Sample records for naphthol as-d acetate

  1. Inhibitory effects of naphthols on the activity of mushroom tyrosinase.

    PubMed

    Lin, Yi-Fen; Hu, Yong-Hua; Jia, Yu-Long; Li, Zhi-Cong; Guo, Yun-Ji; Chen, Qing-Xi; Lin, He-Tong

    2012-01-01

    Tyrosinase (EC 1.14.18.1), a copper-containing multifunctional oxidase, was known to be a key enzyme for biosynthesis in fungi, plants and animals. In this work, the inhibition properties α-naphthol and β-naphthol toward the activity of tyrosinase have been evaluated, and the effects of α-naphthol and β-naphthol on monophenolase and diphenolase activity of tyrosinase have been investigated. The results showed that both α-naphthol and β-naphthol could potently inhibit both monophenolase activity and diphenolase activity of mushroom tyrosinase, and that β-naphthol exhibited stronger inhibitory effect against tyrosinase than α-naphthol. For monophenolase activity, β-naphthol could not only lengthen the lag time but also decrease the steady-state activity, while α-naphthol just only decreased the steady-state activity. For diphenolase activity, both α-naphthol and β-naphthol displayed revisible inhibition. Kinetic analyses showed that both α-naphthol and β-naphthol were competetive inhibitors. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Charge Redistribution in the β-NAPHTHOL-WATER Complex as Measured by High Resolution Stark Spectroscopy in the Gas Phase.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Pratt, David W.; Cembran, Alessandro; Gao, Jiali

    2010-06-01

    The extensively studied photoacid β-naphthol exhibits a large decrease in pKa upon irradiation with ultraviolet light, in the condensed phase. β-naphthol is almost 10 million times more acidic in the excited electronic state, compared to the ground state. Motivated by this fact, we report here the measurement of the electronic dipole moments of the β-naphthol-water complex in both electronic states, from which estimates of the charge transfer from solute to solvent in both states will be made. Comparisons to ab initio and density functional theory calculations will also be reported. N. Mataga and T. Kubota, Molecular Interactions and Electronic Spectra (Marcel Dekker, New York, 1970). Y. Mo, J. Gao, S.D. Peyerimhoff, J. Chem. Phys. 112, 5530 (2000).

  3. Matrix isolation FT-IR and theoretical DFT/B3LYP spectrum of 1-naphthol.

    PubMed

    Muzomwe, Mayawila; Boeckx, Bram; Maes, Guido; Kasende, Okuma E

    2013-05-01

    The FT-IR spectrum of 1-Naphthol isolated in an argon matrix is performed and compared to the infrared spectra calculated at the DFT (B3LYP)/6-31+G(d) level for cis-1-Naphthol and trans-1-Naphthol rotamers in order to clarify the existence of both rotamers in the standard temperature. Comparison of the computed and the experimental matrix spectra reveals the presence in 1-Naphthol argon matrices in the standard temperature of both cis and trans rotameric forms of 1-Naphthol, the last predominating. The relative stability of the trans-1-Naphthol rotamer has also been supported by a fit comparison between the difference of predicted total energy (ETC) of both rotamers of 0.00195 a.u. corresponding to 5.12 kJ mol(-1) and the variation of the standard free Gibbs energy of rotamerization (ΔGr°) of 5.06 kJ mol(-1). Almost all 51 active vibrational modes of 1-Naphthol have been assigned. The stretching vibration of the OH group (νOH) appears to be the unique vibrational mode distinguishing the cis-1-NpOH rotamer from the trans-1-NpOH rotamer in FT-IR spectrum. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Nitration of Naphthol: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Mowery, Dwight F.

    1982-01-01

    Products of nitrations, upon distillation or steam distillation, may produce dermatitis in some students. A procedure for nitration of beta-naphthol producing a relatively non-volatile product not purified by steam distillation is described. Nitration of alpha-naphthol by the same procedure yields Martius Yellow dye which dyes wool yellow or…

  5. Peroxidase-mediated polymerization of 1-naphthol: impact of solution pH and ionic strength.

    PubMed

    Bhandari, Alok; Xu, Fangxiang; Koch, David E; Hunter, Robert P

    2009-01-01

    Peroxidase-mediated oxidation has been proposed as a treatment method for naphthol-contaminated water. However, the impact of solution chemistry on naphthol polymerization and removal has not been documented. This research investigated the impact of pH and ionic strength on peroxidase-mediated removal of 1-naphthol in completely mixed batch reactors. The impact of hydrogen peroxide to 1-naphthol ratio and activity of horseradish peroxidase was also studied. Size exclusion chromatography was used to estimate the molecular weight distribution of oligomeric products, and liquid chromatography/mass spectrometry was used to estimate product structure. Naphthol transformation decreased with ionic strength, and substrate removal was lowest at neutral pHs. Solution pH influenced the size and the composition of the oligomeric products. An equimolar ratio of H(2)O(2):naphthol was sufficient for optimal naphthol removal. Polymerization products included naphthoquinones and oligomers derived from two, three, and four naphthol molecules. Our results illustrate the importance of water chemistry when considering a peroxidase-based approach for treatment of naphthol-contaminated waters.

  6. Degradation of α-Naphthol by Plasma in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Gao, Jin-zhang; Hu, Zhong-ai; Wang, Xiao-yan; Hou, Jing-guo; Lu, Xiao-quan; Kang, Jing-wan

    2001-02-01

    Degradation of α-naphthol induced by plasma in aqueous solution was investigated in different initial concentration with contact glow discharge electrolysis (CGDE). The results showed that the degradation of α-naphthol obeyed the first-rate law. Some of predominant products were analyzed by a high performance liquid chromatography (HPLC). A path of α-naphthol disappearance caused by plasma was proposed according to the detected intermediate products.

  7. Simultaneous determination of 1- and 2-naphthol in human urine using on-line clean-up column-switching liquid chromatography-fluorescence detection.

    PubMed

    Preuss, Ralf; Angerer, Jürgen

    2004-03-05

    We developed a new 3-D HPLC method for on-line clean-up and simultaneous quantification of two important naphthalene metabolites, 1-naphthol and 2-naphthol, in human urine. Except an enzymatic hydrolysis no further sample pre-treatment is necessary. The metabolites are stripped from urinary matrix by on-line extraction on a restricted access material pre-column (RAM RP-8), transferred in backflush mode onto a silica-based CN-(cyano)phase column for further purification from interfering substances. By another successive column switching step both analytes are transferred with a minimum of overlapping interferences onto a C12 bonded reversed phase column with trimethylsilyl endcapping where the final separation is carried out. The entire arrangement is software controlled. Eluting analytes are quantified by fluorescence detection (227/430 nm) after an external calibration. Within a total run time of 40 min we can selectively quantify both naphthols with detection limits in the lower ppb range (1.5 and 0.5 microg/l for 1- and 2-naphthol, respectively) with excellent reliability (ensured by precision, accuracy, matrix-independency and FIOH quality assurance program participation). First results on a collective of 53 occupationally non exposed subjects showed mean levels of 11.0 microg/l (1-naphthol) and 12.9 microg/l (2-naphthol). Among smokers (n=21) a significantly elevated mean level of urinary naphthols was determined (1-naphthol: 19.2 microg/l and 2-naphthol: 23.7 microg/l) in comparison to non smokers (n=32; 1-naphthol: 5.6 microg/l, 2-naphthol: 5.6 microg/l).

  8. Adsorptive removal of 1-naphthol from water with Zeolitic imidazolate framework-67

    NASA Astrophysics Data System (ADS)

    Yan, Xinlong; Hu, Xiaoyan; Chen, Tao; Zhang, Shiyu; Zhou, Min

    2017-08-01

    1-Naphthol is widely used as an intermediate in the plastics, dyes, fibers and rubbers production areas, leading to the increasing detection of 1-naphthol in the soil and water environment, which is of particular concern due to its acute toxicity and negative environmental impacts. Considering the high surface area and good stability of ZIFs (zeolitic imidazole frameworks) material, ZIF-67 (a representative cobalt-based ZIFs material) was synthesized and applied as an adsorbent for removal of 1-naphthol from aqueous solution. The obtained ZIF-67 was characterized by XRD, TEM, XPS, N2 physisorption and TG, and the adsorption isotherm, kinetics, and regeneration of the adsorbent were studied in detail. The adsorption of 1-naphthol on ZIF-67 followed a pseudo-second-order equation kinetics and fitted Langmuir adsorption model with a maximum adsorption capacity of 339 mg/g at 313 K, which is much higher than that of the common adsorbents reported such as activated carbon and carbon nanotubes et al. The solution pH was found to be an important factor influencing the adsorption process, which could be explained by the predominant mechanism controlling the process, i.e. electrostatic attraction. In addition, the ZIF-67 showed desirable reusability toward 1-naphthol removal from alkaline aqueous solution.

  9. Simultaneous analysis of naphthols, phenanthrols, and 1-hydroxypyrene in urine as biomarkers of polycyclic aromatic hydrocarbon exposure: intraindividual variance in the urinary metabolite excretion profiles caused by intervention with beta-naphthoflavone induction in the rat.

    PubMed

    Elovaara, Eivor; Väänänen, Virpi; Mikkola, Jouni

    2003-04-01

    Two fluorimetric HPLC methods are described for the quantification of naphthols, phenanthrols and 1-hydroxypyrene (1-OHP) in urine specimens obtained from male Wistar rats exposed to naphthalene, phenanthrene and pyrene. The polycyclic aromatic hydrocarbons (PAHs) were given intraperitoneally, either alone (1.0 mmol/kg body weight) or as an equimolar mixture (0.33 mmol/kg), using the same dosages for repeated treatments on week 1 and week 2. Between these treatments, PAH-metabolizing activities encoded by aryl hydrocarbon (Ah) receptor-controlled genes were induced in the rats with beta-naphthoflavone (betaNF). Chromatographic separation of five phenanthrols (1-, 2-, 3-, 4-, and 9-isomers) was accomplished using two different RP C-18 columns. Despite selective detection (programmable wavelengths), the quantification limits in the urine ranged widely: 1-OHP (0.18 microg/l) naphthol (1.5 microg/l) <1-naphthol (4 micro g/l). The relative standard deviation of the methods was good, as also was the reproducibility. The molar fraction of the dose excreted in 24-h urine as naphthols (naphthols, 9-phenanthrol (1- to-2-fold); 2-, 3-, and 4-phenanthrols (4- to 5-fold); 1-phenanthrol and 1-OHP (over 11-fold). The OH-metabolites were analyzed before and after enzymatic hydrolysis (beta-glucuronidase/arylsulfatase). The percentage excreted as a free phenol in urine varied for 1-OHP (2-11%), 1-naphthol (36-51%), 2-naphthol (59-65%), and the phenanthrols (29-94%). 1-Naphthyl- and 1-pyrenyl beta- d-glucuronide served as measures for the completeness of enzymatic hydrolysis. Characteristic differences observed in the urinary disposition of naphthalene, phenanthrene, and pyrene are described, as well as important factors (dose, metabolic capacity, relative urinary output) associated with biomarker validation

  10. Physicochemical properties of sorbents based on silica gel modified by 1-phenylazo-2-naphtholic complexes of transition metals

    NASA Astrophysics Data System (ADS)

    Makarycheva, A. I.; Slizhov, Yu. G.

    2017-09-01

    Gas chromatography sorbents based on Silokhrom C80 and modified by 1-phenylazo-2-naphtholic complexes of 3 d metals (Co(II), Ni(II), Cu(II)) are obtained. Their structural, chromatographic, and sorption characteristics are investigated. It is found that modifying them with 1-phenylazo-2-naphthols of transition metals has a considerable effect on the chromatographic polarity and selectivity of sorption materials. The prospects for the practical application of the obtained sorbents are demonstrated by experiments on the gas chromatographic separation of mixtures of different classes of organic compounds.

  11. Photochemistry of 1- and 2-Naphthols and Their Water Clusters: The Role of 1 ππ*(La ) Mediated Hydrogen Transfer to Carbon Atoms.

    PubMed

    Novak, Jurica; Prlj, Antonio; Basarić, Nikola; Corminboeuf, Clémence; Došlić, Nađa

    2017-06-16

    The computational analysis of the isomer- and conformer-dependent photochemistry of 1- and 2-naphthols and their microsolvated water clusters is motivated by their very different excited state reactivities. We present evidence that 1- and 2-naphthol follow distinct excited state deactivation pathways. The deactivation of 2-naphthols, 2-naphthol water clusters, as well as of the anti conformer of 1-naphthol is mediated by the optically dark 1 πσ* state. The dynamics of the 1 πσ* surface leads to the homolytic cleavage of the OH bond. On the contrary, the excited state deactivation of syn 1-naphthol and 1-naphthol water clusters follows an uncommon reaction pathway. Upon excitation to the bright 1 ππ*(L a ) state, a highly specific excited state hydrogen transfer (ESHT) to carbon atoms C8 and C5 takes place, yielding 1,8- and 1,5-naphthoquinone methides. The ESHT pathway arises from the intrinsic electronic properties of the 1 ππ*(L a ) state of 1-naphthols. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Utilization of Natural Zeolite from Ponorogo and Purworejo for Naphthol Substance Adsorption

    NASA Astrophysics Data System (ADS)

    Imandiani, Sundus; Indira, Christine; Johan, Anthony; Budiyono

    2018-02-01

    Indonesia has many zeolite producing areas yet untapped. Researchers developed the utilization of natural zeolites useful for the adsorption of naphthol dyes commonly found in batik waste. In this study researchers used natural zeolites from Purworejo and Ponorogo that are activated using hydrochloric acid that is used for adsorption. The purpose of this research is to know the effect of natural zeolite activation from Ponorogo and Purworejo on the effectiveness of adsorption of naphthol dyes widely used in batik industry. Natural zeolite was activated using HCl concentration of 1.3N; 1.8N; 3.2N; and 3.9N for 60 minutes. The methods are preparation of natural zeolite from Purworejo and Ponorogo, dealumination using hydrochloric acid, adsorption process of naphthol dyes using activated zeolite, and test of adsorption result with uv-vis spectrophotometry. The test results showed that the higher HCl concentration will increase adsorption capacity. This can be known from the concentration of naphthol dye which decreased both using natural zeolite Ponorogo and Purworejo. While the effectiveness of adsorption shows natural zeolite Purworejo has a greater adsorption capacity than Ponorogo with optimum conditions of dealumination using concentration HCl 3,9N.

  13. Urinary naphthol metabolites and chromosomal aberrations in 5 yr old children

    PubMed Central

    Orjuela, Manuela A.; Liu, XinHua; Miller, Rachel L.; Warburton, Dorothy; Tang, DeLiang; Jobanputra, Vaidehi; Hoepner, Lori; Suen, Ida Hui; Diaz-Carreno, Silvia; Li, Zheng; Sjodin, Andreas; Perera, Frederica P.

    2012-01-01

    Background Exposure to naphthalene, an IARC-classified possible carcinogen and polycyclic aromatic hydrocarbon (PAH), is widespread, though resulting health effects are poorly understood. Metabolites of naphthalene, 1- and 2-naphthol, are measurable in urine and are biomarkers of personal exposure. Chromosomal aberrations (CAs), including translocations, are established markers of cancer risk and a bio-dosimeter of clastogenic exposures. Although prenatal (maternal) PAH exposure predicts CAs in cord blood, few studies have examined CAs in school-age children and none has examined their association with metabolites of specific PAHs. Methods Using Whole Chromosome Paint Fluorescent in Situ Hybridization, we documented CAs including translocations, in 113 five year old urban minority children and examined their association with concurrent concentrations of PAH metabolites measured in urine. Results We report that in lymphocytes, the occurrence and frequency of CAs including translocations are associated with levels of urinary 1- and 2-naphthol. When doubling the levels of urinary naphthols, gender-adjusted Odds Ratio (OR) for CAs are 1.63 (95%CI: 1.21, 2.19) and 1.44 (95%CI: 1.02, 2.04) for 1-and 2-naphthol respectively; and for translocations: OR=1.55 (95%CI: 1.11-2.17) and 1.92 (95%CI: 1.20-3.08) for 1- and 2-naphthol respectively. Conclusion Our results demonstrate that markers of exposure to naphthalene in children are associated with translocations in a dose related manner, and that naphthalene may be a clastogen. Impact Indoor exposure to elevated levels of naphthalene is prevalent in large regions of the world. This study is the first to present an association between a marker of naphthalene exposure and a pre-carcinogenic effect in humans. PMID:22573794

  14. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false D-Glucuronic acid, polymer with 6...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

  15. Treatment of industrial wastewater containing Congo Red and Naphthol Green B using low-cost adsorbent.

    PubMed

    Attallah, M F; Ahmed, I M; Hamed, Mostafa M

    2013-02-01

    The present work investigates the potential use of metal hydroxides sludge (MHS) generated from hot dipping galvanizing plant for adsorption of Congo Red and Naphthol Green B dyes from aqueous solutions. Characterization of MHS included infrared and X-ray fluorescence analysis. The effect of shaking time, initial dye concentration, temperature, adsorbent dosage and pH has been investigated. The results of adsorption experiments indicate that the maximum capacity of Congo Red and Naphthol Green B dyes at equilibrium (q(e)) and percentage of removal at pH 6 are 40 mg/g, 93 %, and 10 mg/g, 52 %, respectively. Some kinetic models were used to illustrate the adsorption process of Congo Red and Naphthol Green B dyes using MHS waste. Thermodynamic parameters such as (ΔG, ΔS, and ΔH) were also determined.

  16. Naphthol AS-E Phosphate Inhibits the Activity of the Transcription Factor Myb by Blocking the Interaction with the KIX Domain of the Coactivator p300.

    PubMed

    Uttarkar, Sagar; Dukare, Sandeep; Bopp, Bertan; Goblirsch, Michael; Jose, Joachim; Klempnauer, Karl-Heinz

    2015-06-01

    The transcription factor c-Myb is highly expressed in hematopoietic progenitor cells and controls the transcription of genes important for lineage determination, cell proliferation, and differentiation. Deregulation of c-Myb has been implicated in the development of leukemia and certain other types of human cancer. c-Myb activity is highly dependent on the interaction of the c-Myb with the KIX domain of the coactivator p300, making the disruption of this interaction a reasonable strategy for the development of Myb inhibitors. Here, we have used bacterial Autodisplay to develop an in vitro binding assay that mimics the interaction of Myb and the KIX domain of p300. We have used this binding assay to investigate the potential of Naphthol AS-E phosphate, a compound known to bind to the KIX domain, to disrupt the interaction between Myb and p300. Our data show that Naphthol AS-E phosphate interferes with the Myb-KIX interaction in vitro and inhibits Myb activity in vivo. By using several human leukemia cell lines, we demonstrate that Naphthol AS-E phosphate suppresses the expression of Myb target genes and induces myeloid differentiation and apoptosis. Our work identifies Naphthol AS-E phosphate as the first low molecular weight compound that inhibits Myb activity by disrupting its interaction with p300, and suggests that inhibition of the Myb-KIX interaction might be a useful strategy for the treatment of leukemia and other tumors caused by deregulated c-Myb. ©2015 American Association for Cancer Research.

  17. Protolytic dissociation of cyano derivatives of naphthol, biphenyl and phenol in the excited state: A review

    NASA Astrophysics Data System (ADS)

    Szczepanik, Beata

    2015-11-01

    The excited state proton transfer (ESPT) has been extensively studied for hydroxyarenes, phenols, naphthols, hydroxystilbenes, etc., which undergo large enhancement of acidity upon electronic excitation, thus classified as photoacids. The changes of acidic character in the excited state of cyano-substituted derivatives of phenol, hydroxybiphenyl and naphthol are reviewed in this paper. The acidity constants pKa in the ground state (S0), pKa∗ in the first singlet excited state (S1) and the change of the acidity constant in the excited state ΔpKa for the discussed compounds are summarized and compared. The results of the acidity studies show, that the "electro-withdrawing" CN group in the molecules of naphthol, hydroxybiphenyl and phenol causes dramatic increase of their acidity in the excited state in comparison to the ground state. This effect is greatest for the cyanonaphthols (the doubly substituted CN derivatives are almost as strong as a mineral acid in the excited state), comparable for cyanobiphenyls, and smaller for phenol derivatives. The increase of acidity enables proton transfer to various organic solvents, and the investigation of ESPT can be extended to a variety of solvents besides water. The results of theoretical investigations were also presented and used for understanding the protolytic equilibria of cyano derivatives of naphthol, hydroxybiphenyl and phenol.

  18. Isomerization of 7-oxabenzonorbornadienes into naphthols catalyzed by [RuCl(2)(CO)(3)](2).

    PubMed

    Ballantine, Melissa; Menard, Michelle L; Tam, William

    2009-10-02

    Ruthenium-catalyzed isomerization of 7-oxanorbornadienes into naphthols was investigated. Among the various ruthenium catalysts tested, [RuCl(2)(CO)(3)](2) gave the highest yields in the isomerization, and various substituted naphthols were synthesized in moderate to excellent yields. Both symmetrical and unsymmetrical 7-oxanorbornadienes were employed in the study, and moderate to excellent regioselectivities were observed.

  19. Enhanced transport of phenanthrene and 1-naphthol by colloidal graphene oxide nanoparticles in saturated soil.

    PubMed

    Qi, Zhichong; Hou, Lei; Zhu, Dongqiang; Ji, Rong; Chen, Wei

    2014-09-02

    With the increasing production and use of graphene oxide, the environmental implications of this new carbonaceous nanomaterial have received much attention. In this study, we found that the presence of low concentrations of graphene oxide nanoparticles (GONPs) significantly enhanced the transport of 1-naphthol in a saturated soil, but affected the transport of phenanthrene to a much smaller extent. The much stronger transport-enhancement effect on 1-naphthol was due to the significant desorption hysteresis (both thermodynamically irreversible adsorption and slow desorption kinetics) of GONP-adsorbed 1-naphthol, likely stemmed from the specific polar interactions (e.g., H-bonding) between 1-naphthol and GONPs. Increasing ionic strength or the presence of Cu(II) ion (a complexing cation) generally increased the transport-enhancement capability of GONPs, mainly by increasing the aggregation of GONPs and thus, sequestering adsorbed contaminant molecules. Interestingly, modifying GONPs with Suwannee River humic acid or sodium dodecyl sulfate had little or essentially no effect on the transport-enhancement capability of GONPs, in contrast with the previously reported profound effects of humic acids and surfactants on the transport-enhancement capability of C60 nanoparticles. Overall, the findings indicate that GONPs in the aquatic environment may serve as an effective carrier for certain organic compounds that can interact with GONPs through strong polar interactions.

  20. Enhanced degradation of 1-naphthol in landfill leachate using Arthrobacter sp.

    PubMed

    Hu, Wenyong; Min, Xiaobo; Li, Xinyu; Liu, Jingyi; Yu, Haibin; Yang, Yuan; Zhang, Jiachao; Luo, Lin; Chai, Liyuan; Zhou, Yaoyu

    2017-12-06

    Arthrobacter sp. named as JY5-1 isolated from contaminated soil of a coking plant can degrade 1-naphthol as the sole carbon source. Through identification of species, analysis of the optimal degradation condition and kinetic equation, the degradation characteristic of Arthrobacter sp. JY5-1 was obtained. Later, the acclimated strain was added into the bio-reactor to observe treatment performance of landfill leachate. The results showed that the optimal conditions for strain JY5-1 biodegradation in the study were pH 7.0 and 30 o C. The bio-reactor operation experiment declared that Arthrobacter sp. JY5-1 had a strengthened effect on COD removal of landfill leachate. Moreover, the efficiency of COD removal could be high and stable when JY5-1 was accumulated as a biofilm together with active sludge. These results demonstrate that adding 1-naphthol-degrading strain JY5-1 is a feasible technique for the enhanced treatment of sanitary landfill leachate, providing theoretical support for engineering utilization.

  1. Copper/H2O2-mediated oxidation of 2'-deoxyguanosine in the presence of 2-naphthol leads to the formation of two distinct isomeric adducts.

    PubMed

    Fleming, Aaron M; Kannan, Arunkumar; Muller, James G; Liao, Yi; Burrows, Cynthia J

    2011-10-07

    Exposure of cells to phenolic compounds through exogenous and endogenous sources can lead to deleterious effects via nucleobase modifications of DNA occurring under oxidative conditions. 2'-Deoxyguanosine (dG) is the most electron rich of the four canonical bases and includes many nucleophilic sites; it is also susceptible to oxidation with numerous reactive oxygen species. In these studies, dG was allowed to react with 2-naphthol in the presence of copper or iron salts yielding two principal isomeric products. Spectroscopic analysis and reactions with alkylated nucleosides support the assignment of compound 1a/1b as a pair of atropisomer N(2) adducts and compound 2a/2b as a diastereomeric mixture of tricyclic [4.3.3.0] adducts. Both products are the result of an overall four-electron oxidation process and consequently have the same masses, though drastically different structures, providing mechanistic insight into their formation. Thus, dG alkylation by 2-naphthol under oxidative conditions yields products whose structural properties are altered, leading to potentially mutagenic effects in genomic DNA.

  2. Dermal Exposure to Jet Fuel JP-8 Significantly Contributes to the Production of Urinary Naphthols in Fuel-Cell Maintenance Workers

    PubMed Central

    Chao, Yi-Chun E.; Kupper, Lawrence L.; Serdar, Berrin; Egeghy, Peter P.; Rappaport, Stephen M.; Nylander-French, Leena A.

    2006-01-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure. PMID:16451852

  3. Dermal exposure to jet fuel JP-8 significantly contributes to the production of urinary naphthols in fuel-cell maintenance workers.

    PubMed

    Chao, Yi-Chun E; Kupper, Lawrence L; Serdar, Berrin; Egeghy, Peter P; Rappaport, Stephen M; Nylander-French, Leena A

    2006-02-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure.

  4. Production and optimization of bamboo hydrochars for adsorption of Congo red and 2-naphthol.

    PubMed

    Li, Yin; Meas, Arun; Shan, Shengdao; Yang, Ruiqin; Gai, Xikun

    2016-05-01

    Twelve hydrochars were produced from bamboo sawdust for adsorption of Congo red and 2-naphthol. The bamboo hydrochars have Brunauer-Emmett-Teller (BET) surface areas ranging from 2.63m(2)/g to 43.07m(2)/g, average pore diameters from 3.05nm to 3.83nm, pore volumes between 0.02cm(3)/g and 0.53cm(3)/g, and the surfaces of the hydrochars have diverse functional groups. The physico-chemical properties of the hydrochars critically depend on the hydrothermal conditions. All the hydrochars can adsorb Congo red and 2-naphthol from aqueous solutions, the largest adsorption capacity for Congo red is 33.7mg/g at the equilibrium concentration of 0.1mg/mL at 25°C, and the highest adsorption amount for 2-naphthol is 12.2mg/g at 25°C and 0.1mg/mL. Freundlich model can describe the adsorption isotherms of the both adsorbates slightly better than Langmuir model. These results provide a reference to the production and use of hydrochars as potential adsorbents in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A novel copper complex supported on magnetic reduced graphene oxide: an efficient and green nanocatalyst for the synthesis of 1-amidoalkyl-2-naphthol derivatives

    NASA Astrophysics Data System (ADS)

    Kooti, M.; Karimi, M.; Nasiri, E.

    2018-02-01

    A new Cu(II) complex supported on magnetic reduced graphene oxide was prepared and characterized by various techniques, such as FT-IR, XRD, SEM, EDX, TEM, TGA, BET, ICP, and VSM. The synthesized nanocomposite, which has size distribution of 25-30 nm, was employed as catalyst in one-pot synthesis of 1-amidoalkyl-2-naphthols via three-component condensation reaction of amides, aromatic aldehydes, and 2-naphthol, under solvent-free conditions. The introduced catalysis procedure for the synthesis of 1-amidoalkyl-2-naphthol derivatives offers several advantages namely, short reaction times, high yields, facile recyclability, and cost effectiveness. [Figure not available: see fulltext.

  6. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  7. Quantitative cytochemistry of nuclear and cytoplasmic proteins using the Naphthol Yellow S and dinitrofluorobenzene staining methods.

