Sample records for naphthoic acids catalyzed

  1. Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol.

    PubMed

    Seo, Jong-Su; Keum, Young-Soo; Hu, Yuting; Lee, Sung-Eun; Li, Qing X

    2007-02-01

    Burkholderia sp. C3 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, Hawaii, USA, and studied for its degradation of phenanthrene as a sole carbon source. The initial 3,4-C dioxygenation was faster than 1,2-C dioxygenation in the first 3-day culture. However, 1-hydroxy-2-naphthoic acid derived from 3,4-C dioxygenation degraded much slower than 2-hydroxy-1-naphthoic acid derived from 1,2-C dioxygenation. Slow degradation of 1-hydroxy-2-naphthoic acid relative to 2-hydroxy-1-naphthoic acid may trigger 1,2-C dioxygenation faster after 3 days of culture. High concentrations of 5,6- and 7,8-benzocoumarins indicated that meta-cleavage was the major degradation mechanism of phenanthrene-1,2- and -3,4-diols. Separate cultures with 2-hydroxy-1-naphthoic acid and 1-hydroxy-2-naphthoic acid showed that the degradation rate of the former to naphthalene-1,2-diol was much faster than that of the latter. The two upper metabolic pathways of phenanthrene are converged into naphthalene-1,2-diol that is further metabolized to 2-carboxycinnamic acid and 2-hydroxybenzalpyruvic acid by ortho- and meta-cleavages, respectively. Transformation of naphthalene-1,2-diol to 2-carboxycinnamic acid by this strain represents the first observation of ortho-cleavage of two rings-PAH-diols by a Gram-negative species.

  2. Histochemical Demonstration of Protein-Bound Alpha-Acylamido Carboxyl Groups

    PubMed Central

    Barrnett, Russell J.; Seligman, Arnold M.

    1958-01-01

    A method has been developed to demonstrate the alpha-acylamido carboxyl groups of protein, taking advantage of the fact that acylamido carboxyl groups are converted to ketonic carbonyls by the action of acetic anhydride and absolute pyridine. The method utilizes deparaffinized sections of tissues fixed in a variety of fixatives. Following the conversion of carboxyls to the methyl ketones, the latter are stained with 2-hydroxy-3-naphthoic acid hydrazide. Control experiments have indicated that methylation of carboxyls prevented staining, as did carbonyl reagents after the carboxyls were transformed to methyl ketones. Leucofuchsin did not stain the ketonic carbonyls, and only elastic tissue stained with 2-hydroxy-3-naphthoic acid hydrazide without the previous use of the catalyzed reaction with anhydride. A brief survey of the reaction on various tissues of the albino rat was made, and the effects of various fixatives were assayed. Of particular interest were certain sites, such as acidophiles of the anterior pituitary gland, where an intense reaction occurred. The possibility exists that certain specific proteins rich in terminal acylamido carboxyl groups, by virtue of their protein side chains or low molecular weight, may be demonstrated by this method. PMID:13525430

  3. Solvent-Free Conversion of Alpha-Naphthaldehyde to 1-Naphthoic Acid and 1-Naphthalenemethanol: Application of the Cannizzaro Reaction

    ERIC Educational Resources Information Center

    Esteb, John J.; Gligorich, Keith M.; O'Reilly, Stacy A.; Richter, Jeremy M.

    2004-01-01

    A mixture of potassium hydroxide and alpha-naphthaldehyde (1) are heated under solvent-free conditions to produce 1-naphthoic acid (2) and 1-naphthalenemethanol (3). The experiment offers several advantages over many existing exercises including the ease of reaction workup, shorter reaction time, relative environmental friendliness of the…

  4. Conformationally constrained farnesoid X receptor (FXR) agonists: Naphthoic acid-based analogs of GW 4064.

    PubMed

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Jones, Stacey A; Kaldor, Istvan; Liu, Yaping; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Wisely, G Bruce

    2008-08-01

    Starting from the known FXR agonist GW 4064 1a, a series of stilbene replacements were prepared. The 6-substituted 1-naphthoic acid 1b was an equipotent FXR agonist with improved developability parameters relative to 1a. Analog 1b also reduced the severity of cholestasis in the ANIT acute cholestatic rat model.

  5. Asymmetric hydroalkoxylation of non-activated alkenes: titanium-catalyzed cycloisomerization of allylphenols at high temperatures.

    PubMed

    Schlüter, Johannes; Blazejak, Max; Boeck, Florian; Hintermann, Lukas

    2015-03-23

    The asymmetric catalytic addition of alcohols (phenols) to non-activated alkenes has been realized through the cycloisomerization of 2-allylphenols to 2-methyl-2,3-dihydrobenzofurans (2-methylcoumarans). The reaction was catalyzed by a chiral titanium-carboxylate complex at uncommonly high temperatures for asymmetric catalytic reactions. The catalyst was generated by mixing titanium isopropoxide, the chiral ligand (aS)-1-(2-methoxy-1-naphthyl)-2-naphthoic acid or its derivatives, and a co-catalytic amount of water in a ratio of 1:1:1 (5 mol % each). This homogeneous thermal catalysis (HOT-CAT) gave various (S)-2-methylcoumarans with yields of up to 90 % and in up to 85 % ee at 240 °C, and in 87 % ee at 220 °C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Multicomponent hydrogen-bonding organic solids constructed from 6-hydroxy-2-naphthoic acid and N-heterocycles: Synthesis, structural characterization and synthon discussion

    NASA Astrophysics Data System (ADS)

    Zong, Yingxia; Shao, Hui; Pang, Yanyan; Wang, Debao; Liu, Kang; Wang, Lei

    2016-07-01

    Seven novel multicomponent crystals involving various substituted organic amine molecules and 6-hydroxy-2-naphthoic acid were prepared and characterized by using single crystal X-ray diffraction, infrared and thermogravimetric analyses (TGA). Crystal structures with 1,4-bis(imidazol) butane (L1) 1, 1,4-bis(imidazol-1-ylmethyl)benzene (L2) 2, 1-phenyl piperazine 3, 2-amino-4-hydroxy-6-methyl pyrimidine 4, 4,4'-bipyridine 5, 5,5'-dimethyl-2,2'-dipyridine 6, 2-amino-4,6-dimethyl pyrimidine 7 were determined. Among the seven molecular complexes, total proton transfer from 6-hydroxy-2-naphthoic acid to coformer has occurred in crystals 1-4, while the remaining were cocrystals. X-ray single-crystal structures of these complexes reveal that strong hydrogen bonding O-H···O/N-H···O/O-H···N and weak C-H···O/C-H···π/π···π intermolecular interactions direct the packing modes of molecular crystals together. The analysis of supramolecular synthons in the present structures shows that some classical supramolecular synthons like pyridine-carboxylic acid heterosynthon R22 (7) and aminopyridine-carboxylic acid heterosynthon R22 (8), are again observed in constructing the hydrogen-bonding networks in this paper. Besides, we noticed that water molecules act as a significant hydrogen-bonding connector in constructing supramolecular architectures of 3, 4, 6, and 7.

  7. On-Surface Domino Reactions: Glaser Coupling and Dehydrogenative Coupling of a Biscarboxylic Acid To Form Polymeric Bisacylperoxides.

    PubMed

    Held, Philipp Alexander; Gao, Hong-Ying; Liu, Lacheng; Mück-Lichtenfeld, Christian; Timmer, Alexander; Mönig, Harry; Barton, Dennis; Neugebauer, Johannes; Fuchs, Harald; Studer, Armido

    2016-08-08

    Herein we report the on-surface oxidative homocoupling of 6,6'-(1,4-buta-1,3-diynyl)bis(2-naphthoic acid) (BDNA) via bisacylperoxide formation on different Au substrates. By using this unprecedented dehydrogenative polymerization of a biscarboxylic acid, linear poly-BDNA with a chain length of over 100 nm was prepared. It is shown that the monomer BDNA can be prepared in situ at the surface via on-surface Glaser coupling of 6-ethynyl-2-naphthoic acid (ENA). Under the Glaser coupling conditions, BDNA directly undergoes polymerization to give the polymeric peroxide (poly-BDNA) representing a first example of an on-surface domino reaction. It is shown that the reaction outcome varies as a function of surface topography (Au(111) or Au(100)) and also of the surface coverage, to give branched polymers, linear polymers, or 2D metal-organic networks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Exploratory development of foams from liquid crystal polymers

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1985-01-01

    Two types of liquid crystal polymer (LCP) compositions were studied and evaluated as structural foam materials. One is a copolymer of 6-hydroxy-2-naphthoic acid, terephthalic acid, and p-acetoxyacetanilide (designed HNA/TA/AAA), and the other is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (designated HBA/HNA). Experimental results showed that the extruded HNA/TA/AA foams have better mechanical quality and appearance than HBA/HNA foams. Heat treatment improved foam tensile strength and break elongation, but reduced their modulus. The injection molding results indicated that nitrogen foaming agents with a low-pressure process gave better void distribution in the injection molded LCP foams than those made by the conventional injection-molding machine and chemical blowing agents. However, in comparing LCP foams with other conventional plastic foams, HBA/HNA foams have better mechanical properties than foamed ABS and PS, but are comparable to PBT and inferior to polycarbonate foams, especially in heat-deflection temperature and impact resistance energy. These deficiencies are due to LCP molecules not having been fully oriented during the Union-Carbide low-pressure foaming process.

  9. Development of a novel naphthoic acid ionic liquid and its application in "no-organic solvent microextraction" for determination of triclosan and methyltriclosan in human fluids and the method optimization by central composite design.

    PubMed

    Wang, Hui; Gao, Jiajia; Yu, Nana; Qu, Jingang; Fang, Fang; Wang, Huili; Wang, Mei; Wang, Xuedong

    2016-07-01

    In traditional ionic liquids (ILs)-based microextraction, the hydrophobic and hydrophilic ILs are often used as extractant and disperser, respectively. However, the functional effects of ILs are not utilized in microextraction procedures. Herein, we introduced 1-naphthoic acid into imidazolium ring to synthesize a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]), and its structure was characterized by IR, (1)H NMR and MS. On the basis of its acidic property and lower solubility than common [CnMIM][BF4], it was used as a mixing dispersive solvent with [C4MIM][BF4] in "functionalized ionic liquid-based no organic solvent microextraction (FIL-NOSM)". Utilization of [C4MIM][NPA] in FIL-NOSM procedures has two obvious advantages: (1) it promoted the non-polar environment, increased volume of the sedimented phase, and thus could enhance the extraction recoveries of triclosan (TCS) and methyltriclosan (MTCS) by more than 10%; and (2) because of the acidic property, it can act as a pH modifier, avoiding extra pH adjustment step. By combining single factor optimization and central composite design, the main factors in the FIL-NOSM method were optimized. Under the optimal conditions, the relative recoveries of TCS and MTCS reached up to 98.60-106.09%, and the LODs of them were as low as 0.12-0.15µgL(-1) in plasma and urine samples. In total, this [C4MIM][NPA]-based FIL-NOSM method provided high extraction efficiency, and required less pretreatment time and unutilized any organic solvent. To the best of our knowledge, this is the first application of [C4mim][NPA]-based microextraction method for the simultaneous quantification of trace TCS and MTCS in human fluids. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Development and optimization of a naphthoic acid-based ionic liquid as a "non-organic solvent microextraction" for the determination of tetracycline antibiotics in milk and chicken eggs.

    PubMed

    Gao, Jiajia; Wang, Hui; Qu, Jingang; Wang, Huili; Wang, Xuedong

    2017-01-15

    In traditional ionic liquids (ILs)-based microextraction, ILs are often used as extraction and dispersive solvents; however, their functional effects are not fully utilized. Herein, we developed a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]) with strong acidity. It was used as a mixed dispersive solvent with conventional [C2MIM][BF4] in "functionalized ionic liquid-based non-organic solvent microextraction (FIL-NOSM)" for determination of tetracycline antibiotics (TCs) in milk and eggs. Utilization of [C4MIM][NPA] in FIL-NOSM method increased extraction recoveries (ERs) of TCs by more than 20% and eliminated the pH adjustment step because of its strong acidity. Under optimized conditions based on central composite design, the ERs of four TCs were 94.1-102.1%, and the limitsofdetection were 0.08-1.12μgkg(-1) in milk and egg samples. This proposed method provides high extraction efficiency, less pretreatment time and requires non-organic solvents for determination of trace TC concentrations in complex animal-based food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Chemical Inactivation of the Cinnamate 4-Hydroxylase Allows for the Accumulation of Salicylic Acid in Elicited Cells1

    PubMed Central

    Schoch, Guillaume A.; Nikov, Georgi N.; Alworth, William L.; Werck-Reichhart, Danièle

    2002-01-01

    The cinnamate (CA) 4-hydroxylase (C4H) is a cytochrome P450 that catalyzes the second step of the main phenylpropanoid pathway, leading to the synthesis of lignin, pigments, and many defense molecules. Salicylic acid (SA) is an essential trigger of plant disease resistance. Some plant species can synthesize SA from CA by a mechanism not yet understood. A set of specific inhibitors of the C4H, including competitive, tight-binding, mechanism-based irreversible, and quasi-irreversible inhibitors have been developed with the main objective to redirect cinnamic acid to the synthesis of SA. Competitive inhibitors such as 2-hydroxy-1-naphthoic acid and the heme-coordinating compound 3-(4-pyridyl)-acrylic acid allowed strong inhibition of C4H activity in a tobacco (Nicotiana tabacum cv Bright Yellow [BY]) cell suspension culture. This inhibition was however rapidly relieved either because of substrate accumulation or because of inhibitor metabolism. Substrate analogs bearing a methylenedioxo function such as piperonylic acid (PIP) or a terminal acetylene such as 4-propynyloxybenzoic acid (4PB), 3-propynyloxybenzoic acid, and 4-propynyloxymethylbenzoic acid are potent mechanism-based inactivators of the C4H. PIP and 4PB, the best inactivators in vitro, were also efficient inhibitors of the enzyme in BY cells. Inhibition was not reversed 46 h after cell treatment. Cotreatment of BY cells with the fungal elicitor β-megaspermin and PIP or 4PB led to a dramatic increase in SA accumulation. PIP and 4PB do not trigger SA accumulation in nonelicited cells in which the SA biosynthetic pathway is not activated. Mechanism-based C4H inactivators, thus, are promising tools for the elucidation of the CA-derived SA biosynthetic pathway and for the potentiation of plant defense. PMID:12376665

  12. Separation and determination of citrinin in corn using HPLC fluorescence detection assisted by molecularly imprinted solid phase extraction clean-up

    USDA-ARS?s Scientific Manuscript database

    A liquid chromatography based method to detect citrinin in corn was developed using molecularly imprinted solid phase extraction (MISPE) sample clean-up. Molecularly imprinted polymers were synthesized using 1,4-dihydroxy-2-naphthoic acid as the template and an amine functional monomer. Density func...

  13. Biotechnological Production of Caffeic Acid by Bacterial Cytochrome P450 CYP199A2

    PubMed Central

    Arai, Yuka; Kino, Kuniki

    2012-01-01

    Caffeic acid is a biologically active molecule that has various beneficial properties, including antioxidant, anticancer, and anti-inflammatory activities. In this study, we explored the catalytic potential of a bacterial cytochrome P450, CYP199A2, for the biotechnological production of caffeic acid. When the CYP199A2 enzyme was reacted with p-coumaric acid, it stoichiometrically produced caffeic acid. The crystal structure of CYP199A2 shows that Phe at position 185 is situated directly above, and only 6.35 Å from, the heme iron. This F185 residue was replaced with hydrophobic or hydroxylated amino acids using site-directed mutagenesis to create mutants with novel and improved catalytic properties. In whole-cell assays with the known substrate of CYP199A2, 2-naphthoic acid, only the wild-type enzyme hydroxylated 2-naphthoic acid at the C-7 and C-8 positions, whereas all of the active F185 mutants exhibited a preference for C-5 hydroxylation. Interestingly, several F185 mutants (F185V, F185L, F185I, F185G, and F185A mutants) also acquired the ability to hydroxylate cinnamic acid, which was not hydroxylated by the wild-type enzyme. These results demonstrate that F185 is an important residue that controls the regioselectivity and the substrate specificity of CYP199A2. Furthermore, Escherichia coli cells expressing the F185L mutant exhibited 5.5 times higher hydroxylation activity for p-coumaric acid than those expressing the wild-type enzyme. By using the F185L whole-cell catalyst, the production of caffeic acid reached 15 mM (2.8 g/liter), which is the highest level so far attained in biotechnological production of this compound. PMID:22729547

  14. Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanism

    PubMed Central

    Evans, W. C.; Fernley, H. N.; Griffiths, E.

    1965-01-01

    1. Phenanthrene is oxidatively metabolized by soil pseudomonads through trans-3,4-dihydro-3,4-dihydroxyphenanthrene to 3,4-dihydroxyphenanthrene, which then undergoes cleavage. 2. Some properties of the ring-fission product, cis-4-(1-hydroxynaphth-2-yl)-2-oxobut-3-enoic acid, are described. The Fe2+-dependent oxygenase therefore disrupts the bond between C-4 and the angular C of the phenanthrene nucleus. 3. An enzyme of the aldolase type converts the fission product into 1-hydroxy-2-naphthaldehyde (2-formyl-1-hydroxynaphthalene). An NAD-specific dehydrogenase is also present in the cell-free extract, which oxidizes the aldehyde to 1-hydroxy-2-naphthoic acid. This is then oxidatively decarboxylated to 1,2-dihydroxynaphthalene, thus allowing continuation of metabolism via the naphthalene pathway. 4. Anthracene is similarly metabolized, through 1,2-dihydro-1,2-dihydroxyanthracene to 1,2-dihydroxyanthracene, in which ring-fission occurs to give cis-4-(2-hydroxynaphth-3-yl)-2-oxobut-3-enoic acid. The position of cleavage is again at the bond between the angular C and C-1 of the anthracene nucleus. 5. Enzymes that convert the fission product through 2-hydroxy-3-naphthaldehyde into 2-hydroxy-3-naphthoic acid were demonstrated. The further metabolism of this acid is discussed. 6. The Fe2+-dependent oxygenase responsible for cleavage of all the o-dihydroxyphenol derivatives appears to be catechol 2,3-oxygenase, and is a constitutive enzyme in the Pseudomonas strains used. PMID:14342521

  15. Benz[a]anthracene Biotransformation and Production of Ring Fission Products by Sphingobium sp. Strain KK22

    PubMed Central

    Kunihiro, Marie; Ozeki, Yasuhiro; Nogi, Yuichi; Hamamura, Natsuko

    2013-01-01

    A soil bacterium, designated strain KK22, was isolated from a phenanthrene enrichment culture of a bacterial consortium that grew on diesel fuel, and it was found to biotransform the persistent environmental pollutant and high-molecular-weight polycyclic aromatic hydrocarbon (PAH) benz[a]anthracene. Nearly complete sequencing of the 16S rRNA gene of strain KK22 and phylogenetic analysis revealed that this organism is a new member of the genus Sphingobium. An 8-day time course study that consisted of whole-culture extractions followed by high-performance liquid chromatography (HPLC) analyses with fluorescence detection showed that 80 to 90% biodegradation of 2.5 mg liter−1 benz[a]anthracene had occurred. Biodegradation assays where benz[a]anthracene was supplied in crystalline form (100 mg liter−1) confirmed biodegradation and showed that strain KK22 cells precultured on glucose were equally capable of benz[a]anthracene biotransformation when precultured on glucose plus phenanthrene. Analyses of organic extracts from benz[a]anthracene biodegradation by liquid chromatography negative electrospray ionization tandem mass spectrometry [LC/ESI(−)-MS/MS] revealed 10 products, including two o-hydroxypolyaromatic acids and two hydroxy-naphthoic acids. 1-Hydroxy-2- and 2-hydroxy-3-naphthoic acids were unambiguously identified, and this indicated that oxidation of the benz[a]anthracene molecule occurred via both the linear kata and angular kata ends of the molecule. Other two- and single-aromatic-ring metabolites were also documented, including 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid and salicylic acid, and the proposed pathways for benz[a]anthracene biotransformation by a bacterium were extended. PMID:23686261

  16. Mesoepitaxy: A Universal Route to Oriented Materials

    DTIC Science & Technology

    1993-06-14

    naphthoic acid) (VecuaZ, Hoechst-Celanese], a perfluorinated copolymer of ethylene and propylene (FEP TI00, Du Pont], poly(butylene terephthalate) (PBT...189 meV). In ferences are evident in the vibronic character of the ab- addition, the zero-phonon emission line, now at 2.09 eV, sorption and emission...the ab- sorption spectra is disorder-induced localization. To model the photoluminescence spectrum, we con- Qualitatively, the disordered -,r-electron

  17. Two new compounds from Helichrysum arenarium (L.).

    PubMed

    Zhang, Yu-Wei; Sun, Wu-Xing; Li, Xian; Zhao, Chun-Chao; Meng, Da-Li; Li, Ning

    2009-01-01

    Two new compounds were isolated from the whole plant of Helichrysum arenarium (L.) Moench. By means of spectroscopic data (IR, UV, 1D and 2D NMR, HR-MS, ESI-MS, and NOESY) and chemical evidence, the structures were established as 6,7-dimethoxy-4-hydroxy-1-naphthoic acid (1) and (Z)-5-hydroxy-7-methoxy-4-[3-methyl-4-(O-beta-D-xylopyranosyl)but-2-enyl]isobenzofuran-1(3H)-one (2).

  18. Hybrid carbon nanoparticles modified core-shell silica: a high efficiency carbon-based phase for hydrophilic interaction liquid chromatography.

    PubMed

    Ibrahim, Mohammed E A; Wahab, M Farooq; Lucy, Charles A

    2014-04-11

    Hydrophilic interaction liquid chromatography (HILIC) is a fast growing separation technique for hydrophilic and polar analytes. In this work, we combine the unique selectivity of carbon surfaces with the high efficiency of core-shell silica. First, 5 μm core-shell silica is electrostatically coated with 105 nm cationic latex bearing quaternary ammonium groups. Then 50 nm anionic carbon nanoparticles are anchored onto the surface of the latex coated core-shell silica particles to produce a hybrid carbon-silica phase. The hybrid phase shows different selectivity than ten previously classified HILIC column chemistries and 36 stationary phases. The hybrid HILIC phase has shape selectivity for positional isomeric pairs (phthalic/isophthalic and 1-naphthoic/2-naphthoic acids). Fast and high efficiency HILIC separations of biologically important carboxylates, phenols and pharmaceuticals are reported with efficiencies up to 85,000 plates m(-1). Reduced plate height of 1.9 (95,000 plates m(-1)) can be achieved. The hybrid phase is stable for at least 3 months of usage and storage under typical HILIC eluents. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Disposition and metabolism of 1,2-dimethylnaphthalene in rats.

    PubMed

    Kilanowicz, A; Sapota, A

    1998-01-01

    The aim of this study was to investigate the distribution, excretion and metabolism of 1,2-dimethylnaphthalene-[ring-U-3H] in rats. The experiments were performed on 54 male outbred IMP:Wist rats with body weight of 200 g +/- 20%. The compound was given i.p. in olive oil in a single dose of 28 mg/kg (about 6.2 MBq per animal). 3H radioactivity was traced in selected organs and tissues, blood, urine and faeces, 1-72 h following the administration. The main metabolites were isolated from urine and identified by the GC-MS method. Faeces and urine proved to be the main route of tritium elimination. Over 93% of the given compound was excreted during the first 72 h. Maximum level of tritium in plasma was observed during the 4th h after the compound administration. The accretion of 3H proceeded with kinetic constant of 0.7 h, followed by monophasic decline with the half-life of about 19h. In organs and tissue, the highest concentration during the first hours after administration were detected in the fat, adrenals, liver, spleen and kidneys. Then gradual decline of tritium was noticed in all examined tissues. The following urinary metabolites were identified: 1. 1,2-dimethylthionaphthalene, 2. 1,2-dimethylnaphthol, 3. 1-methylnaphthalene-2-methanol, 4. 1-methyl-2-naphthoic acid and 5. 1,2-dimethylmethylthionaphthalene. In conclusion, 1,2-dimethylnaphthalene has a relatively rapid turnover rate in the rat organism and does not form deposits in the tissue. The metabolism encompasses ring hydroxylation and glutathione conjugation leading to thionaphthol and oxygenation, and then to naphthoic acid.

  20. A simple colorimetric chemosensor bearing a carboxylic acid group with high selectivity for CN-

    NASA Astrophysics Data System (ADS)

    Park, Gyeong Jin; Choi, Ye Won; Lee, Dongkuk; Kim, Cheal

    2014-11-01

    A new simple ‘naked eye' chemosensor 1 (sodium (E)-2-((2-(3-hydroxy-2-naphthoyl)hydrazono)methyl)benzoate) has been synthesized for detection of CN- in a mixture of DMF/H2O (9:1). The sensor 1 comprises of a naphthoic hydrazide as efficient hydrogen bonding donor group and a benzoic acid as the moiety with the water solubility. The receptor 1 showed high selectivity toward cyanide ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to yellow for CN- over other anions. Therefore, receptor 1 could be useful for cyanide detection in aqueous environment, displaying a high distinguishable selectivity from hydrogen bonded anions and being clearly visible to the naked eye.

  1. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    NASA Astrophysics Data System (ADS)

    Liang, Rongning; Wang, Tiantian; Zhang, Huan; Yao, Ruiqing; Qin, Wei

    2018-03-01

    Nowadays, it is still difficult for molecularly imprinted polymer (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  2. Crystallographic Fragment Based Drug Discovery: Use of a Brominated Fragment Library Targeting HIV Protease

    PubMed Central

    Tiefenbrunn, Theresa; Forli, Stefano; Happer, Meaghan; Gonzalez, Ana; Tsai, Yingssu; Soltis, Michael; Elder, John H.; Olson, Arthur J.; Stout, C. David

    2013-01-01

    A library of 68 brominated fragments was screened against a new crystal form of inhibited HIV-1 protease in order to probe surface sites in soaking experiments. Often fragments are weak binders with partial occupancy, resulting in weak, difficult-to-fit electron density. The use of a brominated fragment library addresses this challenge, as bromine can be located unequivocally via anomalous scattering. Data collection was carried out in an automated fashion using AutoDrug at SSRL. Novel hits were identified in the known surface sites: 3-bromo-2,6-dimethoxybenzoic acid (Br6) in the flap site, and 1-bromo-2-naphthoic acid (Br27) in the exosite, expanding the chemistry of known fragments for development of higher affinity potential allosteric inhibitors. At the same time, mapping the binding sites of a number of weaker binding Br-fragments provides further insight into the nature of these surface pockets. PMID:23998903

  3. Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: Catalytic properties and involvement in PAH degradation.

    PubMed

    Dubrovskaya, Ekaterina; Pozdnyakova, Natalia; Golubev, Sergey; Muratova, Anna; Grinev, Vyacheslav; Bondarenkova, Anastasiya; Turkovskaya, Olga

    2017-02-01

    Peroxidases from root exudates of sorghum (Sorghum bicolor L. Moench) and alfalfa (Medicago sativa L.) were purified and characterized, and their ability to oxidize native PAHs and PAH-derivatives was evaluated. The obtained data confirm that peroxidases are involved in the rhizosphere degradation of PAHs. Nondenaturing PAGE showed that the peroxidases of both plants were represented by a range of isoforms/isoenzymes (five to eight). Minor forms were lost during further purification, and as a result, the major anionic form from alfalfa root exudates and the major cationic form from those of sorghum were obtained. Both electrophoretically homogeneous peroxidases were monomeric proteins with a molecular weight of about 46-48 kDa. The pH optima and the main catalytic constants for the test substrates were determined. On the basis of their molecular and catalytic properties, the obtained enzymes were found to be typical plant peroxidases. Derivatives of PAHs and potential products of their microbial degradation (9-phenanthrol and 9,10-phenanthrenequinone), unlike the parent PAH (phenanthrene), inhibited the catalytic activity of the peroxidases, possibly indicating greater availability of the enzymes' active centers to these substances. Peroxidase-catalyzed decreases in the concentrations of a number of PAHs and their derivatives were observed. Sorghum peroxidase oxidized anthracene and phenanthrene, while alfalfa peroxidase oxidized only phenanthrene. 1-Hydroxy-2-naphthoic acid was best oxidized by peroxidase of alfalfa. However, quinone derivatives of PAHs were unavailable to sorghum peroxidase, but were oxidized by alfalfa peroxidase. These results indicate that the major peroxidases from root exudates of alfalfa and sorghum can have a role in the rhizosphere degradation of PAHs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldfarb, J.L.; Suuberg, E.M.

    Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives (OPAHs) are ubiquitous environmental pollutants resulting from the incomplete combustion of coal and fossil fuels. Their vapor pressures are key thermodynamic data essential for modeling fate and transport within the environment. The present study involved nine PAHs containing oxygen heteroatoms, including aldehyde, carboxyl, and nitro groups, specifically 2-nitrofluorene, 9-fluorenecarboxylic acid, 2-fluorenecarboxaldehyde, 2-anthracenecarboxylic acid, 9-anthracenecarboxylic acid, 9-anthraldehyde, 1-nitropyrene, 1-pyrenecarboxaldehyde, and 1-bromo-2-naphthoic acid. The vapor pressures of these compounds, with molecular weights ranging from 194 to 251 g/mol, were measured using the isothermal Knudsen effusion technique in the temperature range of 329 to 421more » K. The corresponding enthalpies of sublimation, calculated via the Clausius-Clapeyron equation, are compared to parent, nonoxygenated PAH compound data to determine the effect of the addition of these oxygen-containing heteroatoms. As expected, the addition of -CHO, -COOH, and -NO{sub 2} groups onto these PAHs increases the enthalpy of sublimation and decreases the vapor pressure as compared to the parent PAH; the position of substitution also plays a significant role in determining the vapor pressure of these OPAHs.« less

  5. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  6. Simultaneous determination of four plant hormones in bananas by molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography.

    PubMed

    Yan, Hongyuan; Wang, Fang; Han, Dandan; Yang, Gengliang

    2012-06-21

    A highly selective molecularly imprinted solid-phase extraction (MISPE) combined with liquid chromatography-ultraviolet detection was developed for the simultaneous isolation and determination of four plant hormones including indole-3-acetic acid (IAA), indole-3-propionic acid (IPA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA) in banana samples. The new molecularly imprinted microspheres (MIMs) prepared by aqueous suspension polymerization using 3-hydroxy-2-naphthoic acid and 1-methylpiperazine as mimic templates performed with high selectivity and affinity for the four plant hormones, and applied as selective sorbents of solid-phase extraction could effectively eliminate the interferences of the banana matrix. Good linearity was obtained in a range of 0.04-4.00 μg g(-1) and the recoveries of the four plant hormones at three spiked levels ranged from 78.5 to 107.7% with the relative standard deviations (RSD) of less than 4.6%. The developed MISPE-HPLC protocol obviously improved the selectivity and eliminated the effect of template leakage on quantitative analysis, and could be applied for the determination of plant hormones in complicated biological samples.

  7. Acid-Catalyzed Isomerization of Carvone to Carvacrol

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Mattingly, Shawn P.

    2005-01-01

    The acid-catalyzed isomerization of carvone to carvacrol, first reported by Ritter and Ginsburg, is especially well suited with a permanent-magnet FT instrument. The acid-catalyzed isomerization of carvone to carvacrol produced a 61% yield after a three hour reflux with 30% aqueous sulfuric acid.

  8. Online investigations on ozonation products of pyrene and benz[ a]anthracene particles with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Gao, Shaokai; Zhang, Yang; Meng, Junwang; Shu, Jinian

    The reaction products of ozone with pyrene and benz[ a]anthracene absorbed on azelaic acid particles under the pseudo-first-order reaction conditions have been investigated with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The pyrene and benz[ a]anthracene particles with the initial concentrations of ˜1 mg m -3 are respectively exposed to ˜22 ppm ozone in a reaction chamber with a volume of ˜180 L. The time-of-flight mass spectra of the particulate ozonides are obtained. The assignments of the mass spectra reveal that 4-carboxy-5-phenanthrene-carboxyaldehyde (71%) and hydroxypyrene (23%) are the main solid state ozonides of pyrene, while 2-(2-formyl)phenyl-3-naphthoic acid (35%), hydroxybenz[ a]anthrone (30%), and benz[ a]anthracene-7,12-dione (18%) are the main solid state ozonides of benz[ a]anthracene. The pathways of the ozonations are proposed in the paper.

  9. Crystallographic fragment-based drug discovery: use of a brominated fragment library targeting HIV protease.

    PubMed

    Tiefenbrunn, Theresa; Forli, Stefano; Happer, Meaghan; Gonzalez, Ana; Tsai, Yingssu; Soltis, Michael; Elder, John H; Olson, Arthur J; Stout, Charles D

    2014-02-01

    A library of 68 brominated fragments was screened against a new crystal form of inhibited HIV-1 protease in order to probe surface sites in soaking experiments. Often, fragments are weak binders with partial occupancy, resulting in weak, difficult-to-fit electron density. The use of a brominated fragment library addresses this challenge, as bromine can be located unequivocally via anomalous scattering. Data collection was carried out in an automated fashion using AutoDrug at SSRL. Novel hits were identified in the known surface sites: 3-bromo-2,6-dimethoxybenzoic acid (Br6) in the flap site and 1-bromo-2-naphthoic acid (Br27) in the exosite, expanding the chemistry of known fragments for development of higher affinity potential allosteric inhibitors. At the same time, mapping the binding sites of a number of weaker binding Br-fragments provides further insight into the nature of these surface pockets. © 2013 John Wiley & Sons A/S.

  10. Recent Development in Chemical Depolymerization of Lignin: A Review

    DOE PAGES

    Wang, Hai; Tucker, Melvin; Ji, Yun

    2013-01-01

    This article reviewed recent development of chemical depolymerization of lignins. There were five types of treatment discussed, including base-catalyzed, acid-catalyzed, metallic catalyzed, ionic liquids-assisted, and supercritical fluids-assisted lignin depolymerizations. The methods employed in this research were described, and the important results were marked. Generally, base-catalyzed and acid-catalyzed methods were straightforward, but the selectivity was low. The severe reaction conditions (high pressure, high temperature, and extreme pH) resulted in requirement of specially designed reactors, which led to high costs of facility and handling. Ionic liquids, and supercritical fluids-assisted lignin depolymerizations had high selectivity, but the high costs of ionic liquids recyclingmore » and supercritical fluid facility limited their applications on commercial scale biomass treatment. Metallic catalyzed depolymerization had great advantages because of its high selectivity to certain monomeric compounds and much milder reaction condition than base-catalyzed or acid-catalyzed depolymerizations. It would be a great contribution to lignin conversion if appropriate catalysts were synthesized.« less

  11. Acid-catalyzed autohydrolysis of wheat straw to improve sugar recovery.

    PubMed

    Ertas, Murat; Han, Qiang; Jameel, Hasan

    2014-10-01

    A comparison study of autohydrolysis and acid-catalyzed autohydrolysis of wheat straw was performed to understand the impact of acid addition on overall sugar recovery. Autohydrolysis combined with refining is capable of achieving sugar recoveries in the mid 70s. If the addition of a small amount of acid is capable of increasing the sugar recovery even higher it may be economically attractive. Acetic, sulfuric, hydrochloric and sulfurous acids were selected for acid-catalyzed autohydrolysis pretreatments. Autohydrolysis with no acid at 190 °C showed the highest total sugar in the prehydrolyzate. Enzymatic hydrolysis was performed for all the post-treated solids with and without refining at enzyme loadings of 4 and 10 FPU/g for 96 h. Acid-catalyzed autohydrolysis at 190 °C with sulfurous acid showed the highest total sugar recovery of 81.2% at 4 FPU/g enzyme charge compared with 64.3% at 190 °C autohydrolysis without acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil.

    PubMed

    Wang, Haizhen; Lou, Jun; Gu, Haiping; Luo, Xiaoyan; Yang, Li; Wu, Laosheng; Liu, Yong; Wu, Jianjun; Xu, Jianming

    2016-07-01

    A novel phenanthrene (PHE)-degrading strain Massilia sp. WF1, isolated from PAH-contaminated soil, was capable of degrading PHE by using it as the sole carbon source and energy in a range of pH (5.0-8.0), temperatures (20-35 °C), and PHE concentrations (25-400 mg L(-1)). Massilia sp. WF1 exhibited highly effective PHE-degrading ability that completely degraded 100 mg L(-1) of PHE over 2 days at optimal conditions (pH 6.0, 28 °C). The kinetics of PHE biodegradation by Massilia sp. WF1 was well represented by the Gompertz model. Results indicated that PHE biodegradation was inhibited by the supplied lactic acid but was promoted by the supplied carbon sources of glucose, citric acid, and succinic acid. Salicylic acid (SALA) and phthalic acid (PHTA) were not utilized by Massilia sp. WF1 and had no obvious effect on PHE biodegradation. Only two metabolites, 1-hydroxy-2-naphthoic acid (1H2N) and PHTA, were identified in PHE biodegradation process. Quantitatively, nearly 27.7 % of PHE was converted to 1H2N and 30.3 % of 1H2N was further metabolized to PHTA. However, the PHTA pathway was broken and the SALA pathway was ruled out in PHE biodegradation process by Massilia sp. WF1.

  13. Substituted naphthoquinones as novel amino acid sensitive reagents for the detection of latent fingermarks on paper surfaces.

    PubMed

    Jelly, R; Lewis, S W; Lennard, C; Lim, K F; Almog, J

    2010-10-15

    In this paper, we present our preliminary studies into naphthoquinones as novel reagents for the detection of latent fingermarks on paper. Latent fingermarks deposited on paper substrates were treated with solutions of selected naphthoquinones in ethyl acetate/HFE-7100, with subsequent heating. The selected compounds were 1,4-dihydroxy-2-naphthoic acid, 1,2-naphthoquinone-4-sulfonate, 2-methoxy-1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone. All of the tested compounds yielded purple-brown visible fingermarks, which also exhibited photoluminescence when illuminated with a high intensity filtered light source at 555 nm and viewed through red goggles. Indirect heat using an oven at 150°C for 1h was found to be superior to direct heat with an iron, which while providing faster development lead to increased levels of background colouration. Luminescence spectrophotometry revealed differences in photoluminescence characteristics for fingermarks developed with the different naphthoquinones, with excitation over the range 530-590 nm. Luminescence spectrophotometry of developed lysine, glycine and serine spots on paper was used to confirm that the naphthoquinones were reacting with amino acids in the latent fingermark. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Treesearch

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  15. Identification of Bacillus subtilis men mutants which lack O-succinylbenzoyl-coenzyme A synthetase and dihydroxynaphthoate synthase.

    PubMed Central

    Meganathan, R; Bentley, R; Taber, H

    1981-01-01

    Menaquinone (vitamin K2)-deficient mutants of Bacillus subtilis, whose growth requirement is satisfied by 1,4-dihydroxy-2-naphthoic acid but not by o-succinylbenzoic acid (OSB), have been analyzed for enzymatic defects. Complementation analysis of cell-free extracts of the mutants revealed that there are two groups, as already indicated by genetic analysis. The missing enzyme in each group was identified by complementation of the cell-free extracts with o-succinylbenzoyl-coenzyme A (CoA) synthetase and dihydroxynaphthoate synthase extracted from Mycobacterium phlei. Mutants found to lack dihydroxynaphthoate synthase, and which therefore complement with dihydroxynaphthoate synthase of M. phlei, were designated as menB; those lacking o-succinylbenzoyl-CoA synthetase, and therefore complementing with o-succinylbenzoyl-CoA synthetase, were designated as menE. The menB mutants RB413 (men-325) and RB415 (men-329), when incubated with [2,3-14C2]OSB, produced only the spirodilactone form of OSB in a reaction that was CoA and adenosine 5'-triphosphate dependent. PMID:6780515

  16. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F. K.; He, K. B.; Ma, Y. L.; Rahn, K. A.; Zhang, Q.

    2015-11-01

    A solid-phase extraction (SPE) pretreatment procedure allowing organic acids to be separated from methyl esters in fine aerosol has been developed. The procedure first separates the organic acids from fatty acid methyl esters (FAMEs) and other nonacid organic compounds by aminopropyl-based SPE cartridge and then quantifies them by gas chromatography/mass spectrometry. The procedure prevents the fatty acids and dimethyl phthalate from being overestimated, and so allows us to accurately quantify the C4-C11 dicarboxylic acids (DCAs) and the C8-C30 monocarboxylic acids (MCAs). Results for the extraction of DCAs, MCAs, and AMAs in eluate and FAMEs in effluate by SAX and NH2 SPE cartridges exhibited that the NH2 SPE cartridge gave higher extraction efficiency than the SAX cartridge. The recoveries of analytes ranged from 67.5 to 111.3 %, and the RSD ranged from 0.7 to 10.9 %. The resulting correlations between the aliphatic acids and FAMEs suggest that the FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. Through extraction and cleanup using this procedure, 17 aromatic acids in eluate were identified and quantified by gas chromatography/tandem mass spectrometry, including five polycyclic aromatic hydrocarbon (PAH): acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH acids and the dicarboxylic and aromatic acids suggested that the first three acids and 1,8-naphthalic anhydride were secondary atmospheric photochemistry products and the last two mainly primary.

  17. Method to upgrade bio-oils to fuel and bio-crude

    DOEpatents

    Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

    2013-12-10

    This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

  18. Identification of activities that catalyze the cis-trans isomerization of the double bond of a mono-unsaturated fatty acid in Pseudomonas sp. strain E-3.

    PubMed

    Okuyama, H; Enari, D; Shibahara, A; Yamamoto, K; Morita, N

    1996-06-01

    A cell-free extract of Pseudomonas sp. strain E-3 catalyzed the conversion of 9-cis-hexadecenoic acid [16:1(9c)] to 9-trans-hexadecenoic acid [16:1(9t)] in the free acid form and when 16:1(9c) was esterified to phosphatidylethanolamine (PE). The cytosolic fraction catalyzed the isomerizations of free 16:1(9c) by itself and of 16:1(9c) esterified to PE in the presence of the membrane fraction. Tracer experiments using [2,2-2H2]16:1(9c) demonstrated that the isomerization of free 16:1(9c) occurred independently of the isomerization of 16:1(9c) esterified to PE, indicating that this bacterium has two types of activities that catalyze the cis-trans isomerization of the double bond of a mono-unsaturated fatty acid.

  19. Preparation of activated petroleum coke for removal of naphthenic acids model compounds: Box-Behnken design optimization of KOH activation process.

    PubMed

    Niasar, Hojatallah Seyedy; Li, Hanning; Das, Sreejon; Kasanneni, Tirumala Venkateswara Rao; Ray, Madhumita B; Xu, Chunbao Charles

    2018-04-01

    This study employed Box-Behnken design and response surface methodology to optimize activation parameters for the production of activated petroleum coke (APC) adsorbent from petroleum coke (PC) to achieve highest adsorption capacity for three model naphthenic acids. Activated petroleum coke (APC) adsorbent with a BET surface area of 1726 m 2 /g and total pore volume of 0.85 cc/g was produced at the optimum activation conditions (KOH/coke mass ratio) of 3.0, activation temperature 790 °C, and activation time 3.47 h). Effects of the activation parameters on the adsorption pefromances (adsortion capaciy and kinetics) were investigated. With the APC obtained at the optimum activation condition, the maximum adsorption capacity of 451, 362, and 320 (mg/g) was achieved for 2-naphthoic acid, diphenylacetic acid and cyclohexanepentanoic acid (CP), respectively. Although, generally APC adsorbents with a higher specific surface area and pore volume provide better adsorption capacity, the textural properties (surface areas and pore volume) are not the only parameters determining the APC adsorbents' adsorption capacity. Other parameters such as surface functionalities play effective roles on the adsorption capacity of the produced APC adsorbents for NAs. The KOH activation process, in particular the acid washing step, distinctly reduced the sulfur and metals contents in the raw PC, decreasing the leaching potential of metals from APC adsorbents during adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The Lewis-acid-catalyzed synthesis of hyperbranched poly(glycerol-diacid)s in toluene

    USDA-ARS?s Scientific Manuscript database

    The first examples of monomeric glycerol-derived hyperbranched polyesters produced in a non-polar solvent system are reported here. The polymers were made by the Lewis acid (dibutyltin(IV)oxide)-catalyzed polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutari...

  1. Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes.

    PubMed

    Nakagawa, Yoshinao; Liu, Sibao; Tamura, Masazumi; Tomishige, Keiichi

    2015-04-13

    The total hydrodeoxygenation of carbohydrate-derived molecules to alkanes, a key reaction in the production of biofuel, was reviewed from the aspect of catalysis. Noble metals (or Ni) and acid are the main components of the catalysts, and group 6 or 7 metals such as Re are sometimes added as modifiers of the noble metal. The main reaction route is acid-catalyzed dehydration plus metal-catalyzed hydrogenation, and in some systems metal-catalyzed direct CO dissociation is involved. The appropriate active metal, acid strength, and reaction conditions depend strongly on the reactivity of the substrate. Reactions that use Pt or Pd catalysts supported on Nb-based acids or relatively weak acids are suitable for furanic substrates. Carbohydrates themselves and sugar alcohols undergo CC dissociation easily. The systems that use metal-catalyzed direct CO dissociations can give a higher yield of the corresponding alkane from carbohydrates and sugar alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Single-step synthesis of styryl phosphonic acids via palladium-catalyzed Heck coupling of vinyl phosphonic acid with aryl halides

    DOE PAGES

    McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan

    2017-10-27

    Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).

  3. Single-step synthesis of styryl phosphonic acids via palladium-catalyzed Heck coupling of vinyl phosphonic acid with aryl halides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan

    Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).

  4. A novel on-line gold nanoparticle-catalyzed luminol chemiluminescence detector for high-performance liquid chromatography.

    PubMed

    Zhang, Qun Lin; Wu, Liang; Lv, Chen; Zhang, Xiao Yue

    2012-06-15

    A novel on-line gold nanoparticle-catalyzed luminol-H(2)O(2) chemiluminescence (CL) detector for high-performance liquid chromatography (HPLC) was established, in which gold nanoparticles were produced by the on-line reaction of H(2)O(2), NaHCO(3)-Na(2)CO(3) (buffer solution of luminol), and HAuCl(4). Eight phenolic compounds (gallic acid, protocatechuic acid, protocatechuic aldehyde, 2,5-dihydroxybenzoic acid, caffeic acid, 2,3-dihydroxybenzoic acid, (+)-catechin, and (-)-epicatechin) were chosen as the model compounds. Every separated phenolic compound in the column eluent strongly enhanced the CL signal of on-line gold nanoparticle-catalyzed luminol system. The CL and UV-visible absorption spectra and transmission electron microscopy studies were carried out, and the CL enhancement mechanism was ascribed to that the presence of phenolic compound promoted the on-line formation of 38-nm-diameter gold nanoparticles, which better catalyzed the luminol-H(2)O(2) CL reaction. The effects of methanol and phosphoric acid in the proposed HPLC configuration were performed by two gradient elution programs, and the baseline profile revealed that on-line gold nanoparticle-catalyzed luminol-H(2)O(2) CL detector had better compatibility than 38 nm gold colloids-luminol-H(2)O(2) CL detector. The proposed CL detector exhibits excellent analytical performance with the low detection limit (S/N=3) of 0.53-0.97 ng/mL (10.6-19.4 pg) phenolic compounds, and offers a new strategy for developing on-line nanoparticle-catalyzed CL detector for HPLC with sensitive analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration.

    PubMed

    Li, Xiukai; Wu, Di; Lu, Ting; Yi, Guangshun; Su, Haibin; Zhang, Yugen

    2014-04-14

    The production of bulk chemicals and fuels from renewable bio-based feedstocks is of significant importance for the sustainability of human society. Adipic acid, as one of the most-demanded drop-in chemicals from a bioresource, is used primarily for the large-volume production of nylon-6,6 polyamide. It is highly desirable to develop sustainable and environmentally friendly processes for the production of adipic acid from renewable feedstocks. However, currently there is no suitable bio-adipic acid synthesis process. Demonstrated herein is the highly efficient synthetic protocol for the conversion of mucic acid into adipic acid through the oxorhenium-complex-catalyzed deoxydehydration (DODH) reaction and subsequent Pt/C-catalyzed transfer hydrogenation. Quantitative yields (99 %) were achieved for the conversion of mucic acid into muconic acid and adipic acid either in separate sequences or in a one-step process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Design of a new bottom antireflective coating composition for KrF resist

    NASA Astrophysics Data System (ADS)

    Mizutani, Kazuyoshi; Momota, Makoto; Aoai, Toshiaki; Yagihara, Morio

    1999-06-01

    A study for a new organic bottom antireflective coating (BARC) composition is described. A structural design of a light-absorbing dye was most important because dye structure not only plays a role in eliminating reflection from a substrate but also shows influence on dry etch rate of BARC material to a considerable extent. For example, an anthracene moiety with large absorption at 248 nm had undesirable dry etch resistance. 3-Hydroxy-2-naphthoic acid moiety was found to be one of suitable dyes for KrF BARC compositions, and the polymer bearing the dye showed enough absorbance and good erodability in dry etch. The BARC polymer was eroded as one and a half times faster than a novolak resin, and a little faster than an anthracene incorporated polymer. The result was discussed from the concepts of Ohnishi parameter and the ring parameter for dry etch durability of resist materials. BARC polymer should be thermoset by hard bake to eliminate intermixing with resist compositions. The BARC polymer bearing hydroxy group which is useful for a crosslinking reaction was thermoset in the presence of melamine-formaldehyde crosslinker and an acid catalyst after baking over 200 degrees C.

  7. Enantiomerically pure 3-aryl- and 3-hetaryl-2-hydroxypropanoic acids by chemoenzymatic reduction of 2-oxo acids.

    PubMed

    Sivanathan, Sivatharushan; Körber, Florian; Tent, Jannis Aron; Werner, Svenja; Scherkenbeck, Jürgen

    2015-03-06

    Phenyllactic acids are found in numerous natural products as well as in active substances used in medicine or plant protection. Enantiomerically pure phenyllactic acids are available by transition-metal-catalyzed hydrogenations or chemoenzymatic reductions of the corresponding 3-aryl-2-oxopropanoic acids. We show here that d-lactate dehydrogenase from Staphylococcus epidermidis reduces a broad spectrum of 2-oxo acids, which are difficult substrates for transition-metal-catalyzed reactions, with excellent enantioselectivities in a simple experimental setup.

  8. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds**

    PubMed Central

    Best, Daniel; Burns, David J; Lam, Hon Wai

    2015-01-01

    A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N—H groups are tolerated on the barbituric acid, with no complications arising from N—H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor. PMID:25959544

  9. Efficient production of free fatty acids from ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate.

    PubMed

    Mi, Le; Qin, Dandan; Cheng, Jie; Wang, Dan; Li, Sha; Wei, Xuetuan

    2017-03-01

    Two engineered Escherichia coli strains, DQ101 (MG1655 fadD - )/pDQTES and DQ101 (MG1655 fadD - )/pDQTESZ were constructed to investigate the free fatty acid production using ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate as carbon source in this study. The plasmid, pDQTES, carrying an acyl-ACP thioesterase 'TesA of E. coli in pTrc99A was constructed firstly, and then (3R)-hydroxyacyl-ACP dehydratase was ligated after the TesA to give the plasmid pDQTESZ. These two strains exhibited efficient fatty acid production when glucose was used as the sole carbon source, with a final concentration of 2.45 and 3.32 g/L, respectively. The free fatty acid production of the two strains on xylose is not as efficient as that on glucose, which was 2.32 and 2.96 g/L, respectively. For mixed sugars, DQ101 (MG1655 fadD - )-based strains utilized glucose and pentose sequentially under the carbon catabolite repression (CCR) regulation. The highest total FFAs concentration from the mixed sugar culture reached 2.81 g/L by DQ101 (MG1655 fadD - )/pDQTESZ. Furthermore, when ionic liquid-based enzyme-catalyzed bamboo hydrolysate was used as the carbon source, the strain DQ101 (MG1655 fadD - )/pDQTESZ could produce 1.23 g/L FFAs with a yield of 0.13 g/g, and while it just produced 0.65 g/L free fatty acid with the ionic liquid-based acid-catalyzed bamboo hydrolysate as the feedstock. The results suggested that enzymatic catalyzed bamboo hydrolysate with ionic liquid pretreatment could serve as an efficient feedstock for free fatty acid production.

  10. Factors influencing inapplicability of cosolvency-induced model on organic acid sorption onto humic substance from methanol mixture.

    PubMed

    Kim, Minhee; Kim, Juhee; Kim, Jeong-Gyu; Hyun, Seunghun

    2015-10-01

    Applicability of cosolvency model for describing the sorption of organic acids to humic substance was investigated by analyzing dataset of sorption (K m) and solubility (S m) of selected solutes (benzoic acid, 1-naphthoic acid, 2,4-dichlorophenoxyacetic acid, and 2,4,6-trichlorophenol (2,4,6-TCP)) as a function of pH(appCME) (apparent pH of liquid phase) and f c (methanol volume fractions). For all solutes, the K m decreased with f c with the K m reduction being less than the S m-based prediction. The slope of log K m-f c plot in the three organic carboxylic acids was well correlated with their cosolvency power, whereas the data of organic phenolic acid (2,4,6-TCP) was placed above the trend, indicating the different actions of functional groups. The occurrence of Ca(2+) bridge between carboxylate and negatively charged humic surface may explain this phenomenon. Normalizing the K m to the corresponding S m (α' = K m/S m) was not in unity over the pH(app)-f c range but decreased with f c, indicating a possible structural modification of sorption domain favoring extra sorption. For a given solute, the α' of neutral species was always greater than that of anionic species, showing that extra interaction will be likely at pH(app)

  11. Cox-2 inhibitory effects of naturally occurring and modified fatty acids.

    PubMed

    Ringbom, T; Huss, U; Stenholm , A; Flock, S; Skattebøl, L; Perera, P; Bohlin, L

    2001-06-01

    In the search for new cyclooxygenase-2 (COX-2) selective inhibitors, the inhibitory effects of naturally occurring fatty acids and some of their structural derivatives on COX-2-catalyzed prostaglandin biosynthesis were investigated. Among these fatty acids, linoleic acid (LA), alpha-linolenic acid (alpha-LNA), myristic acid, and palmitic acid were isolated from a CH(2)Cl(2) extract of the plant Plantago major by bioassay-guided fractionation. Inhibitory effects of other natural, structurally related fatty acids were also investigated: stearic acid, oleic acid, pentadecanoic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Further, the inhibitory effects of these compounds on COX-2- and COX-1-catalyzed prostaglandin biosynthesis was compared with the inhibition of some synthesized analogues of EPA and DHA with ether or thioether functions. The most potent COX-2-catalyzed prostaglandin biosynthesis inhibitor was all-(Z)-5-thia-8,11,14,17-eicosatetraenoic acid (2), followed by EPA, DHA, alpha-LNA, LA, (7E,11Z,14Z,17Z)-5-thiaeicosa-7,11,14,17-tetraenoic acid, all-(Z)-3-thia-6,9,12,15-octadecatetraenoic acid, and (5E,9Z,12Z,15Z,18Z)-3-oxaheneicosa-5,9,12,15,18-pentaenoic acid, with IC(50) values ranging from 3.9 to180 microM. The modified compound 2 and alpha-LNA were most selective toward COX-2, with COX-2/COX-1 ratios of 0.2 and 0.1, respectively. This study shows that several of the natural fatty acids as well as all of the semisynthetic thioether-containing fatty acids inhibited COX-2-catalyzed prostaglandin biosynthesis, where alpha-LNA and compound 2 showed selectivity toward COX-2.

  12. Development of an enantioselective synthetic route to neocarzinostatin chromophore and its use for multiple radioisotopic incorporation.

