, temperatures and acid loadings on the quality of a traditional biochemical feedstock, corn stover, as a potential feedstock for thermochemical conversions. At 5 wt% solids, dilute-acid leaching was observed to effectively remove 97.3% of the alkali metals and alkaline earth metals that can negatively affect degradation pathways during pyrolysis and result in greatermore » yield of non-condensable gases. In addition, up to 98.4% of the chlorine and 88.8% of the phosphorus, which can cause equipment corrosion and foul upgrading catalysts, respectively, were removed. At 25°C in the absence of acid, only 6.8% of the alkali metals and alkaline earth metals were removed; however 88.0% of chloride was still removed. The ratio of alkaline/acidic ash species has been suggested to proportionately relate to slagging in biopower applications. The initial alkali/acid ratio of the ash species present in the untreated corn stover was 0.38 (significant slagging risk). At 5 wt% solids, this ratio was decreased to 0.18 (moderate slagging risk) at 0 wt% acid and 90°C, and was decreased to 0.07, 0.08 and 0.06 at 0.5 wt% acid at 25°C, 50°C and 90°C, respectively (little or no slagging risk). Increasing the acid loading to 1.0% only slightly decreased the measured alkali/acid ratio of remaining ash species. Lastly, the results presented here show that a water wash or dilute-acid preprocessing step can improve corn stover quality for pyrolysis, hydrothermal liquefaction and biopower.« less

  12. Performance assessment of dilute-acid leaching to improve corn stover quality for thermochemical conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aston, John E.; Thompson, David N.; Westover, Tyler L.

    Lignocellulosic biomass is a sustainable energy source that can help meet the increasing demand for biofuels in the United States. However, the quality and availability of such feedstocks greatly affects their suitability for downstream conversion. This work reports the effects of dilute-acid leaching at various solid loadings, temperatures and acid loadings on the quality of a traditional biochemical feedstock, corn stover, as a potential feedstock for thermochemical conversions. At 5 wt% solids, dilute-acid leaching was observed to effectively remove 97.3% of the alkali metals and alkaline earth metals that can negatively affect degradation pathways during pyrolysis and result in greatermore » yield of non-condensable gases. In addition, up to 98.4% of the chlorine and 88.8% of the phosphorus, which can cause equipment corrosion and foul upgrading catalysts, respectively, were removed. At 25°C in the absence of acid, only 6.8% of the alkali metals and alkaline earth metals were removed; however 88.0% of chloride was still removed. The ratio of alkaline/acidic ash species has been suggested to proportionately relate to slagging in biopower applications. The initial alkali/acid ratio of the ash species present in the untreated corn stover was 0.38 (significant slagging risk). At 5 wt% solids, this ratio was decreased to 0.18 (moderate slagging risk) at 0 wt% acid and 90°C, and was decreased to 0.07, 0.08 and 0.06 at 0.5 wt% acid at 25°C, 50°C and 90°C, respectively (little or no slagging risk). Increasing the acid loading to 1.0% only slightly decreased the measured alkali/acid ratio of remaining ash species. Lastly, the results presented here show that a water wash or dilute-acid preprocessing step can improve corn stover quality for pyrolysis, hydrothermal liquefaction and biopower.« less

  13. Method for removal of nitrogen oxides from stationary combustion sources

    NASA Technical Reports Server (NTRS)

    Cooper, Charles D. (Inventor); Collins, Michelle M. (Inventor); Clausen, III, Christian A. (Inventor)

    2004-01-01

    A method for removing NO.sub.X from gas streams emanating from stationary combustion sources and manufacturing plants utilizes the injection of hydrogen peroxide into the gas stream for rapid gas-phase oxidation of NO to NO.sub.2 and water-soluble nitrogen acids HNO.sub.2 and HNO.sub.3. The nitrogen acids may be removed from the oxidized gas stream by wet scrubbing or by contact with a particulate alkaline material to form a nitrite/nitrate salt.

  14. Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory.

    PubMed

    Sousa, Francisco W; Sousa, Marcelo James; Oliveira, Isadora R N; Oliveira, André G; Cavalcante, Rivelino M; Fechine, Pierre B A; Neto, Vicente O S; de Keukeleire, Denis; Nascimento, Ronaldo F

    2009-08-01

    In this study, sugar cane residue or bagasse was used for removal of toxic metal ions from wastewater of an electroplating factory located in northeast Brazil. Prior acid treatment increased the adsorption efficacies in batch wise experiments. The microstructure of the material before and after the treatment was investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Column operations showed that removals of Cu(2+), Ni(2+) and Zn(2+) from wastewater (in the absence of cyanide) were 95.5%, 96.3.0%, and 97.1%, respectively. Regeneration of the adsorbent obtained in acid indicated that the efficiencies decreased only after the fourth cycle of re-use. Acid-treated sugar cane bagasse can be considered a viable alternative to common methods to remove toxic metal ions from aqueous effluents of electroplating industries.

  15. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.

  16. Application of natural citric acid sources and their role on arsenic removal from drinking water: a green chemistry approach.

    PubMed

    Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Islam, Sk Mijanul; Bundschuh, Jochen; Chatterjee, Debashis; Hidalgo, Manuela

    2013-11-15

    Solar Oxidation and Removal of Arsenic (SORAS) is a low-cost non-hazardous technique for the removal of arsenic (As) from groundwater. In this study, we tested the efficiency of natural citric acid sources extracted from tomato, lemon and lime to promote SORAS for As removal at the household level. The experiment was conducted in the laboratory using both synthetic solutions and natural groundwater samples collected from As-polluted areas in West Bengal. The role of As/Fe molar ratios and citrate doses on As removal efficiency were checked in synthetic samples. The results demonstrate that tomato juice (as citric acid) was more efficient to remove As from both synthetic (percentage of removal: 78-98%) and natural groundwater (90-97%) samples compared to lemon (61-83% and 79-85%, respectively) and lime (39-69% and 63-70%, respectively) juices. The As/Fe molar ratio and the citrate dose showed an 'optimized central tendency' on As removal. Anti-oxidants, e.g. 'hydroxycinnamates', found in tomato, were shown to have a higher capacity to catalyze SORAS photochemical reactions compared to 'flavanones' found in lemon or lime. The application of this method has several advantages, such as eco- and user- friendliness and affordability at the household level compared to other low-cost techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Comparison of Removal Behavior of Two Biotrickling Filters under Transient Condition and Effect of pH on the Bacterial Communities

    PubMed Central

    Tu, Xiang; Li, Jianjun; Feng, Rongfang; Sun, Guoping; Guo, Jun

    2016-01-01

    Although biotrickling filters (BTFs) applied under acidic condition to remove H2S from waste gases have been reported, the removal behavior of the acidic BTF under transient condition which was normal in most industry processes, and corresponding bacterial community have not been thoroughly studied. In the present study, two BTFs were run under neutral (BTFn) and acidic (BTFa) conditions, respectively. The results revealed that the removal performance of BTFa under transient condition was superior to that of BTFn; the maximum H2S eliminating capacities (ECs) achieved by BTFa and BTFn were 489.9 g/m3 h and 443.6 g/m3 h, respectively. High-throughput sequencing suggested that pH was the critical factor and several other factors including nutrient and the inlet loadings also had roles in shaping bacterial community structure. Acidithiobacillus was the most abundant bacterial group. The results indicated that BTF acclimation under acidic condition may facilitate generating microbial community with high H2S-degrading capability. PMID:27196300

  18. Co-precipitation of dissolved organic matter by calcium carbonate in Pyramid Lake, Nevada

    USGS Publications Warehouse

    Leenheer, Jerry A.; Reddy, Michael M.

    2008-01-01

    Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, Nevada, USA. A 400-gram block of precipitated calcium carbonate from the Pyramid Lake shore was dissolved in 8 liters of 10% acetic acid. Particulate matter not dissolved by acetic acid was removed by centrifugation. DOM from the carbonate rock was fractionated into nine portions using evaporation, dialysis, resin adsorption, and selective precipitations to remove acetic acid and inorganic constituents. The calcium carbonate rock contained 0.23% DOM by weight. This DOM was enriched in polycarboxylic proteinaceous acids and hydroxy-acids in comparison with the present lake water. DOM in lake water was composed of aliphatic, alicyclic polycarboxylic acids. These compound classes were found in previous studies to inhibit calcium carbonate precipitation. DOM fractions from the carbonate rock were 14C-age dated at about 3,100 to 3,500 years before present. The mechanism of DOM co-precipitation and/or physical incorporation in the calcium carbonate is believed to be due to formation of insoluble calcium complexes with polycarboxylic proteinaceous acids and hydroxy-acids that have moderately large stability constants at the alkaline pH of the lake. DOM co-precipitation with calcium carbonate and incorporation in precipitated carbonate minerals removes proteinaceous DOM, but nearly equivalent concentrations of neutral and acidic forms of organic nitrogen in DOM remain in solution. Calcium carbonate precipitation during lime softening pretreatment of drinking water may have practical applications for removal of proteinaceous disinfection by-product precursors.

  19. Progress on Zeolite-membrane-aided Organic Acid Esterification

    NASA Astrophysics Data System (ADS)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.

    2017-07-01

    Esterification is a common route to produce carboxylic acid esters as important intermediates in chemical and pharmaceutical industries. However, the reaction is equilibrium limited and needs to be driven forward by selective removal one of the products. There have been some efforts to selectively remove water from reaction mixture via several separation processes (such as pervaporation and reactive distillation). Integrated pervaporation and esterification has gained increasing attention towards. Inorganic zeolite is the most popular material for pervaporation due to its high chemical resistant and separation performance towards water. Zeolite also has proven to be an effective material in removing water from organic compound. Zeolite can act not only as selective layer but also simultaneously act as a catalyst on promoting the reaction. Hence, there are many configurations in integrating zeolite membrane for esterification reaction. As a selective layer to remove water from reaction mixture, high Si/Al zeolite is preferred to enhance its hydrophilicity. However, low Si/Al zeolite is unstable in acid condition due to dealumination thus eliminate its advantages. As a catalyst, acid zeolites (e.g. H-ZSM-5) provide protons for autoprotolysis of the carboxylic acid similar to other catalyst for esterification (e.g. inorganic acid, and ion exchange resins). There are many studies related to zeolite membrane aided esterification. This paper will give brief information related to zeolite membrane role in esterification and also research trend towards it.

  20. Increased saccharification yields from aspen biomass upon treatment with enzymatically generated peracetic acid.

    PubMed

    Duncan, Shona; Jing, Qing; Katona, Adrian; Kazlauskas, Romas J; Schilling, Jonathan; Tschirner, Ulrike; Aldajani, Waleed Wafa

    2010-03-01

    The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60-70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.

  1. Treatment of iron(II)-rich acid mine water with limestone and oxygen.

    PubMed

    Mohajane, G B; Maree, J P; Panichev, N

    2014-01-01

    The main components of acid mine water are free acid, sulphate, and Fe²⁺. Limestone is the most cost-effective alkali that can be used for neutralization. The purpose of this investigation was to identify conditions where Fe²⁺ is removed with limestone and simultaneously oxidized with oxygen to Fe³⁺, in a polyvinyl chloride pipe under pressure. Gypsum scaling is prevented by passing rubber balls through the pipe of the so-called Oxygen-Pipe-Neutralization (OPeN) process pilot plant. Two synthetic waters were treated: (A) acid mine water containing 123 mg L⁻¹ Fe²⁺ representing gold mine water, and (B) acid mine water containing 6,032 mg L⁻¹ Fe²⁺ representing coal mine water. Batch studies were carried out in a pipe reactor and showed that the rate of Fe²⁺ oxidation depended on the Fe²⁺ concentration, oxygen pressure, amount of recycled sludge, limestone dosage and the mixing rate. Continuous studies in an OPeN process pilot plant resulted in 100% removal of total acidity from synthetic coal mine water and a 98% removal from synthetic gold mine water. Fe²⁺ was removed completely as precipitated Fe(OH)₃ from both synthetic coal and gold mine water at around pH 7 at 200 and 100 kPa oxygen pressure, respectively.

  2. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage - column study.

    PubMed

    Shabalala, Ayanda N; Ekolu, Stephen O; Diop, Souleymane; Solomon, Fitsum

    2017-02-05

    This paper presents a column study conducted to investigate the potential use of pervious concrete as a reactive barrier for treatment of water impacted by mine waste. The study was done using acid mine drainage (AMD) collected from a gold mine (WZ) and a coalfield (TDB). Pervious concrete mixtures consisting of Portland cement CEM I 52.5R with or without 30% fly ash (FA) were prepared at a water-cementitious ratio of 0.27 then used to make cubes which were employed in the reactor columns. It was found that the removal efficiency levels of Al, Fe, Mn, Co and Ni were 75%, 98%, 99%, 94% and 95% for WZ; 87%, 96%, 99%, 98% and 90% for TDB, respectively. The high rate of acid reduction and metal removal by pervious concrete is attributed to dissolution of portlandite which is a typical constituent of concrete. The dominant reaction product in all four columns was gypsum, which also contributed to some removal of sulphate from AMD. Formation of gypsum, goethite, and Glauber's salt were identified. Precipitation of metal hydroxides seems to be the dominant metal removal mechanism. Use of pervious concrete offers a promising alternative treatment method for polluted or acidic mine water. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Removal of Water-Soluble Extractives Improves the Enzymatic Digestibility of Steam-Pretreated Softwood Barks.

    PubMed

    Frankó, Balázs; Carlqvist, Karin; Galbe, Mats; Lidén, Gunnar; Wallberg, Ola

    2018-02-01

    Softwood bark contains a large amounts of extractives-i.e., soluble lipophilic (such as resin acids) and hydrophilic components (phenolic compounds, stilbenes). The effects of the partial removal of water-soluble extractives before acid-catalyzed steam pretreatment on enzymatic digestibility were assessed for two softwood barks-Norway spruce and Scots pine. A simple hot water extraction step removed more than half of the water-soluble extractives from the barks, which improved the enzymatic digestibility of both steam-pretreated materials. This effect was more pronounced for the spruce than the pine bark, as evidenced by the 30 and 11% glucose yield improvement, respectively, in the enzymatic digestibility. Furthermore, analysis of the chemical composition showed that the acid-insoluble lignin content of the pretreated materials decreased when water-soluble extractives were removed prior to steam pretreatment. This can be explained by a decreased formation of water-insoluble "pseudo-lignin" from water-soluble bark phenolics during the acid-catalyzed pretreatment, which otherwise results in distorted lignin analysis and may also contribute to the impaired enzymatic digestibility of the barks. Thus, this study advocates the removal of extractives as the first step in the processing of bark or bark-rich materials in a sugar platform biorefinery.

  4. Removal of toxic metals from leachates from hazardous solid wastes and reduction of toxicity to microtox by the use of calcium alginate beads containing humic acid.

    PubMed

    Pandey, Ashok K; Pandey, Shri Dhar; Misra, Virendra

    2002-06-01

    Improper disposal of hazardous wastes can lead to release of potentially harmful substances through leaching such as heavy metals, which ultimately contaminate soil, sediment surface water, and groundwater through runoff. To remove these toxic metals and avoid any adverse effect on the ecosystem, a novel approach involving calcium alginate (CA) beads containing humic acid (HA) was used. For this, 10% leachates of the waste obtained from two major industrial units with electroplating processess were prepared at neutral pH and analyzed by atomic absorption spectrophotometry (AAS). Both leachates contained Cd, Cu, Cr, Ni, Mn, Fe, and Zn. The concentrations of Ni, Mn, Fe, and Zn in the waste were found to be significant. The leachates analyzed were passed through columns packed with calcium alginate beads with or without humic acid. The concentrations of various metals in beads and in different fractions collected after adsorption were measured. Data recorded indicate that calcium alginate beads containing humic acids are more efficient in removal of all metals in substantial amounts from the two leachates. Along with removal of metals, this process led to considerable detoxification of the leachates as tested by Microtox assay, indicated by earlier protection and higher EC(50). The significance of the results in relation to removal of toxic metals by beads containing humic acid is discussed. (c) 2002 Elsevier Science (USA).