    PubMed

    Tas, J; James, J

    1981-09-01

    The 'total protein staining' of biological specimens with the electrostatically binding Naphthol Yellow S or the covalently binding dinitrofluorobenzene must be interpreted as methods which yield data on the specific amino acid pool of the proteins concerned. Both dyes bind to certain free amino-acid side-chains, giving different dye--protein ratios for various proteins. In the presence of DNA, dinitrofluorobenzene stains all proteins present in cell nuclei, whereas Naphthol Yellow S only stains the majority of the non-histone proteins. When protein staining methods are combined with the Feulgen--Pararosanile (SO2) procedure for DNA, decreased Feulgen--DNA contents were measured in dinitrofluorobenzene-stained isolated nuclei and lymphocytes.

  8. Synthesis of cubic Ia-3d mesoporous silica in anionic surfactant templating system with the aid of acetate.

    PubMed

    Deng, Shao-Xin; Xu, Xue-Yan; He, Wen-Chao; Wang, Jin-Gui; Chen, Tie-Hong

    2014-08-01

    Mesoporous silica with three-dimensional (3D) bicontinuous cubic Ia-3d structure and fascinating caterpillar-like morphology was synthesized by using anionic surfactant N-lauroylsarcosine sodium (Sar-Na) as the template and 3-amionpropyltrimethoxysilane (APS) as the co-structure-directing agent (CSDA) with the aid of acetate. A phase transformation from high interfacial curvature 2D hexagonal to low interfacial curvature 3D cubic Ia-3d occurred in the presence of a proper amount of acetate. Other species of salts (excluding acetate) had the ability to induce the caterpillar-like morphology, but failed to induce the cubic Ia-3d mesostructure. Furthermore, [3-(2-aminoethyl)-aminopropyl]trimethoxysilane (DAPS) was also used as the CSDA to synthesize Ia-3d mesostructured silica under the aid of sodium acetate. After extraction of the anionic surfactants, amino and di-amine functionalized 3D bicontinuous cubic Ia-3d mesoporous silicas were obtained and used as supports to immobilize Pd nanoparticles for supported catalysts. The catalytic activity of the catalysts was tested by catalytic hydrogenation of allyl alcohol. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. 21 CFR 524.1484d - Neomycin sulfate, hydrocortisone acetate, tetracaine hydrochloride ear ointment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Neomycin sulfate, hydrocortisone acetate... OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484d Neomycin sulfate, hydrocortisone acetate... sulfate, equivalent to 3.5 milligrams of neomycin base, 5 milligrams of hydrocortisone acetate, and 5...

  10. 21 CFR 524.1484d - Neomycin sulfate, hydrocortisone acetate, tetracaine hydrochloride ear ointment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Neomycin sulfate, hydrocortisone acetate... OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484d Neomycin sulfate, hydrocortisone acetate... sulfate, equivalent to 3.5 milligrams of neomycin base, 5 milligrams of hydrocortisone acetate, and 5...

  11. 21 CFR 524.1484d - Neomycin sulfate, hydrocortisone acetate, tetracaine hydrochloride ear ointment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Neomycin sulfate, hydrocortisone acetate... OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484d Neomycin sulfate, hydrocortisone acetate... sulfate, equivalent to 3.5 milligrams of neomycin base, 5 milligrams of hydrocortisone acetate, and 5...

  12. 21 CFR 524.1484d - Neomycin sulfate, hydrocortisone acetate, tetracaine hydrochloride ear ointment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate, hydrocortisone acetate... OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484d Neomycin sulfate, hydrocortisone acetate... sulfate, equivalent to 3.5 milligrams of neomycin base, 5 milligrams of hydrocortisone acetate, and 5...

  13. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices.

    PubMed

    Genina, Natalja; Holländer, Jenny; Jukarainen, Harri; Mäkilä, Ermei; Salonen, Jarno; Sandler, Niklas

    2016-07-30

    The main purpose of this work was to investigate the printability of different grades of ethylene vinyl acetate (EVA) copolymers as new feedstock material for fused-deposition modeling (FDM™)-based 3D printing technology in fabrication of custom-made T-shaped intrauterine systems (IUS) and subcutaneous rods (SR). The goal was to select an EVA grade with optimal properties, namely vinyl acetate content, melting index, flexural modulus, for 3D printing of implantable prototypes with the drug incorporated within the entire matrix of the medical devices. Indomethacin was used as a model drug in this study. Out of the twelve tested grades of the EVA five were printable. One of them showed superior print quality and was further investigated by printing drug-loaded filaments, containing 5% and 15% indomethacin. The feedstock filaments were fabricated by hot-melt extrusion (HME) below the melting point of the drug substance and the IUS and SR were successfully printed at the temperature above the melting point of the drug. As a result, the drug substance in the printed prototypes showed to be at least partly amorphous, while the drug in the corresponding HME filaments was crystalline. This difference affected the drug release profiles from the filaments and printed prototype products: faster release from the prototypes over 30days in the in vitro tests. To conclude, this study indicates that certain grades of EVA were applicable feedstock material for 3D printing to produce drug-loaded implantable prototypes. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for the...

  15. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for the...

  16. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for the...

  17. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for the...

  18. Study of enhanced photogalvanic effect of Naphthol Green B in natural sunlight

    NASA Astrophysics Data System (ADS)

    Koli, Pooran

    2015-07-01

    The photogalvanic cells based on Naphthol Green B sensitizer-Fructose reductant-Sodium Lauryl Sulphate surfactant has been studied in natural sunlight. The cell has been found workable in natural sunlight with greatly enhanced optimum cell performance. The 1159.2 μW power, 4500 μA short-circuit current, 1070 mV open-circuit potential, 14.49% efficiency and 240 min storage capacity (as half change time) has been observed in optimum cell fabrication conditions.

  19. Granulocyte elastase, beta-thromboglobulin, and C3d during acetate or bicarbonate hemodialysis with Hemophan compared to a cellulose acetate membrane.

    PubMed

    Stegmayr, B G; Esbensen, K; Gutierrez, A; Lundberg, L; Nielsen, B; Stroemsaeter, C E; Wehle, B

    1992-01-01

    Twenty-two patients were dialysed in a cross-over design using Hemophan or cellulose acetate membranes. The dialysate buffer was acetate (n = 12) or bicarbonate (n = 10). Blood was sampled at 0, 15, 60 and 180 min and mean values were adjusted for changes in total protein in each sample. At 15 min during dialysis a decrease in leukocytes and platelets occurred with both membranes, irrespective of the buffer (Wilcoxon, p less than 0.006). During dialysis, increases were found in granulocyte elastase inhibitor complex (E- alpha 1-PI), beta-thromboglobulin and C3d. beta 2-microglobulin was not significantly changed in blood after dialysis with Hemophan or cellulose acetate membranes with bicarbonate buffer. Side effects were more pronounced at 180 min during dialysis with bicarbonate in patients using cellulose acetate than with Hemophan (p = 0.021, n = 8). Hemophan seemed to be more favourable than cellulose acetate membranes in regard to leukopenia and E- alpha 1-PI. The dialysate buffer may also alter membrane biocompatibility.

  20. A SIMPLE HPLC METHOD FOR DETECTING CARBARYL AND 1-NAPHTHOL IN BIOLOGICAL TISSUES.

    EPA Science Inventory

    Carbamates are a class of pesticide used in both agricultural and residential applications. A simple HPLC method for detecting Carb and its metabolite 1-naphthol (Naph) in tissues was developed to try to correlate tissue levels of carbaryl (Carb) (a prototypical carbamate) with c...

  1. Application of acetate, lactate, and fumarate as electron donors in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta M.; Bilyy, Oleksandr I.; Ferensovych, Yaroslav P.; Hnatush, Svitlana O.

    2013-09-01

    Microbial fuel cells (MFCs) are devices that use bacteria as the catalysts to oxidize organic and inorganic matter and generate current. Up to now, several classes of extracellular electron transfer mechanisms have been elucidated for various microorganisms. Shewanellaceae and Geobacteraceae families include the most of model exoelectrogenic microorganisms. Desulfuromonas acetoxidans bacterium inhabits aquatic sedimental sulfur-containing environments and is philogenetically close to representatives of Geobacteraceae family. Two chamber microbial fuel cell (0.3 l volume) was constructed with application of D. acetoxidans IMV B-7384 as anode biocatalyst. Acetic, lactic and fumaric acids were separately applied as organic electron donors for bacterial growth in constructed MFC. Bacterial cultivation in MFC was held during twenty days. Lactate oxidation caused electric power production with the highest value up to 0.071 mW on 64 hour of D. acetoxidans IMV B-7384 growth. Addition of acetic and fumaric acids into bacterial growth medium caused maximal power production up to 0.075 and 0.074 mW respectively on the 40 hour of their growth. Increasing of incubation time up to twentieth day caused decrease of generated electric power till 0.018 mW, 0.042 mW and 0.047 mW under usage of lactic, acetic and fumaric acids respectively by investigated bacteria. Power generation by D. acetoxidans IMV B-7384 was more stabile and durable under application of acetic and fumaric acids as electron donors in constructed MFC, than under addition of lactic acid in the same concentration into the growth medium.

  2. Posidonia oceanica as a Renewable Lignocellulosic Biomass for the Synthesis of Cellulose Acetate and Glycidyl Methacrylate Grafted Cellulose

    PubMed Central

    Coletti, Alessia; Valerio, Antonio; Vismara, Elena

    2013-01-01

    High-grade cellulose (97% α-cellulose content) of 48% crystallinity index was extracted from the renewable marine biomass waste Posidonia oceanica using H2O2 and organic peracids following an environmentally friendly and chlorine-free process. This cellulose appeared as a new high-grade cellulose of waste origin quite similar to the high-grade cellulose extracted from more noble starting materials like wood and cotton linters. The benefits of α-cellulose recovery from P. oceanica were enhanced by its transformation into cellulose acetate CA and cellulose derivative GMA-C. Fully acetylated CA was prepared by conventional acetylation method and easily transformed into a transparent film. GMA-C with a molar substitution (MS) of 0.72 was produced by quenching Fenton’s reagent (H2O2/FeSO4) generated cellulose radicals with GMA. GMA grafting endowed high-grade cellulose from Posidonia with adsorption capability. GMA-C removes β-naphthol from water with an efficiency of 47%, as measured by UV-Vis spectroscopy. After hydrolysis of the glycidyl group to glycerol group, the modified GMA-C was able to remove p-nitrophenol from water with an efficiency of 92%, as measured by UV-Vis spectroscopy. α-cellulose and GMA-Cs from Posidonia waste can be considered as new materials of potential industrial and environmental interest. PMID:28809259

  3. Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions

    ERIC Educational Resources Information Center

    Tundo, Pietro; Rosamilia, Anthony E.; Arico, Fabio

    2010-01-01

    This experiment investigates the methylation of 2-naphthol with dimethyl carbonate. The volatility of the substrates, products, and co-products allows the reaction to be performed using a continuous-flow gas-phase setup at ambient pressure. The reaction uses catalytic quantities of base, achieves high conversion, produces little waste, and…

  4. Functionalized carbon dot adorned coconut shell char derived green catalysts for the rapid synthesis of amidoalkyl naphthols.

    PubMed

    Narayanan, Divya P; Cherikallinmel, Sudha Kochiyil; Sankaran, Sugunan; Narayanan, Binitha N

    2018-06-15

    A one pot synthesis of carbon dot incorporated porous coconut shell char derived sulphonated catalyst is reported here for the first time and is effectively used in the multicomponent synthesis of amidoalkyl naphthol. Macroporous nature of the char is revealed from scanning electron microscopic (SEM) analysis, whereas the dispersion of carbon dots (CDs) on the porous coconut shell char is confirmed from the high resolution transmission electron microscopic (HRTEM) analysis. Fluorescence emission spectrum further confirmed the presence of CDs in the catalyst. Fourier-transform infrared (FTIR) spectral analysis of the materials indicated that sulphonation occurred both to the CD and to the porous char. X-ray photo electron spectroscopic (XPS) analysis of the most active catalyst confirmed the presence of both sulphonic acid and carboxylic acid groups in the catalyst. The coconut shell char derived materials prepared by varying the amount of H 2 SO 4 are successfully utilized as efficient alternative green catalysts for the multicomponent reaction, where excellent activity in amidoalkyl naphthol synthesis is obtained within short periods under solvent free reaction conditions. A maximum yield of 98% is obtained in the synthesis of N-[Phenyl-(2-hydroxy-naphthalen-1-yl)-methyl]-benzamide, the representative amidoalkyl naphthol, with the best catalyst within 3 min of reaction. The catalyst is highly active for the reactions carried out with varieties of aldehydes and amides with a product yield in the range of 88-98%. The best catalyst system retained more than 90% of its initial activity even upto 6 th repeated run. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Vibrational dynamics of acetate in D2O studied by infrared pump-probe spectroscopy.

    PubMed

    Banno, Motohiro; Ohta, Kaoru; Tominaga, Keisuke

    2012-05-14

    Solute-solvent interactions between acetate and D(2)O were investigated by vibrational spectroscopic methods. The vibrational dynamics of the COO asymmetric stretching mode in D(2)O was observed by time-resolved infrared (IR) pump-probe spectroscopy. The pump-probe signal contained both decay and oscillatory components. The time dependence of the decay component could be explained by a double exponential function with time constants of 200 fs and 2.6 ps, which are the same for both the COO asymmetric and symmetric stretching modes. The Fourier spectrum of the oscillatory component contained a band around 80 cm(-1), which suggests that the COO asymmetric stretching mode couples to a low-frequency vibrational mode with a wavenumber of 80 cm(-1). Based on quantum chemistry calculations, we propose that a bridged complex comprising an acetate ion and one D(2)O molecule, in which the two oxygen atoms in the acetate anion form hydrogen bonds with the two deuterium atoms in D(2)O, is the most stable structure. The 80 cm(-1) low-frequency mode was assigned to the asymmetric stretching vibration of the hydrogen bond in the bridged complex. This journal is © the Owner Societies 2012

  6. Annulation of β-naphthols and 4-hydroxycoumarins with vinylsulfonium salts: synthesis of dihydrofuran derivatives.

    PubMed

    Chen, Zi-Cong; Tong, Lang; Du, Zhi-Bo; Mao, Zhi-Feng; Zhang, Xue-Jing; Zou, Yong; Yan, Ming

    2018-04-18

    A new synthetic approach to dihydrofuran derivatives via the annulation reaction of β-naphthols and 4-hydroxycoumarins with vinylsulfonium salts has been developed. A variety of dihydrofuran derivatives were prepared in moderate to good yields under mild conditions. The products could be readily transformed to the corresponding furans via the dehydrogenation with DDQ.

  7. Oxidation reactions of 1- and 2-naphthols: an experimental and theoretical study.

    PubMed

    Sreekanth, R; Prasanthkumar, Kavanal P; Sunil Paul, M M; Aravind, Usha K; Aravindakumar, C T

    2013-11-07

    The transients formed during the reactions of oxidizing radicals with 1-naphthol (1) and 2-naphthol (2) in aqueous medium have been investigated by pulse radiolysis with detection by absorption spectroscopy and density functional theory (DFT) calculations. The transient spectra formed on hydroxyl radical ((•)OH) reactions of 1 and 2 exhibited λ(max) at 340 and 350 nm at neutral pH. The rate constants of the (•)OH reactions of 1 (2) were determined from build-up kinetics at λ(max) of the transients as (9.63 ± 0.04) × 10(9) M(-1) s(-1) ((7.31 ± 0.11) × 10(9) M(-1) s(-1)). DFT calculations using the B3LYP/6-31+G(d,p) method have been performed to locate favorable reaction sites in both 1 and 2 and identification of the pertinent transients responsible for experimental results. Calculations demonstrated that (•)OH additions can occur mostly at C1 and C4 positions of 1, and at C1 and C8 positions of 2. Among several isomeric (•)OH adducts possible, the C1 adduct was found to be energetically most stable both in 1 and 2. Time-dependent density functional theory (TDDFT) calculations in the solution phase has shown that the experimental spectrum of 1 was mainly attributed by 1a4 (kinetically driven (•)OH-adduct) formed via the addition of (•)OH at the C4 position which was 0.73 kcal/mol endergonic compared to 1a1 (thermodynamic (•)OH adduct), whereas 2a1 (thermodynamic/kinetic (•)OH-adduct) was mainly responsible for the experimental spectrum of 2. Naphthoxyl radicals of 1 and 2 have been predicted as the transient formed in the reaction of (•)OH at basic pH. In addition, the same transient species resulted from the reactions of oxide radical ion (O(•-)) at pH ≈ 13 and azide radical (N3(•)) at pH 7 with 1 and 2. Further, UV photolysis of aqueous solutions of 1 and 2 containing H2O2 (UV/H2O2) were used for the (•)OH induced oxidation product formations up on 60% degradations of 1 and 2; profiling of the oxidation products were performed by

  8. Sugar acetates as CO2-philes: molecular interactions and structure aspects from absorption measurement using quartz crystal microbalance.

    PubMed

    Ma, Shao-Ling; Wu, You-Ting; Hurrey, Michael L; Wallen, Scott L; Grant, Christine S

    2010-03-25

    Sugar acetates, recognized as attractive CO(2)-philic compounds, have potential uses as pharmaceutical excipients, controlled release agents, and surfactants for microemulsion systems in CO(2)-based processes. This study focuses on the quantitative examination of absorption of high pressure CO(2) into these sugar derivatives using quartz crystal microbalance (QCM) as a detector. In addition to the absorption measurement, the QCM is initially found to be able to detect the CO(2)-induced deliquescence of sugar acetates, and the CO(2) pressure at which the deliquescence happens depends on several influencing factors such as the temperature and thickness of the film. The CO(2) absorption in alpha-D-glucose pentaacetate (Ac-alpha-GLU) is revealed to be of an order of magnitude larger in comparison with its anomer Ac-beta-GLU, whereas alpha-D-galactose pentaacetate (Ac-alpha-GAL) absorbs CO(2) less than Ac-alpha-GLU due to the steric-hindrance between the acetyl groups on the anomeric and C4 carbons, implying the significant importance of the molecular structure and configuration of sugar acetates on the absorption. The effects of molecular size and acetyl number of sugar acetates on the CO(2) absorption are evaluated and the results indicate that the conformation and packing of crystalline sugar acetate as well as the accessibility of the acetyls are also vital for the absorption of CO(2). It is additionally found that a CO(2)-induced change in the structure from a crystalline system to an amorphous system results in an order of magnitude increase in CO(2) absorption. Further investigation illustrates the interaction strength between sugar acetates and CO(2) by calculating the thermodynamic parameters such as Henry's law constant, enthalpy and entropy of dissolution from the determined CO(2) absorption. Experiments and calculations demonstrate that sugar acetates exhibit high CO(2) absorption, as at least comparable to ionic liquids. Since the ionic liquids have

  9. Ulipristal acetate versus leuprolide acetate for uterine fibroids.

    PubMed

    Donnez, Jacques; Tomaszewski, Janusz; Vázquez, Francisco; Bouchard, Philippe; Lemieszczuk, Boguslav; Baró, Francesco; Nouri, Kazem; Selvaggi, Luigi; Sodowski, Krzysztof; Bestel, Elke; Terrill, Paul; Osterloh, Ian; Loumaye, Ernest

    2012-02-02

    The efficacy and side-effect profile of ulipristal acetate as compared with those of leuprolide acetate for the treatment of symptomatic uterine fibroids before surgery are unclear. In this double-blind noninferiority trial, we randomly assigned 307 patients with symptomatic fibroids and excessive uterine bleeding to receive 3 months of daily therapy with oral ulipristal acetate (at a dose of either 5 mg or 10 mg) or once-monthly intramuscular injections of leuprolide acetate (at a dose of 3.75 mg). The primary outcome was the proportion of patients with controlled bleeding at week 13, with a prespecified noninferiority margin of -20%. Uterine bleeding was controlled in 90% of patients receiving 5 mg of ulipristal acetate, in 98% of those receiving 10 mg of ulipristal acetate, and in 89% of those receiving leuprolide acetate, for differences (as compared with leuprolide acetate) of 1.2 percentage points (95% confidence interval [CI], -9.3 to 11.8) for 5 mg of ulipristal acetate and 8.8 percentage points (95% CI, 0.4 to 18.3) for 10 mg of ulipristal acetate. Median times to amenorrhea were 7 days for patients receiving 5 mg of ulipristal acetate, 5 days for those receiving 10 mg of ulipristal acetate, and 21 days for those receiving leuprolide acetate. Moderate-to-severe hot flashes were reported for 11% of patients receiving 5 mg of ulipristal acetate, for 10% of those receiving 10 mg of ulipristal acetate, and for 40% of those receiving leuprolide acetate (P<0.001 for each dose of ulipristal acetate vs. leuprolide acetate). Both the 5-mg and 10-mg daily doses of ulipristal acetate were noninferior to once-monthly leuprolide acetate in controlling uterine bleeding and were significantly less likely to cause hot flashes. (Funded by PregLem; ClinicalTrials.gov number, NCT00740831.).

  10. Rapid degradation of 2,4-dichlorophenoxyacetic acid facilitated by acetate under methanogenic condition.

    PubMed

    Yang, Zhiman; Xu, Xiaohui; Dai, Meng; Wang, Lin; Shi, Xiaoshuang; Guo, Rongbo

    2017-05-01

    Acetate can be used as an electron donor to stimulate 2,4-dichlorophenoxyacetic acid (2,4-D), which has not been determined under methanogenic condition. This study applied high-throughput sequencing and methanogenic inhibition approaches to investigate the 2,4-D degradation process using the enrichments obtained from paddy soil. Acetate addition significantly promoted 2,4-D degradation, which was 5-fold higher than in the acetate-unsupplemented enrichments in terms of the 2,4-D degradation rate constant. Dechloromonas and Pseudomonas were the dominant 2,4-D degraders. Methanogenic inhibition experiments indicated that the 2,4-D degradation was independent of methanogenesis. It was proposed that the accelerated 2,4-D degradation in the acetate-supplemented enrichment involved an unusual interaction, where members of the acetate oxidizers primarily oxidized acetate and produced H 2 . H 2 was utilized by the 2,4-D degraders to degrade 2,4-D, but also partially consumed by the hydrogenotrophic methanogens to produce methane. The findings presented here provide a new strategy for the remediation of 2,4-D-polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Application of 1-(2-pyridylazo)-2-naphthol-modified nanoporous silica as a technique in simultaneous trace monitoring and removal of toxic heavy metals in food and water samples.

    PubMed

    Abolhasani, Jafar; Behbahani, Mohammad

    2015-01-01

    Solid-phase extraction is one the most useful and efficient techniques for sample preparation, purification, cleanup, preconcentration, and determination of heavy metals at trace levels. In this paper, functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was applied for trace determination of copper, lead, cadmium, and nickel in water and seafood samples. The experimental conditions such as pH, sample and eluent flow rate, type, concentration and volume of the eluent, breakthrough volume, and effect of coexisting ions were optimized for efficient solid-phase extraction of trace heavy metals in different water and seafood samples. The content of solutions containing the mentioned heavy metals was determined by flame atomic absorption spectrometry (FAAS), and the limits of detection were 0.3, 0.4, 0.6, and 0.9 ng mL(-1) for cadmium, copper, nickel, and lead, respectively. Recoveries and precisions were >98.0 and <4%, respectively. The adsorption capacity of the modified nanoporous silica was 178 mg g(-1) for cadmium, 110 mg g(-1) for copper, 98 mg g(-1) for nickel, and 210 mg g(-1) for lead, respectively. The functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was characterized by thermogravimetry analysis (TGA), differential thermal analysis (DTA), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), elemental analysis (CHN), and N2 adsorption surface area measurement.

  12. Identification of novel potential acetate-oxidizing bacteria in an acetate-fed methanogenic chemostat based on DNA stable isotope probing.

    PubMed

    Wang, Hui-Zhong; Gou, Min; Yi, Yue; Xia, Zi-Yuan; Tang, Yue-Qin

    2018-05-11

    Acetate is a significant intermediate of anaerobic fermentation. There are two pathways for converting acetate to CH 4 and CO 2 : acetoclastic methanogenesis by acetoclastic methanogens, and syntrophic acetate oxidation by acetate-oxidizing bacteria (AOB) and hydrogenotrophic methanogens. Detailed investigations of syntrophic acetate-oxidizing bacteria (SAOB) should contribute to the elucidation of the microbial mechanisms of methanogenesis. In this study, we investigated the major phylogenetic groups of acetate-utilizing bacteria (AUB) in a mesophilic methanogenic chemostat fed with acetate as the sole carbon source by using DNA stable isotope probing (SIP) technology. The results indicated that acetoclastic methanogenesis and acetate oxidization/hydrogenotrophic methanogenesis coexisted in the mesophilic chemostat fed with acetate, operated at a dilution rate of 0.1 d -1 . OTU Ace13(9-17) (KU869530), Ace13(9-4) (KU667241), and Ace13(9-23) (KU667236), assigned to the phyla Firmicutes and Bacteroidetes, were probably potential SAOB in the chemostat, which needs further investigation. Species in the phyla Proteobacteria, Deferribacteres, Acidobacteria, Spirochaetes and Actinobacteria were probably capable of utilizing acetate for their growth. Methanoculleus was likely to be the preferred hydrogenotrophic methanogen for syntrophy with AOB in the chemostat.

  13. Acetate Dissimilation and Assimilation in Mycobacterium tuberculosis Depend on Carbon Availability

    PubMed Central

    Rücker, Nadine; Billig, Sandra; Bücker, René; Jahn, Dieter

    2015-01-01

    ABSTRACT Mycobacterium tuberculosis persists inside granulomas in the human lung. Analysis of the metabolic composition of granulomas from guinea pigs revealed that one of the organic acids accumulating in the course of infection is acetate (B. S. Somashekar, A. G. Amin, C. D. Rithner, J. Troudt, R. Basaraba, A. Izzo, D. C. Crick, and D. Chatterjee, J Proteome Res 10:4186–4195, 2011, doi:http://dx.doi.org/10.1021/pr2003352), which might result either from metabolism of the pathogen or might be provided by the host itself. Our studies characterize a metabolic pathway by which M. tuberculosis generates acetate in the cause of fatty acid catabolism. The acetate formation depends on the enzymatic activities of Pta and AckA. Using actyl coenzyme A (acetyl-CoA) as a substrate, acetyl-phosphate is generated and finally dephosphorylated to acetate, which is secreted into the medium. Knockout mutants lacking either the pta or ackA gene showed significantly reduced acetate production when grown on fatty acids. This effect is even more pronounced when the glyoxylate shunt is blocked, resulting in higher acetate levels released to the medium. The secretion of acetate was followed by an assimilation of the metabolite when other carbon substrates became limiting. Our data indicate that during acetate assimilation, the Pta-AckA pathway acts in concert with another enzymatic reaction, namely, the acetyl-CoA synthetase (Acs) reaction. Thus, acetate metabolism might possess a dual function, mediating an overflow reaction to release excess carbon units and resumption of acetate as a carbon substrate. IMPORTANCE During infection, host-derived lipid components present the major carbon source at the infection site. β-Oxidation of fatty acids results in the formation of acetyl-CoA. In this study, we demonstrate that consumption of fatty acids by Mycobacterium tuberculosis activates an overflow mechanism, causing the pathogen to release excess carbon intermediates as acetate. The Pta

  14. Removal and recovery of mercury(II) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant.

    PubMed

    Starvin, A M; Rao, T Prasada

    2004-09-10

    As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.

  15. Synthesis, and spectroscopic studies of charge transfer complex of 1,2-dimethylimidazole as an electron donor with π-acceptor 2,4-dinitro-1-naphthol in different polar solvents

    NASA Astrophysics Data System (ADS)

    Miyan, Lal; Khan, Ishaat M.; Ahmad, Afaq

    2015-07-01

    The charge transfer (CT) complex of 1,2-dimethylimidazole (DMI) as an electron donor with π acceptor 2,4-dinitro-1-naphthol (DNN) has been studied spectrophotometrically in different solvents like chloroform, acetonitrile, methanol, methylene chloride, etc. at room temperature. The CT complex which is formed through the transfer of lone pair electrons from DMI to DNN exhibits well resolved CT bands and the regions of these bands were remarkably different from those of the donor and acceptor. The stoichiometry of the CT complex was found to be 1:1 by a straight-line method between donor and acceptor with maximum absorption bands. The novel CT complex has been characterized by FTIR, TGA-DTA, powder XRD, 1H NMR and 13C NMR spectroscopic techniques. The Benesi-Hildebrand equation has been used to determine the formation constant (KCT), molar extinction coefficient (εCT), standard gibbs free energy (ΔG°) and other physical parameters of the CT complex. The formation constant recorded higher values and molar extinction coefficient recorded lower values in chloroform compared with methylene chloride, methanol and acetonitrile, confirming the strong interaction between the molecular orbital's of donor and acceptor in the ground state in less polar solvent. This CT complex has been studied by absorption spectra of donor 1,2-dimethylimidazole (DMI) and acceptor 2,4-dinitro-1-naphthol (DNN) by using the spectrophotometric technique in various solvents at room temperature.