    PubMed

    Myers, Andrew G; Glatthar, Ralf; Hammond, Marlys; Harrington, Philip M; Kuo, Elaine Y; Liang, Jun; Schaus, Scott E; Wu, Yusheng; Xiang, Jia-Ning

    2002-05-15

    A convergent, enantioselective synthetic route to the natural product neocarzinostatin chromophore (1) is described. Synthesis of the chromophore aglycon (2) was targeted initially. Chemistry previously developed for the synthesis of a neocarzinostatin core model (4) failed in the requisite 1,3-transposition of an allylic silyl ether when applied toward the preparation of 2 with use of the more highly oxygenated substrates 27 and 54. An alternative synthetic plan was therefore developed, based upon a proposed reduction of the epoxy alcohol 58 to form the aglycon 2, a transformation that was achieved in a novel manner, using a combination of the reagents triphenylphosphine, iodine, and imidazole. The successful route to 1 and 2 began with the convergent coupling of the epoxydiyne 15, obtained in 9 steps (43% overall yield) from D-glyceraldehyde acetonide, and the cyclopentenone (+)-14, prepared in one step (75-85% yield) from the prostaglandin intermediate (+)-16, affording the alcohol 22 in 80% yield and with > or =20:1 diastereoselectivity. The alcohol 22 was then converted into the epoxy alcohol 58 in 17 steps with an average yield of 92% and an overall yield of 22%. Key features of this sequence include the diastereoselective Sharpless asymmetric epoxidation of allylic alcohol 81 (98% yield); intramolecular acetylide addition within the epoxy aldehyde 82, using Masamune's lithium diphenyltetramethyldisilazide base (85% yield); selective esterification of the diol 84 with the naphthoic acid 13 followed by selective cleavage of the chloroacetate protective group in situ to furnish the naphthoic acid ester 85 in 80% yield; and elimination of the tertiary hydroxyl group within intermediate 88 using the Martin sulfurane reagent (79% yield). Reductive transposition of the product epoxy alcohol (58) then formed neocarzinostatin chromophore aglycon (2, 71% yield). Studies directed toward the glycosylation of 2 focused initially on the preparation of the N-methylamino --> hydroxyl replacement analogue 3, an alpha-D-fucose derivative of neocarzinostatin chromophore, formed in 42% yield by a two-step Schmidt glycosylation-deprotection sequence. For the synthesis of 1, an extensive search for a suitable 2'-N-methylfucosamine glycosyl donor led to the discovery that the reaction of 2 with the trichloroacetimidate 108, containing a free N-methylamino group, formed the alpha-glycoside 114 selectively in the presence of boron trifluoride diethyl etherate. Subsequent deprotection of 114 under mildly acidic conditions then furnished the labile chromophore (1). The synthetic route was readily modified for the preparation of singly and doubly (3)H- and (14)C-labeled 1, compounds unavailable by other means, for studies of the mechanism of action of neocarzinostatin in vivo.

  13. Asymmetric Additions to Dienes Catalyzed by a Dithiophosphoric Acid

    PubMed Central

    Shapiro, Nathan D.; Rauniyar, Vivek; Hamilton, Gregory L.; Wu, Jeffrey; Toste, F. Dean

    2011-01-01

    Chiral Brønsted acids have become an invaluable tool for achieving a variety of asymmetric chemical transformations under catalytic conditions while avoiding the use of toxic and expensive metals1–8. While the catalysts developed so far are remarkably effective at activating polarized functional groups, chemists have not yet been able to use organic Brønsted acids to catalyze highly enantioselective transformations of unactivated carbon-carbon multiple bonds. This deficiency persists despite the fact that racemic acid-catalyzed “Markovnikov” additions to olefins are a well-established part of the chemist’s toolbox. Here we show that chiral dithiophosphoric acids catalyze the intramolecular hydroamination and hydroarylation of dienes and allenes to generate heterocyclic products in exceptional yield and enantiomeric excess. To help rationalize the unique success of this catalytic system, we present a mechanistic hypothesis that involves the addition of the acid catalyst to the diene followed by SN2′ displacement of the resulting dithiophosphate intermediate. Mass spectrometry and deuterium labelling studies are presented in support of the proposed mechanism. The catalysts and concepts revealed in this study should prove applicable to other asymmetric functionalizations of unsaturated systems. PMID:21307938

  14. Rh(III)-Catalyzed Decarboxylative Coupling of Acrylic Acids with Unsaturated Oxime Esters: Carboxylic Acids Serve as Traceless Activators

    PubMed Central

    2015-01-01

    α,β-Unsaturated carboxylic acids undergo Rh(III)-catalyzed decarboxylative coupling with α,β-unsaturated O-pivaloyl oximes to provide substituted pyridines in good yield. The carboxylic acid, which is removed by decarboxylation, serves as a traceless activating group, giving 5-substituted pyridines with very high levels of regioselectivity. Mechanistic studies rule out a picolinic acid intermediate, and an isolable rhodium complex sheds further light on the reaction mechanism. PMID:24512241

  15. Solubilization of phenanthrene above cloud point of Brij 30: a new application in biodegradation.

    PubMed

    Pantsyrnaya, T; Delaunay, S; Goergen, J L; Guseva, E; Boudrant, J

    2013-06-01

    In the present study a new application of solubilization of phenanthrene above cloud point of Brij 30 in biodegradation was developed. It was shown that a temporal solubilization of phenanthrene above cloud point of Brij 30 (5wt%) permitted to obtain a stable increase of the solubility of phenanthrene even when the temperature was decreased to culture conditions of used microorganism Pseudomonas putida (28°C). A higher initial concentration of soluble phenanthrene was obtained after the cloud point treatment: 200 against 120μM without treatment. All soluble phenanthrene was metabolized and a higher final concentration of its major metabolite - 1-hydroxy-2-naphthoic acid - (160 against 85μM) was measured in the culture medium in the case of a preliminary cloud point treatment. Therefore a temporary solubilization at cloud point might have a perspective application in the enhancement of biodegradation of polycyclic aromatic hydrocarbons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Ultra-Performance Liquid Chromatographic Determination of Manufacturing Intermediates and Subsidiary Colors in D&C Red No. 6, D&C Red No. 7, and Their Lakes.

    PubMed

    Perez-Gonzalez, Marianita; Vu, Nga; Harp, Bhakti Petigara

    2015-01-01

    An ultra-performance LC (UPLC) method was developed to determine the manufacturing intermediates and subsidiary colors in the monosulfo monoazo color additives D&C Red No. 6 and D&C Red No. 7 and their lakes. This method is intended for use in batch certification of the color additives by the U. S. Food and Drug Administration to ensure that each lot meets published specifications for coloring drugs and cosmetics. The intermediates are 2-amino-5-methylbenzenesulfonic acid (PTMS) and 3-hydroxy-2-naphthalenecarboxylic acid (3-hydroxy-2-naphthoic acid). The subsidiary colors are 3-hydroxy-4-[(4-methylphenyl)azo]-2-naphthalenecarboxylic acid (unsulfonated subsidiary color) and 1-[(4-methylphenyl) azo]-2-naphthalenol (4-methyl Sudan I). The analytes were identified by comparing their UPLC retention times and UV-Vis absorption spectra with those of standards. Validation studies showed that calibration curves were linear (average R2=0.9994), and recoveries were 96-106%. Average LOD was 0.0014-0.0061% and average LOQ was 0.0047-0.020%. Results for RSD at the specification levels ranged from 0.67 to 5.79%. Survey analyses of 42 samples from 14 domestic and foreign manufacturers yielded results by the new UPLC method and a previously reported HPLC method that were consistent within experimental error. The new UPLC method provided increased sensitivity, faster analysis times, and improved separations compared to the HPLC method.

  17. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    PubMed

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs.

    PubMed

    Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L

    2009-07-01

    The aim of this research was to gain a mechanistic understanding of ion-pair mediated membrane transport of low-permeability drugs. Quasi-equilibrium mass transport analyses were developed to describe the ion-pair mediated octanol-buffer partitioning and hydrophobic membrane permeation of the model basic drug phenformin. Three lipophilic counterions were employed: p-toluenesulfonic acid, 2-naphthalenesulfonic acid, and 1-hydroxy-2-naphthoic acid (HNAP). Association constants and intrinsic octanol-buffer partition coefficients (Log P(AB)) of the ion-pairs were obtained by fitting a transport model to double reciprocal plots of apparent octanol-buffer distribution coefficients versus counterion concentration. All three counterions enhanced the lipophilicity of phenformin, with HNAP providing the greatest increase in Log P(AB), 3.7 units over phenformin alone. HNAP also enhanced the apparent membrane permeability of phenformin, 27-fold in the PAMPA model, and 4.9-fold across Caco-2 cell monolayers. As predicted from a quasi-equilibrium analysis of ion-pair mediated membrane transport, an order of magnitude increase in phenformin flux was observed per log increase in counterion concentration, such that log-log plots of phenformin flux versus HNAP concentration gave linear relationships. These results provide increased understanding of the underlying mechanisms of ion-pair mediated membrane transport, emphasizing the potential of this approach to enable oral delivery of low-permeability drugs.

  19. Development of a Lewis Base Catalyzed Selenocyclization Reaction

    ERIC Educational Resources Information Center

    Collins, William

    2009-01-01

    The concept of Lewis base activation of selenium Lewis acids has been effectively reduced to practice in the Lewis base catalyzed selenofunctionalization of unactivated olefins. In this reaction, the weakly acidic species, "N"-phenylselenyl succinimide, is cooperatively activated by the addition of a "soft" Lewis base donor (phosphine sulfides,…

  20. Copper(II)-Catalyzed Conversion of Aryl/Heteroaryl Boronic Acids, Boronates, and Trifluoroborates into the Corresponding Azides: Substrate Scope and Limitations.

    PubMed

    Grimes, Kimberly D; Gupte, Amol; Aldrich, Courtney C

    2010-05-01

    We report the copper(II)-catalyzed conversion of organoboron compounds into the corresponding azide derivatives. A systematic series of phenylboronic acid derivatives is evaluated to examine the importance of steric and electronic effects of the substituents on reaction yield as well as functional group compatibility. Heterocyclic substrates are also shown to participate in this mild reaction while compounds incorporating B-C(sp(3)) bonds are unreactive under the reaction conditions. The copper(II)-catalyzed boronic acid-azide coupling reaction is further extended to both boronate esters and potassium organotrifluoroborate salts. The method described herein complements existing procedures for the preparation of aryl azides from the respective amino, triazene, and halide derivatives and we expect that it will greatly facilitate copper- and ruthenium-catalyzed azide-alkyne cycloaddition reactions for the preparation of diversely functionalized 1-aryl- or 1-heteroaryl-1,2,3-triazoles derivatives.

  1. Regioselective, borinic acid-catalyzed monoacylation, sulfonylation and alkylation of diols and carbohydrates: expansion of substrate scope and mechanistic studies.

    PubMed

    Lee, Doris; Williamson, Caitlin L; Chan, Lina; Taylor, Mark S

    2012-05-16

    Synthetic and mechanistic aspects of the diarylborinic acid-catalyzed regioselective monofunctionalization of 1,2- and 1,3-diols are presented. Diarylborinic acid catalysis is shown to be an efficient and general method for monotosylation of pyranoside derivatives bearing three secondary hydroxyl groups (7 examples, 88% average yield). In addition, the scope of the selective acylation, sulfonylation, and alkylation is extended to 1,2- and 1,3-diols not derived from carbohydrates (28 examples); the efficiency, generality, and operational simplicity of this method are competitive with those of state-of-the-art protocols including the broadly applied organotin-catalyzed or -mediated reactions. Mechanistic details of the organoboron-catalyzed processes are explored using competition experiments, kinetics, and catalyst structure-activity relationships. These experiments are consistent with a mechanism in which a tetracoordinate borinate complex reacts with the electrophilic species in the turnover-limiting step of the catalytic cycle.

  2. Hydrogen-bonded intermediates and transition states during spontaneous and acid-catalyzed hydrolysis of the carcinogen (+)-anti-BPDE.

    PubMed

    Palenik, Mark C; Rodriguez, Jorge H

    2014-07-07

    Understanding mechanisms of (+)-anti-BPDE detoxification is crucial for combating its mutagenic and potent carcinogenic action. However, energetic-structural correlations of reaction intermediates and transition states during detoxification via hydrolysis are poorly understood. To gain mechanistic insight we have computationally characterized intermediate and transition species associated with spontaneous and general-acid catalyzed hydrolysis of (+)-anti-BPDE. We studied the role of cacodylic acid as a proton donor in the rate limiting step. The computed activation energy (ΔG‡) is in agreement with the experimental value for hydrolysis in a sodium cacodylate buffer. Both types of, spontaneous and acid catalyzed, BPDE hydrolysis can proceed through low-entropy hydrogen bonded intermediates prior to formation of transition states whose energies determine reaction activation barriers and rates.

  3. Biodegradation and metabolite transformation of pyrene by basidiomycetes fungal isolate Armillaria sp. F022.

    PubMed

    Hadibarata, Tony; Kristanti, Risky Ayu

    2013-04-01

    Armillaria sp. F022 is a white-rot fungus isolated from a tropical rain forest in Indonesia that is capable of utilizing pyrene as a source of carbon and energy. Enzymes production during the degradation process by Armillaria sp. F022 was certainly related to the increase in biomass. In the first week after incubation, the growth rate rapidly increased, but enzyme production decreased. After 7 days of incubation, rapid growth was observed, whereas, the enzymes were produced only after a good amount of biomass was generated. About 63 % of pyrene underwent biodegradation when incubated with this fungus in a liquid medium on a rotary shaker (120 rpm, 25 °C) for 30 days; during this period, pyrene was transformed to five stable metabolic products. These metabolites were extracted in ethyl acetate, isolated by column chromatography, and then identified using thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS). 1-Hydroxypyrene was directly identified by GC-MS, while 4-phenanthroic acid, 1-hydroxy-2-naphthoic acid, phthalic acid, and protocatechuic acid were identified to be present in their derivatized forms (methylated forms and silylated forms). Protocatechuic acid was the end product of pyrene degradation by Armillaria sp. F022. Dynamic profiles of two key enzymes, namely laccase and 1,2-dioxygenase, were revealed during the degradation process, and the results indicated the presence of a complicated mechanism in the regulation of pyrene-degrading enzymes. In conclusion, Armillaria sp. F022 is a white-rot fungus with potential for application in the degradation of polycyclic aromatic hydrocarbons such as pyrene in the environment.

  4. Improved Synthesis of 5-Substituted 1H-Tetrazoles via the [3+2] Cycloaddition of Nitriles and Sodium Azide Catalyzed by Silica Sulfuric Acid

    PubMed Central

    Du, Zhenting; Si, Changmei; Li, Youqiang; Wang, Yin; Lu, Jing

    2012-01-01

    A silica supported sulfuric acid catalyzed [3+2] cycloaddition of nitriles and sodium azide to form 5-substituted 1H-tetrazoles is described. The protocol can provide a series of 5-substituted 1H-tetrazoles using silica sulfuric acid from nitriles and sodium azide in DMF in 72%–95% yield. PMID:22606004

  5. Palladium-Catalyzed, Copper(I)-Mediated Coupling of Boronic Acids and Benzylthiocyanate. A Cyanide-Free Cyanation of Boronic Acids

    PubMed Central

    Zhang, Zhihui; Liebeskind, Lanny S.

    2008-01-01

    A new method for the synthesis of nitriles is described. As a complement to the classic cyanation of aryl halides using cyanide sources and a transition metal catalyst, the palladium-catalyzed cross-coupling of thiocyanates with boronic acids in the presence of copper(I) thiophene-2-carboxylate (CuTC) affords nitriles in good to excellent yields. PMID:16956219

  6. Copper-catalyzed formic acid synthesis from CO2 with hydrosilanes and H2O.

    PubMed

    Motokura, Ken; Kashiwame, Daiki; Miyaji, Akimitsu; Baba, Toshihide

    2012-05-18

    A copper-catalyzed formic acid synthesis from CO2 with hydrosilanes has been accomplished. The Cu(OAc)2·H2O-1,2-bis(diphenylphosphino)benzene system is highly effective for the formic acid synthesis under 1 atm of CO2. The TON value approached 8100 in 6 h. The reaction pathway was revealed by in situ NMR analysis and isotopic experiments.

  7. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  8. Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.

    PubMed

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-12

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  9. Acid-catalyzed dehydrogenation of amine-boranes

    DOEpatents

    Stephens, Frances Helen; Baker, Ralph Thomas

    2010-01-12

    A method of dehydrogenating an amine-borane using an acid-catalyzed reaction. The method generates hydrogen and produces a solid polymeric [R.sup.1R.sup.2B--NR.sup.3R.sup.4].sub.n product. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources.

  10. Indium-Catalyzed Reductive Dithioacetalization of Carboxylic Acids with Dithiols: Scope, Limitations, and Application to Oxidative Desulfurization.

    PubMed

    Nishino, Kota; Minato, Kohei; Miyazaki, Takahiro; Ogiwara, Yohei; Sakai, Norio

    2017-04-07

    In this study an InI 3 -TMDS (1,1,3,3-tetramethyldisiloxane) reducing system effectively catalyzed the reductive dithioacetalization of a variety of aromatic and aliphatic carboxylic acids with 1,2-ethanedithiol or 1,3-propanedithiol leading to the one-pot preparation of either 1,3-dithiolane derivatives or a 1,3-dithiane derivative. Also, the intact indium catalyst continuously catalyzed the subsequent oxidative desulfurization of an in situ formed 1,3-dithiolane derivative, which led to the preparation of the corresponding aldehydes.

  11. Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis.

    PubMed

    Zou, Yi; Garcia-Borràs, Marc; Tang, Mancheng C; Hirayama, Yuichiro; Li, Dehai H; Li, Li; Watanabe, Kenji; Houk, K N; Tang, Yi

    2017-03-01

    Epoxides are highly useful synthons and biosynthons for the construction of complex natural products during total synthesis and biosynthesis, respectively. Among enzyme-catalyzed epoxide transformations, a reaction that is notably missing, in regard to the synthetic toolbox, is cationic rearrangement that takes place under strong acid. This is a challenging transformation for enzyme catalysis, as stabilization of the carbocation intermediate upon epoxide cleavage is required. Here, we discovered two Brønsted acid enzymes that can catalyze two unprecedented epoxide transformations in biology. PenF from the penigequinolone pathway catalyzes a cationic epoxide rearrangement under physiological conditions to generate a quaternary carbon center, while AsqO from the aspoquinolone pathway catalyzes a 3-exo-tet cyclization to forge a cyclopropane-tetrahydrofuran ring system. The discovery of these new epoxide-modifying enzymes further highlights the versatility of epoxides in complexity generation during natural product biosynthesis.

  12. Activation Energies for an Enzyme-Catalyzed and Acid-Catalyzed Hydrolysis: An Introductory Interdisciplinary Experiment for Chemists and Biochemists.

    ERIC Educational Resources Information Center

    Adams, K. R.; Meyers, M. B.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment in which students determine and compare the Arrhenius activation energies (Ea) for the hydrolysis of salicin. This reaction is subject to catalysis both by acid and by the enzyme emulsin (beta-d-glucoside glycohydrolase). (JN)

  13. General synthesis of C-glycosyl amino acids via proline-catalyzed direct electrophilic alpha-amination of C-glycosylalkyl aldehydes.

    PubMed

    Nuzzi, Andrea; Massi, Alessandro; Dondoni, Alessandro

    2008-10-16

    Non-natural axially and equatorially linked C-glycosyl alpha-amino acids (glycines, alanines, and CH2-serine isosteres) with either S or R alpha-configuration were prepared by D- and L-proline-catalyzed (de >95%) alpha-amination of C-glycosylalkyl aldehydes using dibenzyl azodicarboxylate as the electrophilic reagent.

  14. Brønsted acid-catalyzed decarboxylative redox amination: formation of N-alkylindoles from azomethine ylides by isomerization.

    PubMed

    Mao, Hui; Wang, Sichang; Yu, Peng; Lv, Huiqing; Xu, Runsheng; Pan, Yuanjiang

    2011-02-18

    A Brønsted acid-catalyzed decarboxylative redox amination involving aldehydes with 2-carboxyindoline for the synthesis of N-alkylindoles is described. The decarboxylative condensations of aldehydes with 2-carboxyindoline produce azomethine ylides in situ, which then transform into N-alkylindoles by isomerization. © 2011 American Chemical Society

  15. Synthesis of 24-phenyl-24-oxo steroids derived from bile acids by palladium-catalyzed cross coupling with phenylboronic acid. NMR characterization and X-ray structures.

    PubMed

    Mayorquín-Torres, Martha C; Romero-Ávila, Margarita; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2013-11-01

    Palladium-catalyzed cross coupling of phenyboronic acid with acetylated bile acids in which the carboxyl functions have been activated by formation of a mixed anhydride with pivalic anhydride afforded moderate to good yield of 24-phenyl-24-oxo-steroids. Unambiguous assignments of the NMR signals were made with the aid of combined 1D and 2D NMR techniques. X-ray diffraction studies confirmed the obtained structures. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Silver-catalyzed double-decarboxylative cross-coupling of α-keto acids with cinnamic acids in water: a strategy for the preparation of chalcones.

    PubMed

    Zhang, Ning; Yang, Daoshan; Wei, Wei; Yuan, Li; Nie, Fafa; Tian, Laijin; Wang, Hua

    2015-03-20

    A silver-catalyzed double-decarboxylative protocol has been proposed for the construction of chalcone derivatives via cascade coupling of substituted α-keto acids with cinnamic acids under the mild aqueous conditions. The developed method for constructing C-C bonds via double-decarboxylative reactions is efficient, practical, and environmentally benign by using the readily available starting materials. It should provide a promising synthesis candidate for the formation of diverse and useful chalcone derivatives in the fields of synthetic and pharmaceutical chemistry.

  17. Sol-gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis.

    PubMed

    Cai, Shuang; Zhang, Yulu; Zhang, Hongli; Yan, Hongwei; Lv, Haibing; Jiang, Bo

    2014-07-23

    Hydrophobic antireflective coatings with a low refractive index were prepared via a base/acid-catalyzed two-step sol-gel process using tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) as precursors, respectively. The base-catalyzed hydrolysis of TEOS leads to the formation of a sol with spherical silica particles in the first step. In the second step, the acid-catalyzed MTES hydrolysis and condensation occur at the surface of the initial base-catalyzed spherical silica particles, which enlarge the silica particle size from 12.9 to 35.0 nm. By a dip-coating process, this hybrid sol gives an antireflective coating with a refractive index of about 1.15. Moreover, the water contact angles of the resulted coatings increase from 22.4 to 108.7° with the increases of MTES content, which affords the coatings an excellent hydrophobicity. A "core-shell" particle growth mechanism of the hybrid sol was proposed and the relationship between the microstructure of silica sols and the properties of AR coatings was investigated.

  18. Lewis super-acid catalyzed cyclizations: a new route to fragrance compounds.

    PubMed

    Coulombel, Lydie; Grau, Fanny; Weïwer, Michel; Favier, Isabelle; Chaminade, Xavier; Heumann, Andreas; Bayón, J Carles; Aguirre, Pedro A; Duñach, Elisabet

    2008-06-01

    This review deals with the application of Lewis super acids such as Al(III), In(III), and Sn(IV) triflates and triflimidates as catalysts in the synthesis of fragrance materials. Novel catalytic reactions involving C-C and C-heteroatom bond-forming reactions, as well as cycloisomerization processes are presented. In particular, Sn(IV) and Al(III) triflates were employed as catalysts in the selective cyclization of unsaturated alcohols to cyclic ethers, as well as in the cyclization of unsaturated carboxylic acids to lactones. The addition of thiols and thioacids to non-activated olefins, both in intra- and intermolecular versions, was efficiently catalyzed by In(III) derivatives. Sn(IV) Triflimidates catalyzed the cycloisomerization of highly substituted 1,6-dienes to gem-dimethyl-substituted cyclohexanes bearing an isopropylidene substituent. The hydroformylation of these unsaturated substrates, catalyzed by a Rh(I) complex with a bulky phosphite ligand, selectively afforded the corresponding linear aldehydes. The olfactory evaluation of selected heterocycles, carbocycles, and aldehydes synthesized is also discussed.

  19. On the Brønsted acid-catalyzed homogeneous hydrolysis of furans.

    PubMed

    Nikbin, Nima; Caratzoulas, Stavros; Vlachos, Dionisios G

    2013-11-01

    Furan affairs: Electronic structure calculations of the homogeneous Brønsted acid-catalyzed hydrolysis of 2,5-dimethylfuran show that proton transfer to the β-position is rate-limiting and provides support that the hydrolysis follows general acid catalysis. By means of projected Fukui indices, we show this to be the case for unsubstituted, 2-, and 2,5-substituted furans with electron-donating groups. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lewis acid catalysis and ligand exchange in the asymmetric binaphthol-catalyzed propargylation of ketones.

    PubMed

    Grayson, Matthew N; Goodman, Jonathan M

    2013-09-06

    1,1'-Bi-2-naphthol (BINOL)-derived catalysts catalyze the asymmetric propargylation of ketones. Density functional theory (DFT) calculations show that the reaction proceeds via a closed six-membered transition structure (TS) in which the chiral catalyst undergoes an exchange process with the original cyclic boronate ligand. This leads to a Lewis acid type activation mode, not a Brønsted acid process, which accurately predicts the stereochemical outcome observed experimentally.

  1. Acid-catalyzed ring-opening reactions of a cyclopropanated 3-aza-2-oxabicyclo[2.2.1]hept-5-ene with alcohols.

    PubMed

    Tait, Katrina; Horvath, Alysia; Blanchard, Nicolas; Tam, William

    2017-01-01

    The acid-catalyzed ring-opening reactions of a cyclopropanated 3-aza-2-oxabicylic alkene using alcohol nucleophiles were investigated. Although this acid-catalyzed ring-opening reaction did not cleave the cyclopropane unit as planned, this represent the first examples of ring-openings of cyclopropanated 3-aza-2-oxabicyclo[2.2.1]alkenes that lead to the cleavage of the C-O bond instead of the N-O bond. Different acid catalysts were tested and it was found that pyridinium toluenesulfonate in methanol gave the best yields in the ring-opening reactions. The scope of the reaction was successfully expanded to include primary, secondary, and tertiary alcohol nucleophiles. Through X-ray crystallography, the stereochemistry of the product was determined which confirmed an S N 2-like mechanism to form the ring-opened product.

  2. Glycerol Dehydration to Acrolein Catalyzed by ZSM‐5 Zeolite in Supercritical Carbon Dioxide Medium

    PubMed Central

    Zou, Bin; Ren, Shoujie

    2016-01-01

    Abstract Supercritical carbon dioxide (SC‐CO2) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time‐on‐stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC‐CO2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. PMID:27796088

  3. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    PubMed Central

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  4. Sequential Aldol Condensation – Transition Metal-Catalyzed Addition Reactions of Aldehydes, Methyl Ketones and Arylboronic Acids

    PubMed Central

    Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng

    2011-01-01

    Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1′-spirobiindane-7,7′-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step. PMID:21417359

  5. Sequential aldol condensation-transition metal-catalyzed addition reactions of aldehydes, methyl ketones, and arylboronic acids.

    PubMed

    Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng

    2011-04-15

    Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1'-spirobiindane-7,7'-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step. © 2011 American Chemical Society

  6. Pilot-scale study on the acid-catalyzed steam explosion of rice straw using a continuous pretreatment system.

    PubMed

    Chen, Wen-Hua; Tsai, Chia-Chin; Lin, Chih-Feng; Tsai, Pei-Yuan; Hwang, Wen-Song

    2013-01-01

    A continuous acid-catalyzed steam explosion pretreatment process and system to produce cellulosic ethanol was developed at the pilot-scale. The effects of the following parameters on the pretreatment efficiency of rice straw feedstocks were investigated: the acid concentration, the reaction temperature, the residence time, the feedstock size, the explosion pressure and the screw speed. The optimal presteaming horizontal reactor conditions for the pretreatment process are as follows: 1.7 rpm and 100-110 °C with an acid concentration of 1.3% (w/w). An acid-catalyzed steam explosion is then performed in the vertical reactor at 185 °C for 2 min. Approximately 73% of the total saccharification yield was obtained after the rice straw was pretreated under optimal conditions and subsequent enzymatic hydrolysis at a combined severity factor of 0.4-0.7. Moreover, good long-term stability and durability of the pretreatment system under continuous operation was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Enhancement of nitric oxide release and hemocompatibility by surface chirality of D-tartaric acid grafting

    NASA Astrophysics Data System (ADS)

    Han, Honghong; Wang, Ke; Fan, Yonghong; Pan, Xiaxin; Huang, Nan; Weng, Yajun

    2017-12-01

    Nitric Oxide (NO) generation from endogenous NO-donors catalyzed by diselenide modified biomaterials has been reported. Here we reported surface chirality by L-tartaric acid and D-tartaric acid grafting on the outermost showed a significant impact on diselenide modified biomaterials, which modulated protein adsorption, NO release and anti-platelet adhesion properties. D-tartaric acid grafted surface showed more blood protein adsorption than that of L-surfaces by QCM analysis, however, ELISA analysis disclosed less fibrinogen denatured on the D surfaces. Due to the surface ratio of selenium decreasing, NO release catalyzed by L-tartaric acid grafting on the outermost significantly decreased in comparison to that of only selenocystamine immobilized surfaces. While NO release catalyzed by D-tartaric acid grafting on the outermost didn't decrease and was similar with that of selenocystamine immobilized surfaces. Surface chirality combined with NO release had synergetic effects on platelet adhesion, and it showed the lowest number of platelets adhered on the D-tartaric acid grafted surfaces. Thus surface chirality from D-tartaric acid grafting enhanced hemocompatibility of the surface in this study. Our work provides new insights into engineering novel blood contacting biomaterials by taking into account surface chirality.

  8. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    PubMed

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  9. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    PubMed Central

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates. PMID:26863012

  10. Conversion of Arylboronic Acids to Tetrazoles Catalyzed by ONO Pincer-Type Palladium Complex.

    PubMed

    Vignesh, Arumugam; Bhuvanesh, Nattamai S P; Dharmaraj, Nallasamy

    2017-01-20

    A convenient synthesis of a library of tetrazoles through a novel and operationally simple protocol effecting the direct conversion of arylboronic acids catalyzed by a new ONO pincer-type Pd(II) complex under mild reaction conditions using the readily available reagents is reported. The palladium complex was reused up to four cycles in an open-flask condition.

  11. Remarkable co-catalysis by copper(I) oxide in the palladium catalyzed cross-coupling of arylboronic acids with ethyl bromoacetate.

    PubMed

    Liu, Xing-xin; Deng, Min-zhi

    2002-03-21

    Copper(I) oxide can effectively co-catalyze the Suzuki type cross-coupling reactions of arylboronic acids with ethyl bromoacetate. As an alternative protocol for introducing the methylenecarboxy group into functionalized molecules, this reaction occurs in the absence of highly toxic thallium compounds or special ligands and should be convenient and practical.

  12. N-Triflylthiophosphoramide Catalyzed Enantioselective Mukaiyama Aldol Reaction of Aldehydes with Silyl Enol Ethers of Ketones

    PubMed Central

    Cheon, Cheol Hong; Yamamoto, Hisashi

    2010-01-01

    The first Brønsted acid catalyzed asymmetric Mukaiyama aldol reaction of aldehydes using silyl enol ethers of ketones as nucleophiles has been reported. A variety of aldehydes and silyl enol ethers of ketones afforded the aldol products in excellent yields and good to excellent enantioselectivities. Mechanistic studies revealed that the actual catalyst may be changed from the silylated Brønsted acid to Brønsted acid itself depending on the reaction temperature. PMID:20465277

  13. N-triflylthiophosphoramide catalyzed enantioselective Mukaiyama aldol reaction of aldehydes with silyl enol ethers of ketones.

    PubMed

    Cheon, Cheol Hong; Yamamoto, Hisashi

    2010-06-04

    The first Brønsted acid catalyzed asymmetric Mukaiyama aldol reaction of aldehydes using silyl enol ethers of ketones as nucleophiles has been reported. A variety of aldehydes and silyl enol ethers of ketones afforded the aldol products in excellent yields and good to excellent enantioselectivities. Mechanistic studies revealed that the actual catalyst may be changed from the silylated Brønsted acid to the Brønsted acid itself depending on the reaction temperature.

  14. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway

    PubMed Central

    Helliwell, Chris A.; Chandler, Peter M.; Poole, Andrew; Dennis, Elizabeth S.; Peacock, W. James

    2001-01-01

    We have shown that ent-kaurenoic acid oxidase, a member of the CYP88A subfamily of cytochrome P450 enzymes, catalyzes the three steps of the gibberellin biosynthetic pathway from ent-kaurenoic acid to GA12. A gibberellin-responsive barley mutant, grd5, accumulates ent-kaurenoic acid in developing grains. Three independent grd5 mutants contain mutations in a gene encoding a member of the CYP88A subfamily of cytochrome P450 enzymes, defined by the maize Dwarf3 protein. Mutation of the Dwarf3 gene gives rise to a gibberellin-responsive dwarf phenotype, but the lesion in the gibberellin biosynthesis pathway has not been identified. Arabidopsis thaliana has two CYP88A genes, both of which are expressed. Yeast strains expressing cDNAs encoding each of the two Arabidopsis and the barley CYP88A enzymes catalyze the three steps of the GA biosynthesis pathway from ent-kaurenoic acid to GA12. Sequence comparison suggests that the maize Dwarf3 locus also encodes ent-kaurenoic acid oxidase. PMID:11172076

  15. Asymmetric synthesis of all-carbon benzylic quaternary stereocenters via Cu-catalyzed conjugate addition of dialkylzinc reagents to 5-(1-arylalkylidene) Meldrum's acids.

    PubMed

    Fillion, Eric; Wilsily, Ashraf

    2006-03-08

    The asymmetric synthesis of all-carbon benzylic quaternary stereocenters has been successfully achieved through copper-catalyzed addition of dialkylzinc reagents to 5-(1-arylalkylidene) and 5-(dihydroindenylidene) Meldrum's acids in the presence of phosphoramidite ligand. The resulting benzyl-substituted Meldrum's acids and 1,1-disubstituted indanes were obtained in good yields and up to 99% ee. The significance of substituting the position para, meta, and ortho to the electrophilic benzylic center was highlighted. A benzyl Meldrum's acid product was further transformed to a 3,3-disubstituted 1-indanone and a beta,beta-disubstituted pentanoic acid.

  16. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry

    PubMed Central

    Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A

    2014-01-01

    A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(–)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three-and two-aromatic ring products. The structurally similar four-and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(–)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. PMID:24325265

  17. Stereoselective synthesis of functionalized cyclic amino acid derivatives via a [2,3]-Stevens rearrangement and ring-closing metathesis.

    PubMed

    Nash, Aaron; Soheili, Arash; Tambar, Uttam K

    2013-09-20

    Unnatural cyclic amino acids are valuable tools in biomedical research and drug discovery. A two-step stereoselective strategy for converting simple glycine-derived aminoesters into unnatural cyclic amino acid derivatives has been developed. The process includes a palladium-catalyzed tandem allylic amination/[2,3]-Stevens rearrangement followed by a ruthenium-catalyzed ring-closing metathesis. The [2,3]-rearrangement proceeds with high diastereoselectivity through an exo transition state. Oppolzer's chiral auxiliary was utilized to access an enantiopure cyclic amino acid by this approach, which will enable future biological applications.

  18. β-Amino acid catalyzed asymmetric Michael additions: design of organocatalysts with catalytic acid/base dyad inspired by serine proteases.

    PubMed

    Yang, Hui; Wong, Ming Wah

    2011-09-16

    A new type of chiral β-amino acid catalyst has been computationally designed, mimicking the enzyme catalysis of serine proteases. Our catalyst approach is based on the bioinspired catalytic acid/base dyad, namely, a carboxyl and imidazole pair. DFT calculations predict that this designed organocatalyst catalyzes Michael additions of aldehydes to nitroalkenes with excellent enantioselectivities and remarkably high anti diastereoselectivities. The unusual stacked geometry of the enamine intermediate, hydrogen bonding network, and the adoption of an exo transition state are the keys to understand the stereoselectivity. © 2011 American Chemical Society

  19. Preparation of an amphiphilic resin-supported BINAP ligand and its use for rhodium-catalyzed asymmetric 1,4-addition of phenylboronic acid in water.

    PubMed

    Otomaru, Yusuke; Senda, Taichi; Hayashi, Tamio

    2004-09-16

    [reaction: see text] The axially chiral bisphosphine ligand, 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (binap), was supported on a polystyrene-poly(ethylene glycol) copolymer (PS-PEG) resin and was used successfully for the rhodium-catalyzed asymmetric 1,4-addition of phenylboronic acid to alpha,beta-unsaturated ketones in water.

  20. Aryl Ketone Synthesis via Tandem Orthoplatinated Triarylphosphite-Catalyzed Addition Reactions of Arylboronic Acids with Aldehydes Followed by Oxidation

    PubMed Central

    Liao, Yuan-Xi; Hu, Qiao-Sheng

    2010-01-01

    Tandem orthoplatinated triarylphosphite-catalyzed addition reactions of arylboronic acids with aldehydes followed by oxidation to yield aryl ketones is described. 3-Pentanone was identified as a suitable oxidant for the tandem aryl ketone formation reaction. By using microwave energy, aryl ketones were obtained in high yields with the catalyst loading as low as 0.01%. PMID:20849092

  1. Imidazole catalyzes chlorination by unreactive primary chloramines

    PubMed Central

    Roemeling, Margo D.; Williams, Jared; Beckman, Joseph S.; Hurst, James K.

    2015-01-01

    Hypochlorous acid and simple chloramines (RNHCl) are stable biologically-derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated—loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case NAHCl did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl+) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl+). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second order reaction to give 3′-monochloro and 3′,5′-dichloro products. Equilibrium constants for the transchlorination reactions: HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants upon [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl+; consistent with this interpretation, MeIm markedly catalyzed fluorescein chlorination by HOCl. Time-dependent imidazole-catalyzed HPA chlorination by NH2Cl was also demonstrated by product analyses. Quantitative assessment of the data suggests that physiological levels of histidyl groups will react with primary chloramines to generate a flux of imidazole chloramine sufficient to catalyze biological chlorination via HImCl+, particularly in environments that generate high concentrations of HOCl such as the neutrophil phagosome. PMID:25660996

  2. Utility of solid phase spectrophotometry for the modified determination of trace amounts of cadmium in food samples.

    PubMed

    Amin, Alaa S; Gouda, Ayman A

    2012-05-01

    A modified selective, highly sensitive and accurate procedure for the determination of trace amounts of cadmium which reacts with 1-(2-benzothiazolylazo)-2-hydroxy-3-naphthoic acid (BTAHNA) to give a deep violet complex with high molar absorptivity (7.05×10(6)Lmol(-1) cm(-1), 3.92×10(7)Lmol(-1)cm(-1), 1.78×10(8)Lmol(-1)cm(-1), and 4.10×10(8)Lmol(-1)cm(-1)), fixed on a Dowex 1-X8 type anion-exchange resin for 10mL, 100mL, 500mL, and 1000mL, respectively. Calibration is linear over the range 0.2-3.5μgL(-1) with RSD of ⩽1.14% (n=10). The detection and quantification limits were calculated. Increasing the sample volume can enhance the sensitivity. The method has been successfully applied for the determination of Cd(II) in food samples, water samples and some salts samples without interfering effect of various cations and anions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Asymmetric synthesis of 5-arylcyclohexenones by rhodium(I)-catalyzed conjugate arylation of racemic 5-(trimethylsilyl)cyclohexenone with arylboronic acids.

    PubMed

    Chen, Qian; Kuriyama, Masami; Soeta, Takahiro; Hao, Xinyu; Yamada, Ken-ichi; Tomioka, Kiyoshi

    2005-09-29

    [reaction: see text] A catalytic asymmetric conjugate arylation of racemic 5-(trimethylsilyl)cyclohex-2-enone with arylboronic acids was catalyzed by 3 mol % chiral amidophosphane- or BINAP-Rh(I) in dioxane-water (10:1) to afford trans- and cis-3-aryl-5-(trimethylsilyl)cyclohexanones in high enantioselectivity. Dehydrosilylation of the product mixture with cupric chloride in DMF gave 5-arylcyclohex-2-enones with up to 93% ee in good yield. Enantiofacial selectivity with chiral phosphane-Rh(I) exceeds the trans-diastereoselectivity that is maintained in the achiral or racemic phosphane-Rh(I)-catalyzed conjugate arylation of 5-(trimethylsilyl)cyclohexenone.

  4. Glycerol Dehydration to Acrolein Catalyzed by ZSM-5 Zeolite in Supercritical Carbon Dioxide Medium.

    PubMed

    Zou, Bin; Ren, Shoujie; Ye, X Philip

    2016-12-08

    Supercritical carbon dioxide (SC-CO 2 ) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time-on-stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC-CO 2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Nickel-Catalyzed Coupling of Alkenes, Aldehydes, and Silyl Triflates

    PubMed Central

    Ng, Sze-sze; Ho, Chun-Yu; Jamison, Timothy F.

    2011-01-01

    A full account of two recently developed nickel-catalyzed coupling reactions of alkenes, aldehydes and silyl triflates is presented. These reactions provide either allylic alcohol or homoallylic alcohol derivatives selectively, depending on the ligand employed. These processes are believed to be mechanistically distinct from Lewis acid-catalyzed carbonyl-ene reactions, and several lines of evidence supporting this hypothesis are discussed. PMID:16939275

  6. A Highly Stereocontrolled, One-Pot Approach toward Pyrrolobenzoxazinones and Pyrroloquinazolinones through a Lewis Acid-Catalyzed [3 + 2]-Cycloannulation Process.

    PubMed

    Boomhoff, Michael; Ukis, Rostyslav; Schneider, Christoph

    2015-08-21

    We report herein a stereocontrolled [3 + 2]-cycloheteroannulation of bis-silyl dienediolate 1 with 2-aminobenzoic acid- and 2-aminobenzamide-derived imines to furnish highly substituted pyrrolo[1,2-a]benzoxazinones 3 and pyrrolo[1,2-a]quinazolinones 4, respectively, in good overall yields. This one-pot process rapidly generates molecular complexity and comprises a Lewis acid-catalyzed, vinylogous Mannich reaction of 1 followed by an intramolecular N,O-acetal- and N,N-aminal formation, respectively, which proceeds with good to excellent stereocontrol.

  7. Stereoselective Formation of Trisubstituted Vinyl Boronate Esters by the Acid-Mediated Elimination of α-Hydroxyboronate Esters

    PubMed Central

    2015-01-01

    The copper-catalyzed diboration of ketones followed by an acid-catalyzed elimination leads to the formation of 1,1-disubstituted and trisubstituted vinyl boronate esters with moderate to good yields and selectivity. Addition of tosic acid to the crude diboration products provides the corresponding vinyl boronate esters upon elimination. The trisubstituted vinyl boronate esters are formed as the (Z)-olefin isomer, which was established by subjecting the products to a Suzuki–Miyaura coupling reaction to obtain alkenes of known geometry. PMID:24915498

  8. Biodiesel from Citrullus colocynthis Oil: Sulfonic-Ionic Liquid-Catalyzed Esterification of a Two-Step Process

    PubMed Central

    Ali Elsheikh, Yasir; Hassan Akhtar, Faheem

    2014-01-01

    Biodiesel was prepared from Citrullus colocynthis oil (CCO) via a two-step process. The first esterification step was explored in two ionic liquids (ILs) with 1,3-disulfonic acid imidazolium hydrogen sulfate (DSIMHSO4) and 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate (MSIMHSO4). Both ILs appeared to be good candidates to replace hazardous acidic catalyst due to their exceptional properties. However, the two sulfonic chains existing in DSIMHSO4 were found to increase the acidity to the IL than the single sulfonic chain in MSIMHSO4. Based on the results, 3.6 wt% of DSIMHSO4, methanol/CCO molar ratio of 12 : 1, and 150°C offered a final FFA conversion of 95.4% within 105 min. A 98.2% was produced via second KOH-catalyzed step in 1.0%, 6 : 1 molar ratio, 600 rpm, and 60°C for 50 min. This new two-step catalyzed process could solve the corrosion and environmental problems associated with the current acidic catalysts. PMID:24987736

  9. Convenient synthesis of benzothiazoles and benzimidazoles through Brønsted acid catalyzed cyclization of 2-amino thiophenols/anilines with β-diketones.

    PubMed

    Mayo, Muhammad Shareef; Yu, Xiaoqiang; Zhou, Xiaoyu; Feng, Xiujuan; Yamamoto, Yoshinori; Bao, Ming

    2014-02-07

    Brønsted acid catalyzed cyclization reactions of 2-amino thiophenols/anilines with β-diketones under oxidant-, metal-, and radiation-free conditions are described. Various 2-substituted benzothiazoles/benzimidazoles are obtained in satisfactory to excellent yields. Different groups such as methyl, chloro, nitro, and methoxy linked on benzene rings were tolerated under the optimized reaction conditions.

  10. Palladium-Catalyzed Asymmetric Allylic Alkylation of 4-Substituted Isoxazolidin-5-ones: Straightforward Access to β2,2 -Amino Acids.

    PubMed

    Nascimento de Oliveira, Marllon; Arseniyadis, Stellios; Cossy, Janine

    2018-04-03

    We report here an unprecedented and highly enantioselective palladium-catalyzed allylic alkylation applied to 4-substituted isoxazolidin-5-ones. Ultimately, the process provides a straightforward access to β 2,2 -amino acids bearing an all-carbon quaternary stereogenic center in great yields and a high degree of enantioselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Autotaxin: A protein with two faces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tania, Mousumi; Khan, Md. Asaduzzaman; Zhang, Huaiyuan

    Research highlights: {yields} Autotaxin (ATX) has lysophospholipase D activity. {yields} ATX catalyzes the formation of lysophosphatidic acid (LPA). {yields} LPA is a mitogen, and thus is responsible for cancer. {yields} ATX also catalyzes the formation of anti-cancerous cyclic phosphatidic acid. {yields} Autotaxin is a novel target of cancer therapy research. -- Abstract: Autotaxin (ATX) is a catalytic protein, which possesses lysophospholipase D activity, and thus involved in cellular membrane lipid metabolism and remodeling. Primarily, ATX was thought as a culprit protein for cancer, which potently stimulates cancer cell proliferation and tumor cell motility, augments the tumorigenicity and induces angiogenic responses.more » The product of ATX catalyzed reaction, lysophosphatidic acid (LPA) is a potent mitogen, which facilitates cell proliferation and migration, neurite retraction, platelet aggregation, smooth muscle contraction, actin stress formation and cytokine and chemokine secretion. In addition to LPA formation, later ATX has been found to catalyze the formation of cyclic phosphatidic acid (cPA), which have antitumor role by antimitogenic regulation of cell cycle, inhibition of cancer invasion and metastasis. Furthermore, the very attractive information to the scientists is that the LPA/cPA formation can be altered at different physiological conditions. Thus the dual role of ATX with the scope of product manipulation has made ATX a novel target for cancer treatment.« less

  12. Regioselective Copper-Catalyzed Amination of Chlorobenzoic Acids: Synthesis and Solid-State Structures of N-Aryl Anthranilic Acid Derivatives

    PubMed Central

    Mei, Xuefeng; August, Adam T.; Wolf, Christian

    2008-01-01

    A chemo- and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of N-aryl anthranilic acid derivatives in up to 99%. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-tert-butylaniline. The conformational isomerism of appropriately substituted N-aryl anthranilic acids has been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans-anti- and unprecedented trans-syn-dimeric structures. PMID:16388629

  13. Grape skins (Vitis vinifera L.) catalyze the in vitro enzymatic hydroxylation of p-coumaric acid to caffeic acid.

    PubMed

    Arnous, Anis; Meyer, Anne S

    2009-12-01

    The ability of grape skins to catalyze in vitro conversion of p-coumaric acid to the more potent antioxidant caffeic acid was studied. Addition of different concentrations of p-coumaric to red grape skins (Cabernet Sauvignon) resulted in formation of caffeic acid. This caffeic acid formation (Y) correlated positively and linearly to p-coumaric acid consumption (X): Y = 0.5 X + 9.5; R (2) = 0.96, P < 0.0001. The kinetics of caffeic acid formation with time in response to initial p-coumaric acid levels and at different grape skin concentrations, indicated that the grape skins harboured an o-hydroxylation activity, proposedly a monophenol- or a flavonoid 3'-monooxygenase activity (EC 1.14.18.1 or EC 1.14.13.21). The K (m) of this crude o-hydroxylation activity in the red grape skin was 0.5 mM with p-coumaric acid.

  14. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    PubMed Central

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  15. Delineation of the Caffeine C-8 Oxidation Pathway in Pseudomonas sp. Strain CBB1 via Characterization of a New Trimethyluric Acid Monooxygenase and Genes Involved in Trimethyluric Acid Metabolism

    PubMed Central

    Mohanty, Sujit Kumar; Yu, Chi-Li; Das, Shuvendu; Louie, Tai Man; Gakhar, Lokesh

    2012-01-01

    The molecular basis of the ability of bacteria to live on caffeine via the C-8 oxidation pathway is unknown. The first step of this pathway, caffeine to trimethyluric acid (TMU), has been attributed to poorly characterized caffeine oxidases and a novel quinone-dependent caffeine dehydrogenase. Here, we report the detailed characterization of the second enzyme, a novel NADH-dependent trimethyluric acid monooxygenase (TmuM), a flavoprotein that catalyzes the conversion of TMU to 1,3,7-trimethyl-5-hydroxyisourate (TM-HIU). This product spontaneously decomposes to racemic 3,6,8-trimethylallantoin (TMA). TmuM prefers trimethyluric acids and, to a lesser extent, dimethyluric acids as substrates, but it exhibits no activity on uric acid. Homology models of TmuM against uric acid oxidase HpxO (which catalyzes uric acid to 5-hydroxyisourate) reveal a much bigger and hydrophobic cavity to accommodate the larger substrates. Genes involved in the caffeine C-8 oxidation pathway are located in a 25.2-kb genomic DNA fragment of CBB1, including cdhABC (coding for caffeine dehydrogenase) and tmuM (coding for TmuM). Comparison of this gene cluster to the uric acid-metabolizing gene cluster and pathway of Klebsiella pneumoniae revealed two major open reading frames coding for the conversion of TM-HIU to S-(+)-trimethylallantoin [S-(+)-TMA]. The first one, designated tmuH, codes for a putative TM-HIU hydrolase, which catalyzes the conversion of TM-HIU to 3,6,8-trimethyl-2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (TM-OHCU). The second one, designated tmuD, codes for a putative TM-OHCU decarboxylase which catalyzes the conversion of TM-OHCU to S-(+)-TMA. Based on a combination of enzymology and gene-analysis, a new degradative pathway for caffeine has been proposed via TMU, TM-HIU, TM-OHCU to S-(+)-TMA. PMID:22609920

  16. Copper-catalyzed aerobic decarboxylative sulfonylation of cinnamic acids with sodium sulfinates: stereospecific synthesis of (E)-alkenyl sulfones.

    PubMed

    Jiang, Qing; Xu, Bin; Jia, Jing; Zhao, An; Zhao, Yu-Rou; Li, Ying-Ying; He, Na-Na; Guo, Can-Cheng

    2014-08-15

    A copper-catalyzed aerobic decarboxylative sulfonylation of alkenyl carboxylic acids with sodium sulfinates is developed. This study offers a new and expedient strategy for stereoselective synthesis of (E)-alkenyl sulfones that are widely present in biologically active natural products and therapeutic agents. Moreover, the transformation is proposed to proceed via a radical process and exhibits a broad substrate scope and good functional group tolerance.

  17. Spontaneous, Metal-Catalyzed, and Enzyme-Catalyzed Decarboxylation of Oxalosuccinic Acid.

    DTIC Science & Technology

    1980-01-01

    acid, 2,4- dinitrophenylhydrazine was added. This yielded a hydrazone which, after two recrystallizations, melted at 2200C. A sample of the a...accurately determined to be 24,500 at a wavelength of 352 nm (46). 34 2,4- Dinitrophenylhydrazine . Obtained from the Eastman Kodak Chemicals Division...reaction with 2,4- dinitrophenylhydrazine (57). The reaction mixture was sampled hourly during the daytime for a period of three days. The concentration of a

  18. Synthesis of ω-Oxo Amino Acids and trans-5-Substituted Proline Derivatives Using Cross-Metathesis of Unsaturated Amino Acids.

    PubMed

    Salih, Nabaz; Adams, Harry; Jackson, Richard F W

    2016-09-16

    A range of 7-oxo, 8-oxo, and 9-oxo amino acids, analogues of 8-oxo-2-aminodecanoic acid, one of the key components of the cyclic tetrapeptide apicidin, have been prepared by a three-step process involving copper-catalyzed allylation of serine-, aspartic acid-, and glutamic acid-derived organozinc reagents, followed by cross-metathesis of the resulting terminal alkenes with unsaturated ketones and hydrogenation. The intermediate 7-oxo-5-enones underwent a highly diastereoselective (dr ≥96:4) acid-catalyzed aza-Michael reaction to give trans-2,5-disubstituted pyrrolidines, 5-substituted proline derivatives. The aza-Michael reaction was first observed when the starting enones were allowed to stand in solution in deuterochloroform but can be efficiently promoted by catalytic amounts of dry HCl.

  19. Mechanistic Insight Facilitates Discovery of a Mild and Efficient Copper-Catalyzed Dehydration of Primary Amides to Nitriles Using Hydrosilanes.

    PubMed

    Liu, Richard Y; Bae, Minwoo; Buchwald, Stephen L

    2018-02-07

    Metal-catalyzed silylative dehydration of primary amides is an economical approach to the synthesis of nitriles. We report a copper-hydride(CuH)-catalyzed process that avoids a typically challenging 1,2-siloxane elimination step, thereby dramatically increasing the rate of the overall transformation relative to alternative metal-catalyzed systems. This new reaction proceeds at ambient temperature, tolerates a variety of metal-, acid-, or base-sensitive functional groups, and can be performed using a simple ligand, inexpensive siloxanes, and low catalyst loading.

  20. Chiral Brønsted Acid-Catalyzed Allylboration of Aldehydes

    PubMed Central

    Jain, Pankaj; Antilla, Jon C.

    2010-01-01

    The catalytic enantioselective allylation of aldehydes is a long-standing problem with considerable interest to the chemical community. We wish to disclose a new high yielding and highly enantioselective chiral Brønsted acid-catalyzed allylboration of aldehydes. The reaction is shown to be highly general, with broad substrate scope that covers aryl, heteroaryl, α,β-unsaturated, and aliphatic aldehydes. The reaction conditions were also shown to be effective for the catalytic enantioselective crotylation of aldehydes. We believe that the high reactivity of the allyl boronate is due to protonation of the boronate oxygen by the chiral phosphoric acid catalyst. PMID:20690662

  1. Stereospecific Palladium-Catalyzed C-H Arylation of Pyroglutamic Acid Derivatives at the C3 Position Enabled by 8-Aminoquinoline as a Directing Group.

    PubMed

    Verho, Oscar; Maetani, Micah; Melillo, Bruno; Zoller, Jochen; Schreiber, Stuart L

    2017-09-01

    An efficient and stereospecific Pd-catalyzed protocol for the C-H arylation of pyroglutamic acid derivatives that uses 8-aminoquinoline as a directing group is described. The reaction was shown to proceed efficiently with a variety of aryl and heteroaryl iodides bearing different functional groups, giving C3-arylated cis products in good to high yields. Removal of the 8-aminoquinoline unit from these C-H arylation products enables access to synthetically useful cis and trans pyroglutamic acid-based building blocks.

  2. Naturally occurring alkaline amino acids function as efficient catalysts on Knoevenagel condensation at physiological pH: a mechanistic elucidation.

    PubMed

    Li, Weina; Fedosov, Sergey; Tan, Tianwei; Xu, Xuebing; Guo, Zheng

    2014-05-01

    To maintain biological functions, thousands of different reactions take place in human body at physiological pH (7.0) and mild conditions, which is associated with health and disease. Therefore, to examine the catalytic function of the intrinsically occurring molecules, such as amino acids at neutral pH, is of fundamental interests. Natural basic α-amino acid of L-lysine, L-arginine, and L-histidine neutralized to physiological pH as salts were investigated for their ability to catalyze Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate. Compared with their free base forms, although neutralized alkaline amino acid salts reduced the catalytic activity markedly, they were still capable to perform an efficient catalysis at physiological pH as porcine pancreatic lipase (PPL), one of the best enzymes that catalyze Knoevenagel condensation. In agreement with the fact that the three basic amino acids were well neutralized, stronger basic amino acid Arg and Lys showed more obvious variation in NH bend peak from the FTIR spectroscopy study. Study of ethanol/water system and quantitative kinetic analysis suggested that the microenvironment in the vicinity of amino acid salts and protonability/deprotonability of the amine moiety may determine their catalytic activity and mechanism. The kinetic study of best approximation suggested that the random binding might be the most probable catalytic mechanism for the neutralized alkaline amino acid salt-catalyzed Knoevenagel condensation.

  3. H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esaki, N.; Nakayama, T.; Sawada, S.

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. Formore » L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically.« less

  4. Facile conversion of a coordinated nitro group into an aqua group: acid-induced nitro-to-nitro rearrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, W.G.

    1987-11-18

    The nitro complex (NH/sub 3/)/sub 5/CoNO/sub 2//sup 2 +/ reacts rapidly and completely with neat anhydrous trifluoromethanesulfonic acid to generate the aqua species (NH/sub 3/)/sub 5/CoOH/sub 2//sup 3 +/. Oxygen-17 NMR results show that the oxygen in the bound water is derived from the original nitro group. A mechanism involving acid-catalyzed nitrogen-to-oxygen nitrite rearrangement is considered. The relationship between the mechanisms for oxygen scrambling and acid-catalyzed loss of NO/sup +/ from the nitrito linkage isomer is discussed, together with the mechanism for the present reaction. 20 references, 1 figure.