  5. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain.

    PubMed

    Eschauzier, Christian; Beerendonk, Erwin; Scholte-Veenendaal, Petra; De Voogt, Pim

    2012-02-07

    The behavior of polyfluoralkyl acids (PFAAs) from intake (raw source water) to finished drinking water was assessed by taking samples from influent and effluent of the several treatment steps used in a drinking water production chain. These consisted of intake, coagulation, rapid sand filtration, dune passage, aeration, rapid sand filtration, ozonation, pellet softening, granular activated carbon (GAC) filtration, slow sand filtration, and finished drinking water. In the intake water taken from the Lek canal (a tributary of the river Rhine), the most abundant PFAA were PFBA (perfluorobutanoic acid), PFBS (perfluorobutane sulfonate), PFOS (perfluorooctane sulfonate), and PFOA (perfluorooctanoic acid). During treatment, longer chain PFAA such as PFNA (perfluorononanoic acid) and PFOS were readily removed by the GAC treatment step and their GAC effluent concentrations were reduced to levels below the limits of quantitation (LOQ) (0.23 and 0.24 ng/L for PFOS and PFNA, respectively). However, more hydrophilic shorter chain PFAA (especially PFBA and PFBS) were not removed by GAC and their concentrations remained constant through treatment. A decreasing removal capacity of the GAC was observed with increasing carbon loading and with decreasing carbon chain length of the PFAAs. This study shows that none of the treatment steps, including softening processes, are effective for PFAA removal, except for GAC filtration. GAC can effectively remove certain PFAA from the drinking water cycle.The enrichment of branched PFOS and PFOA isomers relative to non branched isomers during GAC filtration was observed during treatment. The finished water contained 26 and 19 ng/L of PFBA and PFBS. Other PFAAs were present in concentrations below 4.2 ng/L The concentrations of PFAA observed in finished waters are no reason for concern for human health as margins to existing guidelines are sufficiently large.

  6. Organophosphonates: A review on environmental relevance, biodegradability and removal in wastewater treatment plants.

    PubMed

    Rott, Eduard; Steinmetz, Heidrun; Metzger, Jörg W

    2018-02-15

    The worldwide increasing consumption of the phosphonates 2-phosphonobutane-1,2,4-tricarboxylic acid [PBTC], 1-hydroxyethane 1,1-diphosphonic acid [HEDP], nitrilotris(methylene phosphonic acid) [NTMP], ethylenediamine tetra(methylene phosphonic acid) [EDTMP] and diethylenetriamine penta(methylene phosphonic acid) [DTPMP] over the past decades put phosphonates into focus of environmental scientists and agencies, as they are increasingly discussed in the context of various environmental problems. The hitherto difficult analysis of phosphonates contributed to the fact that very little is known about their concentrations and behavior in the environment. This work critically reviews the existing literature up to the year 2016 on the potential environmental relevance of phosphonates, their biotic and abiotic degradability, and their removal in wastewater treatment plants (WWTPs). Accordingly, despite their stability against biological degradation, phosphonates can be removed with relatively high efficiency (>80%) in WWTPs operated with chemical phosphate precipitation. In the literature, however, to our knowledge, there is no information as to whether an enhanced biological phosphorus removal alone is sufficient for such high removal rates and whether the achievable phosphonate concentrations in effluents are sufficiently low to prevent eutrophication. It is currently expected that phosphonates, although being complexing agents, do not remobilize heavy metals from sediments in a significant amount since the phosphonate concentrations required for this (>50μg/L) are considerably higher than the concentrations determined in surface waters. Various publications also point out that phosphonates are harmless to a variety of aquatic organisms. Moreover, degradation products thereof such as N-(phosphonomethyl)glycine and aminomethylphosphonic acid are regarded as being particularly critical. Despite their high stability against biological degradation, phosphonates contribute to eutrophication due to abiotic degradation (mainly photolysis). Furthermore, the literature reports on the fact that phosphonates in high concentrations interfere with phosphate precipitation in WWTPs. Thus, it is recommended to remove phosphonates, in particular from industrial wastewaters, before discharging them into water bodies or WWTPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood.

    PubMed

    Arazawa, D T; Kimmel, J D; Finn, M C; Federspiel, W J

    2015-10-01

    The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (<500 mL/min) ECCO2R devices necessitates more efficient gas exchange devices. Since over 90% of blood CO2 is transported as bicarbonate (HCO3(-)), we previously reported development of a carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal from blood in model gas exchange devices by converting bicarbonate to CO2 directly at the HFM surface. This present study tested the hypothesis that dilute sulfur dioxide (SO2) in oxygen sweep gas could further increase CO2 removal by creating an acidic microenvironment within the diffusional boundary layer adjacent to the HFM surface, facilitating dehydration of bicarbonate to CO2. CA was covalently immobilized onto poly (methyl pentene) (PMP) HFMs through glutaraldehyde activated chitosan spacers, potted in model gas exchange devices (0.0151 m(2)) and tested for CO2 removal rate with oxygen (O2) sweep gas and a 2.2% SO2 in oxygen sweep gas mixture. Using pure O2 sweep gas, CA-PMP increased CO2 removal by 31% (258 mL/min/m(2)) compared to PMP (197 mL/min/m(2)) (P<0.05). Using 2.2% SO2 acidic sweep gas increased PMP CO2 removal by 17% (230 mL/min/m(2)) compared to pure oxygen sweep gas control (P<0.05); device outlet blood pH was 7.38 units. When employing both CA-PMP and 2.2% SO2 sweep gas, CO2 removal increased by 109% (411 mL/min/m(2)) (P<0.05); device outlet blood pH was 7.35 units. Dilute acidic sweep gas increases CO2 removal, and when used in combination with bioactive CA-HFMs has a synergistic effect to more than double CO2 removal while maintaining physiologic pH. Through these technologies the next generation of intravascular and paracorporeal respiratory assist devices can remove more CO2 with smaller blood contacting surface areas. A clinical need exists for more efficient respiratory assist devices which utilize low blood flow rates (<500 mL/min) to regulate blood CO2 in patients suffering from acute lung failure. Literature has demonstrated approaches to chemically increase hollow fiber membrane (HFM) CO2 removal efficiency by shifting equilibrium from bicarbonate to gaseous CO2, through either a bioactive carbonic anhydrase enzyme coating or bulk blood acidification with lactic acid. In this study we demonstrate a novel approach to local blood acidification using an acidified sweep gas in combination with a bioactive coating to more than double CO2 removal efficiency of HFM devices. To our knowledge, this is the first report assessing an acidic sweep gas to increase CO2 removal from blood using HFM devices. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    PubMed

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment resulted in removal efficiencies of >90% for clofibric acid and >98% for carbamazepine and diclofenac, while the remaining compounds were reduced to levels below the LOD. For ibuprofen, naproxen, ketoprofen and diclofenac the highest contribution to overall removal was attributed to biological treatment, for clofibric acid UV treatment was the most efficient, while for carbamazepine hydrodynamic cavitation/hydrogen peroxide process and UV treatment were equally efficient. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Contaminant Removal from Oxygen Production Systems for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.; Santiago-Maldonado, Edgardo; Captain, James G.; Pawate, Ashtamurthy S.; Kenis, Paul J. A.

    2012-01-01

    The In Situ Resource Utilization (ISRU) project has been developing technologies to produce oxygen from lunar regolith to provide consumables to a lunar outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloic and hydrofluoric acids are byproducts of the reduction processes, as halide minerals are also reduced at oxide reduction conditions. Because of the stringent water quality requirements for electrolysis, there is a need for a contaminant removal process. The Contaminant Removal from Oxygen Production Systems (CROPS) team has been developing a separation process to remove these contaminants in the gas and liquid phase that eliminates the need for consumables. CROPS has been using Nafion, a highly water selective polymeric proton exchange membrane, to recover pure water from the contaminated solution. Membrane thickness, product stream flow rate, and acid solution temperature and concentration were varied with the goal of maximizing water permeation and acid rejection. The results show that water permeation increases with increasing solution temperature and product stream flow rate, while acid rejection increases with decreasing solution temperature and concentration. Thinner membranes allowed for higher water flux and acid rejection than thicker ones. These results were used in the development of the hardware built for the most recent Mars ISRU demonstration project.

  10. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    PubMed Central

    2012-01-01

    The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p < 0.001) from 76.8 ± 1.8% to 85.7 ± 1.2%. Analysis of covariance method followed by Tukey post-hoc test of 92 tests did not show a significant change in removal efficiency between liquid flow rates of 1.5, 2.5 and 3.5 L/min (p = 0.811). On the other hand, with fixed pressure loss across the tower, by increasing the liquid/gas (L/G) mass ratio, the average removal efficiency decreased significantly (p = 0.001) from 89.9% at L/G of <2 to 83.1% at L/G of 2–3 and further to 80.2% at L/G of >3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream. PMID:23369487

  11. Removal of iron interferences by solvent extraction for geochemical analysis by atomic-absorption spectrophotometry

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    Iron is a common interferent in the determination of many elements in geochemical samples. Two approaches for its removal have been taken. The first involves removal of iron by extraction with methyl isobutyl ketone (MIBK) from hydrochloric acid medium, leaving the analytes in the aqueous phase. The second consists of reduction of iron(III) to iron(II) by ascorbic acid to minimize its extraction into MIBK, so that the analytes may be isolated by extraction. Elements of interest can then be determined using the aqueous solution or the organic extract, as appropriate. Operating factors such as the concentration of hydrochloric acid, amounts of iron present, number of extractions, the presence or absence of a salting-out agent, and the optimum ratio of ascorbic acid to iron have been determined. These factors have general applications in geochemical analysis by atomic-absorption spectrophotometry. ?? 1985.

  12. Effectiveness of Hand Sanitizers with and without Organic Acids for Removal of Rhinovirus from Hands ▿

    PubMed Central

    Turner, Ronald B.; Fuls, Janice L.; Rodgers, Nancy D.

    2010-01-01

    These studies evaluated the effectiveness of ethanol hand sanitizers with or without organic acids to remove detectable rhinovirus from the hands and prevent experimental rhinovirus infection. Ethanol hand sanitizers were significantly more effective than hand washing with soap and water. The addition of organic acids to the ethanol provided residual virucidal activity that persisted for at least 4 h. Whether these treatments will reduce rhinovirus infection in the natural setting remains to be determined. PMID:20047916

  13. The National Shipbuilding Research Program. Update Handbook for Surface Preparation and Coatings in Tanks and Confined Areas

    DTIC Science & Technology

    2000-10-31

    cleaning method are described in Naval Ships’ Technical Manual Chapter 631. 4.6.4 Citric Acid Cleaning The citric acid cleaning system is intended to...acquisition of necessary chemicals and tools, degreasing/cleaning, paint/stripping/removal, citric acid rust removal, passivation of bare steel, and drying...Figure 9-7 Hanging Explosion -Proof Light Box • Figure 9-8 Lighting in Tank • Figure 10-1 Hazardous Waste Storage Area • Figure 10-2 Solvent

  14. Enhancing aerobic digestion potential of municipal waste-activated sludge through removal of extracellular polymeric substance.

    PubMed

    Merrylin, J; Kaliappan, S; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh

    2014-01-01

    A protease-secreting bacteria was used to pretreat municipal sewage sludge to enhance aerobic digestion. To enhance the accessibility of the sludge to the enzyme, extracellular polymeric substances were removed using citric acid thereby removing the flocs in the sludge. The conditions for the bacterial pretreatment were optimized using response surface methodology. The results of the bacterial pretreatment indicated that the suspended solids reduction was 18% in sludge treated with citric acid and 10% in sludge not treated with citric acid whereas in raw sludge, suspended solids reduction was 5.3%. Solubilization was 10.9% in the sludge with extracellular polymeric substances removed in contrast to that of the sludge with extracellular polymeric substances, which was 7.2%, and that of the raw sludge, which was just 4.8%. The suspended solids reduction in the aerobic reactor containing pretreated sludge was 52.4% whereas that in the control reactor was 15.3%. Thus, pretreatment with the protease-secreting bacteria after the removal of extracellular polymeric substances is a cost-effective and environmentally friendly method.

  15. Biosorbents for Removing Hazardous Metals and Metalloids †

    PubMed Central

    Inoue, Katsutoshi; Parajuli, Durga; Ghimire, Kedar Nath; Biswas, Biplob Kumar; Kawakita, Hidetaka; Oshima, Tatsuya; Ohto, Keisuke

    2017-01-01

    Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II), Cr(VI), Sb(III and V), and As(III and V) were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II). Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide) into biosorbents that effectively removed Pb(II). These materials also effectively removed Sb(III and V) and As(III and V) when these were preloaded with multi-valent metal ions such as Zr(IV) and Fe(III). Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI), were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid. PMID:28773217

  16. Mercury removal from contaminated water by ultrasound-promoted reduction/vaporization in a microscale reactor.

    PubMed

    Gil, Sandra; Lavilla, Isela; Bendicho, Carlos

    2008-03-01

    A new method is described for the removal of Hg(II) at trace level from waters using an ultrasound-promoted reduction/volatilization process. The method is accomplished in a sonoreactor (100 W power; 20 kHz frequency) by adding formic acid to induce the reduction of Hg(II) to Hg(0). In contrast to other treatments, it does not introduce further foreign substances for water decontamination. A reduction mechanism is proposed, which relies on the sonolytic decomposition of formic acid to yield reducing gases such as H(2) and CO, which in turn, causes the reduction of Hg(II). After the formation of Hg(0), its removal is facilitated by the degassing effect caused by ultrasound irradiation. Hg at 100 ng/mL concentration can be removed within 30 min with a yield of 90% from a 10 mL water volume. The presence of stabilizing anions or oxidants in waters may preclude the Hg removal. Effects of experimental variables such as treatment time, amplitude of the ultrasonic probe vibration, formic acid concentration and sample volume were investigated.

  17. Brood removal or queen caging combined with oxalic acid treatment to control varroa mites (Varroa destructor) in honey bee colonies (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    Few studies of honey bee colonies exist where varroa mite control is achieved by integrating broodless conditions, through either total brood removal or queen caging, in combination with oxalic acid (OA) applications. We observed significant varroa mortality after applications of OA in obtaining bro...

  18. Selective flotation of inorganic sulfides from coal

    DOEpatents

    Miller, Kenneth J.; Wen, Wu-Wey

    1989-01-01

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow.

  19. Phenylboronic acid modified solid-phase extraction column: Preparation, characterization, and application to the analysis of amino acids in sepia capsule by removing the maltose.

    PubMed

    Guo, Mengzhe; Yin, Dengyang; Han, Jie; Zhang, Liyan; Li, Xiao; He, Dandan; Du, Yan; Tang, Daoquan

    2016-09-01

    Maltose, a common auxiliary material of pharmaceutical preparation, may disturb the analysis of total amino acids in sepia capsule by aldolization. Therefore, it is necessary to remove the maltose through a convenient method. In this work, a phenylboronic acid modified solid-phase extraction column has been synthesized and used to remove the maltose. The materials were synthesized by one step "thiol-ene" reaction and the parameters of the column such as absorption capacity, recovery, and absorption specificity have been investigated. The results showed the column (0.5 cm of length × 0.5 cm of inner diameter) can absorb 4.6 mg maltose with a linear absorption and absorption specificity. Then this technique was applied in the quantification of amino acids in sepia capsule. After the optimization of the method, four kinds of amino acids, which were the most abundant, were quantified by high-performance liquid chromatography with diode array detection. The amounts of the four kinds of amino acids are 1.5∼2 times more than that without the treatment of solid-phase extraction column, which almost overcomes the influence of the maltose. All the results indicate that the phenylboronic acid modified solid-phase extraction column can successfully help to accurately quantify the total amino acids in sepia capsule. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Evaluation of effectiveness of various irrigating solutions on removal of calcium hydroxide mixed with 2% chlorhexidine gel and detection of orange-brown precipitate after removal.