  16. Phenol-quinone tautomerism in (arylazo)naphthols and the analogous Schiff bases: benchmark calculations.

    PubMed

    Ali, S Tahir; Antonov, Liudmil; Fabian, Walter M F

    2014-01-30

    Tautomerization energies of a series of isomeric [(4-R-phenyl)azo]naphthols and the analogous Schiff bases (R = N(CH3)2, OCH3, H, CN, NO2) are calculated by LPNO-CEPA/1-CBS using the def2-TZVPP and def2-QZVPP basis sets for extrapolation. The performance of various density functionals (B3LYP, M06-2X, PW6B95, B2PLYP, mPW2PLYP, PWPB95) as well as MP2 and SCS-MP2 is evaluated against these results. M06-2X and SCS-MP2 yield results close to the LPNO-CEPA/1-CBS values. Solvent effects (CCl4, CHCl3, CH3CN, and CH3OH) are treated by a variety of bulk solvation models (SM8, IEFPCM, COSMO, PBF, and SMD) as well as explicit solvation (Monte Carlo free energy perturbation using the OPLSAA force field).

  17. Doping of polyaniline with 6-cyano-2-naphthol.

    PubMed

    Das, Debasree; Datta, Anindya; Contractor, Aliasgar Q

    2014-11-13

    The conductivity of polyaniline (PANI) is ascribed to its emeraldine salt (PANI-ES), which is formed by protonation of its emeraldine base (PANI-EB) by acids. Generally, mineral acids are used for this purpose, but the use of dopants and additives to maintain the required acidity provides an alternative method to the preparation of PANI-ES. The present work attempts to achieve the protonation by the use of a weak organic acid, namely, 6-cyano-2-naphthol (6CN2), which is generally used as a superphotoacid, as its excited state pKa is significantly smaller than its ground state pKa. The question here is if the protonation of the aniline moieties in PANI takes place and if it does, whether it takes place by dissociation of the ground state or the excited state of 6CN2. Room temperature conductance measurements were carried out to see the effect of doping. The formation of PANI-ES from PANI-EB has been monitored by UV-vis spectrophotometry. When a polar counterion is inserted into the polymer matrix, it changes the environment of the nearby chains by introducing defects, reorganization of charges as a result of interaction with the polymer. Morphological investigation was done using optical microscopy, field emission gun scanning electron microscopy (FEGSEM), and field emission gun transmission electron microscopy FEGTEM. The influence of 6CN2 on the crystallinity of the polymer was determined by X-ray diffraction (XRD).

  18. Pulsed (13)C2-Acetate Protein-SIP Unveils Epsilonproteobacteria as Dominant Acetate Utilizers in a Sulfate-Reducing Microbial Community Mineralizing Benzene.

    PubMed

    Starke, Robert; Keller, Andreas; Jehmlich, Nico; Vogt, Carsten; Richnow, Hans H; Kleinsteuber, Sabine; von Bergen, Martin; Seifert, Jana

    2016-05-01

    In a benzene-degrading and sulfate-reducing syntrophic consortium, a clostridium affiliated to the genus Pelotomaculum was previously described to ferment benzene while various sulfate-reducing Deltaproteobacteria and a member of the Epsilonproteobacteria were supposed to utilize acetate and hydrogen as key metabolites derived from benzene fermentation. However, the acetate utilization network within this community was not yet unveiled. In this study, we performed a pulsed (13)C2-acetate protein stable isotope probing (protein-SIP) approach continuously spiking low amounts of acetate (10 μM per day) in addition to the ongoing mineralization of unlabeled benzene. Metaproteomics revealed high abundances of Clostridiales followed by Syntrophobacterales, Desulfobacterales, Desulfuromonadales, Desulfovibrionales, Archaeoglobales, and Campylobacterales. Pulsed acetate protein-SIP results indicated that members of the Campylobacterales, the Syntrophobacterales, the Archaeoglobales, the Clostridiales, and the Desulfobacterales were linked to acetate utilization in descending abundance. The Campylobacterales revealed the fastest and highest (13)C incorporation. Previous experiments suggested that the activity of the Campylobacterales was not essential for anaerobic benzene degradation in the investigated community. However, these organisms were consistently detected in various hydrocarbon-degrading and sulfate-reducing consortia enriched from the same aquifer. Here, we demonstrate that this member of the Campylobacterales is the dominant acetate utilizer in the benzene-degrading microbial consortium.

  19. Acetate Dose-Dependently Stimulates Milk Fat Synthesis in Lactating Dairy Cows.

    PubMed

    Urrutia, Natalie L; Harvatine, Kevin J

    2017-05-01

    Background: Acetate is a short-chain fatty acid (FA) that is especially important to cows because it is the major substrate for de novo FA synthesis. However, the effect of acetate supply on mammary lipid synthesis is not clear. Objective: The objective of this experiment was to determine the effect of increasing acetate supply on milk fat synthesis in lactating dairy cows. Methods: Six multiparous lactating Holstein cows were randomly assigned to treatments in a replicated design to investigate the effect of acetate supply on milk fat synthesis. Treatments were 0 (control), 5, 10, and 15 mol acetate/d continuously infused into the rumen for 4 d. Rumen short-chain FAs, plasma hormones and metabolites, milk fat concentration, and milk FA profile were analyzed on day 4 of each treatment. Polynomial contrasts were used to test the linear and quadratic effects of increasing acetate supply. Results: Acetate increased milk fat yield quadratically ( P < 0.01) by 7%, 16%, and 14% and increased milk fat concentration linearly ( P < 0.001) by 6%, 9%, and 11% for 5, 10, and 15 mol acetate/d, respectively, compared with the control treatment. Increased milk fat yield predominantly was due to a linear increase in 16-carbon FAs ( P < 0.001) and a quadratic increase in de novo synthesized FAs (<16-carbon FAs; P < 0.01), indicating that there was stimulation of de novo synthesis pathways. Apparent transfer of acetate to milk fat was 33.4%, 36.2%, and 20.6% for 5, 10, and 15 mol/d, respectively. Acetate infusion linearly increased the relative concentration of rumen acetate ( P < 0.001) before feeding, but not after feeding. Acetate linearly increased plasma ß-hydroxybutyric acid by 29%, 50%, and 78%, respectively, after feeding compared with the control treatment ( P < 0.01). Conclusions: Increasing acetate supply to lactating cows increases milk fat synthesis, suggesting that nutritional strategies that increase ruminal acetate absorption would be expected to increase milk fat

  20. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula Pb... cosmetics intended for coloring hair on the scalp only, subject to the following restrictions: (1) The... mustaches, eyelashes, eyebrows, or hair on parts of the body other than the scalp. (d) Labeling requirements...

  1. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula Pb... cosmetics intended for coloring hair on the scalp only, subject to the following restrictions: (1) The... mustaches, eyelashes, eyebrows, or hair on parts of the body other than the scalp. (d) Labeling requirements...

  2. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula Pb... cosmetics intended for coloring hair on the scalp only, subject to the following restrictions: (1) The... mustaches, eyelashes, eyebrows, or hair on parts of the body other than the scalp. (d) Labeling requirements...

  3. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula Pb... cosmetics intended for coloring hair on the scalp only, subject to the following restrictions: (1) The... mustaches, eyelashes, eyebrows, or hair on parts of the body other than the scalp. (d) Labeling requirements...

  4. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula Pb... cosmetics intended for coloring hair on the scalp only, subject to the following restrictions: (1) The... mustaches, eyelashes, eyebrows, or hair on parts of the body other than the scalp. (d) Labeling requirements...

  5. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yki-Jaervinen, H.; Koivisto, V.A.; Ylikahri, R.

    1988-02-01

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in R{sub a} was matched by a comparable decrease in glucose utilization (R{sub d}), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level wasmore » comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on R{sub a} is counterbalanced by equal inhibition of R{sub d}; (2) basal R{sub a} and R{sub d} are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance.« less

  6. Role of geraniol against lead acetate-mediated hepatic damage and their interaction with liver carboxylesterase activity in rats.

    PubMed

    Ozkaya, Ahmet; Sahin, Zafer; Kuzu, Muslum; Saglam, Yavuz Selim; Ozkaraca, Mustafa; Uckun, Mirac; Yologlu, Ertan; Comakli, Veysel; Demirdag, Ramazan; Yologlu, Semra

    2018-02-01

    In this study, the effect of geraniol (50 mg/kg for 30 d), a natural antioxidant and repellent/antifeedant monoterpene, in a rat model of lead acetate-induced (500 ppm for 30 d) liver damage was evaluated. Hepatic malondialdehyde increased in the lead acetate group. Reduced glutathione unchanged, but glutathione S-transferase, glutathione reductase, as well as carboxylesterase activities decreased in geraniol, lead acetate and geraniol + lead acetate groups. 8-OhDG immunoreactivity, mononuclear cell infiltrations and hepatic lead concentration were lower in the geraniol + lead acetate group than the lead acetate group. Serum aspartate aminotransferase and alanine aminotransferase activities increased in the Pb acetate group. In conclusion, lead acetate causes oxidative and toxic damage in the liver and this effect can reduce with geraniol treatment. However, we first observed that lead acetate, as well as geraniol, can affect liver carboxylesterase activity.

  7. Hydroxide as general base in the saponification of ethyl acetate.

    PubMed

    Mata-Segreda, Julio F

    2002-03-13

    The second-order rate constant for the saponification of ethyl acetate at 30.0 degrees C in H(2)O/D(2)O mixtures of deuterium atom fraction n (a proton inventory experiment) obeys the relation k(2)(n) = 0.122 s(-1) M(-1) (1 - n + 1.2n) (1 - n + 0.48n)/(1 - n + 1.4n) (1 - n + 0.68n)(3). This result is interpreted as a process where formation of the tetrahedral intermediate is the rate-determining step and the transition-state complex is formed via nucleophilic interaction of a water molecule with general-base assistance from hydroxide ion, opposite to the direct nucleophilic collision commonly accepted. This mechanistic picture agrees with previous heavy-atom kinetic isotope effect data of Marlier on the alkaline hydrolysis of methyl formate.

  8. Naphthol AS-BI (7-bromo-3-hydroxy-2-naphtho-o-anisidine) phosphatase and naphthol AS-BI. beta. -D-glucuronidase in Chinese hamster ovary cells: biochemical and flow cytometric studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolbeare, F.A.; Phares, W.

    1979-01-01

    Conditions for the biochemical and flow cytometric assay of 7-bromo-3-hydroxy-2-naphtho-o-anisidine phosphatase and ..beta..-D-glucuronidase activities in Chinese hamster ovary cells were studied. In the biochemical assays, the pH optimum for the phosphatase activity was pH 4.6 with a Km of 10/sup -5/ M; the pH optimum for ..beta..-D-glucuronidase activity was pH 5.0 with a Km of 2 x 10/sup -5/ M. For intact cells the derived constants were 3 to 10 times higher. The rate of hydrolysis of both substrates was also examined by flow cytometry. Cellular fluorescence increased linearly for only about 15 min. Diffusion of the fluorescent product probablymore » caused nonlinearity of the fluorescence increase and was demonstrated by mixing cells incubated with substrate with those that had not been incubated. After 15 min, cells that had not been exposed previously to product or substrate contained the fluorescent product. Cells fractionated into size classes by centrifugal elutriation also were analyzed by flow cytometry for ..beta..-D-glucuronidase activity. The activity increased linearly with the increase in cell size corresponding to the progression from G/sub 1/ through S and into G/sub 2/-M phases of the cell cycle.« less

  9. Effectiveness of 2,4-D and Picloram as Forestry Herbicides

    Treesearch

    Daniel G. Neary; Parshall B. Bush; Jerry L. Michael; John W. Taylor

    1986-01-01

    Foresters use 2,4-D, alone or in combination with picloram, as often as any herbcide in the South. An active analog of the plant growth hormone indole acetic acid, 2,4-D is used as a In most forest soils in the South where organic matter, moisture, and temperature are adequate, 2,4-D degrades rapidly. Amine and salt tomulations most commonly used in forestry do not...

  10. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma.

    PubMed

    Tsen, Andrew R; Long, Patrick M; Driscoll, Heather E; Davies, Matthew T; Teasdale, Benjamin A; Penar, Paul L; Pendlebury, William W; Spees, Jeffrey L; Lawler, Sean E; Viapiano, Mariano S; Jaworski, Diane M

    2014-03-15

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA-induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic and hypoacetylated mesenchymal glioma tumors. © 2013 UICC.

  11. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma

    PubMed Central

    Tsen, Andrew R.; Long, Patrick M.; Driscoll, Heather E.; Davies, Matthew T.; Teasdale, Benjamin A.; Penar, Paul L.; Pendlebury, William W.; Spees, Jeffrey L.; Lawler, Sean E.; Viapiano, Mariano S.; Jaworski, Diane M.

    2013-01-01

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic, and hypoacetylated mesenchymal glioma tumors. PMID:23996800

  12. Biotechnological applications of acetic acid bacteria.

    PubMed

    Raspor, Peter; Goranovic, Dusan

    2008-01-01

    products of biotransformations by AAB or their enzymes include 2-keto-L-gulonic acid, which is used for the production of vitamin C; D-tagatose, which is used as a bulking agent in food and a noncalorific sweetener; and shikimate, which is a key intermediate for a large number of antibiotics. Recently, for the first time, a pathogenic acetic acid bacterium was described, representing the newest and tenth genus of AAB.

  13. Enzymatic production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor.

    PubMed

    Alavijeh, Razieh Shafiee; Tabandeh, Fatemeh; Tavakoli, Omid; Karkhane, Aliasghar; Shariati, Parvin

    2015-01-01

    Microalgae have become an important source of biomass for biodiesel production. In enzymatic transesterification reaction, the enzyme activity is decreased in presence of alcohols. The use of different acyl acceptors such as methyl/ethyl acetate is suggested as an alternative and effective way to overcome this problem. In this study, ethyl acetate was used for the first time in the enzymatic production of biodiesel by using microalga, Chlorella vulgaris, as a triglyceride source. Enzymatic conversion of such fatty acids to biodiesel was catalyzed by Novozym 435 as an efficient immobilized lipase which is extensively used in biodiesel production. The best conversion yield of 66.71% was obtained at the ethyl acetate to oil molar ratio of 13:1 and Novozym 435 concentration of 40%, based on the amount of oil, and a time period of 72 h at 40℃. The results showed that ethyl acetate have no adverse effect on lipase activity and the biodiesel amount was not decreased even after seven transesterification cycles, so ethyl acetate has a great potential to be substituted for short-chain alcohols in transesterification reaction.

  14. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation.

    PubMed

    Andrés-Barrao, Cristina; Saad, Maged M; Chappuis, Marie-Louise; Boffa, Mauro; Perret, Xavier; Ortega Pérez, Ruben; Barja, François

    2012-03-16

    Acetic acid bacteria (AAB) are Gram-negative, strictly aerobic microorganisms that show a unique resistance to ethanol (EtOH) and acetic acid (AcH). Members of the Acetobacter and Gluconacetobacter genera are capable of transforming EtOH into AcH via the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes and are used for the industrial production of vinegar. Several mechanisms have been proposed to explain how AAB resist high concentrations of AcH, such as the assimilation of acetate through the tricarboxylic acid (TCA) cycle, the export of acetate by various transporters and modifications of the outer membrane. However, except for a few acetate-specific proteins, little is known about the global proteome responses to AcH. In this study, we used 2D-DIGE to compare the proteome of Acetobacter pasteurianus LMG 1262(T) when growing in glucose or ethanol and in the presence of acetic acid. Interesting protein spots were selected using the ANOVA p-value of 0.05 as threshold and 1.5-fold as the minimal level of differential expression, and a total of 53 proteins were successfully identified. Additionally, the size of AAB was reduced by approximately 30% in length as a consequence of the acidity. A modification in the membrane polysaccharides was also revealed by PATAg specific staining. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase

    PubMed Central

    Van Hellemond, Jaap J.; Opperdoes, Fred R.; Tielens, Aloysius G. M.

    1998-01-01

    Hydrogenosome-containing anaerobic protists, such as the trichomonads, produce large amounts of acetate by an acetate:succinate CoA transferase (ASCT)/succinyl CoA synthetase cycle. The notion that mitochondria and hydrogenosomes may have originated from the same α-proteobacterial endosymbiont has led us to look for the presence of a similar metabolic pathway in trypanosomatids because these are the earliest-branching mitochondriate eukaryotes and because they also are known to produce acetate. The mechanism of acetate production in these organisms, however, has remained unknown. Four different members of the trypanosomatid family: promastigotes of Leishmania mexicana mexicana, L. infantum and Phytomonas sp., and procyclics of Trypanosoma brucei were analyzed as well as the parasitic helminth Fasciola hepatica. They all use a mitochondrial ASCT for the production of acetate from acetyl CoA. The succinyl CoA that is produced during acetate formation by ASCT is recycled presumably to succinate by a mitochondrial succinyl CoA synthetase, concomitantly producing ATP from ADP. The ASCT of L. mexicana mexicana promastigotes was further characterized after partial purification of the enzyme. It has a high affinity for acetyl CoA (Km 0.26 mM) and a low affinity for succinate (Km 6.9 mM), which shows that significant acetate production can occur only when high mitochondrial succinate concentrations prevail. This study identifies a metabolic pathway common to mitochondria and hydrogenosomes, which strongly supports a common origin for these two organelles. PMID:9501211

  16. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources.

    PubMed

    Yin, Yanan; Zhang, Yifeng; Karakashev, Dimitar Borisov; Wang, Jianlong; Angelidaki, Irini

    2017-10-01

    Caproate is a valuable industrial product and chemical precursor. In this study, batch tests were conducted to investigate the fermentative caproate production through chain elongation from acetate and ethanol. The effect of acetate/ethanol ratio and initial ethanol concentration on caproate production was examined. When substrate concentration was controlled at 100mM total carbon, hydrogen was used as an additional electron donor. The highest caproate concentration of 3.11g/L was obtained at an ethanol/acetate ratio of 7:3. No additional electron donor was needed upon an ethanol/acetate ratio ≥7:3. Caproate production increased with the increase of carbon source until ethanol concentration over 700mM, which inhibited the fermentation process. The highest caproate concentration of 8.42g/L was achieved from high ethanol strength wastewater with an ethanol/acetate ratio of 10:1 (550mM total carbon). Results obtained in this study can pave the way towards efficient chain elongation from ethanol-rich wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The acetate switch.

    PubMed

    Wolfe, Alan J

    2005-03-01

    To succeed, many cells must alternate between life-styles that permit rapid growth in the presence of abundant nutrients and ones that enhance survival in the absence of those nutrients. One such change in life-style, the "acetate switch," occurs as cells deplete their environment of acetate-producing carbon sources and begin to rely on their ability to scavenge for acetate. This review explains why, when, and how cells excrete or dissimilate acetate. The central components of the "switch" (phosphotransacetylase [PTA], acetate kinase [ACK], and AMP-forming acetyl coenzyme A synthetase [AMP-ACS]) and the behavior of cells that lack these components are introduced. Acetyl phosphate (acetyl approximately P), the high-energy intermediate of acetate dissimilation, is discussed, and conditions that influence its intracellular concentration are described. Evidence is provided that acetyl approximately P influences cellular processes from organelle biogenesis to cell cycle regulation and from biofilm development to pathogenesis. The merits of each mechanism proposed to explain the interaction of acetyl approximately P with two-component signal transduction pathways are addressed. A short list of enzymes that generate acetyl approximately P by PTA-ACKA-independent mechanisms is introduced and discussed briefly. Attention is then directed to the mechanisms used by cells to "flip the switch," the induction and activation of the acetate-scavenging AMP-ACS. First, evidence is presented that nucleoid proteins orchestrate a progression of distinct nucleoprotein complexes to ensure proper transcription of its gene. Next, the way in which cells regulate AMP-ACS activity through reversible acetylation is described. Finally, the "acetate switch" as it exists in selected eubacteria, archaea, and eukaryotes, including humans, is described.

  18. Transplacental transfer of 2-naphthol in human placenta.

    PubMed

    Mirghani, Hisham; Osman, Nawal; Dhanasekaran, Subramanian; Elbiss, Hassan M; Bekdache, Gharid

    2015-01-01

    To determine the transfer of 2-naphthol (2-NPH) in fullterm human placental tissues. Six placentas were studied. The ex-vivo dual closed-loop human placental cotyledon perfusion model was used. 2-NPH was added to the perfusate in the maternal compartment. Samples were obtained from the maternal and fetal up to 360 min measuring. The mean fetal weight was 2880 ± 304.2 g. Mean perfused cotyledon weight was 26.3 (±5.5) g. All unperfused placental tissue samples contained NPH with a mean level of 7.98 (±1.73) μg\\g compared to a mean of 15.58 (±4.53) μg\\g after 360 min perfusion. A rapid drop in maternal 2-NPH concentration was observed; from 5.54 μg\\g in the first 15 min and 13.8 μg\\g in 360 min. The fetal side increased from 0.65 μg\\g in the initial 15 min to 1.5 μg\\g in 360 min. The transfer rate of NPH was much lower than that of antipyrine. 2-NPH has the ability to rapidly across the placenta from the maternal to the fetal compartment within 15 min. The placenta seems to play a role in limiting the passage of 2-NPH in the fetal compartment.

  19. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  20. [D-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, augments the effects of orally delivered exenatide and pramlintide acetate on energy balance and glycemic control in insulin-resistant male C57BLK/6-m db/db mice.

    PubMed

    Leinung, Matthew C; Grasso, Patricia

    2012-11-10

    The escalation predicted for the incidence of both type 2 diabetes mellitus and obesity has prompted investigators to search for additional pharmacotherapeutic approaches to their treatment. Two of these approaches, combination pharmacotherapy and utilization of leptin-related bioactive synthetic peptides as anti-diabetes/anti-obesity agents, were used in the present study. Exenatide or pramlintide acetate was reconstituted in dodecyl maltoside (DDM) in the absence or presence of [D-Leu-4]-OB3, and delivered orally by gavage to insulin-resistant male C57BLK/6-m db/db mice twice daily for 14 days. Body weight gain, food and water intake, blood glucose, and serum insulin levels were measured. Mice given DDM alone for 14 days were 19.7% heavier than they were at the beginning of the study, while oral delivery of exenatide or [D-Leu-4]-OB3 in DDM reduced body weight gain to only 13.9% and 11.5%, respectively, of initial body weight. Mice receiving exenatide and [D-Leu-4]-OB3 were 4.2% lighter than they were at the beginning of the study. In another study, Intravail® treated control mice gained 38.2% of their initial body weight, while mice receiving pramlintide acetate or [D-Leu-4]-OB3 were only 26.8% and 25.4% heavier, respectively, at the end of the study, Co-administration of pramlintide acetate and [D-Leu-4]-OB3 did not further enhance the effect of pramlintide acetate on body weight gain. Food intake was reduced by exenatide, pramlintide acetate, and [D-Leu-4]-OB3 alone, and co-delivery with [D-Leu-4]-OB3 did not induce a further decrease. Water intake was not affected by exenatide, pramlintide acetate, or [D-Leu-4]-OB3 alone, but co-delivery of exenatide or pramlintide acetate with [D-Leu-4]-OB3 resulted in a significant reduction in water intake. Oral delivery of exenatide or pramlintide acetate in DDM significantly lowered blood glucose levels by 20.4% and 30.2%, respectively. Co-delivery with [D-Leu-4]-OB3 further reduced blood glucose by 38.3% and 50

  1. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It...

  2. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It...

  3. Megestrol acetate in patients with AIDS-related cachexia.

    PubMed

    Von Roenn, J H; Armstrong, D; Kotler, D P; Cohn, D L; Klimas, N G; Tchekmedyian, N S; Cone, L; Brennan, P J; Weitzman, S A

    1994-09-15

    To compare the effects of oral suspensions of megestrol acetate, 800 mg/d, and placebo on body weight in patients with acquired immunodeficiency syndrome (AIDS)-related weight loss. Randomized, double-blind, placebo-controlled trial. Outpatient community and university patient care setting. Consecutive patients with AIDS who had substantial weight loss and anorexia were enrolled. Of 271 patients, 270 and 195 were evaluable for safety and efficacy, respectively. Patients were randomly assigned to receive placebo or megestrol acetate (100 mg, 400 mg, or 800 mg) daily for 12 weeks. The primary efficacy criterion was weight gain. Patients were evaluated at 4-week intervals for changes in weight and body composition, caloric intake, sense of well-being, toxic effects, and appetite. For evaluable patients receiving 800 mg of megestrol acetate per day, 64.2% gained 2.27 kg (5 pounds) or more compared with 21.4% of patients receiving placebo (P < 0.001). An intent-to-treat analysis showed significant differences (P = 0.002) between those receiving placebo and those receiving 800 mg of megestrol acetate for the number of patients who gained 2.27 kg (5 pounds) or more (8 of 32 [25%] compared with 38 of 61 [62.3%], respectively). Compared with patients receiving placebo at the time of maximum weight change, evaluable patients receiving megestrol acetate, 800 mg/d, reported improvement in overall well-being and had an increase in mean weight gain (-0.725 compared with 3.54 kg [-1.6 compared with +7.8 pounds]; P < 0.001), lean body mass (-0.772 compared with +1.14 kg [-1.7 compared with +2.5 pounds]; P < 0.001), appetite grade (P < 0.001), and caloric intake (-107 compared with +645.6 calories/d; P = 0.001). In patients with AIDS-related weight loss, megestrol acetate can stimulate appetite, food intake, and statistically significant weight gain that is associated with a patient-reported improvement in an overall sense of well-being.

  4. Performance of dairy cows fed high levels of acetic acid or ethanol.

    PubMed

    Daniel, J L P; Amaral, R C; Sá Neto, A; Cabezas-Garcia, E H; Bispo, A W; Zopollatto, M; Cardoso, T L; Spoto, M H F; Santos, F A P; Nussio, L G

    2013-01-01

    Ethanol and acetic acid are common end products from silages. The main objective of this study was to determine whether high concentrations of ethanol or acetic acid in total mixed ration would affect performance in dairy cows. Thirty mid-lactation Holstein cows were grouped in 10 blocks and fed one of the following diets for 7 wk: (1) control (33% Bermuda hay + 67% concentrates), (2) ethanol [control diet + 5% ethanol, dry matter (DM) basis], or (3) acetic acid (control diet + 5% acetic acid, DM basis). Ethanol and acetic acid were diluted in water (1:2) and sprayed onto total mixed rations twice daily before feeding. An equal amount of water was mixed with the control ration. To adapt animals to these treatments, cows were fed only half of the treatment dose during the first week of study. Cows fed ethanol yielded more milk (37.9 kg/d) than those fed the control (35.8 kg/d) or acetic acid (35.3 kg/d) diets, mainly due to the higher DM intake (DMI; 23.7, 22.2, and 21.6 kg/d, respectively). The significant diet × week interaction for DMI, mainly during wk 2 and 3 (when acetic acid reached the full dose), was related to the decrease in DMI observed for the acetic acid treatment. There was a diet × week interaction in excretion of milk energy per DMI during wk 2 and 3, due to cows fed acetic acid sustained milk yield despite lower DMI. Energy efficiency was similar across diets. Blood metabolites (glucose, insulin, nonesterified fatty acids, ethanol, and γ-glutamyl transferase activity) and sensory characteristics of milk were not affected by these treatments. Animal performance suggested similar energy value for the diet containing ethanol compared with other diets. Rumen conversion of ethanol to acetate and a concomitant increase in methane production might be a plausible explanation for the deviation of the predicted energy value based on the heat of combustion. Therefore, the loss of volatile compounds during the drying process in the laboratory should be

  5. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  6. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis.

    PubMed

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M; Mora, Diego; Compagno, Concetta

    2016-08-01

    The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis

    PubMed Central

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego

    2016-01-01

    ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432

  8. Photocatalytic degradation of the diazo dye naphthol blue black in water using MWCNT/Gd,N,S-TiO2 nanocomposites under simulated solar light.