  5. Catalytic and inhibiting effect of amino acids on the porphyrin metallation reactions

    NASA Astrophysics Data System (ADS)

    Mamardashvili, Galina M.; Zhdanova, Daria Yu.; Mamardashvili, Nugzar Zh.; Koifman, Oskar I.; Dehaen, Wim

    In the present work, using the interaction of tetra-(4-sulfophenyl)porphyrin with copper(II) chloride as an example, it has been shown how different amino acid additives (glycine, valine, leucine and tryptophan) catalyze or inhibit the formation of Cu-porphyrin as a function of the chemical environment (borate buffer (pH7.4), DMSO) and the concentration of the additive. It has been demonstrated that the type of amino acid affects the complexation reaction rate. Possible mechanisms of metalloporphyrin formation and the ways of their acceleration are discussed. Ways in which different amino acid additives catalyze or inhibit the interaction of tetra-(4-sulfophenyl)porphyrin with copper(II) chloride are examined.

  6. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds.

    PubMed

    Best, Daniel; Burns, David J; Lam, Hon Wai

    2015-06-15

    A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N-H groups are tolerated on the barbituric acid, with no complications arising from N-H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  7. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    PubMed Central

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  8. Acid-catalyzed rearrangements of flavan-4-phloroglucinol derivatives to novel 6-hydroxyphenyl-6a,llb-dihydro-6H-[1]benzofuro[2,3-c]-chromenes and hydroxyphenyl-3,2'-spirobi[dihydro[l]benzofurans

    Treesearch

    Petrus J. Steynberg; Jan P. Steynberg; Richard W. Hemingway; Daneel Ferreira; G. Wayne McGraw

    1997-01-01

    Acetic acid-catalyzed cleavage of proanthocyanidins in the presence of phloroglucinol gives a series of 2R procyanidin- and prodelphinidin-phloroglucinol adducts together with a novel 2S all-cis derivative implicating cleavage of the pyran ring and subsequent inversion of stereochernistry at C-2c. These flavan-4-phloroglucinol adducts also suffer dehydration to...

  9. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid.

    PubMed

    Gümüş, Dilek; Akbal, Feryal

    2017-05-01

    This study compares ozonation (O 3 ), iron coated zeolite catalyzed ozonation (ICZ-O 3 ) and granular activated carbon catalyzed ozonation (GAC-O 3 ) for removal of humic acid from an aqueous solution. The results were evaluated by the removal of DOC that specifies organic matter, UV 254 absorbance, SUVA (Specific Ultraviolet Absorbance at 254 nm) and absorbance at 436 nm. When ozonation was used alone, DOC removal was 21.4% at an ozone concentration of 10 mg/L, pH 6.50 and oxidation time of 60 min. The results showed that the use of ICZ or GAC as a catalyst increased the decomposition of humic acid compared to ozonation alone. DOC removal efficiencies were 62% and 48.1% at pH 6.5, at a catalyst loading of 0.75 g/L, and oxidation time of 60 min for ICZ and GAC, respectively. The oxidation experiments were also carried out using <100 kDa and <50 kDa molecular size fractions of humic acid in the presence of ICZ or GAC. Catalytic ozonation also yielded better DOC and UV 254 reduction in both <50 kDa and <100 kDa fractions of HA compared to ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Kinetics of Maleic Acid and Aluminum Chloride Catalyzed Dehydration and Degradation of Glucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ximing; Hewetson, Barron B.; Mosier, Nathan S.

    We report the positive effect of maleic acid, a dicarboxylic acid, on the selectivity of hexose dehydration to 5-hydroxymethyfurfural (HMF) and subsequent hydrolysis to levulinic and formic acids. We also describe the kinetic analysis of a Lewis acid (AlCl3) alone and in combination with HCl or maleic acid to catalyze the isomerization of glucose to fructose, dehydration of fructose to HMF, hydration of HMF to levulinic and formic acids, and degradation of these compounds to humins. The results show that AlCl3 significantly enhances the rate of glucose conversion to HMF and levulinic acid in the presence of both maleic acidmore » and HCl. In addition, the degradation of HMF to humins, rather than levulinic and formic acids, is reduced by 50% in the presence of maleic acid and AlCl3 compared to HCl combined with AlCl3. The results suggest different reaction mechanisms for the dehydration of glucose and rehydration of HMF between maleic acid and HCl.« less

  11. Cytochrome P450 CYP716A254 catalyzes the formation of oleanolic acid from β-amyrin during oleanane-type triterpenoid saponins biosynthesis in Anemone flaccida.

    PubMed

    Zhan, Chuansong; Ahmed, Shakeel; Hu, Sheng; Dong, Shuang; Cai, Qian; Yang, Tewu; Wang, Xuekui; Li, Xiaohua; Hu, Xuebo

    2018-01-01

    Anemone flaccida Fr. Shmidt (Ranunculaceae), known as 'Di Wu' in China, is a perennial herb which has long been used to treat arthritis. The rhizome of A. flaccida contains pharmacologically active components i.e. oleanane-type triterpenoid saponins. Oleanolic acid is natural triterpenoid in plants with diverse biological activities. The biosynthesis of oleanolic acid involves cyclization of 2,3-oxidosqualene to the oleanane-type triterpenoid skeleton, followed by a series of oxidation reactions catalyzed by cytochrome P450 monooxygenase (CYP450). Previously, we identified four possible cytochrome P450 genes belonging to CYP716A subfamily from the transcriptome of A. flaccida. In this study, we identified one of those genes "CYP716A254" encoding a cytochrome P450 monooxygenase from A. flaccida that catalyzes the conversion of the β-amyrin into oleanolic acid. The heterologous expression of CYP716A254 in yeast resulted in oxidation of β-amyrin at the C-18 position to oleanolic acid production. These results provide an important basis for further studies of oleanane-type triterpenoid saponins synthesis in A. flaccida. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  13. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE PAGES

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.; ...

    2018-01-01

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  14. Ergosteryl 2-naphthoate, An Ergosterol Derivative, Exhibits Antidepressant Effects Mediated by the Modification of GABAergic and Glutamatergic Systems.

    PubMed

    Lin, Mingzhu; Li, Haijun; Zhao, Yan; Cai, Enbo; Zhu, Hongyan; Gao, Yugang; Liu, Shuangli; Yang, He; Zhang, Lianxue; Tang, Guosheng; Wang, Ruiqing

    2017-03-31

    Phytosterols are a kind of natural component including sitosterol, campesterol, avenasterol, ergosterol (Er) and others. Their main natural sources are vegetable oils and their processed products, followed by grains, by-products of cereals and nuts, and small amounts of fruits, vegetables and mushrooms. In this study, three new Er monoester derivatives were obtained from the reflux reaction with Er: organic acids (furoic acid, salicylic acid and 2-naphthoic acid), 1-Ethylethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride (EDCI) and 4-dimethylaminopyridine (DMAP) in dichloromethane. Their chemical structures were defined by IR and NMR. The present study was also undertaken to investigate the antidepressant-like effects of Er and its derivatives in male adult mice models of depression, and their probable involvement of GABAergic and glutamatergic systems by the forced swim test (FST). The results indicated that Er and its derivatives display antidepressant effects. Moreover, one derivative of Er, ergosteryl 2-naphthoate (ErN), exhibited stronger antidepressant activity in vivo compared to Er. Acute administration of ErN (5 mg/kg, i.p.) and a combination of ErN (0.5 mg/kg, i.p.), reboxetine (2.5 mg/kg, i.p.), and tianeptine (15 mg/kg, i.p.) reduced the immobility time in the FST. Pretreatment with bicuculline (a competitive γ-aminobutyric acid (GABA) antagonist, 4 mg/kg, i.p.) and N -methyl-d-aspartic acid (NMDA, an agonist at the glutamate site, 75 mg/kg, i.p.) effectively reversed the antidepressant-like effect of ErN (5 mg/kg, i.p.). However, prazosin (a α1-adrenoceptor antagonist, 1 mg/kg, i.p.) and haloperidol (a non-selective D2 receptor antagonist, 0.2 mg/kg, i.p.) did not eliminate the reduced immobility time. Altogether, these results indicated that ErN produced antidepressant-like activity, which might be mediated by GABAergic and glutamatergic systems.

  15. A comparative guide to controlled hydrophobization of cellulose nanocrystals via surface esterification

    Treesearch

    Shane X. Peng; Huibin Chang; Satish Kumar; Robert J. Moon; Jeffrey P. Youngblood

    2016-01-01

    Surface esterification methods of cellulose nanocrystals (CNC) using acid anhydrides, acid chlorides, acid catalyzed carboxylic acids, and 101-carbonyldiimidazole (CDI) activated carboxylic acids were evaluated with acetyl-, hexanoyl-, dodecanoyl-, oleoyl-, and methacryloyl-functionalization. Their grafting efficiency was investigated using Fouriertransform infrared...

  16. Additional Nucleophile-Free FeCl3-Catalyzed Green Deprotection of 2,4-Dimethoxyphenylmethyl-Protected Alcohols and Carboxylic Acids.

    PubMed

    Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao

    2016-01-01

    The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.

  17. Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production.

    PubMed

    Chen, Wen-Hua; Pen, Ben-Li; Yu, Ching-Tsung; Hwang, Wen-Song

    2011-02-01

    The combined pretreatment of rice straw using dilute-acid and steam explosion followed by enzymatic hydrolysis was investigated and compared with acid-catalyzed steam explosion pretreatment. In addition to measuring the chemical composition, including glucan, xylan and lignin content, changes in rice straw features after pretreatment were investigated in terms of the straw's physical properties. These properties included crystallinity, surface area, mean particle size and scanning electron microscopy imagery. The effect of acid concentration on the acid-catalyzed steam explosion was studied in a range between 1% and 15% acid at 180°C for 2 min. We also investigated the influence of the residence time of the steam explosion in the combined pretreatment and the optimum conditions for the dilute-acid hydrolysis step in order to develop an integrated process for the dilute-acid and steam explosion. The optimum operational conditions for the first dilute-acid hydrolysis step were determined to be 165°C for 2 min with 2% H(2)SO(4) and for the second steam explosion step was to be carried out at 180°C for 20 min; this gave the most favorable combination in terms of an integrated process. We found that rice straw pretreated by the dilute-acid/steam explosions had a higher xylose yield, a lower level of inhibitor in the hydrolysate and a greater degree of enzymatic hydrolysis; this resulted in a 1.5-fold increase in the overall sugar yield when compared to the acid-catalyzed steam explosion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Regioselective Ni-Catalyzed Carboxylation of Allylic and Propargylic Alcohols with Carbon Dioxide.

    PubMed

    Chen, Yue-Gang; Shuai, Bin; Ma, Cong; Zhang, Xiu-Jie; Fang, Ping; Mei, Tian-Sheng

    2017-06-02

    An efficient Ni-catalyzed reductive carboxylation of allylic alcohols with CO 2 has been successfully developed, providing linear β,γ-unsaturated carboxylic acids as the sole regioisomer with generally high E/Z stereoselectivity. In addition, the carboxylic acids can be generated from propargylic alcohols via hydrogenation to give allylic alcohol intermediates, followed by carboxylation. A preliminary mechanistic investigation suggests that the hydrogenation step is made possible by a Ni hydride intermediate produced by a hydrogen atom transfer from water.

  19. Total synthesis of (+)-achalensolide based on the rh(i)-catalyzed allenic Pauson-Khand-type reaction.

    PubMed

    Hirose, Toshiyuki; Miyakoshi, Naoki; Mukai, Chisato

    2008-02-01

    The first total synthesis of (+)-achalensolide was achieved from a commercially available d-(-)-isoascorbic acid. The known epoxide, derived from d-(-)-isoascorbic acid, was converted into the allenyne, the Rh(I)-catalyzed Pauson-Khand-type reaction of which directly provided the bicyclo[5.3.0]decane system, a core framework of the title natural product. The construction of the gamma-lactone moiety and some chemical modifications resulted in the completion of the total synthesis of (+)-achalensolide.

  20. Isotope Effects and Mechanism of the Asymmetric BOROX Brønsted Acid Catalyzed Aziridination Reaction

    PubMed Central

    Vetticatt, Mathew J.; Desai, Aman A.; Wulff, William D.

    2013-01-01

    The mechanism of the chiral VANOL-BOROX Brønsted acid catalyzed aziridination reaction of imines and ethyldiazoacetate has been studied using a combination of experimental kinetic isotope effects and theoretical calculations. A stepwise mechanism where reversible formation of a diazonium ion intermediate precedes rate-limiting ring-closure to form the cis-aziridine is implicated. A revised model for the origin of enantio- and diastereoselectivity is proposed based on relative energies of the ring closing transition structures. PMID:23687986

  1. Gas-phase hydration of glyoxylic acid: Kinetics and atmospheric implications.

    PubMed

    Liu, Ling; Zhang, Xiuhui; Li, Zesheng; Zhang, Yunhong; Ge, Maofa

    2017-11-01

    Oxocarboxylic acids are one of the most important organic species found in secondary organic aerosols and can be detected in diverse environments. But the hydration of oxocarboxylic acids in the atmosphere has still not been fully understood. Neglecting the hydration of oxocarboxylic acids in atmospheric models may be one of the most important reasons for the significant discrepancies between field measurements and abundance predictions of atmospheric models for oxocarboxylic acids. In the present paper, glyoxylic acid, as the most abundant oxocarboxylic acids in the atmosphere, has been selected as an example to study whether the hydration process can occur in the atmosphere and what the kinetic process of hydration is. The gas-phase hydration of glyoxylic acid to form the corresponding geminal diol and those catalyzed by atmospheric common substances (water, sulfuric acid and ammonia) have been investigated at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311++G(3df,3pd) level of theory. The contour map of electron density difference of transition states have been further analyzed. It is indicated that these atmospheric common substances can all catalyze on the hydration to some extent and sulfuric acid is the most effective reducing the Gibbs free energy of activation to 9.48 kcal/mol. The effective rate constants combining the overall rate constants and concentrations of the corresponding catalysts have shown that water and sulfuric acid are both important catalysts and the catalysis of sulfuric acid is the most effective for the gas-phase hydration of glyoxylic acid. This catalyzed processes are potentially effective in coastal regions and polluted regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Selective heterogeneous acid catalyzed esterification of N-terminal sulfyhdryl fatty acids

    USDA-ARS?s Scientific Manuscript database

    Our interest in thiol fatty acids lies in their antioxidative, free radical scavenging, and metal ion scavenging capabilities as applied to cosmeceutical and skin care formulations. The retail market is filled with products containing the disulfide-containing free fatty acid, lipoic acid. These pr...

  3. The initial step in the archaeal aspartate biosynthetic pathway catalyzed by a monofunctional aspartokinase

    PubMed Central

    Faehnle, Christopher R.; Liu, Xuying; Pavlovsky, Alexander; Viola, Ronald E.

    2006-01-01

    The activation of the β-carboxyl group of aspartate catalyzed by aspartokinase is the commitment step to amino-acid biosynthesis in the aspartate pathway. The first structure of a microbial aspartokinase, that from Methanococcus jannaschii, has been determined in the presence of the amino-acid substrate l-­aspartic acid and the nucleotide product MgADP. The enzyme assembles into a dimer of dimers, with the interfaces mediated by both the N- and C-terminal domains. The active-site functional groups responsible for substrate binding and specificity have been identified and roles have been proposed for putative catalytic functional groups. PMID:17012784

  4. Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation.

    PubMed

    Lee, M; Lenman, M; Banaś, A; Bafor, M; Singh, S; Schweizer, M; Nilsson, R; Liljenberg, C; Dahlqvist, A; Gummeson, P O; Sjödahl, S; Green, A; Stymne, S

    1998-05-08

    Acetylenic bonds are present in more than 600 naturally occurring compounds. Plant enzymes that catalyze the formation of the Delta12 acetylenic bond in 9-octadecen-12-ynoic acid and the Delta12 epoxy group in 12,13-epoxy-9-octadecenoic acid were characterized, and two genes, similar in sequence, were cloned. When these complementary DNAs were expressed in Arabidopsis thaliana, the content of acetylenic or epoxidated fatty acids in the seeds increased from 0 to 25 or 15 percent, respectively. Both enzymes have characteristics similar to the membrane proteins containing non-heme iron that have histidine-rich motifs.

  5. Enantioselective photochemistry via Lewis acid catalyzed triplet energy transfer

    PubMed Central

    Blum, Travis R.; Miller, Zachary D.; Bates, Desiree M.; Guzei, Ilia A.; Yoon, Tehshik P.

    2017-01-01

    Relatively few catalytic systems are able to control the stereochemistry of electronically excited organic intermediates. Here we report the discovery that a chiral Lewis acid complex can catalyze triplet energy transfer from an electronically excited photosensitizer. This strategy is applied to asymmetric [2+2] photocycloadditions of 2′-hydroxychalcones using tris(bipyridyl) ruthenium(II) as a sensitizer. A variety of electrochemical, computational, and spectroscopic data rule out substrate activation via photoinduced electron transfer and instead support a mechanism in which Lewis acid coordination dramatically lowers the triplet energy of the chalcone substrate. We expect that this approach will enable chemists to more broadly apply their detailed understanding of chiral Lewis acid catalysis to stereocontrol in reactions of electronically excited states. PMID:27980203

  6. Kinetics of non-catalyzed hydrolysis of tannin in high temperature liquid water*

    PubMed Central

    Lu, Li-li; Lu, Xiu-yang; Ma, Nan

    2008-01-01

    High temperature liquid water (HTLW) has drawn increasing attention as an environmentally benign medium for organic chemical reactions, especially acid-/base-catalyzed reactions. Non-catalyzed hydrolyses of gallotannin and tara tannin in HTLW for the simultaneous preparation of gallic acid (GA) and pyrogallol (PY) are under investigation in our laboratory. In this study, the hydrolysis kinetics of gallotannin and tara tannin were determined. The reaction is indicated to be a typical consecutive first-order one in which GA has formed as a main intermediate and PY as the final product. Selective decomposition of tannin in HTLW was proved to be possible by adjusting reaction temperature and time. The present results provide an important basic data and reference for the green preparation of GA and PY. PMID:18500780

  7. Characterization and optimization of carboxylesterase-catalyzed esterification between capric acid and glycerol for the production of 1-monocaprin in reversed micellar system.

    PubMed

    Park, Kyung Min; Kwon, Oh Taek; Ahn, Seon Min; Lee, JaeHwan; Chang, Pahn-Shick

    2010-02-28

    Calotropis procera R. Br. carboxylesterase (EC 3.1.1.1) solubilized in reversed micellar glycerol droplets containing a very small amount of water (less than 5ppm) and stabilized by a surfactant effectively catalyzed the esterification between glycerol and capric acid to produce 1-monocaprin. Reaction variables including surfactant types, organic solvent media, reaction time, G-value ([glycerol]/[capric acid]), R-value ([water]/[surfactant]), pH, temperature, and types of metal ion inhibitors on the carboxylesterase-catalyzed esterification were characterized and optimized to efficiently produce 1-monocaprin. Bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and isooctane were the most effective surfactant and organic solvent medium, respectively, for 1-monocaprin formation in reversed micelles. The optimum G- and R-values were 3.0 and 0.05, respectively, and the optimum pH and temperature were determined to be 10.0 and 60 degrees C, respectively. K(m,app.) and V(max,app.) were calculated from a Hanes-Woolf plot, and the values were 9.64 mM and 2.45 microM/min mg protein, respectively. Among various metal ions, Cu(2+) and Fe(2+) severely inhibited carboxylesterase-catalyzed esterification activity (less than 6.0% of relative activity). Copyright 2009 Elsevier B.V. All rights reserved.

  8. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    PubMed

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  9. Enzymatic synthesis of structured lipids.

    PubMed

    Iwasaki, Yugo; Yamane, Tsuneo

    2004-01-01

    Structured lipids (SLs) are defined as lipids that are modified chemically or enzymatically in order to change their structure. This review deals with structured triacylglycerols (STGs) and structured phospholipids (SPLs). The most typical STGs are MLM-type STGs, having medium chain fatty acids (FAs) at the 1- and 3-positions and a long chain fatty acid at the 2- position. MLM-type STGs are synthesized by: 1) 1,3-position-specific lipase-catalyzed acyl exchange of TG with FA or with FA ethylester (FAEt); 2) 1,3-position-specific lipase-catalyzed acylation of glycerol with FA, giving symmetric 1,3-diacyl-sn-glycerol, followed by chemical acylation at the sn-2 position, and; 3) 1,3-position-specific lipase-catalyzed deacylation of TG, giving 2-monoacylglycerol, followed by reacylation at the 1- and 3-positions with FA or with (FAEt). Enzymatic preparation of SPLs requires: 1) acyl group modification, and 2) head group modification of phospholipids. Acyl group modification is performed using lipases or phospholipase A2-mediated transesterification or ester synthesis to introduce arbitrary fatty acid to phospholipids. Head group modification is carried out by phospholipase D-catalyzed transphosphatidylation. A wide range of compounds can be introduced into the polar head of phospholipids, making it possible to prepare various SPLs.

  10. Synthesis of Rosin Acid Starch Catalyzed by Lipase

    PubMed Central

    Lin, Rihui; Li, He; Long, Han; Su, Jiating; Huang, Wenqin

    2014-01-01

    Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch. PMID:24977156

  11. Inhibitors of amino acids biosynthesis as antifungal agents.

    PubMed

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  12. The Isomerization of (-)-Menthone to (+)-Isomenthone Catalyzed by an Ion-Exchange Resin

    ERIC Educational Resources Information Center

    Ginzburg, Aurora L.; Baca, Nicholas A.; Hampton, Philip D.

    2014-01-01

    A traditional organic chemistry laboratory experiment involves the acid-catalyzed isomerization of (-)-menthone to (+)-isomenthone. This experiment generates large quantities of organic and aqueous waste, and only allows the final ratio of isomers to be determined. A "green" modification has been developed that replaces the mineral acid…

  13. LEWIS ACID-CATALYZED REACTIONS IN PROTIC MEDIA - LANTHANIDE-CATALYZED REACTIONS OF INDOLES WITH ALDEHYDES OR KETONES. (R826123)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Evolution of Enzymatic Activities in the Enolase Superfamily: D-Tartrate Dehydratase from Bradyrhizobium japonicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yew,W.; Fedorov, A.; Fedorov, E.

    2006-01-01

    We focus on the assignment of function to and elucidation of structure-function relationships for a member of the mechanistically diverse enolase superfamily encoded by the Bradyrhizobium japonicum genome (bll6730; GI:27381841). As suggested by sequence alignments, the active site contains the same functional groups found in the active site of mandelate racemase (MR) that catalyzes a 1,1-proton transfer reaction: two acid/base catalysts, Lys 184 at the end of the second {beta}-strand, and a His 322-Asp 292 dyad at the ends of the seventh and sixth -strands, respectively, as well as ligands for an essential Mg{sup 2+}, Asp 213, Glu 239, andmore » Glu 265 at the ends of the third, fourth, and fifth {beta}-strands, respectively. We screened a library of 46 acid sugars and discovered that only D-tartrate is dehydrated, yielding oxaloacetate as product. The kinetic constants (k{sub cat} = 7.3 s{sup -1}; k{sub cat}/K{sub M} = 8.5 x 10{sup 4} M{sup -1} s{sup -1}) are consistent with assignment of the D-tartrate dehydratase (TarD) function. The kinetic phenotypes of mutants as well as the structures of liganded complexes are consistent with a mechanism in which Lys 184 initiates the reaction by abstraction of the {alpha}-proton to generate a Mg{sup 2+}-stabilized enediolate intermediate, and the vinylogous -elimination of the 3-OH group is general acid-catalyzed by the His 322, accomplishing the anti-elimination of water. The replacement of the leaving group by solvent-derived hydrogen is stereorandom, suggesting that the enol tautomer of oxaloacetate is the product; this expectation was confirmed by its observation by {sup 1}H NMR spectroscopy. Thus, the TarD-catalyzed reaction is a 'simple' extension of the two-step reaction catalyzed by MR: base-catalyzed proton abstraction to generate a Mg{sup 2+}-stabilized enediolate intermediate followed by acid-catalyzed decomposition of that intermediate to yield the product.« less

  15. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry.

    PubMed

    Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A

    2014-03-01

    A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(-)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three- and two-aromatic ring products. The structurally similar four- and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(-)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Nan; Ferrer, Jean-Luc; Moon, Hong S

    2012-01-01

    Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested formore » methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5 lM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.« less

  17. Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst.

    PubMed

    Le, Quang Anh Tuan; Kim, Hee Gon; Kim, Yong Hwan

    2018-09-01

    The electro-biocatalytic conversion of CO 2 into formic acid using whole-cell and isolated biocatalysts is useful as an alternative route for CO 2 sequestration. In this study, Shewanella oneidensis MR-1 (S. oneidensis MR-1), a facultative aerobic bacterium that has been extensively studied for its utility as biofuel cells as well as for the detoxification of heavy metal oxides (i.e., MnO 2 , uranium), has been applied for the first time as a whole-cell biocatalyst for formic acid synthesis from gaseous CO 2 and electrons supplied from an electrode. S. oneidensis MR-1, when aerobically grown in Luria-Bertani (LB) medium, exhibited its ability as a whole-cell biocatalyst for the conversion of CO 2 into formic acid with moderate productivity of 0.59 mM h -1 for 24 h. In addition, an optimization of growth conditions of S. oneidensis MR-1 resulted in a remarkable increase in productivity. The CO 2 reduction reaction catalyzed by S. oneidensis MR-1, when anaerobically grown in newly optimized LB medium supplemented with fumarate and nitrate, exhibited 3.2-fold higher productivity (1.9 mM h -1 for 72 h) compared to that grown aerobically in only LB medium. Furthermore, the average conversion rate of formic acid synthesis catalyzed by S. oneidensis MR-1 when grown in the optimal medium over a period of 72 h was 3.8 mM h -1  g -1 wet-cell, which is 9.6-fold higher than that catalyzed by Methylobacterium extorquens AM1 whole-cells in our previous study. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. 21 CFR 74.2101 - FD&C Blue No. 1.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-[(ethylphenylamino)methyl] benzenesulfonic acid, and smaller amounts of 4-[(ethylphenylamino)methyl] benzenesulfonic acid and 2-[(ethylphenylamino)methyl] benzenesulfonic acid to form the leuco base. The leuco base is... inner salt. Additionally, FD&C Blue No. 1 is manufactured by the acid catalyzed condensation of one mole...

  19. 21 CFR 74.2101 - FD&C Blue No. 1.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-[(ethylphenylamino)methyl] benzenesulfonic acid, and smaller amounts of 4-[(ethylphenylamino)methyl] benzenesulfonic acid and 2-[(ethylphenylamino)methyl] benzenesulfonic acid to form the leuco base. The leuco base is... inner salt. Additionally, FD&C Blue No. 1 is manufactured by the acid catalyzed condensation of one mole...

  20. 21 CFR 74.2101 - FD&C Blue No. 1.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-[(ethylphenylamino)methyl] benzenesulfonic acid, and smaller amounts of 4-[(ethylphenylamino)methyl] benzenesulfonic acid and 2-[(ethylphenylamino)methyl] benzenesulfonic acid to form the leuco base. The leuco base is... inner salt. Additionally, FD&C Blue No. 1 is manufactured by the acid catalyzed condensation of one mole...

  1. Copper(II)-catalyzed hydroxylation of aryl halides using glycolic acid as a ligand.

    PubMed

    Xiao, Yan; Xu, Yongnan; Cheon, Hwan-Sung; Chae, Junghyun

    2013-06-07

    Copper(II)-catalyzed hydroxylation of aryl halides has been developed to afford functionalized phenols. The protocol utilizes the reagent combination of Cu(OH)2, glycolic acid, and NaOH in aqueous DMSO, all of which are cheap, readily available, and easily removable after the reaction. A broad range of aryl iodides and activated aryl bromides were transformed into the corresponding phenols in excellent yields. Moreover, it has been shown that C-O(alkyl)-coupled product, instead of phenol, can be predominantly formed under similar reaction conditions.

  2. An efficient synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and thiones catalyzed by a novel Brønsted acidic ionic liquid under solvent-free conditions.

    PubMed

    Zhang, Yonghong; Wang, Bin; Zhang, Xiaomei; Huang, Jianbin; Liu, Chenjiang

    2015-02-26

    We report here an efficient and green method for Biginelli condensation reaction of aldehydes, β-ketoesters and urea or thiourea catalyzed by Brønsted acidic ionic liquid [Btto][p-TSA] under solvent-free conditions. Compared to the classical Biginelli reaction conditions, the present method has the advantages of giving good yields, short reaction times, near room temperature conditions and the avoidance of the use of organic solvents and metal catalyst.

  3. Triphenylphosphine as Ligand for Room Temperature Ni(0)-Catalyzed Cross-Coupling Reactions of Aryl Chlorides with Arylboronic Acids

    PubMed Central

    Tang, Zhen-Yu; Hu, Qiao-Sheng

    2008-01-01

    Room temperature Ni(0)-catalyzed cross-coupling reactions of deactivated aryl chlorides with arylboronic acids with inexpensive triphenylphosphine (PPh3) as a supporting ligand have been accomplished in good to excellent yields. Air-stable Ni(PPh3)2Cl2 has also been established as catalyst precursor and highly active nickel catalysts were obtained when the reduction of Ni(PPh3)2Cl2 with n-BuLi was carried out in presence of an aryl chloride. PMID:16497011

  4. Application of a new amidophosphite ligand to Rh-catalyzed asymmetric hydrogenation of β-dehydroamino acid derivatives in supercritical carbon dioxide: activation effect of protic Co-solvents.

    PubMed

    Lyubimov, Sergey E; Rastorguev, Eugenie A; Davankov, Vadim A

    2011-09-01

    New chiral amidophosphite ligand was synthesized and tested in the Rh-catalyzed asymmetric hydrogenation of (Z)-β-(acylamino)acrylates in protic solvents and supercritical carbon dioxide (scCO(2) ) The catalytic performance is affected greatly by the acidity of the solvents. Better enantioselectivity (up to 88% ee) was achieved in scCO(2) containing 1,1,1,3,3,3-hexafluoro-2-propanol, compared to neat protic solvents. Copyright © 2011 Wiley-Liss, Inc.

  5. Yield of 1,6-anhydro-3,4-dideoxy-β-D-glycero-hex-3-enopyranos-2-ulose (levoglucosenone) on the acid-catalyzed pyrolysis of cellulose and 1,6-anhydro-β-D-glucopyranose (levoglucosan)

    Treesearch

    Abraham Broido; Malcolm Evett; Craig C. Hodges

    1975-01-01

    Although 1,6-anhydro-3,4-dideoxy-β-D-glycero-hex-3-enopyranos-2-ulose (2) is produced by the acid-catalyzed pyrolysis of both cellulose and 1,6-anhydro-β-D-glucopyranose (1), data presented here show that the principal mechanism of its formation in the pyrolysis of cellulose is not via 1. Furthermore, the data provide evidence that 1 itself is not...

  6. Copper-Catalyzed, Directing Group-Assisted Fluorination of Arene and Heteroarene C-H Bonds

    PubMed Central

    Truong, Thanh; Klimovica, Kristine; Daugulis, Olafs

    2013-01-01

    We have developed a method for direct, copper-catalyzed, auxiliary-assisted fluorination of β-sp2 C-H bonds of benzoic acid derivatives and γ-sp2 C-H bonds of α,α-disubstituted benzylamine derivatives. The reaction employs CuI catalyst, AgF fluoride source, and DMF, pyridine, or DMPU solvent at moderately elevated temperatures. Selective mono- or difluorination can be achieved by simply changing reaction conditions. The method shows excellent functional group tolerance and provides a straightforward way for the preparation of ortho-fluorinated benzoic acids. PMID:23758609

  7. A chiral Brønsted acid-catalyzed highly enantioselective Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines.

    PubMed

    Unhale, Rajshekhar A; Sadhu, Milon M; Ray, Sumit K; Biswas, Rayhan G; Singh, Vinod K

    2018-04-03

    A chiral phosphoric acid-catalyzed asymmetric Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines, derived from 3-hydroxyisoindolinones has been demonstrated in this communication. A variety of isoindolinone-based α-amino diazo esters bearing a quaternary stereogenic center were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee). Furthermore, the synthetic utility of the products has been depicted by the hydrogenation of the diazo moiety of adducts.

  8. Iridium-Catalyzed Asymmetric Hydrogenation of Ketones with Accessible and Modular Ferrocene-Based Amino-phosphine Acid (f-Ampha) Ligands.

    PubMed

    Yu, Jianfei; Long, Jiao; Yang, Yuhong; Wu, Weilong; Xue, Peng; Chung, Lung Wa; Dong, Xiu-Qin; Zhang, Xumu

    2017-02-03

    A series of tridentate ferrocene-based amino-phosphine acid (f-Ampha) ligands have been successfully developed. The f-Ampha ligands are extremely air stable and exhibited excellent performance in the Ir-catalyzed asymmetric hydrogenation of ketones (full conversions, up to >99% ee, and 500 000 TON). DFT calculations were performed to elucidate the reaction mechanism and the importance of the -COOH group. Control experiments also revealed that the -COOH group played a key role in this reaction.

  9. Late-Stage Functionalization of Arylacetic Acids by Photoredox-Catalyzed Decarboxylative Carbon-Heteroatom Bond Formation.

    PubMed

    Sakakibara, Yota; Ito, Eri; Fukushima, Tomohiro; Murakami, Kei; Itami, Kenichiro

    2018-05-02

    The rapid transformation of pharmaceuticals and agrochemicals enables access to unexplored chemical space and thus has accelerated the discovery of novel bioactive molecules. Because arylacetic acids are regarded as key structures in bioactive compounds, new transformations of these structures could contribute to drug/agrochemical discovery and chemical biology. This work reports carbon-nitrogen and carbon-oxygen bond formation through the photoredox-catalyzed decarboxylation of arylacetic acids. The reaction shows good functional group compatibility without pre-activation of the nitrogen- or oxygen-based coupling partners. Under similar reaction conditions, carbon-chlorine bond formation was also feasible. This efficient derivatization of arylacetic acids makes it possible to synthesize pharmaceutical analogues and bioconjugates of pharmaceuticals and natural products. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Lipase-catalyzed synthesis of fattythioic acids from palm oil.

    PubMed

    Al-Mulla, Emad A Jaffar

    2011-01-01

    The present work focuses on the synthesis of fattythioic acids (FTAs) by a one-step lipase catalyzed reaction of palm oil with carbonothioic S,S-acid using Lipozyme. The product was characterized using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance ((1)H NMR) technique and elemental analysis. The effects of various reaction parameters such as reaction time, temperature, amount of enzyme, molar ratio of substrates, and various organic solvents of the reaction system were investigated. The optimum conditions to produce FTAs were respectively, incubation time, 20 h, temperature, 40°C, amount of enzyme, 0.05 g and molar ratio of carbonothioic S,S-acid to palm oil, 5.0:1.0. Hexane was the best solvent for this reaction. The conversion of the products at optimum conditions was around 91%.

  11. Biodegradation of naphthalene and phenanthren by Bacillus subtilis 3KP

    NASA Astrophysics Data System (ADS)

    Ni'matuzahroh, Trikurniadewi, N.; Pramadita, A. R. A.; Pratiwi, I. A.; Salamun, Fatimah, Sumarsih, Sri

    2017-06-01

    The purposes of this research were to know growth response, degradation ability, and uptake mechanism of naphthalene and phenanthrene by Bacillus subtilis 3KP. Bacillus subtilis 3KP was grown on Mineral Synthetic (MS) medium with addition of 1% yeast extract and naphthalene and phenanthrene respectively 200 ppm in different cultures. Bacillus subtilis 3KP growth response was monitored by Total Plate Count (TPC) method, the degradation ability was monitored by UV-Vis spectrophotometer, and the uptake mechanism of hydrocarbon was monitored by emulsification activity, decrease of surface tension, and activity of Bacterial Adherence to Hydrocarbon (BATH). Bacillus subtilis 3KP was able to grow and show biphasic growth pattern on both of substrates. Naphthalene and phenanthrene were used as a carbon source for Bacillus subtilis 3KP growth that indicated by the reduction of substrate concomitant with the growth. At room temperature conditions (± 30°C) and 90 rpm of agitation for 7 days, Bacillus subtilis 3KP could degrade naphthalene in the amount of 70.5% and phenanthrene in the amount of 24.8%. Based on the analysis of UV-Vis spectrophotometer, three metabolites, 1-hydroxy-2-naphthoic acid, salicylic acid, and pyrocatechol were found in both cultures. The metabolite identification became basis of propose degradation pathway of naphthalene and phenanthrene by Bacillus subtilis 3KP. The results of hydrocarbon uptake mechanism test show that Bacillus subtilis 3KP used all of the mechanism to degrade naphthalene and phenanthrene.

  12. Molecular Basis of Substrate Promiscuity for the SAM-Dependent O-Methyltransferase NcsB1, Involved in the Biosynthesis of the Enediyne Antitumor Antibiotic Neocarzinostatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, H.; Guenther, E; Luo, Y

    2009-01-01

    The small molecule component of chromoprotein enediyne antitumor antibiotics is biosynthesized through a convergent route, incorporating amino acid, polyketide, and carbohydrate building blocks around a central enediyne hydrocarbon core. The naphthoic acid moiety of the enediyne neocarzinostatin plays key roles in the biological activity of the natural product by interacting with both the carrier protein and duplex DNA at the site of action. We have previously described the in vitro characterization of an S-adenosylmethionine-dependent O-methyltransferase (NcsB1) in the neocarzinostatin biosynthetic pathway [Luo, Y., Lin, S., Zhang, J., Cooke, H. A., Bruner, S. D., and Shen, B. (2008) J. Biol. Chem.more » 283, 14694-14702]. Here we provide a structural basis for NcsB1 activity, illustrating that the enzyme shares an overall architecture with a large family of S-adenosylmethionine-dependent proteins. In addition, NcsB1 represents the first enzyme to be structurally characterized in the biosynthetic pathway of neocarzinostatin. By cocrystallizing the enzyme with various combinations of the cofactor and substrate analogues, details of the active site structure have been established. Changes in subdomain orientation were observed via comparison of structures in the presence and absence of substrate, suggesting that reorientation of the enzyme is involved in binding of the substrate. In addition, residues important for substrate discrimination were predicted and probed through site-directed mutagenesis and in vitro biochemical characterization.« less

  13. Synthesis and Biological Evaluation of Non-Hydrolizable 1,2,3-Triazole Linked Sialic Acid Derivatives as Neuraminidase Inhibitors

    PubMed Central

    Weïwer, Michel; Chen, Chi-Chang; Kemp, Melissa M.; Linhardt, Robert J.

    2013-01-01

    α-Sialic acid azide 1 has been used as a substrate for the efficient preparation of 1,2,3-triazole derivatives of sialic acid using the copper-catalyzed azide-alkyne Huisgen cycloaddition (“click chemistry”). Our approach is to generate non-natural N-glycosides of sialic acid that are resistant to neuraminidase catalyzed hydrolysis as opposed to the natural O-glycosides. These N-glycosides would act as neuraminidase inhibitors to prevent the release of new virions. As a preliminary study, a small library of 1,2,3-triazole-linked sialic acid derivatives has been synthesized in 71-89% yield. A disaccharide mimic of sialic acid has also been prepared using the α-sialic acid azide 1 and a C-8 propargyl sialic acid acceptor in 68% yield. A model sialic acid coated dendrimer was also synthesized from a per-propargylated pentaerythritol acceptor. These novel sialic acid derivatives were then evaluated as potential neuraminidase inhibitors using a 96-well plate fluorescence assay; micromolar IC50 values were observed, comparable to the known sialidase inhibitor Neu5Ac2en. PMID:24223493

  14. N-Boc amines to oxazolidinones via Pd(II)/bis-sulfoxide/Brønsted acid co-catalyzed allylic C-H oxidation.

    PubMed

    Osberger, Thomas J; White, M Christina

    2014-08-06

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C-H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C-H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C-H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration.

  15. N-Boc Amines to Oxazolidinones via Pd(II)/Bis-sulfoxide/Brønsted Acid Co-Catalyzed Allylic C–H Oxidation

    PubMed Central

    2015-01-01

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C–H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C–H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C–H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration. PMID:24999765

  16. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.

    PubMed

    Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H

    2015-02-01

    In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Clostridium acidurici electron-bifurcating formate dehydrogenase.

    PubMed

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Thauer, Rudolf K

    2013-10-01

    Cell extracts of uric acid-grown Clostridium acidurici catalyzed the coupled reduction of NAD(+) and ferredoxin with formate at a specific activity of 1.3 U/mg. The enzyme complex catalyzing the electron-bifurcating reaction was purified 130-fold and found to be composed of four subunits encoded by the gene cluster hylCBA-fdhF2.

  18. Stepwise oxygenations of toluene and 4-nitrotoluene by a fungal peroxygenase

    Treesearch

    Matthias Kinne; Christian Zeisig; Rene Ullrich; Gernot Kayser; Kenneth E. Hammel; Martin Hofrichter

    2010-01-01

    Fungal peroxygenases have recently been shown to catalyze remarkable oxidation reactions. The present study addresses the mechanism of benzylic oxygenations catalyzed by the extracellular peroxygenase of the argic basidiomycete Agrocybe aegerita. The peroxygenase oxidized toluene and 4-nitrotoluene via the corresponding alcohols and aldehydes to give benzoic acids. The...

  19. A Simple Mnemonic for Tautomerization Mechanisms in Organic Chemistry

    ERIC Educational Resources Information Center

    Stephens, Chad E.

    2010-01-01

    The familiar word OREO (as in the cookie) is presented as a simple mnemonic for remembering the basic steps of the classical tautomerization mechanisms in organic chemistry. For acid-catalyzed tautomerizations, OREO stands for proton on, resonance, proton off. For base-catalyzed tautomerizations, OREO stands for proton off, resonance, proton on.…

  20. Cu-catalyzed formal methylative and hydrogenative carboxylation of alkynes with carbon dioxide: efficient synthesis of α,β-unsaturated carboxylic acids.

    PubMed

    Takimoto, Masanori; Hou, Zhaomin

    2013-08-19

    The sequential hydroalumination or methylalumination of various alkynes catalyzed by different catalyst systems, such those based on Sc, Zr, and Ni complexes, and the subsequent carboxylation of the resulting alkenylaluminum species with CO2 catalyzed by an N-heterocyclic carbene (NHC)-copper catalyst have been examined in detail. The regio- and stereoselectivity of the overall reaction relied largely on the hydroalumination or methylalumination reactions, which significantly depended on the catalyst and alkyne substrates. The subsequent Cu-catalyzed carboxylation proceeded with retention of the stereoconfiguration of the alkenylaluminum species. All the reactions could be carried out in one-pot to afford efficiently a variety of α,β-unsaturated carboxylic acids with well-controlled configurations, which are difficult to construct by previously reported methods. This protocol could be practically useful and attractive because of its high regio- and stereoselectivity, simple one-pot reaction operation, and the use of CO2 as a starting material. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Gold-Catalyzed Formal C-C Bond Insertion Reaction of 2-Aryl-2-diazoesters with 1,3-Diketones.

    PubMed

    Ren, Yuan-Yuan; Chen, Mo; Li, Ke; Zhu, Shou-Fei

    2018-06-29

    The transition-metal-catalyzed formal C-C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3-diketones instead gives C-H bond insertion products. Herein, we report a protocol for a gold-catalyzed formal C-C bond insertion reaction of 2-aryl-2-diazoesters with 1,3-diketones, which provides efficient access to polycarbonyl compounds with an all-carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C-C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring-opening of the resulting donor-acceptor-type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis-acid-catalyzed C-C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Oligomerization of L-gamma-carboxyglutamic acid

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Unlike glutamic acid, L-gamma-carboxyglutamic acid does not oligomerize efficiently when treated with carbonyldiimidazole in aqueous solution. However, divalent ions such as Mg2+ catalyze the reaction, and lead to the formation of oligomers in good yield. In the presence of hydroxylapatite, L-gamma-carboxyglutamic acid oligomerizes efficiently in a reaction that proceeds in the absence of divalent ions but is further catalyzed when they are present. After 'feeding' 50 times with activated amino acid in the presence of the Mg2+ ion, oligomers longer than the 20-mer could be detected. The effect of hydroxylapatite on peptide elongation is very sensitive to the nature of the activated amino acid and the acceptor peptide. Glutamic acid oligomerizes more efficiently than L-gamma-carboxyglutamic acid on hydroxylapatite and adds more efficiently to decaglutamic acid in solution. One might, therefore, expect that glutamic acid would add more efficiently than L-gamma-carboxyglutamic acid to decaglutamic acid on hydroxylapatite. The contrary is true--the addition of L-gamma-carboxyglutamic acid is substantially more efficient. This suggests that oligomerization on the surface of hydroxylapatite depends on the detailed match between the structure of the surface of the mineral and the structure of the oligomer.

  3. Cu2+ -Modified Metal-Organic Framework Nanoparticles: A Peroxidase-Mimicking Nanoenzyme.

    PubMed

    Chen, Wei-Hai; Vázquez-González, Margarita; Kozell, Anna; Cecconello, Alessandro; Willner, Itamar

    2018-02-01

    The synthesis and characterization of UiO-type metal-organic framework nanoparticles (NMOFs) composed of Zr 4+ ions bridged by 2,2'-bipyridine-5,5'-dicarboxylic acid ligands and the postmodification of the NMOFs with Cu 2+ ions are described. The resulting Cu 2+ -modified NMOFs, Cu 2+ -NMOFs, exhibit peroxidase-like catalytic activities reflected by the catalyzed oxidation of Amplex-Red to the fluorescent Resorufin by H 2 O 2 , the catalyzed oxidation of dopamine to aminochrome by H 2 O 2 , and the catalyzed generation of chemiluminescence in the presence of luminol/H 2 O 2 . Also, the Cu 2+ -NMOFs mimic NADH peroxidase functions and catalyze the oxidation of dihydronicotinamide adenine dinucleotide, NADH, to nicotinamide adenine dinucleotide, NAD + , in the presence of H 2 O 2 . The Cu 2+ -NMOFs-catalyzed generation of chemiluminescence in the presence of luminol/H 2 O 2 is used to develop a glucose sensor by monitoring the H 2 O 2 formed by the aerobic oxidation of glucose to gluconic acid in the presence of glucose oxidase. Furthermore, loading the Cu 2+ -NMOFs with fluorescein and activating the catalyzed generation of chemiluminescence in the presence of luminol/H 2 O 2 yield an efficient chemiluminescence resonance energy transfer (CRET) process to the fluorescein reflected by the activation of the fluorescence of the dye (λ = 520 nm, CRET efficiency 35%). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Improved synthesis of isostearic acid using zeolite catalysts

    USDA-ARS?s Scientific Manuscript database

    Isostearic acids are unique and important biobased products with superior properties. Unfortunately, they are not widely utilized in industry because they are produced as byproducts from a process called clay-catalyzed oligomerization of tall oil fatty acids. Generally, this clay method results in...

  5. Influence of Pb 2+ ions in the H 2 oxidation on Pt catalyzed hydrogen diffusion anodes in sulfuric acid: presence of oscillatory phenomena

    NASA Astrophysics Data System (ADS)

    Expósito, E.; Sánchez-Sánchez, C. M.; Solla-Gullón, J.; Montiel, V.

    The influence of Pb 2+ ions in sulfuric acid medium on the behavior of a platinum catalyzed hydrogen diffusion electrode (HDE) in a filter press reactor has been studied. A voltammetric study of the H 2 oxidation reaction on a polyoriented platinum electrode and a platinum rotating disk electrode (RDE) in presence of lead ions in solution has also been carried out. Potential oscillations were found in galvanostatic experiments of H 2 oxidation using a HDE catalyzed with platinum when Pb 2+ ions are present in solution. This oscillatory phenomenon was also observed when hydrogen oxidation was carried out in presence of Pb 2+ ions using a platinum RDE. The oscillatory behavior observed has been attributed to an adsorption-oxidation-desorption process of lead on the platinum surface. Due to the low solubility of Pb 2+ in sulfuric acid, at high values of coverage, lead is oxidised to insoluble lead sulfate that blocks the Pt surface. The coupling of the dissolution of lead sulfate and the Pb electrochemical adsorption-oxidation processes cause the oscillatory phenomenon.

  6. Pyrimidine Nucleosides with a Reactive (β-Chlorovinyl)sulfone or (β-Keto)sulfone Group at the C5 Position, Their Reactions with Nucleophiles and Electrophiles, and Their Polymerase-Catalyzed Incorporation into DNA

    PubMed Central

    2018-01-01

    Transition-metal-catalyzed chlorosulfonylation of 5-ethynylpyrimidine nucleosides provided (E)-5-(β-chlorovinyl)sulfones A, which undergo nucleophilic substitution with amines or thiols affording B. The treatment of vinyl sulfones A with ammonia followed by acid-catalyzed hydrolysis of the intermediary β-sulfonylvinylamines gave 5-(β-keto)sulfones C. The latter reacts with electrophiles, yielding α-carbon-alkylated or -sulfanylated analogues D. The 5′-triphosphates of A and C were incorporated into double-stranded DNA, using open and one-nucleotide gap substrates, by human or Escherichia coli DNA-polymerase-catalyzed reactions. PMID:29732453

  7. Detailed mechanistic investigation into the S-nitrosation of cysteamine.

    PubMed

    Morakinyo, Moshood K; Chipinda, Itai; Hettick, Justin; Siegel, Paul D; Abramson, Jonathan; Strongin, Robert; Martincigh, Bice S; Simoyi, Reuben H

    The nitrosation of cysteamine (H 2 NCH 2 CH 2 SH) to produce cysteamine- S -nitrosothiol (CANO) was studied in slightly acidic medium by using nitrous acid prepared in situ. The stoichiometry of the reaction was H 2 NCH 2 CH 2 SH + HNO 2 → H 2 NCH 2 CH 2 SNO + H 2 O. On prolonged standing, the nitrosothiol decomposed quantitatively to yield the disulfide, cystamine: 2H 2 NCH 2 CH 2 SNO → H 2 NCH 2 CH 2 S-SCH 2 CH 2 NH 2 + 2NO. NO 2 and N 2 O 3 are not the primary nitrosating agents, since their precursor (NO) was not detected during the nitrosation process. The reaction is first order in nitrous acid, thus implicating it as the major nitrosating agent in mildly acidic pH conditions. Acid catalyzes nitrosation after nitrous acid has saturated, implicating the protonated nitrous acid species, the nitrosonium cation (NO + ) as a contributing nitrosating species in highly acidic environments. The acid catalysis at constant nitrous acid concentrations suggests that the nitrosonium cation nitrosates at a much higher rate than nitrous acid. Bimolecular rate constants for the nitrosation of cysteamine by nitrous acid and by the nitrosonium cation were deduced to be 17.9 ± 1.5 (mol/L) -1 s -1 and 6.7 × 10 4 (mol/L) -1 s -1 , respectively. Both Cu(I) and Cu(II) ions were effective catalysts for the formation and decomposition of the cysteamine nitrosothiol. Cu(II) ions could catalyze the nitrosation of cysteamine in neutral conditions, whereas Cu(I) could only catalyze in acidic conditions. Transnitrosation kinetics of CANO with glutathione showed the formation of cystamine and the mixed disulfide with no formation of oxidized glutathione (GSSG). The nitrosation reaction was satisfactorily simulated by a simple reaction scheme involving eight reactions.

  8. Detailed mechanistic investigation into the S-nitrosation of cysteamine

    PubMed Central

    Morakinyo, Moshood K.; Chipinda, Itai; Hettick, Justin; Siegel, Paul D.; Abramson, Jonathan; Strongin, Robert; Martincigh, Bice S.; Simoyi, Reuben H.

    2015-01-01

    The nitrosation of cysteamine (H2NCH2CH2SH) to produce cysteamine-S-nitrosothiol (CANO) was studied in slightly acidic medium by using nitrous acid prepared in situ. The stoichiometry of the reaction was H2NCH2CH2SH + HNO2 → H2NCH2CH2SNO + H2O. On prolonged standing, the nitrosothiol decomposed quantitatively to yield the disulfide, cystamine: 2H2NCH2CH2SNO → H2NCH2CH2S–SCH2CH2NH2 + 2NO. NO2 and N2O3 are not the primary nitrosating agents, since their precursor (NO) was not detected during the nitrosation process. The reaction is first order in nitrous acid, thus implicating it as the major nitrosating agent in mildly acidic pH conditions. Acid catalyzes nitrosation after nitrous acid has saturated, implicating the protonated nitrous acid species, the nitrosonium cation (NO+) as a contributing nitrosating species in highly acidic environments. The acid catalysis at constant nitrous acid concentrations suggests that the nitrosonium cation nitrosates at a much higher rate than nitrous acid. Bimolecular rate constants for the nitrosation of cysteamine by nitrous acid and by the nitrosonium cation were deduced to be 17.9 ± 1.5 (mol/L)−1 s−1 and 6.7 × 104 (mol/L)−1 s−1, respectively. Both Cu(I) and Cu(II) ions were effective catalysts for the formation and decomposition of the cysteamine nitrosothiol. Cu(II) ions could catalyze the nitrosation of cysteamine in neutral conditions, whereas Cu(I) could only catalyze in acidic conditions. Transnitrosation kinetics of CANO with glutathione showed the formation of cystamine and the mixed disulfide with no formation of oxidized glutathione (GSSG). The nitrosation reaction was satisfactorily simulated by a simple reaction scheme involving eight reactions. PMID:26594054

  9. Multifunctional mesoporous silica catalyst

    DOEpatents

    Lin, Victor Shang-Yi; Tsai, Chih-Hsiang; Chen, Hung-Ting; Pruski, Marek; Kobayashi, Takeshi

    2015-03-31

    The present invention provides bifunctional silica mesoporous materials, including mesoporous silica nanoparticles ("MSN"), having pores modified with diarylammonium triflate and perfluoroaryl moieties, that are useful for the acid-catalyzed esterification of organic acids with organic alcohols.

  10. Engineering an ATP-dependent D-Ala:D-Ala ligase for synthesizing amino acid amides from amino acids.

    PubMed

    Miki, Yuta; Okazaki, Seiji; Asano, Yasuhisa

    2017-05-01

    We successfully engineered a new enzyme that catalyzes the formation of D-Ala amide (D-AlaNH 2 ) from D-Ala by modifying ATP-dependent D-Ala:D-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of D-Ala-D-Ala from two molecules of D-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second D-Ala of D-Ala-D-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for D-AlaNH 2 production. The S293E variant, which was selected as the best enzyme for D-AlaNH 2 production, exhibited an optimal activity at pH 9.0 and 40 °C for D-AlaNH 2 production. The apparent K m values of this variant for D-Ala and NH 3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of D-AlaNH 2 from 10 and 50 mM D-Ala and 3 M NH 4 Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.

  11. Simultaneous detoxification, saccharification, and ethanol fermentation of weak-acid hydrolyzates

    USDA-ARS?s Scientific Manuscript database

    Lignocellulosic feedstocks can be prepared for ethanol fermentation by pre-treatment with a dilute mineral acid catalyst that hydrolyzes the hemicellulose and opens up the plant cell wall fibers for subsequent enzymatic saccharification. The acid catalyzed reaction scheme is sequential whereby rele...

  12. Acid-catalyzed conversion of mono- and poly-sugars into platform chemicals: effects of molecular structure of sugar substrate.

    PubMed

    Hu, Xun; Wu, Liping; Wang, Yi; Song, Yao; Mourant, Daniel; Gunawan, Richard; Gholizadeh, Mortaza; Li, Chun-Zhu

    2013-04-01

    Hydrolysis/pyrolysis of lignocellulosic biomass always produces a mixture of sugars with distinct structures as intermediates or products. This study tried to elucidate the effects of molecular structure of sugars on their acid-catalyzed conversions in ethanol/water. Location of carbonyl group in sugars (fructose versus glucose) and steric configuration of hydroxyl groups (glucose versus galactose) significantly affected yields of levulinic acid/ester (fructose>glucose>galactose). The dehydration of fructose to 5-(hydroxymethyl)furfural produces much less soluble polymer than that from glucose and galactose, which results in high yields of levulinic acid/ester from fructose. Anhydrate sugar such as levoglucosan tends to undergo the undesirable decomposition to form less levulinic acid/ester. Catalytic behaviors of the poly-sugars (sucrose, maltose, raffinose, β-cyclodextrins) were determined much by their basic units. However, their big molecular sizes create the steric hindrance that significantly affects their followed conversion over solid acid catalyst. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Degree of branching in hyperbranched poly(glycerol-co-diacid)s synthesized in toluene

    USDA-ARS?s Scientific Manuscript database

    Hyperbranched polymers were synthesized by using a Lewis acid (dibutyltin(IV)oxide) to catalyze the polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutaric acid (n=3) or azelaic acid (n=7) in toluene. These are the first examples of diacid-glycerol hyperbranc...

  14. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  15. Rhodium enalcarbenoids: direct synthesis of indoles by rhodium(II)-catalyzed [4+2] benzannulation of pyrroles.