    PubMed

    Arslan, Hakan; Gok, Tuba; Saygili, Gokhan; Altintop, Hülya; Akçay, Merve; Çapar, Ismail Davut

    2014-11-01

    The aims of the present study were to evaluate the effect of various irrigating solutions on the removal of calcium hydroxide mixed with 2% chlorhexidine gel from an artificial groove created in a root canal and the generation of orange-brown precipitate in the remaining calcium hydroxide mixed with 2% chlorhexidine gel after irrigation with the various irrigating solutions. The root canals of 48 mandibular premolars were prepared using ProTaper Universal Rotary instruments (Dentsply Maillefer, Ballaigues, Switzerland) up to size F4. The roots were split longitudinally, and a standardized groove was prepared in the apical part of 1 segment. The root halves were reassembled, and calcium hydroxide mixed with 2% chlorhexidine gel medicament was placed into the grooves. The roots were randomly divided into 4 experimental groups specified by the irrigation solution used: 1% NaOCl, 17% EDTA, 7% maleic acid, and 10% citric acid (n = 12). The amount of remaining medicament was evaluated under a stereomicroscope using a 4-grade scoring system. After irrigation, the specimens were also evaluated for the presence/absence of orange-brown precipitate. The effects of the different irrigation solutions on medicament removal were statistically evaluated using the Kruskal-Wallis and Mann-Whitney U tests with Bonferroni correction at a 95% confidence level (P = .0083). Solutions of 7% maleic acid and 10% citric acid were superior to solutions of 1% NaOCl and 17% EDTA in removing calcium hydroxide mixed with 2% chlorhexidine gel (P < .0083). There were no significant differences among the other groups (P > .0083). Orange-brown precipitate was observed in all specimens of the NaOCl group but in no specimens in the other groups. Irrigation solutions of 7% maleic acid and 10% citric acid were more effective in the removal of calcium hydroxide mixed with 2% chlorhexidine gel than those of 1% NaOCl and 17% EDTA. Orange-brown precipitate was found in all specimens of the NaOCl-irrigated groups. However, the precipitate was not observed in specimens in the groups irrigated with 17% EDTA, 7% maleic acid, and 10% citric acid. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Pilot-scale field study for ammonia removal from lagoon biogas using an acid wet scrubber.

    PubMed

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun; Hadlocon, Lara Jane; Manuzon, Roderick; Zhao, Lingying

    2014-01-01

    The anaerobic activities in swine slurry storage and treatment generate biogas containing gaseous ammonia component which is a chemical agent that can cause adverse environmental impacts when released to the atmosphere. The aim of this pilot plant study was to remove ammonia from biogas generated in a covered lagoon, using a sulfuric acid wet scrubber. The data showed that, on average, the biogas contained 43.7 ppm of ammonia and its concentration was found to be exponentially related to the air temperature inside the lagoon. When the air temperature rose to 35°C and the biogas ammonia concentration reached 90 ppm, the mass transfer of ammonia/ammonium from the deeper liquid body to the interface between the air and liquid became a limiting factor. The biogas velocity was critical in affecting ammonia removal efficiency of the wet scrubber. A biogas flow velocity of 8 to 12 mm s(-1) was recommended to achieve a removal efficiency of greater than 60%. Stepwise regression revealed that the biogas velocity and air temperature, not the inlet ammonia concentration in biogas, affected the ammonia removal efficiency. Overall, when 73 g L(-1) (or 0.75 M) sulfuric acid solution was used as the scrubber solution, removal efficiencies varied from 0% to 100% with an average of 55% over a 40-d measurement period. Mass balance calculation based on ammonium-nitrogen concentration in final scrubber liquid showed that about 21.3 g of ammonia was collected from a total volume of 1169 m(3) of biogas, while the scrubber solution should still maintain its ammonia absorbing ability until its concentration reaches up to 1 M. These results showed promising use of sulfuric acid wet scrubber for ammonia removal in the digester biogas.

  2. Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid

    PubMed Central

    Wiemuth, Dominik; Sahin, Hacer; Lefèvre, Cathérine M.T.; Wasmuth, Hermann E.; Gründer, Stefan

    2013-01-01

    Bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC gene family of unknown function. Rat BASIC (rBASIC) is inactive at rest. We have recently shown that cholangiocytes, the epithelial cells lining the bile ducts, are the main site of BASIC expression in the liver and identified bile acids, in particular hyo- and chenodeoxycholic acid, as agonists of rBASIC. Moreover, it seems that extracellular divalent cations stabilize the resting state of rBASIC, because removal of extracellular divalent cations opens the channel. In this addendum, we demonstrate that removal of extracellular divalent cations potentiates the activation of rBASIC by bile acids, suggesting an allosteric mechanism. Furthermore, we show that rBASIC is strongly activated by the anticholestatic bile acid ursodeoxycholic acid (UDCA), suggesting that BASIC might mediate part of the therapeutic effects of UDCA. PMID:23064163

  3. The impact of canopy managements on grape and wine composition of cv. 'Istrian Malvasia' (Vitis vinifera L.).

    PubMed

    Rescic, Jan; Mikulic-Petkovsek, Maja; Rusjan, Denis

    2016-11-01

    The interest in producing wines preferred by consumers increases the need for improving practices to modify grape and wine composition. The aim of this study was to assess the impacts of three different canopy management measures, (1) early leaf removal in the cluster zone, (2) removal of young leaves above the second pair of wires and (3) Double Maturation Raisonnée, on the yield and chemical composition of 'Istrian Malvasia' grape and wine. Double Maturation Raisonnée had a significantly greater impact on phenolic compounds, while the highest soluble solids (24.3 and 23.5 °Brix) and titratable acidity (7.0 and 7.1 g L -1 ) were measured at early leaf removal. Leaf removal at véraison caused an unexpected augmentation of flavonols in the berry skin. Early leaf removal resulted in significantly lower extracts of wine. Nevertheless, they reached the highest mark (16.5 out of 20.0 points) in sensory evaluation compared with leaf removal at véraison and Double Maturation Raisonnée (15.0 points) and control (16.0 points). Leaf removal at véraison and Double Maturation Raisonnée improved the phenolic composition of wine, producing a full-bodied wine. On the other hand, early leaf removal significantly augmented the yield and titratable acidity, hydroxycinnamic acids and flavanols of wine, which might have led to a fresher but less-bodied wine. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Comparison of phthalic acid removal from aqueous solution by electrochemical methods: Optimization, kinetic and sludge study.

    PubMed

    Sandhwar, Vishal Kumar; Prasad, Basheshwar

    2017-12-01

    In this work, comparative study between electrochemical processes such as electrocoagulation (EC), peroxi-coagulation (PC) and peroxi-electrocoagulation (PEC) was performed for the removal of phthalic acid (PA) and chemical oxygen demand (COD) from aqueous medium. Initially, acid treatment was studied at various pH (1-3) and temperature (10-55 °C). Subsequently, the supernatant was re-treated by electrochemical processes such as EC, PC and PEC separately. Independent parameters viz. pH, current density (CD), electrolyte concentration (m), electrode gap (g), H 2 O 2 concentration and electrolysis time (t) were optimized by Central Composite Design (CCD) for these electrochemical processes. All three processes were compared based on removal, energy consumption, kinetic analysis, operating cost and sludge characteristics. In this study, PEC process was found more efficient among EC, PC and PEC processes in order to get maximum removal, minimum energy consumption and minimum operating cost. Maximum removal of PA- 68.21%, 74.36%, 82.25% & COD- 64.79%, 68.15%, 75.21% with energy consumption - 120.95, 97.51, 65.68 (kWh/kg COD removed) were attained through EC, PC and PEC processes respectively at their corresponding optimum conditions. Results indicated that PA and COD removals are in order of PEC > PC > EC under optimum conditions. First order kinetic model was found able to describe the degradation kinetics and provided best correlation for the removal rate within the acceptable error range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Experimental Study of Low Temperature Behavior of Aviation Turbine Fuels in a Wing Tank Model

    NASA Technical Reports Server (NTRS)

    Stockemer, Francis J.

    1979-01-01

    An experimental investigation was performed to study aircraft fuels at low temperatures near the freezing point. The objective was an improved understanding of the flowability and pumpability of the fuels under conditions encoutered during cold weather flight of a long range commercial aircraft. The test tank simulated a section of an outer wing tank and was chilled on the upper and lower surfaces. Fuels included commercial Jet A and Diesel D-2; JP-5 from oil shale; and Jet A, intermediate freeze point, and D-2 fuels derived from selected paraffinic and naphthenic crudes. A pour point depressant was tested.

  6. Unwanted Tattoos

    MedlinePlus

    ... Back Injectable Deoxycholic Acid Injectable Hyaluronic Acid Injectable Poly-l-lactic Acid Injectable Polymethylmethacrylate + Bovine Collagen Filler ... procedure? Does tattoo removal hurt? What are my pain management and anesthesia options? How long is the ...

  7. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  8. Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, beta-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment.

    PubMed

    Paxéus, N

    2004-01-01

    The removal of commonly used pharmaceuticals (ibuprofen, naproxen, diclofenac, gemfibrozil, carbamazepine, atenolol, metoprolol and trimethoprim) and a biocide (triclosan) in operating wastewater treatment plants in five EU countries has been studied. Under normal operating conditions the acidic drugs and triclosan were partially removed with removal rates varying from ca. 20 to >95%. The highest removal rate was found for ibuprofen and triclosan (>90%) followed by naproxen (80%), gemfibrozil (55%) and diclofenac (39%). Ibuprofen undergoes an oxidative transformation to corresponding hydroxy- and carboxy-metabolites, which contributes to its high removal rate. Disturbances in the activated sludge process resulted in lower removal rates for all acidic drugs, mostly for diclofenac (<10% removed) but also for ibuprofen (<60% removed). The treatment of wastewaters by activated sludge usually did not result in any practical removal (<10%) of neutral carbamazepine or basic atenolol, metoprolol and trimethoprim. The removal rates of the investigated drugs and triclosan are discussed in terms of mechanisms responsible for their removal. Discharges of carbamazepine, diclofenac, gemfibrozil, naproxen, triclosan and trimethoprim from WWTPs to the aquatic environment, expressed as the average concentration in the effluent and the daily discharged quantity per person served by WWTPs were assessed.

  9. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies

    PubMed Central

    2012-01-01

    Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99) and Langmuir (r2>0.99) isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99) and intra-particle diffusion (r2>0.98) models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively. PMID:23369579

  10. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact.

    PubMed

    Udovic, Metka; Lestan, Domen

    2012-07-01

    The environmental risk of potentially toxic metals (PTMs) in soil can be diminished by their removal. Among the available remediation techniques, soil leaching with various solutions is one of the most effective but data about the impact on soil chemical and biological properties are still scarce. We studied the effect of two common leaching agents, hydrochloric acid (HCl) and a chelating agent (EDTA) on Pb, Zn, Cd removal and accessibility and on physico-chemical and biological properties in one calcareous, pH neutral soil and one non-calcareous acidic soil. EDTA was a more efficient leachant compared to HCl: up to 133-times lower chelant concentration was needed for the same percentage (35%) of Pb removal. EDTA and HCl concentrations with similar PTM removal efficiency decreased PTM accessibility in both soils but had different impacts on soil properties. As expected, HCl significantly dissolved carbonates from calcareous soil, while EDTA leaching increased the pH of the acidic soil. Enzyme activity assays showed that leaching with HCl had a distinctly negative impact on soil microbial and enzyme activity, while leaching with EDTA had less impact. Our results emphasize the importance of considering the ecological impact of remediation processes on soil in addition to the capacity for PTM removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Removal of trimethylamine (fishy odor) by C₃ and CAM plants.

    PubMed

    Boraphech, Phattara; Thiravetyan, Paitip

    2015-08-01

    From screening 23 plant species, it was found that Pterocarpus indicus (C3) and Sansevieria trifasciata (crassulacean acid metabolism (CAM)) were the most effective in polar gaseous trimethylamine (TMA) uptake, reaching up to 90% uptake of initial TMA (100 ppm) within 8 h, and could remove TMA at cycles 1-4 without affecting photosystem II (PSII) photochemistry. Up to 55 and 45% of TMA was taken up by S. trifasciata stomata and leaf epicuticular wax, respectively. During cycles 1-4, interestingly, S. trifasciata changed its stomata apertures, which was directly induced by gaseous TMA and light treatments. In contrast, for P. indicus the leaf epicuticular wax and stem were the major pathways of TMA removal, followed by stomata; these pathways accounted for 46, 46, and 8%, respectively, of TMA removal percentages. Fatty acids, particularly tetradecanoic (C14) acid and octadecanoic (C18) acid, were found to be the main cuticular wax components in both plants, and were associated with TMA removal ability. Moreover, the plants could degrade TMA via multiple metabolic pathways associated with carbon/nitrogen interactions. In CAM plants, one of the crucial pathways enabled 78% of TMA to be transformed directly to dimethylamine (DMA) and methylamine (MA), which differed from C3 plant pathways. Various metabolites were also produced for further detoxification and mineralization so that TMA was completely degraded by plants.

  12. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.

    PubMed

    Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil

    2014-01-01

    The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes.

  13. A review on methods of recovery of acid(s) from spent pickle liquor of steel industry.

    PubMed

    Ghare, N Y; Wani, K S; Patil, V S

    2013-04-01

    Pickling is the process of removal of oxide layer and rust formed on metal surface. It also removes sand and corrosion products from the surface of metal. Acids such as sulfuric acid, hydrochloric acid are used for pickling. Hydrofluoric acid-Nitric acid mixture is used for stainless steel pickling. Pickling solutions are spent when acid concentration in pickling solutions decreases by 75-85%, which also has metal content up to 150-250 g/ dm3. Spent pickling liquor (SPL) should be dumped because the efficiency of pickling decreases with increasing content of dissolved metal in the bath. The SPL content depends on the plant of origin and the pickling method applied there. SPL from steel pickling in hot-dip galvanizing plants contains zinc(II), iron, traces of lead, chromium. and other heavy metals (max. 500 mg/dm3) and hydrochloric acid. Zinc(II) passes tothe spent solution after dissolution of this metal from zinc(II)-covered racks, chains and baskets used for transportation of galvanized elements. Unevenly covered zinc layers are usually removed in another pickling bath. Due to this, zinc(II) concentration increases even up to 110 g/dm3, while iron content may reach or exceed even 80 g/dm3 in the same solution. This review presents an overview on different aspects of generation and treatment of SPL with recourse to recovery of acid for recycling. Different processes are described in this review and higher weightage is given to membrane processes.

  14. Comparison of Dilute Acid and Sulfite Pretreatment for enzymatic Saccharification of Earlywood and Latewood of Douglas Fir

    Treesearch

    Chao Zhang; Xiaochun Lei; C. Tim Scott; J.Y. Zhu; Kecheng Li

    2014-01-01

    This study applied dilute acid (DA) and sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) to deconstruct earlywood and latewood cell walls of Douglas fir for fermentable sugars production through subsequent enzymatic hydrolysis. DA pretreatment removed almost all the hemicelluloses, while SPORL at initial pH=4.5 (SP-B) removed significant...