    PubMed

    Mamba, Gcina; Mbianda, Xavier Yangkou; Mishra, Ajay Kumar

    2015-07-01

    A simple sol-gel method was employed to prepare gadolinium, nitrogen and sulphur tridoped titania decorated on oxidised multiwalled carbon nanotubes (MWCNT/Gd,N,S-TiO2), using titanium (IV) butoxide and thiourea as titanium and nitrogen and sulphur source, respectively. Samples of varying gadolinium loadings (0.2%, 0.6%, 1.0% and 3.0% Gd3+) relative to titania were prepared to investigate the effect of gadolinium loading and the amounts of carbon nanotubes, nitrogen and sulphur were kept constant for all the samples. Furthermore, the prepared nanocomposites were evaluated for the degradation of naphthol blue black (NBB) in water under simulated solar light irradiation. Higher degradation efficiency (95.7%) was recorded for the MWCNT/Gd,N,S-TiO2 (0.6% Gd) nanocomposites. The higher photocatalytic activity is attributed to the combined effect of improved visible light absorption and charge separation due to the synergistic effect of Gd, MWCNTs, N, S and TiO2. Total organic carbon (TOC) analysis revealed a higher degree of complete mineralisation of naphthol blue black (78.0% TOC removal) which minimises the possible formation of toxic degradation by-products such as the aromatic amines. The MWCNT/Gd,N,S-TiO2 (0.6% Gd) was fairly stable and could be re-used for five times, reaching a maximum degradation efficiency of 91.8% after the five cycles. Copyright © 2015. Published by Elsevier B.V.

  9. Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener "nanoparticle-catalyzed organic synthesis enhancement" approach.

    PubMed

    Das, Vijay K; Borah, Madhurjya; Thakur, Ashim J

    2013-04-05

    Nano-S prepared by an annealing process showed excellent catalytic activity for the synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition at 50 °C. The catalyst could be reused up to the fifth cycle without loss in its action. The green-ness of the present protocol was also measured using green metrics drawing its superiority.

  10. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest.

    PubMed

    Long, Patrick M; Tighe, Scott W; Driscoll, Heather E; Fortner, Karen A; Viapiano, Mariano S; Jaworski, Diane M

    2015-08-01

    Glioblastoma (GBM), the most common primary adult malignant brain tumor, is associated with a poor prognosis due, in part, to tumor recurrence mediated by chemotherapy and radiation resistant glioma stem-like cells (GSCs). The metabolic and epigenetic state of GSCs differs from their non-GSC counterparts, with GSCs exhibiting greater glycolytic metabolism and global hypoacetylation. However, little attention has been focused on the potential use of acetate supplementation as a therapeutic approach. N-acetyl-l-aspartate (NAA), the primary storage form of brain acetate, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis, are significantly reduced in GBM tumors. We recently demonstrated that NAA supplementation is not an appropriate therapeutic approach since it increases GSC proliferation and pursued an alternative acetate source. The FDA approved food additive Triacetin (glyceryl triacetate, GTA) has been safely used for acetate supplementation therapy in Canavan disease, a leukodystrophy due to ASPA mutation. This study characterized the effects of GTA on the proliferation and differentiation of six primary GBM-derived GSCs relative to established U87 and U251 GBM cell lines, normal human cerebral cortical astrocytes, and murine neural stem cells. GTA reduced proliferation of GSCs greater than established GBM lines. Moreover, GTA reduced growth of the more aggressive mesenchymal GSCs greater than proneural GSCs. Although sodium acetate induced a dose-dependent reduction of GSC growth, it also reduced cell viability. GTA-mediated growth inhibition was not associated with differentiation, but increased protein acetylation. These data suggest that GTA-mediated acetate supplementation is a novel therapeutic strategy to inhibit GSC growth. © 2015 Wiley Periodicals, Inc.

  11. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest

    PubMed Central

    Long, Patrick M.; Tighe, Scott W.; Driscoll, Heather E.; Fortner, Karen A.; Viapiano, Mariano S.; Jaworski, Diane M.

    2015-01-01

    Glioblastoma (GBM), the most common primary adult malignant brain tumor, is associated with a poor prognosis due, in part, to tumor recurrence mediated by chemotherapy and radiation resistant glioma stem-like cells (GSCs). The metabolic and epigenetic state of GSCs differs from their non-GSC counterparts, with GSCs exhibiting greater glycolytic metabolism and global hypoacetylation. However, little attention has been focused on the potential use of acetate supplementation as a therapeutic approach. N-acetyl-L-aspartate (NAA), the primary storage form of brain acetate, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis, are significantly reduced in GBM tumors. We recently demonstrated that NAA supplementation is not an appropriate therapeutic approach since it increases GSC proliferation and pursued an alternative acetate source. The FDA approved food additive Triacetin (glyceryl triacetate, GTA) has been safely used for acetate supplementation therapy in Canavan disease, a leukodystrophy due to ASPA mutation. This study characterized the effects of GTA on the proliferation and differentiation of six primary GBM-derived GSCs relative to established U87 and U251 GBM cell lines, normal human cerebral cortical astrocytes, and murine neural stem cells. GTA reduced proliferation of GSCs greater than established GBM lines. Moreover, GTA reduced growth of the more aggressive mesenchymal GSCs greater than proneural GSCs. Although sodium acetate induced a dose-dependent reduction of GSC growth, it also reduced cell viability. GTA-mediated growth inhibition was not associated with differentiation, but increased protein acetylation. These data suggest that GTA-mediated acetate supplementation is a novel therapeutic strategy to inhibit GSC growth. PMID:25573156

  12. [Acetate-free biofiltration].

    PubMed

    Martello, Mauro; Di Luca, Marina

    2012-01-01

    Acetate-free biofiltration is a dialysis method with high biocompatibility. The lack of acetate results in decreased stimulation of the production of inflammatory mediators. Other favorable features have been added over the years, such as the possibility to modulate the concentration of potassium in the dialysate, thereby reducing the risk of arrhythmias; the possibility to constantly monitor the blood volume during treatment to reduce the risk of intradialytic hypotension; and a reduced need for heparin thanks to a membrane with a specially treated surface. In this review we discuss the specifics of acetate-free biofiltration.

  13. Wet in situ transesterification of microalgae using ethyl acetate as a co-solvent and reactant.

    PubMed

    Park, Jeongseok; Kim, Bora; Chang, Yong Keun; Lee, Jae W

    2017-04-01

    This study addresses wet in situ transesterification of microalgae for the production of biodiesel by introducing ethyl acetate as both reactant and co-solvent. Ethyl acetate and acid catalyst are mixed with wet microalgae in one pot and the mixture is heated for simultaneous lipid extraction and transesterification. As a single reactant and co-solvent, ethyl acetate can provide higher FAEE yield and more saccharification of carbohydrates than the case of binary ethanol and chloroform as a reactant and a co-solvent. The optimal yield was 97.8wt% at 114°C and 4.06M catalyst with 6.67mlEtOAC/g dried algae based on experimental results and response surface methodology (RSM). This wet in situ transesterification of microalgae using ethyl acetate doesn't require an additional co-solvent and it also promises more economic benefit as combining extraction and transesterification in a single process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  15. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  16. Combination of Aryl Diselenides/Hydrogen Peroxide and Carbon Nanotube-Rhodium Nanohybrid for Naphthols Oxidation: An Efficient Route towards Trypanocidal Quinones.

    PubMed

    de Carvalho, Renato L; Jardim, Guilherme A M; Santos, Augusto; Araujo, Maria H; Oliveira, Willian X C; Bombaça, Ana Cristina; Menna-Barreto, Rubem F S; Gopi, Elumalai; Gravel, Edmond; Doris, Eric; da Silva Júnior, Eufrânio Nunes

    2018-06-14

    We report a combination of aryl diselenides/hydrogen peroxide and carbon nanotube-rhodium nanohybrid for naphthols oxidation towards synthesis of 1,4-naphthoquinones and evaluation of their relevant trypanocidal activity. Under a combination of (PhSe)2/H2O2 in the presence of O2 in i-PrOH/Hexane, several benzenoid (A-ring) substituted quinones were prepared in moderate to high yields. We also studied the contribution of RhCNT as co-catalyst in this process and, in some cases, yields were improved. This method provides an efficient and versatile alternative for preparing A-ring modified naphthoquinonoid compounds with relevant biological profile. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Non-specific esterases in the gustatory epithelia of man and dog.

    PubMed

    Rakhawy, M T

    1976-01-01

    (1) Simple esterase activity has been demonstrated in the gustatory epithelium of man and dog by the simultaneous coupling azo dye technique using alpha-naphthol and naphthol As acetate. Unfixed cryostat and fixed paraffin sections were used. (2) A peculiar pattern of simple esterase activity was encountered in which--contrary to what was to be expected--the taste bud-carrying papillae showed a very poor reaction while there was a gradual increase in the enzyme intensity as the epithelium was traced away from these papillae. (3) It seems that among the reported differences between simple esterases and cholinesterases is this differential activity in relation to the gemmal system. (4) A peculiar difference in the enzyme activity was reported between the unfixed cryostat and the fixed paraffin sections in the human material.

  18. Ozone decomposition in aqueous acetate solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehested, K.; Holcman, J.; Bjergbakke, E.

    1987-01-01

    The acetate radical ion reacts with ozone with a rate constant of k = (1.5 +/- 0.5) x 10Z dmT mol s . The products from this reaction are CO2, HCHO, and O2 . By subsequent reaction of the peroxy radical with ozone the acetate radical ion is regenerated through the OH radical. A chain decomposition of ozone takes place. It terminates when the acetate radical ion reacts with oxygen forming the unreactive peroxy acetate radical. The chain is rather short as oxygen is developed, as a result of the ozone consumption. The inhibiting effect of acetate on the ozonemore » decay is rationalized by OH scavenging by acetate and successive reaction of the acetate radical ion with oxygen. Some products from the bimolecular disappearance of the peroxy acetate radicals, however, react further with ozone, reducing the effectiveness of the stabilization.« less

  19. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2006-07-11

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  20. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  1. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be produced by the...

  2. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures.

    PubMed

    Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Schaap, Joris D; Kampman, Christel; Buisman, Cees J N

    2010-01-01

    Biological acetate reduction with hydrogen is a potential method to convert wet biomass waste into ethanol. Since the ethanol concentration and reaction rates are low, this research studies the feasibility of using an electrode, in stead of hydrogen, as an electron donor for biological acetate reduction in conjunction of an electron mediator. Initially, the effect of three selected mediators on metabolic flows during acetate reduction with hydrogen was explored; subsequently, the best performing mediator was used in a bioelectrochemical system to stimulate acetate reduction at the cathode with mixed cultures at an applied cathode potential of -550 mV. In the batch test, methyl viologen (MV) was found to accelerate ethanol production 6-fold and increased ethanol concentration 2-fold to 13.5 +/- 0.7 mM compared to the control. Additionally, MV inhibited n-butyrate and methane formation, resulting in high ethanol production efficiency (74.6 +/- 6%). In the bioelectrochemical system, MV addition to an inoculated cathode led directly to ethanol production (1.82 mM). Hydrogen was coproduced at the cathode (0.0035 Nm(3) hydrogen m(-2) d(-1)), so it remained unclear whether acetate was reduced to ethanol by electrons supplied by the mediator or by hydrogen. As MV reacted irreversibly at the cathode, ethanol production stopped after 5 days.

  3. Low and high acetate amendments are equally as effective at promoting complete dechlorination of trichloroethylene (TCE).

    PubMed

    Wei, Na; Finneran, Kevin T

    2013-06-01

    Experiments with trichloroethylene-contaminated aquifer material demonstrated that TCE, cis-DCE, and VC were completely degraded with concurrent Fe(III) or Fe(III) and sulfate reduction when acetate was amended at stoichiometric concentration; competing TEAPs did not inhibit ethene production. Adding 10× more acetate did not increase the rate or extent of TCE reduction, but only increased methane production. Enrichment cultures demonstrated that ~90 μM TCE or ~22 μM VC was degraded primarily to ethene within 20 days with concurrent Fe(III) or Fe(III) + sulfate reduction. The dechlorination rates were comparable between the low and high acetate concentrations (0.36 vs 0.34 day(-1), respectively), with a slightly slower rate in the 10× acetate amended incubations. Methane accumulated to 13.5 (±0.5) μmol/tube in the TCE-degrading incubations with 10× acetate, and only 1.4 (±0.1) μmol/tube with low acetate concentration. Methane accumulated to 16 (±1.5) μmol/tube in VC-degrading enrichment with 10× acetate and 2 (±0.1) μmol/tube with stoichiometric acetate. The estimated fraction of electrons distributed to methanogenesis increased substantially when excessive acetate was added. Quantitative PCR analysis indicated that 10× acetate did not enhance Dehalococcoides biomass but rather increased the methanogen abundance by nearly one order of magnitude compared to that with stoichiometric acetate. The data suggest that adding low levels of substrate may be equally if not more effective as high concentrations, without producing excessive methane. This has implications for field remediation efforts, in that adding excess electron donor may not benefit the reactions of interest, which in turn will increase treatment costs without direct benefit to the stakeholders.

  4. Static and dynamic properties of 1,1'-bi-2-naphthol and its conjugated acids and bases.

    PubMed

    Alkorta, Ibon; Cancedda, Céline; Cocinero, Emilio José; Dávalos, Juan Z; Ecija, Patrica; Elguero, José; González, Javier; Lesarri, Alberto; Ramos, Rocio; Reviriego, Felipe; Roussel, Christian; Uriarte, Iciar; Vanthuyne, Nicolas

    2014-11-03

    Several convergent techniques were used to characterize 1,1'-bi-2-naphthol (BINOL) and some of its properties. Its acidity in the gas-phase, from neutral species to monoanion, was measured by mass spectrometry. The conformation and structure of BINOL in the gas phase was determined by microwave rotational spectroscopy. NMR experiments in fluorosulfonic acid established that BINOL was monoprotonated on one of the hydroxyl oxygen atoms. The enantiomerization barriers reported in the literature for BINOL under neutral, basic, and acid conditions were analyzed with regard to the species involved. Finally, DFT calculations allowed all of these results to be gathered in a coherent picture of the BINOL structure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Spectrophotometric Determination of Nitrogen Oxides in the Air with 2-N-Ethyl-5-Naphthol-7-Sulfonic Acid

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Shi, W.; Zhang, C.; Wen, H.

    2017-09-01

    For the determination of nitrogen oxides in the air, the structure of diazo and coupling compounds was studied and tested by experiments. The conditions and methods of diazo and coupling reactions were investigated. Furthermore, a spectrophotometric method using sulfanilamide as a diazo compound and 2-N-ethyl-5-naphthol-7-sulfonic acid (N-ethyl J acid) as a coupling compound was proposed. The maximum absorption wavelength of sulfanilamide-Nethyl J acid azo compound was at 478 nm. The molar absorptivity was 4.31 × 104 L/(mol × cm) with a recovery of 98.7-100.9% and RSD of 1.85%. For nitrogen oxides, the determinate limit of this measurement was 0.015 mg/m3 and the determinate range 0.024-2.0 mg/m3. Moreover, a high degree of correlation was observed between the results obtained by the proposed method and the standard methods. The proposed method can be easily applied to determine nitrogen oxides in the air.

  6. Internal Dynamics of Water Attached to a Photoacidic Substrate: High Resolution Electronic Spectroscopy of β-NAPHTHOL-WATER in the Gas Phase.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Young, Justin W.; Pratt, David W.

    2010-06-01

    An understanding of the structure and internal dynamics of water attached to the photoacid β-naphthol is attainable through rotationally resolved electronic spectroscopy. Here, we present rotational constants for the 1:1 acid-base cluster in both S0 and S1, which provide the location of water within the cluster, as well as the barrier height to internal rotation of water in each electronic state. The barrier height decreases slightly upon excitation, from 206 wn in S0, to 182 wn in S1. There is also little evidence of a large change in water location, orientation, or overall hydrogen bond length upon irradiation with UV light. Thus, a single water molecule has relatively little affect on the substrate photo-acidity measured in the liquid phase.

  7. Inert Reassessment Document for Amyl Acetate

    EPA Pesticide Factsheets

    Both acetates have a number of industrial uses such as solvents for lacquers, paints, and inks. Pharmaceutically, ethyl acetate is a flavoring aid and amyl acetate is used in extraction of penicillin.

  8. The Potency of Red Seaweed (Eucheuma cottonii) Extracts as Hepatoprotector on Lead Acetate-induced Hepatotoxicity in Mice.

    PubMed

    Wardani, Giftania; Farida, Nuraini; Andayani, Rina; Kuntoro, Mahmiah; Sudjarwo, Sri Agus

    2017-01-01

    Lead is one of the most toxic metals, producing severe organ damage in animals and humans. Oxidative stress is reported to play an important role in lead acetate-induced liver injury. This study was carried out to investigate the role of ethanol extract of Eucheuma cottonii in protecting against lead acetate-induced hepatotoxicity in male mice. The sample used fifty male mice which were divided into five groups: negative control (mice were given daily with Aquadest); positive control (mice were given daily with lead acetate 20 mg/kg body weight (BW) orally once in a day for 21 days); and the treatment group (mice were given E. cottonii extracts 200 mg, 400 mg, and 800 mg/kg BW orally once in a day for 25 days, and on the 4 th day, were given lead acetate 20 mg/kg BW 1 h after E. cottonii extract administration for 21 days). On day 25, the levels of serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvate transaminase (SGPT), alkaline phosphatase (ALP), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured. The data of SGOT, SGPT, ALP, MDA, SOD, and GPx were analyzed with one-way ANOVA, followed by least significant difference test. The results showed that oral administration of lead acetate 20 mg/kg BW for 21 days resulted in a significant increase in SGOT, SGPT, ALP, and MDA levels. Moreover, there was a significant decrease in SOD and GPx levels. Treatment with E. cottonii extracts of 800 mg/kg BW but not with 200 mg/kg BW and 400 mg/kg BW significantly ( P < 0.05) decreased the elevated SGPT, SGOT, ALP, and MDA levels as compared to positive control group. Treatment with E. cottonii extracts of 800 mg/kg BW also showed a significant increase in SOD and GPx levels as compared to positive control group. Treating mice with lead acetate showed different histopathological changes such as loss of the normal structure of hepatic cells, blood congestion, and fatty degeneration whereas animals treated with lead

  9. The Potency of Red Seaweed (Eucheuma cottonii) Extracts as Hepatoprotector on Lead Acetate-induced Hepatotoxicity in Mice

    PubMed Central

    Wardani, Giftania; Farida, Nuraini; Andayani, Rina; Kuntoro, Mahmiah; Sudjarwo, Sri Agus

    2017-01-01

    Background: Lead is one of the most toxic metals, producing severe organ damage in animals and humans. Oxidative stress is reported to play an important role in lead acetate-induced liver injury. Aim: This study was carried out to investigate the role of ethanol extract of Eucheuma cottonii in protecting against lead acetate-induced hepatotoxicity in male mice. Materials and Methods: The sample used fifty male mice which were divided into five groups: negative control (mice were given daily with Aquadest); positive control (mice were given daily with lead acetate 20 mg/kg body weight (BW) orally once in a day for 21 days); and the treatment group (mice were given E. cottonii extracts 200 mg, 400 mg, and 800 mg/kg BW orally once in a day for 25 days, and on the 4th day, were given lead acetate 20 mg/kg BW 1 h after E. cottonii extract administration for 21 days). On day 25, the levels of serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvate transaminase (SGPT), alkaline phosphatase (ALP), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured. The data of SGOT, SGPT, ALP, MDA, SOD, and GPx were analyzed with one-way ANOVA, followed by least significant difference test. Results: The results showed that oral administration of lead acetate 20 mg/kg BW for 21 days resulted in a significant increase in SGOT, SGPT, ALP, and MDA levels. Moreover, there was a significant decrease in SOD and GPx levels. Treatment with E. cottonii extracts of 800 mg/kg BW but not with 200 mg/kg BW and 400 mg/kg BW significantly (P < 0.05) decreased the elevated SGPT, SGOT, ALP, and MDA levels as compared to positive control group. Treatment with E. cottonii extracts of 800 mg/kg BW also showed a significant increase in SOD and GPx levels as compared to positive control group. Treating mice with lead acetate showed different histopathological changes such as loss of the normal structure of hepatic cells, blood congestion, and fatty

  10. Physicochemical properties and ion-solvent interactions in aqueous sodium, ammonium, and lead acetate solution

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Mendkudle, M. S.

    2014-09-01

    Densities (ρ), viscosities (η) and refractive indices ( n D) of aqueous sodium acetate (SA), ammonium acetate (AA), and lead acetate (LA) solutions have been measured for different concentrations of salts at 302.15 K. Apparent molar volumes (φv) for studied solutions were calculated from density data, and fitted to Masson's relation and partial molar volume (φ{v/o}) was determined. Viscosity data were fitted to Jones-Dole equation and viscosity A- and B-coefficients were determined. Refractive index and density data were fitted to Lorentz and Lorenz equation and specific refraction ( R D) were calculated. Behavior of various physicochemical properties indicated presence of strong ion-solvent interactions in present systems and the acetate salts structure maker in water.

  11. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.

  12. Synthesis of Highly Polymerized Water-soluble Cellulose Acetate by the Side Reaction in Carboxylate Ionic Liquid 1-ethyl-3-methylimidazolium Acetate

    NASA Astrophysics Data System (ADS)

    Pang, Jinhui; Liu, Xin; Yang, Jun; Lu, Fachuang; Wang, Bo; Xu, Feng; Ma, Mingguo; Zhang, Xueming

    2016-09-01

    In the present study, we describe a novel one-step method to prepare water-soluble cellulose acetate (WSCA) with higher degree of polymerization values (DP = 650-680) by in situ activation of carboxyl group in ionic liquid. First of all, cellulose was dissolved in 1-ethyl-3-methylimidazolium acetate (EmimAc) and reacted with dichloroacetyl chloride (Cl2AcCl) in order to make cellulose dichloroacetate. Under various conditions, a series of water soluble products were produced. Elemental analysis and NMR results confirmed that they were cellulose acetate with DS (degree of substitution) values in the range from 0.30 to 0.63. NMR studies demonstrated that Cl2AcCl reacted with acetate anion of EmimAc producing a mixed anhydride that acetylated cellulose. Other acylating reagents such as benzoyl chloride, chloroacetyl chloride can also work similarly. 2D NMR characterization suggested that 6-mono-O-acetyl moiety, 3,6-di-O-acetylcellulose and 2,6-di-O-acetyl cellulose were all synthesized and the reactivity of hydroxyl groups in anhydro-glucose units was in the order C-6>C-3>C-2. This work provides an alternative way to make WSCA, meanwhile, also services as a reminder that the activity of EmimAc toward carbohydrate as acylating reagents could be a problem, because the expected acylated products may not be resulted and recycling of this ionic liquid could also be difficult.

  13. Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodii.

    PubMed

    Steger, Franziska; Rachbauer, Lydia; Windhagauer, Matthias; Montgomery, Lucy F R; Bochmann, Günther

    2017-08-01

    Hydrogen from water electrolysis is often suggested as a way of storing the excess energy from wind and solar power plants. However, unlike natural gas, hydrogen is difficult to store and distribute. One solution is to convert the hydrogen into other fuels or bulk chemicals. In this study we investigated fermentation in which homoacetogenic clostridia apply the Wood-Ljungdahl pathway to generate acetate from H 2 and CO 2 . Acetate can be used as a bulk chemical or further transformed into biofuels. Autotrophic growth with CO 2 as the sole carbon source is slow compared to heterotrophic growth, so the aim of this work was to improve continuous gas fermentation by immobilising the acetate-producing clostridia, thus preventing their wash out from the bioreactor. Two homoacetogenic bacterial strains (Acetobacterium woodii and Moorella thermoacetica) were tested for their acetate production potential, with A. woodii proving to be the better strain with maximum acetate concentration of 29.57 g l -1 . Due to its stability during fermentation and good bacterial immobilisation, linen was chosen as immobilisation material for continuous fermentation. This study demonstrates the successful continuous fermentation of acetate from H 2 and CO 2 using A. woodii immobilised on a low-cost surface at high volumetric productivity of 1.21 ± 0.05 g acetate l -1 d -1 . This has great industrial potential and future studies should focus on the scale-up of this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.

    PubMed

    Goevert, Dennis; Conrad, Ralf

    2008-11-01

    Acetate is a key intermediate in the anaerobic degradation of organic matter. In anoxic environments, available acetate is a competitive substrate for sulfate-reducing bacteria (SRB) and methane-producing archaea. Little is known about the fractionation of carbon isotopes by sulfate reducers. Therefore, we determined carbon isotope compositions in cultures of three acetate-utilizing SRB, Desulfobacter postgatei, Desulfobacter hydrogenophilus, and Desulfobacca acetoxidans. We found that these species showed strong differences in their isotope enrichment factors (epsilon) of acetate. During the consumption of acetate and sulfate, acetate was enriched in 13C by 19.3% per hundred in Desulfobacca acetoxidans. By contrast, both D. postgatei and D. hydrogenophilus showed a slight depletion of 13C resulting in epsilon(ac)-values of 1.8 and 1.5% per hundred, respectively. We suggest that the different isotope fractionation is due to the different metabolic pathways for acetate oxidation. The strongly fractionating Desulfobacca acetoxidans uses the acetyl-CoA/carbon monoxide dehydrogenase pathway, which is also used by acetoclastic methanogens that show a similar fractionation of acetate (epsilon(ac) = -21 to -27% per hundred). In contrast, Desulfobacter spp. oxidize acetate to CO2 via the tricarboxylic acid (TCA) cycle and apparently did not discriminate against 13C. Our results suggestthat carbon isotope fractionation in environments with sulfate reduction will strongly depend on the composition of the sulfate-reducing bacterial community oxidizing acetate.

  15. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.

    PubMed

    Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min

    2017-09-01

    Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.

  16. Naphthol-based fluorescent sensors for aluminium ion and application to bioimaging

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Pan-feng; Chai, Jie; Hu, Xiang-quan; Gao, Tingting; Chao, Jian-bin; Chen, Ting-gui; Yang, Bin-sheng

    2016-11-01

    Three naphthol Schiff base-type fluorescent sensors, 1,3-Bis(2-hydroxy-1-naphthylideneamino)propane (L1), 1,3-Bis(1-naphthylideneamino)-2-hydroxypropane (L2) and 1,3-Bis(2-hydroxy-1-naphthylideneamino)-2-hydroxypropane (L3), have been synthesized. Their recognition abilities for Al3 + are studied by fluorescence spectra. Coordination with Al3 + inhibited the Cdbnd N isomerization of Schiff base which intensely increase the fluorescence of L1-L3. Possessing a suitable space coordination structure, L3 is a best selective probe for Al3 + over other metal ions in MeOH-HEPES buffer (3/7, V/V, pH = 6.6, 25 °C, λem = 435 nm). A turn-on ratio over 140-fold is triggered with the addition of 1.0 equiv. Al3 + to L3. The binding constant Ka of L3-Al3 + is found to be 1.01 × 106.5 M- 1 in a 1:1 complex mode. The detection limit for Al3 + is 0.05 μM. Theoretical calculations have also been included in support of the configuration of the L3-Al3 + complex. Importantly, the probe L3 has been successfully used for fluorescence imaging in colon cancer SW480 cells.

  17. Ultrasound-Assisted Synthesis of Titania Nanoparticles, Characterization of Their Thin Films, and Activity in Photooxidation of β-Naphthol

    NASA Astrophysics Data System (ADS)

    Hurain, Syyeda Sana; Habib, Amir; Hussain, Syed Muzammil; Ul-Haq, Noaman

    2015-11-01

    Nanosized titania (TiO2) films and powders were prepared from titanium isopropoxide by ultrasonication then ultrasonic aerosol-assisted chemical vapor deposition (UAACVD). X-ray diffraction (XRD), used to study the crystal structure, phase, and crystallite size of TiO2 samples annealed at 500°C, revealed anatase was the main crystalline phase. Scanning electron microscopy and atomic force microscopy revealed the quasi-spherical morphology of the TiO2 nanoparticles; average size distribution was in the range 20-35 nm. Ultraviolet-visible spectroscopy was used to evaluate the photocatalytic activity of the anatase TiO2, on the basis of efficiency of degradation of β-naphthol. Pure TiO2 nanoparticles synthesized by use of sonication-UAACVD then calcination at 500°C enabled effective photodegradation under UV light. This method of synthesis of TiO2 is superior to the reflux-UAACVD method with titanium isopropoxide as precursor.

  18. Hypercrosslinked poly(styrene-co-divinylbenzene) resin as a specific polymeric adsorbent for purification of berberine hydrochloride from aqueous solutions.