    PubMed

    Dawande, Sudam Ganpat; Kanchupalli, Vinaykumar; Kalepu, Jagadeesh; Chennamsetti, Haribabu; Lad, Bapurao Sudam; Katukojvala, Sreenivas

    2014-04-14

    Disclosed herein is the design of an unprecedented electrophilic rhodium enalcarbenoid which results from rhodium(II)-catalyzed decomposition of a new class of enaldiazo compounds. The synthetic utility of these enalcarbenoids has been successfully demonstrated in the first transition-metal-catalyzed [4+2] benzannulation of pyrroles, thus leading to substituted indoles. The new benzannulation has been applied to the efficient synthesis of the natural product leiocarpone as well as a potent adipocyte fatty-acid binding protein inhibitor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thiolsubtilisin acts as an acetyltransferase in organic solvents.

    PubMed

    Tai, Dar Fu; Liaw, Wen Chen

    2002-04-24

    The catalytic mechanism of arylamine N-acetyltransferase has been proposed to involve Cys-His-Asp as its catalytic triad. Thiolsubtilisin, a chemically modified enzyme that has a catalytic triad of Cys-His-Asp at the active site, mimics the catalysis of arylamine N-acetyltransferase, serotonin N-acetyltransferase, histone N-acetyltransferase and amino acid N-acetyltransferase. Thiolsubtilisin not only can catalyze amino acid transacetylation, but is also able to catalyze amine transacetylation. Ethyl acetate was used as the acylating reagent to form N-acetyl amino acids and amines in organic solvents with moderate yield. Hence, these findings broaden our understanding of the structural features required for N-acetyltransferases activity as well as provide a structural relationship between cysteine protease and other N-acyltransferases.

  17. Minimization of free radical damage by metal catalysis of multivitamin/multimineral supplements.

    PubMed

    Rabovsky, Alexander B; Komarov, Andrei M; Ivie, Jeremy S; Buettner, Garry R

    2010-11-23

    Multivitamin/multimineral complexes are the most common dietary supplements. Unlike minerals in foods that are incorporated in bioorganic structures, minerals in dietary supplements are typically in an inorganic form. These minerals can catalyze the generation of free radicals, thereby oxidizing antioxidants during digestion. Here we examine the ability of a matrix consisting of an amino acid and non-digestible oligosaccharide (AAOS) to blunt metal-catalyzed oxidations. Monitoring of ascorbate radical generated by copper shows that ascorbate is oxidized more slowly with the AAOS matrix than with copper sulfate. Measurement of the rate of oxidation of ascorbic acid and Trolox® by catalytic metals confirmed the ability of AAOS to slow these oxidations. Similar results were observed with iron-catalyzed formation of hydroxyl radicals. When compared to traditional forms of minerals used in supplements, we conclude that the oxidative loss of antioxidants in solution at physiological pH is much slower when AAOS is present.

  18. Rhodium-catalyzed 1,4-addition of arylboronic acids to alpha,beta-unsaturated carbonyl compounds: large accelerating effects of bases and ligands.

    PubMed

    Itooka, Ryoh; Iguchi, Yuki; Miyaura, Norio

    2003-07-25

    The effects of ligands and bases in the rhodium(I)-catalyzed 1,4-addition of arylboronic acids to alpha,beta-unsaturated carbonyl compounds were reinvestigated to carry out the reaction under mild conditions. Rhodium(I) complexes possessing a 1,5-cyclooctadiene (cod) and a hydroxo ligand such as [RhOH(cod)](2) exhibited excellent catalyst activities compared to those of the corresponding rhodium-acac or -chloro complexes and their phosphine derivatives. The reaction was further accelerated in the presence of KOH, thus allowing the 1,4-addition even at 0 degrees C. A cationic rhodium(I)-(R)-binap complex, [Rh(R-binap)(nbd)]BF(4), catalyzed the reaction at 25-50 degrees C in the presence of Et(3)N with high enantioselectivities of up to 99% ee for alpha,beta-unsaturated ketones, 92% for aldehydes, 94% for esters, and 92% for amides.

  19. High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy toward Facile Synthesis.

    PubMed

    Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Liu, Zhihong; Cui, Guanglei; Feng, Jiwen

    2017-11-01

    It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self-catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte (C-PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li + and considerable ionic conductivity of 8.9 × 10 -5 S cm -1 at ambient temperature. Moreover, the LiFePO 4 /C-PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self-catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes.

  20. Phosphine-Catalyzed Doubly Stereoconvergent γ-Additions of Racemic Heterocycles to Racemic Allenoates: The Catalytic Enantioselective Synthesis of Protected α,α-Disubstituted α-Amino Acid Derivatives.

    PubMed

    Kalek, Marcin; Fu, Gregory C

    2015-07-29

    Methods have recently been developed for the phosphine-catalyzed asymmetric γ-addition of nucleophiles to readily available allenoates and alkynoates to generate useful α,β-unsaturated carbonyl compounds that bear a stereogenic center in either the γ or the δ position (but not both) with high stereoselectivity. The utility of this approach would be enhanced considerably if the stereochemistry at both termini of the new bond could be controlled effectively. In this report, we describe the achievement of this objective, specifically, that a chiral phosphepine can catalyze the stereoconvergent γ-addition of a racemic nucleophile to a racemic electrophile; through the choice of an appropriate heterocycle as the nucleophilic partner, this new method enables the synthesis of protected α,α-disubstituted α-amino acid derivatives in good yield, diastereoselectivity, and enantioselectivity.

  1. Histidine-functionalized water-soluble nanoparticles for biomimetic nucleophilic/general-base catalysis under acidic conditions.

    PubMed

    Chadha, Geetika; Zhao, Yan

    2013-10-21

    Cross-linking the micelles of 4-dodecyloxybenzyltripropargylammonium bromide by 1,4-diazidobutane-2,3-diol in the presence of azide-functionalized imidazole derivatives yielded surface-cross-linked micelles (SCMs) with imidazole groups on the surface. The resulting water-soluble nanoparticles were found, by fluorescence spectroscopy, to contain hydrophobic binding sites. The imidazole groups promoted the photo-deprotonation of 2-naphthol at pH 6 and catalyzed the hydrolysis of p-nitrophenylacetate (PNPA) in aqueous solution at pH ≥ 4. Although the overall hydrolysis rate slowed down with decreasing solution pH, the catalytic effect of the imidazole became stronger because the reactions catalyzed by unfunctionalized SCMs slowed down much more. The unusual ability of the imidazole–SCMs to catalyze the hydrolysis of PNPA under acidic conditions was attributed to the local hydrophobicity and the positive nature of the SCMs.

  2. Structural and stereoelectronic insights into oxygenase-catalyzed formation of ethylene from 2-oxoglutarate.

    PubMed

    Zhang, Zhihong; Smart, Tristan J; Choi, Hwanho; Hardy, Florence; Lohans, Christopher T; Abboud, Martine I; Richardson, Melodie S W; Paton, Robert S; McDonough, Michael A; Schofield, Christopher J

    2017-05-02

    Ethylene is important in industry and biological signaling. In plants, ethylene is produced by oxidation of 1-aminocyclopropane-1-carboxylic acid, as catalyzed by 1-aminocyclopropane-1-carboxylic acid oxidase. Bacteria catalyze ethylene production, but via the four-electron oxidation of 2-oxoglutarate to give ethylene in an arginine-dependent reaction. Crystallographic and biochemical studies on the Pseudomonas syringae ethylene-forming enzyme reveal a branched mechanism. In one branch, an apparently typical 2-oxoglutarate oxygenase reaction to give succinate, carbon dioxide, and sometimes pyrroline-5-carboxylate occurs. Alternatively, Grob-type oxidative fragmentation of a 2-oxoglutarate-derived intermediate occurs to give ethylene and carbon dioxide. Crystallographic and quantum chemical studies reveal that fragmentation to give ethylene is promoted by binding of l-arginine in a nonoxidized conformation and of 2-oxoglutarate in an unprecedented high-energy conformation that favors ethylene, relative to succinate formation.

  3. NHC-catalyzed cleavage of vicinal diketones and triketones followed by insertion of enones and ynones.

    PubMed

    Takaki, Ken; Hino, Makoto; Ohno, Akira; Komeyama, Kimihiro; Yoshida, Hiroto; Fukuoka, Hiroshi

    2017-01-01

    Thiazolium carbene-catalyzed reactions of 1,2-diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,β-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products.

  4. Ligand-Promoted Rh(III)-Catalyzed Coupling of Aryl C-H Bonds with Arylboron Reagents.

    PubMed

    Wang, Huai-Wei; Cui, Pei-Pei; Lu, Yi; Sun, Wei-Yin; Yu, Jin-Quan

    2016-04-15

    Rhodium(III)-catalyzed C-H arylation of arenes with phenylboronic acid pinacol esters has been achieved using a readily removable N-pentafluorophenylbenzamide directing group for the first time. The use of a bidentate phosphine ligand (Binap) significantly increased the yield of the cross-coupling of C-H bonds with organoboron reagents.

  5. Clostridium acidurici Electron-Bifurcating Formate Dehydrogenase

    PubMed Central

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg

    2013-01-01

    Cell extracts of uric acid-grown Clostridium acidurici catalyzed the coupled reduction of NAD+ and ferredoxin with formate at a specific activity of 1.3 U/mg. The enzyme complex catalyzing the electron-bifurcating reaction was purified 130-fold and found to be composed of four subunits encoded by the gene cluster hylCBA-fdhF2. PMID:23872566

  6. The rhodium catalyzed three-component reaction of diazoacetates, titanium(IV) alkoxides and aldehydes.

    PubMed

    Lu, Chong-Dao; Liu, Hui; Chen, Zhi-Yong; Hu, Wen-Hao; Mi, Ai-Qiao

    2005-05-28

    The rhodium(II)-catalyzed three-component reaction of diazoacetates, titanium alkoxides and aldehydes is shown to give alpha-alkoxyl-beta-hydroxyl acid derivatives; the novel C-C bond formation reaction is proposed to occur through oxonium ylides derived from diazo compounds and titanium alkoxides, and followed by intermolecular trapping by aldehydes.

  7. EFFECTS OF AQUATIC HUMIC SUBSTANCES ON ANALYSIS FOR HYDROGEN PEROXIDE USING PEROXIDASE-CATALYZED OXIDATIONS OF TRIARYLMETHANES OR P-HYDROXYPENYLACETIC ACID (JOURNAL VERSION)

    EPA Science Inventory

    A sensitive procedure is described for trace analysis of hydrogen peroxide in water. The process involves the peroxide-catalyzed oxidation of the leuco forms of two dyes, crystal violet and malachite green. The sensitivity of this procedure, as well as of another procedure based ...

  8. NHC-catalyzed cleavage of vicinal diketones and triketones followed by insertion of enones and ynones

    PubMed Central

    Hino, Makoto; Ohno, Akira; Komeyama, Kimihiro; Yoshida, Hiroto; Fukuoka, Hiroshi

    2017-01-01

    Thiazolium carbene-catalyzed reactions of 1,2-diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,β-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products. PMID:28904625

  9. Highly regioselective Lewis acid-catalyzed [3+2] cycloaddition of alkynes with donor-acceptor oxiranes by selective carbon-carbon bond cleavage of epoxides.

    PubMed

    Liu, Renrong; Zhang, Mei; Zhang, Junliang

    2011-12-28

    A novel, efficient, highly regioselective Sc(OTf)(3)-catalyzed [3+2] cycloaddition of electron-rich alkynes with donor-acceptor oxiranes via highly chemoselective C-C bond cleavage under mild conditions was developed. This journal is © The Royal Society of Chemistry 2011

  10. Mechanistic insights into iron catalyzed dehydrogenation of formic acid: β-hydride elimination vs. direct hydride transfer.

    PubMed

    Yang, Xinzheng

    2013-09-07

    Density functional theory calculations reveal a complete reaction mechanism with detailed energy profiles and transition state structures for the dehydrogenation of formic acid catalyzed by an iron complex, [P(CH2CH2PPh2)3FeH](+). In the cationic reaction pathway, a β-hydride elimination process is confirmed to be the rate-determining step in this catalytic reaction. A potential reaction pathway starting with a direct hydride transfer from HCOO(-) to Fe is found to be possible, but slightly less favorable than the catalytic cycle with a β-hydride elimination step.

  11. Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and O-acyl hydroxylamine.

    PubMed

    An, Xiao-De; Yu, Shouyun

    2015-06-05

    A one-pot synthesis of phenanthridines and quinolines from commercially available or easily prepared aldehydes has been reported. O-(4-Cyanobenzoyl)hydroxylamine was utilized as the nitrogen source to generate O-acyl oximes in situ with aldehydes catalyzed by Brønsted acid. O-Acyl oximes were then subjected to visible light photoredox catalyzed cyclization via iminyl radicals to furnish aza-arenes. A variety of phenanthridines and quinolines have been prepared assisted by Brønsted acid and photocatalyst under visible light at room temperature with satisfactory yields.

  12. Aquivion Perfluorosulfonic Superacid as an Efficient Pickering Interfacial Catalyst for the Hydrolysis of Triglycerides.

    PubMed

    Shi, Hui; Fan, Zhaoyu; Hong, Bing; Pera-Titus, Marc

    2017-09-11

    Rational design of the surface properties of heterogeneous catalysts can boost the interfacial activity in biphasic reactions through the generation of Pickering emulsions. This concept, termed Pickering interfacial catalysis (PIC), has shown promising credentials in acid-catalyzed transesterification, ester hydrolysis, acetalization, etherification, and alkylation reactions. PIC has now been applied to the efficient, solvent-free hydrolysis of the triglyceride glyceryl trilaurate to lauric acid, catalyzed by Aquivion perfluorosulfonic superacid at mild conditions (100 °C and ambient pressure). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ruthenium(III) catalyzed oxidation of sugar alcohols by dichloroisocyanuric acid—A kinetic study

    NASA Astrophysics Data System (ADS)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2016-02-01

    Kinetics of ruthenium(III) catalyzed oxidation of biologically important sugar alcohols (myo-inositol, D-sorbitol, and D-mannitol) by dichloroisocyanuric acid was carried out in aqueous acetic acid—perchloric medium. The reactions were found to be first order in case of oxidant and ruthenium(III). Zero order was observed with the concentrations of sorbitol and mannitol whereas, a positive fractional order was found in the case of inositol concentration. An inverse fractional order was observed with perchloric acid in oxidation of three substrates. Arrhenius parameters were calculated and a plausible mechanism was proposed.

  14. Palladium-catalyzed stereoretentive olefination of unactivated C(sp3)-H bonds with vinyl iodides at room temperature: synthesis of β-vinyl α-amino acids.

    PubMed

    Wang, Bo; Lu, Chengxi; Zhang, Shu-Yu; He, Gang; Nack, William A; Chen, Gong

    2014-12-05

    A method is reported for palladium-catalyzed N-quinolyl carboxamide-directed olefination of the unactivated C(sp(3))-H bonds of phthaloyl alanine with a broad range of vinyl iodides at room temperature. This reaction represents the first example of the stereoretentive installation of multisubstituted terminal and internal olefins onto unactivated C(sp(3))-H bonds. These methods enable access to a wide range of challenging β-vinyl α-amino acid products in a streamlined and controllable fashion, beginning from simple precursors.

  15. Enantioselective Organocatalytic Aminomethylation of Aldehydes: A Role for Ionic Interactions and Efficient Access to β2-Amino Acids

    PubMed Central

    Chi, Yonggui; Gellman, Samuel H.

    2009-01-01

    Organocatalytic Mannich addition of aldehydes to a formaldehyde-derived iminium species catalyzed by proline-derived chiral pyrrolidines provides β-amino aldehydes with ≥ 90% ee. Mechanistic analysis of the proline-catalyzed reactions suggests that non-hydrogen-bonded ionic interactions at the Mannich reaction transition state can influence stereochemical outcome. The β-amino aldehydes from our process bear a substituent adjacent to the carbonyl and can be efficiently converted to protected β2-amino acids, which are important building blocks for β-peptide foldamers that display useful biological activities. PMID:16719457

  16. The assembly and properties of protobiological structures - The beginnings of cellular peptide synthesis

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.

    1980-01-01

    New data indicate that lysine-rich proteinoids have the ability to catalyze the synthesis of peptide bonds from a variety of amino acids and ATP. This capacity is evident in aqueous solution, in suspension of phase-separated complexes of lysine-rich proteinoid with acidic proteinoids, and in suspension of phase-separated particles composed of lysine-rich proteinoids with polynucleotides. Since the proteinoid complexes can contain other catalytic activities, including ability to catalyze internucleotide bond formation, it is inferred that the first protocells on earth already had a number of biological types of activity.

  17. Brönsted Acid-Catalyzed One-Pot Synthesis of Indoles from o-Aminobenzyl Alcohols and Furans

    PubMed Central

    Kuznetsov, Alexey; Makarov, Anton; Rubtsov, Alexandr E.; Butin, Alexander V.; Gevorgyan, Vladimir

    2013-01-01

    Brönsted acid-catalyzed one-pot synthesis of indoles from o-aminobenzyl alcohols and furans has been developed. This method operates via the in situ formation of aminobenzylfuran, followed by its recyclization into the indole core. The method proved to be efficient for substrates possessing different functional groups, including -OMe, -CO2Cy, and -Br. The resulting indoles can easily be transformed into diverse scaffolds, including 2,3- and 1,2-fused indoles, and indole possessing an α,β-unsaturated ketone moiety at the C-2 position. PMID:24255969

  18. Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids: a green, zero-waste route to biobased nitriles.

    PubMed

    Claes, Laurens; Verduyckt, Jasper; Stassen, Ivo; Lagrain, Bert; De Vos, Dirk E

    2015-04-18

    Oxidative decarboxylation of amino acids into nitriles was performed using molecular oxygen as terminal oxidant and a heterogeneous ruthenium hydroxide-based catalyst. A range of amino acids was oxidized in very good yield, using water as the solvent.

  19. Textbook Errors and Misconceptions in Biology: Cell Physiology.

    ERIC Educational Resources Information Center

    Storey, Richard D.

    1992-01-01

    Considers topics about cell function often misunderstood, misrepresented, or omitted from biology textbooks: enzyme catalyzed reactions; RNA as a catalyst; protein levels in cells; amino acids; organic acids; glucose and fructose; gluconeogenesis; fatty acids and ketone bodies; diffusion; and transport across membranes. (Contains 25 references.)…

  20. Cyclization of arylacetoacetates to indene and dihydronaphthalene derivatives in strong acids. Evidence for involvement of further protonation of O,O-diprotonated beta-ketoester, leading to enhancement of cyclization.

    PubMed

    Kurouchi, Hiroaki; Sugimoto, Hiromichi; Otani, Yuko; Ohwada, Tomohiko

    2010-01-20

    The chemical features, such as substrate stability, product distribution, and substrate generality, and the reaction mechanism of Brønsted superacid-catalyzed cyclization reactions of aromatic ring-containing acetoacetates (beta-ketoesters) were examined in detail. While two types of carbonyl cyclization are possible, i.e., keto cyclization and ester cyclization, the former was found to take place exclusively. The reaction constitutes an efficient method to synthesize indene and 3,4-dihydronapthalene derivatives. Acid-base titration monitored with (13)C NMR spectroscopy showed that the acetoacetates are fully O(1),O(3)-diprotonated at H(0) = -11. While the five-membered ring cyclization of the arylacetoacetates proceeded slowly at H(0) = -11, a linear increase in the rate of the cyclization was found with increasing acidity in the high acidity region of H(0) = -11.8 to -13.3. Therefore, the O(1),O(3)-diprotonated acetoacetates exhibited some cyclizing reactivity, but they are not the reactive intermediates responsible for the acceleration of the cyclization in the high acidity region. The reactive cationic species might be formed by further protonation (or protosolvation) of the O(1),O(3)-diprotonated acetoacetates; i.e., they may be tricationic species. Thermochemical data on the acid-catalyzed cyclization of the arylacetoacetates showed that the activation energy is decreased significantly as compared with that of the related acid-catalyzed cyclization reaction of a compound bearing a single functional group, such as a ketone. These findings indicate that intervention of the trication contributes to the activation of the cyclization of arylacetoacetates in strong acid, and the electron-withdrawing nature of the O-protonated ester functionality significantly increases the electrophilicity of the ketone moiety.

  1. Peptide Epimerization Machineries Found in Microorganisms.

    PubMed

    Ogasawara, Yasushi; Dairi, Tohru

    2018-01-01

    D-Amino acid residues have been identified in peptides from a variety of eukaryotes and prokaryotes. In microorganisms, UDP- N -acetylmuramic acid pentapeptide (UDP-MurNAc-L-Ala-D-Glu-meso-diaminopimelate-D-Ala-D-Ala), a unit of peptidoglycan, is a representative. During its biosynthesis, D-Ala and D-Glu are generally supplied by racemases from the corresponding isomers. However, we recently identified a unique unidirectional L-Glu epimerase catalyzing the epimerization of the terminal L-Glu of UDP-MurNAc-L-Ala-L-Glu. Several such enzymes, introducing D-amino acid resides into peptides via epimerization, have been reported to date. This includes a L-Ala-D/L-Glu epimerase, which is possibly used during peptidoglycan degradation. In bacterial primary metabolisms, to the best of our knowledge, these two machineries are the only examples of peptide epimerization. However, a variety of peptides containing D-amino acid residues have been isolated from microorganisms as secondary metabolites. Their biosynthetic mechanisms have been studied and three different peptide epimerization machineries have been reported. The first is non-ribosomal peptide synthetase (NRPS). Excellent studies with dissected modules of gramicidin synthetase and tyrocidine synthetase revealed the reactions of the epimerization domains embedded in the enzymes. The obtained information is still utilized to predict epimerization domains in uncharacterized NRPSs. The second includes the biosynthetic enzymes of lantibiotics, which are ribosome-dependently supplied peptide antibiotics containing polycyclic thioether amino acids (lanthionines). A mechanism for the formation of the D-Ala moiety in lanthionine by two enzymes, dehydratases catalyzing the conversion of L-Ser into dehydroalanine and enzymes catalyzing nucleophilic attack of the thiol of cysteine into dehydroalanine, was clarified. Similarly, the formation of a D-Ala residue by reduction of the dehydroalanine residue was also reported. The last type of machinery includes radical- S -adenosylmethionine (rSAM)-dependent enzymes, which catalyze a variety of radical-mediated chemical transformations. In the biosynthesis of polytheonamide, a marine sponge-derived and ribosome-dependently supplied peptide composed of 48 amino acids, a rSAM enzyme (PoyD) is responsible for unidirectional epimerizations of multiple different amino acids in the precursor peptide. In this review, we briefly summarize the discovery and current mechanistic understanding of these peptide epimerization enzymes.

  2. Alkali-catalyzed low temperature wet crosslinking of plant proteins using carboxylic acids.

    PubMed

    Reddy, Narendra; Li, Ying; Yang, Yiqi

    2009-01-01

    We report the development of a new method of alkali-catalyzed low temperature wet crosslinking of plant proteins to improve their breaking tenacity without using high temperatures or phosphorus-containing catalysts used in conventional poly(carboxylic acid) crosslinking of cellulose and proteins. Carboxylic acids are preferred over aldehyde-containing crosslinkers for crosslinking proteins and cellulose because of their low toxicity and cost and ability to improve the desired properties of the materials. However, current knowledge in carboxylic acid crosslinking of proteins and cellulose requires the use of carboxylic acids with at least three carboxylic groups, toxic phosphorous-containing catalysts and curing at high temperatures (150-185 degrees C). The use of high temperatures and low pH in conventional carboxylic acid crosslinking has been reported to cause substantial strength loss and/or undesired changes in the properties of the crosslinked materials. In this research, gliadin, soy protein, and zein fibers have been crosslinked with malic acid, citric acid, and butanetetracarboxylic acid to improve the tenacity of the fibers without using high temperatures and phosphorus-containing catalysts. The new method of wet crosslinking using carboxylic acids containing two or more carboxylic groups will be useful to crosslink proteins for various industrial applications.

  3. A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system.

    PubMed

    Song, Young Ho; Shin, Eyoung; Wang, Hong; Nolan, Jim; Low, Susan; Parsons, Donald; Zale, Stephen; Ashton, Susan; Ashford, Marianne; Ali, Mir; Thrasher, Daniel; Boylan, Nicholas; Troiano, Greg

    2016-05-10

    The present studies were aimed at formulating AZD2811-loaded polylactic acid-polyethylene glycol (PLA-PEG) nanoparticles with adjustable release rates without altering the chemical structures of the polymer or active pharmaceutical ingredient (API). This was accomplished through the use of a hydrophobic ion pairing approach. A series of AZD2811-containing nanoparticles with a variety of hydrophobic counterions including oleic acid, 1-hydroxy-2-naphthoic acid, cholic acid, deoxycholic acid, dioctylsulfosuccinic acid, and pamoic acid is described. The hydrophobicity of AZD2811 was increased through formation of ion pairs with these hydrophobic counterions, producing nanoparticles with exceptionally high drug loading-up to five fold higher encapsulation efficiency and drug loading compared to nanoparticles made without hydrophobic ion pairs. Furthermore, the rate at which the drug was released from the nanoparticles could be controlled by employing counterions with various hydrophobicities and structures, resulting in release half-lives ranging from about 2 to 120h using the same polymer, nanoparticle size, and nanoemulsion process. Process recipe variables affecting drug load and release rate were identified, including pH and molarity of quench buffer. Ion pair formation between AZD2811 and pamoic acid as a model counterion was investigated using solubility enhancement as well as nuclear magnetic resonance spectroscopy to demonstrate solution-state interactions. Further evidence for an ion pairing mechanism of controlled release was provided through the measurement of API and counterion release profiles using high-performance liquid chromatography, which had stoichiometric relationships. Finally, Raman spectra of an AZD2811-pamoate salt compared well with those of the formulated nanoparticles, while single components (AZD2811, pamoic acid) alone did not. A library of AZD2811 batches was created for analytical and preclinical characterization. Dramatically improved preclinical efficacy and tolerability data were generated for the pamoic acid lead formulation, which has been selected for evaluation in a Phase 1 clinical trial (ClinicalTrials.gov Identifier NCT 02579226). This work clearly demonstrates the importance of assessing a wide range of drug release rates during formulation screening as a critical step for new drug product development, and how utilizing hydrophobic ion pairing enabled this promising nanoparticle formulation to proceed into clinical development. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Characterization of thermal and mechanical properties of opligo(glycerol-glutaric acid)s

    USDA-ARS?s Scientific Manuscript database

    Dibutyltin oxide was used to catalyze the synthesis of oligo(glycerol-glutaric acid)s in the absence and presence of solvent. Reaction times were either 10h or 24h for reactions performed in DMF and 24h for the neat reaction. The oligomers were obtained on average in 84% yield and were characteriz...

  5. Thermostable Lipoxygenase, a Key Enzyme in the Conversion of Linoleic Acid into Thrihydroxy-octadecenoic Acid by Pseudomonas aeruginosa PR3

    USDA-ARS?s Scientific Manuscript database

    Lipoxygenases (LOX) constitute a family of lipid-peroxidizing enzymes catalyzing the oxidation of unsaturated fatty acid with (1Z,4Z)-pentadiene structural unit, leading to formation of the conjugated (Z,E)-hydroperoxydienoic acid. LOXs have been known to be widely distributed in plants and animals...

  6. Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization.

    PubMed

    Schrewe, Manfred; Julsing, Mattijs K; Lange, Kerstin; Czarnotta, Eik; Schmid, Andreas; Bühler, Bruno

    2014-09-01

    The oxyfunctionalization of unactivated C−H bonds can selectively and efficiently be catalyzed by oxygenase-containing whole-cell biocatalysts. Recombinant Escherichia coli W3110 containing the alkane monooxygenase AlkBGT and the outer membrane protein AlkL from Pseudomonas putida GPo1 have been shown to efficiently catalyze the terminal oxyfunctionalization of renewable fatty acid methyl esters yielding bifunctional products of interest for polymer synthesis. In this study, AlkBGTL-containing E. coli W3110 is shown to catalyze the multistep conversion of dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to the acid, exhibiting Michaelis-Menten-type kinetics for each reaction step. In two-liquid phase biotransformations, the product formation pattern was found to be controlled by DAME availability. Supplying DAME as bulk organic phase led to accumulation of the terminal alcohol as the predominant product. Limiting DAME availability via application of bis(2-ethylhexyl)phthalate (BEHP) as organic carrier solvent enabled almost exclusive acid accumulation. Furthermore, utilization of BEHP enhanced catalyst stability by reducing toxic effects of substrate and products. A further shift towards the overoxidized products was achieved by co-expression of the gene encoding the alcohol dehydrogenase AlkJ, which was shown to catalyze efficient and irreversible alcohol to aldehyde oxidation in vivo. With DAME as organic phase, the aldehyde accumulated as main product using resting cells containing AlkBGT, AlkL, as well as AlkJ. This study highlights the versatility of whole-cell biocatalysis for synthesis of industrially relevant bifunctional building blocks and demonstrates how integrated reaction and catalyst engineering can be implemented to control product formation patterns in biocatalytic multistep reactions. © 2014 Wiley Periodicals, Inc.

  7. Kinetic mechanism and structural requirements of the amine-catalyzed decarboxylation of oxaloacetic acid.

    PubMed

    Thalji, Nabil K; Crowe, William E; Waldrop, Grover L

    2009-01-02

    The kinetic and chemical mechanism of amine-catalyzed decarboxylation of oxaloacetic acid at pH 8.0 has been reevaluated using a new and versatile assay. Amine-catalyzed decarboxylation of oxaloacetic acid proceeds via the formation of an imine intermediate, followed by decarboxylation of the intermediate and hydrolysis to yield pyruvate. The decrease in oxaloacetic acid was coupled to NADH formation by malate dehydrogenase, which allowed the rates of both initial carbinolamine formation (as part of the imination step) and decarboxylation to be determined. By comparing the rates observed for a variety of amines and, in particular, diamines, the structural and electronic requirements for diamine-catalyzed decarboxylation at pH 8.0 were identified. At pH 8.0, monoamines were found to be very poor catalysts, whereas some diamines, most notably ethylenediamine, were excellent catalysts. The results indicate that the second amino group of diamines enhances the rate of imine formation by acting as a proton shuttle during the carbinolamine formation step, which enables diamines to overcome high levels of solvation that would otherwise inhibit carbinolamine, and thus imine, formation. The presence of the second amino group may also enhance the rate of the carbinolamine dehydration step. In contrast to the findings of previous reports, the second amino group participates in the reaction by enhancing the rate of decarboxylation via hydrogen-bonding to the imine nitrogen to either stabilize the negative charge that develops on the imine during decarboxylation or preferentially stabilize the reactive imine over the unreactive enamine tautomer. These results provide insight into the precise catalytic mechanism of several enzymes whose reactions are known to proceed via an imine intermediate.

  8. Copolymers from photochemical thiol-ene polycondensation of fatty dienes with alkyl dithiols

    USDA-ARS?s Scientific Manuscript database

    Photochemical thiol-ene polycondensation of unsaturated monomers based on renewable 9-decenoic acid with various alkyl dithiols readily afforded copolymers in high yield. Monomers were prepared by acid-catalyzed condensation of 9-decenoic acid with diols such as ethylene glycol, 1,2-propylene glycol...

  9. Analysis and properties of the decarboxylation products of oleic acid by catalytic triruthenium dodecacarbonyl

    USDA-ARS?s Scientific Manuscript database

    Recently, ruthenium-catalyzed isomerization-decarboxylation of fatty acids to give alkene mixtures was reported. When the substrate was oleic acid, the reaction yielded a mixture consisting of heptadecene isomers. In this work, we report the compositional analysis of the mixture obtained by triruthe...

  10. Heterogeneous catalytic esterification of omega-sulfhydryl fatty acids: Avoidance of thioethers, thioesters, and disulfides

    USDA-ARS?s Scientific Manuscript database

    Two mesoporous silicas functionalized with propylsulfonic (SBA-15-PSA) and arenesulfonic (SBA-15-ASA) acid groups, and a highly acidic, functionalized styrene divinylbenzene copolymer ion exchange resin (Amberlyst-15) were examined for their ability to catalyze the ethanolic esterification of the N-...

  11. Physical proprieties of low viscosity estolide 2-ethylhexyl esters

    USDA-ARS?s Scientific Manuscript database

    Acetic- and butyric-capped oleic estolide 2-ethylhexyl (2-EH) esters were synthesized in a perchloric acid catalyzed (0.05 equiv) one-pot process from industrial 90% oleic acid and either acetic or butyric fatty acids at two different ratios. This was directly followed by the esterification process ...

  12. Effects of swelling on the viscoelastic properties of polyester films made from glycerol and glutaric acid

    USDA-ARS?s Scientific Manuscript database

    Viscoelastic properties have been determined for poly(glycerol-co-glutaric acid) films synthesized from Lewis acid-catalyzed polyesterifications. The polymers were prepared by synthesizing polymer gels that were subsequently cured at 125 degrees C to form polymer films. The polymers were evaluated ...

  13. Structure and luminescent property of complexes of aryl carboxylic acid-functionalized polystyrene with Eu(III) and Tb(III) ions.

    PubMed

    Gao, Baojiao; Shi, Nan; Qiao, Zongwen

    2015-11-05

    Via polymer reactions, naphthoic acid (NA) and benzoic acid (BA) were bonded onto the side chains of polystyrene (PS), respectively, and two aryl carboxylic acid-functionalized polystyrenes, PSNA and PSBA, were obtained. Using PSNA and PSBA as macromolecule ligands and Eu(3+) and Tb(3+) ions as central ions, various luminescent binary polymer-rare earth complexes were prepared. At the same time, with 1,10-phenanthroline (Phen) and 4,4'-bipyridine (Bipy) as small-molecule co-ligands, various ternary polymer-rare earth complexes were also prepared. On the basis of characterizing PSNA, PSBA and complexes, the relationship between structure and luminescent property for these prepared complexes were mainly investigated. The study results show that the macromolecule ligands PSNA and PSBA, or the bonded NA and BA ligands, can strongly sensitize the fluorescence emissions of Eu(3+) ion or Tb(3+) ion, but the sensitization effect is strongly dependent on the structure of the ligands and the property of the central ions, namely it is strongly dependent on the matching degree of energy levels. The fluorescence emission of the binary complex PS-(NA)3-Eu(III) is stronger than that PS-(BA)3-Eu(III), indicating ligand NA has stronger sensitization action for Eu(3+) ion than ligand BA; the binary complex PS-(BA)3-Tb(III) emit strong characteristic fluorescence of Tb(3+) ion, displaying that ligand BA can strongly sensitize Tb(3+) ion, whereas the binary complex PS-(NA)3-Tb(III) nearly does not emit the characteristic fluorescence of Tb(3+) ion, showing that ligand NA does not sensitize Tb(3+) ion. The fluorescence intensity of the ternary complexes is much stronger than that of the binary complexes in the same series. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    PubMed

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.

  15. Nerve Agent Sensing Biopolymer Wipe

    DTIC Science & Technology

    2003-04-01

    3. Urease and BChE (at two concentrations) activity as function of pH. ..... 10 Figure 4. Reaction scheme Agentase nerve agent sensor...11 Figure 5. Signal development in Agentase’s Traffic Light Sensor Construct.......... 11 Figure 6. Effect of BChE/ urease ...between two competing enzyme reactions. BChE catalyzed butyrylcholine hydrolysis results in the production of acid (decreasing pH) while urease - catalyzed

  16. Iron-Catalyzed Intramolecular C(sp(2))-N Cyclization of 1-(N-Arylpyrrol-2-yl)ethanone O-Acetyl Oximes toward Pyrrolo[1,2-a]quinoxaline Derivatives.

    PubMed

    Zhang, Zhiguo; Li, Junlong; Zhang, Guisheng; Ma, Nana; Liu, Qingfeng; Liu, Tongxin

    2015-07-02

    An efficient and convenient iron-catalyzed protocol has been developed for the synthesis of substituted pyrrolo[1,2-a]quinoxalines from 1-(N-arylpyrrol-2-yl)ethanone O-acetyl oximes through N-O bond cleavage and intramolecular directed C-H arylation reactions in acetic acid.

  17. 3-Hydroxylaminophenol Mutase from Ralstonia eutropha JMP134 Catalyzes a Bamberger Rearrangement

    PubMed Central

    Schenzle, Andreas; Lenke, Hiltrud; Spain, Jim C.; Knackmuss, Hans-Joachim

    1999-01-01

    3-Hydroxylaminophenol mutase from Ralstonia eutropha JMP134 is involved in the degradative pathway of 3-nitrophenol, in which it catalyzes the conversion of 3-hydroxylaminophenol to aminohydroquinone. To show that the reaction was really catalyzed by a single enzyme without the release of intermediates, the corresponding protein was purified to apparent homogeneity from an extract of cells grown on 3-nitrophenol as the nitrogen source and succinate as the carbon and energy source. 3-Hydroxylaminophenol mutase appears to be a relatively hydrophobic but soluble and colorless protein consisting of a single 62-kDa polypeptide. The pI was determined to be at pH 4.5. In a database search, the NH2-terminal amino acid sequence of the undigested protein and of two internal sequences of 3-hydroxylaminophenol mutase were found to be most similar to those of glutamine synthetases from different species. Hydroxylaminobenzene, 4-hydroxylaminotoluene, and 2-chloro-5-hydroxylaminophenol, but not 4-hydroxylaminobenzoate, can also serve as substrates for the enzyme. The enzyme requires no oxygen or added cofactors for its reaction, which suggests an enzymatic mechanism analogous to the acid-catalyzed Bamberger rearrangement. PMID:10049374

  18. Identification of UGT2B9*2 and UGT2B33 isolated from female rhesus monkey liver.

    PubMed

    Dean, Brian; Arison, Byron; Chang, Steve; Thomas, Paul E; King, Christopher

    2004-06-01

    Two UDP-glucuronosyltransferases (UGT2B9(*)2 and UGT2B33) have been isolated from female rhesus monkey liver. Microsomal preparations of the cell lines expressing the UGTs catalyzed the glucuronidation of the general substrate 7-hydroxy-4-(trifluoromethyl)coumarin in addition to selected estrogens (beta-estradiol and estriol) and opioids (morphine, naloxone, and naltrexone). UGT2B9(*)2 displayed highest efficiency for beta-estradiol-17-glucuronide production and did not catalyze the glucuronidation of naltrexone. UGT2B33 displayed highest efficiency for estriol and did not catalyze the glucuronidation of beta-estradiol. UGT2B9(*)2 was found also to catalyze the glucuronidation of 4-hydroxyestrone, 16-epiestriol, and hyodeoxycholic acid, while UGT2B33 was capable of conjugating 4-hydroxyestrone, androsterone, diclofenac, and hyodeoxycholic acid. Three glucocorticoids (cortisone, cortisol, and corticosterone) were not substrates for glucuronidation by liver or kidney microsomes or any expressed UGTs. Our current data suggest the use of beta-estradiol-3-glucuronidation, beta-estradiol-17-glucuronidation, and estriol-17-glucuronidation to assay UGT1A01, UGT2B9(*)2, and UGT2B33 activity in rhesus liver microsomes, respectively.

  19. Roles of the Lewis acid and base in the chemical reduction of CO2 catalyzed by frustrated Lewis pairs.

    PubMed

    Lim, Chern-Hooi; Holder, Aaron M; Hynes, James T; Musgrave, Charles B

    2013-09-03

    We employ quantum chemical calculations to discover how frustrated Lewis pairs (FLP) catalyze the reduction of CO2 by ammonia borane (AB); specifically, we examine how the Lewis acid (LA) and Lewis base (LB) of an FLP activate CO2 for reduction. We find that the LA (trichloroaluminum, AlCl3) alone catalyzes hydride transfer (HT) to CO2 while the LB (trimesitylenephosphine, PMes3) actually hinders HT; inclusion of the LB increases the HT barrier by ∼8 kcal/mol relative to the reaction catalyzed by LAs only. The LB hinders HT by donating its lone pair to the LUMO of CO2, increasing the electron density on the C atom and thus lowering its hydride affinity. Although the LB hinders HT, it nonetheless plays a crucial role by stabilizing the active FLP·CO2 complex relative to the LA dimer, free CO2, and free LB. This greatly increases the concentration of the reactive complex in the form FLP·CO2 and thus increases the rate of reaction. We expect that the principles we describe will aid in understanding other catalytic CO2 reductions.

  20. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii.

    PubMed

    Jeong, Tae Su; Choi, Chang Ho; Lee, Ji Ye; Oh, Kyeong Keun

    2012-07-01

    Acid-catalyzed hydrothermal hydrolysis is one path to cellulosic glucose and subsequently to its dehydration end products such as hydroxymethyl furfural (HMF), formic acid and levulinic acid. The effect of sugar decomposition not only lowers the yield of fermentable sugars but also forms decomposition products that inhibit subsequent fermentation. The present experiments were conducted with four different acid catalysts (H(2)SO(4), HNO(3), HCl, and H(3)PO(4)) at various acid normalities (0.5-2.1N) in batch reactors at 180-210 °C. From the results, H(2)SO(4) was the most suitable catalyst for glucose production, but glucose decomposition occurred during the hydrolysis. The glucose production was maximized at 160.7 °C, 2.0% (w/v) H(2)SO(4), and 40 min, but resulted in a low glucan yield of 33.05% due to the decomposition reactions, which generated formic acid and levulinic acid. The highest concentration of levulinic acid, 7.82 g/L, was obtained at 181.2 °C, 2.0% (w/v) H(2)SO(4), and 40 min. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The sugar model: catalysis by amines and amino acid products

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    2001-01-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  2. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    PubMed

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Iodide-ion-induced oscillations of the ferroin-catalyzed Belousov—Zhabotinskii reaction

    NASA Astrophysics Data System (ADS)

    Melicherčík, Milan; Treindl, Ľudovít

    1992-08-01

    Contrary to "classical" Belousov—Zhabotinskii (BZ) oscillatory systems, consisting of malonic acid, Ce(IV)—Ce(III) or Mn(III)—Mn(II) redox catalyst and KBrO 3 in solutions of H 2SO 4, where in an interval of added iodide initial concentrations 10 -4 mol dm -3 < [I -] 0 < 10 -3 mol dm -3 the oscillations have the same frequency and amplitude as in the absence of iodide, the effect of added iodide on the ferroin-catalyzed BZ system with methyl ester of 3-oxobutanoic acid leads to an increase in the number of oscillations and in the time of their duration. The dependence of this effect on substrate, bromate, iodide, sulfuric acid and ferroin concentrations has been studied. The observations may be explained by a mechanism involving direct reduction of ferroin by iodide, oxidation of iodide to iodate by bromate with a bromide production and eventual faster bromination and iodination of methyl ester of 3-oxobutanoic acid in relation to malonic acid.

  4. Stereochemical analysis of the elimination reaction catalyzed by D-amino-acid oxidase.

    PubMed

    Cheung, Y F; Walsh, C

    1976-06-01

    The stereochemistry of the intramolecular proton transfer catalyzed by the flavoenzyme, D-amino-acid oxidase, during the elimination reaction of beta-chloro-alpha-amino acid substrates (Walsh et al. (1973), J. Biol. Chem. 248, 1964) has been established. Both D-erythro- and D-threo-2-amino-3-chloro(2-3H) butyrate have been shown to yield (3R)-2-keto (3-3H)-2- butyrate predominantly. Tritium kinetic isotope effects on the rate of the reaction (4.7 for the D-erythro, and 3.8 for the D-threo compound) and percentages of intramolecular triton transfer (7.2% for the D-erythro- and 2.6% for the D-threo compound) have been measured. Their implications on the mechanism of this unusual elimination reaction are discussed.

  5. Palladium-catalyzed hydroaminocarbonylation of alkenes with amines: a strategy to overcome the basicity barrier imparted by aliphatic amines.

    PubMed

    Zhang, Guoying; Gao, Bao; Huang, Hanmin

    2015-06-22

    A novel and efficient palladium-catalyzed hydroaminocarbonylation of alkenes with aminals has been developed under mild reaction conditions, and allows the synthesis of a wide range of N-alkyl linear amides in good yields with high regioselectivity. On the basis of this method, a cooperative catalytic system operating by the synergistic combination of palladium, paraformaldehyde, and acid was established for promoting the hydroaminocarbonylation of alkenes with both aromatic and aliphatic amines, which do not react well under conventional palladium-catalyzed hydroaminocarbonylation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrazide and hydrazine reagents as reactive matrices for MALDI-MS to detect gaseous aldehydes.

    PubMed

    Shigeri, Yasushi; Ikeda, Shinya; Yasuda, Akikazu; Ando, Masanori; Sato, Hiroaki; Kinumi, Tomoya

    2014-08-01

    The reagents 19 hydrazide and 14 hydrazine were examined to function as reactive matrices for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to detect gaseous aldehydes. Among them, two hydrazide (2-hydroxybenzohydrazide and 3-hydroxy-2-naphthoic acid hydrazide) and two hydrazine reagents [2-hydrazinoquinoline and 2,4-dinitrophenylhydrazine (DNPH)] were found to react efficiently with carbonyl groups of gaseous aldehydes (formaldehyde, acetaldehyde and propionaldehyde); these are the main factors for sick building syndrome and operate as reactive matrices for MALDI-MS. Results from accurate mass measurements by JMS-S3000 Spiral-TOF suggested that protonated ion peaks corresponding to [M + H](+) from the resulting derivatives were observed in all cases with the gaseous aldehydes in an incubation, time-dependent manner. The two hydrazide and two hydrazine reagents all possessed absorbances at 337 nm (wavelength of MALDI nitrogen laser), with, significant electrical conductivity of the matrix crystal and functional groups, such as hydroxy group and amino group, being important for desorption/ionization efficiency in MALDI-MS. To our knowledge, this is the first report that gaseous molecules could be derivatized and detected directly in a single step by MALDI-MS using novel reactive matrices that were derivatizing agents with the ability to enhance desorption/ionization efficiency. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Comparison of Two Derivatization Methods for the Analysis of Fatty Acids and Trans Fatty Acids in Bakery Products Using Gas Chromatography

    PubMed Central

    Salimon, Jumat; Omar, Talal A.; Salih, Nadia

    2014-01-01

    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS–DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples. PMID:24719581

  8. Comparison of two derivatization methods for the analysis of fatty acids and trans fatty acids in bakery products using gas chromatography.

    PubMed

    Salimon, Jumat; Omar, Talal A; Salih, Nadia

    2014-01-01

    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS-DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples.

  9. Efficient production of fermentable sugars from oil palm empty fruit bunch by combined use of acid and whole cell culture-catalyzed hydrolyses.

    PubMed

    Li, Qingxin; Ng, Wei Ting; Puah, Sze Min; Bhaskar, Ravindran Vijay; Soh, Loon Siong; MacBeath, Calum; Parakattil, Pius; Green, Phil; Wu, Jin Chuan

    2014-01-01

    Empty fruit bunch (EFB) of oil palm trees was converted to fermentable sugars by the combined use of dilute acids and whole fungal cell culture-catalyzed hydrolyses. EFB (5%, w/v) was hydrolyzed in the presence of 0.5% H2 SO4 and 0.2% H3 PO4 at 160 °C for 10 Min. The solid fraction was separated from the acid hydrolysate by filtration and subjected to enzymatic hydrolysis at 50 °C using the whole cell culture of Trichoderma reesei RUT-C30 (2%, w/v), which was prepared by cultivation at 30 °C for 7 days to reach its maximal cellulase activity. The combined hydrolyses of EFB gave a total sugar yield of 82.0%. When used as carbon sources for cultivating Escherichia coli in M9 medium at 37 °C, the combined EFB hydrolysates were shown to be more favorable or at least as good as pure glucose for cell growth in terms of the higher (1.1 times) optical density of E. coli cells. The by-products generated during the acid-catalyzed hydrolysis did not seem to obviously affect cell growth. The combined use of acid and whole cell culture hydrolyses might be a commercially promising method for pretreatment of lignocellulose to get fermentable sugars. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  10. Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures

    DOE PAGES

    Orazov, Marat; Davis, Mark E.

    2015-09-08

    Retro-aldol reactions have been implicated as the limiting steps in catalytic routes to convert biomass-derived hexoses and pentoses into valuable C2, C3, and C4 products such as glycolic acid, lactic acid, 2-hydroxy-3-butenoic acid, 2,4-dihydroxybutanoic acid, and alkyl esters thereof. Due to a lack of efficient retro-aldol catalysts, most previous investigations of catalytic pathways involving these reactions were conducted at high temperatures (≥160 °C). Here, we report moderate-temperature (around 100 °C) retro-aldol reactions of various hexoses in aqueous and alcoholic media with catalysts traditionally known for their capacity to catalyze 1,2-intramolecular carbon shift (1,2-CS) reactions of aldoses, i.e., various molybdenum oxidemore » and molybdate species, nickel(II) diamine complexes, alkali-exchanged stannosilicate molecular sieves, and amorphous TiO2–SiO2 coprecipitates. Solid Lewis acid cocatalysts that are known to catalyze 1,2-intramolecular hydride shift (1,2-HS) reactions that enable the formation of α-hydroxy carboxylic acids from tetroses, trioses, and glycolaldehyde, but cannot readily catalyze retro-aldol reactions of hexoses and pentoses at these moderate temperatures, are shown to be compatible with the aforementioned retro-aldol catalysts. The combination of a distinct retro-aldol catalyst with a 1,2-HS catalyst enables lactic acid and alkyl lactate formation from ketohexoses at moderate temperatures (around 100 °C), with yields comparable to best-reported chemocatalytic examples at high temperature conditions (≥160 °C). The use of moderate temperatures enables numerous desirable features such as lower pressure and significantly less catalyst deactivation.« less

  11. Heteropoly acid-catalyzed microwave-assisted three-component aza-Diels-Alder cyclizations: diastereoselective synthesis of potential drug candidates for Alzheimer's disease.

    PubMed

    Borkin, Dmitry; Morzhina, Elena; Datta, Silpi; Rudnitskaya, Aleksandra; Sood, Abha; Török, Marianna; Török, Béla

    2011-03-07

    A highly diastereoselective microwave-assisted three component synthesis of azabicyclo[2.2.2]octan-5-ones by a silicotungstic acid-catalyzed aza-Diels-Alder cyclization is described. The one-pot process involves the formation of the in situ generated Schiff base and its immediate cyclization with cyclohex-2-enone. The short reaction times, good yields and excellent diastereoselectivity make this annulation a practical and environmentally attractive method for the synthesis of the target compounds. Preliminary assays were carried out to determine the activity of the products in AChE as well as in amyloid β fibrillogenesis inhibition.

  12. Diastereoselective synthesis of furanose and pyranose substituted glycine and alanine derivatives via proline-catalyzed asymmetric α-amination of aldehydes.

    PubMed

    Petakamsetty, Ramu; Ansari, Anas; Ramapanicker, Ramesh

    2016-11-29

    A concise organocatalytic route toward the synthesis of furanose and pyranose substituted glycine and alanine derivatives is reported. These compounds are core structural units of some of the naturally available antibiotics and antifungal agents. Proline-catalyzed asymmetric α-amination of aldehydes derived from sugars is used as the key reaction to synthesize twelve sugar amino acid derivatives. The asymmetric transformations proceeded in good yields and with good to excellent diastereoselectivity. The application of the synthesized amino acids is demonstrated by synthesizing a tripeptide containing one of them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Asymmetric Synthesis of Hydrocarbazoles Catalyzed by an Octahedral Chiral-at-Rhodium Lewis Acid.

    PubMed

    Huang, Yong; Song, Liangliang; Gong, Lei; Meggers, Eric

    2015-12-01

    A bis-cyclometalated chiral-at-metal rhodium complex catalyzes the Diels-Alder reaction between N-Boc-protected 3-vinylindoles (Boc = tert-butyloxycarbonyl) and β-carboxylic ester-substituted α,β-unsaturated 2-acyl imidazoles with good-to-excellent regioselectivity (up to 99:1) and excellent diastereoselectivity (>50:1 d.r.) as well as enantioselectivity (92-99% ee) under optimized conditions. The rhodium catalyst serves as a chiral Lewis acid to activate the 2-acyl imidazole dienophile by two-point binding and overrules the preferred regioselectivity of the uncatalyzed reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fe0 catalyzed photo-Fenton process to detoxify the biodegraded products of azo dye Mordant Yellow 10.

    PubMed

    Brindha, R; Muthuselvam, P; Senthilkumar, S; Rajaguru, P

    2018-06-01

    Inspired by the efficiency of the photo-Fenton process on oxidation of organic pollutants, we herein present the feasibility of visible light driven photo-Fenton process as a post treatment of biological method for the effective degradation and detoxification of monoazo dye Mordant Yellow 10 (MY10). Anaerobic degradation of MY10 by Pseudomonas aeroginosa formed aromatic amines which were further degraded in the subsequent Fe catalyzed photo-Fenton process carried out at pH 3.0, with iron shavings and H 2 O 2 under blue LED light illumination. LC-MS and stoichiometric analysis confirmed that reductive azo bond cleavage was the major reaction in anaerobic bacterial degradation of MY10 producing 4-amino benzene sulfonic acid (4-ABS) and 5-amino salicylic acid (5-ASA) which were further degraded into hydroxyl amines, nitroso and di/tri carboxylic acids by the photo-Fenton process. Toxicity studies with human small cell lung cancer A549 cells provide evidence that incorporation of Fe 0 catalyzed photo-Fenton step after anaerobic bacterial treatment improved the mineralization and detoxification of MY10 dye. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Molecular cloning and expression profile of ß-ketoacyl-acp synthase gene from tung tree (Vernicia fordii Hemsl.)

    USDA-ARS?s Scientific Manuscript database

    Tung tree (Vernicia fordii) is an important woody oil tree. Tung tree seeds contain 50-60% oil with approximately 80 mole a-eleostearic acid (9cis, 11trans, 13trans octadecatrienoic acid). Fatty acid synthesis is catalyzed by the concerted action of acetyl-CoA carboxylase and fatty acid synthase, a ...

  16. Synthesis, chemical characterization, and economical feasibility of poly-phenolic-branched-chain fatty acids: Synthesis of poly-phenolic-branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    New poly-phenolic branched-chain fatty acid (poly-PBC-FA) products were synthesized from a combination of soybean fatty acids and phenolic materials through a highly efficient zeolite catalyzed arylation method. These poly-PBC-FAs are liquid at room temperature and do not have the unpleasant odor li...

  17. The Roles of Acids and Bases in Enzyme Catalysis

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  18. Decarboxylation of fatty acids with triruthenium dodecacarbonyl: Influence of the compound structure and analysis of the product mixtures

    USDA-ARS?s Scientific Manuscript database

    Recently, the decarboxylation of oleic acid (9(Z)-octadecenoic acid) catalyzed by triruthenium dodecacarbonyl, Ru3(CO)12, to give a mixture of heptadecenes with concomitant formation of other hydrocarbons, heptadecane and C17 alkylbenzenes, was reported. The product mixture, consisting of about 77% ...

  19. Functional characterization of two microsomal fatty acid desaturases from Jatropha curcas L.

    PubMed

    Wu, Pingzhi; Zhang, Sheng; Zhang, Lin; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2013-10-15

    Linoleic acid (LA, C18:2) and α-linolenic acid (ALA, C18:3) are polyunsaturated fatty acids (PUFAs) and major storage compounds in plant seed oils. Microsomal ω-6 and ω-3 fatty acid (FA) desaturases catalyze the synthesis of seed oil LA and ALA, respectively. Jatropha curcas L. seed oils contain large proportions of LA, but very little ALA. In this study, two microsomal desaturase genes, named JcFAD2 and JcFAD3, were isolated from J. curcas. Both deduced amino acid sequences possessed eight histidines shown to be essential for desaturases activity, and contained motif in the C-terminal for endoplasmic reticulum localization. Heterologous expression in Saccharomyces cerevisiae and Arabidopsis thaliana confirmed that the isolated JcFAD2 and JcFAD3 proteins could catalyze LA and ALA synthesis, respectively. The results indicate that JcFAD2 and JcFAD3 are functional in controlling PUFA contents of seed oils and could be exploited in the genetic engineering of J. curcas, and potentially other plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    PubMed

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  1. Rhodium-catalyzed asymmetric construction of quaternary carbon stereocenters: ligand-dependent regiocontrol in the 1,4-addition to substituted maleimides.

    PubMed

    Shintani, Ryo; Duan, Wei-Liang; Hayashi, Tamio

    2006-05-03

    A rhodium-catalyzed asymmetric 1,4-addition of arylboronic acids to substituted maleimides has been described. The regioselectivity in this reaction is controlled by the choice of ligand (dienes or bisphosphines), and 1,4-adducts with a quaternary stereocenter can be obtained with high regio- and enantioselectivity by the use of (R)-H8-binap.

  2. Palladium-catalyzed domino C,N-coupling/carbonylation/Suzuki coupling reaction: an efficient synthesis of 2-aroyl-/heteroaroylindoles.