  15. Selective flotation of inorganic sulfides from coal

    DOEpatents

    Miller, K.J.; Wen, Wu-Wey

    1988-05-31

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow. 1 fig., 2 tabs.

  16. Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution.

    PubMed

    Makhado, Edwin; Pandey, Sadanand; Nomngongo, Philiswa N; Ramontja, James

    2017-11-15

    In the present project, graft polymerization was employed to synthesis a novel adsorbent using acrylic acid (AA) and xanthan gum (XG) for cationic methylene dye (MB + ) removal from aqueous solution. The XG was rapidly grafted with acrylic acid (CH 2 =CHCOOH) under microwave heating. Fourier-transform infrared spectroscopy (FTIR), Proton Nuclear magnetic resonance spectroscopy ( 1 H NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Thermal gravimetric analysis (TGA) techniques were used to verify the adsorbent formed under optimized reaction conditions. Optimum reaction conditions [AA (0.4M), APS (0.05M), XG (2gL -1 ), MW power (100%), MW time (80s)] offer maximum %G and %GE of 484 and 78.3, respectively. The removal ratio of adsorbent to MB + reached to 92.8% at 100mgL -1 . Equilibrium and kinetic adsorptions of dyes were better explained by the Langmuir isotherm and pseudo second-order kinetic model respectively. The results demonstrate xanthan gum grafted polyacrylic acid (mw XG-g-PAA) absorbent had the universality for removal of dyes through the chemical adsorption mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Advanced treatment of residual nitrogen from biologically treated coke effluent by a microalga-mediated process using volatile fatty acids (VFAs) under stepwise mixotrophic conditions.

    PubMed

    Ryu, Byung-Gon; Kim, Woong; Heo, Sung-Woon; Kim, Donghyun; Choi, Gang-Guk; Yang, Ji-Won

    2015-09-01

    This work describes the development of a microalga-mediated process for simultaneous removal of residual ammonium nitrogen (NH4(+)-N) and production of lipids from biologically treated coke effluent. Four species of green algae were tested using a sequential mixotrophic process. In the first phase-CO2-supplied mixotrophic condition-all microalgae assimilated NH4(+)-N with no evident inhibition. In second phase-volatile fatty acids (VFAs)-supplied mixotrophic condition-removal rates of NH4(+)-N and biomass significantly increased. Among the microalgae used, Arctic Chlorella sp. ArM0029B had the highest rate of NH4(+)-N removal (0.97 mg/L/h) and fatty acid production (24.9 mg/L/d) which were 3.6- and 2.1-fold higher than those observed under the CO2-supplied mixotrophic condition. Redundancy analysis (RDA) indicated that acetate and butyrate were decisive factors for increasing NH4(+)-N removal and fatty acid production. These results demonstrate that microalgae can be used in a sequential process for treatment of residual nitrogen after initial treatment of activated sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating

    DOE PAGES

    Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, III, Jack R.; ...

    2017-04-06

    We consider catalytic hydroprocessing of pyrolysis oils from biomass which produces hydrocarbons for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. Here, we present in this paper the characterization of a group of five distillate fractions from each of two types of hydroprocessed oils from oak pyrolysis oil: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. The LOC oil was generated using a sulfided hydrotreating system consistingmore » of RuS/C and xMoS/Al 2O 3 while the MOC was produced using non-sulfided catalysts, Ru/C and Pd/C. Elemental analysis and 13C NMR (nuclear magnetic resonance) results suggest that the distillate fractions from both oils become more aromatic/unsaturated as they become heavier. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. Paraffin, iso-paraffin, olefin, naphthene, aromatic (PIONA) analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. Sulfur analysis showed the comparative concentration of sulfur in the different fractions as well as the surprising similarity in content in some sulfided and non-sulfided fractions. Our results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.« less

  19. Dispersibility and biotransformation of oils with different properties in seawater.

    PubMed

    Brakstad, Odd G; Farooq, Umer; Ribicic, Deni; Netzer, Roman

    2018-01-01

    Dispersants are used to remove oils slicks from sea surfaces and to generate small oil-droplet dispersions, which may result in enhanced biodegradation of the oil. In this study, dispersibility and biodegradation of chemically dispersed oils with different physical-chemical properties (paraffinic, naphthenic and asphaltenic oils) were compared in natural temperate SW at 13 °C. All selected oils were chemically dispersible when well-known commercial dispersants were used. However, interfacial tension (IFT) studies of the dispersed oils showed different IFT properties of the oils at 13 °C, and also different leaching of the dispersants from oil droplet surfaces. Biodegradation studies of the chemically dispersed oils were performed in a carousel system, with initial median droplet sizes <30 μm and oil concentrations of 2.5-2.8 mg/L. During biodegradation, oil droplet concentrations were rapidly reduced, in association with the emergence of macroscopic 'flocs'. Biotransformation results showed that half-lives of semivolatile total extractable organic carbon (TEOC), single target 2- to 4-ring PAH, and 22 oil compound groups used as input data in the oil spill contingency model OSCAR, did not differ significantly between the oils (P > 0.05), while n-alkanes half-lives differed significantly (P < 0.05). Biotransformation was associated with rapid microbial growth in all oil dispersions, in association with n-alkane and PAH biotransformation. These results have implications for the predictions of biodegradation of oil slicks treated with dispersants in temperate SW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, III, Jack R.

    We consider catalytic hydroprocessing of pyrolysis oils from biomass which produces hydrocarbons for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. Here, we present in this paper the characterization of a group of five distillate fractions from each of two types of hydroprocessed oils from oak pyrolysis oil: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. The LOC oil was generated using a sulfided hydrotreating system consistingmore » of RuS/C and xMoS/Al 2O 3 while the MOC was produced using non-sulfided catalysts, Ru/C and Pd/C. Elemental analysis and 13C NMR (nuclear magnetic resonance) results suggest that the distillate fractions from both oils become more aromatic/unsaturated as they become heavier. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. Paraffin, iso-paraffin, olefin, naphthene, aromatic (PIONA) analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. Sulfur analysis showed the comparative concentration of sulfur in the different fractions as well as the surprising similarity in content in some sulfided and non-sulfided fractions. Our results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.« less

  1. Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide

    NASA Astrophysics Data System (ADS)

    Jolley, John G.; Geesey, Gill G.; Hankins, Michael R.; Wright, Randy B.; Wichlacz, Paul L.

    1989-08-01

    Thin films (3.4 nm) of copper on germanium substrates were exposed to 2% alginic acid polysaccharide aqueous solution. Pre- and post-exposure characterization were done by Auger electron spectroscopy and X-ray photoelectron spectroscopy. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal process of the copper thin film from the germanium substrate. Results indicate that some of the copper was oxidized by the alginic acid solution. Some of the copper was removed from the Cu/Ge interface and incorporated into the polymer matrix. Thus, biocorrosion of copper was exhibited by the alginic acid polysaccharide.

  2. Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement.

    PubMed

    Dai, Shijin; Li, Yang; Zhou, Tao; Zhao, Youcai

    2017-06-01

    Food waste fermentation generates complicated organic and acidic liquids with low pH. In this work, it was found that an organic acid liquid with pH 3.28 and volatile low-molecular-weight organic acid (VLMWOA) content of 5.2 g/L could be produced from food wastes after 9-day fermentation. When the liquid-to-solid ratio was 50:1, temperature was 40 °C, and contact time was 0.5-1 day, 92.9, 78.8, and 52.2% of the Cd, Cu, and Zn in the contaminated soil could be washed out using the fermented food waste liquid, respectively. The water-soluble, acid-soluble, and partly reducible heavy metal fractions can be removed after 0.5-day contact time, which was more effective than that using commercially available VLMWOAs (29-72% removal), as the former contained microorganisms and adequate amounts of nutrients (nitrogen, phosphorous, and exchangeable Na, K, and Ca) which favored the washing process of heavy metals. It is thus suggested that the organic acid fractions from food waste has a considerable potential for reclaiming contaminated soil while improving soil fertility.

  3. Removal of hazardous metals from MSW fly ash--an evaluation of ash leaching methods.

    PubMed

    Fedje, Karin Karlfeldt; Ekberg, Christian; Skarnemark, Gunnar; Steenari, Britt-Marie

    2010-01-15

    Incineration is a commonly applied management method for municipal solid waste (MSW). However, significant amounts of potentially hazardous metal species are present in the resulting ash, and these may be leached into the environment. A common idea for cleaning the ash is to use enhanced leaching with strong mineral acids. However, due to the alkalinity of the ash, large amounts of acid are needed and this is a drawback. Therefore, this work was undertaken in order to investigate some alternative leaching media (EDTA, ammonium nitrate, ammonium chloride and a number of organic acids) and to compare them with the usual mineral acids and water. All leaching methods gave a significant increase in ash specific surface area due to removal of soluble bulk (matrix) compounds, such as CaCO(3) and alkali metal chlorides. The use of mineral acids and EDTA mobilised many elements, especially Cu, Zn and Pb, whereas the organic acids generally were not very effective as leaching agents for metals. Leaching using NH(4)NO(3) was especially effective for the release of Cu. The results show that washing of MSW filter ash with alternative leaching agents is a possible way to remove hazardous metals from MSW fly ash.

  4. Biodegradation of Lignin Monomers Vanillic, p-Coumaric, and Syringic Acid by the Bacterial Strain, Sphingobacterium sp. HY-H.

    PubMed

    Wang, Jinxing; Liang, Jidong; Gao, Sha

    2018-05-10

    Many bacterial strains have been demonstrated to biodegrade lignin for contaminant removal or resource regeneration. The goal of this study was to investigate the biodegradation amount and associated pathways of three lignin monomers, vanillic, p-coumaric, and syringic acid by strain Sphingobacterium sp. HY-H. Vanillic, p-coumaric, and syringic acid degradation with strain HY-H was estimated as 88.71, 76.67, and 72.78%, respectively, after 96 h. Correspondingly, the same three monomers were associated with a COD removal efficiency of 87.30, 55.17, and 67.23%, and a TOC removal efficiency of 82.14, 61.03, and 43.86%. The results of GC-MS, HPLC, FTIR, and enzyme activities show that guaiacol and o-dihydroxybenzene are key intermediate metabolites of the vanillic acid and syringic acid degradation. p-Hydroxybenzoic acid is an important intermediate metabolite for p-coumaric and syringic acid degradation. LiP and MnP play an important role in the degradation of lignin monomers and their intermediate metabolites. One possible pathway is that strain HY-H degrades lignin monomers into guaiacol (through decarboxylic and demethoxy reaction) or p-hydroxybenzoic acid (through side-chain oxidation); then guaiacol demethylates to o-dihydroxybenzene. The p-hydroxybenzoic acid and o-dihydroxybenzene are futher through ring cleavage reaction to form small molecule acids (butyric, valproic, oxalic acid, and propionic acid) and alcohols (ethanol and ethanediol), then these acids and alcohols are finally decomposed into CO 2 and H 2 O through the tricarboxylic acid cycle. If properly optimized and controlled, the strain HY-H may play a role in breaking down lignin-related compounds for biofuel and chemical production.

  5. One-pot synthesis of ternary zero-valent iron/phosphotungstic acid/g-C3N4 composite and its high performance for removal of arsenic(V) from water

    NASA Astrophysics Data System (ADS)

    Chen, Chunhua; Xu, Jia; Yang, Zhihua; Zhang, Li; Cao, Chunhua; Xu, Zhihua; Liu, Jiyan

    2017-12-01

    Ternary zero-valent iron/phos photungstic acid/g-C3N4 composite (Fe0@PTA/g-C3N4) was synthesized via photoreduction of iron (II) ions assisted by phosphotungstic acid (PTA) over g-C3N4 flakes. The as-prepared Fe0@PTA/g-C3N4 was investigated for removal of As(III) and As(V) species from water. The result showed that Fe0@PTA/g-C3N4 exhibited a better performance for As(V) removal than As(III) species from water, and the maximum adsorption capacity for As(V) was 70.3 mg/g, much higher than most of the reported adsorbents. As(V) removal by the Fe0@PTA/g-C3N4 adsorbent is mainly via a chemical process, synergistically occurring of reduction of As(V) and oxidation of Fe0. Moreover, the Fe0@PTA/g-C3N4 adsorbent showed effective As(V) removal from the simulated industrial wastewater and underground water. This study demonstrates that Fe0@PTA/g-C3N4 can be a potential adsorbent for As(V) removal due to its high performance, and simple one-pot synthesis process.

  6. A novel procedure for the extraction of protein deposits from soft hydrophilic contact lenses for analysis.

    PubMed

    Keith, D; Hong, B; Christensen, M

    1997-05-01

    A quick, simple, and efficient extraction technique was developed for the removal of protein from soft hydrophilic contact lenses. An extraction solvent consisting of a 50:50 mix of 0.2% trifluoroacetic acid and acetonitrile was used to remove protein from in vitro laboratory-deposited and human-worn contact lenses. The protein removed was analyzed using HPLC, bicinchoninic acid (BCA) analysis, and SDS-PAGE gel electreophoresis. Extraction efficiency for lysozyme from laboratory-deposited Group IV lenses was determined to be approximately 100%. Group IV human-worn contact lenses were extracted and analyzed for lysozyme by HPLC and total protein by bicinchoninic acid (BCA) analysis. Groups I, II, III, and IV contact lenses deposited with an artificial tear protein solution and human-worn lenses were extracted and analyzed by SDS-PAGE gel electreophoresis and micro-BCA. The ACN/TFA procedure offers a simple, quick, and efficient extraction technique for removal of protein from contact lenses for subsequent analysis.

  7. Chemically modified maize cobs waste with enhanced adsorption properties upon methyl orange and arsenic.

    PubMed

    Elizalde-González, María P; Mattusch, J; Wennrich, R

    2008-07-01

    The surface chemistry of maize naturasorbent was altered in this work by the modifying agents: phosphoric acid and different amines (triethanolamine, diethylenetriamine and 1,4-diaminobutane). Removal of methyl orange (25 mg l(-1)) was <50% by maize corn cobs modified by phosphorylation and higher by the quaternized samples: 68% with the 1,4-diaminobutane and 73% with the diethylenetriamine modificators. Adsorption of arsenite by the samples modified with phosphoric acid/ammonia was 11 microg g(-1), which corresponds to 98% removal from a 550 microg As l(-1) solution for an adsorbent dose of 50 mg ml(-1). The samples modified by phosphoric acid/urea removed 0.4 microg g(-1) arsenate from a 300 mug As l(-1) solution. Adsorption of methyl orange, arsenite and arsenate was superior by the chemically modified maize cobs judged against the initial naturasorbent. For comparison, removal by the commercial anion exchanger was 100% for methyl orange, 45% (5 microg g(-1)) for arsenite and 99% (5 microg g(-1)) for arsenate.

  8. Photocatalytic application of Pd-ZnO-exfoliated graphite nanocomposite for the enhanced removal of acid orange 7 dye in water

    NASA Astrophysics Data System (ADS)

    Umukoro, Eseoghene H.; Madyibi, Siposetu S.; Peleyeju, Moses G.; Tshwenya, Luthando; Viljoen, Elvera H.; Ngila, Jane C.; Arotiba, Omotayo A.