    PubMed

    Li, Yin; Cao, Ruofan; Wu, Xiaofei; Huang, Jianhan; Deng, Shuguang; Lu, Xiuyang

    2013-06-15

    A hypercrosslinked poly(styrene-co-divinylbenzene) resin (TEPA) was synthesized and characterized as a specific polymeric adsorbent for concentrating berberine hydrochloride from aqueous solutions. Three organic molecules of different sizes (2-naphthol, berberine hydrochloride, and Congo red) were used as target molecules to elucidate the molecular sieving effect of the TEPA adsorbent. Because the TEPA adsorbent has a pore structure consisting mainly of micropores and mesopores, the adsorption of 2-naphthol from aqueous solutions is very efficient due to the micropore filling effect. The adsorption of berberine hydrochloride mostly takes place in the mesopores as well as macropores, while the adsorption of Congo red mainly occurs in the macropores. The smaller adsorbate molecule (2-naphthol) reaches the adsorption equilibrium much faster than the larger ones (berberine hydrochloride and Congo red). An adsorption breakthrough experiment with an aqueous solution containing 2-naphthol and berberine hydrochloride demonstrated that the TEPA adsorbent could effectively remove 2-naphthol from berberine hydrochloride at 0-107 BV (bed volume, 1 BV=10 ml), and the berberine hydrochloride concentration was increased from 66.7% to 99.4%, suggesting that this polymeric adsorbent is promising for purifying berberine hydrochloride and similar alkaloids from herbal plant extracts. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp.

    PubMed

    Belova, Svetlana E; Baani, Mohamed; Suzina, Natalia E; Bodelier, Paul L E; Liesack, Werner; Dedysh, Svetlana N

    2011-02-01

    Representatives of the genus Methylocystis are traditionally considered to be obligately methanotrophic bacteria, which are incapable of growth on multicarbon substrates. Here, we describe a novel member of this genus, strain H2s, which represents a numerically abundant and ecologically important methanotroph population in northern Sphagnum-dominated wetlands. This isolate demonstrates a clear preference for growth on methane but is able to grow slowly on acetate in the absence of methane. Strain H2s possesses both forms of methane monooxygenase (particulate and soluble MMO) and a well-developed system of intracytoplasmic membranes (ICM). In cells grown for several transfers on acetate, these ICM are maintained, although in a reduced form, and mRNA transcripts of particulate MMO are detectable. These cells resume their growth on methane faster than those kept for the same period of time without any substrate. Growth on acetate leads to a major shift in the phospholipid fatty acid composition. The re-examination of all type strains of the validly described Methylocystis species showed that Methylocystis heyeri H2(T) and Methylocystis echinoides IMET10491(T) are also capable of slow growth on acetate. This capability might represent an important part of the survival strategy of Methylocystis spp. in environments where methane availability is variable or limited. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and...

  1. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and...

  2. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and...

  3. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and...

  4. Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bo-Wen, E-mail: bowenhu@hit.edu.cn; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-15

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groupsmore » are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.« less

  5. 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer.

    PubMed

    Vāvere, Amy L; Kridel, Steven J; Wheeler, Frances B; Lewis, Jason S

    2008-02-01

    Although it is accepted that the metabolic fate of 1-(11)C-acetate is different in tumors than in myocardial tissue because of different clearance patterns, the exact pathway has not been fully elucidated. For decades, fatty acid synthesis has been quantified in vitro by the incubation of cells with (14)C-acetate. Fatty acid synthase (FAS) has been found to be overexpressed in prostate carcinomas, as well as other cancers, and it is possible that imaging with 1-(11)C-acetate could be a marker for its expression. In vitro and in vivo uptake experiments in prostate tumor models with 1-(11)C-acetate were performed both with and without blocking of fatty acid synthesis with either C75, an inhibitor of FAS, or 5-(tetradecyloxy)-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase (ACC). FAS levels were measured by Western blot and immunohistochemical techniques for comparison. In vitro studies in 3 different prostate tumor models (PC-3, LNCaP, and 22Rv1) demonstrated blocking of 1-(11)C-acetate accumulation after treatment with both C75 and TOFA. This was further shown in vivo in PC-3 and LNCaP tumor-bearing mice after a single treatment with C75. A positive correlation between 1-(11)C-acetate uptake into the solid tumors and FAS expression levels was found. Extensive involvement of the fatty acid synthesis pathway in 1-(11)C-acetate uptake in prostate tumors was confirmed, leading to a possible marker for FAS expression in vivo by noninvasive PET.

  6. Biotransformation and Detoxification of Xylidine Orange Dye Using Immobilized Cells of Marine-Derived Lysinibacillus sphaericus D3

    PubMed Central

    Devi, Prabha; Wahidullah, Solimabi; Sheikh, Farhan; Pereira, Rochelle; Narkhede, Niteen; Amonkar, Divya; Tilvi, Supriya; Meena, Ram Murthy

    2017-01-01

    Lysinibacillus sphaericus D3 cell-immobilized beads in natural gel sodium alginate decolorized the xylidine orange dye 1-(dimethylphenylazo)-2-naphthol-6-sulfonic acid sodium salt in the laboratory. Optimal conditions were selected for decolorization and the products formed were evaluated for toxicity by disc diffusion assay against common marine bacteria which revealed the non-toxic nature of the dye-degraded products. Decolorization of the brightly colored dye to colorless products was measured on an Ultra Violet-Vis spectrophotometer and its biodegradation products monitored on Thin Layer Chromatographic plate and High Performance Liquid Chromatography (HPLC). Finally, the metabolites formed in the decolorized medium were characterized by mass spectrometry. This analysis confirms the conversion of the parent molecule into lower molecular weight aromatic phenols and sulfonic acids as the final products of biotransformation. Based on the results, the probable degradation products of xylidine orange were naphthol, naphthylamine-6-sulfonic acid, 2-6-dihydroxynaphthalene, and bis-dinaphthylether. Thus, it may be concluded that the degradation pathway of the dye involved (a) reduction of its azo group by azoreductase enzyme (b) dimerization of the hydrazo compound followed by (c) degradation of monohydrazo as well as dimeric metabolites into low molecular weight aromatics. Finally, it may be worth exploring the possibility of commercially utilizing L. sphaericus D3 for industrial applications for treating large-scale dye waste water. PMID:28208715

  7. Anti-plasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound

    PubMed Central

    2012-01-01

    Background Natural products could play an important role in the challenge to discover new anti-malarial drugs. In a previous study, Dicoma tomentosa (Asteraceae) was selected for its promising anti-plasmodial activity after a preliminary screening of several plants traditionally used in Burkina Faso to treat malaria. The aim of the present study was to further investigate the anti-plasmodial properties of this plant and to isolate the active anti-plasmodial compounds. Methods Eight crude extracts obtained from D. tomentosa whole plant were tested in vitro against two Plasmodium falciparum strains (3D7 and W2) using the p-LDH assay (colorimetric method). The Peters’ four-days suppressive test model (Plasmodium berghei-infected mice) was used to evaluate the in vivo anti-plasmodial activity. An in vitro bioguided fractionation was undertaken on a dichloromethane extract, using preparative HPLC and TLC techniques. The identity of the pure compound was assessed using UV, MS and NMR spectroscopic analysis. In vitro cytotoxicity against WI38 human fibroblasts (WST-1 assay) and haemolytic activity were also evaluated for extracts and pure compounds in order to check selectivity. Results The best in vitro anti-plasmodial results were obtained with the dichloromethane, diethylether, ethylacetate and methanol extracts, which exhibited a high activity (IC50 ≤ 5 μg/ml). Hot water and hydroethanolic extracts also showed a good activity (IC50 ≤ 15 μg/ml), which confirmed the traditional use and the promising anti-malarial potential of the plant. The activity was also confirmed in vivo for all tested extracts. However, most of the active extracts also exhibited cytotoxic activity, but no extract was found to display any haemolytic activity. The bioguided fractionation process allowed to isolate and identify a sesquiterpene lactone (urospermal A-15-O-acetate) as the major anti-plasmodial compound of the plant (IC50 < 1 μg/ml against both 3D7 and W2 strains). This was also

  8. Acetylation of Starch with Vinyl Acetate in Imidazolium Ionic Liquids and Characterization of Acetate Distribution

    USDA-ARS?s Scientific Manuscript database

    Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...

  9. Biological acetate production from carbon dioxide by Acetobacterium woodii and Clostridium ljungdahlii: The effect of cell immobilization.

    PubMed

    Cheng, Hai-Hsuan; Syu, Jyun-Cyuan; Tien, Shih-Yuan; Whang, Liang-Ming

    2018-08-01

    This study investigated the acetate production from gas mixture of hydrogen (H 2 ) and carbon dioxide (CO 2 ) in the ratio of 7:3 using two acetogens: Acetobacterium woodii and Clostridium ljungdahlii. Batch result shows A. woodii performed two-phase degradation with the presence of glucose that lactate was produced from glucose and was reutilized for the production of butyrate and few acetate, while only acetate was detected when providing gas mixture. C. ljungdahlii produced butyrate and ethanol along with acetate when glucose was introduced, while only ethanol and acetate were found by feeding gas mixture. The acetate-to-ethanol (A/E) ratio can be enhanced by cell immobilization, while GAC immobilization produced only acetate and the production rate reached 0.072 mmol/d under fed-batch operation. Acetate production rate increased from 18 to 28 mmol/L/d with GAC immobilization when gas flowrate increased from 100 to 300 mL/min in anaerobic fluidized membrane bioreactor (AFMBR), and a highest A/E ratio of 30 implies the possible application of acetate recovery from H 2 and CO 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Metabolism of triacetin-derived acetate in dogs.

    PubMed

    Bleiberg, B; Beers, T R; Persson, M; Miles, J M

    1993-12-01

    Triacetin is a water-soluble triglyceride that may have a role as a parenteral nutrient. In the present study triacetin was administered intravenously to mongrel dogs (n = 10) 2 wk after surgical placement of blood-sampling catheters in the aorta and in the portal, hepatic, renal, and femoral veins. [1-14C]Acetate was infused to allow quantification of organ uptake of acetate as well as systemic turnover and oxidation. Systemic acetate turnover accounted for approximately 70% of triacetin-derived acetate, assuming complete hydrolysis of the triglyceride. Approximately 80% of systemic acetate uptake was rapidly oxidized. Significant acetate uptake was demonstrated in all tissues (liver, 559 +/- 68; intestine, 342 +/- 23; hindlimb, 89 +/- 7; and kidney, 330 +/- 37 mumol/min). In conclusion, during intravenous administration in dogs, the majority of infused triacetin undergoes intravascular hydrolysis, and the majority of the resulting acetate is oxidized. Thus, energy in the form of short-chain fatty acids can be delivered to a resting gut via intravenous infusion of a short-chain triglyceride.

  11. Progress toward acetate supplementation therapy for Canavan disease: glyceryl triacetate administration increases acetate, but not N-acetylaspartate, levels in brain.

    PubMed

    Mathew, Raji; Arun, Peethambaran; Madhavarao, Chikkathur N; Moffett, John R; Namboodiri, M A Aryan

    2005-10-01

    Canavan disease (CD) is a fatal genetic neurodegenerative disorder caused by mutations in the gene for aspartoacylase, an enzyme that hydrolyzes N-acetylaspartate (NAA) into L-aspartate and acetate. Because aspartoacylase is localized in oligodendrocytes, and NAA-derived acetate is incorporated into myelin lipids, we hypothesize that an acetate deficiency in oligodendrocytes is responsible for the pathology in CD, and we propose acetate supplementation as a possible therapy. In our preclinical efforts toward this goal, we studied the effectiveness of orally administered glyceryl triacetate (GTA) and calcium acetate for increasing acetate levels in the murine brain. The concentrations of brain acetate and NAA were determined simultaneously after intragastric administration of GTA. We found that the acetate levels in brain were increased in a dose- and time-dependent manner, with a 17-fold increase observed at 1 to 2 h in 20- to 21-day-old mice at a dose of 5.8 g/kg GTA. NAA levels in the brain were not significantly increased under these conditions. Studies using mice at varying stages of development showed that the dose of GTA required to maintain similarly elevated acetate levels in the brain increased with age. Also, GTA was significantly more effective as an acetate source than calcium acetate. Chronic administration of GTA up to 25 days of age did not result in any overt pathology in the mice. Based on these results and the current Food and Drug Administration-approved use of GTA as a food additive, we propose that it is a potential candidate for use in acetate supplementation therapy for CD.

  12. Antibiofilm Properties of Acetic Acid

    PubMed Central

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup; Nielsen, Anne K.; Johansen, Helle Krogh; Homøe, Preben; Høiby, Niels; Givskov, Michael; Kirketerp-Møller, Klaus

    2015-01-01

    Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms. PMID:26155378

  13. Complex refractive index of starch acetate used as a biodegradable pigment and filler of paper

    NASA Astrophysics Data System (ADS)

    Karvinen, Petri; Oksman, Antti; Silvennoinen, Raimo; Mikkonen, Hannu

    2007-05-01

    Complex refractive index of strongly depolarizing starch acetate is investigated as a function of bulk package density, which is compulsory parameter in analysis of light scattering from nanoscale starch acetate pigments and fillers. The measurements were made using a laser-goniometer and spectrophotometer to gain data for refractive index analysis according to the Brewster's law and Fresnel equations. The real part of refractive index was verified by microscopic immersion method.

  14. Acetate concentrations and oxidation in salt marsh sediments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Acetate concentrations and rates of acetate oxidation and sulfate reduction were measured in S. alterniflora sediments in New Hampshire and Massachusetts. Pore water extracted from cores by squeezing or centrifugation contained in greater than 0.1 mM acetate and, in some instances, greater than 1.0 mM. Pore water sampled nondestructively contained much less acetate, often less than 0.01 mM. Acetate was associated with roots, and concentrations varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of sulfate reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a substantial percentage of sulfate reduction. These results differ markedly from data for unvegetated coastal sediments where acetate levels are low, oxidation rate constants are high, and acetate oxication rates greatly exceed rates of sulfate reduction. The discrepancy between rates of acetate oxidation and sulfate reduction in these marsh soils may be due either to the utilization of substrates other than acetate by sulfate reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria. Care must be taken when interpreting data from salt marsh sediments since the release of material from roots during coring may affect the concentrations of certain compounds as well as influencing results obtained when sediment incubations are employed.

  15. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.

    PubMed

    Lee, Il-Su; Bae, Jae-Ho; McCarty, Perry L

    2007-10-30

    Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.

  16. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE

    NASA Astrophysics Data System (ADS)

    Lee, Il-Su; Bae, Jae-Ho; McCarty, Perry L.

    2007-10-01

    Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H 2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H 2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H 2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H 2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.

  17. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    PubMed

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Isotope fractionation during the anaerobic consumption of acetate by methanogenic and sulfate-reducing microorganisms

    NASA Astrophysics Data System (ADS)

    Gövert, D.; Conrad, R.

    2009-04-01

    During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.

  19. Production of lactate and acetate by Lactobacillus coryniformis subsp. torquens DSM 20004(T) in comparison with Lactobacillus amylovorus DSM 20531(T).

    PubMed

    Slavica, Anita; Trontel, Antonija; Jelovac, Nuša; Kosovec, Željka; Šantek, Božidar; Novak, Srđan

    2015-05-20

    Lactobacillus coryniformis subsp. torquens DSM20004(T) is a d-lactate producer, with a portion of the d-lactate higher than 99.9% of total lactic acid produced. Acetate was identified as the second end-product that appeared at the end of the exponential growth phase in MRS medium when glucose concentration dropped to 38.41mM (6.92g/L). The acetate production was prolonged to the stationary phase, while the concentration of d-lactate remained constant. Other end-products were not identified by HPLC method. The known metabolic pathways of glucose fermentation in lactic acid bacteria do not produce the particular combination of these two end-products, but besides lactate and acetate also formate, ethanol and CO2 are produced. For comparison, the production of lactate and acetate by a d-/l-lactate producer Lactobacillus amylovorus DSM 20531(T) was also investigated. This strain produced equimolar quantities of d- and l-lactate in the MRS medium. Acetate was produced only when initial concentration of glucose was 55.51mM (10g/L) and production started in the exponential phase when concentration of glucose dropped to 35.52mM (6.40g/L). Similar behavior was observed with the initial concentration of maltose of 29.21mM (10g/L). An unstructured mathematical model was established for the bioprocess simulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Phenylmercuric acetate

    Integrated Risk Information System (IRIS)

    Phenylmercuric acetate ; CASRN 62 - 38 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  1. Ammonium acetate

    Integrated Risk Information System (IRIS)

    Ammonium acetate ; CASRN 631 - 61 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  2. Photoelectron spectroscopy of a series of acetate and propionate esters

    NASA Astrophysics Data System (ADS)

    Śmiałek, Małgorzata A.; Guthmuller, Julien; MacDonald, Michael A.; Zuin, Lucia; Delwiche, Jacques; Hubin-Franskin, Marie-Jeanne; Lesniewski, Tadeusz; Mason, Nigel J.; Limão-Vieira, Paulo

    2017-10-01

    The electronic state and photoionization spectroscopy of a series of acetate esters: methyl acetate, isopropyl acetate, butyl acetate and pentyl acetate as well as two propionates: methyl propionate and ethyl propionate, have been determined using vacuum-ultraviolet photoelectron spectroscopy. These experimental investigations are complemented by ab initio calculations. The measured first adiabatic and vertical ionization energies were determined as: 10.21 and 10.45 eV for methyl acetate, 9.99 and 10.22 eV for isopropyl acetate, 10.07 and 10.26 eV for butyl acetate, 10.01 and 10.22 eV for pentyl acetate, 10.16 and 10.36 eV for methyl propionate and 9.99 and 10.18 eV for ethyl propionate. For the four smaller esters vibrational transitions were calculated and compared with those identified in the photoelectron spectrum, revealing the most distinctive ones to be a Csbnd O stretch combined with a Cdbnd O stretch. The ionization energies of methyl and ethyl esters as well as for a series of formates and acetates were compared showing a clear dependence of the value of the ionization energy on the size of the molecule with very little influence of its conformation.

  3. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  4. Far-infrared Fourier Transform Spectroscopy Measurements of Mn12-acetate.

    NASA Astrophysics Data System (ADS)

    Tu, Jiufeng; Suzuki, Yoko; Mertes, K. M.; Sarachik, M. P.; Agladze, N. I.; Sievers, A. J.; Rumberger, E. M.; Hendrickson, D. N.; Christou, G.

    2004-03-01

    The transmission spectra of both powder samples and assemblies of single crystals of Mn_12-acetate were measured in the far infrared region (2.0 - 20 cm-1) using a Fourier transform technique. The energies of the observed aborption lines agree with those obtained by Mukhin et al. [1] using the backwards wave oscillator technique. The temperature dependence of the aborption lines, as well as the presence of additional absorption lines, will be discussed. [1] A. A. Mukhin, V. D. Travkin, A. K. Zvesdin, A. Caneschi, D. Gatteschi and R. Sessoli, Physica B 284-288 (2000) 1221-1222

  5. Vinyl acetate

    Integrated Risk Information System (IRIS)

    Vinyl acetate ; CASRN 108 - 05 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  6. Ethyl acetate

    Integrated Risk Information System (IRIS)

    Ethyl acetate ; CASRN 141 - 78 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  7. Effect of sulfate on anaerobic reduction of nitrobenzene with acetate or propionate as an electron donor.

    PubMed

    Huang, Jingang; Wen, Yue; Ding, Ning; Xu, Yue; Zhou, Qi

    2012-09-15

    Sulfate is frequently found in wastewaters that contain nitrobenzene. To reveal the effect of sulfate on the reductive transformation of nitrobenzene to aniline--with acetate or propionate as potential electron donors in anaerobic systems--an acetate series (R1-R5) and a propionate series (R6-R10) were set up. Each of these was comprised of five laboratory-scale sequence batch reactors. The two series were amended with the same amount of nitrobenzene and electron donor electron equivalents, whereas with increasing sulfate concentrations. Results indicated that the presence of sulfate could depress nitrobenzene reduction. Such depression is linked to the inhibition of nitroreductase activity and/or the shift of electron flow. In the acetate series, although sulfate did not strongly compete with nitrobenzene for electron donors, noncompetitive inhibition of specific nitrobenzene reduction rates by sulfate was observed, with an inhibition constant of 0.40 mM. Propionate, which can produce intermediate H₂ as preferred reducing equivalent, is a more effective primary electron donor for nitrobenzene reduction as compared to acetate. In the propionate series, sulfate was found to be a preferential electron acceptor as compared to nitrobenzene, resulting in a quick depletion of propionate and then a likely termination of H₂-releasing under higher sulfate concentrations (R9 and R10). In such a situation, nitrobenzene reduction slowed down, occurring two-stage zero-order kinetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    PubMed

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Soluble microbial products in pilot-scale drinking water biofilters with acetate as sole carbon source.

    PubMed

    Zhang, Ying; Ye, Chengsong; Gong, Song; Wei, Gu; Yu, Xin; Feng, Lin

    2013-04-01

    A comprehensive study on formation and characteristics of soluble microbial products (SMP) during drinking water biofiltration was made in four parallel pilot-scale ceramic biofilters with acetate as the substrate. Excellent treatment performance was achieved while microbial biomass and acetate carbon both declined with the depth of filter. The SMP concentration was determined by calculating the difference between the concentration of dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC) and acetate carbon. The results revealed that SMP showed an obvious increase from 0 to 100 cm depth of the filter. A rising specific ultraviolet absorbance (SUVA) was also found, indicating that benzene or carbonyl might exist in these compounds. SMP produced during this drinking water biological process were proved to have weak mutagenicity and were not precursors of by-products of chlorination disinfection. The volatile parts of SMP were half-quantity analyzed and most of them were dicarboxyl acids, others were hydrocarbons or benzene with 16-17 carbon atoms.

  10. Preparation of sewage sludge based activated carbon by using Fenton's reagent and their use in 2-naphthol adsorption.

    PubMed

    Gu, Lin; Wang, Yachen; Zhu, Nanwen; Zhang, Daofang; Huang, Shouqiang; Yuan, Haiping; Lou, Ziyang; Wang, Miaolin

    2013-10-01

    In this study, Fenton's reagents (H2O2/Fe(2+)) are used to activate raw sewage sludge for the preparation of the sludge based activated carbon. The effect of the amount of hydrogen peroxide addition on carbon's chemical composition, texture properties, surface chemistry and morphology are investigated. Choosing an appropriate H2O2 dosage (5 v%) (equivalent to 70.7 mM/(g VS)), it is possible to obtain a comparatively highly porous materials with SBET and the total pore volume being 321 m(2)/g and 0.414 cm(3)/g, respectively. Continuously increasing the oxidant ratio resulted in a decreased SBET value. Further adsorption experiments by using 2-naphthol as model pollutant revealed that the adoption followed a pseudo-second-order kinetics better than pseudo-first-order. The calculated adsorption capacity is 111.9 mg/g on the carbon with 5% H2O2 pretreatment while this value is just 51.5mg/g on carbons without any pretreatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Mechanism of Indole-3-acetic Acid Conjugation

    PubMed Central

    Goren, Raphael; Bukovac, Martin J.; Flore, James A.

    1974-01-01

    Formation of indole-3-acetic acid-aspartate in detached primary leaves of cowpea (Vigna sinensis Endl.) floating on 14C-indole-3-acetic acid (3 μc; 3.15 μm, phosphate-citrate buffer, pH 4.75), almost doubled when leaves were pretreated with 31.5 μm12C-indole-3-acetic acid for 17 hr and then transferred to 14C-indole-3-acetic acid for 4 hours as compared with leaves preincubated in buffer only. When leaves were preincubated with ethylene (11.0 and 104 μl/l) instead of 12C-indole-3-acetic acid, no induction of indole-3-acetylaspartic acid formation was observed, and the rate of indole-3-acetylaspartic acid formation decreased as compared with control leaves. Rhizobitoxine (1.87 μm) inhibited indole-3-acetic acid-induced ethylene production but did not prevent the formation of indole-3-acetylaspartic acid. In view of the similarity of these results and those previously obtained with α-naphthaleneacetic acid, it is concluded that ethylene has no role in the auxin-induced indole-3-acetylaspartic acid formation in cowpea leaves. PMID:16658669

  12. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration.

    PubMed

    Bouarab, L; Dauta, A; Loudiki, M

    2004-06-01

    The main objective of this study was to determine the importance of secondary mechanism of organic carbon utilization (mixotrophic and heterotrophic modes) in addition to CO2 fixation (photoautotrophic mode) in the green alga, Micractinium pusillum Fresenius (chlorophyta), isolated from a waste stabilization pond. The growth was studied in the presence of acetate and glucose. The incorporation rate of 14C- acetate was measured in the light and in the dark at different concentrations. Finally, in order to underline the role of photosynthesis and respiration processes in the acetate assimilation, the effect of two specific metabolic inhibitors, a specific inhibitor of photosystem II (DCMU) and an uncoupler respiratory (DNP), has been studied. The obtained results showed that M. pusillum grows in the presence of organic substrates, i.e., glucose and acetate, in the light (mixotrophic growth) as well as in the dark (Heterotrophic growth). The growth was much more important in the light than in the dark and more in the presence of glucose than of acetate. In the light, the presence of acetate led to a variation of growth parameters mumax, iotaopt, and beta. The effect of acetate gradient on the growth of the microalga was severe as soon as its concentration in the medium was higher. The acetate uptake followed a Michaelis-Menten kinetic in the light as well as in the dark. The capacity of assimilation was slightly higher in the dark. The utilization of DNP and DCMU indicates that acetate incorporation is an active process depending on both anabolic (photosynthesis) and catabolic (respiration) metabolisms, corroborating the model of the Michaelis-Menten kinetic.

  13. [Chemical Constituents from Ethyl Acetate Extract of Psidium guajava Leaves (II)].

    PubMed

    Ouyang, Wen; Zhu, Xiao-ai; He, Cui-xia; Chen, Xue-xiang; Ye, Shu-min; Peng, Shan; Cao, Yong

    2015-08-01

    To study the chemical constituents from ethyl acetate extract of Psidium guajava leaves. The constituents were separated and purified by silica gel and Sephadex LH-20 column chromatography and their structures were identified on the basis of physicochemical properties and spectral data. Eleven compounds were isolated and identified as 6,10,14-trimethyl-2-pentadecanone (1), phytyl-acetate (2), cubenol (3), eucalyptin (4), n-docosanoic acid-p-hydroxy-phenethylol ester (5),8-methyl-5,7- dihydroxy-flavonone (6), 6-methyl-5,7-dihydroxy-flavonone (7), betulinic acid (8), carnosol (9), quercetin (10), and 2,4,6-tirhydroxy- 3,5-dimethyl-diphenylketone-4-O-(6'"-O-galloyl)-β-D-glucoside (11). Compounds 1-9 are isolated from this plant for the first time.

  14. Acetate Utilization and Butyryl Coenzyme A (CoA):Acetate-CoA Transferase in Butyrate-Producing Bacteria from the Human Large Intestine

    PubMed Central

    Duncan, Sylvia H.; Barcenilla, Adela; Stewart, Colin S.; Pryde, Susan E.; Flint, Harry J.

    2002-01-01

    Seven strains of Roseburia sp., Faecalibacterium prausnitzii, and Coprococcus sp. from the human gut that produce high levels of butyric acid in vitro were studied with respect to key butyrate pathway enzymes and fermentation patterns. Strains of Roseburia sp. and F. prausnitzii possessed butyryl coenzyme A (CoA):acetate-CoA transferase and acetate kinase activities, but butyrate kinase activity was not detectable either in growing or in stationary-phase cultures. Although unable to use acetate as a sole source of energy, these strains showed net utilization of acetate during growth on glucose. In contrast, Coprococcus sp. strain L2-50 is a net producer of acetate and possessed detectable butyrate kinase, acetate kinase, and butyryl-CoA:acetate-CoA transferase activities. These results demonstrate that different functionally distinct groups of butyrate-producing bacteria are present in the human large intestine. PMID:12324374

  15. 21 CFR 582.5892 - a-Tocopherol acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5892 a-Tocopherol acetate. (a) Product. a-Tocopherol acetate. (b) Conditions of use. This...

  16. 21 CFR 582.5933 - Vitamin A acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5933 Vitamin A acetate. (a) Product. Vitamin A acetate. (b) Conditions of use. This...