    PubMed

    Arthuis, Martin; Pontikis, Renée; Florent, Jean-Claude

    2009-10-15

    A convenient one-pot synthesis of 2-aroylindoles using a domino palladium-catalyzed C,N-coupling/carbonylation/C,C-coupling sequence is described. The reaction involved easily prepared 2-gem-dibromovinylanilines and boronic acids under carbon monoxide. Optimized reaction conditions allowed the construction of a wide variety of highly functionalized 2-aroyl-/heteroaroylindoles in satisfactory yields.

  3. Et3B-mediated and palladium-catalyzed direct allylation of β-dicarbonyl compounds with Morita–Baylis–Hillman alcohols

    PubMed Central

    Abidi, Ahlem; Oueslati, Yosra

    2016-01-01

    A practical and efficient palladium-catalyzed direct allylation of β-dicarbonyl compounds with both cyclic and acyclic Morita–Baylis–Hillman (MBH) alcohols, using Et3B as a Lewis acid promoter, is described herein. A wide range of the corresponding functionalized allylated derivatives have been obtained in good yields and with high selectivity. PMID:28144308

  4. Rhodium-Catalyzed Acyloxy Migration of Propargylic Esters in Cycloadditions, Inspiration from Recent “Gold Rush”

    PubMed Central

    Shu, Xing-Zhong; Shu, Dongxu; Schienebeck, Casi M.

    2012-01-01

    Transition metal-catalyzed acyloxy migration of propargylic esters offers versatile entries to allene and vinyl carbene intermediates for various fascinating subsequent transformations. Most π-acidic metals (e.g. gold and platinum) are capable of facilitating these acyloxy migration events. However, very few of these processes involve redox chemistry, which are well-known for most other transition metals such as rhodium. The coupling of acyloxy migration of propargylic esters with oxidative addition, migratory insertion, and reductive elimination may lead to ample new opportunities for the design of new reactions. This tutorial review summarizes recent developments in Rh-catalyzed 1,3- and 1,2-acyloxy migration of propargylic esters in a number of cycloaddition reactions. Related Au- and Pt-catalyzed cycloadditions involving acyloxy migration are also discussed. PMID:22895533

  5. Enhancement effects of chelating agents on the degradation of tetrachloroethene in Fe(III) catalyzed percarbonate system

    PubMed Central

    Miao, Zhouwei; Gu, Xiaogang; Lu, Shuguang; Brusseau, Mark L.; Zhang, Xiang; Fu, Xiaori; Danish, Muhammad; Qiu, Zhaofu; Sui, Qian

    2015-01-01

    The performance of Fe(III)-based catalyzed sodium percarbonate (SPC) for stimulating the oxidation of tetrachloroethene (PCE) for groundwater remediation applications was investigated. The chelating agents citric acid monohydrate (CIT), oxalic acid (OA), and Glutamic acid (Glu) significantly enhanced the degradation of PCE. Conversely, ethylenediaminetetraacetic acid (EDTA) had a negative impact on PCE degradation, which may due to its strong Fe chelation and HO• scavenging abilities. However, excessive SPC or chelating agent will retard PCE degradation. In addition, investigations using free radical probe compounds and radical scavengers revealed that PCE was primarily degraded by HO• radical oxidation in both the chelated and non-chelated systems, while O2•− also participated in the non-chelated system and the OA and Glu modified systems. According to the electron paramagnetic resonance (EPR) studies, the presence of HO• in the Fe(III)/SPC system was maintained much longer than that in the Fe(II)/SPC system. The results indicated that the addition of CIT, OA or Glu indeed enhanced the generation of HO• in the first 10 min and promoted degradation efficiency by increasing the amount of Fe(III) and maintaining the concentration of HO• radicals in solution. In conclusion, chelated Fe(III)-based catalyzed SPC oxidation is a promising method for the remediation of PCE-contaminated groundwater. PMID:26549979

  6. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  7. High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self‐Catalyzed Strategy toward Facile Synthesis

    PubMed Central

    Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Feng, Jiwen

    2017-01-01

    Abstract It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self‐catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte (C‐PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li+ and considerable ionic conductivity of 8.9 × 10−5 S cm−1 at ambient temperature. Moreover, the LiFePO4/C‐PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self‐catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes. PMID:29201612

  8. Iron-Catalyzed Enantioselective Cross-Coupling Reactions of α-Chloroesters with Aryl Grignard Reagents.

    PubMed

    Jin, Masayoshi; Adak, Laksmikanta; Nakamura, Masaharu

    2015-06-10

    The first iron-catalyzed enantioselective cross-coupling reaction between an organometallic compound and an organic electrophile is reported. Synthetically versatile racemic α-chloro- and α-bromoalkanoates were coupled with aryl Grignard reagents in the presence of catalytic amounts of an iron salt and a chiral bisphosphine ligand, giving the products in high yields with acceptable and synthetically useful enantioselectivities (er up to 91:9). The produced α-arylalkanoates were readily converted to the corresponding α-arylalkanoic acids with high optical enrichment (er up to >99:1) via simple deprotections/recrystallizations. The results of radical probe experiments are consistent with a mechanism that involves the formation of an alkyl radical intermediate, which undergoes subsequent enantioconvergent arylation in an intermolecular manner. The developed asymmetric coupling offers not only facile and practical access to various chiral α-arylalkanoic acid derivatives, which are of significant pharmaceutical importance, but also a basis of controlling enantioselectivity in an iron-catalyzed organometallic transformation.

  9. Protection of ascorbic acid from copper(II)-catalyzed oxidative degradation in the presence of flavonoids: quercetin, catechin and morin.

    PubMed

    Beker, Bilge Yildoğan; Sönmezoğlu, Inci; Imer, Filiz; Apak, Reşat

    2011-08-01

    Protection of ascorbic acid (AA) (vitamin C) from Cu(II)-catalyzed autoxidation is an important aspect of antioxidant chemistry. The autoxidation of AA in the absence and presence of Cu(II) ions was investigated in aerated solution at room temperature and I = 0.1 ionic strength (KNO(3)); the effects of three different flavonoids of similar structure (quercetin, morin and catechin) and their mixtures on the AA system were studied. The concentration of unoxidized AA remaining in solution was measured with the modified cupric ion reducing antioxidant capacity spectrophotometric method. The Cu(II)-catalyzed oxidation at pH 4.5 followed first-order kinetics with respect to AA concentration. Catalytic autoxidation of AA was inhibited to a greater extent by stable quercetin and morin complexes of Cu(II) than by catechin complex. The inhibitive effectiveness order of mixtures gives information about possible synergistic or antagonistic combinations of flavonoid antioxidants, which should be further confirmed with other antioxidant tests.

  10. Minimization of free radical damage by metal catalysis of multivitamin/multimineral supplements

    PubMed Central

    2010-01-01

    Multivitamin/multimineral complexes are the most common dietary supplements. Unlike minerals in foods that are incorporated in bioorganic structures, minerals in dietary supplements are typically in an inorganic form. These minerals can catalyze the generation of free radicals, thereby oxidizing antioxidants during digestion. Here we examine the ability of a matrix consisting of an amino acid and non-digestible oligosaccharide (AAOS) to blunt metal-catalyzed oxidations. Monitoring of ascorbate radical generated by copper shows that ascorbate is oxidized more slowly with the AAOS matrix than with copper sulfate. Measurement of the rate of oxidation of ascorbic acid and Trolox® by catalytic metals confirmed the ability of AAOS to slow these oxidations. Similar results were observed with iron-catalyzed formation of hydroxyl radicals. When compared to traditional forms of minerals used in supplements, we conclude that the oxidative loss of antioxidants in solution at physiological pH is much slower when AAOS is present. PMID:21092298

  11. Synthesis of the Fatty Esters of Solketal and Glycerol-Formal: Biobased Specialty Chemicals.

    PubMed

    Perosa, Alvise; Moraschini, Andrea; Selva, Maurizio; Noè, Marco

    2016-01-30

    The caprylic, lauric, palmitic and stearic esters of solketal and glycerol formal were synthesized with high selectivity and in good yields by a solvent-free acid catalyzed procedure. No acetal hydrolysis was observed, notwithstanding the acidic reaction conditions.

  12. Lipids for Health and Beauty: Enzymatic Modification of Vegetable Oil

    USDA-ARS?s Scientific Manuscript database

    Ferulic acid has been extensively investigated for its potential as a cosmetic and pharmaceutical agent. We have prepared lipophilic derivatives of ferulic acid by a simple, enzyme-catalyzed transesterification reaction of ethyl ferulate with vegetable oils. Immobilized Candida antarctica lipase B...

  13. Influence of Nutritional Factors on Lipid Metabolism.

    DTIC Science & Technology

    1980-12-01

    phosphohydrolase, catalyzing the formation of dlacylglyd6rol from phosphatidic acid (Table 1) (80). Other enzymes itxV61vWd Iti triacylglycerol synthesis...novo from glucose or preformed from the diet). The availability of the acyl acceptor, phosphatidic acid , does not appear to be the predominant...differ- ence in hepatocyte phosphatidic acid levels while triacylhlycerol synthesis was depressed 80%. Further evidence that phosphatidic acid

  14. Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase.

    PubMed

    Cui, Yi; Hu, Yong-Hua; Yu, Feng; Zheng, Jing; Chen, Lin-Shan; Chen, Qing-Xi; Wang, Qin

    2017-02-01

    This study was to investigate the inhibition effects of para-substituted cinnamic acid derivatives (4-chlorocinnamic acid, 4-ethoxycinnamic acid and 4-nitrocinnamic acid) on tyrosinase catalyzing the substrates, with the purpose of elucidating the inhibition mechanism of the tested derivatives on tyrosinase by the UV-vis spectrum, fluorescence spectroscopy, copper interacting and molecular docking, respectively. The native-PAGE results showed that 4-chlorocinnamic acid (4-CCA), 4-ethoxycinnamic acid (4-ECA) and 4-nitrocinnamic acid (4-NCA) had inhibitory effects on tyrosinase. Spectrophotometric analysis used to determine the inhibition capabilities of these compounds on tyrosinase catalyzing L-tyrosine (L-Tyr) and L-3,4-Dihydroxyphenylalanine (L-DOPA) as well. The IC 50 values and inhibition constants were further determined. Moreover, quenching mechanisms of tested compounds to tyrosinase belonged to static type and a red shift on fluorescence emission peak occurred when 4-NCA added. Copper interacting and molecular docking demonstrated that 4-CCA could not bind directly to the copper, but it could interact with residues in the active center of tyrosinase. Meanwhile, 4-ECA and 4-NCA could chelate a copper ion of tyrosinase. Anti-tyrosinase activities of para-substituted cinnamic acid derivatives would lay scientific foundation for their utilization in designing of novel tyrosinase inhibitors. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Semicontinuous measurements of organic carbon and acidity during the Pittsburgh air quality study: implications for acid-catalyzed organic aerosol formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Takahama; C.I. Davidson; S.N. Pandis

    2006-04-01

    Laboratory evidence suggests that inorganic acid seed particles may increase secondary organic aerosol yields secondary organic aerosol (SOA) through heterogeneous chemistry. Additional laboratory studies, however, report that organic acidity generated in the same photochemical process by which SOA is formed may be sufficient to catalyze these heterogeneous reactions. Understanding the interaction between inorganic acidity and SOA mass is important when evaluating emission controls to meet PM2.5 regulations. Semicontinuous measurements of organic carbon (OC), elemental carbon (EC), and inorganic species from the Pittsburgh Air Quality Study were examined to determine if coupling in the variations of inorganic acidity and OC couldmore » be detected. Significant enhancements of SOA production could not be detected due to inorganic acidity in Western Pennsylvania most of the time, but its signal might have been lost in the noise. If a causal relationship between inorganic acidity and OC is assumed, reductions in OC for Western Pennsylvania that might result from drastic reductions in inorganic acidity were estimated to be 2 {+-} 4% by a regression technique, and an upper bound for this geographic area was estimated to be 5 {+-} 8% based on calculations from laboratory measurements. 48 refs., 7 figs., 3 tabs.« less

  16. Identification, Purification, and Characterization of a Novel Amino Acid Racemase, Isoleucine 2-Epimerase, from Lactobacillus Species

    PubMed Central

    Mutaguchi, Yuta; Ohmori, Taketo; Wakamatsu, Taisuke; Doi, Katsumi

    2013-01-01

    Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min−1·mg−1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min−1·mg−1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5′-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5′-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position. PMID:24039265

  17. Chemo- and regioselective homogeneous rhodium-catalyzed hydroamidomethylation of terminal alkenes to N-alkylamides.

    PubMed

    Raoufmoghaddam, Saeed; Drent, Eite; Bouwman, Elisabeth

    2013-09-01

    A rhodium/xantphos homogeneous catalyst system has been developed for direct chemo- and regioselective mono-N-alkylation of primary amides with 1-alkenes and syngas through catalytic hydroamidomethylation with 1-pentene and acetamide as model substrates. For appropriate catalyst performance, it appears to be essential that catalytic amounts of a strong acid promoter, such as p-toluenesulfonic acid (HOTs), as well as larger amounts of a weakly acidic protic promoter, particularly hexafluoroisopropyl alcohol (HOR(F) ) are applied. Apart from the product N-1-hexylacetamide, the isomeric unsaturated intermediates, hexanol and higher mass byproducts, as well as the corresponding isomeric branched products, can be formed. Under optimized conditions, almost full alkene conversion can be achieved with more than 80% selectivity to the product N-1-hexylamide. Interestingly, in the presence of a relatively high concentration of HOR(F) , the same catalyst system shows a remarkably high selectivity for the formation of hexanol from 1-pentene with syngas, thus presenting a unique example of a selective rhodium-catalyzed hydroformylation-hydrogenation tandem reaction under mild conditions. Time-dependent product formation during hydroamidomethylation batch experiments provides evidence for aldehyde and unsaturated intermediates; this clearly indicates the three-step hydroformylation/condensation/hydrogenation reaction sequence that takes place in hydroamidomethylation. One likely role of the weakly acidic protic promoter, HOR(F) , in combination with the strong acid HOTs, is to establish a dual-functionality rhodium catalyst system comprised of a neutral rhodium(I) hydroformylation catalyst species and a cationic rhodium(III) complex capable of selectively reducing the imide and/or ene-amide intermediates that are in a dynamic, acid-catalyzed condensation equilibrium with the aldehyde and amide in a syngas environment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Production of Fatty Acid Methyl Esters via the In Situ Transesterification of Soybean Oil in Carbon Dioxide-Expanded Methanol

    USDA-ARS?s Scientific Manuscript database

    The production of fatty acid methyl esters (FAME) by direct alkali- and acid-catalyzed in situ transesterification of soybean flakes in CO2-expanded methanol was examined at various temperatures and pressures. Attempts to synthesize FAME from soy flakes via alkaline catalysis, using sodium methoxid...

  19. A Simple, Safe Method for Preparation of Biodiesel

    ERIC Educational Resources Information Center

    Behnia, Mahin S.; Emerson, David W.; Steinberg, Spencer M.; Alwis, Rasika M.; Duenas, Josue A.; Serafino, Jessica O.

    2011-01-01

    An experiment suitable for organic chemistry students is described. Biodiesel, a "green" fuel, consists of methyl or ethyl esters of long-chain fatty acids called FAMES (fatty acid methyl esters) or FAEES (fatty acid ethyl esters). A quick way to make FAMES is a base-catalyzed transesterification of oils or fats derived from plants or from animal…

  20. MASS SPECTROMETRIC IDENTIFICATION OF AN AZOBENZENE DERIVATIVE PRODUCED BY SMECTITE-CATALYZED CONVERSION OF 3-AMINO-4-HYDROXPHENYLARSONIC ACID

    EPA Science Inventory

    We report here the first evidence of a possible mechanism for the formation of an azobenzene arsonic acid compound in the environment The compound was formed when 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) was added to aqueous suspensions of smectite clay The 3-amino-HPAA...

  1. Enantioselective Rhodium Enolate Protonations. A New Methodology for the Synthesis of β2-Amino Acids

    PubMed Central

    Sibi, Mukund P.; Tatamidani, Hiroto; Patil, Kalyani

    2008-01-01

    Rhodium catalyzed conjugate addition of an aryl boronic acid to α-methylamino acrylates followed by enantioselective protonation of the oxa-π-allylrhodium intermediate provides access to aryl substituted β2-amino acids. The impact of the different variables of the reaction on the levels of enantioselectivity has been assessed. PMID:15957893

  2. Synthesis of δ- and α-Carbolines via Nickel-Catalyzed [2 + 2 + 2] Cycloaddition of Functionalized Alkyne-Nitriles with Alkynes.

    PubMed

    Wang, Gaonan; You, Xu; Gan, Yi; Liu, Yuanhong

    2017-01-06

    A new method for the synthesis of δ- and α-carbolines through Ni-catalyzed [2 + 2 + 2] cycloaddition of ynamide-nitriles or alkyne-cyanamides with alkynes has been developed. The catalytic system of NiCl 2 (DME)/dppp/Zn with a low-cost Ni(II)-precursor was first utilized in Ni-catalyzed [2 + 2 + 2] cycloaddition reactions, and the in situ generated Lewis acid may play an important role for the successful transformation. Not only internal alkynes but also terminal alkynes undergo the desired cycloaddition reactions efficiently to furnish the carboline derivatives with wide diversity and functional group tolerance.

  3. Silica, Alumina and Clay Catalyzed Peptide Bond Formation: Enhanced Efficiency of Alumina Catalyst

    NASA Astrophysics Data System (ADS)

    Bujdák, Juraj; Rode, Bernd M.

    1999-10-01

    Catalytic efficiencies of clay (hectorite), silica and alumina were tested in peptide bond formation reactions of glycine (Gly), alanine (Ala), proline (Pro), valine (Val) and leucine (Leu). The reactions were performed as drying/wetting (hectorite) and temperature fluctuation (silica and alumina) experiments at 85 °C. The reactivity of amino acids decreased in order Gly > Ala > Pro ~ Val ~ Leu. The highest catalytic efficiency was observed for alumina, the only catalyst producing oligopeptides in all investigated reaction systems. The peptide bond formation on alumina is probably catalyzed by the same sites and via similar reaction mechanisms as some alumina-catalyzed dehydration reactions used in industrial chemistry.

  4. A: The Progression of a Catalytic Immune Response. B: Molecular Recognition of Anions by Silica Bound Sapphyrin

    DTIC Science & Technology

    1994-08-01

    Diels - Alder reactions (58-60), Claisen rearrangements (43-45), olefin isomerization (73), a O-elimination (74), an asymmetric ketone reduction (54...phosphorothioate hapten3 ........ 19 Figure 5. Carboxylic acid hydrolysis .................... 21 Figure 6. Reaction coordinates for antibody catalyzed ...and catalyze the reaction. Thus, it is important to design transition analogs that closely mimic the transition state in every possible chemical

  5. Rhodium-catalyzed asymmetric hydrogenation of tetrasubstituted β-acetoxy-α-enamido esters and efficient synthesis of droxidopa.

    PubMed

    Guan, Yu-Qing; Gao, Min; Deng, Xu; Lv, Hui; Zhang, Xumu

    2017-07-18

    A rhodium-catalyzed asymmetric hydrogenation of challenging tetrasubstituted β-acetoxy-α-enamido esters was developed, giving chiral β-acetoxy-α-amido esters in high yields with excellent enantioselectivities (up to >99% ee). The products could be easily transformed to β-hydroxy-α-amino acid derivatives which are valuable chiral building blocks and a novel route for the synthesis of droxidopa was also developed.

  6. Cobalt-catalyzed hydrogenation of esters to alcohols: unexpected reactivity trend indicates ester enolate intermediacy.

    PubMed

    Srimani, Dipankar; Mukherjee, Arup; Goldberg, Alexander F G; Leitus, Gregory; Diskin-Posner, Yael; Shimon, Linda J W; Ben David, Yehoshoa; Milstein, David

    2015-10-12

    The atom-efficient and environmentally benign catalytic hydrogenation of carboxylic acid esters to alcohols has been accomplished in recent years mainly with precious-metal-based catalysts, with few exceptions. Presented here is the first cobalt-catalyzed hydrogenation of esters to the corresponding alcohols. Unexpectedly, the evidence indicates the unprecedented involvement of ester enolate intermediates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of "trans"-4,5-Bis-dibenzylaminocyclopent-2-Enone from Furfural Catalyzed by ErCl[subscript 3]·6H[subscript 2]O

    ERIC Educational Resources Information Center

    Estevão, Mónica S.; Martins, Ricardo J. V.; Alfonso, Carlos A. M.

    2017-01-01

    An experiment exploring the chemistry of the carbonyl group for the one-step synthesis of "trans"-4,5- dibenzylaminocyclopent-2-enone is described. The reaction of furfural and dibenzylamine in the environmentally friendly solvent ethanol and catalyzed by the Lewis acid ErCl[subscript 3]·6H[subscript 2]O afforded the product in high…

  8. Spliceostatin hemiketal biosynthesis in Burkholderia spp. is catalyzed by an iron/α-ketoglutarate–dependent dioxygenase

    PubMed Central

    Eustáquio, Alessandra S.; Janso, Jeffrey E.; Ratnayake, Anokha S.; O’Donnell, Christopher J.; Koehn, Frank E.

    2014-01-01

    Spliceostatins are potent spliceosome inhibitors biosynthesized by a hybrid nonribosomal peptide synthetase−polyketide synthase (NRPS−PKS) system of the trans-acyl transferase (AT) type. Burkholderia sp. FERM BP-3421 produces hemiketal spliceostatins, such as FR901464, as well as analogs containing a terminal carboxylic acid. We provide genetic and biochemical evidence for hemiketal biosynthesis by oxidative decarboxylation rather than the previously hypothesized Baeyer–Villiger oxidative release postulated to be catalyzed by a flavin-dependent monooxygenase (FMO) activity internal to the last module of the PKS. Inactivation of Fe(II)/α-ketoglutarate–dependent dioxygenase gene fr9P led to loss of hemiketal congeners, whereas the mutant was still able to produce all major carboxylic acid-type compounds. FMO mutants, on the other hand, produced both hemiketal and carboxylic acid analogs containing an exocyclic methylene instead of an epoxide, indicating that the FMO is involved in epoxidation rather than Baeyer–Villiger oxidation. Moreover, recombinant Fr9P enzyme was shown to catalyze hydroxylation to form β-hydroxy acids, which upon decarboxylation led to hemiketal FR901464. Finally, a third oxygenase activity encoded in the biosynthetic gene cluster, the cytochrome P450 monooxygenase Fr9R, was assigned as a 4-hydroxylase based on gene inactivation results. Identification and deletion of the gene involved in hemiketal formation allowed us to generate a strain—the dioxygenase fr9P− mutant—that accumulates only the carboxylic acid-type spliceostatins, which are as potent as the hemiketal analogs, when derivatized to increase cell permeability, but are chemically more stable. PMID:25097259

  9. Purification and characterization of 9-hexadecenoic acid cis-trans isomerase from pseudomonas sp. strain E-3

    PubMed

    Okuyama; Ueno; Enari; Morita; Kusano

    1998-01-01

    A 9-hexadecenoic acid cis-trans isomerase (9-isomerase) that catalyzed the cis-to-trans isomerization of the double bond of free 9-cis-hexadecenoic acid [16:1(9c)] was purified to homogeneity from an extract of Pseudomonas sp. strain E-3 and characterized. Electrophoresis of the purified enzyme on both incompletely denaturing and denaturing polyacrylamide gels yielded a single band of a protein with a molecular mass of 80 kDa, suggesting that the isomerase is a monomeric protein of 80 kDa. The 9-isomerase, assayed with 16:1(9c) as a substrate, had a specific activity of 22.8 &mgr;mol h-1 (mg protein)-1 and a Km of 117.6 mM. The optimal pH and temperature for catalysis were approximately pH 7-8 and 30 degrees C, respectively. The 9-isomerase catalyzed the cis-to-trans conversion of a double bond at positions 9, 10, or 11, but not that of a double bond at position 6 or 7 of cis-mono-unsaturated fatty acids with carbon chain lengths of 14, 15, 16, and 17. Octadecenoic acids with a double bond at position 9 or 11 were not susceptible to isomerization. These results suggest that 9-isomerase has a strict specificity for both the position of the double bond and the chain length of the fatty acid. The enzyme catalyzed the cis-to-trans isomerization of fatty acids in a free form, and in the presence of a membrane fraction it was also able to isomerize 16:1(9c) esterified to phosphatidylethanolamine. The 9-isomerase was strongly inhibited by catecholic antioxidants such as alpha-tocopherol and nordihydroguaiaretic acid, but was not inhibited by 1, 10-phenanthroline or EDTA or under anoxic conditions. Based on these results, the possible mechanism of catalysis by this enzyme is discussed.

  10. Feasibility of removing furfurals from sugar solutions using activated biochars made from agricultural residues

    USDA-ARS?s Scientific Manuscript database

    Lignocellulosic feedstocks are often prepared for ethanol fermentation by treatment with a dilute mineral acid catalyst that hydrolyzes the hemicellulose and possibly cellulose into soluble carbohydrates. The acid catalyzed reaction scheme is sequential whereby released monosaccharides are further ...

  11. New bis(alkythio) fatty acid methyl esters

    USDA-ARS?s Scientific Manuscript database

    The addition reaction of dimethyl disulfide (DMDS) to mono-unsaturated fatty acid methyl esters is well-known for analytical purposes to determine the position of double bonds by mass spectrometry. In this work, the classical iodine-catalyzed reaction is expanded to other dialkyl disulfides (RSSR), ...

  12. Using ruthenium sawhorse based decarboxylation to produce industrial materials from oleic acid

    USDA-ARS?s Scientific Manuscript database

    Ruthenium catalyzed isomerization and decarboxylation of 9-cis-octadecenoic acid are reported as part of the effort to produce valuable industrial materials from biobased sources. Initial studies have demonstrated the efficacy of ruthenium sawhorse materials and further mechanistic studies uncovered...

  13. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    PubMed

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-07

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  14. Facile and Promising Method for Michael Addition of Indole and Pyrrole to Electron-Deficient trans-β-Nitroolefins Catalyzed by a Hydrogen Bond Donor Catalyst Feist's Acid and Preliminary Study of Antimicrobial Activity

    PubMed Central

    Al Majid, Abdullah M. A.; Islam, Mohammad Shahidul; Barakat, Assem; Al-Agamy, Mohamed H. M.; Naushad, Mu.

    2014-01-01

    The importance of cooperative hydrogen-bonding effects has been demonstrated using novel 3-methylenecyclopropane-1,2-dicarboxylic acid (Feist's acid (FA)) as hydrogen bond donor catalysts for the addition of indole and pyrrole to trans-β-nitrostyrene derivatives. Because of the hydrogen bond donor (HBD) ability, Feist's acid (FA) has been introduced as a new class of hydrogen bond donor catalysts for the activation of nitroolefin towards nucleophilic substitution reaction. It has effectively catalyzed the Michael addition of indoles and pyrrole to β-nitroolefins under optimum reaction condition to furnish the corresponding Michael adducts in good to excellent yields (up to 98%). The method is general, atom-economical, convenient, and eco-friendly and could provide excellent yields and regioselectivities. Some newly synthesized compounds were for examined in vitro antimicrobial activity and their preliminary results are reported. PMID:24574906

  15. Novel syn intramolecular pathway in base-catalyzed 1,2-elimination reactions of beta-acetoxy esters.

    PubMed

    Mohrig, Jerry R; Carlson, Hans K; Coughlin, Jane M; Hofmeister, Gretchen E; McMartin, Lea A; Rowley, Elizabeth G; Trimmer, Elizabeth E; Wild, Andrew J; Schultz, Steve C

    2007-02-02

    As part of a comprehensive investigation of electronic effects on the stereochemistry of base-catalyzed 1,2-elimination reactions, we observed a new syn intramolecular pathway in the elimination of acetic acid from beta-acetoxy esters and thioesters. 1H and 2H NMR investigation of reactions using stereospecifically labeled tert-butyl (2R*,3R*)-3-acetoxy-2,3-2H2-butanoate (1) and its (2R*,3S*) diastereomer (2) shows that 23 +/- 2% syn elimination occurs. The elimination reactions were catalyzed with KOH or (CH3)4NOH in ethanol/water under rigorously non-ion-pairing conditions. By contrast, the more sterically hindered beta-trimethylacetoxy ester produces only 6 +/- 1% syn elimination. These data strongly support an intramolecular (Ei) syn path for elimination of acetic acid, most likely through the oxyanion produced by nucleophilic attack at the carbonyl carbon of the beta-acetoxy group. The analogous thioesters, S-tert-butyl (2R*,3R*)-3-acetoxy-2,3-2H2-butanethioate (3) and its (2R*,3S*) diastereomer (4), showed 18 +/- 2% syn elimination, whereas the beta-trimethylacetoxy substrate gave 5 +/- 1% syn elimination. The more acidic thioester substrates do not produce an increased amount of syn stereoselectivity even though their elimination reactions are at the E1cb interface.

  16. Cannabidiol-2',6'-dimethyl ether as an effective protector of 15-lipoxygenase-mediated low-density lipoprotein oxidation in vitro.

    PubMed

    Takeda, Shuso; Hirayama, Akari; Urata, Shino; Mano, Nobutaka; Fukagawa, Keiko; Imamura, Midori; Irii, Ayumi; Kitajima, Satomi; Masuyama, Tomoko; Nomiyama, Mai; Tatei, Sachiko; Tomita, Saari; Kudo, Taichi; Noguchi, Momoko; Yamaguchi, Yasuhiro; Okamoto, Yoshiko; Amamoto, Toshiaki; Fukunishi, Yoshifumi; Watanabe, Kazuhito; Omiecinski, Curtis John; Aramaki, Hironori

    2011-01-01

    15-Lipoxygenase (15-LOX) is one of the key enzymes responsible for the formation of oxidized low-density lipoprotein (ox-LDL), a major causal factor for atherosclerosis. Both enzymatic (15-LOX) and non-enzymatic (Cu(2+)) mechanisms have been proposed for the production of ox-LDL. We have recently reported that cannabidiol-2',6'-dimethyl ether (CBDD) is a selective and potent inhibitor of 15-LOX-catalyzed linoleic acid oxygenation (Takeda et al., Drug Metab. Dispos., 37, 1733-1737 (2009)). In the LDL, linoleic acid is present as cholesteryl linoleate, the major fatty acid esterified to cholesterol, and is susceptible to oxidative modification by 15-LOX or Cu(2+). In this investigation, we examined the efficacy of CBDD on i) 15-LOX-catalyzed oxygenation of cholesteryl linoleate, and ii) ox-LDL formation catalyzed by 15-LOX versus Cu(2+)-mediated non-enzymatic generation of this important mediator. The results obtained demonstrate that CBDD is a potent and selective inhibitor of ox-LDL formation generated by the 15-LOX pathway. These studies establish CBDD as both an important experimental tool for characterizing 15-LOX-mediated ox-LDL formation, and as a potentially useful therapeutic agent for treatment of atherosclerosis.

  17. Cannabidiol-2′,6′-dimethyl Ether as an Effective Protector of 15-Lipoxygenase-Mediated Low-Density Lipoprotein Oxidation in Vitro

    PubMed Central

    Takeda, Shuso; Hirayama, Akari; Urata, Shino; Mano, Nobutaka; Fukagawa, Keiko; Imamura, Midori; Irii, Ayumi; Kitajima, Satomi; Masuyama, Tomoko; Nomiyama, Mai; Tatei, Sachiko; Tomita, Saari; Kudo, Taichi; Noguchi, Momoko; Yamaguchi, Yasuhiro; Okamoto, Yoshiko; Amamoto, Toshiaki; Fukunishi, Yoshifumi; Watanabe, Kazuhito; Omiecinski, Curtis John; Aramaki, Hironori

    2014-01-01

    15-Lipoxygenase (15-LOX) is one of the key enzymes responsible for the formation of oxidized low-density lipoprotein (ox-LDL), a major causal factor for atherosclerosis. Both enzymatic (15-LOX) and non-enzymatic (Cu2+) mechanisms have been proposed for the production of ox-LDL. We have recently reported that cannabidiol-2′,6′-dimethyl ether (CBDD) is a selective and potent inhibitor of 15-LOX-catalyzed linoleic acid oxygenation (Takeda et al., Drug Metab. Dispos., 37, 1733–1737 (2009)). In the LDL, linoleic acid is present as cholesteryl linoleate, the major fatty acid esterified to cholesterol, and is susceptible to oxidative modification by 15-LOX or Cu2+. In this investigation, we examined the efficacy of CBDD on i) 15-LOX-catalyzed oxygenation of cholesteryl linoleate, and ii) ox-LDL formation catalyzed by 15-LOX versus Cu2+-mediated non-enzymatic generation of this important mediator. The results obtained demonstrate that CBDD is a potent and selective inhibitor of ox-LDL formation generated by the 15-LOX pathway. These studies establish CBDD as both an important experimental tool for characterizing 15-LOX-mediated ox-LDL formation, and as a potentially useful therapeutic agent for treatment of atherosclerosis. PMID:21804214

  18. Biochemistry of Suberization

    PubMed Central

    Agrawal, Vishwanath P.; Kolattukudy, P. E.

    1977-01-01

    A cell-free extract obtained from suberizing potato (Solanum tuberosum L.) tuber disks catalyzed the conversion of 16-hydroxy[G-3H]hexadecanoic acid to the corresponding dicarboxylic acid with NADP or NAD as the cofactor, with a slight preference for the former. This ω-hydroxyacid dehydrogenase activity, located largely in the 100,000g supernatant fraction, has a pH optimum of 9.5. It showed an apparent Km of 50 μM for 16-hydroxyhexadecanoic acid. The dehydrogenase activity was inhibited by thiol reagents, such as p-chloromercuribenzoate, N-ethylmaleimide, and iodoacetamide, and this dehydrogenase is shown to be different from alcohol dehydrogenase. That 16-oxohexadecanoic acid was an intermediate in the conversion of 16-hydroxyhexadecanoic acid to the corresponding dicarboxylic acid was suggested by the observation that the cell-free extract also catalyzed the conversion of 16-oxohexadecanoic acid to the dicarboxylic acid, with NADP as the preferred cofactor. The time course of development of the ω-hydroxyacid dehydrogenase activity in the suberizing potato disks correlated with the rate of deposition of suberin. Experiments with actinomycin D and cycloheximide suggested that the transcriptional processes, which are directly related to suberin biosynthesis and ω-hydroxyacid dehydrogenase biosynthesis, occurred between 72 and 96 hours after wounding. These results strongly suggest that a wound-induced ω-hydroxyacid dehydrogenase is involved in suberin biosynthesis in potato disks. PMID:16659915

  19. Catalysis of the Oligomerization of O-Phospho-Serine, Aspartic Acid, or Glutamic Acid by Cationic Micelles

    NASA Technical Reports Server (NTRS)

    Bohler, Christof; Hill, Aubrey R., Jr.; Orgel, Leslie E.

    1996-01-01

    Treatment of relatively concentrated aqueous solutions of 0-phospho-serine (50 mM), aspartic acid (100 mM) or glutamic acid (100 mM) with carbonyldiimidazole leads to the formation of an activated intermediate that oligomerizes efficiently. When the concentration of amino acid is reduced tenfold, few long oligomers can be detected. Positively-charged cetyltrimethyl ammonium bromide micelles concentrate the negatively-charged activated intermediates of the amino acids at their surfaces and catalyze efficient oligomerization even from dilute solutions.

  20. Catalysis of the Oligomerization of O-Phospho-Serine, Aspartic Acid, or Glutamic Acid by Cationic Micelles

    NASA Technical Reports Server (NTRS)

    Boehler, Christof; Hill, Aubrey R., Jr.; Orgel, Leslie E.

    1996-01-01

    Treatment of relatively concentrated aqueous solutions of O-phospho-serine (50 mM), aspartic acid (100 mM) or glutamic acid (100 mM) with carbonyldiimidazole leads to the formation of an activated intermediate that oligomerizes efficiently. When the concentration of amino acid is reduced tenfold, few long oligomers can be detected. Positively-charged cetyltrimethyl ammonium bromide micelles concentrate the negatively-charged activated intermediates of the amino acids at their surfaces and catalyze efficient oligomerization even from dilute solutions.

  1. Chromophoric spin-labeled β-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C β-lactamases

    NASA Astrophysics Data System (ADS)

    Mustafi, Devkumar; Hofer, Jennifer E.; Huang, Wanzhi; Palzkill, Timothy; Makinen, Marvin W.

    2004-05-01

    The chromophoric spin-label substrate 6- N-[3-(2,2,5,5-tetramethyl-1-oxypyrrolin-3-yl)-propen-2-oyl]penicillanic acid (SLPPEN) was synthesized by acylation of 6-aminopenicillanic acid with the acid chloride of 3-(2,2,5,5-tetramethyl-1-oxypyrrolinyl)-2-propenoic acid and characterized by physical methods. By application of angle-selected electron nuclear double resonance (ENDOR), we have determined the molecular structure of SLPPEN in solution. SLPPEN exhibited UV absorption properties that allowed accurate monitoring of the kinetics of its enzyme-catalyzed hydrolysis. The maximum value of the (substrate-product) difference extinction coefficient was 2824 M -1 cm -1 at 275 nm compared to 670 M -1 cm -1 at 232 nm for SLPEN [J. Am. Chem. Soc. 117 (1995) 6739]. For SLPPEN, the steady-state kinetic parameters kcat and kcat/ KM, determined under initial velocity conditions, were 637±36 s -1 and 13.8±1.4×10 6 M -1 s -1, respectively, for hydrolysis catalyzed by TEM-1 β-lactamase of E. coli, and 0.5±0.04 s -1 and 3.9±0.4×10 4 M -1 s -1 for hydrolysis catalyzed by the β-lactamase of Enterobacter cloacae P99. We have also observed "burst kinetics" for the hydrolysis of SLPPEN with P99 β-lactamase, indicative of formation of an acylenzyme reaction intermediate. In DMSO:H 2O (30:70, v:v) cryosolvent mixtures buffered to pH ∗ 7.0, the half-life of the acylenzyme intermediate formed with the P99 enzyme at -5 °C was ≥3 min, suitable for optical characterization. The observation of burst kinetics in the hydrolysis of SLPPEN catalyzed by P99 β-lactamase suggests that this chromophoric spin-labeled substrate is differentially sensitive to active site interactions underlying the cephalosporinase and penicillinase reactivity of this class C enzyme.

  2. An enantioselective route to alpha-methyl carboxylic acids via metal and enzyme catalysis.

    PubMed

    Norinder, Jakob; Bogár, Krisztián; Kanupp, Lisa; Bäckvall, Jan-E

    2007-11-22

    Dynamic kinetic resolution of allylic alcohols to allylic acetates followed by copper-catalyzed allylic substitution gave alkenes in high yields and high optical purity. Subsequent oxidative C-C double bond cleavage afforded pharmaceutically important alpha-methyl substituted carboxylic acids in high ee.

  3. Synthesis and physical properties of pennycress estolides and esters

    USDA-ARS?s Scientific Manuscript database

    A new series of pennycress (Thlasphi arvense L.) based free-acid estolides was synthesized by an acid-catalyzed condensation reaction, followed by an esterification reaction to produce the 2-ethylhexyl (2-EH) esters of the initial estolides. The physical properties of the estolides are highly affect...

  4. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  5. An Iterative O-Methyltransferase Catalyzes 1,11-Dimethylation of Aspergillus fumigatus Fumaric Acid Amides.

    PubMed

    Kalb, Daniel; Heinekamp, Thorsten; Schieferdecker, Sebastian; Nett, Markus; Brakhage, Axel A; Hoffmeister, Dirk

    2016-10-04

    S-adenosyl-l-methionine (SAM)-dependent methyltransfer is a common biosynthetic strategy to modify natural products. We investigated the previously uncharacterized Aspergillus fumigatus methyltransferase FtpM, which is encoded next to the bimodular fumaric acid amide synthetase FtpA. Structure elucidation of two new A. fumigatus natural products, the 1,11-dimethyl esters of fumaryl-l-tyrosine and fumaryl-l-phenylalanine, together with ftpM gene disruption suggested that FtpM catalyzes iterative methylation. Final evidence that a single enzyme repeatedly acts on fumaric acid amides came from an in vitro biochemical investigation with recombinantly produced FtpM. Size-exclusion chromatography indicated that this methyltransferase is active as a dimer. As ftpA and ftpM homologues are found clustered in other fungi, we expect our work will help to identify and annotate natural product biosynthesis genes in various species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biodiesel production from used cooking oil by two-step heterogeneous catalyzed process.

    PubMed

    Srilatha, K; Prabhavathi Devi, B L A; Lingaiah, N; Prasad, R B N; Sai Prasad, P S

    2012-09-01

    The present study demonstrates the production of biodiesel from used cooking oil containing high free fatty acid by a two-step heterogeneously catalyzed process. The free fatty acids were first esterified with methanol using a 25 wt.% TPA/Nb(2)O(5) catalyst followed by transesterification of the oil with methanol over ZnO/Na-Y zeolite catalyst. The catalysts were characterized by XRD, FT-IR, BET surface area and CO(2)-TPD. In the case of transesterification the effect of reaction parameters, such as catalyst concentration, methanol to oil molar ratio and reaction temperature, on the yield of ester were investigated. The catalyst with 20 wt.% ZnO loading on Na-Y exhibited the highest activity among the others. Both the solid acid and base catalysts were found to be reusable for several times indicating their efficacy in the two-step process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. [Inhibiting properties of stable nitroxyl radicals in reactions of linoleic acid and linoleyl alcohol oxidation catalyzed by 5-lipoxygenase].

    PubMed

    Kharchenko, O V; Kharitonenko, A I; Vovk, A I; Kukhar', V P; Babiĭ, L V; Khil'chevskiĭ, A N; Mel'nik, A K

    2005-01-01

    The inhibiting effects of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its 4-substituted derivatives in reactions of linoleyl acid or linoleyl alcohol oxidation catalyzed by potato tuber 5-lipoxygenase were investigated. Inhibiting properties of stable nitroxyl radicals in presence of lubrol and SDS were reduced at the transition from TEMPO to 4-hydroxy-TEMPO or 4-amino-TEMPO and increased at use of adamantane-1-carboxylic or 3-methyladamantane-1-carboxylic acid 1-oxyl-2,2,6,6-tetramethylpiperidine-4-yl esters. Enzyme activity at saturating concentrations of inhibitor was not suppressed completely, and decreased up to the certain level determined by the substrate nature. The dependence of partial inhibition efficiency on rotational correlation time of stable nitroxides in model micellar systems were analysed. It was supposed that 5-lipoxygenase inhibition includes the interaction of hydrophobic nitroxide with radical intermediate formed in enzymatic process.

  8. Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.

    PubMed

    Lu, Qian-Qian; Yu, Hai-Zhu; Fu, Yao

    2016-03-18

    The mechanism of formic acid dehydrogenation catalyzed by the bis(imino)pyridine-ligated aluminum hydride complex (PDI(2-))Al(THF)H (PDI=bis(imino)pyridine) was studied by density functional theory calculations. The overall transformation is composed of two stages: catalyst activation and the catalytic cycle. The catalyst activation begins with O-H bond cleavage of HCOOH promoted by aluminum-ligand cooperation, followed by HCOOH-assisted Al-H bond cleavage, and protonation of the imine carbon atom of the bis(imino)pyridine ligand. The resultant doubly protonated complex ((H,H) PDI)Al(OOCH)3 is the active catalyst for formic acid dehydrogenation. Given this, the catalytic cycle includes β-hydride elimination of ((H,H) PDI)Al(OOCH)3 to produce CO2, and the formed ((H,H) PDI)Al(OOCH)2 H mediates HCOOH to release H2. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Behavior of S.A.P. in the Mercury Catalyzed Nitric Acid Dissolution; COMPORTAMENTO DEL S.A.P. ALL'ATTACCO DI SOLUZIONI DI ACIDO NITRICO E NITRATO MERCURICO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beone, G.

    1963-10-01

    Plates of S.A.P. (sintered Aluminum Powder) were dissolved under different conditions in a nitric acid solution containing mercuric nitrate as a catalyst. These experiments nim at establishing a head-end dissolution process for S.A.P. cladded uranium oxide fuels. The results of preliminary dissolution experiments on simulated fuel rods are also described. The behavior of S.A.P. in the mercury catalyzed nitric acid dissolutions differs strongly from the behavior of aluminum: reaction rates are very low for S.A.P. and the dissolution time borders on being unacceptable in an industrial process. Settling rates of suspended alumina are however favorable. A tentative head end flowsheetmore » lay out for PRO second core fuel elements is included. (auth)« less

  10. Multistep divergent synthesis of benzimidazole linked benzoxazole/benzothiazole via copper catalyzed domino annulation.

    PubMed

    Liao, Jen-Yu; Selvaraju, Manikandan; Chen, Chih-Hau; Sun, Chung-Ming

    2013-04-21

    An efficient, facile synthesis of structurally diverse benzimidazole integrated benzoxazole and benzothiazoles has been developed. In a multi-step synthetic sequence, 4-fluoro-3-nitrobenzoic acid was converted into benzimidazole bis-heterocycles, via the intermediacy of benzimidazole linked ortho-chloro amines. The amphiphilic reactivity of this intermediate was designed to achieve the title compounds by the reaction of various acid chlorides and isothiocyanates in a single step through the in situ formation of ortho-chloro anilides and thioureas under microwave irradiation. A versatile one pot domino annulation reaction was developed to involve the reaction of benzimidazole linked ortho-chloro amines with acid chlorides and isothiocyanates. The initial acylation and urea formation followed by copper catalyzed intramolecular C-O and C-S cross coupling reactions furnished the angularly oriented bis-heterocycles which bear a close resemblance to the streptomyces antibiotic UK-1.

  11. Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes: the accelerating effect of certain alcohols and amines.

    PubMed

    Munshi, Pradip; Main, A Denise; Linehan, John C; Tai, Chih-Cheng; Jessop, Philip G

    2002-07-10

    A trace amount of alcohol cocatalyst and a stoichiometric amount of base are required during the hydrogenation of CO(2) to formic acid catalyzed by ruthenium trimethylphosphine complexes. Variation of the choice of alcohol and base causes wide variation in the rate of reaction. Acidic, nonbulky alcohols and triflic acid increase the rate of hydrogenation an order of magnitude above that which can be obtained with traditionally used methanol or water. Similarly, use of DBU rather than NEt(3) increases the rate of reaction by an order of magnitude. Turnover frequencies up to 95,000 h(-1) have now been obtained, and even higher rates should be possible using the cocatalyst and amine combinations identified herein. Preliminary in situ NMR spectroscopic observations are described, and the possible roles of the alcohol and base are discussed.

  12. Process development for scum to biodiesel conversion.

    PubMed

    Bi, Chong-hao; Min, Min; Nie, Yong; Xie, Qing-long; Lu, Qian; Deng, Xiang-yuan; Anderson, Erik; Li, Dong; Chen, Paul; Ruan, Roger

    2015-06-01

    A novel process was developed for converting scum, a waste material from wastewater treatment facilities, to biodiesel. Scum is an oily waste that was skimmed from the surface of primary and secondary settling tanks in wastewater treatment plants. Currently scum is treated either by anaerobic digestion or landfilling which raised several environmental issues. The newly developed process used a six-step method to convert scum to biodiesel, a higher value product. A combination of acid washing and acid catalyzed esterification was developed to remove soap and impurities while converting free fatty acids to methyl esters. A glycerol washing was used to facilitate the separation of biodiesel and glycerin after base catalyzed transesterification. As a result, 70% of dried and filtered scum was converted to biodiesel which is equivalent to about 134,000 gallon biodiesel per year for the Saint Paul waste water treatment plant in Minnesota. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The ferroin-catalyzed Belousov-Zhabotinskii system with a "clock" behaviour

    NASA Astrophysics Data System (ADS)

    Melicherčík, Milan; Treindl, L̆udovít

    1991-07-01

    The ferroin-catalyzed Belousov-Zhabotinskii oscillatory system with methyl-, ethyl-, or isopropyl-ester of 3-oxobutanoic acid exhibits a "clock" behaviour and subsequent two-frequency oscillations. The influence of oxygen on the "clock" behaviour is assumed to be caused by an interaction of oxygen as a scavenger with intermediary radicals. A mechanism of the "clock" behaviour together with two-frequency oscillations of the Belousov-Zhabotinskii type will be developed later.

  14. Dynamic kinetic asymmetric transformation (DYKAT) by combined amine- and transition-metal-catalyzed enantioselective cycloisomerization.

    PubMed

    Zhao, Gui-Ling; Ullah, Farman; Deiana, Luca; Lin, Shuangzheng; Zhang, Qiong; Sun, Junliang; Ibrahem, Ismail; Dziedzic, Pawel; Córdova, Armando

    2010-02-01

    The first examples of one-pot highly chemo- and enantioselective dynamic kinetic asymmetric transformations (DYKATs) involving alpha,beta-unsaturated aldehydes and propargylated carbon acids are presented. These DYKATs, which proceed by a combination of catalytic iminium activation, enamine activation, and Pd(0)-catalyzed enyne cycloisomerization, give access to functionalized cyclopentenes with up to 99 % ee and can be used for the generation of all-carbon quaternary stereocenters.

  15. Convenient divergent strategy for the synthesis of TunePhos-type chiral diphosphine ligands and their applications in highly enantioselective Ru-catalyzed hydrogenations.

    PubMed

    Sun, Xianfeng; Zhou, Le; Li, Wei; Zhang, Xumu

    2008-02-01

    A convenient, divergent strategy for the synthesis of a series of modular and fine-tunable C3-TunePhos-type chiral diphosphine ligands and their applications in highly efficient Ru-catalyzed asymmetric hydrogenations were explored. Up to 97 and 99% ee values were achieved for the enantioselective synthesis of beta-methyl chiral amines and alpha-hydroxy acid derivatives, respectively.

  16. Highly efficient Cu(I)-catalyzed oxidation of alcohols to ketones and aldehydes with diaziridinone.

    PubMed

    Zhu, Yingguang; Zhao, Baoguo; Shi, Yian

    2013-03-01

    A novel and efficient Cu(I)-catalyzed oxidation of alcohols has been achieved with di-tert-butyldiaziridinone as the oxidant under mild conditions. A wide variety of primary and secondary alcohols with various functional groups can be oxidized to aldehydes and ketones in high yields. The reaction proceeds under neutral conditions making it compatible with acid- or base-sensitive substrates, and it is amenable to gram scale.

  17. Highly Efficient Cu(I)-Catalyzed Oxidation of Alcohols to Ketones and Aldehydes with Diaziridinone

    PubMed Central

    Zhu, Yingguang; Zhao, Baoguo

    2013-01-01

    A novel and efficient Cu(I)-catalyzed oxidation of alcohols has been achieved with di-tert-butyldiaziridinone as oxidant under mild conditions. A wide variety of primary and secondary alcohols with various functional groups can be oxidized to aldehydes and ketones in high yields. The reaction proceeds under neutral conditions making it compatible with acid or base-sensitive substrates, and it is amenable to gram scale. PMID:23413952

  18. Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water.

    PubMed

    Zhu, Junjun; Shi, Linli; Zhang, Lingling; Xu, Yong; Yong, Qiang; Ouyang, Jia; Yu, Shiyuan

    2016-10-01

    The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products' mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance.

  19. Ethanosolv Pretreatment of Bamboo with Dilute Acid for Efficient Enzymatic Saccharification

    Treesearch

    Zhiqiang Li; Zehui Jiang; Benhua Fei; Zhiyong Cai; Xuejun Pan

    2012-01-01

    Bamboo is a potential lignocellulosic biomass for the production of bioethanol because of its high cellulose and hemicelluloses content. In this research, ethanosolv pretreatment catalyzed by sulfuric acid was studied in order to enhance enzymatic saccharification of moso bamboo. The addition of 2% (w/w on bamboo) sulfuric acid in water or 75% (v/v) ethanol was...

  20. The Enantiomers of 4-Amino-3-fluorobutanoic Acid as Substrates for γ-Aminobutyric Acid Aminotransferase. Conformational Probes for GABA Binding†

    PubMed Central

    Clift, Michael; Ji, Haitao; Deniau, Gildas P.; O’Hagan, David; Silverman, Richard B.

    2008-01-01

    γ-Aminobutyric acid aminotransferase (GABA-AT), a pyridoxal 5’-phosphate dependent enzyme, catalyzes the degradation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic semialdehyde with concomitant conversion of pyridoxal 5’-phosphate (PLP) to pyridoxamine 5’-phosphate (PMP). The enzyme then catalyzes the conversion of α-ketoglutarate to the excitatory neurotransmitter L-glutamate. Racemic 4-amino-3-fluorobutanoic acid (3-F-GABA) was shown previously to act as a substrate for GABA-AT, not for transamination, but for HF elimination. Here we report studies of the reaction catalyzed by GABA-AT on (R)- and (S)-3-F-GABA. Neither enantiomer is a substrate for transamination. Very little elimination from the (S)-enantiomer was detected using a coupled enzyme assay; The rate of elimination of HF from the (R)-enantiomer is at least 10 times greater than that for the (S)-enantiomer. The (R)-enantiomer is about 20 times more efficient as a substrate for GABA-AT catalyzed HF elimination than GABA is a substrate for transamination. The (R)-enantiomer also inhibits the transamination of GABA 10 times more effectively than the (S)-enantiomer. Using a combination of computer modeling and the knowledge that vicinal C-F and C-NH3+ bonds have a strong preference to align gauche rather than anti to each other, it is concluded that on binding of free 3-F-GABA to GABA-AT the optimal conformation places the C-NH3+ and C-F bonds gauche in the (R)-enantiomer but anti in the (S)-enantiomer. Furthermore, the dynamic binding process and the bioactive conformation of GABA bound to GABA-AT have been inferred based on the different biological behavior of the two enantiomers of 3-F-GABA when they bind to the enzyme. The present study suggests that the C-F bond can be utilized as a conformational probe to explore the dynamic binding process and provide insight into the bioactive conformation of substrates, which cannot be easily determined by other biophysical approaches. PMID:17988152

  1. Old Yellow Enzyme: Stepwise reduction of nitro-olefins and catalysis of aci-nitro tautomerization

    PubMed Central

    Meah, Younus; Massey, Vincent

    2000-01-01

    The Old Yellow Enzyme has been shown to catalyze efficiently the NADPH-linked reduction of nitro-olefins. The reduction of the nitro-olefin proceeds in a stepwise fashion, with formation of a nitronate intermediate that is freely dissociable from the enzyme. The first step involves hydride transfer from the enzyme-reduced flavin to carbon 2 of the nitro-olefin. The protonation of the nitronate at carbon 1 to form the final nitroalkane product also is catalyzed by the enzyme and involves Tyr-196 as an active site acid/base. This residue also is involved in aci-nitro tautomerization of nitroalkanes, the first example of a nonredox reaction catalyzed by the enzyme. PMID:10995477

  2. Copper-catalyzed C(sp3)-OH cleavage with concomitant C-C coupling: synthesis of 3-substituted isoindolinones.

    PubMed

    Rao, H Surya Prakash; Rao, A Veera Bhadra

    2015-02-06

    Copper(II) trifluoromethanesulfonate (Cu(OTf)2) efficiently catalyzes the C-C coupling of 3-hydoxyisoindolinones with a variety of aryl-, heteroaryl-, and alkenylboronic acids to furnish C(3) aryl-, heteroaryl-, and alkenyl-substituted isoindolinones. The coupling reactions work smoothly in 1,2-dicholoroethane (DCE) reflux, to effect both inter- and intramolecular versions. This is the first report on C(sp(3))-OH cleavage with concomitant C-C coupling. The photolabile 2-nitrobenzyl protecting group is most appropriate for promotion of the coupling reaction and for deprotection. The tetracyclic ring motif of the alkaloid neuvamine was prepared by applying the newly developed copper-catalyzed C-C coupling.

  3. Nickel-Catalyzed, Carbonyl-Ene-Type Reactions: Selective for Alpha Olefins and More Efficient with Electron-Rich Aldehydes

    PubMed Central

    Ho, Chun-Yu; Ng, Sze-Sze; Jamison, Timothy F.

    2011-01-01

    Described are several classes of unusual or unprecedented carbonyl-ene-type reactions, including those between alpha olefins and aromatic aldehydes. Catalyzed by nickel, these processes complement existing Lewis acid-catalyzed methods in several respects. Not only are monosubstituted alkenes, aromatic aldehydes, and tert-alkyl aldehydes effective substrates, but monosubstituted olefins also react faster than those that are more substituted, and large or electron-rich aldehydes are more effective than small or electron-poor ones. Conceptually, in the presence of a nickel-phosphine catalyst, the combination of off-the-shelf alkenes, silyl triflates, and triethylamine functions as a replacement for an allylmetal reagent. PMID:16620106

  4. Isotope labeling of rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments.

    USDA-ARS?s Scientific Manuscript database

    The architecture of plant metabolism includes substantial duplication of metabolite pools and enzyme catalyzed reactions in different subcellular compartments. This poses considerable challenges for understanding the regulation of metabolism particularly in primary metabolism and amino acid biosynth...