    2017-12-01

    In this work, a nanocomposite photocatalyst which consists of palladium (Pd), zinc oxide (ZnO) as well as exfoliated graphite (EG) was synthesised, characterised and applied to the removal of acid orange 7 dye as a model organic pollutant. The Pd-ZnO-EG nanocomposite was synthesised by a one-pot hydrothermal technique in a Teflon-lined stainless steel autoclave at 160 °C for a period of 12 h, cooled, washed and dried. The nanocomposite was characterised by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electronic microscopy (SEM) as well as energy dispersive X-ray spectrometry (EDX). The as-prepared materials were further applied for the degradation of acid orange 7 dye photocatalytically. Results obtained showed that Pd-ZnO-EG composite displayed a better photocatalytic performance, giving better removal efficiency of 87% in comparison with ZnO and Pd-ZnO which gave 3 and 25% percentage removal respectively.

  9. A green procedure using ozone for Cleaning-in-Place in the beverage industry.

    PubMed

    Nishijima, Wataru; Okuda, Tetsuji; Nakai, Satoshi; Okada, Mitsumasa

    2014-06-01

    Cleaning-in-Place (CIP) in the beverage industry is typically carried out in production lines with alkaline and acidic solutions with detergents. This cleaning not only produces alkaline and acidic wastewater with detergents but also takes significant time. One of the important targets for CIP is adsorbed odorous compounds on gaskets, hence, we have tried to establish a rapid and green CIP process to remove traces of such compounds, especially d-limonene, an odorous component of orange juice, using two approaches; an ozone cleaning method and a change of gasket material from ethylene propylene diene monomer (EPDM) rubber to silicone rubber. By changing the gasket material from EPDM rubber to silicone rubber, the removability of d-limonene by typical alkaline and acidic cleanings with detergents was improved. However, complete removal of 4 mg g(-1) of d-limonene on both EPDM and silicone gaskets could not be achieved even using a series of conventional cleaning procedures that included alkaline and acidic cleaning for 220 min. Ozone treatment dramatically improved the removability of d-limonene, removing 87% from the EPDM gasket at 60 min and 100% from the silicone gasket at 30 min. The combination of the silicone gasket and ozone treatment resulted in the most effective cleaning. The main removal mechanism for ozone treatment was confirmed to be oxidation by molecular ozone. Effectiveness of changing the gasket material from EPDM rubber to silicone rubber in reducing residual amounts of odorous compounds adsorbed on the gaskets was also confirmed for furfural and 4-vinylguaiacol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  11. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  12. An alternative method to remove PEO-PPO-PEO template in organic-inorganic mesoporous nanocomposites by sulfuric acid extraction

    NASA Astrophysics Data System (ADS)

    Zhuang, Xin; Qian, Xufang; Lv, Jiahui; Wan, Ying

    2010-06-01

    Sulfuric acid is used as an extraction agent to remove PEO-PPO-PEO templates in the organic-inorganic mesoporous nanocomposites from the triconstituent co-assembly which includes the low-polymerized phenolic resins, TEOS and triblock copolymer F127. The XRD and TEM results show well ordered mesostructure after extraction with sulfuric acid. As followed from the N 2 sorption isotherms the extracted composites possess high surface areas (332-367 m 2/g), large pore volumes (0.66-0.78 cm 3/g), and large pore sizes (about 10.7 nm). The FT-IR analysis reveals almost complete elimination of triblock copolymer F127, and the maintenance of organic groups. This method shows potentials in removing templates from nanocomposites containing functional moieties.

  13. UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...

  14. Process for strontium-82 separation

    DOEpatents

    Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.

    1992-01-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed.

  15. Process for strontium-82 separation

    DOEpatents

    Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.

    1992-12-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig.

  16. PROCESS FOR TREATING VOLATILE METAL FLUORIDES

    DOEpatents

    Rudge, A.J.; Lowe, A.J.

    1957-10-01

    This patent relates to the purification of uranium hexafluoride, made by reacting the metal or its tetrafluoride with fluorine, from the frequently contained traces of hydrofluoric acid. According to the present process, UF/sub 6/ containing as an impurity a small amount of hydrofluoric acid, is treated to remove such impurity by contact with an anhydrous alkali metal fluoride such as sodium fluoride. In this way a non-volatile complex containing hydrofluoric acid and the alkali metal fluoride is formed, and the volatile UF /sub 6/ may then be removed by distillation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aston, John E.; Apel, William A.; Lee, Brady D.

    Alicyclobacillus acidocaldarius, a thermoacidophilic bacterium, has a repertoire of thermo- and acid-stable enzymes that deconstruct lignocellulosic compounds. The work presented here describes the ability of A. acidocaldarius to reduce the concentration of the phenolic compounds: phenol, ferulic acid, ρ-coumaric acid and sinapinic acid during growth conditions. The extent and rate of the removal of these compounds were significantly increased by the presence of micro-molar copper concentrations, suggesting activity by copper oxidases that have been identified in the genome of A. acidocaldarius. Substrate removal kinetics was first order for phenol, ferulic acid, ρ-coumaric acid and sinapinic acid in the presence ofmore » 50 μM copper sulfate. In addition, laccase enzyme assays of cellular protein fractions suggested significant activity on a lignin analog between the temperatures of 45 and 90 °C. As a result, this work shows the potential for A. acidocaldarius to degrade phenolic compounds, demonstrating potential relevance to biofuel production and other industrial processes.« less

  18. Lipase-mediated lipid removal from propolis extract and its antiradical and antimicrobial activity.

    PubMed

    Park, Hyein; Bae, Song Hwan; Park, Yooheon; Choi, Hyeon-Son; Suh, Hyung Joo

    2015-06-01

    Propolis contains many antioxidants such as polyphenols and flavonoids. However, propolis-derived lipid components interrupt an efficient isolation of antioxidants from propolis extract. We examined the effectiveness of various lipase treatments for the removal of lipids from propolis extract and evaluated the biological features of the extract. Lipase OF and Novozyme 435 treatments did not reduce fatty acid level in propolis extract. However, Lipozyme TL IM-treated propolis extract showed a significant decrease in fatty acid level, suggesting the removal of lipids. Lipozyme RM IM also significantly decreased the fatty acid level of the extract, but was accompanied by the reduction of polyphenols and flavonoids, which are antioxidants. In Lipozyme TL IM treatment, an increase in active flavonoids, such as Artepillin C and kaempferide, was observed, with a slight increase of ferric reducing/antioxidant power (FRAP) radical-scavenging activity. In addition, antimicrobial activity towards skin health-related bacteria such as Staphylococcus epidermidis and Propionibacterium acnes was enhanced by Lipozyme TL IM treatment. Lipozyme TL IM treatment effectively removes lipids from propolis extract and enhances antibacterial activity. Therefore, we suggest that Lipozyme TL IM is a useful lipase for lipid removal of propolis extract. © 2014 Society of Chemical Industry.

  19. Application of acid modified polyurethane foam surface for detection and removing of organochlorine pesticides from wastewater.

    PubMed

    Moawed, E A; Radwan, A M

    2017-02-15

    The commercial polyurethane foam was acid modified to get an inexpensive adsorbent (AM-PUF) has highly surface polarity and sorption capacity. The elemental analysis, scanning electron microscopy, thermal analysis, ultraviolet/visible/infrared spectroscopies and X-ray diffraction were used for characterization of AM-PUF. The surface of AM-PUF has amorphous character (broadband at 2θ, 21.75°) and contains several active sites e.g. NH, OH, CO, CC and COC groups. The electrical conductivity (σ), iodine value and methylene blue index of AM-PUF are 1.7×10 -5 Ω -1 m -1 , 208mg/g and 107mg/g. The AM-PUF has a high efficiency for completely removing (99-100%) of Aldrin, DDT, Endrin, Heptachlor, Heptachlor epoxide and Lindane pesticides in both acidic and alkaline solutions. The removing rates of the organochlorine pesticides from wastewater are very rapid (t 1/2 =22s). The negative value of ΔG (-10.9kJ/mol) for removing of OCPs using AM-PUF showed that the feasibility of the removing process and its spontaneous nature. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...

  1. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, Hann S.; Sather, Norman F.

    1988-01-01

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gases and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  2. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, H.S.; Sather, N.F.

    1987-08-21

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  3. Analysis of Commercial Unsaturated Polyester Repair Resins

    DTIC Science & Technology

    2009-07-01

    resins utilizing renewable fatty acid -based monomers. 15. SUBJECT TERMS vinyl ester, styrene, fatty acid monomers, HAP, triglycerides 16. SECURITY...criteria for selecting the appropriate repair include whether the component can be removed and whether the back side is accessible. For a typical moderate...field repair, any remaining coating in the repair area is removed by hand sanding or portable tools. Damage is cut out in an appropriate

  4. IMPROVEMENT UPON THE CARRIER PRECIPITATION OF PLUTONIUM IONS FROM NITRIC ACID SOLUTIONS

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-23

    A process is reported for improving the removal of plutonlum by carrier precipitation by the addition of nitrite ions to a nitrlc acid solutlon of neutronirradiated unanium so as to destroy any hydrazine that may be present in the solution since the hydrazine tends to complex the tetravalent plutonium and prevents removal by the carrier precipltate, such as bismuth phospbate.

  5. Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor.

    PubMed

    Ramirez, M; Gómez, J M; Cantero, D; Páca, J; Halecký, M; Kozliak, E I; Sobotka, M

    2009-09-01

    A strain of Acidithiobacillus thiooxidans immobilized in polyurethane foam was utilized for H(2)S removal in a bench-scale trickle-bed reactor, testing the limits of acidity and SO(4) (2-) accumulation. The use of this acidophilic strain resulted in remarkable stability in the performance of the system. The reactor maintained a >98-99 % H(2)S removal efficiency for c of up to 66 ppmv and empty bed residence time 98 % H(2)S was achieved under steady-state conditions, over the pH range of 0.44-7.30. Despite the accumulation of acidity and SO(4) (2-) (up to 97 g/L), the system operated without inhibition.

  6. Ethylene Removal in Strong Electric Field Formed by Floating Multi-Electrode

    NASA Astrophysics Data System (ADS)

    Nagasawa, Takeshi

    Ethylene gas that contains the acetic acid ester element can be removed by applying the pulse voltage to the floating multi-electrode device. This phenomenon is caused in the weak discharge by the strong electric field between the narrow electrodes. This device is possible in very small electric power (<1.5Wh). When this device was installed in the container for preservation, the following results were obtained: Each removal effect of ethylene gas is 16ppm/35min for bananas 10.8kg, 14ppm/6 hour for 50 apples, and 3.5ppm/30min for 2 melons. However, ethylene gas that doesn't contain the acetic acid ester cannot be removed (ex. ethylene pure gas and Japanese apricot).

  7. Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudduth, Christie; Vitali, Jason; Keefer, Mark

    The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the factmore » that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.« less

  8. Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption.

    PubMed

    Jeong, So-Yeon; Trinh, Ly Thi Phi; Lee, Hong-Joo; Lee, Jae-Won

    2014-01-01

    A two-step detoxification process consisting of electrodialysis and adsorption was performed to improve the fermentability of oxalic acid hydrolysates. The constituents of the hydrolysate differed significantly between mixed hardwood and softwood. Acetic acid and furfural concentrations were high in the mixed hardwood, whereas 5-hydroxymethylfurfural (HMF) concentration was relatively low compared with that of the mixed softwood. The removal efficiency of acetic acid reached 100% by electrodialysis (ED) process in both hydrolysates, while those of furfural and HMF showed very low, due to non-ionizable properties. Most of the remaining inhibitors were removed by XAD-4 resin. In the mixed hardwood hydrolysate without removal of the inhibitors, ethanol fermentation was not completed. Meanwhile, both ED-treated hydrolysates successfully produced ethanol with 0.08 and 0.15 g/Lh ethanol productivity, respectively. The maximum ethanol productivity was attained after fermentation with 0.27 and 0.35 g/Lh of detoxified hydrolysates, which were treated by ED, followed by XAD-4 resin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation.

    PubMed

    Hou, Guangying; Hao, Xiaoyan; Zhang, Rui; Wang, Jing; Liu, Rutao; Liu, Chunguang

    2016-07-01

    Many research indicate antibiotics show adverse effect on methane fermentation, while few research focus on their effect on hydrogen fermentation. The present study aimed to gain insight of the effect of antibiotics on hydrogen fermentation with waste sludge and corn straw as substrate. For this purpose, tetracycline, as a model, was investigated with regard to tetracycline removal, hydrogen production, interaction with extracellular polymeric substances (EPSs) of substrate and volatile fatty acids (VFAs) on concentration and composition. Results show that tetracycline could be removed efficiently by hydrogen fermentation, and relative low-dose tetracycline (200mg/l) exposure affects little on hydrogen production. While tetracycline exposure could change hydrogen fermentation from butyric acid-type to propionic acid-type depending on tetracycline level. Based upon three-dimensional excitation-emission matrix fluorescence spectroscopy and UV-vis tetracycline changed the component and content of EPSs, and static quenching was the main mechanism between EPSs with tetracycline. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii).

    PubMed

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    Red seaweed, Kappaphycus alvarezii, holds great promise for use in biofuel production due to its high carbohydrate content. In this study, we investigated the effect of fermentation inhibitors to the K. alvarezii hydrolysate on cell growth and ethanol fermentation. In addition, detoxification of fermentation inhibitors was performed to decrease the fermentation inhibitory effect. 5-Hydroxymethylfurfural and levulinic acid, which are liberated from acidic hydrolysis, was also observed in the hydrolysate of K. alvarezii. These compounds inhibited ethanol fermentation. In order to remove these inhibitors, activated charcoal and calcium hydroxide were introduced. The efficiency of activated charcoals was examined and over-liming was used to remove the inhibitors. Activated charcoal was found to be more effective than calcium hydroxide to remove the inhibitors. Detoxification by activated charcoal strongly improved the fermentability of dilute acid hydrolysate in the production of bioethanol from K. alvarezii with Saccharomyces cerevisiae. The optimal detoxifying conditions were found to be below an activated charcoal concentration of 5%.

  11. Compact regenerable sulfur scrubber for phosphoric acid fuel cells. Final report, 30 September 1986-30 September 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giner, J.; Cropley, C.C.

    Technology for the direct desulfurization of unprocessed diesel fuel using regenerable copper-based mixed metal oxide sorbents was developed for incorporation in modular phosphoric acid fuel cell (PAFC) generators. Removal of greater 60% of the sulfur in diesel fuel was demonstrated, and sorbent sulfur loadings of approximately 1 wt% were attained. Preliminary studies indicated that the sorbents are regenerable, with up to 70% of the sorbed sulfur removed during regeneration. Incorporation of this technology into a PAFC power plant should reduce the weight of the sulfur removal unit by a minimum of 25%.

  12. Developing clean fuels: Novel techniques for desulfurization

    NASA Astrophysics Data System (ADS)

    Nehlsen, James P.

    The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this system and is justified with a thermodynamic analysis and an experimental determination of the reaction rate law.

  13. Degumming of crude palm oil by membrane filtration.

    PubMed

    Ong, K K; Fakhru'l-Razi, A; Baharin, B S; Hassan, M A

    1999-01-01

    The application of membrane separation in palm oil refining process has potential for energy and cost savings. The conventional refining of crude palm oil results in loss of oil and a contaminated effluent. Degumming of crude palm oil by membrane technology is conducted in this study. The objective of this research is to study the feasibility of membrane filtration for the removal of phospholipids in the degumming of crude palm oil, including analyses of phosphorus content, carotene content free fatty acids (as palmitic acid), colour and volatile matter. A PCI membrane module was used which was equipped with polyethersulfone membranes having a molecular weight cut off of 9,000 (type ES209). In this study, phosphorus content was the most important parameter monitored. The membrane effectively removed phospholipids resulting in a permeate with a phosphorus content of less than 0.3 ppm The percentage removal of phosphorus was 96.4% and was considered as a good removal. Lovibond colour was reduced from 27R 50Y to 20R 30Y. The percentage removal of carotene was 15.8%. The removal of colour was considered good but the removal of carotene was considered insignificant by the membrane. Free fatty acids and volatile matter were not removed. Typical of membrane operations, the permeate flux decreased with time and must be improved in order to be adopted on an industrial scale. Membrane technology was found to have good potential in crude palm oil degumming. However, an appropriate method has to be developed to clean the membranes for reuse.