  17. 21 CFR 582.5933 - Vitamin A acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5933 Vitamin A acetate. (a) Product. Vitamin A acetate. (b) Conditions of use. This...

  18. 21 CFR 582.5892 - a-Tocopherol acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5892 a-Tocopherol acetate. (a) Product. a-Tocopherol acetate. (b) Conditions of use. This...

  19. 21 CFR 582.5892 - a-Tocopherol acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5892 a-Tocopherol acetate. (a) Product. a-Tocopherol acetate. (b) Conditions of use. This...

  20. 21 CFR 582.5933 - Vitamin A acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5933 Vitamin A acetate. (a) Product. Vitamin A acetate. (b) Conditions of use. This...

  1. Acetic acid fermentation of acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation.

    PubMed

    Kanchanarach, Watchara; Theeragool, Gunjana; Inoue, Taketo; Yakushi, Toshiharu; Adachi, Osao; Matsushita, Kazunobu

    2010-01-01

    Acetobacter pasteurianus strains IFO3283, SKU1108, and MSU10 were grown under acetic acid fermentation conditions, and their growth behavior was examined together with their capacity for acetic acid resistance and pellicle formation. In the fermentation process, the cells became aggregated and covered by amorphous materials in the late-log and stationary phases, but dispersed again in the second growth phase (due to overoxidation). The morphological change in the cells was accompanied by changes in sugar contents, which might be related to pellicle polysaccharide formation. To determine the relationship between pellicle formation and acetic acid resistance, a pellicle-forming R strain and a non-forming S strain were isolated, and their fermentation ability and acetic acid diffusion activity were compared. The results suggest that pellicle formation is directly related to acetic acid resistance ability, and thus is important to acetic acid fermentation in these A. pasteurianus strains.

  2. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...

  3. A reassessment of the budget of formic and acetic acids in the boundary layer at Dumont d'Urville (coastal Antarctica): The role of penguin emissions on the budget of several oxygenated volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Legrand, Michel; Gros, ValéRie; Preunkert, Susanne; Sarda-EstèVe, Roland; Thierry, Anne-Mathilde; PéPy, Guillaume; Jourdain, B.

    2012-03-01

    Initiated in 1997, the year-round study of formic and acetic acids was maintained until 2011 at the coastal Antarctic site of Dumont d'Urville. The records show that formic and acetic acids are rather abundant in summer with typical mixing ratios of 200 pptv and 700 pptv, respectively. With the aim to constrain their budget, investigations of their potential marine precursors like short-chain alkenes and acetaldehyde were initiated in 2011. Acetic acid levels in December 2010 were four times higher than those observed over summers back to 1997. These unusually high levels were accompanied by unusually high levels of ammonia, and by an enrichment of oxalate in aerosols. These observations suggest that the guano decomposition in the large penguin colonies present at the site was particularly strong under weather conditions encountered in spring 2010 (important snow storms followed by sunny days with mild temperatures). Although being dependent on environmental conditions, this process greatly impacts the local atmospheric budget of acetic acid, acetaldehyde, and acetone during the entire summer season. Present at levels as high as 500 pptv, acetaldehyde may represent the major precursor of acetic acid, alkene-ozone reactions remaining insignificant sources. Far less influenced by penguin emissions, the budget of formic acid remains not fully understood even if alkene-ozone reactions contribute significantly.

  4. Revising Estimates of the Methane Production Pathway in Peatland Porewater Using Intramolecular Isotopic Analyses of Acetate

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Arthur, M. A.; Freeman, K. H.

    2007-12-01

    Stable isotopic measurements of methane and carbon dioxide are routinely applied to environmental samples to assess the relative importance of methane production by either aceticlastic or hydrogenotrophic methanogenesis. Such estimates rely upon assumptions about isotopic fractionation during methane production and oxidation. Rigorous isotope-based pathway estimates require knowledge of the carbon isotopic composition of both carbon dioxide and acetate. In practice, technical barriers have limited measurements of the isotopic composition of whole acetate in natural samples. Yet, the estimate of whole acetate isotopic values, even when available, may not represent accurately the composition of the methyl carbon, which is, in fact, the precursor to methane. It is exceedingly rare to find carbon isotopic measurements of acetate-methyl in the literature, and, to our knowledge, the d13C of the acetate-methyl precursor to methane has never before been reported from peatland porewater samples. Extremely 13C-depleted methane, -70 permil VPDB, and 13C-enriched carbon dioxide from acidic northern peat bogs are typically interpreted as signatures of hydrogenotrophic methanogenesis. The hypothesized dominance of methane production from hydrogen in acidic bogs contrasts with the vast majority of freshwater wetlands in which aceticlastic methanogenesis dominates. Using a new technique for the online analysis of the intramolecular carbon isotopic composition of acetate in natural samples, we find the acetate-methyl in peat porewaters can be significantly depleted relative to bulk organic matter. In porewater profiles from both winter and summer, acetate is as much as 15 permil depleted relative to bulk carbon. We hypothesize that acetate- methyl isotopic depletion results from conditions that favor autotrophic acetogenesis and subsequent acetate consumption by aceticlastic methanogens. Porewater depth profiles during winter and summer illustrate depth- dependent increases in the

  5. Antibacterial Activity of Ethyl Acetate the Extract of Noni Fruit (Morinda citrifolia L.) Against Bacterial Spoilage in Fish

    NASA Astrophysics Data System (ADS)

    Nugraheni, E. R.; Adriani, G. R.; Munawaroh, H.

    2017-04-01

    Noni fruit (Morinda citrifolia L.) contains compounds that have potential as antibacterial agent. Antibacterial compounds produced noni fruit (M. citrifolia L.) can inhibit bacterial growth. This study was conducted to test the antibacterial activity of ethyl acetate extract of noni fruit (M. citrifolia L.) against spoilage bacterial in fish. Pseudomonas aeruginosa, Bacillus cereus, Escherichia coli, Klebsiella oxytoca, and Enterobacter aerogenes isolates and examine antibacterial phytochemical profile. Extraction of noni compounds was done by maceration, followed by partition with ethyl acetate to obtain the soluble and insoluble ethyl acetate fraction. Previews result show that the ethyl acetate extract had very strong activity. Extraction process continued by separation and isolation used preparative thin layer chromatography method, so that obtained five isolates and mark them as A, B, C, D and E. Antibacterial activity assay performed on isolates A, B, C, D, and E with 20 and 30% concentration. The test results showed that isolates A could not be inhibit the growth of bacteria, isolates B, C, D, and E has antibacterial activity with weak to strong inhibition. Isolate B had the greatest inhibition activity against the B. cereus, whereas isolates E had the greatest inhibition activity against P. aeroginosa. MIC (Minimum Inhibitor Concentration) and MBC (Minimum Bactericidal Concentration) test result showed that MIC and MBC values could not be determined. Analysis of compounds by TLC showed that isolate B suspected contains coumarin or flavonoids compounds that have antibacterial activity.

  6. Acetate and Formate Stress: Opposite Responses in the Proteome of Escherichia coli

    PubMed Central

    Kirkpatrick, Christopher; Maurer, Lisa M.; Oyelakin, Nikki E.; Yoncheva, Yuliya N.; Maurer, Russell; Slonczewski, Joan L.

    2001-01-01

    Acetate and formate are major fermentation products of Escherichia coli. Below pH 7, the balance shifts to lactate; an oversupply of acetate or formate retards growth. E. coli W3110 was grown with aeration in potassium-modified Luria broth buffered at pH 6.7 in the presence or absence of added acetate or formate, and the protein profiles were compared by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Acetate increased the steady-state expression levels of 37 proteins, including periplasmic transporters for amino acids and peptides (ArtI, FliY, OppA, and ProX), metabolic enzymes (YfiD and GatY), the RpoS growth phase regulon, and the autoinducer synthesis protein LuxS. Acetate repressed 17 proteins, among them phosphotransferase (Pta). An ackA-pta deletion, which nearly eliminates interconversion between acetate and acetyl-coenzyme A (acetyl-CoA), led to elevated basal levels of 16 of the acetate-inducible proteins, including the RpoS regulon. Consistent with RpoS activation, the ackA-pta strain also showed constitutive extreme-acid resistance. Formate, however, repressed 10 of the acetate-inducible proteins, including the RpoS regulon. Ten of the proteins with elevated basal levels in the ackA-pta strain were repressed by growth of the mutant with formate; thus, the formate response took precedence over the loss of the ackA-pta pathway. The similar effects of exogenous acetate and the ackA-pta deletion, and the opposite effect of formate, could have several causes; one possibility is that the excess buildup of acetyl-CoA upregulates stress proteins but excess formate depletes acetyl-CoA and downregulates these proteins. PMID:11591692

  7. Synthesis of Novel Compounds as New Potent Tyrosinase Inhibitors

    PubMed Central

    Hamidian, Hooshang

    2013-01-01

    In the present paper, we report the synthesis and pharmacological evaluation of a new series of azo compounds with different groups (1-naphthol, 2-naphthol, and N,N-dimethylaniline) and trifluoromethoxy and fluoro substituents in the scaffold. All synthesized compounds (5a–5f) showed the most potent mushroom tyrosinase inhibition (IC50 values in the range of 4.39 ± 0.76–1.71 ± 0.49 µM), comparable to the kojic acid, as reference standard inhibitor. All the novel compounds were characterized by FT-IR, 1H NMR, 13C NMR, and elemental analysis. PMID:24260737

  8. Simultaneous determination of triacetin, acetic ether, butyl acetate and amorolfine hydrochloride in amorolfine liniment by HPLC.

    PubMed

    Gao, Yuan; Li, Li; Zhang, Jianjun; Shu, Wenjuan; Gao, Liqiong

    2012-04-01

    A simple, rapid, specific and precise reversed-phase high-performance liquid chromatographic method was developed for simultaneous estimation of triacetin, acetic ether, butyl acetate and amorolfine in marketed pharmaceutical liniment. Chromatographic separation was performed on a Shimadzu VP-ODS C(18) column using the mixture of citric acid-hydrochloric acid-sodium hydrate buffer (pH 3.0), acetonitrile and methanol (32:30:38) as the mobile phase at a flow rate of 1.0 mL/min with UV-detection at 215 nm. The method separated the four components simultaneously in less than 10 min. The validation of the method was performed with respect to specificity, linearity, accuracy, and precision. The calibration curves were linear in the range of 35.1-81.9 μ/mL for triacetin, 431.1-1005.9 μ/mL for acetic ether, 167.0-389.7 μ/mL for butyl acetate and 151.0-352.3 μ/mL for amorolfine. The mean 100% spiked recovery for triacetin, acetic ether, butyl acetate and amorolfine is 99.43 ± 0.42, 101.5 ± 1.09, 101.4 ± 1.02 and 100.8 ± 0.69, respectively. The intra-day and inter-day relative standard deviation values were <2.0%. The limits of detection of these compounds ranged from 0.08 to 5.88 ng. The utility of the procedure was verified by its application to the commercial liniment.

  9. Instability diagnosis and syntrophic acetate oxidation during thermophilic digestion of vegetable waste.

    PubMed

    Li, Dong; Ran, Yi; Chen, Lin; Cao, Qin; Li, Zhidong; Liu, Xiaofeng

    2018-08-01

    Effective process monitoring and instability diagnosis are important for stable anaerobic digestion (AD) of vegetable waste (VW). In order to evaluate the performance of thermophilic digestion of VW, to make early diagnosis for instability after organic overload, and to reveal the dynamics of microbial community under different running states, thermophilic AD of VW was carried out under improved organic loading rates (OLR) of 0.5-2.5 g volatile solid (VS)/(L ∙ d) in this study. Gaseous parameters including volumetric methane production rate (VMPR), CH 4 , CO 2 , and H 2 concentrations, and liquid parameters including pH, oxidation-reduction potential, volatile fatty acid (VFA), and total alkalinity (TA), bicarbonate alkalinity (BA), intermediate alkalinity (IA), and ammonia, were monitored. The coupling parameters, such as the CH 4 /CO 2 , VFA/BA, and BA/TA ratios were also used to evaluate stability. The dynamics of syntrophic acetate-oxidizing bacteria (SAOB), acetoclastic methanogens (AM), and hydrogenotrophic methanogens (HM) were analyzed by high-throughput sequencing. The main methanogenic bacteria were HM (Methanothermobacter) during the start-up period of OLR 0.5 gVS/(L ∙ d), while they were AM (Methanosarcina) during the stable period of OLR of 1.0 gVS/(L ∙ d). The VMPR of stable period was about 0.29 L/(L · d) with total VFA concentration below 100 mg/L, CH 4 /CO 2  > 1.3, and BA/TA>0.9. The first instability due to the accumulation of VFA and self-recovery due to syntrophic acetate oxidation occurred at an OLR of 1.5 gVS/(L ∙ d). The syntrophic acetate-oxidizing bacteria probably belong to genus S1 (family Thermotogaceae). The digestion failed at an OLR of 2.0 g VS/(L · d). H 2 was only detected during collapsed period instead of instable period. The total ammonia nitrogen loss and bicarbonate alkalinity (BA) reduction were the primary causes for the instability of AD of VW without effluent recirculation. Compared with single

  10. The discrimination of d-tartrate positive and d-tartrate negative S. enterica subsp. enterica serovar Paratyphi B isolated in Malaysia by phenotypic and genotypic methods.

    PubMed

    Ahmad, Norazah; Hoon, Shirley Tang Gee; Ghani, Mohamed Kamel Abd; Tee, Koh Yin

    2012-06-01

    Serotyping is not sufficient to differentiate between Salmonella species that cause paratyphoid fever from the strains that cause milder gastroenteritis as these organisms share the same serotype Salmonella Paratyphi B (S. Paratyphi B). Strains causing paratyphoid fever do not ferment d-tartrate and this key feature was used in this study to determine the prevalence of these strains among the collection of S. Paratyphi B strains isolated from patients in Malaysia. A total of 105 isolates of S. Paratyphi B were discriminated into d-tartrate positive (dT+) and d-tartrate negative (dT) variants by two lead acetate test protocols and multiplex PCR. The lead acetate test protocol 1 differed from protocol 2 by a lower inoculum size and different incubation conditions while the multiplex PCR utilized 2 sets of primers targeting the ATG start codon of the gene STM3356. Lead acetate protocol 1 discriminated 97.1% of the isolates as S. Paratyphi B dT+ and 2.9% as dT while test protocol 2 discriminated all the isolates as S. Paratyphi B dT+. The multiplex PCR test identified all 105 isolates as S. Paratyphi B dT+ strains. The concordance of the lead acetate test relative to that of multiplex PCR was 97.7% and 100% for protocol 1 and 2 respectively. This study showed that S. Paratyphi B dT+ is a common causative agent of gastroenteritis in Malaysia while paratyphoid fever appears to be relatively uncommon. Multiplex PCR was shown to be a simpler, more rapid and reliable method to discriminate S. Paratyphi B than the phenotypic lead acetate test.

  11. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization.

    PubMed

    Pan, Xiaofang; Angelidaki, Irini; Alvarado-Morales, Merlin; Liu, Houguang; Liu, Yuhong; Huang, Xu; Zhu, Gefu

    2016-10-01

    For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H2/CO2), CH4 production kinetics were investigated at 37±1°C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate from formate, acetate and H2/CO2 were 19.58±0.49, 42.65±1.17 and 314.64±3.58NmL/gVS/d in digested manure system and 6.53±0.31, 132.04±3.96 and 640.16±19.92NmL/gVS/d in sewage sludge system during second generation incubation. Meanwhile the model could not fit well in granular sludge system, while the rate of formate methanation was faster than from H2/CO2 and acetate. Considering both the kinetic results and microbial assay we could conclude that H2/CO2 methanation was the fastest methanogenic step in digested manure and sewage sludge system with Methanomicrobiales as dominant methanogens, while granular sludge with Methanobacteriales as dominant methanogens contributed to the fastest formate methanation. Copyright © 2016. Published by Elsevier Ltd.

  12. Unraveling the Decomposition Process of Lead(II) Acetate: Anhydrous Polymorphs, Hydrates, and Byproducts and Room Temperature Phosphorescence.

    PubMed

    Martínez-Casado, Francisco J; Ramos-Riesco, Miguel; Rodríguez-Cheda, José A; Cucinotta, Fabio; Matesanz, Emilio; Miletto, Ivana; Gianotti, Enrica; Marchese, Leonardo; Matěj, Zdeněk

    2016-09-06

    Lead(II) acetate [Pb(Ac)2, where Ac = acetate group (CH3-COO(-))2] is a very common salt with many and varied uses throughout history. However, only lead(II) acetate trihydrate [Pb(Ac)2·3H2O] has been characterized to date. In this paper, two enantiotropic polymorphs of the anhydrous salt, a novel hydrate [lead(II) acetate hemihydrate: Pb(Ac)2·(1)/2H2O], and two decomposition products [corresponding to two different basic lead(II) acetates: Pb4O(Ac)6 and Pb2O(Ac)2] are reported, with their structures being solved for the first time. The compounds present a variety of molecular arrangements, being 2D or 1D coordination polymers. A thorough thermal analysis, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), was also carried out to study the behavior and thermal data of the salt and its decomposition process, in inert and oxygenated atmospheres, identifying the phases and byproducts that appear. The complex thermal behavior of lead(II) acetate is now solved, finding the existence of another hydrate, two anhydrous enantiotropic polymorphs, and some byproducts. Moreover, some of them are phosphorescent at room temperature. The compounds were studied by TGA, DSC, X-ray diffraction, and UV-vis spectroscopy.

  13. Acetate transport and utilization in the rat brain.

    PubMed

    Deelchand, Dinesh K; Shestov, Alexander A; Koski, Dee M; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2009-05-01

    Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMR(ace)) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization (K(M)(util) = 0.01 +/- 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) (K(M)(t) = 4.18 +/- 0.83 mM). The maximum transport capacity of acetate through the BBB (V(max)(t) = 0.96 +/- 0.18 micromol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization (V(max)(util) = 0.50 +/- 0.08 micromol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.

  14. Sulfide and ammonium oxidation, acetate mineralization by denitrification in a multipurpose UASB reactor.

    PubMed

    Beristain-Cardoso, Ricardo; Gómez, Jorge; Méndez-Pampín, Ramón

    2011-02-01

    The physiological and kinetic behavior of a denitrifying granular sludge exposed to different sulfide loading rates (55-295 mg/L d) were evaluated in a UASB reactor fed with acetate, ammonium and nitrate. At any sulfide loading rates, the consumption efficiencies of sulfide, acetate and ammonium were above 95%, while nitrate consumption efficiencies were around 62-72%. At the highest sulfide loading rate the ammonium was used as electron donor for N(2) production. The increase of sulfide loading rate also affected the fate of sulfide oxidation, since elemental sulfur was the main end product instead of sulfate. However, the lithotrophic denitrifying kinetic was not affected. FISH oligonucleotide probes for Thiobacillus denitrificans, Thiomiscropira denitrificans, genus Paracoccus and Pseudomonas spp. were used to follow the microbial ecology. The results of this work have shown that four pollutants could simultaneously be removed, namely, sulfide, ammonium, acetate and nitrate under well defined denitrifying conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Acetic acid as a decontamination method for sink drains in a nosocomial outbreak of metallo-β-lactamase-producing Pseudomonas aeruginosa.

    PubMed

    Stjärne Aspelund, A; Sjöström, K; Olsson Liljequist, B; Mörgelin, M; Melander, E; Påhlman, L I

    2016-09-01

    Pseudomonas aeruginosa may colonize water systems via biofilm formation. In hospital environments, contaminated sinks have been associated with nosocomial transmission. Here we describe a prolonged outbreak of a metallo-β-lactamase-producing P. aeruginosa (Pae-MBL) associated with sink drains, and propose a previously unreported decontamination method with acetic acid. To describe a nosocomial outbreak of Pae-MBL associated with hospital sink drains and to evaluate acetic acid as a decontamination method. The outbreak was investigated by searching the microbiology database, microbiological sampling and strain typing. Antibacterial and antibiofilm properties of acetic acid were evaluated in vitro. Pae-MBL-positive sinks were treated with 24% acetic acid once weekly and monitored with repeated cultures. Fourteen patients with positive cultures for Pae-MBL were identified from 2008 to 2014. The patients had been admitted to three wards, where screening discovered Pae-MBL in 12 sink drains located in the patient bathrooms. Typing of clinical and sink drain isolates revealed identical or closely related strains. Pae-MBL biofilm was highly sensitive to acetic acid with a minimum biofilm eradication concentration of 0.75% (range: 0.19-1.5). Weekly treatment of colonized sink drains with acetic acid resulted in negative cultures and terminated transmission. Acetic acid is highly effective against Pae-MBL biofilms, and may be used as a simple method to decontaminate sink drains and to prevent nosocomial transmission. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate

    DOEpatents

    Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.

    2017-03-28

    One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.

  17. Effect of medroxyprogesterone acetate (Provera) on ovarian radiosensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, J.; YoungLai, E.V.; McMahon, A.

    1989-04-01

    Medroxyprogesterone acetate (Provera) is a drug that is commonly given to young women with cancer during chemotherapy and radiation to control heavy bleeding associated with anovulation. Because hypothalamic-pituitary-ovarian suppression has been associated with ovarian protection from the effects of chemotherapy and medroxyprogesterone acetate has been identified as a radiosensitizing agent, we explored the effects of medroxyprogesterone acetate on a rat model with known radiation injury characteristics. Sprague-Dawley rats were treated with medroxyprogesterone acetate or vehicle from day 22 to day 37 of life and were either irradiated or sham-irradiated on day 30 of life and then killed on day 44.more » Radiation with medroxyprogesterone acetate administration produced a greater loss in preantral and healthy control follicles than in control follicles. No suppression of luteinizing hormone or follicle-stimulating hormone had occurred by day 30 but ovarian glutathione content was reduced. These findings indicate that the administration of medroxyprogesterone acetate with radiotherapy may enhance ovarian injury.« less

  18. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002

    DOE PAGES

    Therien, Jesse B.; Zadvornyy, Oleg A.; Posewitz, Matthew C.; ...

    2014-10-18

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. We demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC7002.

  19. Preparation of vinyl acetate

    DOEpatents

    Tustin, Gerald Charles; Zoeller, Joseph Robert; Depew, Leslie Sharon

    1998-01-01

    This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

  20. Preparation of vinyl acetate

    DOEpatents

    Tustin, G.C.; Zoeller, J.R.; Depew, L.S.

    1998-03-24

    This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

  1. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and....1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and animal tissues. Sodium...

  2. Kinetic study of benzyl [1-14C]acetate as a potential probe for astrocytic energy metabolism in the rat brain: Comparison with benzyl [2-14C]acetate.

    PubMed

    Okada, Maki; Yanamoto, Kazuhiko; Kagawa, Tomohiko; Yoshino, Keiko; Hosoi, Rie; Abe, Kohji; Zhang, Ming-Rong; Inoue, Osamu

    2016-02-01

    Brain uptake of [(14)C]acetate has been reported to be a useful marker of astrocytic energy metabolism. In addition to uptake values, the rate of radiolabeled acetate washout from the brain appears to reflect CO2 exhaustion and oxygen consumption in astrocytes. We measured the time-radioactivity curves of benzyl [1-(14)C]acetate ([1-(14)C]BA), a lipophilic probe of [1-(14)C]acetate, and compared it with that of benzyl [2-(14)C]acetate ([2-(14)C]BA) in rat brains. The highest brain uptake was observed immediately after injecting either [1-(14)C]BA or [2-(14)C]BA, and both subsequently disappeared from the brain in a single-exponential manner. Estimated [1-(14)C]BA washout rates in the cerebral cortex and cerebellum were higher than those of [2-(14)C]BA. These results suggested that [1-(14)C]BA could be a useful probe for estimating the astrocytic oxidative metabolism. The [1-(14)C]BA washout rate in the cerebral cortex of immature rats was lower than that of mature rats. An autoradiographic study showed that the washout rates of [1-(14)C]BA from the rat brains of a lithium-pilocarpine-induced status epilepticus model were not significantly different from the values in control rat brains except for the medial septal nucleus. These results implied that the enhancement of amino acid turnover rate rather than astrocytic oxidative metabolism was increased in status epilepticus. © The Author(s) 2015.

  3. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    PubMed

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A; Kjeldsen, Kasper U; Jørgensen, Bo B; Plugge, Caroline M

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  4. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    PubMed Central

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A.; Kjeldsen, Kasper U.; Jørgensen, Bo B.; Plugge, Caroline M.

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria. PMID:26074892

  5. Brettanomyces acidodurans sp. nov., a new acetic acid producing yeast species from olive oil.

    PubMed

    Péter, Gábor; Dlauchy, Dénes; Tóbiás, Andrea; Fülöp, László; Podgoršek, Martina; Čadež, Neža

    2017-05-01

    Two yeast strains representing a hitherto undescribed yeast species were isolated from olive oil and spoiled olive oil originating from Spain and Israel, respectively. Both strains are strong acetic acid producers, equipped with considerable tolerance to acetic acid. The cultures are not short-lived. Cellobiose is fermented as well as several other sugars. The sequences of their large subunit (LSU) rRNA gene D1/D2 domain are very divergent from the sequences available in the GenBank. They differ from the closest hit, Brettanomyces naardenensis by about 27%, mainly substitutions. Sequence analyses of the concatenated dataset from genes of the small subunit (SSU) rRNA, LSU rRNA and translation elongation factor-1α (EF-1α) placed the two strains as an early diverging member of the Brettanomyces/Dekkera clade with high bootstrap support. Sexual reproduction was not observed. The name Brettanomyces acidodurans sp. nov. (holotype: NCAIM Y.02178 T ; isotypes: CBS 14519 T  = NRRL Y-63865 T  = ZIM 2626 T , MycoBank no.: MB 819608) is proposed for this highly divergent new yeast species.

  6. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia

    PubMed Central

    Wilson, Rosamund J; Copley, J Brian

    2017-01-01

    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent-to-treat population (N=2520), 752 patients with recorded dose data for calcium acetate (n=551)/calcium carbonate (n=201) at baseline and lanthanum carbonate at week 16 were studied. Elemental calcium intake, serum phosphate, corrected serum calcium, and serum intact parathyroid hormone levels were analyzed. Findings Of the 551 patients with calcium acetate dose data, 271 (49.2%) had an elemental calcium intake of at least 1.5 g/day at baseline, and 142 (25.8%) had an intake of at least 2.0 g/day. Mean (95% confidence interval [CI]) serum phosphate levels were 6.1 (5.89, 6.21) mg/dL at baseline and 6.2 (6.04, 6.38) mg/dL at 16 weeks; mean (95% CI) corrected serum calcium levels were 9.3 (9.16, 9.44) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Of the 201 patients with calcium carbonate dose data, 117 (58.2%) had an elemental calcium intake of at least 1.5 g/day, and 76 (37.8%) had an intake of at least 2.0 g/day. Mean (95% CI) serum phosphate levels were 5.8 (5.52, 6.06) mg/dL at baseline and 5.8 (5.53, 6.05) mg/dL at week 16; mean (95% CI) corrected serum calcium levels were 9.7 (9.15, 10.25) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Conclusion Calcium acetate/calcium carbonate phosphate binders, taken to control serum phosphate levels, may result in high levels of elemental calcium intake. This may lead to complications related to calcium balance. PMID:28182142

  7. Metal-organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    NASA Astrophysics Data System (ADS)

    Hu, Bo-Wen; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-01

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L)2]n (1) and [Co3(L)4(N3)2·2MeOH]n (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (42.6)2(44.62.88.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co3] units. And the magnetic properties of 1 and 2 have been studied.

  8. Improvement of inverted organic solar cells using acetic acid as an additive for ZnO layer processing

    NASA Astrophysics Data System (ADS)

    Li, Yang; Liu, Yawen; Liu, Zhihai; Xie, Xiaoyin; Lee, Eun-Cheol

    2018-02-01

    In this work, we used acetic acid as an additive for the preparation of ZnO layers and improved the performance of poly{4,8-bis[(2-ethylhexyl)-oxy]benzo[1,2-b:4,5-b'] dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene- 4,6-diyl} (PTB7)-based inverted organic solar cells. The addition of acetic acid to the ZnO precursor solution improved the transparency and conductivity of the sol-gel-synthesized ZnO film, by increasing the grain size of the film. Accordingly, the power conversion efficiency (PCE) of the organic solar cells was improved from 6.42% to 7.55%, which was mainly caused by the enhanced current density and fill factor. The best sample demonstrated a high PCE of 7.85% with negligible hysteresis and good stability. Our results indicate that using acetic acid as an additive for the preparation of ZnO is a simple and effective way of fabricating high-performance inverted organic solar cells.