  5. Proline/pipecolinic acid-promoted copper-catalyzed P-arylation.

    PubMed

    Huang, Cheng; Tang, Xu; Fu, Hua; Jiang, Yuyang; Zhao, Yufen

    2006-06-23

    We have developed a convenient and efficient approach for P-arylation of organophosphorus compounds containing P-H. Using commercially available and inexpensive proline and pipecolinic acid as the ligands greatly improved the efficiency of the coupling reactions, so the method can provide an entry to arylphosphonates, arylphosphinates and arylphosphine oxides.

  6. ACID-CATALYZED REACTIONS IN SULFURIC ACID AEROSOLS: CHARACTERIZATION AND IMPACT ON ICE NUCLEATION

    EPA Science Inventory

    Several different experimental results are possible. It may be that as long as the water content of the aerosol is known, ice nucleation conditions can be predicted using an accepted model for homogeneous ice nucleation. However, in aerosol systems where larger organics form...

  7. Lewis base additives improve the zeolite ferrierite-catalyzed synthesis of isostearic acid

    USDA-ARS?s Scientific Manuscript database

    Isostearic acid (IA) is of interest for industrial purposes especially in the area of biolubricants, such as cosmetics and slip additives for polyolefin and related copolymer films. This study was designed to develop a zeolitic catalysis process for IA production through isomerization of fatty aci...

  8. Polymerization of euphorbia oil with Lewis acid in carbon dioxide media

    USDA-ARS?s Scientific Manuscript database

    Boron trifluoride diethyl etherate (BF3-OEt2) Lewis acid catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, in liquid carbon dioxide was conducted in an effort to develop useful vegetable oil based polymers. The resulting polymers (RPEO) were characterized by FTIR, 1H-...

  9. Sulfuric acid as a catalyst for ring-opening of biobased bis-epoxides

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils can be relatively and easily transformed into bio-based epoxides. Because of this, the acid-catalyzed epoxide ring-opening has been explored for the preparation of bio-based lubricants and polymers. Detailed model studies are carried out only with mono-epoxide made from methyl oleate,...

  10. Kinetics and mechanisms of 1,5-dihydroflavin reduction of carbonyl compounds and flavin oxidation of alcohols. III. Oxidation of benzoin by flavin and reduction of benzil by 1,5-dihydroflavin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruice, T.C.; Taulane, J.P.

    1976-11-24

    The oxidation of benzoin by lumiflavin-3-acetic acid (Fl/sub ox/) to provide benzil and 1,5-dihydrolumiflavin-3-acetic acid (FlH/sub 2/) is a readily reversible reaction. It has been established that the mechanism involves general base ionization of benzoin carbon acid (..cap alpha..-ketol) to yield endiolate anion, followed by partitioning of the endiolate anion back to benzoin through general acid proton donation and to benzil by reaction with Fl/sub ox/. The reaction of endiolate anion with Fl/sub ox/ is not subject to acid or base catalysis. Evidence that ionization of benzoin precedes its oxidation by Fl/sub ox/ stems from the observation that the ratemore » attributed to the latter process possesses a constant equal to that for racemization of (+)-benzoin and O/sub 2/ oxidation of benzoin and that this rate constant is characterized by a primary deuterium kinetic isotope effect (k/sup benzoin//k/sup ..cap alpha..-/sup 2/H-benzoin/) of 7.24 +- 1.5. Reduction of benzil to benzoin by FlH/sub 2/ is pH and buffer insensitive below the pK/sub a/ of FlH/sub 2/. These results are consistent with either general acid catalyzed attack of benzoin carbanion at the 4a-position of Fl/sub ox/, followed by a specific base catalyzed collapse of adduct to diketone and dihydroflavin (Scheme III), or to the uncatalyzed reaction of carbanion (endiolate anion) with flavin to provide a semidione-flavin radical pair which then goes on to diketone and dihydroflavin in a non-acid-base catalyzed reaction (Scheme V). These mechanisms are discussed in terms of the kinetics of reaction of other carbanion species with flavin.« less

  11. Structure-based Mechanism of CMP-2-keto-3-deoxymanno-octulonic Acid Synthetase

    PubMed Central

    Heyes, Derren J.; Levy, Colin; Lafite, Pierre; Roberts, Ian S.; Goldrick, Marie; Stachulski, Andrew V.; Rossington, Steven B.; Stanford, Deborah; Rigby, Stephen E. J.; Scrutton, Nigel S.; Leys, David

    2009-01-01

    The enzyme CMP-Kdo synthetase (KdsB) catalyzes the addition of 2-keto-3-deoxymanno-octulonic acid (Kdo) to CTP to form CMP-Kdo, a key reaction in the biosynthesis of lipopolysaccharide. The reaction catalyzed by KdsB and the related CMP-acylneuraminate synthase is unique among the sugar-activating enzymes in that the respective sugars are directly coupled to a cytosine monophosphate. Using inhibition studies, in combination with isothermal calorimetry, we show the substrate analogue 2β-deoxy-Kdo to be a potent competitive inhibitor. The ligand-free Escherichia coli KdsB and ternary complex KdsB-CTP-2β-deoxy-Kdo crystal structures reveal that Kdo binding leads to active site closure and repositioning of the CTP phosphates and associated Mg2+ ion (Mg-B). Both ligands occupy conformations compatible with an Sn2-type attack on the α-phosphate by the Kdo 2-hydroxyl group. Based on strong similarity with DNA/RNA polymerases, both in terms of overall chemistry catalyzed as well as active site configuration, we postulate a second Mg2+ ion (Mg-A) is bound by the catalytically competent KdsB-CTP-Kdo ternary complex. Modeling of this complex reveals the Mg-A coordinated to the conserved Asp100 and Asp235 in addition to the CTP α-phosphate and both the Kdo carboxylic and 2-hydroxyl groups. EPR measurements on the Mn2+-substituted ternary complex support this model. We propose the KdsB/CNS sugar-activating enzymes catalyze the formation of activated sugars, such as the abundant CMP-5-N-acetylneuraminic acid, by recruitment of two Mg2+ to the active site. Although each metal ion assists in correct positioning of the substrates and activation of the α-phosphate, Mg-A is responsible for activation of the sugar-hydroxyl group. PMID:19815542

  12. Crystallographic and mutational analyses of cystathionine β-synthase in the H2 S-synthetic gene cluster in Lactobacillus plantarum.

    PubMed

    Matoba, Yasuyuki; Yoshida, Tomoki; Izuhara-Kihara, Hisae; Noda, Masafumi; Sugiyama, Masanori

    2017-04-01

    Cystathionine β-synthase (CBS) catalyzes the formation of l-cystathionine from l-serine and l-homocysteine. The resulting l-cystathionine is decomposed into l-cysteine, ammonia, and α-ketobutylic acid by cystathionine γ-lyase (CGL). This reverse transsulfuration pathway, which is catalyzed by both enzymes, mainly occurs in eukaryotic cells. The eukaryotic CBS and CGL have recently been recognized as major physiological enzymes for the generation of hydrogen sulfide (H 2 S). In some bacteria, including the plant-derived lactic acid bacterium Lactobacillus plantarum, the CBS- and CGL-encoding genes form a cluster in their genomes. Inactivation of these enzymes has been reported to suppress H 2 S production in bacteria; interestingly, it has been shown that H 2 S suppression increases their susceptibility to various antibiotics. In the present study, we characterized the enzymatic properties of the L. plantarum CBS, whose amino acid sequence displays a similarity with those of O-acetyl-l-serine sulfhydrylase (OASS) that catalyzes the generation of l-cysteine from O-acetyl-l-serine (l-OAS) and H 2 S. The L. plantarum CBS shows l-OAS- and l-cysteine-dependent CBS activities together with OASS activity. Especially, it catalyzes the formation of H 2 S in the presence of l-cysteine and l-homocysteine, together with the formation of l-cystathionine. The high affinity toward l-cysteine as a first substrate and tendency to use l-homocysteine as a second substrate might be associated with its enzymatic ability to generate H 2 S. Crystallographic and mutational analyses of CBS indicate that the Ala70 and Glu223 residues at the substrate binding pocket are important for the H 2 S-generating activity. © 2017 The Protein Society.

  13. The structure of (3R)-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Pseudomonas aeruginosa.

    PubMed

    Kimber, Matthew S; Martin, Fernando; Lu, Yingjie; Houston, Simon; Vedadi, Masoud; Dharamsi, Akil; Fiebig, Klaus M; Schmid, Molly; Rock, Charles O

    2004-12-10

    Type II fatty acid biosynthesis systems are essential for membrane formation in bacteria, making the constituent proteins of this pathway attractive targets for antibacterial drug discovery. The third step in the elongation cycle of the type II fatty acid biosynthesis is catalyzed by beta-hydroxyacyl-(acyl carrier protein) (ACP) dehydratase. There are two isoforms. FabZ, which catalyzes the dehydration of (3R)-hydroxyacyl-ACP to trans-2-acyl-ACP, is a universally expressed component of the bacterial type II system. FabA, the second isoform, as has more limited distribution in nature and, in addition to dehydration, also carries out the isomerization of trans-2- to cis-3-decenoyl-ACP as an essential step in unsaturated fatty acid biosynthesis. We report the structure of FabZ from the important human pathogen Pseudomonas aeruginosa at 2.5 A of resolution. PaFabZ is a hexamer (trimer of dimers) with the His/Glu catalytic dyad located within a deep, narrow tunnel formed at the dimer interface. Site-directed mutagenesis experiments showed that the obvious differences in the active site residues that distinguish the FabA and FabZ subfamilies of dehydratases do not account for the unique ability of FabA to catalyze isomerization. Because the catalytic machinery of the two enzymes is practically indistinguishable, the structural differences observed in the shape of the substrate binding channels of FabA and FabZ lead us to hypothesize that the different shapes of the tunnels control the conformation and positioning of the bound substrate, allowing FabA, but not FabZ, to catalyze the isomerization reaction.

  14. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives.

    PubMed

    Sharma, Pankaj; Liu, Rai-Shung

    2015-03-16

    A one-pot, two-step synthesis of α-O-, S-, and N-substituted 4-methylquinoline derivatives through Cu-catalyzed aerobic oxidations of N-hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N-hydroxyaminoallenes with NuH (Nu = OH, OR, NHR, and SR) to form 3-substituted 2-en-1-ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical-type mechanism rather than a typical nitrone-intermediate route. The utility of this new Cu-catalyzed reaction is shown by its applicability to the synthesis of several 2-amino-4-methylquinoline derivatives, which are known to be key precursors to several bioactive molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Turning Cucurbit[8]uril into a Supramolecular Nanoreactor for Asymmetric Catalysis

    PubMed Central

    Zheng, Lifei; Sonzini, Silvia; Ambarwati, Masyitha; Rosta, Edina

    2015-01-01

    Abstract Chiral macromolecules have been widely used as synthetic pockets to mimic natural enzymes and promote asymmetric reactions. An achiral host, cucurbit[8]uril (CB[8]), was used for an asymmetric Lewis acid catalyzed Diels–Alder reaction. We achieved a remarkable increase in enantioselectivity and a large rate acceleration in the presence of the nanoreactor by using an amino acid as the chiral source. Mechanistic and computational studies revealed that both the amino acid–Cu2+ complex and the dienophile substrate are included inside the macrocyclic host cavity, suggesting that contiguity and conformational constraints are fundamental to the catalytic process and rate enhancement. These results pave the way towards new studies on asymmetric reactions catalyzed in confined achiral cavities. PMID:27478269

  16. Turning Cucurbit[8]uril into a Supramolecular Nanoreactor for Asymmetric Catalysis

    PubMed Central

    Zheng, Lifei; Sonzini, Silvia; Ambarwati, Masyitha; Rosta, Edina; Scherman, Oren A; Herrmann, Andreas

    2015-01-01

    Chiral macromolecules have been widely used as synthetic pockets to mimic natural enzymes and promote asymmetric reactions. An achiral host, cucurbit[8]uril (CB[8]), was used for an asymmetric Lewis acid catalyzed Diels–Alder reaction. We achieved a remarkable increase in enantioselectivity and a large rate acceleration in the presence of the nanoreactor by using an amino acid as the chiral source. Mechanistic and computational studies revealed that both the amino acid–Cu2+ complex and the dienophile substrate are included inside the macrocyclic host cavity, suggesting that contiguity and conformational constraints are fundamental to the catalytic process and rate enhancement. These results pave the way towards new studies on asymmetric reactions catalyzed in confined achiral cavities. PMID:26383272

  17. Contribution of aldehyde oxidizing enzymes on the metabolism of 3,4-dimethoxy-2-phenylethylamine to 3,4-dimethoxyphenylacetic acid by guinea pig liver slices.

    PubMed

    Panoutsopoulos, Georgios I

    2006-01-01

    3,4-Dimethoxy-2-phenylethylamine is catalyzed to its aldehyde derivative by monoamine oxidase B, but the subsequent oxidation into the corresponding acid has not yet been studied. Oxidation of aromatic aldehydes is catalyzed mainly by aldehyde dehydrogenase and aldehyde oxidase. The present study examines the metabolism of 3,4-dimethoxy-2-phenylethylamine in vitro and in freshly prepared and cryopreserved guinea pig liver slices and the relative contribution of different aldehyde-oxidizing enzymes was estimated by pharmacological means. 3,4-Dimethoxy-2- phenylethylamine was converted into the corresponding aldehyde when incubated with monoamine oxidase and further oxidized into the acid when incubated with both, monoamine oxidase and aldehyde oxidase. In freshly prepared and cryopreserved liver slices, 3,4-dimethoxyphenylacetic acid was the main metabolite of 3,4-dimethoxy-2- phenylethylamine. 3,4-Dimethoxyphenylacetic acid formation was inhibited by 85% from disulfiram (aldehyde dehydrogenase inhibitor) and by 75-80% from isovanillin (aldehyde oxidase inhibitor), whereas allopurinol (xanthine oxidase inhibitor) inhibited acid formation by only 25-30%. 3,4- Dimethoxy-2-phenylethylamine is oxidized mainly to its acid, via 3,4-dimethoxyphenylacetaldehyde, by aldehyde dehydrogenase and aldehyde oxidase with a lower contribution from xanthine oxidase.

  18. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis.

    PubMed Central

    Silverman, P M; Eoyang, L

    1987-01-01

    Acetohydroxyacid synthase I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2-14C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of 14C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. We confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site. Images PMID:3294793

  19. The preparation and evaluation of salt forms of linogliride with reduced solubilities as candidates for extended release.

    PubMed

    Chrzanowski, Frank A; Ahmad, Kaleem

    2017-03-01

    Salts of linogliride with reduced solubilities were prepared and evaluated as potential candidates for extended-release oral dosage forms. A once-daily dose of 300-800 mg was intended. Seven acids were selected: p-acetamidobenzoic, benzoic, p-hydroxybenzoic, 3-hydroxy-2-naphthoic, 1-napsylic, pamoic, and p-toluenesulfonic acids but only four salts were able to be prepared in suitable quantities for evaluation: linogliride pamoate, p-hydroxybenzoate, 3-hydroxy-2-naphthoate, and 1-napsylate. The pH-solubility profiles of the four new salts, free base, and fumarate salt were compared over the pH 1.43-8.3 range and the intrinsic dissolution rates of the four new salts and the free base were determined at pH 1.43, 4.4, and 7.5. The range of the pH-solubility profile and intrinsic dissolution rates of the p-hydroxybenzoate salt were less than the free base and fumarate and higher than the other three new salts. The pH-solubilities and intrinsic dissolution rates of the 1-napsylate salt were pH-independent. The solubilities and intrinsic dissolution rates of the pamoate and 3-hydroxy-2-naphthoate were higher at pH 1.4-3.4 than at higher pH. At pH 4.4 and higher, the solubilities were essentially the same, in the 1-2 mg/mL range. The intrinsic dissolution rates were also very low and not very different. Dissolution studies with capsules containing 800 mg doses of the pamoate, 1-napsylate, free base, and fumarate performed in a dissolution medium of pH beginning at 2.2 and ending at 6.8 demonstrated that the pamoate and 1-napsylate salt forms dissolved slower and could be useful as extended-release forms.

  20. Facile access to amides and hydroxamic acids directly from nitroarenes.

    PubMed

    Jain, Shreyans K; Aravinda Kumar, K A; Bharate, Sandip B; Vishwakarma, Ram A

    2014-09-07

    A new method for synthesis of amides and hydroxamic acids from nitroarenes and aldehydes is described. The MnO2 catalyzed thermal deoxygenation of nitrobenzene resulted in formation of a reactive nitroso intermediate which on reaction with aldehydes provided amides and hydroxamic acids. The thermal neat reaction in the presence of 0.01 mmol KOH predominantly led to formation of hydroxamic acid whereas reaction in the presence of 1 mmol acetic acid produced amides as the only product.

  1. Cloning and Expression of a Phloretin Hydrolase Gene from Eubacterium ramulus and Characterization of the Recombinant Enzyme

    PubMed Central

    Schoefer, Lilian; Braune, Annett; Blaut, Michael

    2004-01-01

    Phloretin hydrolase catalyzes the hydrolytic C-C cleavage of phloretin to phloroglucinol and 3-(4-hydroxyphenyl)propionic acid during flavonoid degradation in Eubacterium ramulus. The gene encoding the enzyme was cloned by screening a gene library for hydrolase activity. The insert of a clone conferring phloretin hydrolase activity was sequenced. Sequence analysis revealed an open reading frame of 822 bp (phy), a putative promoter region, and a terminating stem-loop structure. The deduced amino acid sequence of phy showed similarities to a putative protein of the 2,4-diacetylphloroglucinol biosynthetic operon from Pseudomonas fluorescens. The phloretin hydrolase was heterologously expressed in Escherichia coli and purified. The molecular mass of the native enzyme was approximately 55 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of phy indicated molecular masses of 30 and 30.8 kDa, respectively, suggesting that the enzyme is a homodimer. The recombinant phloretin hydrolase catalyzed the hydrolysis of phloretin to equimolar amounts of phloroglucinol and 3-(4-hydroxyphenyl)propionic acid. The optimal temperature and pH of the catalyzed reaction mixture were 37°C and 7.0, respectively. The Km for phloretin was 13 ± 3 μM and the kcat was 10 ± 2 s−1. The enzyme did not transform phloretin-2′-glucoside (phloridzin), neohesperidin dihydrochalcone, 1,3-diphenyl-1,3-propandione, or trans-1,3-diphenyl-2,3-epoxy-propan-1-one. The catalytic activity of the phloretin hydrolase was reduced by N-bromosuccinimide, o-phenanthroline, N-ethylmaleimide, and CuCl2 to 3, 20, 35, and 85%, respectively. Phloroglucinol and 3-(4-hydroxyphenyl)propionic acid reduced the activity to 54 and 70%, respectively. PMID:15466559

  2. Ester Cross-Link Profiling of the Cutin Polymer of Wild-Type and Cutin Synthase Tomato Mutants Highlights Different Mechanisms of Polymerization1

    PubMed Central

    Philippe, Glenn; Gaillard, Cédric; Petit, Johann; Geneix, Nathalie; Dalgalarrondo, Michèle; Bres, Cécile; Mauxion, Jean-Philippe; Franke, Rochus; Rothan, Christophe; Marion, Didier; Bakan, Bénédicte

    2016-01-01

    Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance. PMID:26676255

  3. Ester Cross-Link Profiling of the Cutin Polymer of Wild-Type and Cutin Synthase Tomato Mutants Highlights Different Mechanisms of Polymerization.

    PubMed

    Philippe, Glenn; Gaillard, Cédric; Petit, Johann; Geneix, Nathalie; Dalgalarrondo, Michèle; Bres, Cécile; Mauxion, Jean-Philippe; Franke, Rochus; Rothan, Christophe; Schreiber, Lukas; Marion, Didier; Bakan, Bénédicte

    2016-02-01

    Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  5. Rhodium-catalyzed chemo-, regio-, and enantioselective addition of 2-pyridones to terminal allenes.

    PubMed

    Li, Changkun; Kähny, Matthias; Breit, Bernhard

    2014-12-08

    A rhodium-catalyzed chemo-, regio-, and enantioselective addition of 2-pyridones to terminal allenes to give branched N-allyl 2-pyridones is reported. Preliminary mechanistic studies support the hypothesis that the reaction was initiated from the more acidic 2-hydroxypyridine form, and the initial kinetic O-allylation product was finally converted into the thermodynamically more stable N-allyl 2-pyridones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biodiesel production from waste frying oils and its quality control.

    PubMed

    Sabudak, T; Yildiz, M

    2010-05-01

    The use of biodiesel as fuel from alternative sources has increased considerably over recent years, affording numerous environmental benefits. Biodiesel an alternative fuel for diesel engines is produced from renewable sources such as vegetable oils or animal fats. However, the high costs implicated in marketing biodiesel constitute a major obstacle. To this regard therefore, the use of waste frying oils (WFO) should produce a marked reduction in the cost of biodiesel due to the ready availability of WFO at a relatively low price. In the present study waste frying oils collected from several McDonald's restaurants in Istanbul, were used to produce biodiesel. Biodiesel from WFO was prepared by means of three different transesterification processes: a one-step base-catalyzed, a two-step base-catalyzed and a two-step acid-catalyzed transesterification followed by base transesterification. No detailed previous studies providing information for a two-step acid-catalyzed transesterification followed by a base (CH(3)ONa) transesterification are present in literature. Each reaction was allowed to take place with and without tetrahydrofuran added as a co-solvent. Following production, three different procedures; washing with distilled water, dry wash with magnesol and using ion-exchange resin were applied to purify biodiesel and the best outcome determined. The biodiesel obtained to verify compliance with the European Standard 14214 (EN 14214), which also corresponds to Turkish Biodiesel Standards. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Whey protein isolate with improved film properties through cross-linking catalyzed by small laccase from Streptomyces coelicolor.

    PubMed

    Quan, Wei; Zhang, Chong; Zheng, Meixia; Lu, Zhaoxin; Lu, Fengxia

    2018-08-01

    The effects of small laccase (SLAC) from Streptomyces coelicolor on the properties of whey protein isolate (WPI) films were studied. WPI was catalyze by SLAC without phenolic acid assistance. Particle size distribution results showed that some complexes with higher relative molecular weight formed in WPI samples treated with SLAC. The content of α-helixes decreased while those of β-sheets and random coils increased following SLAC treatment according to circular dichroism results. Fourier transform infrared spectral analysis suggested that some conformational changes occurred in WPI following SLAC treatment. Analysis of WPI films prepared by casting after SLAC treatment indicated that their film properties were all improved, including mechanical properties, solubility, water vapor, oxygen and carbon dioxide barrier properties, film color, light transmission, transparency and thermal properties. Compared with that of the control film, some obvious differences in the morphology of the WPI films were observed following SLAC treatment. This report demonstrates that laccase can directly catalyze protein cross-linking, which may be useful to improve the performance of protein films. In this study, SLAC was applied to WPI edible film during the film-making process. The results showed that SLAC can catalyze WPI cross-linking without phenolic acid assistance, and WPI film properties were improved after SLAC treatment. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  8. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response

    USDA-ARS?s Scientific Manuscript database

    The known members of the plant methyl esterase (MES) family catalyze hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid, and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated V...

  9. Radical scavenging activity of lipophilized products from lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids.

    PubMed

    Choo, Wee-Sim; Birch, Edward John

    2009-02-01

    Lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate the antioxidant activity of the lipophilized products as model systems for enhanced protection of unsaturated oil. The lipophilized products were identified using ESI-MS. Free radical scavenging activity was determined using the DPPH radical method. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Ferulic acid showed much higher radical scavenging activity than cinnamic acid, which has limited activity. The esterification of cinnamic acid and ferulic acid with triolein resulted in significant increase and decrease in the radical scavenging activity, respectively. These opposite effects were due to the effect of addition of electron-donating alkyl groups on the predominant mechanism of reaction (hydrogen atom transfer or electron transfer) of a species with DPPH. The effect of esterification of cinnamic acid was confirmed using ethyl cinnamate which greatly enhances the radical scavenging activity. Although, compared to the lipophilized cinnamic acid product, the activity was lower. The radical scavenging activity of the main component isolated from lipophilized cinnamic acid product using solid phase extraction, monocinnamoyl dioleoyl glycerol, was as good as the unseparated mixture of lipophilized product. Based on the ratio of a substrate to DPPH concentration, lipophilized ferulic acid was a much more efficient radical scavenger than lipophilized cinnamic acid.

  10. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    PubMed

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.

    PubMed

    Furuya, Toshiki; Kino, Kuniki

    2014-02-01

    4-Hydroxyphenylacetate 3-hydroxylases (HPAHs) of the two-component flavin-dependent monooxygenase family are attractive enzymes that possess the catalytic potential to synthesize valuable ortho-diphenol compounds from simple monophenol compounds. In this study, we investigated the catalytic activity of HPAH from Pseudomonas aeruginosa strain PAO1 toward cinnamic acid derivatives. We prepared Escherichia coli cells expressing the hpaB gene encoding the monooxygenase component and the hpaC gene encoding the oxidoreductase component. E. coli cells expressing HpaBC exhibited no or very low oxidation activity toward cinnamic acid, o-coumaric acid, and m-coumaric acid, whereas they rapidly oxidized p-coumaric acid to caffeic acid. Interestingly, after p-coumaric acid was almost completely consumed, the resulting caffeic acid was further oxidized to 3,4,5-trihydroxycinnamic acid. In addition, HpaBC exhibited oxidation activity toward 3-(4-hydroxyphenyl)propanoic acid, ferulic acid, and coniferaldehyde to produce the corresponding ortho-diphenols. We also investigated a flask-scale production of caffeic acid from p-coumaric acid as the model reaction for HpaBC-catalyzed syntheses of hydroxycinnamic acids. Since the initial concentrations of the substrate p-coumaric acid higher than 40 mM markedly inhibited its HpaBC-catalyzed oxidation, the reaction was carried out by repeatedly adding 20 mM of this substrate to the reaction mixture. Furthermore, by using the HpaBC whole-cell catalyst in the presence of glycerol, our experimental setup achieved the high-yield production of caffeic acid, i.e., 56.6 mM (10.2 g/L) within 24 h. These catalytic activities of HpaBC will provide an easy and environment-friendly synthetic approach to hydroxycinnamic acids.

  12. Pathway for biodegradation of p-nitrophenol in a Moraxella sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spain, J.C.; Gibson, D.T.

    1991-03-01

    A Moraxella strain grew on p-nitrophenol with stoichiometric release of nitrite. During induction of the enzymes for growth on p-nitrophenol, traces of hydroquinone accumulated in the medium. In the presence of 2,2{prime}-dipyidyl, p-nitrophenol, was converted stoichiometrically to hydroquinone. Particulate enzymes catalyzed the conversion of p-nitrophenol to hydroquinone in the presence of NADPH and oxygen. Soluble enzymes catalyzed the conversion of hydroquinone to {gamma}-hydroxymuconic semialdehyde, which was identified by high-performance liquid chromatography (HPLC)-mass spectroscopy. Upon addition of catalytic amounts of NAD{sup +}, {gamma}-hydroxymuconic semialdehyde was converted to {beta}-ketoadipic acid. In the presence of pyruvate and lactic dehydrogenase, substrate amounts of NADmore » were required and {gamma}-hydroxymuconic semialdehyde was converted to maleylacetic acid, which was identified by HPLC-mass spectroscopy. Similar results were obtained when the reaction was carried out in the presence of potassium ferricyanide. Extracts prepared from p-nitrophenol-grown cells also contained an enzyme that catalyzed the oxidation of 1,2,4-benzenetriol to maleylacetic acid. The enzyme responsible for the oxidation of 1,2,4-benzenetriol was separated from the enzyme responsible for hydroquinone oxidation by DEAE-cellulose chromatography. The results indicate that the pathway for biodegradation of p-nitrophenol involves the initial removal of the nitro group as nitrite and formation of hydroquinone.« less

  13. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.

    PubMed

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  14. Isolation and characterization of lignin from the oak wood bioethanol production residue for adhesives.

    PubMed

    Lee, Soo Jung; Kim, Hyun Joo; Cho, Eun Jin; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Lignin was isolated from the residue of bioethanol production with oak wood via alkaline and catalyzed organosolv treatments at ambient temperature to improve the purity of lignin for the materials application. The isolated lignins were analyzed for their chemical composition by nitrobenzene oxidation method and their functionality was characterized via wet chemistry method, element analysis, (1)H NMR, GPC and FTIR-ATR. The isolated lignin by acid catalyzed organosolv treatment (Acid-OSL) contained a higher lignin content, aromatic proton, phenolic hydroxyl group and a lower nitrogen content that is more reactive towards chemical modification. The lignin-based adhesives were prepared and the bond strength was measured to evaluate the enhanced reactivity of lignin by the isolation. Two steps of phenolation and methylolation were applied for the modification of the isolated lignins and their tensile strengths were evaluated for the use as an adhesive. The acid catalyzed organosolv lignin-based adhesives had comparable bond strength to phenol-formaldehyde adhesives. The analysis of lignin-based adhesives by FTIR-ATR and TGA showed structural similarity to phenol adhesive. The results demonstrate that the reactivity of lignin was enhanced by isolation from hardwood bioethanol production residues at ambient temperature and it could be used in a value-added application to produce lignin-based adhesives. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The first characterization of free radicals formed from cellular COX-catalyzed peroxidation.

    PubMed

    Gu, Yan; Xu, Yi; Law, Benedict; Qian, Steven Y

    2013-04-01

    Through free radical-mediated peroxidation, cyclooxygenase (COX) can metabolize dihomo-γ-linolenic acid (DGLA) and arachidonic acid (AA) to form well-known bioactive metabolites, namely, the 1-series of prostaglandins (PGs1) and the 2-series of prostaglandins (PGs2), respectively. Unlike PGs2, which are generally viewed as proinflammatory and procarcinogenic PGs, PGs1 may possess anti-inflammatory and anti-cancer activity. Previous studies using ovine COX along with spin trapping and the LC/ESR/MS technique have shown that certain exclusive free radicals are generated from different free radical reactions in DGLA and AA peroxidation. However, it has been unclear whether the differences were associated with the contrasting bioactivity of DGLA vs AA. The aim of this study was to refine the LC/MS and spin trapping technique to make it possible for the association between free radicals and cancer cell growth to be directly tested. Using a colon cancer cell line, HCA-7 colony 29, and LC/MS along with a solid-phase extraction, we were able to characterize the reduced forms of radical adducts (hydroxylamines) as the free radicals generated from cellular COX-catalyzed peroxidation. For the first time, free radicals formed in the COX-catalyzed peroxidation of AA vs DGLA and their association with cancer cell growth were assessed (cell proliferation via MTS and cell cycle distribution via propidium iodide staining) in the same experimental setting. The exclusive free radicals formed from the COX-catalyzed peroxidation of AA and DGLA were shown to be correlated with the cell growth response. Our results indicate that free radicals generated from the distinct radical reactions in COX-catalyzed peroxidation may represent the novel metabolites of AA and DGLA that correspond to their contrasting bioactivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. The First Characterization of Free Radicals Formed From Cellular COX-Catalyzed Peroxidation

    PubMed Central

    Gu, Yan; Xu, Yi; Law, Benedict; Qian, Steven Y.

    2014-01-01

    Through free radical-mediated peroxidation, cyclooxygenase (COX) can metabolize dihomo-γ-linolenic acid (DGLA) and arachidonic acid(AA) to form well-known bioactive metabolites, namely, the 1-series of prostaglandins (PGs1) and 2-series of prostaglandins(PGs2), respectively. Unlike PGs2, which are generally viewed as pro-inflammatory and pro-carcinogenic PGs, PGs1 may possess anti-inflammatory and anti-cancer activity. Previous studies using ovine COX along with spin trapping and the LC/ESR/MS technique have shown that certain exclusive free radicals are generated from different free radical reactions in DGLA and AA peroxidation. However, it has been unclear whether the differences were associated with the contrasting bioactivity of DGLA vs. AA. The aim of this study was to refine the LC/MS and spin-trapping technique to make it possible for the association between free radicals and cancer cell growth to be directly tested. Using a colon cancer cell line, HCA-7 colony 29, and LC/MS along with a solid phase extraction, we were able to characterize the reduced forms of radical adducts (hydroxylamines) as the free radicals generated from cellular COX-catalyzed peroxidation. For the first time, free radicals formed in the COX-catalyzed peroxidation of AA vs. DGLA and their association with cancer cell growth was assessed (cell proliferation via MTS and cell cycle distribution via PI staining) in the same experimental setting. The exclusive free radicals formed from the COX-catalyzed peroxidation of AA and DGLA were shown to be correlated with the cell growth response. Our results indicate that free radicals generated from the distinct radical reactions in COX-catalyzed peroxidation may represent the novel metabolites of AA and DGLA that correspond to their contrasting bioactivity. PMID:23261941

  17. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    PubMed Central

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  18. Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Producing unusual fatty acids (FAs) in crop plants has been a long-standing goal of green chemistry. However, expression of the enzymes that catalyze the primary synthesis of these unusual FAs in transgenic plants typically results in low levels of the desired FA. For example, seed-specific expressi...

  19. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    NASA Astrophysics Data System (ADS)

    Socki, R. A.; Fu, Q.; Niles, P. B.; Gibson, E. K.

    2012-03-01

    We report results of experiments to measure the H-isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high-temperature extraction furnace to make quantitative H-isotope measurements.

  20. Lipase catalyzed methanolysis of tri-(12-hydroxy stearoyl)-glycerol in organic solvents

    USDA-ARS?s Scientific Manuscript database

    Castor oil is the source of numerous products and is the only commercial source of the fatty acid ricinoleate, 12-hydroxy-oleate. Hydrogenated castor oil is similarly useful as the source of 12-hydroxy-stearic acid, best known as a component of lithium grease. Mono- and diacylglycerols derived from ...

  1. The Chemistry of Paper Preservation Part 4. Alkaline Paper.

    ERIC Educational Resources Information Center

    Carter, Henry A.

    1997-01-01

    Discusses the problem of the inherent instability of paper due to the presence of acids that catalyze the hydrolytic degradation of cellulose. Focuses on the chemistry involved in the sizing of both acid and alkaline papers and the types of fillers used. Discusses advantages and problems of alkaline papermaking. Contains 48 references. (JRH)

  2. Ruthenium hydroxide supported on magnetic nanoparticles: a benign aqueous protocol for hydration of nitriles

    EPA Science Inventory

    Amides are an important class of compounds in the chemical and pharmaceutical industry1,2. Conventionally, amides have been synthesized by the hydration of nitriles, catalyzed by strong acids3 and bases4. Many by-products such as carboxylic acids are produced due to hydrolysis of...

  3. Cooperative functioning between phenylalanine ammonia lyase and isochorishmate synthase activities contributes to salicylic acid biosynthesis in soybean

    USDA-ARS?s Scientific Manuscript database

    Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL), or the isochorishmate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We...

  4. Methyl jasmonate deficiency alters cellular metabolome including the aminome of tomato (Solanum lycopersicum L.) fruit

    USDA-ARS?s Scientific Manuscript database

    Lipoxygenase (LOX) catalyzes oxidation of C-13 atom of C:18 polyunsaturated fatty acids and produces jasmonic acid and other oxylipins that have important biological relevance. However, the role of these important molecules in cellular metabolism is barely understood. We have used a transgenic appro...

  5. Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps.

    PubMed

    Yu, Iris K M; Tsang, Daniel C W; Yip, Alex C K; Chen, Season S; Ok, Yong Sik; Poon, Chi Sun

    2016-11-01

    This study aimed to transform food waste into a value-added chemical, hydroxymethylfurfural (HMF), and unravel the tangled effects induced by the metal catalysts on each single step of the successive conversion pathway. The results showed that using cooked rice and bread crust as surrogates of starch-rich food waste, yields of 8.1-9.5% HMF and 44.2-64.8% glucose were achieved over SnCl4 catalyst. Protons released from metal hydrolysis and acidic by-products rendered Brønsted acidity to catalyze fructose dehydration and hydrolysis of glycosidic bond. Lewis acid site of metals could facilitate both fructose dehydration and glucose isomerization via promoting the rate-limiting internal hydride shift, with the catalytic activity determined by its electronegativity, electron configuration, and charge density. Lewis acid site of a higher valence also enhanced hydrolysis of polysaccharide. However, the metals also catalyzed undesirable polymerization possibly by polarizing the carbonyl groups of sugars and derivatives, which should be minimized by process optimization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa)

    PubMed Central

    Gómez-Manzo, Saúl; Escamilla, José E.; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M. H.; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  7. Pyrolytic sugars from cellulosic biomass.

    PubMed

    Kuzhiyil, Najeeb; Dalluge, Dustin; Bai, Xianglan; Kim, Kwang Ho; Brown, Robert C

    2012-11-01

    Depolymerization of cellulose offers the prospect of inexpensive sugars from biomass. Breaking the glycosidic bonds of cellulose to liberate glucose has usually been pursued by acid or enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily the anhydrosugar levoglucosan (LG) whereas the presence of naturally occurring alkali and alkaline earth metals (AAEMs) in biomass strongly catalyzes ring-breaking reactions that favor formation of light oxygenates. Here, we show a method of significantly increasing the yield of sugars from biomass by purely thermal means through infusion of certain mineral acids (phosphoric and sulfuric acid) into the biomass to convert the AAEMs into thermally stable salts (particularly potassium sulfates and phosphates). These salts not only passivate AAEMs that normally catalyze fragmentation of pyranose rings, but also buffer the system at pH levels that favor glycosidic bond breakage. It appears that AAEM passivation contributes to 80 % of the enhancement in LG yield while the buffering effect of the acid salts contributes to the balance of the enhancement. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Kinetic properties of the human liver cytosolic aldehyde dehydrogenase for retinal isomers.

    PubMed

    Bhat, P V; Samaha, H

    1999-01-15

    Retinoic acid exerts pleiotropic effects by acting through two families of nuclear receptors, RAR and RXR. All-trans and 9-cis retinoic acid bind RARs, whereas 9-cis retinoic acid binds and activates only the RXRs. To understand the role of human liver cytosolic aldehyde dehydrogenase (ALDH1) in retinoic acid synthesis, we examined the ability of ALDH 1 to catalyze the oxidation of the naturally occurring retinal isomers. ALDH1 catalyzed the oxidation of all-trans, 9-cis, and 13-cis retinal with equal efficiency. However, the affinity to all-trans retinal (Km = 2.2 microM) was twofold higher than to 9-cis (Km = 5.5 microM) and 13-cis (Km = 4.6 microM) retinal. All-trans retinol was a potent inhibitor of ALDH1 activity, and inhibited all-trans retinal oxidation uncompetitively. Comparison of the kinetic properties of ALDH1 for retinal isomers with those of previously reported rat kidney retinal dehydrogenase showed distinct differences, suggesting that ALDH1 may play a different role in retinal metabolism in liver.

  9. Pyrolysis of oil palm mesocarp fiber catalyzed with steel slag-derived zeolite for bio-oil production.

    PubMed

    Kabir, G; Mohd Din, A T; Hameed, B H

    2018-02-01

    The pyrolysis of oil palm mesocarp fiber (OPMF) was catalyzed with a steel slag-derived zeolite (FAU-SL) in a slow-heating fixed-bed reactor at 450 °C, 550 °C, and 600 °C. The catalytic pyrolysis of OPMF produced a maximum yield of 47 wt% bio-oil at 550 °C, and the crude pyrolysis vapor (CPV) of this process yielded crude pyrolysis oil with broad distribution of bulky oxygenated organic compounds. The bio-oil composition produced at 550 °C contained mainly light and stable acid-rich carbonyls at a relative abundance of 48.02% peak area and phenolic compounds at 12.03% peak area. The FAU-SL high mesoporosity and strong surface acidity caused the conversion of the bulky CPV molecules into mostly light acid-rich carbonyls and aromatics through secondary reactions. The secondary reactions mechanisms facilitated by FAU-SL reduced the distribution of the organic compounds in the bio-oil to mostly acid-rich carbonyls and aromatic in contrast to other common zeolite. Copyright © 2017. Published by Elsevier Ltd.

  10. Gas phase hydrolysis of formaldehyde to form methanediol: impact of formic acid catalysis.

    PubMed

    Hazra, Montu K; Francisco, Joseph S; Sinha, Amitabha

    2013-11-21

    We find that formic acid (FA) is very effective at facilitating diol formation through its ability to reduce the barrier for the formaldehyde (HCHO) hydrolysis reaction. The rate limiting step in the mechanism involves the isomerization of a prereactive collision complex formed through either the HCHO···H2O + FA and/or HCHO + FA···H2O pathways. The present study finds that the effective barrier height, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state (TS) and the HCHO···H2O + FA and HCHO + FA···H2O starting reagents, are respectively only ∼1 and ∼4 kcal/mol. These barriers are substantially lower than the ∼17 kcal/mol barrier associated with the corresponding step in the hydrolysis of HCHO catalyzed by a single water molecule (HCHO + H2O + H2O). The significantly lower barrier heights for the formic acid catalyzed pathway reveal a new important role that organic acids play in the gas phase hydrolysis of atmospheric carbonyl compounds.

  11. Lipase-catalyzed enantioselective synthesis of (R,R)-lactide from alkyl lactate to produce PDLA (poly D-lactic acid) and stereocomplex PLA (poly lactic acid).

    PubMed

    Jeon, Byoung Wook; Lee, Jumin; Kim, Hyun Sook; Cho, Dae Haeng; Lee, Hyuk; Chang, Rakwoo; Kim, Yong Hwan

    2013-10-20

    R-lactide, a pivotal monomer for the production of poly (D-lactic acid) (PDLA) or stereocomplex poly (lactic acid) (PLA) was synthesized from alkyl (R)-lactate through a lipase-catalyzed reaction without racemization. From among several types of lipase, only lipase B from Candida antarctica (Novozym 435; CAL-B) was effective in the reaction that synthesized (R,R)-lactide. Enantiopure (R,R)-lactide, which consisted of over 99% enantiomeric excess, was synthesized from methyl (R)-lactate through CAL-B catalysis. Removal of the methanol by-product was critical to obtain a high level of lactide conversion. The (R,R)-lactide yield was 56% in a reaction containing 100 mg of Novozym 435, 10 mM methyl (R)-lactate and 1500 mg of molecular sieve 5A in methyl tert-butyl ether (MTBE). The important monomer (R,R)-lactide that is required for the production of the widely recognized bio-plastic PDLA and the PLA stereocomplex can be obtained using this novel synthetic method. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. One-step production of biodiesel from rice bran oil catalyzed by chlorosulfonic acid modified zirconia via simultaneous esterification and transesterification.

    PubMed

    Zhang, Yue; Wong, Wing-Tak; Yung, Ka-Fu

    2013-11-01

    Due to the high content (25-50%) of free fatty acid (FFA), crude rice bran oil usually requires a two steps conversion or one step conversion with very harsh condition for simultaneous esterification and transesterification. In this study, chlorosulfonic acid modified zirconia (HClSO3-ZrO2) with strong acidity and durability is prepared and it shows excellent catalytic activity toward simultaneous esterification and transesterification. Under a relative low reaction temperature of 120 °C, HClSO3-ZrO2 catalyzes a complete conversion of simulated crude rice bran oil (refined oil with 40 wt% FFA) into biodiesel and the conversion yield keep at above 92% for at least three cycles. Further investigation on the tolerance towards FFA and water reveals that it maintains high activity even with the presence of 40 wt% FFA and 3 wt% water. It shows that HClSO3-ZrO2 is a robust and durable catalyst which shows high potential to be commercial catalyst for biodiesel production from low grade feedstock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Curing of Furfuryl Alcohol-Impregnated Parts

    NASA Technical Reports Server (NTRS)

    Lawton, J. W.; Brayden, T. H.

    1983-01-01

    Delamination problem in reinforced carbon/carbon parts impregnated with oxalic acid-catalyzed furfuryl alcohol overcome by instituting two additional quality-control tests on alcohol and by changing curing conditions.

  14. Cabbage Patch Chemistry.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2000

    2000-01-01

    This activity takes students through the process of fermentation. Requires an entire month for the full reaction to take place. The reaction, catalyzed by bacterial enzymes, produces lactic acid from glucose. (SAH)

  15. A New Synthetic Route to N-Benzyl Carboxamides through the Reverse Reaction of N-Substituted Formamide Deformylase

    PubMed Central

    Hashimoto, Yoshiteru; Sakashita, Toshihide; Fukatsu, Hiroshi; Sato, Hiroyoshi

    2014-01-01

    Previously, we isolated a new enzyme, N-substituted formamide deformylase, that catalyzes the hydrolysis of N-substituted formamide to the corresponding amine and formate (H. Fukatsu, Y. Hashimoto, M. Goda, H. Higashibata, and M. Kobayashi, Proc. Natl. Acad. Sci. U. S. A. 101:13726–13731, 2004, doi:10.1073/pnas.0405082101). Here, we discovered that this enzyme catalyzed the reverse reaction, synthesizing N-benzylformamide (NBFA) from benzylamine and formate. The reverse reaction proceeded only in the presence of high substrate concentrations. The effects of pH and inhibitors on the reverse reaction were almost the same as those on the forward reaction, suggesting that the forward and reverse reactions are both catalyzed at the same catalytic site. Bisubstrate kinetic analysis using formate and benzylamine and dead-end inhibition studies using a benzylamine analogue, aniline, revealed that the reverse reaction of this enzyme proceeds via an ordered two-substrate, two-product (bi-bi) mechanism in which formate binds first to the enzyme active site, followed by benzylamine binding and the subsequent release of NBFA. To our knowledge, this is the first report of the reverse reaction of an amine-forming deformylase. Surprisingly, analysis of the substrate specificity for acids demonstrated that not only formate, but also acetate and propionate (namely, acids with numbers of carbon atoms ranging from C1 to C3), were active as acid substrates for the reverse reaction. Through this reaction, N-substituted carboxamides, such as NBFA, N-benzylacetamide, and N-benzylpropionamide, were synthesized from benzylamine and the corresponding acid substrates. PMID:24123742

  16. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications.

    PubMed Central

    Fetzner, S; Lingens, F

    1994-01-01

    This review is a survey of bacterial dehalogenases that catalyze the cleavage of halogen substituents from haloaromatics, haloalkanes, haloalcohols, and haloalkanoic acids. Concerning the enzymatic cleavage of the carbon-halogen bond, seven mechanisms of dehalogenation are known, namely, reductive, oxygenolytic, hydrolytic, and thiolytic dehalogenation; intramolecular nucleophilic displacement; dehydrohalogenation; and hydration. Spontaneous dehalogenation reactions may occur as a result of chemical decomposition of unstable primary products of an unassociated enzyme reaction, and fortuitous dehalogenation can result from the action of broad-specificity enzymes converting halogenated analogs of their natural substrate. Reductive dehalogenation either is catalyzed by a specific dehalogenase or may be mediated by free or enzyme-bound transition metal cofactors (porphyrins, corrins). Desulfomonile tiedjei DCB-1 couples energy conservation to a reductive dechlorination reaction. The biochemistry and genetics of oxygenolytic and hydrolytic haloaromatic dehalogenases are discussed. Concerning the haloalkanes, oxygenases, glutathione S-transferases, halidohydrolases, and dehydrohalogenases are involved in the dehalogenation of different haloalkane compounds. The epoxide-forming halohydrin hydrogen halide lyases form a distinct class of dehalogenases. The dehalogenation of alpha-halosubstituted alkanoic acids is catalyzed by halidohydrolases, which, according to their substrate and inhibitor specificity and mode of product formation, are placed into distinct mechanistic groups. beta-Halosubstituted alkanoic acids are dehalogenated by halidohydrolases acting on the coenzyme A ester of the beta-haloalkanoic acid. Microbial systems offer a versatile potential for biotechnological applications. Because of their enantiomer selectivity, some dehalogenases are used as industrial biocatalysts for the synthesis of chiral compounds. The application of dehalogenases or bacterial strains in environmental protection technologies is discussed in detail. PMID:7854251

  17. Catalyzed and Electrocatalyzed Oxidation of l-Tyrosine and l-Phenylalanine to Dopachrome by Nanozymes.

    PubMed

    Hou, Jianwen; Vázquez-González, Margarita; Fadeev, Michael; Liu, Xia; Lavi, Ronit; Willner, Itamar

    2018-06-13

    Catalyzed oxygen insertion into C-H bonds represents a continuous challenge in chemistry. Particularly, driving this process at ambient temperature and aqueous media represents a "holy grail" in catalysis. We report on the catalyzed cascade transformations of l-tyrosine or l-phenylalanine to dopachrome in the presence of l-ascorbic acid/H 2 O 2 as oxidizing mixture and CuFe-Prussian Blue-like nanoparticles, Fe 3 O 4 nanoparticles or Au nanoparticles as catalysts. The process involves the primary transformation of l-tyrosine to l-DOPA that is further oxidized to dopachrome. The transformation of l-phenylalanine to dopachrome in the presence of CuFe-Prussian Blue-like nanoparticles and l-ascorbic acid/H 2 O 2 involves in the first step the formation of l-tyrosine and, subsequently, the operation of the catalytic oxidation cascade of l-tyrosine to l-DOPA and dopachrome. Electron spin resonance experiments demonstrate that ascorbate radicals and hydroxyl radicals play cooperative functions in driving the different oxygen-insertion processes. In addition, the aerobic elecrocatalyzed oxidation of l-tyrosine to dopachrome in the presence of naphthoquinone-modified Fe 3 O 4 nanoparticles and l-ascorbic acid is demonstrated. In this system, magnetic-field attraction of the naphthoquinone-modified Fe 3 O 4 nanoparticles onto the electrode allows the quinone-mediated electrocatalyzed reduction of O 2 to H 2 O 2 (bias potential -0.5 V vs SCE). The electrogenerated H 2 O 2 is then utilized to promote the transformation of l-tyrosine to dopachrome in the presence of l-ascorbic acid and Fe 3 O 4 catalyst.

  18. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    PubMed

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore, in general, the information reported here could be of interest in designing new catalysts and understanding the reaction mechanism of these and other metal-catalyzed hydrolysis reactions.

  19. The Tautomeric Half-reaction of BphD, a C-C Bond Hydrolase Kinetic and Structural Evidence Supporting a Key Role for Histidine 265 of the Catalytic triad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horsman, Geoff P.; Bhowmik, Shiva; Seah, Stephen Y.K.

    2010-01-07

    BphD of Burkholderia xenovorans LB400 catalyzes an unusual C-C bond hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to afford benzoic acid and 2-hydroxy-2,4-pentadienoic acid (HPD). An enol-keto tautomerization has been proposed to precede hydrolysis via a gem-diol intermediate. The role of the canonical catalytic triad (Ser-112, His-265, Asp-237) in mediating these two half-reactions remains unclear. We previously reported that the BphD-catalyzed hydrolysis of HOPDA ({lambda}{sub max} is 434 nm for the free enolate) proceeds via an unidentified intermediate with a red-shifted absorption spectrum ({lambda}{sub max} is 492 nm) (Horsman, G. P., Ke, J., Dai, S., Seah, S. Y. K., Bolin, J. T.,more » and Eltis, L. D. (2006) Biochemistry 45, 11071-11086). Here we demonstrate that the S112A variant generates and traps a similar intermediate ({lambda}{sub max} is 506 nm) with a similar rate, 1/{tau} {approx} 500 s{sup -1}. The crystal structure of the S112A:HOPDA complex at 1.8-{angstrom} resolution identified this intermediate as the keto tautomer, (E)-2,6-dioxo-6-phenyl-hex-3-enoate. This keto tautomer did not accumulate in either the H265A or the S112A/H265A double variants, indicating that His-265 catalyzes tautomerization. Consistent with this role, the wild type and S112A enzymes catalyzed tautomerization of the product HPD, whereas H265A variants did not. This study thus identifies a keto intermediate, and demonstrates that the catalytic triad histidine catalyzes the tautomerization half-reaction, expanding the role of this residue from its purely hydrolytic function in other serine hydrolases. Finally, the S112A:HOPDA crystal structure is more consistent with hydrolysis occurring via an acyl-enzyme intermediate than a gem-diol intermediate as solvent molecules have poor access to C6, and the closest ordered water is 7{angstrom} away.« less

  20. Enantioselective Synthesis of Chiral Cyclopent-2-enones by Nickel-Catalyzed Desymmetrization of Malonate Esters.

    PubMed

    Karad, Somnath Narayan; Panchal, Heena; Clarke, Christopher; Lewis, William; Lam, Hon Wai

    2018-05-16

    The enantioselective synthesis of highly functionalized chiral cyclopent-2-enones by the reaction of alkynyl malonate esters with arylboronic acids is described. These desymmetrizing arylative cyclizations are catalyzed by a chiral phosphinooxazoline-nickel complex, and cyclization is enabled by the reversible E/Z isomerization of alkenylnickel species. The general methodology is also applicable to the synthesis of 1,6-dihydropyridin-3(2H)-ones. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sonochemical enzyme-catalyzed regioselective acylation of flavonoid glycosides.

    PubMed

    Ziaullah; Rupasinghe, H P Vasantha

    2016-04-01

    This work compares a highly efficient and alternative method of sonication-assisted lipase catalyzed acylation of quercetin-3-O-glucoside and phloretin-2'-glucoside, using Candida antarctica lipase B (Novozyme 435(®)), with a range of fatty acids. In this study, sonication-assisted irradiation coupled with stirring has been found to be more efficient and economical than conventional reaction conditions. Sonication-assisted acylation accelerated the reactions and reduced the time required by 4-5 folds. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Ligand- and base-free copper(II)-catalyzed C-N bond formation: cross-coupling reactions of organoboron compounds with aliphatic amines and anilines.

    PubMed

    Quach, Tan D; Batey, Robert A

    2003-11-13

    [reaction: see text] A ligandless and base-free Cu-catalyzed protocol for the cross-coupling of arylboronic acids and potassium aryltrifluoroborate salts with primary and secondary aliphatic amines and anilines is described. The process utilizes catalytic copper(II) acetate monohydrate and 4 A molecular sieves in dichloromethane at slightly elevated temperatures under an atmosphere of oxygen. A broad range of functional groups are tolerated on both of the cross-coupling partners.

  3. Synthesis of oxindole from acetanilide via Ir(iii)-catalyzed C-H carbenoid functionalization.

    PubMed

    Patel, Pitambar; Borah, Gongutri

    2016-12-22

    Herein we disclose the first report on the synthesis of oxindole derivatives from acetanilide via Ir(iii)-catalyzed intermolecular C-H functionalization with diazotized Meldrum's acid. A broad range of substituted anilides were found to react smoothly under the Ir(iii)-catalytic system to afford the corresponding N-protected oxindoles. The N-protecting groups, such as Ac, Bz or Piv, can be easily removed to furnish the oxindole. Various synthetic applications of the synthesized oxindole were also demonstrated.

  4. Synergistic Manganese(I) C-H Activation Catalysis in Continuous Flow: Chemoselective Hydroarylation.

    PubMed

    Wang, Hui; Pesciaioli, Fabio; Oliveira, João C A; Warratz, Svenja; Ackermann, Lutz

    2017-11-20

    Chemoselective hydroarylations were accomplished by a novel synergistic Brønsted acid/manganese(I)-catalyzed C-H activation manifold. Thus, alkynes bearing O-leaving groups could, for the first time, be employed for C-H alkenylations without concurrent β-O elimination, thereby setting the stage for versatile late-stage diversifications. Also described is the first manganese-catalyzed C-H activation in continuous flow, thus enabling efficient hydroarylations within only 20 minutes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Dinuclear Zinc-Prophenol-Catalyzed Enantioselective α-Hydroxyacetate Aldol Reaction with Activated Ester Equivalents

    PubMed Central

    Trost, Barry M.; Michaelis, David J.; Truica, Mihai I.

    2013-01-01

    An enantioselective α-hydroxyacetate aldol reaction that employs N-acetyl pyrroles as activated ester equivalents and generates syn 1,2-diols in good yield and diastereoselectivity is reported. This dinuclear zinc Prophenol-catalyzed transformation proceeds with high enantioselectivity with a wide variety of substrates including aryl, alyl, and alkenyl aldehydes. The resulting α,β-dihydroxy activated esters are versatile intermediates for the synthesis of a variety of carboxylic acid derivatives including amides, esters, and unsymmetrical ketones. PMID:23947595

  6. Activation and inhibition of CTP synthase from Trypanosoma brucei, the causative agent of African sleeping sickness.

    PubMed

    Steeves, Craig H; Bearne, Stephen L

    2011-09-15

    CTP Synthase from Trypanosoma brucei (TbCTPS) catalyzes the conversion of UTP to CTP and is a recognized target for the development of antiprotozoal agents. GTP activates glutamine-dependent CTP formation catalyzed by TbCTPS at concentrations below 0.2 mM, but inhibits this activity at concentrations above 0.2 mM. TbCTPS catalyzes ammonia-dependent CTP formation, which is inhibited by purine derivatives such as GTP, guanosine, caffeine, and uric acid with IC(50) values of 460, 380, 480, and 100 μM, respectively. These observations suggest that the purine ring may serve as a useful scaffold for the development of inhibitors of trypanosomal CTP synthase. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Examination of Triacylglycerol Biosynthetic Pathways via De Novo Transcriptomic and Proteomic Analyses in an Unsequenced Microalga

    DTIC Science & Technology

    2011-10-17

    analysis results. The components of the TAG biosynthetic pathway, including glycerol-3-phosphate acyl- transferase (GPAT), lyso- phosphatidic acid ...acyltransferase (LPAAT), phosphatidic acid phosphatase (PAP), lyso-phosphati- dylcholine acyltransferase (LPAT), and diacylglycerol acyltransfer- ase (DGAT...transfer to position one of G3P results in the formation of lyso- phosphatidic acid (LPA), in a reaction catalyzed by GPAT. Subsequent acyl transfer to

  8. Lewis base activation of Lewis acids: development of a Lewis base catalyzed selenolactonization.

    PubMed

    Denmark, Scott E; Collins, William R

    2007-09-13

    The concept of Lewis base activation of Lewis acids has been applied to the selenolactonization reaction. Through the use of substoichiometric amounts of Lewis bases with "soft" donor atoms (S, Se, P) significant rate enhancements over the background reaction are seen. Preliminary mechanistic investigations have revealed the resting state of the catalyst as well as the significance of a weak Brønsted acid promoter.