  14. Tracking changes in composition and amount of dissolved organic matter throughout drinking water treatment plants by comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry.

    PubMed

    Li, Chunmei; Wang, Donghong; Xu, Xiong; Xu, Meijia; Wang, Zijian; Xiao, Ruiyang

    2017-12-31

    Dissolved organic matter (DOM) can affect the performance of water treatment processes and produce undesirable disinfection by-products during disinfection. Several studies have been undertaken on the structural characterization of DOM, but its fate during drinking water treatment processes is still not fully understood. In this work, the nontargeted screening method of comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC×GC-qMS) was used to reveal the detailed changes of different chemical classes of compounds in DOM during conventional and advanced drinking water treatment processes at three drinking water treatment plants in China. The results showed that when the dissolved organic carbon removal was low, shifts in the DOM composition could not be detected with the specific ultraviolet absorbance at 254nm, but the changes were clear in the three-dimensional fluorescence excitation-emission matrix or GC×GC-qMS analyses. Coagulation-sedimentation processes selectively removed 37-59% of the nitrogenous compounds, alcohols and aromatic hydrocarbons but increased the concentrations of halogen-containing compounds by 17-26% because of the contact time with chlorine in this step. Filtration was less efficient at removing DOM but preferentially removed 21-60% of the acids. However, other organic matter would be released from the filter (e.g., nitrogenous compounds, acids, and aromatic hydrocarbons). Biological activated carbon (BAC) treatment removed most of the compounds produced from ozonation, particularly ketones, alcohols, halogen-containing compounds and acids. However, it should be noted that certain highly polar or high molecular weight compounds not identified in this study might be released from the BAC bed. After the whole treatment processes, the concentrations of nitrogenous compounds, alcohols, alkenes, aromatic hydrocarbons and ketones were decreased more by the advanced treatment processes than by the conventional treatment processes. Alcohol and ketone removals were probably related to the reduction in protein-like materials. Alkane removal was probably related to the reduction in fulvic acid-like and humic acid-like materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Laboratory scale Clean-In-Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms.

    PubMed

    Bremer, Philip J; Fillery, Suzanne; McQuillan, A James

    2006-02-15

    A laboratory scale, bench top flow system was used to partially reproduce dairy plant conditions under which biofilms form and to quantify the effectiveness of caustic and acid wash steps in reducing the number of viable bacteria attached to stainless steel (SS) surfaces. Once bacteria attached to surfaces, a standard clean-in-place (CIP) regime (water rinse, 1% sodium hydroxide at 65 degrees C for 10 min, water rinse, 1.0% nitric acid at 65 degrees C for 10 min, water rinse) did not reproducibly ensure their removal. Standard CIP effectiveness was compared to alternative cleaning chemicals such as: caustic blends (Alkazolv 48, Ultrazolv 700, Concept C20, and Reflex B165); a caustic additive (Eliminator); acid blends (Nitroplus and Nitrobrite); and sanitizer (Perform). The addition of a caustic additive, Eliminator, enhanced biofilm removal compared to the standard CIP regime and further increases in cleaning efficiency occurred when nitric acid was substituted with Nitroplus. The combination of NaOH plus Eliminator and Nitroplus achieved a 3.8 log reduction in the number of cells recovered from the stainless steel surface. The incorporation of a sanitizer step into the CIP did not appear to enhance biofilm removal. This study has shown that the effectiveness of a "standard" CIP can possibly be enhanced through the testing and use of caustic and acid blends. There are many implications of these findings, including: the development of improved cleaning regimes and improved product quality, plant performance, and economic returns.

  16. Biodegradation of total petroleum hydrocarbons from acidic sludge produced by re-refinery industries of waste oil using in-vessel composting.

    PubMed

    Asgari, Alireza; Nabizadeh, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Dehghani, Mohammad Hadi; Nazmara, Shahrokh; Yaghmaeian, Kamyar

    2017-01-01

    In Iran, re-refinery industry has been developed many years ago based on the acid-clay treatment. Acidic sludge with high concentration of total petroleum hydrocarbon (TPH) is the final products of some facilities. In this study removal of TPH by aerated in-vessel composting was investigated. In order to microorganisms seeding and nutrient providing, urban immature compost was added as an amendment to acidic sludge. The ratios of acidic sludge (AS) to compost were, 1:0 (as control), 1:5, 1:8, 1:10, 1:15, 1:20, 1:30, 1:40, 1:50, 1:75 and 1:100 (as dry basis) at a C: N: P ratio of 100:5:1 and 45-65% moisture content for 70 days. The removal efficiency in all reactors was more than 48%. The highest and lowest TPH removal was observed in 1:5 (71.56%) and 1:100 (48.53%) mixing ratios, respectively. The results of the control reactors showed that biological treatment was the main mechanism for TPH removal. Experimental data was fitted second order kinetic model ( R 2  > 0.8006). Degradation of TPH in 1:5 mixing ratio (k 2  = 0.0038 gmg -1 d -1 ; half-life = 3.08d) was nearly three times faster than 1:100 mixing ratio (k 2  = 0.0238; half-life = 8.96d). The results of the control reactors showed that biological treatment was the main mechanism for TPH removal. The results of this study revealed in-vessel composting with immature urban compost as the amendment maybe recommended as an effective method for TPH remediation.

  17. Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency.

    PubMed

    Carter, Brian; Squillace, Phillip; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    This study investigated the detoxification of a dilute acid pretreated Ponderosa pine slurry using the polyelectrolyte polyethyleneimine (PEI). The addition of polyelectrolyte to remove enzymatic and/or fermentation inhibitory compounds, that is, acetic acid, furfural, and 5-hydroxymethylfurfural (HMF), was performed either before or after enzymatic hydrolysis to determine the optimal process sequence. Negligible acetic acid, glucose, and xylose were removed regardless of where in the process the polymer addition was made. Maximum furfural and HMF separation was achieved with the addition of PEI to a clarified pre-enzymatic hydrolysis liquor, which showed that 88.3% of furfural and 66.4% of HMF could be removed. On the other hand, only 23.1% and 13.4% of furfural and HMF, respectively, were removed from a post-enzymatic hydrolysis sample; thus, the effects of enzymes, glucose, and wood solids on inhibitor removal were also investigated. The presence of solid particles >0.2 µm and unknown soluble components <10 kDa reduced inhibitory compound removal, but the presence of elevated glucose levels and enzymes (cellulases) did not affect the separation. The fermentability of detoxified versus undetoxified hydrolysate was also investigated. An ethanol yield of 92.6% of theoretical was achieved with Saccharomyces cerevisiae fermenting the detoxified hydrolyzate, while no significant ethanol was produced in the undetoxified hydrolyzate. These results indicate that PEI may provide a practical alternative for furan removal and detoxification of lignocellolosic hydrolysates, and that application before enzymatic hydrolysis minimizes separation interferences. Copyright © 2011 Wiley Periodicals, Inc.

  18. Novel Process of Simultaneous Removal of Nitric Oxide and Sulfur Dioxide Using a Vacuum Ultraviolet (VUV)-Activated O2/H2O/H2O2 System in A Wet VUV-Spraying Reactor.

    PubMed

    Liu, Yangxian; Wang, Qian; Pan, Jianfeng

    2016-12-06

    A novel process for NO and SO 2 simultaneous removal using a vacuum ultraviolet (VUV, with 185 nm wavelength)-activated O 2 /H 2 O/H 2 O 2 system in a wet VUV-spraying reactor was developed. The influence of different process variables on NO and SO 2 removal was evaluated. Active species (O 3 and ·OH) and liquid products (SO 3 2- , NO 2 - , SO 4 2- , and NO 3 - ) were analyzed. The chemistry and routes of NO and SO 2 removal were investigated. The oxidation removal system exhibits excellent simultaneous removal capacity for NO and SO 2 , and a maximum removal of 96.8% for NO and complete SO 2 removal were obtained under optimized conditions. SO 2 reaches 100% removal efficiency under most of test conditions. NO removal is obviously affected by several process variables. Increasing VUV power, H 2 O 2 concentration, solution pH, liquid-to-gas ratio, and O 2 concentration greatly enhances NO removal. Increasing NO and SO 2 concentration obviously reduces NO removal. Temperature has a dual impact on NO removal, which has an optimal temperature of 318 K. Sulfuric acid and nitric acid are the main removal products of NO and SO 2 . NO removals by oxidation of O 3 , O·, and ·OH are the primary routes. NO removals by H 2 O 2 oxidation and VUV photolysis are the complementary routes. A potential scaled-up removal process was also proposed initially.

  19. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems.

    PubMed

    Appleman, Timothy D; Higgins, Christopher P; Quiñones, Oscar; Vanderford, Brett J; Kolstad, Chad; Zeigler-Holady, Janie C; Dickenson, Eric R V

    2014-03-15

    The near ubiquitous presence of poly- and perfluoroalkyl substances (PFASs) in humans has raised concerns about potential human health effects from these chemicals, some of which are both extremely persistent and bioaccumulative. Because some of these chemicals are highly water soluble, one major pathway for human exposure is the consumption of contaminated drinking water. This study measured concentrations of PFASs in 18 raw drinking water sources and 2 treated wastewater effluents and evaluated 15 full-scale treatment systems for the attenuation of PFASs in water treatment utilities throughout the U.S. A liquid-chromatography tandem mass-spectrometry method was used to enable measurement of a suite of 23 PFASs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). Despite the differences in reporting levels, the PFASs that were detected in >70% of the source water samples (n = 39) included PFSAs, perfluorobutane sulfonic acid (74%), perfluorohexane sulfonic acid (79%), and perfluorooctane sulfonic acid (84%), and PFCAs, perfluoropentanoic acid (74%), perfluorohexanoic acid (79%), perfluoroheptanoic acid (74%), and perfluorooctanoic acid (74%). More importantly, water treatment techniques such as ferric or alum coagulation, granular/micro-/ultra- filtration, aeration, oxidation (i.e., permanganate, ultraviolet/hydrogen peroxide), and disinfection (i.e., ozonation, chlorine dioxide, chlorination, and chloramination) were mostly ineffective in removing PFASs. However, anion exchange and granular activated carbon treatment preferably removed longer-chain PFASs and the PFSAs compared to the PFCAs, and reverse osmosis demonstrated significant removal for all the PFASs, including the smallest PFAS, perfluorobutanoic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    DOEpatents

    Christian, Jerry D.; Anderson, Philip A.

    1994-01-01

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed.

  1. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    DOEpatents

    Christian, J.D.; Anderson, P.A.

    1994-11-15

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed. 5 figs.

  2. 27 CFR 5.23 - Alteration of class and type.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... trace amount of citric acid. (b) Extractions. The removal from any distilled spirits of any constituents... than 15 percent of the fixed acids, or volatile acids, or esters, or soluble solids, or higher alcohols...

  3. 27 CFR 5.23 - Alteration of class and type.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... trace amount of citric acid. (b) Extractions. The removal from any distilled spirits of any constituents... than 15 percent of the fixed acids, or volatile acids, or esters, or soluble solids, or higher alcohols...

  4. 27 CFR 5.23 - Alteration of class and type.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... trace amount of citric acid. (b) Extractions. The removal from any distilled spirits of any constituents... than 15 percent of the fixed acids, or volatile acids, or esters, or soluble solids, or higher alcohols...

  5. Decomplexation efficiency and mechanism of Cu(II)-EDTA by H2O2 coupled internal micro-electrolysis process.

    PubMed

    Zhou, Dongfang; Hu, Yongyou; Guo, Qian; Yuan, Weiguang; Deng, Jiefan; Dang, Yapan

    2016-12-29

    Internal micro-electrolysis (IE) coupled with Fenton oxidation (IEF) was a very effective technology for copper (Cu)-ethylenediaminetetraacetic acid (EDTA) wastewater treatment. However, the mechanisms of Cu 2+ removal and EDTA degradation were scarce and lack persuasion in the IEF process. In this paper, the decomplexation and removal efficiency of Cu-EDTA and the corresponding mechanisms during the IEF process were investigated by batch test. An empirical equation and the oxidation reduction potential (ORP) index were proposed to flexibly control IE and the Fenton process, respectively. The results showed that Cu 2+ , total organic carbon (TOC), and EDTA removal efficiencies were 99.6, 80.3, and 83.4%, respectively, under the proper operation conditions of iron dosage of 30 g/L, Fe/C of 3/1, initial pH of 3.0, Fe 2+ /H 2 O 2 molar ratio of 1/4, and reaction time of 20 min, respectively for IE and the Fenton process. The contributions of IE and Fenton to Cu 2+ removal were 91.2 and 8.4%, respectively, and those to TOC and EDTA removal were 23.3, 25.1, and 57, 58.3%, respectively. It was found that Fe 2+ -based replacement-precipitation and hydroxyl radical (•OH) were the most important effects during the IEF process. •OH played an important role in the degradation of EDTA, whose yield and productive rate were 3.13 mg/L and 0.157 mg/(L min -1 ), respectively. Based on the intermediates detected by GC-MS, including acetic acid, propionic acid, pentanoic acid, amino acetic acid, 3-(diethylamino)-1,2-propanediol, and nitrilotriacetic acid (NTA), a possible degradation pathway of Cu-EDTA in the IEF process was proposed. Graphical abstract The mechanism diagram of IEF process.

  6. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil.

    PubMed

    do Nascimento, Clístenes Williams A; Amarasiriwardena, Dula; Xing, Baoshan

    2006-03-01

    Chemically assisted phytoremediation has been developing to induce accumulation of metals by high biomass plants. Synthetic chelates have shown high effectiveness to reach such a goal, but they pose serious drawbacks in field application due to the excessive amount of metals solubilized. We compared the performance of synthetic chelates with naturally occurring low molecular weight organic acids (LMWOA) in enhancing phytoextraction of metals by Indian mustard (Brassica juncea) from multi-metal contaminated soils. Gallic and citric acids were able to induce removal of Cd, Zn, Cu, and Ni from soil without increasing the leaching risk. Net removal of these metals caused by LMWOA can be as much as synthetic chelates. A major reason for this is the lower phytotoxicity of LMWOA. Furthermore, supplying appropriate mineral nutrients increased biomass and metal removal.

  7. Sources of error in determinations of carnitine and acylcarnitine in plasma.

    PubMed

    Fishlock, R C; Bieber, L L; Snoswell, A M

    1984-02-01

    Radioactive and nonradioactive L-carnitine and acyl-L-carnitine were used to evaluate the washing procedures used during the determination of free, total, short-chain, and long-chain acylcarnitine in human and sheep plasma. The volume of fluid trapped by the protein precipitated by perchloric acid is approximately 24% of the total fluid volume and thus contains 24% of free carnitine and short-chain acylcarnitine. Washing twice with distilled water removes about 25% of the long-chain acylcarnitine along with the trapped free carnitine and short-chain acylcarnitines. Washing the pellet twice with a 60 g/L solution of perchloric acid completely removes the trapped free carnitine and short-chain acylcarnitine but does not remove the bound long-chain acylcarnitines. Thus washing with perchloric acid is essential for accurate measurement of long-chain acylcarnitines in plasma samples.

  8. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing.more » During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.« less

  9. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    PubMed

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  10. Clofibric acid and gemfibrozil removal in membrane bioreactors.