  9. Acetate metabolism does not reflect astrocytic activity, contributes directly to GABA synthesis, and is increased by silent information regulator 1 activation.

    PubMed

    Rowlands, Benjamin D; Klugmann, Matthias; Rae, Caroline D

    2017-03-01

    [ 13 C]Acetate is known to label metabolites preferentially in astrocytes rather than neurons and it has consequently been used as a marker for astrocytic activity. Recent discoveries suggest that control of acetate metabolism and its contributions to the synthesis of metabolites in brain is not as simple as first thought. Here, using a Guinea pig brain cortical tissue slice model metabolizing [1- 13 C]D-glucose and [1,2- 13 C]acetate, we investigated control of acetate metabolism and the degree to which it reflects astrocytic activity. Using a range of [1,2- 13 C]acetate concentrations, we found that acetate is a poor substrate for metabolism and will inhibit metabolism of itself and of glucose at concentrations in excess of 2 mmol/L. By activating astrocytes using potassium depolarization, we found that use of [1,2- 13 C]acetate to synthesize glutamine decreases significantly under these conditions showing that acetate metabolism does not necessarily reflect astrocytic activity. By blocking synthesis of glutamine using methionine sulfoximine, we found that significant amount of [1,2- 13 C]acetate are still incorporated into GABA and its metabolic precursors in neurons, with around 30% of the GABA synthesized from [1,2- 13 C]acetate likely to be made directly in neurons rather than from glutamine supplied by astrocytes. Finally, to test whether activity of the acetate metabolizing enzyme acetyl-CoA synthetase is under acetylation control in the brain, we incubated slices with the AceCS1 deacetylase silent information regulator 1 (SIRT1) activator SRT 1720 and showed consequential increased incorporation of [1,2- 13 C]acetate into metabolites. Taken together, these data show that acetate metabolism is not directly nor exclusively related to astrocytic metabolic activity, that use of acetate is related to enzyme acetylation and that acetate is directly metabolized to a significant degree in GABAergic neurons. Changes in acetate metabolism should be interpreted as

  10. Role of acetate and nitrates in the selective catalytic reduction of NO by propene over alumina catalyst as investigated by FTIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Kenichi; Kawabata, Hisaya; Satsuma, Atsushi

    1999-06-24

    It is widely accepted that selective catalytic reduction (SCR) of NO by hydrocarbons is a potential method to remove NO{sub x} practically in excess O{sub 2}. Although many studies on SCR are related to zeolitic catalysts, metal oxides are also of importance as promising SCR catalysts due to their high durability. Among oxide catalysts, {gamma}-Al{sub 2}O{sub 3} is one of the most active single oxides for SCR. The mechanism of the selective catalytic reduction (SCR) of NO by C{sub 3}H{sub 6} on Al{sub 2}O{sub 3} was investigated using in situ IR spectroscopy. Attention was focused on the reactivity of themore » adsorbed acetate and nitrates on the Al{sub 2}O{sub 3} surface. IR spectra showed that the reaction starts with the nitrates formation from NO + O{sub 2} followed by its reaction with C{sub 3}H{sub 6} to form acetate, which becomes the predominant surface species in the steady-state condition. The acetate band, which was stable in He or NO, significantly decreased when the flowing gas was switched to NO + O{sub 2}. A complementary set of experiments monitoring gas composition showed that N{sub 2} and CO{sub x} were produced by the reaction of acetate with NO + O{sub 2}. The rate of acetate consumption in NO + O{sub 2} exhibited the same order of magnitude as the NO reduction rate, indicating that the acetate is active as a reductant and takes part in the N{sub 2} formation. Nitrates can oxidize both C{sub 3}H{sub 6} and acetate, and are mostly reduced to N{sub 2}. A proposed reaction scheme explains the role of O{sub 2} in facilitating SCR of NO.« less

  11. Occurrence of microbial acetate-oxidation in ~2 km-deep coal-bearing sediments off the Shimokita Peninsula, Japan (IODP Expedition 337)

    NASA Astrophysics Data System (ADS)

    Ijiri, A.; Inagaki, F.

    2015-12-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 337 in 2012, the riser-drilling vessel Chikyu extended the previous world depth record of scientific ocean drilling and made one of the deepest scientific borehole down to 2466 m below the seafloor (mbsf) at Site C0020 Hole A off the Shimokita Peninsula, Japan. The sedimentary sequence consists of 17 lignite layers below 1.5 km bellow the seafloor. Microbiological and geochemical data consistently showed evidence for the existence of microbial communities associated with lignite coal beds in the coal-bearing sediments (Inagaki and Hinrichs et al., Science, 2015). Since lignite coals produce substantial dissolved organic compounds during the burial alternation process, volatile fatty acids may play important roles for microbial life and its activity in the deep sedimentary environment. To address this hypothesis, we measured methanogenic and acetate-oxidation activities by radiotracer incubation experiments using 14C-labelled substrate ([2-14C]-acetate) immediately after core recovery. Activity of aceticlastic methanogenesis was observed in the sediment above the coal-baring layers (>1990 mbsf), ranging from 0.2 to 1.2 pmol cm-3 d-1. The highest activity was observed in a coal-bed horizon at 1990 mbsf. However, aceticlastic methanogenesis was below the detection limit in sediment samples below the 2 km-coal layers. Activity of acetate oxidation to CO2 was measured by 14CO2 production rate from [2-14C]-acetate. Interestingly, the acetate-oxidation activity was observed in sediments above the coal beds, which values were generally higher than those of methanogenesis with the maximum value of 33 pmol cm-3 d-1 at 1800 mbsf. The rates gradually decreased with increasing depth from 1800 mbsf and reached below the detection limit (i.e., 0.05 pmol cm-3 d-1) in 2 km-deep coal-bed samples. The occurrence of relatively high acetate oxidation at ~1800 mbsf above the coal formation suggests that microbes respire

  12. Effects of solvent composition in the normal-phase liquid chromatography of alkylphenols and naphthols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurtubise, R.J.; Hussain, A.; Silver, H.F.

    1981-11-01

    The normal-phase liquid chromatographic models of Scott, Snyder, and Soczewinski were considered for a ..mu..-Bondapak NH/sub 2/ stationary phase. n-Heptane:2-propanol and n-heptane:ethyl acetate mobile phases of different compositions were used. Linear relationships were obtained from graphs of log K' vs. log mole fraction of the strong solvent for both n-heptane:2-propanol and n-heptane:ethyl acetate mobile phases. A linear relationship was obtained between the reciprocal of corrected retention volume and % wt/v of 2-propanol but not between the reciprocal of corrected retention volume and % wt/v of ethyl acetate. The slopes and intercept terms from the Snyder and Soczewinski models were foundmore » to approximately describe interactions with ..mu..-Bondapak NH/sub 2/. Capacity factors can be predicted for the compounds by using the equations obtained from mobile phase composition variation experiments.« less

  13. 21 CFR 182.8892 - α-Tocopherol acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false α-Tocopherol acetate. 182.8892 Section 182.8892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8892 α-Tocopherol acetate. (a) Product. α-Tocopherol...

  14. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  15. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  17. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  18. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  19. Secondary. cap alpha. -deuterium kinetic isotope effects in solvolyses of ferrocenylmethyl acetate and benzoate in ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutic, D.; Asperger, S.; Borcic, S.

    1982-12-17

    Secondary ..cap alpha..-deuterium kinetic isotope effects (KIE) in solvolyses of ferrocenyldideuteriomethyl acetate and benzoate were determined in 96% (v/v) ethanol, at 25/sup 0/C, as k/sub H//k/sub D/ = 1.24 and 1.26, respectively. The KIEs were also determined in the presence of 0.1 mol dm/sup -3/ lithium perchlorate: the k/sub H//k/ sub D/ values were 1.23 and 1.22 for acetate and benzoate complexes, respectively. The maximum KIE for the C-O bond cleavage of a primary substrate is as large as, or larger than, that of secondary derivatives, which is estimated to be 1.23 per deuterium. The measured KIE of about 12%more » per D therefore represents a strongly reduced effect relative to its maximum. The solvolyses exhibit ''a special salt effect''. This effect indicates the presence of solvent-separated ion pairs and the return to tight pairs. As the maximum KIE is expected in solvolyses involving transformation of one type of ion pair into another, the strongly reduced ..cap alpha..-D KIE supports the structure involving direct participation of electrons that in the ground state are localized at the iron atom. The alkyl-oxygen cleavage is accompanied by 10-15% acyl-oxygen cleavage.« less

  20. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is generally...

  1. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is generally...

  2. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is generally...

  3. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is generally...

  4. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is generally...

  5. Oral acetate supplementation attenuates N-methyl D-aspartate receptor hypofunction-induced behavioral phenotypes accompanied by restoration of acetyl-histone homeostasis.

    PubMed

    Singh, Seema; Choudhury, Arnab; Gusain, Priya; Parvez, Suhel; Palit, Gautam; Shukla, Shubha; Ganguly, Surajit

    2016-04-01

    Aberrations in cellular acetate-utilization processes leading to global histone hypoacetylation have been implicated in the etiology of neuropsychiatric disorders like schizophrenia. Here, we investigated the role of acetate supplementation in the form of glyceryl triacetate (GTA) for the ability to restore the N-methyl D-aspartate (NMDA) receptor-induced histone hypoacetylation and to ameliorate associated behavioral phenotypes in mice. Taking cues from the studies in SH-SY5Y cells, we monitored acetylation status of specific lysine residues of histones H3 and H4 (H3K9 and H4K8) to determine the impact of oral GTA supplementation in vivo. Mice treated chronically with MK-801 (10 days; 0.15 mg/kg daily) induced hypoacetylation of H3K9 and H4K8 in the hippocampus. Daily oral supplementation of GTA (2.9 g/kg) was able to prevent this MK801-induced hypoacetylation significantly. Though MK-801-stimulated decreases in acetyl-H3K9 and acetyl-H4K8 were found to be associated with ERK1/2 activation, GTA seemed to act independent of this pathway. Simultaneously, GTA administration was able to attenuate the chronic MK-801-induced cognitive behavior phenotypes in elevated plus maze and novel object recognition tests. Not only MK-801, GTA also demonstrated protective effects against behavioral phenotypes generated by another NMDA receptor antagonist, ketamine. Acute (single injection) ketamine-mediated hyperactivity phenotype and chronic (10 days treatment) ketamine-induced phenotype of exaggerated immobility in forced swim test were ameliorated by GTA. The signature behavioral phenotypes induced by acute and chronic regimen of NMDA receptor antagonists seemed to be attenuated by GTA. This study thus provides a therapeutic paradigm of using dietary acetate supplement in psychiatric disorders.

  6. Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications

    PubMed Central

    Ferro, Suellen; Azevedo-Silva, João; Casal, Margarida; Côrte-Real, Manuela; Baltazar, Fatima; Preto, Ana

    2016-01-01

    Acetate, together with other short chain fatty acids has been implicated in colorectal cancer (CRC) prevention/therapy. Acetate was shown to induce apoptosis in CRC cells. The precise mechanism underlying acetate transport across CRC cells membrane, that may be implicated in its selectivity towards CRC cells, is not fully understood and was addressed here. We also assessed the effect of acetate in CRC glycolytic metabolism and explored its use in combination with the glycolytic inhibitor 3-bromopyruvate (3BP). We provide evidence that acetate enters CRC cells by the secondary active transporters MCT1 and/or MCT2 and SMCT1 as well as by facilitated diffusion via aquaporins. CRC cell exposure to acetate upregulates the expression of MCT1, MCT4 and CD147, while promoting MCT1 plasma membrane localization. We also observed that acetate increases CRC cell glycolytic phenotype and that acetate-induced apoptosis and anti-proliferative effect was potentiated by 3BP. Our data suggest that acetate selectivity towards CRC cells might be explained by the fact that aquaporins and MCTs are found overexpressed in CRC clinical cases. Our work highlights the importance that acetate transport regulation has in the use of drugs such as 3BP as a new therapeutic strategy for CRC. PMID:28874966

  7. Alcohols enhance the rate of acetic acid diffusion in S. cerevisiae: biophysical mechanisms and implications for acetic acid tolerance.

    PubMed

    Lindahl, Lina; Genheden, Samuel; Faria-Oliveira, Fábio; Allard, Stefan; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2017-12-01

    Microbial cell factories with the ability to maintain high productivity in the presence of weak organic acids, such as acetic acid, are required in many industrial processes. For example, fermentation media derived from lignocellulosic biomass are rich in acetic acid and other weak acids. The rate of diffusional entry of acetic acid is one parameter determining the ability of microorganisms to tolerance the acid. The present study demonstrates that the rate of acetic acid diffusion in S. cerevisiae is strongly affected by the alcohols ethanol and n-butanol. Ethanol of 40 g/L and n-butanol of 8 g/L both caused a 65% increase in the rate of acetic acid diffusion, and higher alcohol concentrations caused even greater increases. Molecular dynamics simulations of membrane dynamics in the presence of alcohols demonstrated that the partitioning of alcohols to the head group region of the lipid bilayer causes a considerable increase in the membrane area, together with reduced membrane thickness and lipid order. These changes in physiochemical membrane properties lead to an increased number of water molecules in the membrane interior, providing biophysical mechanisms for the alcohol-induced increase in acetic acid diffusion rate. n-butanol affected S. cerevisiae and the cell membrane properties at lower concentrations than ethanol, due to greater and deeper partitioning in the membrane. This study demonstrates that the rate of acetic acid diffusion can be strongly affected by compounds that partition into the cell membrane, and highlights the need for considering interaction effects between compounds in the design of microbial processes.

  8. Alcohols enhance the rate of acetic acid diffusion in S. cerevisiae: biophysical mechanisms and implications for acetic acid tolerance

    PubMed Central

    Lindahl, Lina; Genheden, Samuel; Faria-Oliveira, Fábio; Allard, Stefan; Eriksson, Leif A.; Olsson, Lisbeth; Bettiga, Maurizio

    2017-01-01

    Microbial cell factories with the ability to maintain high productivity in the presence of weak organic acids, such as acetic acid, are required in many industrial processes. For example, fermentation media derived from lignocellulosic biomass are rich in acetic acid and other weak acids. The rate of diffusional entry of acetic acid is one parameter determining the ability of microorganisms to tolerance the acid. The present study demonstrates that the rate of acetic acid diffusion in S. cerevisiae is strongly affected by the alcohols ethanol and n-butanol. Ethanol of 40 g/L and n-butanol of 8 g/L both caused a 65% increase in the rate of acetic acid diffusion, and higher alcohol concentrations caused even greater increases. Molecular dynamics simulations of membrane dynamics in the presence of alcohols demonstrated that the partitioning of alcohols to the head group region of the lipid bilayer causes a considerable increase in the membrane area, together with reduced membrane thickness and lipid order. These changes in physiochemical membrane properties lead to an increased number of water molecules in the membrane interior, providing biophysical mechanisms for the alcohol-induced increase in acetic acid diffusion rate. n-butanol affected S. cerevisiae and the cell membrane properties at lower concentrations than ethanol, due to greater and deeper partitioning in the membrane. This study demonstrates that the rate of acetic acid diffusion can be strongly affected by compounds that partition into the cell membrane, and highlights the need for considering interaction effects between compounds in the design of microbial processes. PMID:29354649

  9. Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation 1 as augmentation therapeutic strategy approaches in muscular dystrophy.

    PubMed

    Afzal, Ehsan; Zakeri, Saba; Keyhanvar, Peyman; Bagheri, Meisam; Mahjoubi, Parvin; Asadian, Mahtab; Omoomi, Nogol; Dehqanian, Mohammad; Ghalandarlaki, Negar; Darvishmohammadi, Tahmineh; Farjadian, Fatemeh; Golvajoee, Mohammad Sadegh; Afzal, Shadi; Ghaffari, Maryam; Cohan, Reza Ahangari; Gravand, Amin; Ardestani, Mehdi Shafiee

    2013-01-01

    [Corrected] Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 [MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation.

  10. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions

    PubMed Central

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

    2014-01-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  11. The key to acetate: metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation-simulating conditions.

    PubMed

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik; Wittmann, Christoph

    2014-08-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present.

  12. Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster.

    PubMed

    Montooth, Kristi L; Siebenthall, Kyle T; Clark, Andrew G

    2006-10-01

    Drosophila melanogaster has evolved the ability to tolerate and utilize high levels of ethanol and acetic acid encountered in its rotting-fruit niche. Investigation of this phenomenon has focused on ethanol catabolism, particularly by the enzyme alcohol dehydrogenase. Here we report that survival under ethanol and acetic acid stress in D. melanogaster from high- and low-latitude populations is an integrated consequence of toxin catabolism and alteration of physical properties of cellular membranes by ethanol. Metabolic detoxification contributed to differences in ethanol tolerance between populations and acclimation temperatures via changes in both alcohol dehydrogenase and acetyl-CoA synthetase mRNA expression and enzyme activity. Independent of changes in ethanol catabolism, rapid thermal shifts that change membrane fluidity had dramatic effects on ethanol tolerance. Cold temperature treatments upregulated phospholipid metabolism genes and enhanced acetic acid tolerance, consistent with the predicted effects of restoring membrane fluidity. Phospholipase D was expressed at high levels in all treatments that conferred enhanced ethanol tolerance, suggesting that this lipid-mediated signaling enzyme may enhance tolerance by sequestering ethanol in membranes as phophatidylethanol. These results reveal new candidate genes underlying toxin tolerance and membrane adaptation to temperature in Drosophila and provide insight into how interactions between these phenotypes may underlie the maintenance of latitudinal clines in ethanol tolerance.

  13. Production of targeted poly(3-hydroxyalkanoates) copolymers by glycogen accumulating organisms using acetate as sole carbon source.

    PubMed

    Dai, Yu; Yuan, Zhiguo; Jack, Kevin; Keller, Jurg

    2007-05-01

    One of the main limitations in bacterial polyhydroxyalkanoate (PHA) production with mixed cultures is the fact that primarily polyhydroxybutyrate (PHB) homopolymers are generated from acetate as the main carbon source, which is brittle and quite fragile. The incorporation of different 3-hydroxyalkanoate (HA) components into the polymers requires the addition of additional carbon sources, leading to extra costs and complexity. In this study, the production of poly(3-hydroxybutyrate (3HB)-co-3-hydroxyvalerate (3HV)-co-3-hydroxy-2-methylvalerate (3HMV)), with 7-35C-mol% of 3HV fractions from acetate as the only carbon source was achieved with the use of glycogen accumulating organisms (GAOs). An enriched GAO culture was obtained in a lab-scale reactor operated under alternating anaerobic and aerobic conditions with acetate fed at the beginning of the anaerobic period. The production of PHAs utilizing the enriched GAO culture was investigated under both aerobic and anaerobic conditions. A polymer content of 14-41% of dry cell weight was obtained. The PHA product accumulated by GAOs under anaerobic conditions contained a relatively constant proportion of non-3HB monomers (30+/-5C-mol%), irrespective of the amount of acetate assimilated. In contrast, under aerobic conditions, GAOs only produced 3HB monomers from acetate causing a gradually decreasing 3HV fraction during this aerobic feeding period. The PHAs were characterized by gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The data demonstrated that the copolymers possessed similar characteristics to those of commercially available poly(3HB-co-3HV) (PHBV) products. The PHAs produced under solely anaerobic conditions possessed lower melting points and crystallinity, higher molecular weights, and narrower molecular-weight distributions, compared to the aerobically produced polymers. This paper hence demonstrates the significant potential of GAOs to produce high quality polymers from a

  14. Use of cyclodextrins as a cosmetic delivery system for fragrance materials: linalool and benzyl acetate.

    PubMed

    Numanoğlu, Ulya; Sen, Tangül; Tarimci, Nilüfer; Kartal, Murat; Koo, Otilia M Y; Onyüksel, Hayat

    2007-10-19

    The aim of this study was to increase the stability and water solubility of fragrance materials, to provide controlled release of these compounds, and to convert these substances from liquid to powder form by preparing their inclusion complexes with cyclodextrins (CDs). For this purpose, linalool and benzyl acetate were chosen as the fragrance materials. The use of beta-cyclodextrin (beta CD) and 2-hydroxypropyl-beta-cyclodextrin (2-HP beta CD) for increasing the solubility of these 2 fragrance materials was studied. Linalool and benzyl acetate gave a B-type diagram with beta CD, whereas they gave an A(L)-type diagram with 2-HP beta CD. Therefore, complexes of fragrance materials with 2-HP beta CD at 1:1 and 1:2 molar ratios (guest:host) were prepared. The formation of inclusion complexes was confirmed using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy and circular dichroism spectroscopy. The results of the solubility studies showed that preparing the inclusion complex with 2-HP beta CD at a 1:1 molar ratio increased the solubility of linalool 5.9-fold and that of benzyl acetate 4.2-fold, whereas the complexes at a 1:2 molar ratio increased the solubility 6.4- and 4.5-fold for linalool and benzyl acetate, respectively. The stability and in vitro release studies were performed on the gel formulations prepared using uncomplexed fragrance materials or inclusion complexes of fragrance materials at a 1:1 molar ratio. It was observed that the volatility of both fragrance materials was decreased by preparing the inclusion complexes with 2-HP beta CD. Also, in vitro release data indicated that controlled release of fragrances could be possible if inclusion complexes were prepared.

  15. Viscometric investigation of compatibilization of the poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) blends by terpolymer of maleic anhydride styrene vinyl acetate

    NASA Astrophysics Data System (ADS)

    İmren, Dilek; Boztuğ, Ali; Yılmaz, Ersen; Zengin, H. Bayram

    2008-11-01

    In this study, a blend of poly(vinyl chloride) (PVC)/ethylene-co-vinyl acetate (EVA) was compatibilized by terpolymer of maleic anhydride-styrene-vinyl acetate (MAStVA) used as a compatibilizer. It was prepared the blends of 50/50 PVC/EVA containing 2-10% of the terpolymer. The compatibility experiences of these blends were investigated by using viscometric method in the range of concentrations (0.5-2.0 g dL -1) where tetrahydrofuran (THF) is the solvent. The interaction parameter (Δ b) was used to study the miscibility and compatibility of polymer blend in solution, obtained from the modified Krigbaum and Wall theory. Turbidity and FTIR measurements were also used to investigate the miscibility of this pair of polymers. The values of the relative viscosities of the each polymer solution and their blends were measured by a Cannon-Fenske type viscometer. In consequence of the study, it was observed that a considerable improvement was achieved in the miscibility of PVC/EVA blends by adding among 5 and 10 wt% of compatibilizer.

  16. Aptiom (eslicarbazepine acetate) as a dual inhibitor of β-secretase and voltage-gated sodium channel: advancement in Alzheimer's disease-epilepsy linkage via an enzoinformatics study.

    PubMed

    Shaikh, Sibhghatulla; Rizvi, Syed M D; Hameed, Nida; Biswas, Deboshree; Khan, Mahiuddin; Shakil, Shazi; Kamal, Mohammad A

    2014-01-01

    Neurodegenerative disorders are increasingly identified as one of the major causes of epilepsy. The relationship of epileptic activity to Alzheimer's disease (AD) is of clinical importance. Voltage-gated sodium channel (VSC) is one of the best targets in the treatment of epilepsy while β-secretase (BACE) has long been observed as a curative target for AD. To explore a possible link between the treatment of AD and epilepsy, the molecular interactions of recently Food and Drug Administration approved antiepileptic drug Aptiom (Eslicarbazepine acetate) with BACE and VSC were studied. Docking study was performed using 'Autodock4.2'. Hydrophobic and pi-pi interactions play critical role in the correct positioning of Eslicarbazepine acetate within the catalytic site of VSC and BACE enzyme to permit docking. Free energy of binding (ΔG) of 'Eslicarbazepine acetate-VSC' interaction and 'Eslicarbazepine acetate-CAS domain of BACE' interaction was found to be -5.97 and -7.19 kcal/mol, respectively. Hence, Eslicarbazepine acetate might act as a potent dual inhibitor of BACE and VSC. However, scope still remains in the determination of the three-dimensional structure of BACE-Eslicarbazepine acetate and VSC-Eslicarbazepine acetate complexes by X-ray crystallography to validate the described data. Further, Aptiom (Eslicarbazepine acetate) could be expected to form the basis of future dual therapy against epilepsy associated neurological disorders.

  17. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.

  18. Design and synthesis of alkoxyindolyl-3-acetic acid analogs as peroxisome proliferator-activated receptor-γ/δ agonists.

    PubMed

    Gim, Hyo Jin; Li, Hua; Lee, Eun; Ryu, Jae-Ha; Jeon, Raok

    2013-01-15

    A series of carbazole or phenoxazine containing alkoxyindole-3-acetic acid analogs were prepared as PPARγ/δ agonists and their transactivation activities for PPAR receptor subtypes (α, γ and δ) were investigated. Structure-activity relationship studies disclosed the effect of the lipophilic tail, attaching position of the alkoxy group and N-benzyl substitution at indole. Compound 1b was the most potent for PPARδ and 3b for PPARγ. Molecular modeling suggested two different binding modes of our alkoxyindole-3-acetic acid analogs providing the insight into their PPAR activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002.

    PubMed

    Therien, Jesse B; Zadvornyy, Oleg A; Posewitz, Matthew C; Bryant, Donald A; Peters, John W

    2014-01-01

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. Here we demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC 7002. Optimal growth conditions for co-cultivation of C. reinhardtii with wild-type and mutant strains of Synechococcus sp. 7002 were established. In co-culture, acetate produced by a glycogen synthase knockout mutant of Synechococcus sp. PCC 7002 was able to support the growth of a lipid-accumulating mutant strain of C. reinhardtii defective in starch production. Encapsulation of Synechococcus sp. PCC 7002 using an alginate matrix was successfully employed in co-cultures to limit growth and maintain the stability. The ability of immobilized strains of the cyanobacterium Synechococcus sp. PCC 7002 to produce acetate at a level adequate to support the growth of lipid-accumulating strains of C. reinhartdii offers a potentially practical, photosynthetic alternative to providing exogenous acetate into growth media.

  20. Serendipitous discovery of light-induced (In Situ) formation of an Azo-bridged dimeric sulfonated naphthol as a potent PTP1B inhibitor.

    PubMed

    Bongard, Robert D; Lepley, Michael; Thakur, Khushabu; Talipov, Marat R; Nayak, Jaladhi; Lipinski, Rachel A Jones; Bohl, Chris; Sweeney, Noreena; Ramchandran, Ramani; Rathore, Rajendra; Sem, Daniel S

    2017-05-31

    Protein tyrosine phosphatases (PTPs) like dual specificity phosphatase 5 (DUSP5) and protein tyrosine phosphatase 1B (PTP1B) are drug targets for diseases that include cancer, diabetes, and vascular disorders such as hemangiomas. The PTPs are also known to be notoriously difficult targets for designing inihibitors that become viable drug leads. Therefore, the pipeline for approved drugs in this class is minimal. Furthermore, drug screening for targets like PTPs often produce false positive and false negative results. Studies presented herein provide important insights into: (a) how to detect such artifacts, (b) the importance of compound re-synthesis and verification, and (c) how in situ chemical reactivity of compounds, when diagnosed and characterized, can actually lead to serendipitous discovery of valuable new lead molecules. Initial docking of compounds from the National Cancer Institute (NCI), followed by experimental testing in enzyme inhibition assays, identified an inhibitor of DUSP5. Subsequent control experiments revealed that this compound demonstrated time-dependent inhibition, and also a time-dependent change in color of the inhibitor that correlated with potency of inhibition. In addition, the compound activity varied depending on vendor source. We hypothesized, and then confirmed by synthesis of the compound, that the actual inhibitor of DUSP5 was a dimeric form of the original inhibitor compound, formed upon exposure to light and oxygen. This compound has an IC 50 of 36 μM for DUSP5, and is a competitive inhibitor. Testing against PTP1B, for selectivity, demonstrated the dimeric compound was actually a more potent inhibitor of PTP1B, with an IC 50 of 2.1 μM. The compound, an azo-bridged dimer of sulfonated naphthol rings, resembles previously reported PTP inhibitors, but with 18-fold selectivity for PTP1B versus DUSP5. We report the identification of a potent PTP1B inhibitor that was initially identified in a screen for DUSP5, implying common

  1. The Effects of Acetate Buffer Concentration on Lysozyme Solubility

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Pusey, Marc L.