  9. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  10. Fractionation of lignocellulosic biopolymers from sugarcane bagasse using formic acid-catalyzed organosolv process.

    PubMed

    Suriyachai, Nopparat; Champreda, Verawat; Kraikul, Natthakorn; Techanan, Wikanda; Laosiripojana, Navadol

    2018-05-01

    A one-step formic acid-catalyzed organosolv process using a low-boiling point acid-solvent system was studied for fractionation of sugarcane bagasse. Compared to H 2 SO 4 , the use of formic acid as a promoter resulted in higher efficiency and selectivity on removals of hemicellulose and lignin with increased enzymatic digestibility of the cellulose-enriched solid fraction. The optimal condition from central composite design analysis was determined as 40 min residence time at 159 °C using water/ethanol/ethyl acetate/formic acid in the respective ratios of 43:20:16:21%v/v. Under this condition, a 94.6% recovery of cellulose was obtained in the solid with 80.2% cellulose content while 91.4 and 80.4% of hemicellulose and lignin were removed to the aqueous-alcohol-acid and ethyl acetate phases, respectively. Enzymatic hydrolysis of the solid yielded 84.5% glucose recovery compared to available glucan in the raw material. Physicochemical analysis revealed intact cellulose fibers with decreased crystallinity while the hemicellulose was partially recovered as mono- and oligomeric sugars. High-purity organosolv lignin with < 1% sugar cross-contamination was obtained with no major structural modification according to Fourier-transform infrared spectroscopy. The work represents an alternative process for efficient fractionation of lignocellulosic biomass in biorefineries.

  11. Acid-catalyzed condensed-phase reactions of limonene and terpineol and their impacts on gas-to-particle partitioning in the formation of organic aerosols.

    PubMed

    Li, Yong Jie; Cheong, Gema Y L; Lau, Arthur P S; Chan, Chak K

    2010-07-15

    We investigated the condensed-phase reactions of biogenic VOCs with C double bond C bonds (limonene, C(10)H(16), and terpineol, C(10)H(18)O) catalyzed by sulfuric acid by both bulk solution (BS) experiments and gas-particle (GP) experiments using a flow cell reactor. Product analysis by gas chromatography-mass spectrometry (GC-MS) showed that cationic polymerization led to dimeric and trimeric product formation under conditions of relative humidity (RH) <20% (in the GP experiments) and a sulfuric acid concentration of 57.8 wt % (in the BS experiments), while hydration occurred under conditions of RH > 20% (in the GP experiments) and sulfuric acid concentrations of 46.3 wt % or lower (in the BS experiments). Apparent partitioning coefficients (K(p,rxn)) were estimated from the GP experiments by including the reaction products. Only under extremely low RH conditions (RH < 5%) did the values of K(p,rxn) ( approximately 5 x 10(-6) m(3)/microg for limonene and approximately 2 x 10(-5) m(3)/microg for terpineol) substantially exceed the physical partitioning coefficients (K(p) = 6.5 x 10(-8) m(3)/microg for limonene and =2.3 x 10(-6) m(3)/microg for terpineol) derived from the absorptive partitioning theory. At RH higher than 5%, the apparent partitioning coefficients (K(p,rxn)) of both limonene and terpineol were in the same order of magnitude as the K(p) values derived from the absorptive partitioning theory. Compared with other conditions including VOC concentration and degree of neutralization (by ammonium) of acidic particles, RH is a critical parameter that influences both the reaction mechanisms and the uptake ability (K(p,rxn) values) of these processes. The finding suggests that RH needs to be considered when taking the effects of acid-catalyzed reactions into account in estimating organic aerosol formation from C double bond C containing VOCs.

  12. A rechargeable hydrogen battery based on Ru catalysis.

    PubMed

    Hsu, Shih-Fan; Rommel, Susanne; Eversfield, Philipp; Muller, Keven; Klemm, Elias; Thiel, Werner R; Plietker, Bernd

    2014-07-01

    Apart from energy generation, the storage and liberation of energy are among the major problems in establishing a sustainable energy supply chain. Herein we report the development of a rechargeable H2 battery which is based on the principle of the Ru-catalyzed hydrogenation of CO2 to formic acid (charging process) and the Ru-catalyzed decomposition of formic acid to CO2 and H2 (discharging process). Both processes are driven by the same catalyst at elevated temperature either under pressure (charging process) or pressure-free conditions (discharging process). Up to five charging-discharging cycles were performed without decrease of storage capacity. The resulting CO2/H2 mixture is free of CO and can be employed directly in fuel-cell technology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Metal-Catalyzed Oxidation of Protein Methionine Residues in Human Parathyroid Hormone (1-34): Formation of Homocysteine and a Novel Methionine-Dependent Hydrolysis Reaction

    PubMed Central

    Mozziconacci, Olivier; Ji, Junyan A.; Wang, Y. John; Schöneich, Christian

    2013-01-01

    The oxidation of PTH(1-34) catalyzed by ferrous ethylenediaminetetraacetic acid (EDTA) is site-specific. The oxidation of PTH(1-34) is localized primarily to the residues Met[8] and His[9]. Beyond the transformation of Met[8] and His[9] into methionine sulfoxide and 2-oxo-histidine, respectively, we observed a hydrolytic cleavage between Met[8] and His[9]. This hydrolysis requires the presence of FeII and oxygen and can be prevented by diethylenetriaminepentaacetic acid (DTPA) and phosphate buffer. Conditions leading to this site-specific hydrolysis also promote the transformation of Met[8] into homocysteine, indicating that the hydrolysis and transformation of homocysteine may proceed through a common intermediate. PMID:23289936

  14. Enzymes involved in branched-chain amino acid metabolism in humans.

    PubMed

    Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina

    2017-06-01

    Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.

  15. Molecular Active Sites in Heterogeneous Ir-La/C-Catalyzed Carbonylation of Methanol to Acetates.

    PubMed

    Kwak, Ja Hun; Dagle, Robert; Tustin, Gerald C; Zoeller, Joseph R; Allard, Lawrence F; Wang, Yong

    2014-02-06

    We report that when Ir and La halides are deposited on carbon, exposure to CO spontaneously generates a discrete molecular heterobimetallic structure, containing an Ir-La covalent bond that acts as a highly active, selective, and stable heterogeneous catalyst for the carbonylation of methanol to produce acetic acid. This catalyst exhibits a very high productivity of ∼1.5 mol acetyl/mol Ir·s with >99% selectivity to acetyl (acetic acid and methyl acetate) without detectable loss in activity or selectivity for more than 1 month of continuous operation. The enhanced activity can be mechanistically rationalized by the presence of La within the ligand sphere of the discrete molecular Ir-La heterobimetallic structure, which acts as a Lewis acid to accelerate the normally rate-limiting CO insertion in Ir-catalyzed carbonylation. Similar approaches may provide opportunities for attaining molecular (single site) behavior similar to homogeneous catalysis on heterogeneous surfaces for other industrial applications.

  16. Thermo-kinetics of lipase-catalyzed synthesis of 6-O-glucosyldecanoate.

    PubMed

    Gumel, A M; Annuar, M S M; Heidelberg, T; Chisti, Y

    2011-10-01

    Lipase-catalyzed synthesis of 6-O-glucosyldecanoate from d-glucose and decanoic acid was performed in dimethyl sulfoxide (DMSO), a mixture of DMSO and tert-butanol and tert-butanol alone with a decreasing order of polarity. The highest conversion yield (> 65%) of decanoic acid was obtained in the blended solvent of intermediate polarity mainly because it could dissolve relatively large amounts of both the reactants. The reaction obeyed Michaelis-Menten type of kinetics. The affinity of the enzyme towards the limiting substrate (decanoic acid) was not affected by the polarity of the solvent, but increased significantly with temperature. The esterification reaction was endothermic with activation energy in the range of 60-67 kJ mol⁻¹. Based on the Gibbs energy values, in the solvent blend of DMSO and tert-butanol the position of the equilibrium was shifted more towards the products compared to the position in pure solvents. Monoester of glucose was the main product of the reaction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Inborn errors of ketogenesis and ketone body utilization.

    PubMed

    Sass, Jörn Oliver

    2012-01-01

    Ketone bodies acetoacetate and 3-hydroxy-n-butyric acid are metabolites derived from fatty acids and ketogenic amino acids such as leucine. They are mainly produced in the liver via reactions catalyzed by the ketogenic enzymes mitochondrial 3-hydroxy-3-methylglutary-coenzyme A synthase and 3-hydroxy-3-methylglutary-coenzyme A lyase. After prolonged starvation, ketone bodies can provide up to two-thirds of the brain's energy requirements. The rate-limiting enzyme of ketone body utilization (ketolysis) is succinyl-coenzyme A:3-oxoacid coenzyme A transferase. The subsequent step of ketolysis is catalyzed by 2-methylactoacetyl-coenzyme A thiolase, which is also involved in isoleucine catabolism. Inborn errors of metabolism affecting those four enzymes are presented and discussed in the context of differential diagnoses. While disorders of ketogenesis can present with hypoketotic hypoglycemia, inborn errors of ketolysis are characterized by metabolic decompensations with ketoacidosis. If those diseases are considered early and appropriate treatment is initiated without delay, patients with inborn errors of ketone body metabolism often have a good clinical outcome.

  18. Studies on the self-catalyzed Knoevenagel condensation, characterization, DPPH radical scavenging activity, cytotoxicity, and molecular properties of 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones using single crystal XRD and DFT techniques

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, G. S.; Antony Muthu Prabhu, A.; Bhuvanesh, N.

    2014-10-01

    We have studied the self-catalyzed Knoevenagel condensation, spectral characterization, DPPH radical scavenging activity, cytotoxicity, and molecular properties of 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones using single crystal XRD and DFT techniques. In the absence of any catalyst, a series of novel 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones were synthesized using Meldrum’s acid and formylphenoxyaliphatic acid(s) in water. These molecules are arranged in the dimer form through intermolecular H-bonding in the single crystal XRD structure. Compounds have better DPPH radical scavenging activity and cytotoxicity against A431 cancer cell line. The optimized molecular structure, natural bond orbital analysis, electrostatic potential map, HOMO-LUMO energies, molecular properties, and atomic charges of these molecules have been studied by performing DFT/B3LYP/3-21G(*) level of theory in gas phase.

  19. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.

    PubMed

    Jain, Siddharth; Sharma, M P

    2010-10-01

    Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstock for biodiesel production in India. Limited work is reported on the kinetics of transesterification of high free fatty acids containing oil. The present study reports the results of kinetic study of two-step acid base catalyzed transesterification process carried out at an optimum temperature of 65 °C and 50 °C for esterification and transesterification respectively under the optimum methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H₂SO₄ and NaOH. The yield of methyl ester (ME) has been used to study the effect of different parameters. The results indicate that both esterification and transesterification reaction are of first order with reaction rate constant of 0.0031 min⁻¹ and 0.008 min⁻¹ respectively. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM.

    PubMed

    Gao, Chao; Qiu, Jianhua; Li, Jingchen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2009-03-01

    D-lactic acid and pyruvic acid are two important building block intermediates. Production of D-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l(-1) of Pseudomonas stutzeri SDM could catalyze 45.00 g l(-1)DL-lactic acid into 25.23 g l(-1)D-lactic acid and 19.70 g l(-1) pyruvic acid in 10h. Using a simple ion exchange process, D-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.

  1. Development of markers for Delta9-Stearoyl-ACP-Desaturase (SAD) to screen for cold acclimation

    USDA-ARS?s Scientific Manuscript database

    Delta 9-Stearoyl-acyl carrier protein (ACP) desaturase (SAD) is an important enzyme of fatty acid biosynthesis in higher plants. Located in the plastid stroma, SAD catalyzes the desaturation of stearoyl-ACP to oleyl-ACP. SAD plays a key role in determining the ratio of saturated fatty acids to unsat...

  2. Lipogenic-associated gene activity of adipose tissue from beef heifers and relation to production and reproductive traits

    USDA-ARS?s Scientific Manuscript database

    Transition from adolescence to puberty is marked by changes in metabolic activity. Fatty acid synthase (FASN) catalyzes the de novo synthesis of fatty acids and increased expression has been linked to excess energy intake and obesity. The enzyme, DNA-protein kinase (DNA-PK) plays a role in DNA damag...

  3. Interchromosomal Associations that Alter Nf1 Gene Expression can Modify Clinical Manifestations of Neurofibromatosis 1

    DTIC Science & Technology

    2008-09-01

    intracellular portion of the EGFR and stimulates PLD2 activity. PLD2 catalyzes the hydrolysis of phosphatidylcholine (PC) to phosphatidic acid (PA) and...ARF4 can bind with EGFR and activate PLD2. The phosphatidic acid (PA) produced by PLD2 can recruit Sos, which can then colocalize and activate

  4. Unexpected Catalytic Reactions of Silyl-protected Enoldiazoacetates With Nitrile Oxides That Form 5- Arylaminofuran-2(3H)-one-4-carboxylates

    PubMed Central

    Xu, Xinfang; Shabashov, Dmitry; Zavalij, Peter Y.; Doyle, Michael P.

    2012-01-01

    Silyl-protected enoldiazoacetates undergo dirhodium(II) catalyzed reactions with nitrile oxides to form acid-labile ketenimines via dipolar cycloaddition of nitrile oxides to a donor/acceptor cyclopropene and Lossen rearrangement of the dipolar adduct; acid catalysis converts the ketenimine to the furan product. PMID:22272728

  5. Lewis acid catalyzed ring-opening polymerization of natural epoxy oil (Euphorbia oil) in carbon dioxide media

    USDA-ARS?s Scientific Manuscript database

    In an attempt to build up useful application of plant oil based polymers, natural epoxy oil (euphorbia oil-EuO) was polymerized in liquid carbon dioxide in the presence of Lewis acid catalyst [Boron trifluoride diethyl etherate (BF3•OEt2)]. The resulting polymers (RPEuO) were characterized by FTIR ...

  6. Transgenic soybean overexpressing GmSamT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...

  7. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reaction mixture to catalyze the directed esterification. (c) The esterification reaction is quenched with... by washing batches of the product three times with an aqueous solution of 0.5 percent sodium...

  8. Peroxygenase-Catalyzed Fatty Acid Epoxidation in Cereal Seeds (Sequential Oxidation of Linoleic Acid into 9(S),12(S),13(S)-Trihydroxy-10(E)-Octadecenoic Acid).

    PubMed Central

    Hamberg, M.; Hamberg, G.

    1996-01-01

    Peroxygenase-catalyzed epoxidation of oleic acid in preparations of cereal seeds was investigated. The 105,000g particle fraction of oat (Avena sativa) seed homogenate showed high peroxygenase activity, i.e. 3034 [plus or minus] 288 and 2441 [plus or minus] 168 nmol (10 min)-1 mg-1 protein in two cultivars, whereas the corresponding fraction obtained from barley (Hordeum vulgare and Hordeum distichum), rye (Secale cereale), and wheat (Triticum aestivum) showed only weak activity, i.e. 13 to 138 nmol (10 min)-1 mg-1 protein. In subcellular fractions of oat seed homogenate, peroxygenase specific activity was highest in the 105,000g particle fraction, whereas lipoxygenase activity was more evenly distributed and highest in the 105,000g supernatant fraction. Incubation of [1-14C]linoleic acid with the 105,000g supernatant of oat seed homogenate led to the formation of several metabolites, i.e. in order of decreasing abundance, 9(S)-hydroxy-10(E),12(Z)-octadecadienoic acid, 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, cis-9,10-epoxy-12(Z)-octadecenoic acid [mainly the 9(R),10(S) enantiomer], cis-12,13-epoxy-9(Z)-octadecenoic acid [mainly the 12(R),13(S) enantiomer], threo-12,13-dihydroxy-9(Z)-octadecenoic acid, and 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid. Incubation of linoleic acid with the 105,000g particle fraction gave a similar, but not identical, pattern of metabolites. Conversion of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, a naturally occurring oxylipin with antifungal properties, took place by a pathway involving sequential catalysis by lipoxygenase, peroxygenase, and epoxide hydrolase. PMID:12226220

  9. Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion.

    PubMed

    Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta

    2012-06-20

    Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.

  10. Enzymatic transformation of hydrocarbons by methanotrophic organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, R.N.; Hou, C.T.

    Soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. CRL-26 or R6, catalyzed the NAD(P)H-dependent epoxidation/hydroxylation of a variety of hydrocarbons, including terminal alkenes, internal alkenes, substituted alkenes, branch-chain alkenes, alkanes (C1-C8), substituted alkanes, branch-chain alkanes, carbon monoxide, ether, cyclic and aromatic compounds. The NAD -linked dehydrogenases such as formate dehydrogenase or secondary alcohol dehydrogenase in the presence of formate or secondary alcohol, respectively, regenerated NAD/NADH required for the methane monooxygenase in a coupled enzymes reactions. Oxidation of secondary alcohols to the corresponding methylketones in methanotrophs is catalyzed by an NAD -dependent, zinc-containing, secondary alcohol hydrogenase. Primary alcohols weremore » oxidized to the corresponding aldehydes by a phenazine methosulfate-dependent, pyrollo quinoline quinone (methoxatin or PQQ) containing, methanol dehydrogenase. Oxidation of aldehydes (C1 to C10) to the corresponding carboxylic acids is catalyzed by a heme-containing aldehyde dehydrogenase. Methanotrophs have been considered potentially useful for single cell protein (SCP), amino acids, and biopolymer production at the expense of growth on cheap and readily available C1 compounds. 80 references, 1 figure, 6 tables.« less

  11. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  12. Preparative and mechanistic studies toward the rational development of catalytic, enantioselective selenoetherification reactions.

    PubMed

    Denmark, Scott E; Kalyani, Dipannita; Collins, William R

    2010-11-10

    A systematic investigation into the Lewis base catalyzed, asymmetric, intramolecular selenoetherification of olefins is described. A critical challenge for the development of this process was the identification and suppression of racemization pathways available to arylseleniranium ion intermediates. This report details a thorough study of the influences of the steric and electronic modulation of the arylselenenyl group on the configurational stability of enantioenriched seleniranium ions. These studies show that the 2-nitrophenyl group attached to the selenium atom significantly attenuates the racemization of seleniranium ions. A variety of achiral Lewis bases catalyze the intramolecular selenoetherification of alkenes using N-(2-nitrophenylselenenyl)succinimide as the electrophile along with a Brønsted acid. Preliminary mechanistic studies suggest the intermediacy of ionic Lewis base-selenium(II) adducts. Most importantly, a broad survey of chiral Lewis bases revealed that 1,1'-binaphthalene-2,2'-diamine (BINAM)-derived thiophosphoramides catalyze the cyclization of unsaturated alcohols in the presence of N-(2-nitrophenylselenenyl)succinimide and methanesulfonic acid. A variety of cyclic seleno ethers were produced in good chemical yields and in moderate to good enantioselectivities, which constitutes the first catalytic, enantioselective selenofunctionalization of unactivated olefins.

  13. Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible "prebiotic" conditions

    NASA Astrophysics Data System (ADS)

    Delidovich, I. V.; Taran, O. P.; Simonov, A. N.; Matvienko, L. G.; Parmon, V. N.

    2011-08-01

    The article analyzes new and previously reported data on several catalytic and photochemical processes yielding biologically important molecules. UV-irradiation of formaldehyde aqueous solution yields acetaldehyde, glyoxal, glycolaldehyde and glyceraldehyde, which can serve as precursors of more complex biochemically relevant compounds. Photolysis of aqueous solution of acetaldehyde and ammonium nitrate results in formation of alanine and pyruvic acid. Dehydration of glyceraldehyde catalyzed by zeolite HZSM-5-17 yields pyruvaldehyde. Monosaccharides are formed in the course of the phosphate-catalyzed aldol condensation reactions of glycolaldehyde, glyceraldehyde and formaldehyde. The possibility of the direct synthesis of tetroses, keto- and aldo-pentoses from pure formaldehyde due to the combination of the photochemical production of glycolahyde and phosphate-catalyzed carbohydrate chain growth is demonstrated. Erythrulose and 3-pentulose are the main products of such combined synthesis with selectivity up to 10%. Biologically relevant aldotetroses, aldo- and ketopentoses are more resistant to the photochemical destruction owing to the stabilization in hemiacetal cyclic forms. They are formed as products of isomerization of erythrulose and 3-pentulose. The conjugation of the concerned reactions results in a plausible route to the formation of sugars, amino and organic acids from formaldehyde and ammonia under presumed 'prebiotic' conditions.

  14. Chemical synthesis of benzamide riboside.

    PubMed

    Krohn, K; Dörner, H; Zukowski, M

    2002-04-01

    The C-glycosidic nicotinamide riboside analogue (1) was prepared by reaction of ribonolactone 16 with the lithiated 2-oxazoline 13 followed by triethylsilane reduction of the hemiacetal 17 to the tetrahydrofurane 18. Cleavage of the oxazoline group in 20 to the acid 21, conversion of the acid chloride 22 to the amide 23, and hydrogenative debenzylation afforded the benzamide riboside 1. Phosphorylation of the acetonide 26 and acid-catalyzed cleavage of the resulting ketal yielded the pseudonucleotide 27.

  15. Kinetics and mechanism of S-nitrosothiol acid-catalyzed hydrolysis: sulfur activation promotes facile NO+ release.

    PubMed

    Moran, Ernesto E; Timerghazin, Qadir K; Kwong, Elizabeth; English, Ann M

    2011-03-31

    The denitrosation of three primary S-nitrosothiols (RSNO; S-nitrosocysteine, S-nitroso-N-acetylcysteine, and S-nitrosoglutathione) and two tertiary RSNOs (S-nitrosopenicillamine and S-nitroso-N-acetylpenicillamine) was investigated in 3.75 M H(2)SO(4) to probe the mechanism of acid-catalyzed RSNO hydrolysis and its dependence on RSNO structure. This reversible reaction was forced to proceed in the denitrosation direction by trapping the nitrosating agent with HN(3). The primary RSNOs exhibited hydrolysis k(obs) values of ∼2 × 10(-4) s(-1), and the tertiary RSNO k(obs) values were an order of magnitude higher. Product analysis by HPLC revealed that the parent thiols (RSHs) were formed in 90-100% yield on 79-99% RSNO denitrosation. Possible hydrolysis mechanisms were studied computationally at the CBS-QB3 level using S-nitrosomethanethiol (MeSNO) as a model RSNO. Consideration of RSNOs as a combination of conventional R-S-N═O, zwitterionic R-S(+)═N-O(-), and RS(-)/NO(+) ion-pair resonance structures was key in understanding the mechanistic details of acid-catalyzed hydrolysis. Protonation of the S-nitroso oxygen or nitrogen activates the sulfur and nucleophilic attack by H(2)O at this atom leads to the formation of the sulfoxide-protonated N-hydroxysulfinamide, MeS(+)(OH)NHOH, with barriers of 19 and 29 kcal/mol, respectively. Proton loss and reprotonation at the nitrogen lead to secondary hydrolysis that produces the sulfinic acid MeS(═O)OH and NH(2)OH. Notably, no low-energy RSNO hydrolysis pathway for HNO release was found in the computational analysis. Protonation of the S-nitroso sulfur gives rise to NO(+) release with a low activation barrier (ΔH(double dagger)(calc) ≈ 6 kcal/mol) and the formation of MeSH in agreement with experiment. The experimental k(obs) can be expressed as K(a)k(1), where K(a) is the acid dissociation constant for protonation of the S-nitroso sulfur and k(1) the pseudo-first-order hydrolysis rate constant. Given the low ΔH(double dagger)(calc) for denitrosation of the S-protonated isomer, the observed slow rates of acid-catalyzed RSNO hydrolysis must be controlled by the magnitude of K(a). The 10-fold higher K(a) calculated for Me(3)CS(H(+))NO (∼10(-15)) compared to MeS(H(+))NO (10(-16)) is consistent with the order of magnitude larger k(obs) reported here for the tertiary vs primary RSNOs.

  16. Theoretical study on the reaction mechanisms of Michael chirality addition between propionaldehyde and nitroalkene catalyzed by an enantioselective catalyst.

    PubMed

    Zhou, Xinming; Li, Ling; Sun, Xuejun; Wang, Yajun; Du, Dongmei; Fu, Hui

    2018-06-01

    The asymmetric Michael addition between propionaldehyde and nitroalkene catalyzed by 8-(ethoxycarbonyl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid has obtained relatively high yields and excellent enantioselectivities at room temperature. In this study, the molecular structures and optical activity of the most stable conformation I are optimized at B3LYP/6-311++ G(d,p) level. We find that levorotatory conformation I catalyzing the same Michael addition can produce laevo-product A and dextrorotatory conformation I' can obtain the dextral-product A'. These results have guiding significance for further studying on the new chemzymes and the mechanism of the obtained different chiral products. © 2018 Wiley Periodicals, Inc.

  17. Glycoproteomics enabled by tagging sialic acid- or galactose-terminated glycans

    PubMed Central

    Ramya, T N C; Weerapana, Eranthie; Cravatt, Benjamin F; Paulson, James C

    2013-01-01

    In this paper, we present two complementary strategies for enrichment of glycoproteins on living cells that combine the desirable attributes of “robust enrichment” afforded by covalent-labeling techniques and “specificity for glycoproteins” typically provided by lectin or antibody affinity reagents. Our strategy involves the selective introduction of aldehydes either into sialic acids by periodate oxidation (periodate oxidation and aniline-catalyzed oxime ligation (PAL)) or into terminal galactose and N-acetylgalactosamine residues by galactose oxidase (galactose oxidase and aniline-catalyzed oxime ligation (GAL)), followed by aniline-catalyzed oxime ligation with aminooxy-biotin to biotinylate the glycans of glycoprotein subpopulations with high efficiency and cell viability. As expected, the two methods exhibit reciprocal tagging efficiencies when applied to fully sialylated cells compared with sialic acid-deficient cells. To assess the utility of these labeling methods for glycoproteomics, we enriched the PAL- and GAL-labeled (biotinylated) glycoproteome by adsorption onto immobilized streptavidin. Glycoprotein identities (IDs) and N-glycosylation site information were then obtained by liquid chromatography-tandem mass spectrometry on total tryptic peptides and on peptides subsequently released from N-glycans still bound to the beads using peptide N-glycosidase F. A total of 175 unique N-glycosylation sites were identified, belonging to 108 nonredundant glycoproteins. Of the 108 glycoproteins, 48 were identified by both methods of labeling and the remainder was identified using PAL on sialylated cells (40) or GAL on sialic acid-deficient cells (20). Our results demonstrate that PAL and GAL can be employed as complementary methods of chemical tagging for targeted proteomics of glycoprotein subpopulations and identification of glycosylation sites of proteins on cells with an altered sialylation status. PMID:23070960

  18. Structural features of cytochrome P450 1A associated with the absence of EROD activity in liver of the of the loricariid catfish Pterygoplichthys sp

    PubMed Central

    Parente, T.E.M.; Rebelo, M.F.; da-Silva, M.L.; Woodin, B.R.; Goldstone, J. V.; Bisch, P.M.; Paumgartten, F.J.R.; Stegeman, J.J.

    2011-01-01

    The Amazon catfish genus Pterygoplichthys (Loricariidae, Siluriformes) is closely related to the loricariid genus Hypostomus, in which at least two species lack detectable ethoxyresorufin-O-deethylase (EROD) activity, typically catalyzed by cytochrome P450 1 (CYP1) enzymes. Pterygoplichthys sp. liver microsomes also lacked EROD, as well as activity with other substituted resorufins, but aryl hydrocarbon receptor agonists induced hepatic CYP1A mRNA and protein suggesting structural/functional differences in Pterygoplichthys CYP1s from those in other vertebrates. Comparing the sequences of CYP1As of Pterygoplichthys sp. and of two phylogenetically-related siluriform species that do catalyze EROD (Ancistrus sp., Loricariidae and Corydoras sp., Callichthyidae) showed that these three proteins share amino acids at 17 positions that are not shared by any fish in a set of 24 other species. Pterygoplichthys and Ancistrus (the loricariids) have an additional 22 amino acid substitutions in common that are not shared by Corydoras or by other fish species. Pterygoplichthys has six exclusive amino acid substitutions. Molecular docking and dynamics simulations indicate that Pterygoplichthys CYP1A has a weak affinity for ER, which binds infrequently in a productive orientation, and in a less stable conformation than in CYP1As of species that catalyze EROD. ER also binds with the carbonyl moiety proximal to the heme iron. Pterygoplichthys CYP1A has amino acids substitutions that reduce the frequency of correctly oriented ER in the AS preventing the detection of EROD activity. The results indicate that loricariid CYP1As may have a peculiar substrate selectivity that differs from CYP1As of most vertebrates. PMID:21840383

  19. Structural features of cytochrome P450 1A associated with the absence of EROD activity in liver of the loricariid catfish Pterygoplichthys sp.

    PubMed

    Parente, Thiago E M; Rebelo, Mauro F; da-Silva, Manuela L; Woodin, Bruce R; Goldstone, Jared V; Bisch, Paulo M; Paumgartten, Francisco J R; Stegeman, John J

    2011-12-10

    The Amazon catfish genus Pterygoplichthys (Loricariidae, Siluriformes) is closely related to the loricariid genus Hypostomus, in which at least two species lack detectable ethoxyresorufin-O-deethylase (EROD) activity, typically catalyzed by cytochrome P450 1 (CYP1) enzymes. Pterygoplichthys sp. liver microsomes also lacked EROD, as well as activity with other substituted resorufins, but aryl hydrocarbon receptor agonists induced hepatic CYP1A mRNA and protein suggesting structural/functional differences in Pterygoplichthys CYP1s from those in other vertebrates. Comparing the sequences of CYP1As of Pterygoplichthys sp. and of two phylogenetically related siluriform species that do catalyze EROD (Ancistrus sp., Loricariidae and Corydoras sp., Callichthyidae) showed that these three proteins share amino acids at 17 positions that are not shared by any fish in a set of 24 other species. Pterygoplichthys and Ancistrus (the loricariids) have an additional 22 amino acid substitutions in common that are not shared by Corydoras or by other fish species. Pterygoplichthys has six exclusive amino acid substitutions. Molecular docking and dynamics simulations indicate that Pterygoplichthys CYP1A has a weak affinity for ER, which binds infrequently in a productive orientation, and in a less stable conformation than in CYP1As of species that catalyze EROD. ER also binds with the carbonyl moiety proximal to the heme iron. Pterygoplichthys CYP1A has amino acid substitutions that reduce the frequency of correctly oriented ER in the AS preventing the detection of EROD activity. The results indicate that loricariid CYP1As may have a peculiar substrate selectivity that differs from CYP1As of most vertebrate. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Self-Catalyzing Chemiluminescence of Luminol-Diazonium Ion and Its Application for Catalyst-Free Hydrogen Peroxide Detection and Rat Arthritis Imaging.

    PubMed

    Zhao, Chunxin; Cui, Hongbo; Duan, Jing; Zhang, Shenghai; Lv, Jiagen

    2018-02-06

    We report the unique self-catalyzing chemiluminescence (CL) of luminol-diazonium ion (N 2 + -luminol) and its analytical potential. Visual CL emission was initially observed when N 2 + -luminol was subjected to alkaline aqueous H 2 O 2 without the aid of any catalysts. Further experimental investigations found peroxidase-like activity of N 2 + -luminol on the cleavage of H 2 O 2 into OH • radical. Together with other experimental evidence, the CL mechanism is suggested as the activation of N 2 + -luminol and its dediazotization product 3-hydroxyl luminol by OH • radical into corresponding intermediate radicals, and then further oxidation to excited-state 3-N 2 + -phthalic acid and 3-hydroxyphthalic acid, which finally produce 415 nm CL. The self-catalyzing CL of N 2 + -luminol provides us an opportunity to achieve the attractive catalyst-free CL detection of H 2 O 2 . Experiments demonstrated the 10 -8 M level detection sensitivity to H 2 O 2 as well as to glucose or uric acid if presubjected to glucose oxidase or uricase. With the exampled determination of serum glucose and uric acid, N 2 + -luminol shows its analytical potential for other analytes linking the production or consumption of H 2 O 2 . Under physiological condition, N 2 + -luminol exhibits highly selective and sensitive CL toward 1 O 2 among the common reactive oxygen species. This capacity supports the significant application of N 2 + -luminol for detecting 1 O 2 in live animals. By imaging the arthritis in LEW rats, N 2 + -luminol CL is demonstrated as a potential tool for mapping the inflammation-relevant biological events in a live body.

  1. Engineering entropy-driven reactions and networks catalyzed by DNA.

    PubMed

    Zhang, David Yu; Turberfield, Andrew J; Yurke, Bernard; Winfree, Erik

    2007-11-16

    Artificial biochemical circuits are likely to play as large a role in biological engineering as electrical circuits have played in the engineering of electromechanical devices. Toward that end, nucleic acids provide a designable substrate for the regulation of biochemical reactions. However, it has been difficult to incorporate signal amplification components. We introduce a design strategy that allows a specified input oligonucleotide to catalyze the release of a specified output oligonucleotide, which in turn can serve as a catalyst for other reactions. This reaction, which is driven forward by the configurational entropy of the released molecule, provides an amplifying circuit element that is simple, fast, modular, composable, and robust. We have constructed and characterized several circuits that amplify nucleic acid signals, including a feedforward cascade with quadratic kinetics and a positive feedback circuit with exponential growth kinetics.

  2. Detection of Nucleic Acids in Complex Samples via Magnetic Microbead-assisted Catalyzed Hairpin Assembly and "DD-A" FRET.

    PubMed

    Fang, Hongmei; Xie, Nuli; Ou, Min; Huang, Jin; Li, Wenshan; Wang, Qing; Liu, Jianbo; Yang, Xiaohai; Wang, Kemin

    2018-05-21

    Nucleic acids, as one kind of significant biomarkers, have attracted tremendous attention and exhibited immense value in fundamental studies and clinical applications. In this work, we developed a fluorescent assay for detecting nucleic acids in complex samples based on magnetic microbead (MMB)-assisted catalyzed hairpin assembly (CHA) and donor donor-acceptor fluorescence resonance energy transfer ("DD-A" FRET) signaling mechanism. Three types of DNA hairpin probes were employed in this system, including Capture, H1 (double FAM-labelled probe as FRET donor) and H2 (TAMRA-labelled probe as FRET acceptor). Firstly, the Captures immobilized on MMBs bound to targets in complex samples, and the sequences in Captures that could trigger catalyzed hairpin assembly (CHA) were exposed. Then, target-enriched MMBs complexes were separated and resuspended in the reaction buffer containing H1 and H2. As a result, numerous H1-H2 duplexes were formed during CHA process, inducing an obvious FRET signal. In contrast, CHA could not be trigger and the FRET signal was weak while target was absent. With the aid of magnetic separation and "DD-A" FRET, it was demonstrated to effectively eliminate errors from background interference. Importantly, this strategy realized amplified detection in buffer, with detection limits of microRNA as low as 34 pM. Furthermore, this method was successfully applied to detect microRNA-21 in serum and cell culture media. The results showed that our method has the potential for biomedical research and clinical application.

  3. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  4. Synthesis, properties, and application in peptide chemistry of a magnetically separable and reusable biocatalyst

    NASA Astrophysics Data System (ADS)

    Liria, Cleber W.; Ungaro, Vitor A.; Fernandes, Raphaella M.; Costa, Natália J. S.; Marana, Sandro R.; Rossi, Liane M.; Machini, M. Teresa

    2014-11-01

    Enzyme-catalyzed chemical processes are selective, very productive, and generate little waste. Nevertheless, they may be optimized using enzymes bound to solid supports, which are particularly important for protease-mediated reactions since proteases undergo fast autolysis in solution. Magnetic nanoparticles are suitable supports for this purpose owing to their high specific surface area and to be easily separated from reaction media. Here we describe the immobilization of bovine α-chymotrypsin (αCT) on silica-coated superparamagnetic nanoparticles (Fe3O4@silica) and the characterization of the enzyme-nanoparticle hybrid (Fe3O4@silica-αCT) in terms of protein content, properties, recovery from reaction media, application, and reuse in enzyme-catalyzed peptide synthesis. The results revealed that (i) full acid hydrolysis of the immobilized protease followed by amino acid analysis of the hydrolyzate is a reliable method to determine immobilization yield; (ii) despite showing lower amidase activity and a lower K cat/ K m value for a specific substrate than free αCT, the immobilized enzyme is chemically and thermally more stable, magnetically recoverable from reaction media, and can be consecutively reused for ten cycles to catalyze the amide bond hydrolysis and ester hydrolysis of the protected dipeptide Z-Ala-Phe-OMe. Altogether, these properties indicate the potential of Fe3O4@silica-αCT to act as an efficient, suitably stable, and reusable catalyst in amino acid, peptide, and protein chemistry as well as in proteomic studies.

  5. Preparation and characterization of nanostructured metal oxides for application to biomass upgrading Polar (111) metal oxide surfaces for pyrolysis oil upgrading and lignin depolymerization

    NASA Astrophysics Data System (ADS)

    Finch, Kenneth

    2013-01-01

    Pyrolysis oil, or bio-oil, is one of the most promising methods to upgrade a variety of biomass to transportation fuels. Moving toward a more "green" catalytic process requires heterogeneous catalysis over homogeneous catalysis to avoid extraction solvent waste. Nanoscale catalysts are showing great promise due to their high surface area and unusual surfaces. Base catalyzed condensation reactions occur much quicker than acid catalyzed condensation reactions. However, MgO is slightly soluble in water and is susceptible to degradation by acidic environments, similar to those found in fast-pyrolysis oil. Magnesium oxide (111) has a highly active Lewis base surface, which can catalyze Claisen-Schmidt condensation reactions in the organic phase. It has been shown previously that carbon coating a catalyst, such as a metal oxide, provides integrity while leaving the catalytic activity intact. Here, carbon-coated MgO(111) will be discussed with regards to synthesis, characterization and application to bio-oil upgrading through model compounds. Raman spectroscopy and HR-TEM are used to characterize the thickness and carbon-bonding environment of the carbon coating. Propanal self-condensation reactions have been conducted in the aqueous phase with varying amounts of acetic acid present. Quantitative analysis by gas chromatography was completed to determine the catalytic activity of CC-MgO(111). ICP-OES analysis has been conducted to measure the magnesium concentration in the product solution and give insight into the leaching of the catalyst into the reaction solution.

  6. Rapid Construction of Complex 2-Pyrrolines through Lewis Acid-Catalyzed, Sequential Three-Component Reactions via in Situ-Generated 1-Azaallyl Cations.

    PubMed

    Schlegel, Marcel; Schneider, Christoph

    2018-05-09

    The first Sc(OTf) 3 -catalyzed dehydration of 2-hydroxy oxime ethers to generate benzylic stabilized 1-azaallyl cations, which are captured by 1,3-carbonyls, is described. A subsequent addition of primary amines in a sequential three-component reaction affords highly substituted and densely functionalized tetrahydroindeno[2,1- b]pyrroles as single diastereomers with up to quantitative yield. Thus, three new σ-bonds and two vicinal quaternary stereogenic centers are generated in a one-pot operation.

  7. Silver-Catalyzed Cyclopropanation of Alkenes Using N-Nosylhydrazones as Diazo Surrogates.

    PubMed

    Liu, Zhaohong; Zhang, Xinyu; Zanoni, Giuseppe; Bi, Xihe

    2017-12-15

    An efficient silver-catalyzed [2 + 1] cyclopropanation of sterically hindered internal alkenes with diazo compounds in which room-temperature-decomposable N-nosylhydrazones are used as diazo surrogates is reported. The unexpected unique catalytic activity of silver was ascribed to its dual role as a Lewis acid activating alkene substrates and as a transition metal forming silver carbenoids. A wide range of internal alkenes, including challenging diarylethenes, were suitable for this protocol, thereby affording a variety of cyclopropanes with high efficiency in a stereoselective manner under mild conditions.

  8. Metabolism of 2-phenylethylamine and phenylacetaldehyde by precision-cut guinea pig fresh liver slices.

    PubMed

    Panoutsopoulos, Georgios I; Kouretas, Demetrios; Gounaris, Elias G; Beedham, Christine

    2004-01-01

    2-Phenylethylamine is an endogenous constituent of human brain and is implicated in cerebral transmission. It is also found in certain foodstuffs and may cause toxic side-effects in susceptible individuals. Metabolism of 2-phenylethylamine to phenylacetaldehyde is catalyzed by monoamine oxidase and the oxidation of the reactive aldehyde to its acid derivative is catalyzed mainly by aldehyde dehydrogenase and perhaps aldehyde oxidase, with xanthine oxidase having minimal transformation. The present investigation examines the metabolism of 2-phenylethylamine to phenylacetaldehyde in liver slices and compares the relative contribution of aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase activity in the oxidation of phenylacetaldehyde with precision-cut fresh liver slices in the presence/absence of specific inhibitors of each enzyme. In liver slices, phenylacetaldehyde was rapidly converted to phenylacetic acid. Phenylacetic acid was the main metabolite of 2-phenylethylamine, via the intermediate phenylacetaldehyde. Phenylacetic acid formation was completely inhibited by disulfiram (specific inhibitor of aldehyde dehydrogenase), whereas isovanillin (specific inhibitor of aldehyde oxidase) inhibited acid formation to a lesser extent and allopurinol (specific inhibitor of xanthine oxidase) had little or no effect. Therefore, in liver slices, phenylacetaldehyde is rapidly oxidized by aldehyde dehydrogenase and aldehyde oxidase with little or no contribution from xanthine oxidase.

  9. Stability of cefozopran hydrochloride in aqueous solutions.

    PubMed

    Zalewski, Przemysław; Skibiński, Robert; Paczkowska, Magdalena; Garbacki, Piotr; Talaczyńska, Alicja; Cielecka-Piontek, Judyta; Jelińska, Anna

    2016-01-01

    The influence of pH on the stability of cefozopran hydrochloride (CZH) was investigated in the pH range of 0.44-13.00. Six degradation products were identified with a hybrid ESI-Q-TOF mass spectrometer. The degradation of CZH as a result of hydrolysis was a pseudo-first-order reaction. As general acid-base hydrolysis of CZH was not occurred in the solutions of hydrochloric acid, sodium hydroxide, acetate, borate and phosphate buffers, kobs = kpH because specific acid-base catalysis was observed. Specific acid-base catalysis of CZH consisted of the following reactions: hydrolysis of CZH catalyzed by hydrogen ions (kH+), hydrolysis of dications (k1H2O), monocations (k2H2O) and zwitter ions (k3H2O) and hydrolysis of zwitter ions (k1OH-) and monoanions (k2OH-) of CZH catalyzed by hydroxide ions. The total rate of the reaction was equal to the sum of partial reactions: [Formula: see text]. CZH similarly like other fourth generation cephalosporin was most stable at slightly acidic and neutral pH and less stable in alkaline pH. The cleavage of the β-lactam ring resulting from a nucleophilic attack on the carbonyl carbon in the β-lactam moiety is the preferred degradation pathway of β-lactam antibiotics in aqueous solutions.

  10. New biobased high functionality polyols and their use in polyurethane coatings.

    PubMed

    Pan, Xiao; Webster, Dean C

    2012-02-13

    High-functionality polyols for application in polyurethanes (PUs) were prepared by epoxide ring-opening reactions from epoxidized sucrose esters of soybean oil-epoxidized sucrose soyates-in which secondary hydroxyl groups were generated from epoxides on fatty acid chains. Ester polyols were prepared by using a base-catalyzed acid-epoxy reaction with carboxylic acids (e.g., acetic acid); ether polyols were prepared by using an acid-catalyzed alcohol-epoxy reaction with monoalcohols (e.g., methanol). The polyols were characterized by using gel permeation chromatography, FTIR spectroscopy, (1)H NMR spectroscopy, differential scanning calorimetry (DSC), and viscosity measurements. PU thermosets were prepared by using aliphatic polyisocyanates based on isophorone diisocyanate and hexamethylene diisocyanate. The properties of the PUs were studied by performing tensile testing, dynamic mechanical analysis, DSC, and thermogravimetric analysis. The properties of PU coatings on steel substrates were evaluated by using ASTM methods to determine coating hardness, adhesion, solvent resistance, and ductility. Compared to a soy triglyceride polyol, sucrose soyate polyols provide greater hardness and range of cross-link density to PU thermosets because of the unique structure of these macromolecules: well-defined compact structures with a rigid sucrose core coupled with high hydroxyl group functionality. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4.

    PubMed

    Gu, Wen; Yang, Jinkui; Lou, Zhiyong; Liang, Lianming; Sun, Yuna; Huang, Jingwen; Li, Xuemei; Cao, Yi; Meng, Zhaohui; Zhang, Ke-Qin

    2011-01-21

    Microbial ferulic acid decarboxylase (FADase) catalyzes the transformation of ferulic acid to 4-hydroxy-3-methoxystyrene (4-vinylguaiacol) via non-oxidative decarboxylation. Here we report the crystal structures of the Enterobacter sp. Px6-4 FADase and the enzyme in complex with substrate analogues. Our analyses revealed that FADase possessed a half-opened bottom β-barrel with the catalytic pocket located between the middle of the core β-barrel and the helical bottom. Its structure shared a high degree of similarity with members of the phenolic acid decarboxylase (PAD) superfamily. Structural analysis revealed that FADase catalyzed reactions by an "open-closed" mechanism involving a pocket of 8 × 8 × 15 Å dimension on the surface of the enzyme. The active pocket could directly contact the solvent and allow the substrate to enter when induced by substrate analogues. Site-directed mutagenesis showed that the E134A mutation decreased the enzyme activity by more than 60%, and Y21A and Y27A mutations abolished the enzyme activity completely. The combined structural and mutagenesis results suggest that during decarboxylation of ferulic acid by FADase, Trp25 and Tyr27 are required for the entering and proper orientation of the substrate while Glu134 and Asn23 participate in proton transfer.

  12. Characterization of a Cross-Linked Protein–Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    PubMed Central

    2015-01-01

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process. PMID:24806349

  13. Mechanistic Study on Cu(II)-Catalyzed Oxidative Cross-Coupling Reaction between Arenes and Boronic Acids under Aerobic Conditions.

    PubMed

    Zhang, Qian; Liu, Yang; Wang, Ting; Zhang, Xinhao; Long, Chao; Wu, Yun-Dong; Wang, Mei-Xiang

    2018-04-25

    Substantial attention has been given to modern organocopper chemistry in recent years since copper salts are naturally abundant, cheap, and less toxic in comparison to precious metals. Copper salts also exhibit versatility in catalyzing and mediating carbon-carbon and carbon-heteroatom bond forming reactions. Despite the wide applications of copper salts in catalysis, reaction mechanisms have remained elusive. Using azacalix[1]arene[3]pyridine, an arene-embedded macrocycle, and its isolated and structurally well-defined ArCu(II) and ArCu(III) compounds as molecular tools, we now report an in-depth experimental and computational study on the mechanism of a Cu(II)-catalyzed oxidative cross-coupling reaction between arenes and boronic acids with air as the oxidant. Stoichiometric reaction of organocopper compounds with p-tolylboronic acid validated arylcopper(II) rather than arylcopper(III) as a reactive organometallic intermediate. XPS, EPR, 1 H NMR, HRMS, and UV-vis spectroscopic evidence along with the isolation and quantification of all products and copper speciation, combined with computational analysis of the electronic structure and energetics of the transient intermediates, suggested a reaction sequence involving electrophilic metalation of arene by Cu(II), transmetalation of arylboronate to ArCu(II), the redox reaction between the resulting ArCu(II)Ar' and ArCu(II) to form respectively ArCu(III)Ar' and ArCu(I), and finally reductive elimination of ArCu(III)Ar'. Under aerobic catalytic conditions, all Cu(I) ions released from reductive elimination of ArCu(III)Ar' and from protolysis of ArCu(I) were oxidized by oxygen to regenerate Cu(II) species that enters into the next catalytic cycle. The unraveled reactivity of arylcopper(II) compounds and the catalytic cycle would enrich our knowledge of modern organocopper chemistry and provide useful information in the design of copper-catalyzed reactions.

  14. Characterization of a Cross-Linked Protein-Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silakov, Alexey; Grove, Tyler L.; Radle, Matthew I.

    2014-08-14

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate tomore » detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl- 13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process« less

  15. Iron Catalyzed Hydroformylation of Alkenes under Mild Conditions: Evidence of an Fe(II) Catalyzed Process.

    PubMed

    Pandey, Swechchha; Raj, K Vipin; Shinde, Dinesh R; Vanka, Kumar; Kashyap, Varchaswal; Kurungot, Sreekumar; Vinod, C P; Chikkali, Samir H

    2018-03-28

    Earth abundant, first row transition metals offer a cheap and sustainable alternative to the rare and precious metals. However, utilization of first row metals in catalysis requires harsh reaction conditions, suffers from limited activity, and fails to tolerate functional groups. Reported here is a highly efficient iron catalyzed hydroformylation of alkenes under mild conditions. This protocol operates at 10-30 bar syngas pressure below 100 °C, utilizes readily available ligands, and applies to an array of olefins. Thus, the iron precursor [HFe(CO) 4 ] - [Ph 3 PNPPh 3 ] + (1) in the presence of triphenyl phosphine catalyzes the hydroformylation of 1-hexene (S2), 1-octene (S1), 1-decene (S3), 1-dodecene (S4), 1-octadecene (S5), trimethoxy(vinyl)silane (S6), trimethyl(vinyl)silane (S7), cardanol (S8), 2,3-dihydrofuran (S9), allyl malonic acid (S10), styrene (S11), 4-methylstyrene (S12), 4- iBu-styrene (S13), 4- tBu-styrene (S14), 4-methoxy styrene (S15), 4-acetoxy styrene (S16), 4-bromo styrene (S17), 4-chloro styrene (S18), 4-vinylbenzonitrile (S19), 4-vinylbenzoic acid (S20), and allyl benzene (S21) to corresponding aldehydes in good to excellent yields. Both electron donating and electron withdrawing substituents could be tolerated and excellent conversions were obtained for S11-S20. Remarkably, the addition of 1 mol % acetic acid promotes the reaction to completion within 16-24 h. Detailed mechanistic investigations revealed in situ formation of an iron-dihydride complex [H 2 Fe(CO) 2 (PPh 3 ) 2 ] (A) as an active catalytic species. This finding was further supported by cyclic voltammetry investigations and intermediacy of an Fe(0)-Fe(II) species was established. Combined experimental and computational investigations support the existence of an iron-dihydride as the catalyst resting state, which then follows a Fe(II) based catalytic cycle to produce aldehyde.

  16. Acid-catalyzed rearrangements of flavans to novelbenzofuran derivatives

    Treesearch

    Richard W. Hemingway; Weiling Peng; Anthony H. Conner; Petrus J. Steynberg; Jan P. Steynberg

    1998-01-01

    The objective of this work was to define reactions that occur when proanthocyanidins and their derivatives are reacted in the presence of acid catalysts. Pure compounds (either as the free phenols, the methyl ether, or the methyl ether-acetate derivatives) were isolated by a variety of chromatographic methods. Proof of their structure was based mainly on 2D-NMR, as...

  17. Unexpected catalytic reactions of silyl-protected enol diazoacetates with nitrile oxides that form 5-arylaminofuran-2(3H)-one-4-carboxylates.

    PubMed

    Xu, Xinfang; Shabashov, Dmitry; Zavalij, Peter Y; Doyle, Michael P

    2012-02-03

    Silyl-protected enol diazoacetates undergo dirhodium(II)-catalyzed reactions with nitrile oxides to form acid-labile ketenimines via dipolar cycloaddition of nitrile oxides to a donor/acceptor cyclopropene and Lossen rearrangement of the dipolar adduct; acid catalysis converts the ketenimine to the furan product. © 2012 American Chemical Society

  18. Kinetics of acid-catalyzed cleavage of procyanindins

    Treesearch

    Richard W. Hemingway; Gerald W. McGraw

    1983-01-01

    Comparison of the rates of cleavage of isomeric procyanidin dimers in the presence of excess phenylmethane thiol and acetic acid showed that compounds with a C(4)-C(8) interflavanoid bond were cleaved more rapidly than their C(4)-C(6) linked isomers, that 2,3-cis isomers with an axial flavan substituent were cleaved more-rapidly than a 2,3-...

  19. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I.

    PubMed

    Ye, Yingda; Sanford, Melanie S

    2012-06-06

    This communication describes the development of a mild method for the cross-coupling of arylboronic acids with CF(3)I via the merger of photoredox and Cu catalysis. This method has been applied to the trifluoromethylation of electronically diverse aromatic and heteroaromatic substrates and tolerates many common functional groups.

  20. Tandem isomerization-decarboxylation of unsaturated fatty acids to olefins via ruthenium metal-as-ligand catalysts

    USDA-ARS?s Scientific Manuscript database

    A new facile Ru-catalyzed route to bio-olefins3 from unsaturated fatty acids via readily accessible metal-as-ligand type catalyst precursors, [Ru(CO)2RCO2]n and Ru3(CO)12, will be described. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds i...

  1. Homology modeling and prediction of the amino acid residues participating in the transfer of acetyl-CoA to arylalkylamine by the N-acetyltransferase from Chryseobacterium sp.

    PubMed

    Takenaka, Shinji; Ozeki, Takahiro; Tanaka, Kosei; Yoshida, Ken-Ichi

    2017-11-01

    To predict the amino acid residues playing important roles in acetyl-CoA and substrate binding and to study the acetyl group transfer mechanism of Chryseobacterium sp. 5-3B N-acetyltransferase (5-3B NatA). A 3-dimensional homology model of 5-3B NatA was constructed to compare the theoretical structure of this compound with the structures of previously reported proteins belonging to the bacterial GCN5 N-acetyltransferase family. Homology modeling of the 5-3B NatA structure and a characterization of the enzyme's kinetic parameters identified the essential amino acid residues involved in binding and acetyl-group transfer. 126 Leu, 132 Leu, and 135 Lys were implicated in the binding of phosphopantothenic acid, and 100 Tyr and 131 Lys in that of adenosyl biphosphate. The data supported the participation of 83 Glu and 133 Tyr in catalyzing acetyl-group transfer to L-2-phenylglycine. 5-3B NatA catalyzes the enantioselective N-acetylation of L-2-phenylglycine via a ternary complex comprising the enzyme, acetyl-CoA, and the substrate.

  2. Synthesis and characterization of poly(lactic acid)/ montmorillonite nanocomposites by in situ polycondensation catalyzed by non-metal-based compound.

    PubMed

    Kaewprapan, Kulwadee; Phattanarudee, Siriwan

    2012-01-01

    Poly(lactic acid)/montmorillonite nanocomposites were prepared by using non-toxic catalysts, i.e., phthalic acid and succinimide, via in situ polycondensation in presence of silicate. Concentrations of catalysts and clay were varied in a range of 0-3% wt and 0-0.5% wt, respectively. The reaction condition was controlled at 180 degrees C for 24 hr under a reduced pressure. Viscosity average molecular weight of the synthesized polymers and nanocomposites were characterized and compared using an Ubbelohde viscometer. Pattern of silicate distribution in the composites was investigated by X-ray diffraction to correlate with thermal properties evaluated by differential scanning calorimetry and thermogravimetric analysis. The results showed that the addition of catalysts at 2% wt gave the highest product yield (55-60%). The presence of silicate affected on molecular weight reduction, and the diffracted patterns suggested an intercalated structure. With a small amount of added filler, a significant improvement in thermal property and crystallinity of the resultant composites was obtained compared to those of the catalyzed polymers, in which the composites with succinimide exhibited overall better thermal stability and higher crystallinity than the ones prepared with phthalic acid.

  3. New Role of Flavin as a General Acid-Base Catalyst with No Redox Function in Type 2 Isopentenyl-diphosphate Isomerase*S⃞

    PubMed Central

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-01-01

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes. PMID:19158086

  4. New role of flavin as a general acid-base catalyst with no redox function in type 2 isopentenyl-diphosphate isomerase.