    PubMed

    Gutierrez-Macias, Tania; Nacheva, Petia Mijaylova

    2015-01-01

    The removal of two blood lipid regulators, clofibric acid (CLA) and gemfibrozil (GFZ), was evaluated using two identical aerobic membrane bioreactors with 6.5 L effective volume each. Polysulfone ultrafiltration hollow fiber membranes were submerged in the reactors. Different operating conditions were tested varying the organic load (F/M), hydraulic residence time (HRT), biomass concentration measured as total suspended solids in the mixed liquor (MLTSS) and the sludge retention time (SRT). Complete GFZ removal was obtained with F/M of 0.21-0.48 kg COD kgTSS⁻¹ d⁻¹, HRT of 4-10 hours, SRT of 10-32 d and MLTSS of 6-10 g L⁻¹. The GFZ removal can be attributed to biodegradation and there was no accumulation of the compound in the biomass. The CLA removals improved with the SRT and HRT increase and F/M decrease. Average removals of 78-79% were obtained with SRT 16-32 d, F/M of 0.21-0.34 kgCOD kgTSS⁻¹ d⁻¹, HRT of 7-10 hours and MLTSS of 6-10 g L⁻¹. Biodegradation was found to be the main removal pathway.

  11. Tree swallows (Tachycineta bicolor) nesting on wetlands impacted by oil sands mining are highly parasitized by the bird blow fly Protocalliphora spp.

    PubMed

    Gentes, Marie-Line; Whitworth, Terry L; Waldner, Cheryl; Fenton, Heather; Smits, Judit E

    2007-04-01

    Oil sands mining is steadily expanding in Alberta, Canada. Major companies are planning reclamation strategies for mine tailings, in which wetlands will be used for the bioremediation of water and sediments contaminated with polycyclic aromatic hydrocarbons and naphthenic acids during the extraction process. A series of experimental wetlands were built on companies' leases to assess the feasibility of this approach, and tree swallows (Tachycineta bicolor) were designated as upper trophic biological sentinels. From May to July 2004, prevalence and intensity of infestation with bird blow flies Protocalliphora spp. (Diptera: Calliphoridae) were measured in nests on oil sands reclaimed wetlands and compared with those on a reference site. Nestling growth and survival also were monitored. Prevalence of infestation was surprisingly high for a small cavity nester; 100% of the 38 nests examined were infested. Nests on wetlands containing oil sands waste materials harbored on average from 60% to 72% more blow fly larvae than those on the reference site. Nestlings on reclaimed sites suffered mean parasitic burdens about twice that of those on the reference site; and for comparable parasitic load, they exhibited greater pathologic effects (e.g., decreased body mass) than control nestlings. The heavy blow fly infestation on oil sands-impacted wetlands suggests that oil sands mining disturbs several components of the local ecosystem, including habitat characteristics, blow fly predators, and host resistance to parasites.

  12. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuboňová, L., E-mail: lenka.kubonova@vsb.cz; Langová, Š.; Nowak, B.

    2013-11-15

    Highlights: • MSW fly ash was thermally and hydrometallurgically treated to remove heavy metals. • More than 90% of easy volatile heavy metals (Cd and Pb) were removed thermally. • More than 90% of Cd, Cr, Cu an Zn were removed by alkaline – acid leaching. • The best results were obtained for the solution of 3 M NaOH and 2 M H{sub 2}SO{sub 4}. - Abstract: Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be amore » potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050 °C and in a muffle oven at temperatures from 500 to 1200 °C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitkamp, M.A.; Adams, W.J.; Camel, V.

    Immobilized bacteria technology (IBT) utilizes inert biocarriers to support high concentrations of chemical-degrading bacteria in reactors designed to provide optimal conditions for microbial activity. This study evaluated IBT performance inpacked bed reactors (PBRs) using a porous inorganic biocarrier (diatomaceous earth), nonporous biocarriers (glass beads), and organic biocarriers having carbon adsorption properties (granular activated carbon) with different porosity. Each reactor was challenged with high chemical loading, acid, dryness, and heat shock conditions. Benchtop PBSs inoculated with a p-nitrophenol (PNP)-degrading Pseudomonas sp. and fed a synthetic waste containing 100 to 1,300 mg/L of PNP showed removal of PNP from effluents within 24more » h of start-up. Chemical loading studies showed maximum PNP removal rates of 6.45 to 7.35 kg/m[sup 3]/d for bacteria in PBRs containing diatomaceous earth beads, glass beads, and activated coconut carbon. A lower PNP removal rate of 1.47 kg/m[sup 3]/d was determined for the activated anthracite carbon, and this PBR responded more slowly to increases in chemical loading. The PBR containing bacteria immobilized on activated coconut carbon showed exceptional tolerance to acid shocking, drying, and heat shocking by maintaining PNP removal rates > 85% throughout the entire study. The other biocarriers showed nearly complete loss of PNP degradation during the perturbations, but all recovered high rates of PNP degradation (> 98% removal) within 48 h after an acid shock at pH2, within 8 d after an acid shock at pH 1.0, within 24 h after drying for 72 h, and within 48 h of heat shocking. The resiliency and high chemical removal efficiency demonstrated by immobilized bacteria in this study support the concept of using IBT for the biotreatment of industrial wastes..« less

  14. Demonstration of Military Composites with Low Hazardous Air Pollutant Content

    DTIC Science & Technology

    2006-11-01

    reducing styrene emissions from vinyl ester (VE) resins is to replace some or all of the styrene with fatty acid -based monomers. Fatty acid ...composite production, and painting applications. These trapping devices need to absorb most of the VOC/HAP emissions and then efficiently remove the...device to trap a significant portion of the emissions is cost prohibitive. Secondly, although these devices remove the VOCs/HAPs from the

  15. The Implications of Fe2O3 and TiO2 Nanoparticles on the Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of Humic Acid

    EPA Science Inventory

    The implications of Fe2O3 and TiO2 nanoparticles (NPs) on a granular activated carbon (GAC) adsorber and their impact on the removal of Trichloroethylene (TCE) were investigated in the presence of humic acid (HA). The surface charge of the GAC and NPs was obtained in the presence...

  16. Removal of Anabaena flos-aquae in water treatment process using Moringa oleifera and assessment of fatty acid profile of generated sludge.

    PubMed

    Moreti, Livia O R; Coldebella, Priscila Ferri; Camacho, Franciele P; Carvalho Bongiovani, Milene; Pereira de Souza, Aloisio Henrique; Kirie Gohara, Aline; Matsushita, Makoto; Fernandes Silva, Marcela; Nishi, Letícia; Bergamasco, Rosângela

    2016-01-01

    This study aimed to evaluate the efficiency of the coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the coagulant Moringa oleifera (MO) seed powder, and to analyse the profile of fatty acids present in the generated sludge after treatment. For the tests, deionized water artificially contaminated with cell cultures of Anabaena flos-aquae was used, with a cell density in the order of 10(4) cells mL(-1). C/F/DAF tests were conducted using 'Flotest' equipment. For fatty acid profile analyses, a gas chromatograph equipped with a flame ionization detector was used. It was seen that the optimal dosage (100 mg L(-1)) of MO used in the C/F/DAF process was efficient at removing nearly all A. flos-aquae cells (96.4%). The sludge obtained after treatment contained oleic acid (61.7%) and palmitic acid (10.8%). Thus, a water treatment process using C/F/DAF linked to integral MO powder seed was found to be efficient in removing cells of cyanobacteria, and produced a sludge rich in oleic acid that is a precursor favourable for obtaining quality biodiesel, thus becoming an alternative application for the recycling of such biomass.

  17. Removal of zinc (II) ion from aqueous solution by adsorption onto activated palm midrib bio-sorbent

    NASA Astrophysics Data System (ADS)

    Mulana, F.; Mariana; Muslim, A.; Mohibah, M.; Halim, K. H. Ku

    2018-03-01

    In this paper, palm midrib that was activated with mixed citric acid and tartaric acid as biosorbent was used to remove Zn (II) ion from aqueous solution. The aim of this research is to activate palm midrib by using a mixed citric acid and tartaric acid and to determine adsorption capacity of activated palm midrib biosorbent on Zn (II) ion uptake from aqueous solution. The effect of several parameters such as contact time, initial Zn (II) ion concentration and activator concentration on the degree of Zn (II) ion removal was examined. Atomic Absorption Spectroscopy method was performed to determine adsorbed amount of Zn (II) ion into activated biosorbent. The result showed that the adsorption process was relatively not so fast and equilibrium was reached after contact time of 120 min. The adsorption capacity of biosorbent reached a maximum when the concentration of mixed citric acid and tartaric acid was 1.6 M. The optimum adsorption capacity was 5.72 mg/g. The result was obtained on initial Zn (II) ion concentration of 80 ppm for 120-min contact time. Langmuir isotherm was found as the best fit for the equilibrium data indicating homogeneous adsorption of metal ions onto the biosorbent surface.

  18. Electrodialytic removal of nitrate from pineapple juice: effect on selected physicochemical properties, amino acids, and aroma components of the juice.

    PubMed

    Ackarabanpojoue, Yuwadee; Chindapan, Nathamol; Yoovidhya, Tipaporn; Devahastin, Sakamon

    2015-05-01

    This study aimed at investigating the effect of nitrate removal from pineapple juice by electrodialysis (ED) on selected properties of the ED-treated juice. Single-strength pineapple juice with reduced pulp content was treated by ED to reduce the nitrate concentration to 15, 10, or 5 ppm. After ED, the removed pulp was added to the ED-treated juice and its properties, including electrical conductivity, acidity, pH, total soluble solids (TSS), color, amino acids, and selected aroma compounds, were determined and compared with those of the untreated juice. ED could reduce the nitrate content of 1 L of pineapple juice from an initial value of 50 ppm to less than 5 ppm within 30 min. A significant decrease in the electrical conductivity, acidity, pH, TSS, and yellowness, but a significant increase in the lightness, of the juice was observed upon ED. Concentrations of almost all amino acids of the ED-treated juice significantly decreased. The concentrations of 8 major compound contributors to the pineapple aroma also significantly decreased. Adding the pulp back to the ED-treated juice increased the amino acids concentrations; however, it led to a significant decrease in the concentrations of the aroma compounds. © 2015 Institute of Food Technologists®

  19. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.

    PubMed

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-02-16

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m 3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m 3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.

  20. Effect of strong acids on red mud structural and fluoride adsorption properties.

    PubMed

    Liang, Wentao; Couperthwaite, Sara J; Kaur, Gurkiran; Yan, Cheng; Johnstone, Dean W; Millar, Graeme J

    2014-06-01

    The removal of fluoride using red mud has been improved by acidifying red mud with hydrochloric, nitric and sulphuric acid. The acidification of red mud causes sodalite and cancrinite phases to dissociate, confirmed by the release of sodium and aluminium into solution as well as the disappearance of sodalite bands and peaks in infrared and X-ray diffraction data. The dissolution of these mineral phases increases the amount of available iron and aluminium oxide/hydroxide sites that are accessible for the adsorption of fluoride. However, concentrated acids have a negative effect on adsorption due to the dissolution of these iron and aluminium oxide/hydroxide sites. The removal of fluoride is dependent on the charge of iron and aluminium oxide/hydroxides on the surface of red mud. Acidifying red mud with hydrochloric, nitric and sulphuric acid resulted in surface sites of the form ≡SOH2(+) and ≡SOH. Optimum removal is obtained when the majority of surface sites are in the form ≡SOH2(+) as the substitution of a fluoride ion does not cause a significant increase in pH. This investigation shows the importance of having a low and consistent pH for the removal of fluoride from aqueous solutions using red mud. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Inhibition of boric acid and sodium borate on the biological activity of microorganisms in an aerobic biofilter.

    PubMed

    Güneş, Y

    2013-01-01

    The aim of this work was to study the inhibition effect of boric acid and sodium borate on the treatment of boron containing synthetic wastewater by a down flow aerobic fixed bed biofilm reactor at various chemical oxygen demand (COD)/boron ratios (0.47-20.54). The inhibitory effect of boron on activated sludge was evaluated on the basis of COD removal during the experimental period. The biofilter (effective volume = 2.5 L) was filled with a ring of plastic material inoculated with acclimated activated sludge. The synthetic wastewater composed of glucose, urea, KH2PO4, MgSO4, Fe2 SO4, ZnSO4 x 7H20, KCl, CaCl2, and di-sodium tetraborate decahydrate or boric acid (B = 100-2000 mg L(-1)). The biological treatment of boron containing wastewater resulted in a low treatment removal rate due to the reduced microbial activity as a result of toxic effects of high boron concentrations. The decrease in the COD removal rate by the presence of either boric acid or sodium borate was practically indistinguishable. It was observed from the experiments that about 90-95% of COD removal was possible at high COD/boron ratios.

  2. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources.

    PubMed

    Huang, Haiming; Xiao, Dean; Zhang, Qingrui; Ding, Li

    2014-12-01

    This paper presents a study concerning ammonia removal from landfill leachate by struvite precipitation with the use of waste phosphoric acid as the phosphate source. The results indicated that the Al(3+) ions present in the waste phosphoric acid significantly affected the struvite precipitation, and a removal ratio of ammonia close to that of pure phosphate salts could be achieved. Nevertheless, large amounts of NaOH were necessary to neutralize the H(+) present in the waste phosphoric acid. To overcome this problem, a low-cost magnesium source was proposed to be used as well as an alkali reagent in the struvite precipitation. The ammonia removal ratios were found to be 83%, with a remaining phosphate of 56 mg/L, by dosing the low-cost MgO in the Mg:N:P molar ratio of 3:1:1. An economic analysis showed that using waste phosphoric acid plus the low-cost MgO could save chemical costs by 68% compared with the use of pure chemicals. Post-treatment employment of a biological anaerobic filter process demonstrated that the high concentration of Mg(2+) remaining in the effluent of the struvite precipitation has no inhibitory effect on the performance of the biological treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Molluscum contagiosum

    MedlinePlus

    ... scraping, de-coring, freezing, or through needle electrosurgery. Laser treatment may also be used. Surgical removal of individual lesions may sometimes result in scarring. Medicines, such as salicylic acid preparations used to remove ...

  4. Techniques of Celloidin Removal From Temporal Bone Sections

    PubMed Central

    O’Malley, Jennifer T.; Burgess, Barbara J.; Jones, Diane D.; Adams, Joe C.; Merchant, Saumil N.

    2009-01-01

    Objectives We sought to determine whether the technique of celloidin removal influences the results of immunostaining in celloidin-embedded cochleae. Methods We compared four protocols of celloidin removal, including those using clove oil, acetone, ether-alcohol, and methanol saturated with sodium hydroxide. By optimally fixing our tissue (perfused mice), and keeping constant the fixative type (formalin plus acetic acid), fixation time (25 hours), and decalcification time (ethylenediaminetetraacetic acid for 7 days), we determined whether the technique of celloidin removal influenced the immunostaining results. Six antibodies were used with each removal method: prostaglandin D synthase, sodium, potassium adenosine triphosphatase (Na+,K+-ATPase), aquaporin 1, connective tissue growth factor, tubulin, and 200 kd neurofilament. Results Clove oil, acetone, and ether-alcohol resulted in incomplete removal of the celloidin, thereby negatively affecting the results of immunostaining. The methanol–sodium hydroxide method was effective in completely removing the celloidin; it produced the cleanest and most reproducible immunostaining for all six antibodies. Conclusions Freshly prepared methanol saturated with sodium hydroxide and diluted 1:2 with methanol was the best solvent for removing celloidin from mouse temporal bone sections, resulting in consistent and reproducible immunostaining with the six antibodies tested. PMID:19663375

  5. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    PubMed

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Method for removing acid gases from a gaseous stream

    DOEpatents

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David Neal; Fox, Sandra Lynn; Bala, Greg Alan

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  8. Antarctic ozone - Meteoric control of HNO3

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.; Rodriguez, Jose M.

    1988-01-01

    Atmospheric circulation leads to an accumulation of debris from meteors in the Antarctic stratosphere at the beginning of austral spring. The major component of meteoric material is alkaline, comprised predominantly of the oxides of magnesium and iron. These metals may neutralize the natural acidity of stratospheric aerosols, remove nitric acid from the gas phase, and bond it as metal nitrates in the aerosol phase. Removal of nitric acid vapor has been previously shown to be a critical link in the photochemical depletion of ozone in the Antarctic spring, by allowing for increased catalytic loss from chlorine and bromine.

  9. Use of microfocused X-ray techniques to investigate the mobilization of arsenic by oxalic acid

    NASA Astrophysics Data System (ADS)

    Wovkulich, Karen; Mailloux, Brian J.; Bostick, Benjamin C.; Dong, Hailiang; Bishop, Michael E.; Chillrud, Steven N.

    2012-08-01

    Improved linkages between aqueous phase transport and solid-phase reactions are needed to better predict and model transport of contaminants through the subsurface. Here we develop and apply a new method for measuring As mobilization in situ within soil columns that utilizes synchrotron-based X-ray fluorescence. By performing these measurements in situ during column transport experiments, we simultaneously monitor grain-scale solid phase reactions and column-scale transport. Arsenic may be effectively mobilized by oxalic acid but the geochemical and mineralogical factors that influence the rate and extent of mobilization are not well understood. Column experiments (˜4 cm long × 0.635 cm ID) using As contaminated sediments from the Vineland Chemical Company Superfund site were performed on the laboratory bench as well as in the synchrotron beamline. Microfocused synchrotron X-ray fluorescence (μSXRF) maps for As and Fe were collected at the same location in the columns (<1 mm2) before and during treatment with 10 mM oxalic acid. The fraction of As and Fe removed by oxalic acid treatment was calculated from the change in flux-normalized counts for each pixel in the map images, and these data were used to calculate kinetic parameters over the studied area. Between 79% and 83% of the As was removed from the sediments by the oxalic acid treatment based on μSXRF data; these removal percentages agreed well with laboratory data based on column effluent (88-95%). Considerably less Fe was removed by oxalic acid treatment, 14-25% based on μSXRF counts, which is somewhat higher than the 7-9% calculated from laboratory column effluent concentrations. Microfocused X-ray absorption near edge spectroscopy (μXANES) on a subset of points indicates most of the Fe was oxidized and present as a mixture of goethite, hematite, and ferrihydrite on sand grain coatings. Treatment with oxalic acid led to subtle shifts in Fe (III) species following oxalic acid treatment, either removing ferrihydrite or transforming it to more stable oxides; however, Fe redox states were not impacted. Kinetics information extracted from μSXRF data compared favorably with rates of As removal from observed As breakthrough curves. The average pseudo-first order As removal rate constant was calculated to be 0.015 min-1 ± 0.002 (± average standard error, N = 400) based on changes in μSXRF counts over time. The spatial variation observed in the rate constant is likely a result of differences in the mineral substrate or As retention mechanism. Geochemical models created using the calculated As removal rate constants showed agreement with As breakthrough curves for both a small column (4.25 cm × 0.635 cm ID) and a larger column (23.5 cm × 4.2 cm ID), indicating that the processes studied using the microprobe are representative and often can be predictive of larger systems. While this work was used to understand the processes that regulate As release and transport, the methods developed here could be used to study a wide variety of reaction processes, including contaminant removal due to chemical treatment, mineral precipitation due to changing redox characteristics, and solid phase transformations.

  10. Use of Microfocused X-ray Techniques to Investigate the Mobilization of As by Oxalic Acid

    PubMed Central

    Wovkulich, Karen; Mailloux, Brian J.; Bostick, Benjamin C.; Dong, Hailiang; Bishop, Michael E.; Chillrud, Steven N.

    2012-01-01

    Improved linkages between aqueous phase transport and solid-phase reactions are needed to better predict and model transport of contaminants through the subsurface. Here we develop and apply a new method for measuring As mobilization in situ within soil columns that utilizes synchrotron-based X-ray fluorescence. By performing these measurements in situ during column transport experiments, we simultaneously monitor grain-scale solid phase reactions and column-scale transport. Arsenic may be effectively mobilized by oxalic acid but the geochemical and mineralogical factors that influence the rate and extent of mobilization are not well understood. Column experiments (~4 cm long × 0.635 cm ID) using As contaminated sediments from the Vineland Chemical Company Superfund site were performed on the laboratory bench as well as in the synchrotron beamline. Microfocused synchrotron X-ray fluorescence (μSXRF) maps for As and Fe were collected at the same location in the columns (<1 mm2) before and during treatment with 10 mM oxalic acid. The fraction of As and Fe removed by oxalic acid treatment was calculated from the change in flux-normalized counts for each pixel in the map images, and these data were used to calculate kinetic parameters over the studied area. Between 79% and 83% of the As was removed from the sediments by the oxalic acid treatment based on μSXRF data; these removal percentages agreed well with laboratory data based on column effluent (88–95%). Considerably less Fe was removed by oxalic acid treatment, 14–25% based on μSXRF counts, which is somewhat higher than the 7–9% calculated from laboratory column effluent concentrations. Microfocused X-ray absorption near edge spectroscopy (μXANES) on a subset of points indicates most of the Fe was oxidized and present as a mixture of goethite, hematite, and ferrihydrite on sand grain coatings. Treatment with oxalic acid led to subtle shifts in Fe (III) species following oxalic acid treatment, either removing ferrihydrite or transforming it to more stable oxides; however, Fe redox states were not impacted. Kinetics information extracted from μSXRF data compared favorably with rates of As removal from observed As breakthrough curves. The average pseudo-first order As removal rate constant was calculated to be 0.015 min−1 ± 0.002 (± average standard error, N=400) based on changes in μSXRF counts over time. The spatial variation observed in the rate constant is likely a result of differences in the mineral substrate or As retention mechanism. Geochemical models created using the calculated As removal rate constants showed agreement with As breakthrough curves for both a small column (4.25 cm × 0.635 cm ID) and a larger column (23.5 cm × 4.2 cm ID), indicating that the processes studied using the microprobe are representative and often can be predictive of larger systems. While this work was used to understand the processes that regulate As release and transport, the methods developed here could be used to study a wide variety of reaction processes, including contaminant removal due to chemical treatment, mineral precipitation due to changing redox characteristics, and solid phase transformations. PMID:23175572

  11. Ligand-enhanced electrokinetic remediation of metal-contaminated marine sediments with high acid buffering capacity.

    PubMed

    Masi, Matteo; Iannelli, Renato; Losito, Gabriella

    2016-06-01

    The suitability of electrokinetic remediation for removing heavy metals from dredged marine sediments with high acid buffering capacity was investigated. Laboratory-scale electrokinetic remediation experiments were carried out by applying two different voltage gradients to the sediment (0.5 and 0.8 V/cm) while circulating water or two different chelating agents at the electrode compartments. Tap water, 0.1 M citric acid and 0.1 M ethylenediaminetetraacetic acid (EDTA) solutions were used respectively. The investigated metals were Zn, Pb, V, Ni and Cu. In the unenhanced experiment, the acid front could not propagate due to the high acid buffering capacity of the sediments; the production of OH(-) ions at the cathode resulted in a high-pH environment causing the precipitation of CaCO3 and metal hydroxides. The use of citric acid prevented the formation of precipitates, but solubilisation and mobilisation of metal species were not sufficiently achieved. Metal removal was relevant when EDTA was used as the conditioning agent, and the electric potential was raised up to 0.8 V/cm. EDTA led to the formation of negatively charged complexes with metals which migrated towards the anode compartment by electromigration. This result shows that metal removal from sediments with high acid buffering capacity may be achieved by enhancing the electrokinetic process by EDTA addition when the acidification of the medium is not economically and/or environmentally sustainable.

  12. Quantitative evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water

    USGS Publications Warehouse

    Malcolm, R.L.; MacCarthy, P.

    1992-01-01

    The combined XAD-8 and XAD-4 resin procedure for the isolation of dissolved organic solutes from water was found to isolate 85% or more of the organic solutes from Lake Skjervatjern in Norway. Approximately 65% of the dissolved organic carbon (DOC) was first removed on XAD-8 resin, and then an additional 20% of the DOC was removed on XAD-4 resin. Approximately 15% of the DOC solutes (primarily hydrophilic neutrals) were not sorbed or concentrated by the procedure. Of the 65% of the solutes removed on XAD-8 resin, 40% were fulvic acids, 16% were humic acids, and 9% were hydrophobic neutrals. Approximately 20% of the hydrophilic solutes that pass through the XAD-8 resin were sorbed solutes on the second resin, XAD-4 (i.e., they were hydrophobic relative to the XAD-4 resin). The fraction sorbed on XAD-4 resin was called XAD-4 acids because it represented approximately 85-90% of the hydrophilic XAD-8 acid fraction according to the original XAD-8 fractionation procedure. The recovery of hydrophobic acids (fulvic acids and humic acids) and the hydrophobic neutral fraction from XAD-8 resin was essentially quantitative at 96%, 98%, and 86%, respectively. The recovery of XAD-4 acids from the XAD-4 resin was only about 50%. The exact reason for this moderately low recovery is unknown, but could result from ??-?? bonding between these organic solutes and the aromatic matrix of XAD-4. The hydrophobic/hydrophilic solute separation on XAD-8 resin for water from background Side A and Side B of the lake was almost identical at 65 and 67%, respectively. This result suggested that both sides of the lake are similar in organic chemical composition even though the DOC variation from side to side is 20%.

  13. Simultaneous removal of dissolved organic matter and bromide from drinking water source by anion exchange resins for controlling disinfection by-products.

    PubMed

    Phetrak, Athit; Lohwacharin, Jenyuk; Sakai, Hiroshi; Murakami, Michio; Oguma, Kumiko; Takizawa, Satoshi

    2014-06-01

    Anion exchange resins (AERs) with different properties were evaluated for their ability to remove dissolved organic matter (DOM) and bromide, and to reduce disinfection by-product (DBP) formation potentials of water collected from a eutrophic surface water source in Japan. DOM and bromide were simultaneously removed by all selected AERs in batch adsorption experiments. A polyacrylic magnetic ion exchange resin (MIEX®) showed faster dissolved organic carbon (DOC) removal than other AERs because it had the smallest resin bead size. Aromatic DOM fractions with molecular weight larger than 1600 Da and fluorescent organic fractions of fulvic acid- and humic acid-like compounds were efficiently removed by all AERs. Polystyrene AERs were more effective in bromide removal than polyacrylic AERs. This result implied that the properties of AERs, i.e. material and resin size, influenced not only DOM removal but also bromide removal efficiency. MIEX® showed significant chlorinated DBP removal because it had the highest DOC removal within 30 min, whereas polystyrene AERs efficiently removed brominated DBPs, especially brominated trihalomethane species. The results suggested that, depending on source water DOM and bromide concentration, selecting a suitable AER is a key factor in effective control of chlorinated and brominated DBPs in drinking water. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  14. Impact of leachate composition on the advanced oxidation treatment.

    PubMed

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8 h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Evaluation of smear layer removal and marginal adaptation of root canal sealer after final irrigation using ethylenediaminetetraacetic, peracetic, and etidronic acids with different concentrations.

    PubMed

    Ulusoy, Özgür İlke; Zeyrek, Salev; Çelik, Bülent

    2017-07-01

    The purpose of this study was to investigate the effects of different irrigation solutions on the smear layer removal and marginal adaptation of a resin-based sealer to root canal dentine. A total of 152 instrumented roots were irrigated with the following irrigants: 9,18% etidronic acid (HEBP), 0.5, 1,2% peracetic acid (PAA), 17% ethylenediaminetetraacetic acid (EDTA), saline. The amount of smear layer was evaluated using scanning electron microscope (SEM) in seventy root samples. Eighty-two roots were filled with AH Plus and gutta-percha. Slices obtained from apical third of each specimen were viewed with SEM to assess marginal adaptation. Use of 9% and 18% HEBP resulted in more efficient smear layer removal in the apical third than the other chelators (p < 0.05). Higher smear layer scores in the coronal and middle thirds were obtained from 0.5%, 1% PAA groups. Regarding marginal adaptation, 18% HEBP group showed the lowest gap size values (p < 0.05), and better marginal adaptation. Etidronic acid is a promising candidate for final irrigation of root canals. © 2017 Wiley Periodicals, Inc.

  16. Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater

    DOE PAGES

    Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; ...

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2CO 3 H 2O 2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposuremore » in real seawater. The Na 2CO 3 H 2O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.« less

  17. Removal of dissolved humic acid from water by photocatalytic oxidation using a silver orthophosphate semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatakeyama, Keisuke, E-mail: hatakeyamak@pref.tottori.jp; Okuda, Masukazu; Kuki, Takahiro

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► The photocatalytic property of a silver orthophosphate (Ag{sub 3}PO{sub 4}) was investigated for humic acid degradation. ► The Ag{sub 3}PO{sub 4} shows high photocatalytic activity under visible light. ► The photocatalytic activity was greatly improved by employing the precipitation method. -- Abstract: In order to remove dissolved organic matter such as humic acid from water, a silver orthophosphate (Ag{sub 3}PO{sub 4}) was newly employed as a heterogeneous photocatalyst. Here, Ag{sub 3}PO{sub 4} was prepared by simple ion-exchange and precipitation methods, and the physico-chemical properties were characterized by X-ray diffraction, ultraviolet–visible diffuse reflectance spectroscopy, scanningmore » electron microscopy, particle distribution measurements and Brunauer–Emmett–Teller (BET) analysis. The degradation of humic acid was faster over Ag{sub 3}PO{sub 4} catalyst than over conventional TiO{sub 2} (P-25). The total photocatalytic properties were improved by employing not an ion-exchange method but a precipitation method; humic acid degradation was performed with a removal ratio of dissolved organic carbon of 75% under visible light (λ = 451 nm) for 2-h irradiation.« less

  18. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks.

    PubMed

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-03-30

    Adsorptive removal of naproxen and clofibric acid, two typical PPCPs (pharmaceuticals and personal care products), has been studied using metal-organic frameworks (MOFs) for the first time. The removal efficiency decreases in the order of MIL-101>MIL-100-Fe>activated carbon both in adsorption rate and adsorption capacity. The adsorption kinetics and capacity of PPCPs generally depend on the average pore size and surface area (or pore volume), respectively, of the adsorbents. The adsorption mechanism may be explained with a simple electrostatic interaction between PPCPs and the adsorbent. Finally, it can be suggested that MOFs having high porosity and large pore size can be potential adsorbents to remove harmful PPCPs in contaminated water. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Fuel property effects on Navy aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Moses, C. A.

    1984-01-01

    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  20. Emission FTIR analyses of thin microscopic patches of jet fuel residue deposited on heated metal surface

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Vogel, P.

    1984-01-01

    Deposits laid down in patches on metal strips in a high pressure/high temperature fuel system simulator operated with aerated fuel at varying flow rates were analyzed by emission FTIR in terms of functional groups. Significant differences were found in the spectra and amounts of deposits derived from fuels to which small concentrations of oxygen-, nitrogen-, or sulfur-containing heterocyclics or metal naphthenates were added. The spectra of deposits generated on strips by heating fuels and air in a closed container were very different from those of the flowing fluid deposits. One such closed-container dodecane deposit on silver gave a strong surface-enhanced Raman spectrum.

Top