    PubMed

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-Ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-04-03

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes.

  5. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    DOE PAGES

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; ...

    2017-11-14

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4, Ln(OTf) 3, In(OTf) 3, Al(OTf) 3] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt %more » of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.« less

  6. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4, Ln(OTf) 3, In(OTf) 3, Al(OTf) 3] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt %more » of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.« less

  7. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts.

    PubMed

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; Tucker, Melvin P; Yang, Bin

    2018-01-10

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4 , Ln(OTf) 3 , In(OTf) 3 , Al(OTf) 3 ] and noble metal catalysts (e.g., Ru/C, Ru/Al 2 O 3 ) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf) 4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote deoxygenation reactions catalyzed by super Lewis acids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Phospholipids and products of their hydrolysis as dietary preventive factors for civilization diseases.

    PubMed

    Parchem, Karol; Bartoszek, Agnieszka

    2016-12-31

    The results of numerous epidemiological studies indicate that phospholipids play an important role in the prevention of chronic diseases faced by contemporary society. Firstly, these compounds are responsible for the proper functioning of cell membranes, by ensuring liquidity and permeability, which is pivotal for normal activity of membrane proteins, including receptors. These mechanisms are at the core of prevention of cancer, autoimmune or neurological disorders. Secondly, structure and properties of phospholipids cause that they are highly available source of biologically active fatty acids. Thirdly, also products of endogenous hydrolysis of phospholipids exhibit biological activity. These include lysophospholipids formed as a result of disconnecting free fatty acid from glycerophospholipids in the reaction catalyzed by phospholipase A, phosphatidic acid and hydrophilic subunits released by the activity of phospholipase D. The bioactive products of hydrolysis also include ceramides liberated from phosphosphingolipids after removal of a hydrophilic unit catalyzed by sphingomyelinase. Phospholipids are supplied to the human body with food. A high content of phospholipids is characteristic for egg yolk, liver, pork and poultry, as well as some soy products. Particularly beneficial are phospholipids derived from seafood because they are a rich source of essential fatty acids of the n-3 family.

  9. Highly efficient enzymatic synthesis of 2-monoacylglycerides and structured lipids and their production on a technical scale.

    PubMed

    Pfeffer, Jan; Freund, Andreas; Bel-Rhlid, Rachid; Hansen, Carl-Erik; Reuss, Matthias; Schmid, Rolf D; Maurer, Steffen C

    2007-10-01

    We report here a two-step process for the high-yield enzymatic synthesis of 2-monoacylglycerides (2-MAG) of saturated as well as unsaturated fatty acids with different chain lengths. The process consists of two steps: first the unselective esterification of fatty acids and glycerol leading to a triacylglyceride followed by an sn1,3-selective alcoholysis reaction yielding 2-monoacylglycerides. Remarkably, both steps can be catalyzed by lipase B from Candida antarctica (CalB). The whole process including esterification and alcoholysis was scaled up in a miniplant to a total volume of 10 l. With this volume, a two-step process catalyzed by CalB for the synthesis of 1,3-oleoyl-2-palmitoylglycerol (OPO) using tripalmitate as starting material was established. On a laboratory scale, we obtained gram quantities of the synthesized 2-monoacylglycerides of polyunsaturated fatty acids such as arachidonic-, docosahexaenoic- and eicosapentaenoic acids and up to 96.4% of the theoretically possible yield with 95% purity. On a technical scale (>100 g of product, >5 l of reaction volume), 97% yield was reached in the esterification and 73% in the alcoholysis and a new promising process for the enzymatic synthesis of OPO was established.

  10. Characterization of Bacillus thuringiensis l-Isoleucine Dioxygenase for Production of Useful Amino Acids▿†

    PubMed Central

    Hibi, Makoto; Kawashima, Takashi; Kodera, Tomohiro; Smirnov, Sergey V.; Sokolov, Pavel M.; Sugiyama, Masakazu; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2011-01-01

    We determined the enzymatic characteristics of an industrially important biocatalyst, α-ketoglutarate-dependent l-isoleucine dioxygenase (IDO), which was found to be the enzyme responsible for the generation of (2S,3R,4S)-4-hydroxyisoleucine in Bacillus thuringiensis 2e2. Depending on the amino acid used as the substrate, IDO catalyzed three different types of oxidation reactions: hydroxylation, dehydrogenation, and sulfoxidation. IDO stereoselectively hydroxylated several hydrophobic aliphatic l-amino acids, as well as l-isoleucine, and produced (S)-3-hydroxy-l-allo-isoleucine, 4-hydroxy-l-leucine, (S)-4-hydroxy-l-norvaline, 4-hydroxy-l-norleucine, and 5-hydroxy-l-norleucine. The IDO reaction product of l-isoleucine, (2S,3R,4S)-4-hydroxyisoleucine, was again reacted with IDO and dehydrogenated into (2S,3R)-2-amino-3-methyl-4-ketopentanoate, which is also a metabolite found in B. thuringiensis 2e2. Interestingly, IDO catalyzed the sulfoxidation of some sulfur-containing l-amino acids and generated l-methionine sulfoxide and l-ethionine sulfoxide. Consequently, the effective production of various modified amino acids would be possible using IDO as the biocatalyst. PMID:21821743

  11. Exploitation of the Sol-Gel Route in Processing of Ceramics and Composites.

    DTIC Science & Technology

    1987-07-10

    titanium isoproporude which is first reacted with ethylene glycol and citnc acid at 120*C. This stabilizes the titanium isopropoxide against hydrolysis...the acid-catalyzed hy’drolysis of titanium isopropoxide . The sols gelled in * 2-4 da%s, and then w ere dried for 6-8 days. The drv gels were sintered...hydrolysis and peptization of titanium isopropoxide in a variety of simple acids (namely, nitric, hydrochloric, and acetic) was evaluated for the preparation

  12. Co-Expression of Bacterial Aspartate Kinase and Adenylylsulfate Reductase Genes Substantially Increases Sulfur Amino Acid Levels in Transgenic Alfalfa (Medicago sativa L.)

    PubMed Central

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value. PMID:24520364

  13. Theoretical investigation of the mechanism of the baeyer-villiger reaction in nonpolar solvents.

    PubMed

    Okuno, Y

    1997-02-01

    The Baeyer-Villiger reaction of p-anisaldehyde with peroxyacetic acid in nonpolar solvents to give p-anisylformate was examined on the basis of ab initio molecular orbital calculations. To explain the experimental observations, the free-energy change was evaluated for each case in the absence and in the presence of an acid catalyst. It was found that, without catalysts, the rate-determining step corresponds to the carbonyl addition of peroxyacetic acid to p-anisaldehyde and the reaction hardly occurs. Acetic acid was found to catalyze the carbonyl addition and change the rate-determining step from the carbonyl addition to the migration of the carbonyl-adduct intermediate. Trifluoroacetic acid was observed to catalyze both the carbonyl addition and migration, and the carbonyl addition was demonstrated to be a rate-determining step. The results provided a convincing explanation of the complex kinetics seen experimentally. Further calculations were performed for the reaction of benzaldehyde with peroxyacetic acid to give phenylformate. Migratory aptitude was found to depend on the catalyst. Isotope effects were also investigated, and the exceptional isotope effect observed experimentally was shown to be due to the rate-determining carbonyl addition caused by autocatalysis. It is concluded that the mechanism of the reaction varies with catalysis or substituent effects. Copyright © 1997 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lipase-catalyzed production of short-chain acids terpenyl esters of interest to the food industry.

    PubMed

    Laboret, F; Perraud, R

    1999-12-01

    The production of low molecular weight esters as flavor compounds by biotechnological processes has a potential interest for the food industry. The use of natural available substrates and enzymes is an essential part of the process design, because the products may obtain natural label. In this study, direct esterification of citronellol and geraniol with short-chain fatty acids catalyzed by free lipase from Mucor miehei was performed with high yields in n-hexane. The effects of the acid:alcohol ratio on the bioconversion rate of increasing chain length esters was investigated. To reach the optimum yield, substrates and enzyme concentration were determined. The inhibiting effects of acid are strongly attenuated by reducing the quantity of acid and increasing the amount of enzyme in media following the optimum values. Improvements have been made to increase the ester purity. The consumption of excess substrate by adding calculated amounts of acid gives a 10% yield enhancement, and leads to 100% pure terpenyl esters. The first steps to a scale-up application were attempted using a reactor that allowed us to produce ester quantities up to 100 cm3. Separation and purification of the products were treated with success, underlining the lipase stability and efficiency under the conditions of this study. The ability to recover the enzyme, and reusing it in bioconversions, plays a major role in reducing the cost of the overall process.

  15. Novel Enzyme Family Found in Filamentous Fungi Catalyzing trans-4-Hydroxylation of l-Pipecolic Acid

    PubMed Central

    Hibi, Makoto; Mori, Ryosuke; Miyake, Ryoma; Kawabata, Hiroshi; Kozono, Shoko; Takahashi, Satomi

    2016-01-01

    Hydroxypipecolic acids are bioactive compounds widely distributed in nature and are valuable building blocks for the organic synthesis of pharmaceuticals. We have found a novel hydroxylating enzyme with activity toward l-pipecolic acid (l-Pip) in a filamentous fungus, Fusarium oxysporum c8D. The enzyme l-Pip trans-4-hydroxylase (Pip4H) of F. oxysporum (FoPip4H) belongs to the Fe(II)/α-ketoglutarate-dependent dioxygenase superfamily, catalyzes the regio- and stereoselective hydroxylation of l-Pip, and produces optically pure trans-4-hydroxy-l-pipecolic acid (trans-4-l-HyPip). Amino acid sequence analysis revealed several fungal enzymes homologous with FoPip4H, and five of these also had l-Pip trans-4-hydroxylation activity. In particular, the homologous Pip4H enzyme derived from Aspergillus nidulans FGSC A4 (AnPip4H) had a broader substrate specificity spectrum than other homologues and reacted with the l and d forms of various cyclic and aliphatic amino acids. Using FoPip4H as a biocatalyst, a system for the preparative-scale production of chiral trans-4-l-HyPip was successfully developed. Thus, we report a fungal family of l-Pip hydroxylases and the enzymatic preparation of trans-4-l-HyPip, a bioactive compound and a constituent of secondary metabolites with useful physiological activities. PMID:26801577

  16. Synthesis of structured triacylglycerols containing caproic acid by lipase-catalyzed acidolysis: optimization by response surface methodology.

    PubMed

    Zhou, D; Xu, X; Mu, H; Høy, C E; Adler-Nissen, J

    2001-12-01

    Production in a batch reactor with a solvent-free system of structured triacylglycerols containing short-chain fatty acids by Lipozyme RM IM-catalyzed acidolysis between rapeseed oil and caproic acid was optimized using response surface methodology (RSM). Reaction time (t(r)), substrate ratio (S(r)), enzyme load (E(l), based on substrate), water content (W(c), based on enzyme), and reaction temperature (T(e)), the five most important parameters for the reaction, were chosen for the optimization. The range of each parameter was selected as follows: t(r) = 5-17 h; E(l) = 6-14 wt %; T(e) = 45-65 degrees C; S(r) = 2-6 mol/mol; and W(c) = 2-12 wt %. The biocatalyst was Lipozyme RM IM, in which Rhizomucor miehei lipase is immobilized on a resin. The incorporation of caproic acid into rapeseed oil was the main monitoring response. In addition, the contents of mono-incorporated structured triacylglycerols and di-incorporated structured triacylglycerols were also evaluated. The optimal reaction conditions for the incorporation of caproic acid and the content of di-incorporated structured triacylglycerols were as follows: t(r) = 17 h; S(r) = 5; E(l) = 14 wt %; W(c) = 10 wt %; T(e) = 65 degrees C. At these conditions, products with 55 mol % incorporation of caproic acid and 55 mol % di-incorporated structured triacylglycerols were obtained.

  17. Decarboxylation of Δ 9-tetrahydrocannabinol: Kinetics and molecular modeling

    NASA Astrophysics Data System (ADS)

    Perrotin-Brunel, Helene; Buijs, Wim; van Spronsen, Jaap; van Roosmalen, Maaike J. E.; Peters, Cor J.; Verpoorte, Rob; Witkamp, Geert-Jan

    2011-02-01

    Efficient tetrahydrocannabinol (Δ 9-THC) production from cannabis is important for its medical application and as basis for the development of production routes of other drugs from plants. This work presents one of the steps of Δ 9-THC production from cannabis plant material, the decarboxylation reaction, transforming the Δ 9-THC-acid naturally present in the plant into the psychoactive Δ 9-THC. Results of experiments showed pseudo-first order reaction kinetics, with an activation barrier of 85 kJ mol -1 and a pre-exponential factor of 3.7 × 10 8 s -1. Using molecular modeling, two options were identified for an acid catalyzed β-keto acid type mechanism for the decarboxylation of Δ 9-THC-acid. Each of these mechanisms might play a role, depending on the actual process conditions. Formic acid proved to be a good model for a catalyst of such a reaction. Also, the computational idea of catalysis by water to catalysis by an acid, put forward by Li and Brill, and Churchev and Belbruno was extended, and a new direct keto-enol route was found. A direct keto-enol mechanism catalyzed by formic acid seems to be the best explanation for the observed activation barrier and the pre-exponential factor of the decarboxylation of Δ 9-THC-acid. Evidence for this was found by performing an extraction experiment with Cannabis Flos. It revealed the presence of short chain carboxylic acids supporting this hypothesis. The presented approach is important for the development of a sustainable production of Δ 9-THC from the plant.

  18. Soft Ultraviolet (UV) Photopatterning and Metallization of Self-Assembled Monolayers (SAMs) Formed from the Lipoic Acid Ester of α-Hydroxy-1-acetylpyrene: The Generality of Acid-Catalyzed Removal of Thiol-on-Gold SAMs using Soft UV Light.

    PubMed

    Pukenas, Laurynas; Prompinit, Panida; Nishitha, Boda; Tate, Daniel J; Singh, N D Pradeep; Wälti, Christoph; Evans, Stephen D; Bushby, Richard J

    2017-05-31

    Under a layer of 0.1 M HCl in isopropanol, soft ultraviolet (UV) (365 nm) photolysis of the thiol-on-gold self-assembled monolayer (SAM) derived from the lipoic acid ester of α-hydroxy-1-acetylpyrene results in the expected removal of the acetylpyrene protecting group. When photolyzing through a mask, this can be used to produce a patterned surface and, at a controlled electrochemical potential, it is then possible to selectively and reversibly electrodeposit copper on the photolyzed regions. Rather surprisingly, under these photolysis conditions, there is not only the expected photodeprotection of the ester but also partial removal of the lipoic acid layer which has been formed. In further studies, it is shown that this type of acid-catalyzed photoremoval of SAM layers by soft UV is a rather general phenomenon and results in the partial removal of the thiol-on-gold SAM layers derived from other ω-thiolated carboxylic acids. However, this phenomenon is chain-length dependent. Under conditions in which there is a ∼60% reduction in the thickness of the SAM derived from dithiobutyric acid, the SAM derived from mercaptoundecanoic acid is almost unaffected. The process by which the shorter-chain SAM layers are partially removed is not fully understood because these compounds do not absorb significantly in the 365 nm region of the spectrum! Significantly, this study shows that acid catalysis photolysis of thiol-on-gold SAMs needs to be used with caution.

  19. [Catalytic properties of enzymes from Erwinia carotovora involved in transamination of phenylpyruvate].

    PubMed

    Paloian, A M; Stepanian, L A; Dadaian, S A; Ambartsumian, A A; Alebian, G P; Sagian, A S

    2013-01-01

    Km for L-phenylalanine, L-glutamic acid, L-aspartic acid, and the corresponding keto acids were calculated, as well as Vmax, was measured for the following pairs of substrates: L-phenylalanine-2-ketoglutarate, L-phenylalanine-oxaloacetate, L-glutamic acid-phenylpyruvate, and L-aspartic acid-phenylpyruvate for aminotransferases PATI, PAT2, and PAT3 from Erwinia carotovora catalyzing transamination of phenylpyruvate. The ping-pong bi-bi mechanism was shown for the studied aminotransferases. The substrate inhibition (Ks) of PAT3 with 2-ketoglutarate and oxaloacetate was 10.23 +/- 3.20 and 3.73 +/- 1.99 mM, respectively.

  20. Production of alpha-hydroxy carboxylic acids and esters from higher sugars using tandem catalyst systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orazov, Marat; Davis, Mark E.

    The present disclosure is directed to methods and composition used in the preparation of alpha-hydroxy carboxylic acids and esters from higher sugars using a tandem catalyst system comprising retro-aldol catalysts and Lewis acid catalysts. In some embodiments, these alpha-hydroxy carboxylic acids may be prepared from pentoses and hexoses. The retro-aldol and Lewis catalysts may be characterized by their respective ability to catalyze a 1,2-carbon shift reaction and a 1,2-hydride shift reaction on an aldose or ketose substrate.

  1. Waste-free synthesis of condensed heterocyclic compounds by rhodium-catalyzed oxidative coupling of substituted arene or heteroarene carboxylic acids with alkynes.

    PubMed

    Shimizu, Masaki; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2009-05-01

    The direct oxidative coupling of 2-amino- and 2-hydroxybenzoic acids with internal alkynes proceeds efficiently in the presence of a rhodium/copper catalyst system under air to afford the corresponding 8-substituted isocoumarin derivatives, some of which exhibit solid-state fluorescence. Depending on conditions, 4-ethenylcarbazoles can be synthesized selectively from 2-(arylamino)benzoic acids. The oxidative coupling reactions of heteroarene carboxylic acids as well as aromatic diacids with an alkyne are also described.

  2. Characterization and antioxidant activity of gallic acid derivative

    NASA Astrophysics Data System (ADS)

    Malinda, Krissan; Sutanto, Hery; Darmawan, Akhmad

    2017-11-01

    Peroxidase enzyme was used to catalyze the dimerization process of gallic acid. The structure of the dimerization product was characterized by 1H NMR and LC-MS-MS. The mechanism of gallic acid dimerization was also discussed. It was proposed that ellagic acid was formed through an oxidative coupling mechanism that lead to the formation of a C-C bond and followed by an intramolecular Fischer esterification mechanism that lead to the formation of two C-O bonds. Moreover, the antioxidant activity of gallic acid and ellagic acid were also studied. Gallic acid and ellagic acid exhibited the DPPH radical scavenging activity with IC50 values of 13.2 μM and 15.9 μM, respectively.

  3. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods.

    PubMed

    Tang, Pei-Ling; Hassan, Osman; Maskat, Mohamad Yusof; Badri, Khairiah

    2015-01-01

    In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced.

  4. 9-cis Retinoic Acid is the ALDH1A1 Product that Stimulates Melanogenesis

    PubMed Central

    Paterson, Elyse K.; Ho, Hsiang; Kapadia, Rubina; Ganesan, Anand K.

    2013-01-01

    Aldehyde dehydrogenase 1A1 (ALDH1A1), an enzyme that catalyzes the conversion of lipid aldehydes to lipid carboxylic acids, plays pleiotropic roles in UV-radiation resistance, melanogenesis, and stem cell maintenance. In this study, a combination of RNAi and pharmacologic approaches were used to determine which ALDH1A1 substrates and products regulate melanogenesis. Initial studies revealed that neither the UV-induced lipid aldehyde 4-hydroxy-2-nonenal nor the ALDH1A1 product all-trans retinoic acid appreciably induced melanogenesis. In contrast, both the ALDH1A1 substrate 9-cis retinal and its corresponding product 9-cis retinoic acid potently induced the accumulation of MITF mRNA, Tyrosinase mRNA, and melanin. ALDH1A1 depletion inhibited the ability of 9-cis retinal but not 9-cis retinoic acid to stimulate melanogenesis, indicating that ALDH1A1 regulates melanogenesis by catalyzing the conversion of 9-cis retinal to 9-cis retinoic acid. The addition of potent ALDH1A inhibitors (cyanamide or Angeli’s salt) suppressed Tyrosinase and MITF mRNA accumulation in vitro and also melanin accumulation in skin equivalents, suggesting that 9-cis retinoids regulate melanogenesis in the intact epidermis. Taken together, these studies not only identify cyanamide as a potential novel treatment for hyperpigmentary disorders, but also identify 9-cis retinoic acid as a pigment stimulatory agent that may have clinical utility in the treatment of hypopigmentary disorders, such as vitiligo. PMID:23489423

  5. Aromatic aldehyde-catalyzed gas-phase decarboxylation of amino acid anion via imine intermediate: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Xiang, Zhang

    2013-10-01

    It is generally appreciated that carbonyl compound can promote the decarboxylation of the amino acid. In this paper, we have performed the experimental and theoretical investigation into the gas-phase decarboxylation of the amino acid anion catalyzed by the aromatic aldehyde via the imine intermediate on the basis of the tandem mass spectrometry (MS/MS) technique and density functional theory (DFT) calculation. The results show that the aromatic aldehyde can achieve a remarkable catalytic effect. Moreover, the catalytic mechanism varies according to the type of amino acid: (i) The decarboxylation of α-amino acid anion is determined by the direct dissociation of the Csbnd C bond adjacent to the carboxylate, for the resulting carbanion can be well stabilized by the conjugation between α-carbon, Cdbnd N bond and benzene ring. (ii) The decarboxylation of non-α-amino acid anion proceeds via a SN2-like transition state, in which the dissociation of the Csbnd C bond adjacent to the carboxylate and attacking of the resulting carbanion to the Cdbnd N bond or benzene ring take place at the same time. Specifically, for β-alanine, the resulting carbanion preferentially attacks the benzene ring leading to the benzene anion, because attacking the Cdbnd N bond in the decarboxylation can produce the unstable three or four-membered ring anion. For the other non-α-amino acid anion, the Cdbnd N bond preferentially participates in the decarboxylation, which leads to the pediocratic nitrogen anion.

  6. Terrestrial evolution of polymerization of amino acids - Heat to ATP

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.

    1981-01-01

    Sets of amino acids containing sufficient trifunctional monomer are thermally polymerized at temperatures such as 65 deg; the amino acids order themselves. Various polymers have diverse catalytic activities. The polymers aggregate, in aqueous solution, to cell-like structures having those activities plus emergent properties, e.g. proliferatability. Polyamino acids containing sufficient lysine catalyze conversion of free amino acids, by ATP, to small peptides and a high molecular weight fraction. The lysine-rich proteinoid is active in solution, within suspensions of cell-like particles, or in other particles composed of lysine-rich proteinoid and homopolyribonucleotide. Selectivities are observed. An archaic polyamino acid prelude to coded protein synthesis is indicated.

  7. Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogues

    PubMed Central

    Lietzan, Adam D.; St. Maurice, Martin

    2014-01-01

    Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates. PMID:24157795

  8. Butanolysis: Comparison of potassium hydroxide and potassium tert-butoxide as catalyst for biodiesel preparing from rapeseed oil.

    PubMed

    Musil, Martin; Skopal, Frantisek; Hájek, Martin; Vavra, Ales

    2018-07-15

    Biodiesel is a mixture of esters of fatty acids (most often palmitic, stearic and oleic) and lower alcohols (in our work butanol) produced by transesterification. It is a renewable source of energy, prepared from triacylglycerides, which are contained in vegetable oils and animal fats. This work focuses on alkaline catalyzed transesterification of rapeseed oil with butanol and comparison of two catalysts (potassium hydroxide and potassium tert-butoxide). In industry is usually transesterification of rapeseed oil carried out like reaction catalyzed by potassium hydroxide. Potassium hydroxide have high content of K 2 CO 3 , KHCO 3 and water. Moreover water is formed by neutralization of potassium hydroxide with free fatty acids contained in oil. In cause of tert-butoxide catalyzed reaction, it is not possible because tert-butoxide have not a OH - aniont, which is needed for water forming. The influence of various conditions (addition of water, temperature of separation, intensity of stirring and type of catalyst) on butanolysis process was studied for both catalysts. For both catalysts dependence of conversions on time were plotted. When tert-butoxide was used, satisfactory phase separation was not achieved. The only way was separation of hot crude reaction mixture without adding water. Ester formed by this method had high content of free glycerol and soaps, but reached higher conversion. The best results were obtained with KOH and subsequent separation of cold crude reaction mixture with the addition of water and slow stirring. The difference between reactions catalyzed by potassium hydroxide and potassium tert-butoxide was described. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Solution-phase parallel synthesis of hexahydro-1H-isoindolone libraries via tactical combination of Cu-catalyzed three-component coupling and Diels-Alder reactions.

    PubMed

    Zhang, Lei; Lushington, Gerald H; Neuenswander, Benjamin; Hershberger, John C; Malinakova, Helena C

    2008-01-01

    Parallel solution-phase synthesis of combinatorial libraries of hexahydro-1 H-isoindolones exploiting a novel "tactical combination" of Cu-catalyzed three-component coupling and Diels-Alder reactions was accomplished. Three distinct libraries consisting of 24 members (library I), 60 members (library II), and 32 members (library III) were constructed. Variation of three substituents on the isoindolone scaffold in library I was exclusively achieved by the choice of the building blocks. In the syntheses of libraries II and III, sublibraries of isoindolone scaffolds were prepared initially in a one-pot/two-step process and were further diversified via Pd-catalyzed Suzuki cross-coupling reaction with boronic acids at two different diversification points. The Lipinski profiles and calculated ADME properties of the compounds are also reported.

  10. One-step ligand exchange reaction as an efficient way for functionalization of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mrówczyński, Radosław; Rednic, Lidia; Turcu, Rodica; Liebscher, Jürgen

    2012-07-01

    Novel magnetic Fe3O4 nanoparticles (NPs) covered by one layer of functionalized fatty acids, bearing entities (Hayashi catalyst, biotin, quinine, proline, and galactose) of high interest for practical application in nanomedicine or organocatalysis, were synthesized. The functionalized fatty acids were obtained by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) of azido fatty acids with alkynes. All the magnetic NPs show superparamagnetic behavior with high values of magnetization and high colloidal stability in DCM solution.

  11. Parallel synthesis of ureas and carbamates from amines and CO2 under mild conditions.

    PubMed

    Peterson, Scott L; Stucka, Sabrina M; Dinsmore, Christopher J

    2010-03-19

    A mild and efficient library synthesis technique has been developed for the synthesis of ureas and carbamates from carbamic acids derived from the DBU-catalyzed reaction of amines and gaseous carbon dioxide. Carbamic acids derived from primary amines reacted with Mitsunobu reagents to generate isocyanates in situ which were condensed with primary and secondary amines to afford the desired ureas. Similarly, carbamic acids from secondary amines reacted with alcohols activated with Mitsunobu reagents to form carbamates.

  12. Selective Conversion of Biorefinery Lignin into Dicarboxylic Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ruoshui; Guo, Mond; Zhang, Xiao

    The emerging biomass-to-biofuel conversion industry has created an urgent need for identifying new applications for biorefinery lignin. This paper demonstrates a new route to producing dicarboxylic acids from biorefinery lignin through chalcopyrite-catalyzed oxidation in a highly selective process. Up to 95 % selectivity towards stable dicarboxylic acids was obtained for several types of biorefinery lignin and model compounds under mild, environmentally friendly reaction conditions. The findings from this study paved a new avenue to biorefinery lignin conversions and applications.

  13. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  14. The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.

    A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. Themore » reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.« less

  15. Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process.

    PubMed

    Yemiş, Oktay; Mazza, Giuseppe

    2012-04-01

    Optimization of acid-catalyzed conversion conditions of wheat straw into furfural, 5-hydroxymethylfurfural (HMF), glucose, and xylose was studied by response surface methodology (RSM). A central composite design (CCD) was used to determine the effects of independent variables, including reaction temperature (140-200 °C), residence time (1-41 min), pH (0.1-2.1), and liquid:solid ratio (15-195 mL/g) on furan and sugar production. The surface response analysis revealed that temperature, time and pH had a strong influence on the furfural, HMF, xylose and glucose yield, whereas liquid to solid ratio was found not to be significant. The initial pH of solution was the most important variable in acid-catalyzed conversion of wheat straw to furans. The maximum predicted furfural, HMF, xylose and glucose yields were 66%, 3.4%, 100%, and 65%, respectively. This study demonstrated that the microwave-assisted process was a very effective method for the xylose production from wheat straw by diluted acid catalysis. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  16. Lipase-catalyzed acylation of microbial mannosylerythritol lipids (biosurfactants) and their characterization.

    PubMed

    Recke, Verena K; Beyrle, Catharina; Gerlitzki, Melanie; Hausmann, Rudolf; Syldatk, Christoph; Wray, Victor; Tokuda, Harukuni; Suzuki, Nobutaka; Lang, Siegmund

    2013-05-24

    Culturing Pseudozyma aphidis on glucose as main carbon source and soybean oil as co-substrate the mannosylerythritol lipids MEL-A and MEL-B were produced. Based on their excellent surface/interfacial active behavior they possess a high potential among all known biosurfactants. The components of a microbial MEL mixture were purified by medium pressure liquid chromatography (MPLC) and were used as substrates for in vitro enzymatic modifications. Lipase-catalyzed acylations of MEL-A and MEL-B with uncommon fatty acids from other microbial glycolipids-3-hydroxydecanoic acid from rhamnolipids and 17-hydroxyoctadecanoic acid from classical sophorolipids-yielded functionalized products at the C-1 position of the erythritol. The novel products were purified by MPLC and their structures elucidated by (1)H and (13)C nuclear magnetic resonance spectroscopy and mass spectrometry. In physicochemical characterization experiments two of the three new glycoconjugates lowered the surface tension of water from 72 mN m(-1) to 27-38 mN m(-1). Moreover the novel compounds inhibited the growth of gram-positive bacteria and showed a potential for anti-tumor-promoting activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A Facile Semi-Synthetic Approach towards Halogen-Substituted Aminobenzoic Acid Analogues of Platensimycin.

    PubMed

    Qiu, Lin; Tian, Kai; Pan, Jian; Jiang, Lin; Yang, Hu; Zhu, Xiangcheng; Shen, Ben; Duan, Yanwen; Huang, Yong

    2017-02-09

    Platensimycin (PTM), produced by several strains of Streptomyces platensis, is a promising drug lead for infectious diseases and diabetes. The recent pilot-scale production of PTM from S. platensis SB12026 has set the stage for the facile semi-synthesis of a focused library of PTM analogues. In this study, gram-quantity of platensic acid (PTMA) was prepared by the sulfuric acid-catalyzed ethanolysis of PTM, followed by a mild hydrolysis in aqueous lithium hydroxide. Three PTMA esters were also obtained in near quantitative yields in a single step, suggesting a facile route to make PTMA aliphatic esters. 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU)-catalyzed coupling of PTMA and 33 aminobenzoates resulted in the synthesis of 28 substituted aminobenzoate analogues of PTM, among which 26 of them were reported for the first time. Several of the PTM analogues showed weak antibacterial activity against methicillin-resistant Staphylococcus aureus. Our study supported the potential utility to integrate natural product biosynthetic and semi-synthetic approaches for structure diversification.

  18. Copper- and copper–N-heterocyclic carbene-catalyzed C─H activating carboxylation of terminal alkynes with CO2 at ambient conditions

    PubMed Central

    Yu, Dingyi; Zhang, Yugen

    2010-01-01

    The use of carbon dioxide as a renewable and environmentally friendly source of carbon in organic synthesis is a highly attractive approach, but its real world applications remain a great challenge. The major obstacles for commercialization of most current protocols are their low catalytic performances, harsh reaction conditions, and limited substrate scope. It is important to develop new reactions and new protocols for CO2 transformations at mild conditions and in cost-efficient ways. Herein, a copper-catalyzed and copper–N-heterocyclic carbene-cocatalyzed transformation of CO2 to carboxylic acids via C─H bond activation of terminal alkynes with or without base additives is reported. Various propiolic acids were synthesized in good to excellent yields under ambient conditions without consumption of any organometallic or organic reagent additives. This system has a wide scope of substrates and functional group tolerances and provides a powerful tool for the synthesis of highly functionalized propiolic acids. This catalytic system is a simple and economically viable protocol with great potential in practical applications. PMID:21059950

  19. Natural separation of the acyl-CoA ligase reaction results in a non-adenylating enzyme.

    PubMed

    Wang, Nan; Rudolf, Jeffrey D; Dong, Liao-Bin; Osipiuk, Jerzy; Hatzos-Skintges, Catherine; Endres, Michael; Chang, Chin-Yuan; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2018-06-04

    Acyl-coenzyme A (CoA) ligases catalyze the activation of carboxylic acids via a two-step reaction of adenylation followed by thioesterification. Here, we report the discovery of a non-adenylating acyl-CoA ligase PtmA2 and the functional separation of an acyl-CoA ligase reaction. Both PtmA1 and PtmA2, two acyl-CoA ligases from the biosynthetic pathway of platensimycin and platencin, are necessary for the two steps of CoA activation. Gene inactivation of ptmA1 and ptmA2 resulted in the accumulation of free acid and adenylate intermediates, respectively. Enzymatic and structural characterization of PtmA2 confirmed its ability to only catalyze thioesterification. Structural characterization of PtmA2 revealed it binds both free acid and adenylate substrates and undergoes the established mechanism of domain alternation. Finally, site-directed mutagenesis restored both the adenylation and complete CoA activation reactions. This study challenges the currently accepted paradigm of adenylating enzymes and inspires future investigations on functionally separated acyl-CoA ligases and their ramifications in biology.

  20. Collision-induced dissociation of diazirine-labeled peptide ions. Evidence for Brønsted-acid assisted elimination of nitrogen.

    PubMed

    Marek, Aleš; Tureček, František

    2014-05-01

    Gas-phase dissociations were investigated for several peptide ions containing the Gly-Leu* N-terminal motif where Leu* was a modified norleucine residue containing the photolabile diazirine ring. Collisional activation of gas-phase peptide cations resulted in facile N₂ elimination that competed with backbone dissociations. A free lysine ammonium group can act as a Brønsted acid to facilitate N₂ elimination. This dissociation was accompanied by insertion of a lysine proton in the side chain of the photoleucine residue, as established by deuterium labeling and gas-phase sequencing of the products. Electron structure calculations were used to provide structures and energies of reactants, intermediates, and transition states for Gly-Leu*-Gly-Gly-Lys amide ions that were combined with RRKM calculations of unimolecular rate constants. The calculations indicated that Brønsted acid-catalyzed eliminations were kinetically preferred over direct loss of N₂ from the diazirine ring. Mechanisms are proposed to explain the proton-initiated reactions and discuss the reaction products. The non-catalyzed diazirine ring cleavage and N₂ loss is proposed as a thermometer dissociation for peptide ion dissociations.

  1. Extraction of manganese from electrolytic manganese residue by bioleaching.

    PubMed

    Xin, Baoping; Chen, Bing; Duan, Ning; Zhou, Changbo

    2011-01-01

    Extraction of manganese from electrolytic manganese residues using bioleaching was investigated in this paper. The maximum extraction efficiency of Mn was 93% by sulfur-oxidizing bacteria at 4.0 g/l sulfur after bioleaching of 9days, while the maximum extraction efficiency of Mn was 81% by pyrite-leaching bacteria at 4.0 g/l pyrite. The series bioleaching first by sulfur-oxidizing bacteria and followed by pyrite-leaching bacteria evidently promoted the extraction of manganese, witnessing the maximum extraction efficiency of 98.1%. In the case of sulfur-oxidizing bacteria, the strong dissolution of bio-generated sulfuric acid resulted in extraction of soluble Mn2+, while both the Fe2+ catalyzed reduction of Mn4+ and weak acidic dissolution of Mn2+ accounted for the extraction of manganese with pyrite-leaching bacteria. The chemical simulation of bioleaching process further confirmed that the acid dissolution of Mn2+ and Fe2+ catalyzed reduction of Mn4+ were the bioleaching mechanisms involved for Mn extraction from electrolytic manganese residues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Preparative resolution of D,L-threonine catalyzed by immobilized phosphatase.

    PubMed

    Scollar, M P; Sigal, G; Klibanov, A M

    1985-03-01

    Hydrolysis of L- and D-O-phosphothreonines catalyzed by four different phosphatases, alkaline phosphatases from calf intestine and E. coli and acid phosphatases from wheat germ and potato, has been kinetically studied. Alkaline phosphatases were found to have comparable reactivities towards the optical isomers. On the other hand, both acid phosphatases displayed a marked stereoselectivity, hydrolyzing the L-ester much faster than its D counterpart. Wheat germ acid phosphatase was the most stereoselective enzyme: V(L)/V(D) = 24 and K(m,L)/K(m,D) = 0.17. This enzyme was immobilized (in k-carrageenan gel, followed by crosslinking with glutaraldehyde) and used for the preparative resolution of D,L-threonine: the latter was first chemically O-phosphorylated and then asymmetrically hydrolyzed by the immobilized phosphatase. As a result, gram quantities of L-threonine of high optical purity and O-phospho-D-threonine were prepared. Immobilized wheat germ phosphatase has been tested for the resolution of other racemic alcohols: serine, 2-amino-1-butanol, 1-amino-2-propanol, 2-octanol, and menthol. In all those cases, the enzyme was either not sufficiently stereoselective or too slow for preparative resolutions.

  3. Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Gómez Hoyos, Catalina; Arroyo, Silvana; Cerrutti, Patricia; Foresti, María Laura

    2016-11-20

    Bacterial cellulose (BC) nanoribbons were partially acetylated by a simple direct solvent-free route catalyzed by citric acid. The assay of reaction conditions within chosen intervals (i.e. esterification time (0.5-7h), catalyst content (0.08-1.01mmol/mmol AGU), and temperature (90-140°C)), illustrated the flexibility of the methodology proposed, with reaction variables which can be conveniently manipulated to acetylate BC to the required degree of substitution (DS) within the 0.20-0.73 interval. Within this DS interval, characterization results indicated a surface-only process in which acetylated bacterial cellulose with tunable DS, preserved fibrous structure and increased hydrophobicity could be easily obtained. The feasibility of reusing the catalyst/excess acylant in view of potential scale-up was also illustrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Didehydroaspartate Modification in Methyl-Coenzyme M Reductase Catalyzing Methane Formation.

    PubMed

    Wagner, Tristan; Kahnt, Jörg; Ermler, Ulrich; Shima, Seigo

    2016-08-26

    All methanogenic and methanotrophic archaea known to date contain methyl-coenzyme M reductase (MCR) that catalyzes the reversible reduction of methyl-coenzyme M to methane. This enzyme contains the nickel porphinoid F430 as a prosthetic group and, highly conserved, a thioglycine and four methylated amino acid residues near the active site. We describe herein the presence of a novel post-translationally modified amino acid, didehydroaspartate, adjacent to the thioglycine as revealed by mass spectrometry and high-resolution X-ray crystallography. Upon chemical reduction, the didehydroaspartate residue was converted into aspartate. Didehydroaspartate was found in MCR I and II from Methanothermobacter marburgensis and in MCR of phylogenetically distantly related Methanosarcina barkeri but not in MCR I and II of Methanothermobacter wolfeii, which indicates that didehydroaspartate is dispensable but might have a role in fine-tuning the active site to increase the catalytic efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Degradation of cytokinins by maize cytokinin dehydrogenase is mediated by free radicals generated by enzymatic oxidation of natural benzoxazinones.

    PubMed

    Frébortová, Jitka; Novák, Ondrej; Frébort, Ivo; Jorda, Radek

    2010-02-01

    Hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-one (DIMBOA) was isolated from maize phloem sap as a compound enhancing the degradation of isopentenyl adenine by maize cytokinin dehydrogenase (CKX), after oxidative conversion by either laccase or peroxidase. Laccase and peroxidase catalyze oxidative cleavage of DIMBOA to 4-nitrosoresorcinol-1-monomethyl ether (coniferron), which serves as a weak electron acceptor of CKX. The oxidation of DIMBOA and coniferron generates transitional free radicals that are used by CKX as effective electron acceptors. The function of free radicals in the CKX-catalyzed reaction was also verified with a stable free radical of 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid. Application of exogenous cytokinin to maize seedlings resulted in an enhanced benzoxazinoid content in maize phloem sap. The results indicate a new function for DIMBOA in the metabolism of the cytokinin group of plant hormones.

  6. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation

    PubMed Central

    Saladino, Raffaele; Carota, Eleonora; Botta, Giorgia; Kapralov, Mikhail; Timoshenko, Gennady N.; Rozanov, Alexei Y.; Krasavin, Eugene; Di Mauro, Ernesto

    2015-01-01

    Liquid formamide has been irradiated by high-energy proton beams in the presence of powdered meteorites, and the products of the catalyzed resulting syntheses were analyzed by mass spectrometry. Relative to the controls (no radiation, or no formamide, or no catalyst), an extremely rich, variegate, and prebiotically relevant panel of compounds was observed. The meteorites tested were representative of the four major classes: iron, stony iron, chondrites, and achondrites. The products obtained were amino acids, carboxylic acids, nucleobases, sugars, and, most notably, four nucleosides: cytidine, uridine, adenosine, and thymidine. In accordance with theoretical studies, the detection of HCN oligomers suggests the occurrence of mechanisms based on the generation of radical cyanide species (CN·) for the synthesis of nucleobases. Given that many of the compounds obtained are key components of extant organisms, these observations contribute to outline plausible exogenous high-energy–based prebiotic scenarios and their possible boundary conditions, as discussed. PMID:25870268

  7. Bioinspired Tungsten Dithiolene Catalysts for Hydrogen Evolution: A Combined Electrochemical, Photochemical, and Computational Study.

    PubMed

    Gomez-Mingot, Maria; Porcher, Jean-Philippe; Todorova, Tanya K; Fogeron, Thibault; Mellot-Draznieks, Caroline; Li, Yun; Fontecave, Marc

    2015-10-29

    Bis(dithiolene)tungsten complexes, W(VI)O2 (L = dithiolene)2 and W(IV)O (L = dithiolene)2, which mimic the active site of formate dehydrogenases, have been characterized by cyclic voltammetry and controlled potential electrolysis in acetonitrile. They are shown to be able to catalyze the electroreduction of protons into hydrogen in acidic organic media, with good Faradaic yields (75-95%) and good activity (rate constants of 100 s(-1)), with relatively high overpotentials (700 mV). They also catalyze proton reduction into hydrogen upon visible light irradiation, in combination with [Ru(bipyridine)3](2+) as a photosensitizer and ascorbic acid as a sacrificial electron donor. On the basis of detailed DFT calculations, a reaction mechanism is proposed in which the starting W(VI)O2 (L = dithiolene)2 complex acts as a precatalyst and hydrogen is further formed from a key reduced W-hydroxo-hydride intermediate.

  8. Development of the titanium–TADDOLate-catalyzed asymmetric fluorination of β-ketoesters

    PubMed Central

    Hintermann, Lukas; Perseghini, Mauro

    2011-01-01

    Summary Titanium-based Lewis acids catalyze the α-fluorination of β-ketoesters by electrophilic N–F-fluorinating reagents. Asymmetric catalysis with TADDOLato–titanium(IV) dichloride (TADDOL = α,α,α',α'-tetraaryl-(1,3-dioxolane-4,5-diyl)-dimethanol) Lewis acids produces enantiomerically enriched α-fluorinated β-ketoesters in up to 91% enantiomeric excess, with either F–TEDA (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)) in acetonitrile solution or NFSI (N-fluorobenzenesulfonimide) in dichloromethane solution as fluorinating reagents. The effects of various reaction parameters and of the TADDOL ligand structure on the catalytic activity and enantioselectivity were investigated. The absolute configuration of several fluorination products was assigned through correlation. Evidence for ionization of the catalyst complex by chloride dissociation, followed by generation of titanium β-ketoenolates as key reaction intermediates, was obtained. Based on the experimental findings, a general mechanistic sketch and a steric model of induction are proposed. PMID:22043253

  9. Atom-Economical Dimerization Strategy by the Rhodium-Catalyzed Addition of Carboxylic Acids to Allenes: Protecting-Group-Free Synthesis of Clavosolide A and Late-Stage Modification.

    PubMed

    Haydl, Alexander M; Breit, Bernhard

    2015-12-14

    Natural products of polyketide origin with a high level of symmetry, in particular C2 -symmetric diolides as a special macrolactone-based product class, often possess a broad spectrum of biological activity. An efficient route to this important structural motif was developed as part of a concise and highly convergent synthesis of clavosolide A. This strategy features an atom-economic "head-to-tail" dimerization by the stereoselective rhodium-catalyzed addition of carboxylic acids to terminal allenes with the simultaneous construction of two new stereocenters. The excellent efficiency and selectivity with which the C2 -symmetric core structures were obtained are remarkable considering the outcome under classical dimerization conditions. Furthermore, this approach facilitates late-stage modification and provides ready access to potential new lead structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Stereospecific Synthesis of threo- and erythro-β-Hydroxyglutamic Acid During Kutzneride Biosynthesis

    PubMed Central

    Strieker, Matthias; Nolan, Elizabeth M.; Walsh, Christopher T.; Marahiel, Mohamed A.

    2009-01-01

    The antifungal and antimicrobial kutznerides, hexadepsipeptides comprised of one α-hydroxy acid and five non-proteinogenic amino acids, are remarkable examples of the structural diversity found in nonribosomally-produced natural products. They contain D-3-hydroxyglutamic acid, which is found in the threo and erythro isomers in mature kutznerides. In this study, two putative non-heme iron oxygenase enzymes, KtzO and KtzP, were recombinantly expressed, characterized biochemically in vitro, and found to stereospecifically hydroxylate the β-position of glutamic acid. KtzO generates threo-L-hydroxyglutamic acid and KtzP catalyzes the formation of the erythro-isomer bound to the peptidyl carrier protein of the third module of the nonribosomal peptide synthetase KtzH. This module has a truncated adenylation domain and is unable to activate and incorporate glutamic acid. The lack of a functional adenylation domain in the third KtzH module is compensated in trans by the stand-alone adenylation domain KtzN, which activates and transfers glutamic acid onto the carrier of KtzH in the presence of the truncated adenylation domain and either KtzO or KtzP. A method that employs non-hydrolyzable coenzyme A analogs was developed and used to determine the kinetic parameters for KtzO- and KtzP-catalyzed hydroxylation of glutamic acid bound to the carrier protein. A detailed mechanism for the in trans compensation of the truncated adenylation domain and the stereospecific hydroxyglutamic acid generation and incorporation is presented. These insights may guide the use of KtzO/KtzP and KtzN or other in trans modification/restoration tools in biocombinatorial engineering approaches. PMID:19722489

  11. Design, synthesis and in vitro kinetic study of tranexamic acid prodrugs for the treatment of bleeding conditions

    NASA Astrophysics Data System (ADS)

    Karaman, Rafik; Ghareeb, Hiba; Dajani, Khuloud Kamal; Scrano, Laura; Hallak, Hussein; Abu-Lafi, Saleh; Mecca, Gennaro; Bufo, Sabino A.

    2013-07-01

    Based on density functional theory (DFT) calculations for the acid-catalyzed hydrolysis of several maleamic acid amide derivatives four tranexamic acid prodrugs were designed. The DFT results on the acid catalyzed hydrolysis revealed that the reaction rate-limiting step is determined on the nature of the amine leaving group. When the amine leaving group was a primary amine or tranexamic acid moiety, the tetrahedral intermediate collapse was the rate-limiting step, whereas in the cases by which the amine leaving group was aciclovir or cefuroxime the rate-limiting step was the tetrahedral intermediate formation. The linear correlation between the calculated DFT and experimental rates for N-methylmaleamic acids 1- 7 provided a credible basis for designing tranexamic acid prodrugs that have the potential to release the parent drug in a sustained release fashion. For example, based on the calculated B3LYP/6-31G(d,p) rates the predicted t1/2 (a time needed for 50 % of the prodrug to be converted into drug) values for tranexamic acid prodrugs ProD 1- ProD 4 at pH 2 were 556 h [50.5 h as calculated by B3LYP/311+G(d,p)] and 6.2 h as calculated by GGA: MPW1K), 253 h, 70 s and 1.7 h, respectively. Kinetic study on the interconversion of the newly synthesized tranexamic acid prodrug ProD 1 revealed that the t1/2 for its conversion to the parent drug was largely affected by the pH of the medium. The experimental t1/2 values in 1 N HCl, buffer pH 2 and buffer pH 5 were 54 min, 23.9 and 270 h, respectively.

  12. Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate Esters)

    DTIC Science & Technology

    2014-10-01

    Distribution A: Approved for public release; distribution is unlimited. 1 Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate...when analogous networks containing a single methyl group ortho- to each aryl- cyanurate linkage were prepared by reduction and acid-catalyzed coupling...of salicylic acid followed by treatment with cyanogen bromide and subsequent cyclotrimerization. The differences in water uptake were observed

  13. Synthesis of 5,5-Diphenyl-4-penten-2-One: A Variation on a Classic Organic Synthesis Laboratory

    ERIC Educational Resources Information Center

    Alber, Joshua P.; DeGrand, Michael J.; Cermak, Diana M.

    2011-01-01

    The Grignard reaction and the addition of protecting groups are standard reactions in an organic chemistry course. Organic students learn about the "quench" step of the Grignard reaction using acid and water and the acid-catalyzed hydrolysis to remove the protecting group, yet in the lecture students find these two reactions to be confusing in…

  14. Molybdenum Nitrogenase Catalyzes the Reduction and Coupling of CO to Form Hydrocarbons*♦

    PubMed Central

    Yang, Zhi-Yong; Dean, Dennis R.; Seefeldt, Lance C.

    2011-01-01

    The molybdenum-dependent nitrogenase catalyzes the multi-electron reduction of protons and N2 to yield H2 and 2NH3. It also catalyzes the reduction of a number of non-physiological doubly and triply bonded small molecules (e.g. C2H2, N2O). Carbon monoxide (CO) is not reduced by the wild-type molybdenum nitrogenase but instead inhibits the reduction of all substrates catalyzed by nitrogenase except protons. Here, we report that when the nitrogenase MoFe protein α-Val70 residue is substituted by alanine or glycine, the resulting variant proteins will catalyze the reduction and coupling of CO to form methane (CH4), ethane (C2H6), ethylene (C2H4), propene (C3H6), and propane (C3H8). The rates and ratios of hydrocarbon production from CO can be adjusted by changing the flux of electrons through nitrogenase, by substitution of other amino acids located near the FeMo-cofactor, or by changing the partial pressure of CO. Increasing the partial pressure of CO shifted the product ratio in favor of the longer chain alkanes and alkenes. The implications of these findings in understanding the nitrogenase mechanism and the relationship to Fischer-Tropsch production of hydrocarbons from CO are discussed. PMID:21454640

  15. Regioselective lipase-catalyzed synthesis of 3-o-acyl derivatives of resveratrol and study of their antioxidant properties.

    PubMed

    Torres, Pamela; Poveda, Ana; Jimenez-Barbero, Jesús; Ballesteros, Antonio; Plou, Francisco J

    2010-01-27

    One of the approaches to increasing the bioavailability of resveratrol is to protect its 3-OH phenolic group. In this work, regioselective acylation of resveratrol at 3-OH was achieved by transesterification with vinyl acetate catalyzed by immobilized lipase from Alcaligenes sp. (lipase QLG). The maximum yield of 3-O-acetylresveratrol was approximately 75%, as the lipase also catalyzes its further acetylation affording the diester 3,4'-di-O-acetylresveratrol and finally the peracetylated derivative. Long saturated and unsaturated fatty acid vinyl esters were also effective as acyl donors with similar regioselectivity. In contrast, lipase B from Candida antarctica catalyzes the acylation of the phenolic group 4'-OH with 80% yield and negligible formation of higher esters. The analysis of the antioxidant properties showed that the Trolox equivalent antioxidant capability (TEAC) values for the acetyl and stearoyl derivatives at 3-OH were, respectively, 40% and 25% referred to resveratrol. The addition of an acyl chain in the 3-OH position caused a higher loss of activity compared with that at the 4'-OH.

  16. Transition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Eldik, R. van

    1995-01-01

    The transition metal-catalyzed oxidation of sulfur(IV) oxides has been known for more than 100 years. There is a significant lack of information on the actual role of the transition metal-catalyzed reactions, and much of the earlier work was performed without a detailed knowledge of the chemical system. For this reason attention is focused on the role of transition metal ions in the oxidation of sulfur(IV) oxides in terms of the coordination chemistry involved, as well as the stability and chemical behavior of the various participating species. The oxidation process of sulfur(IV) oxides plays an important role in atmospheric chemistry (e.g.more » acid rain formation) as well as industrial processes (e.g. desulfurization of plume gases and ore). The present report deals with the mechanism of the transition metal-catalyzed oxidation of sulfur(IV) oxides with the aim to discuss this in terms of atmospheric and chemical processes. In addition, the authors would like to emphasize the key role of oxygen in these processes. 1,076 refs.« less

  17. Application of hydrometallurgy techniques in quartz processing and purification: a review

    NASA Astrophysics Data System (ADS)

    Lin, Min; Lei, Shaomin; Pei, Zhenyu; Liu, Yuanyuan; Xia, Zhangjie; Xie, Feixiang

    2018-04-01

    Although there have been numerous studies on separation and purification of metallic minerals by hydrometallurgy techniques, applications of the chemical techniques in separation and purification of non-metallic minerals are rarely reported. This paper reviews disparate areas of study into processing and purification of quartz (typical non-metallic ore) in an attempt to summarize current work, as well as to suggest potential for future consolidation in the field. The review encompasses chemical techniques of the quartz processing including situations, progresses, leaching mechanism, scopes of application, advantages and drawbacks of micro-bioleaching, high temperature leaching, high temperature pressure leaching and catalyzed high temperature pressure leaching. Traditional leaching techniques including micro-bioleaching and high temperature leaching are unequal to demand of modern glass industry for quality of quartz concentrate because the quartz products has to be further processed. High temperature pressure leaching and catalyzed high temperature pressure leaching provide new ways to produce high-grade quartz sand with only one process and lower acid consumption. Furthermore, the catalyzed high temperature pressure leaching realizes effective purification of quartz with extremely low acid consumption (no using HF or any fluoride). It is proposed that, by integrating the different chemical processes of quartz processing and expounding leaching mechanisms and scopes of application, the research field as a monopolized industry would benefit.

  18. Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock.

    PubMed

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2010-06-01

    The application of waste frying oil (WFO) mixed with rapeseed oil as a feedstock for the effective production of fatty acid methyl esters (FAME) in a lipase-catalyzed process was investigated. The response surface methodology (RSM) was used to optimize the interaction of four variables: the percentage of WFO in the mixed feedstock, the methanol-to-oil ratio, the dosage of Novozym 435 as a catalyst and the temperature. Furthermore, the addition of methanol to the reaction mixture in a second step after 8 h was shown to effectively diminish enzyme inhibition. Using this technique, the model predicted the optimal conditions that would reach 100% FAME, including a methanol-to-oil molar ratio of 3.8:1, 100% (wt) WFO, 15% (wt) Novozym 435 and incubation at 44.5 degrees C for 12 h with agitation at 200 rpm, and verification experiments confirmed the validity of the model. According to the model, the addition of WFO increased FAME production yield, which is largely due to its higher contents of monoacylglycerols, diacylglycerols and free fatty acids (in comparison to rapeseed oil), which are more available substrates for the enzymatic catalysis. Therefore, the replacement of rapeseed oil with WFO in Novozym 435-catalyzed processes could diminish biodiesel production costs since it is a less expensive feedstock that increases the production yield and could be a potential alternative for FAME production on an industrial scale. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. EPR probes with well-defined, long distances between two or three unpaired electrons

    PubMed

    Godt; Franzen; Veit; Enkelmann; Pannier; Jeschke

    2000-11-03

    The synthesis of rod- and star-shaped compounds carrying two or three spin labels as end groups is described. The unpaired electrons are 2.8-5.1 nm apart from each other. The shape-persistent scaffolds were obtained through Pd-Cu-catalyzed alkynyl-aryl coupling and Pd-Cu-catalyzed alkyne dimerization in the presence of oxygen using p-phenyleneethynylene as the basic shape-persistent building block. The spin label 1-oxyl-2,2,5,5-tetramethylpyrroline-3-carboxylic acid (4) was attached through esterification of the terminal phenolic OH groups of the scaffold.

  20. Rhodium-catalyzed asymmetric tandem cyclization for efficient and rapid access to underexplored heterocyclic tertiary allylic alcohols containing a tetrasubstituted olefin.

    PubMed

    Li, Yi; Xu, Ming-Hua

    2014-05-16

    The first Rh-catalyzed asymmetric tandem cyclization of nitrogen- or oxygen-bridged 5-alkynones with arylboronic acids was achieved. The simple catalytic system involving a rhodium(I) complex with readily available chiral BINAP ligand promotes the reaction to proceed in a highly stereocontrolled manner. This protocol provides a very reliable and practical access to a variety of chiral heterocyclic tertiary allylic alcohols possessing a tetrasubstituted carbon stereocenter and an all-carbon tetrasubstituted olefin functionality in good yields with great enantioselectivities up to 99% ee.

Top