    1996-01-01

    The micro-solubility column technique was employed to systematically investigate the effects of buffer concentration on tetragonal lysozyme solubility. While keeping the NaCl concentrations constant at 2%, 3%, 4%, 5% and 7%, and the pH at 4.0, we have studied the solubility of tetragonal lysozyme over an acetate buffer concentration range of 0.01M to 0.5M as a function of temperature. The lysozyme solubility decreased with increasing acetate concentration from 0.01M to 0.1M. This decrease may simply be due to the net increase in solvent ionic strength. Increasing the acetate concentration beyond 0.1M resulted in an increase in the lysozyme solubility, which reached a peak at - 0.3M acetate concentration. This increase was believed to be due to the increased binding of acetate to the anionic binding sites of lysozyme, preventing their occupation by chloride. In keeping with the previously observed reversal of the Hoffmeister series for effectiveness of anions in crystallizing lysozyme, acetate would be a less effective precipitant than chloride. Further increasing the acetate concentration beyond 0.3M resulted in a subsequent gradual decrease in the lysozyme solubility at all NaCl concentrations.

  2. Acetate adaptation of clostridia tyrobutyricum for improved fermentation production of butyrate.

    PubMed

    Jaros, Adam M; Rova, Ulrika; Berglund, Kris A

    2013-12-01

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium capable of utilizing xylose for the fermentation production of butyrate. Hot water extraction of hardwood lingocellulose is an efficient method of producing xylose where autohydrolysis of xylan is catalysed by acetate originating from acetyl groups present in hemicellulose. The presence of acetic acid in the hydrolysate might have a severe impact on the subsequent fermentations. In this study the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 26.3 g/L acetate equivalents were studied. Analysis of xylose batch fermentations found that even in the presence of high levels of acetate, acetate adapted strains had similar fermentation kinetics as the parental strain cultivated without acetate. The parental strain exposed to acetate at inhibitory conditions demonstrated a pronounced lag phase (over 100 hours) in growth and butyrate production as compared to the adapted strain (25 hour lag) or non-inhibited controls (0 lag). Additional insight into the metabolic pathway of xylose consumption was gained by determining the specific activity of the acetate kinase (AK) enzyme in adapted versus control batches. AK activity was reduced by 63% in the presence of inhibitory levels of acetate, whether or not the culture had been adapted.

  3. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    PubMed

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.

  4. Methane Upgrading of Acetic Acid as a Model Compound for a Biomass-Derived Liquid over a Modified Zeolite Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiguo; Austin, Danielle; Karmakar, Abhoy

    The technical feasibility of coaromatization of acetic acid derived from biomass and methane was investigated under mild reaction conditions (400 °C and 30 bar) over silver-, zinc-, and/or gallium-modified zeolite catalysts. On the basis of GC-MS, Micro-GC, and TGA analysis, more light aromatic hydrocarbons, less phenol formation, lower coke production, and higher methane conversion are observed over 5%Zn-1%Ga/ZSM-5 catalyst in comparison with catalytic performance over the other catalysts. Direct evidence of methane incorporation into aromatics over 5%Zn-1%Ga/ZSM-5 catalyst is witnessed in 1H, 2H, and 13C NMR spectra, revealing that the carbon from methane prefers to occupy the phenyl carbon sitesmore » and the benzylic carbon sites, and the hydrogen of methane favors the aromatic and benzylic substitutions of product molecules. In combination with the 13C NMR results for isotopically labeled acetic acid ( 13CH 3COOH and CH 3 13COOH), it can be seen that the methyl and carbonyl carbons of acetic acid are equally involved in the formation of ortho, meta and para carbons of the aromatics, whereas the phenyl carbons directly bonded with alkyl substituent groups and benzylic carbons are derived mainly from the carboxyl carbon of acetic acid. After various catalyst characterizations by using TEM, XRD, DRIFT, NH 3-TPD, and XPS, the excellent catalytic performance might be closely related to the highly dispersed zinc and gallium species on the zeolite support, moderate surface acidity, and an appropriate ratio of weak acidic sites to strong acidic sites as well as the fairly stable oxidation state during acetic acid conversion under a methane environment. Two mechanisms of the coaromatization of acetic acid and methane have also been proposed after consulting all the collected data in this study. In conclusion, the results reported in this paper could potentially lead to more cost-effective utilization of abundant natural gas and biomass.« less

  5. Methane Upgrading of Acetic Acid as a Model Compound for a Biomass-Derived Liquid over a Modified Zeolite Catalyst

    DOE PAGES

    Wang, Aiguo; Austin, Danielle; Karmakar, Abhoy; ...

    2017-04-19

    The technical feasibility of coaromatization of acetic acid derived from biomass and methane was investigated under mild reaction conditions (400 °C and 30 bar) over silver-, zinc-, and/or gallium-modified zeolite catalysts. On the basis of GC-MS, Micro-GC, and TGA analysis, more light aromatic hydrocarbons, less phenol formation, lower coke production, and higher methane conversion are observed over 5%Zn-1%Ga/ZSM-5 catalyst in comparison with catalytic performance over the other catalysts. Direct evidence of methane incorporation into aromatics over 5%Zn-1%Ga/ZSM-5 catalyst is witnessed in 1H, 2H, and 13C NMR spectra, revealing that the carbon from methane prefers to occupy the phenyl carbon sitesmore » and the benzylic carbon sites, and the hydrogen of methane favors the aromatic and benzylic substitutions of product molecules. In combination with the 13C NMR results for isotopically labeled acetic acid ( 13CH 3COOH and CH 3 13COOH), it can be seen that the methyl and carbonyl carbons of acetic acid are equally involved in the formation of ortho, meta and para carbons of the aromatics, whereas the phenyl carbons directly bonded with alkyl substituent groups and benzylic carbons are derived mainly from the carboxyl carbon of acetic acid. After various catalyst characterizations by using TEM, XRD, DRIFT, NH 3-TPD, and XPS, the excellent catalytic performance might be closely related to the highly dispersed zinc and gallium species on the zeolite support, moderate surface acidity, and an appropriate ratio of weak acidic sites to strong acidic sites as well as the fairly stable oxidation state during acetic acid conversion under a methane environment. Two mechanisms of the coaromatization of acetic acid and methane have also been proposed after consulting all the collected data in this study. In conclusion, the results reported in this paper could potentially lead to more cost-effective utilization of abundant natural gas and biomass.« less

  6. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2...

  7. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  8. A self-organized ensemble of fluorescent 3-hydroxyflavone-Al (III) complex as sensor for fluoride and acetate ions.

    PubMed

    Sathish, Sai; Narayan, Govindh; Rao, Nageswara; Janardhana, Chelli

    2007-01-01

    Aluminum chloride addition results in a self-organized TURN-ON fluorescence of 3-hydroxyflavone (3HF) by a complexation reaction in MeOH and subsequent ligand exchange reaction with fluoride or acetate ions causes a fluorescence TURN-OFF of this complex, delivering a quantitative estimation route for fluoride and acetate ions. The ternary complex of 3HF with Al (III), a hard acid provides for a sensitive signalling system for fluoride ion, a hard base in the concentration range from 6 muM to 50 mM by a concerted co-ordination of fluoride ion involving an intermediate mechanistic pathway, while the complex is sensitive to acetate addition between 0-68 muM. The ligand exchange reaction of Al (3HF)(2) complex by fluoride or acetate ion, without interference from other common anions, has been investigated by UV-visible and fluorescence spetroscopies. The structure of the in-situ intermediate isolated at higher Al (3HF)(2) complex and acetate concentrations was inferred from the FT-IR spectrum and ESI-MS of the sample.

  9. Contribution of acetate to butyrate formation by human faecal bacteria.

    PubMed

    Duncan, Sylvia H; Holtrop, Grietje; Lobley, Gerald E; Calder, A Graham; Stewart, Colin S; Flint, Harry J

    2004-06-01

    Acetate is normally regarded as an endproduct of anaerobic fermentation, but butyrate-producing bacteria found in the human colon can be net utilisers of acetate. The butyrate formed provides a fuel for epithelial cells of the large intestine and influences colonic health. [1-(13)C]Acetate was used to investigate the contribution of exogenous acetate to butyrate formation. Faecalibacterium prausnitzii and Roseburia spp. grown in the presence of 60 mm-acetate and 10 mm-glucose derived 85-90 % butyrate-C from external acetate. This was due to rapid interchange between extracellular acetate and intracellular acetyl-CoA, plus net acetate uptake. In contrast, a Coprococcus-related strain that is a net acetate producer derived only 28 % butyrate-C from external acetate. Different carbohydrate-derived energy sources affected butyrate formation by mixed human faecal bacteria growing in continuous or batch cultures. The ranking order of butyrate production rates was amylopectin > oat xylan > shredded wheat > inulin > pectin (continuous cultures), and inulin > amylopectin > oat xylan > shredded wheat > pectin (batch cultures). The contribution of external acetate to butyrate formation in these experiments ranged from 56 (pectin) to 90 % (xylan) in continuous cultures, and from 72 to 91 % in the batch cultures. This is consistent with a major role for bacteria related to F. prausnitzii and Roseburia spp. in butyrate formation from a range of substrates that are fermented in the large intestine. Variations in the dominant metabolic type of butyrate producer between individuals or with variations in diet are not ruled out, however, and could influence butyrate supply in the large intestine.

  10. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  11. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  12. Disorder effects in Mn(12)-acetate at 83 K.

    PubMed

    Cornia, Andrea; Fabretti, Antonio Costantino; Sessoli, Roberta; Sorace, Lorenzo; Gatteschi, Dante; Barra, Anne-Laure; Daiguebonne, Carole; Roisnel, Thierry

    2002-07-01

    The structure of hexadeca-mu-acetato-tetraaquadodeca-mu(3)-oxo-dodecamanganese bis(acetic acid) tetrahydrate, [Mn(12)O(12)(CH(3)COO)(16)(H(2)O)(4)] x 2CH(3)COOH x 4H(2)O, known as Mn(12)-acetate, has been determined at 83 (2) K by X-ray diffraction methods. The fourfold (S(4)) molecular symmetry is disrupted by a strong hydrogen-bonding interaction with the disordered acetic acid molecule of solvation, which displaces one of the acetate ligands in the cluster. Up to six Mn(12) isomers are potentially present in the crystal lattice, which differ in the number and arrangement of hydrogen-bonded acetic acid molecules. These results considerably improve the structural information available on this molecular nanomagnet, which was first synthesized and characterized by Lis [Acta Cryst. (1980), B36, 2042-2046].

  13. Anti-inflammatory effects of alpinone 3-acetate from Alpinia japonica seeds.

    PubMed

    Kakegawa, Tomohito; Miyazaki, Aya; Yasukawa, Ken

    2016-07-01

    We aimed to investigate the bioactive components of Alpinia japonica as anti-inflammatory compounds using searches of the Alpinia genus, and subsequently demonstrated that alpinone 3-acetate markedly inhibits 12-O-tetradecanoyiphorbol 13-acetate-induced inflammation in a mouse model of ear edema. To assess other bioactivities of alpinone 3-acetate, we performed translatome analyses and compared them with those of hydrocortisone. Polysome-associated mRNAs were prepared from alpinone 3-acetate- or hydrocortisone-treated and control cells from 12-O-tetradecanoyiphorbol 13-acetate-induced THP-1-derived macrophages cultured in the presence of Escherichia coli O-111 lipopolysaccharide. Subsequent microarray analysis revealed that alpinone 3-acetate and hydrocortisone upregulated and downregulated the same 155 and 41 genes, respectively. Moreover, direct comparisons of translationally regulated genes indicated 5 and 10 gene probes that were upregulated and downregulated by alpinone 3-acetate and hydrocortisone, respectively. In conclusion, assays of 12-O-tetradecanoyiphorbol 13-acetate-induced inflammation ear edema in mice and polysome profiling of alpinone 3-acetate bioactivities indicated similar medicinal possibilities to those of hydrocortisone.

  14. Microbial dynamics in acetate-enriched ballast water at different temperatures.

    PubMed

    Stehouwer, Peter Paul; van Slooten, Cees; Peperzak, Louis

    2013-10-01

    The spread of invasive species through ships' ballast water is considered as a major ecological threat to the world's oceans. For that reason, the International Maritime Organization (IMO) has set performance standards for ballast water discharge. Ballast water treatment systems have been developed that employ either UV-radiation or 'active substances' to reduce the concentration of living cells to below the IMOs standards. One such active substance is a chemical mixture known as Peraclean(®) Ocean. The residual of Peraclean(®) Ocean is acetate that might be present at high concentrations in discharged ballast water. In cold coastal waters the breakdown of acetate might be slow, causing a buildup of acetate concentrations in the water if regularly discharged by ships. To study the potential environmental impact, microbial dynamics and acetate degradation were measured in discharge water from a Peraclean(®) Ocean treatment system in illuminated microcosms. In addition, microbial dynamics and acetate degradation were studied at -1, 4, 10, 15 and 25°C in dark microcosms that simulated enclosed ballast water tanks. Acetate breakdown indeed occurred faster at higher temperatures. At 25°C the highest bacteria growth, fastest nutrient and oxygen consumption and highest DOC reduction occurred. On the other hand, at -1°C bacterial growth was strongly delayed, only starting to increase after 12 days. Furthermore, at 25°C the acetate pool was not depleted, probably due to nutrient and oxygen limitation. This means that not all acetate will be broken down in ballast water tanks, even during long voyages in warm waters. In addition, at low temperatures acetate breakdown in ballast water tanks and in discharged water will be extremely slow. Therefore, regular discharge of acetate enriched ballast water in harbors and bays may cause eutrophication and changes in the microbial community, especially in colder regions. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Parameters affecting acetate concentrations during in-situ biological hydrogen methanation.

    PubMed

    Agneessens, Laura Mia; Ottosen, Lars Ditlev Mørck; Andersen, Martin; Berg Olesen, Christina; Feilberg, Anders; Kofoed, Michael Vedel Wegener

    2018-06-01

    Surplus electricity may be supplied to anaerobic digesters as H 2 gas to upgrade the CH 4 content of biogas. Acetate accumulation has been observed following H 2 injections, but the parameters determining the degree of acetate accumulation are not well understood. The pathways involved during H 2 consumption and acetate kinetics were evaluated in continuous lab reactors and parallel batch 13 C experiments. Acetate accumulation increased during initial H 2 injections as organic loading rate increased and CO 2 levels decreased below 7%. The share of CH 4 in H 2 and 13 C mass balances increased after repeated H 2 injections, which corresponded with the increase of Methanomicrobiales observed via qPCR. The organic loading rate, the inorganic carbon level and level of methanogen adaption hence determine acetate kinetics during biomethanation of H 2 . The three identified parameters may form the base of a decision tool to assess acetate accumulation during H 2 injections to an anaerobic digester. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Effect of abiraterone acetate plus prednisone on the pharmacokinetics of dextromethorphan and theophylline in patients with metastatic castration-resistant prostate cancer.

    PubMed

    Chi, K N; Tolcher, A; Lee, P; Rosen, P J; Kollmannsberger, C K; Papadopoulos, K P; Patnaik, A; Molina, A; Jiao, J; Pankras, C; Kaiser, B; Bernard, A; Tran, N; Acharya, M

    2013-01-01

    To assess the effect of abiraterone acetate plus prednisone on the pharmacokinetics of dextromethorphan HBr (CYP2D6 substrate) and theophylline (CYP1A2 substrate) in patients with metastatic castration-resistant prostate cancer (mCRPC). Men with progressive metastatic mCRPC who failed gonadotropin-releasing hormone therapy and ≥1 lines of chemotherapy were enrolled. Patients received two doses of dextromethorphan HBr-30 mg (n = 18; group A) or theophylline-100 mg (n = 16; group B) under fasting conditions; one dose on cycle 1, day -8, and the other dose on cycle 1, day 8. Only patients with extensive CYP2D6 metabolizing status were assigned to group A. All patients received continuous daily oral abiraterone acetate (1,000 mg) plus prednisone (10 mg) starting on cycle 1, day 1. Coadministration of abiraterone acetate plus prednisone increased the systemic exposure of dextromethorphan by approximately 100%. Ratios of geometric means for maximum plasma concentration (C(max)) (275.36%) and area under plasma concentration-time curves from time 0 to 24 h (AUC(24h)) (268.14%) of dextromethorphan were outside the bioequivalence limit. The pharmacokinetics of theophylline was unaltered following coadministration of abiraterone acetate plus prednisone. Ratios of geometric means [C(max); 102.36% and AUC(24h); 108.03%] of theophylline exposure parameters were within the bioequivalence limit. The safety profile of abiraterone acetate was consistent with reported toxicities. Abiraterone acetate plus prednisone increased the exposure of dextromethorphan, suggesting a need for caution when coadministrating with known CYP2D6 substrates. The pharmacokinetics of theophylline was unaffected when coadministered with abiraterone acetate plus prednisone.

  17. [Experimental study of proflavine acetate phototransformation processes].

    PubMed

    Zholdakova, Z I; Sinitsyna, O O; Lebedev, A T; Kharchevnikova, N V

    2009-01-01

    Changes in proflavine acetate phototransformation processes upon exposure to visible-range irradiation were studied by high performance liquid chromatography. Proflavine acetate was offered as a photosensitizer during photodynamic water disinfection. Dye transformation products upon time-varying exposure to irradiation were identified. By using structure-activity relationships and information from toxicity databases, the authors evaluated the hazard of the identified products and identified the most hazardous ones.

  18. Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation 1 as augmentation therapeutic strategy approaches in muscular dystrophy

    PubMed Central

    Afzal, Ehsan; Zakeri, Saba; Keyhanvar, Peyman; Bagheri, Meisam; Mahjoubi, Parvin; Asadian, Mahtab; Omoomi, Nogol; Dehqanian, Mohammad; Ghalandarlaki, Negar; Darvishmohammadi, Tahmineh; Farjadian, Fatemeh; Golvajoee, Mohammad Sadegh; Afzal, Shadi; Ghaffari, Maryam; Cohan, Reza Ahangari; Gravand, Amin; Ardestani, Mehdi Shafiee

    2013-01-01

    Backgrond Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion – like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 [MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. Methods In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. Results The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation. PMID:23966782

  19. Cardiovascular effects of linalyl acetate in acute nicotine exposure.

    PubMed

    Kim, Ju Ri; Kang, Purum; Lee, Hui Su; Kim, Ka Young; Seol, Geun Hee

    2017-04-24

    Smoking is a risk factor for cardiovascular diseases as well as pulmonary dysfunction. In particular, adolescent smoking has been reported to have a higher latent risk for cardiovascular disease. Despite the risk to and vulnerability of adolescents to smoking, the mechanisms underlying the effects of acute nicotine exposure on adolescents remain unknown. This study therefore evaluated the mechanism underlying the effects of linalyl acetate on cardiovascular changes in adolescent rats with acute nicotine exposure. Parameters analyzed included heart rate (HR), systolic blood pressure, lactate dehydrogenase (LDH) activity, vascular contractility, and nitric oxide levels. Compared with nicotine alone, those treated with nicotine plus 10 mg/kg (p = 0.036) and 100 mg/kg (p = 0.023) linalyl acetate showed significant reductions in HR. Moreover, the addition of 1 mg/kg (p = 0.011), 10 mg/kg (p = 0.010), and 100 mg/kg (p = 0.011) linalyl acetate to nicotine resulted in significantly lower LDH activity. Nicotine also showed a slight relaxation effect, followed by a sustained recontraction phase, whereas nicotine plus linalyl acetate or nifedipine showed a constant relaxation effect on contraction of mouse aorta (p < 0.001). Furthermore, nicotine-induced increases in nitrite levels were decreased by treatment with linalyl acetate (p < 0.001). Taken together, our findings suggest that linalyl acetate treatment resulted in recovery of cell damage and cardiovascular changes caused by acute nicotine-induced cardiovascular disruption. Our evaluation of the influence of acute nicotine provides potential insights into the effects of environmental tobacco smoke and suggests linalyl acetate as an available mitigating agent.

  20. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.

    PubMed

    Guadalupe Medina, Víctor; Almering, Marinka J H; van Maris, Antonius J A; Pronk, Jack T

    2010-01-01

    In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study investigates the possibility of completely eliminating glycerol production by engineering S. cerevisiae such that it can reoxidize NADH by the reduction of acetic acid to ethanol via NADH-dependent reactions. Acetic acid is available at significant amounts in lignocellulosic hydrolysates of agricultural residues. Consistent with earlier studies, deletion of the two genes encoding NAD-dependent glycerol-3-phosphate dehydrogenase (GPD1 and GPD2) led to elimination of glycerol production and an inability to grow anaerobically. However, when the E. coli mhpF gene, encoding the acetylating NAD-dependent acetaldehyde dehydrogenase (EC 1.2.1.10; acetaldehyde+NAD++coenzyme A<-->acetyl coenzyme A+NADH+H+), was expressed in the gpd1Delta gpd2Delta strain, anaerobic growth was restored by supplementation with 2.0 g liter(-1) acetic acid. The stoichiometry of acetate consumption and growth was consistent with the complete replacement of glycerol formation by acetate reduction to ethanol as the mechanism for NADH reoxidation. This study provides a proof of principle for the potential of this metabolic engineering strategy to improve ethanol yields, eliminate glycerol production, and partially convert acetate, which is a well-known inhibitor of yeast performance in lignocellulosic hydrolysates, to ethanol. Further research should address the kinetic aspects of acetate reduction and the effect of the elimination of glycerol production on cellular robustness (e.g., osmotolerance).

  1. Selective Hydrogenolysis of Furfural Derivative 2-Methyltetrahydrofuran into Pentanediol Acetate and Pentanol Acetate over Pd/C and Sc(OTf)3 Cocatalytic System.

    PubMed

    Zhang, Kun; Li, Xing-Long; Chen, Shi-Yan; Xu, Hua-Jian; Deng, Jin; Fu, Yao

    2018-02-22

    It is of great significance to convert platform molecules and their derivatives into high value-added alcohols, which have multitudinous applications. This study concerns systematic conversion of 2-methyltetrahydrofuran (MTHF), which is obtained from furfural, into 1-pentanol acetate (PA) and 1,4-pentanediol acetate (PDA). Reaction parameters, such as the Lewis acid species, reaction temperature, and hydrogen pressure, were investigated in detail. 1 H NMR spectroscopy and reaction dynamics study were also conducted to help clarify the reaction mechanism. Results suggested that cleavage of the primary alcohol acetate was less facile than that of the secondary alcohol acetate, with the main product being PA. A PA yield of 91.8 % (150 °C, 3 MPa H 2 , 30 min) was achieved by using Pd/C and Sc(OTf) 3 as a cocatalytic system and an 82 % yield of PDA was achieved (150 °C, 30 min) by using Sc(OTf) 3 catalyst. Simultaneously, the efficient conversion of acetic esters into alcohols by simple saponification was carried out and led to a good yield. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  3. Applications of ethylene vinyl acetate as an encapsulation material for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Coulbert, C. D.; Liang, R. H.; Gupta, A.; Willis, P.; Baum, B.

    1983-01-01

    Terrestrial photovoltaic modules must undergo substantial reductions in cost in order to become economically attractive as practical devices for large scale production of electricity. Part of the cost reductions must be realized by the encapsulation materials that are used to package, protect, and support the solar cells, electrical interconnects, and other ancillary components. As many of the encapsulation materials are polymeric, cost reductions necessitate the use of low cost polymers. The performance and status of ethylene vinyl acetate, a low cost polymer that is being investigated as an encapsulation material for terrestrial photovoltaic modules, are described.

  4. Measurement and correlation of the solubility of gossypol acetic acid and gossypol acetic acid of optical activity in different solvents

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Tang, H.; Liu, X. Y.; Zhai, X.; Yao, X. C.

    2018-01-01

    The equilibrium method was used to measure the solubility of gossypol acetic acid and gossypol acetic acid of optical activity in isopropyl alcohol, ethanol, acetic acid and ethyl acetate at temperature from 288.15 to 315.15. The Empirical equation and the Apelblat equation model were adopted to correlate the experimental data. For gossypol acetic acid, the root-mean-square deviations (RMSD) were observed in the range of 0.023-4.979 and 0.0112-0.614 for the Empirical equation and the Apelblat equation, respectively. For gossypol acetic acid of optical activity, the RMSD were observed in the range of 0.021-2.211 and 0.021-2.243 for the Empirical equation and the Apelblat equation, individually. And the maximum relative average deviation was 7.5%. Both equations offered an accurate mathematical expression of the experimental results. The calculated solubility showed a good relationship with the experimental solubility for most of solvents. This study provided valuable datas not only for optimizing the process of purification of gossypol acetic acid of optical activity in industry but also for further theoretical studies.

  5. Acetate formation in the energy metabolism of parasitic helminths and protists.

    PubMed

    Tielens, Aloysius G M; van Grinsven, Koen W A; Henze, Katrin; van Hellemond, Jaap J; Martin, William

    2010-03-15

    Formation and excretion of acetate as a metabolic end product of energy metabolism occurs in many protist and helminth parasites, such as the parasitic helminths Fasciola hepatica, Haemonchus contortus and Ascaris suum, and the protist parasites, Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis as well as Trypanosoma and Leishmania spp. In all of these parasites acetate is a main end product of their energy metabolism, whereas acetate formation does not occur in their mammalian hosts. Acetate production might therefore harbour novel targets for the development of new anti-parasitic drugs. In parasites, acetate is produced from acetyl-CoA by two different reactions, both involving substrate level phosphorylation, that are catalysed by either a cytosolic acetyl-CoA synthetase (ACS) or an organellar acetate:succinate CoA-transferase (ASCT). The ACS reaction is directly coupled to ATP synthesis, whereas the ASCT reaction yields succinyl-CoA for ATP formation via succinyl-CoA synthetase (SCS). Based on recent work on the ASCTs of F. hepatica, T. vaginalis and Trypanosoma brucei we suggest the existence of three subfamilies of enzymes within the CoA-transferase family I. Enzymes of these three subfamilies catalyse the ASCT reaction in eukaryotes via the same mechanism, but the subfamilies share little sequence homology. The CoA-transferases of the three subfamilies are all present inside ATP-producing organelles of parasites, those of subfamily IA in the mitochondria of trypanosomatids, subfamily IB in the mitochondria of parasitic worms and subfamily IC in hydrogenosome-bearing parasites. Together with the recent characterisation among non-parasitic protists of yet a third route of acetate formation involving acetate kinase (ACK) and phosphotransacetylase (PTA) that was previously unknown among eukaryotes, these recent developments provide a good opportunity to have a closer look at eukaryotic acetate formation. (c) 2010 Australian Society for Parasitology

  6. Lipidomic Profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii Reveals Critical Changes in Lipid Composition in Response to Acetic Acid Stress

    PubMed Central

    Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L−1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L−1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large

  7. 21 CFR 524.1204 - Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... hydrocortisone acetate. 524.1204 Section 524.1204 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DOSAGE FORM NEW ANIMAL DRUGS § 524.1204 Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate... activity as the calcium salt, and 10.0 milligrams of hydrocortisone acetate. (b) Sponsor. See No. 000856 in...

  8. 21 CFR 524.1204 - Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... hydrocortisone acetate. 524.1204 Section 524.1204 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DOSAGE FORM NEW ANIMAL DRUGS § 524.1204 Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate... activity as the calcium salt, and 10.0 milligrams of hydrocortisone acetate. (b) Sponsor. See No. 000856 in...

  9. 21 CFR 524.1204 - Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hydrocortisone acetate. 524.1204 Section 524.1204 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DOSAGE FORM NEW ANIMAL DRUGS § 524.1204 Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate... activity as the calcium salt, and 10.0 milligrams of hydrocortisone acetate. (b) Sponsor. See No. 000856 in...

  10. 21 CFR 524.1204 - Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hydrocortisone acetate. 524.1204 Section 524.1204 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DOSAGE FORM NEW ANIMAL DRUGS § 524.1204 Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate... activity as the calcium salt, and 10.0 milligrams of hydrocortisone acetate. (b) Sponsor. See No. 000856 in...

  11. Isolation and Characterization of Acetate-Utilizing Anaerobes from a Freshwater Sediment.

    PubMed

    Scholten, J.C.M.; Stams, A.J.M.

    2000-12-01

    Acetate-degrading anaerobic microorganisms in freshwater sediment were quantified by the most probable number technique. From the highest dilutions a methanogenic, a sulfate-reducing, and a nitrate-reducing microorganism were isolated with acetate as substrate. The methanogen (culture AMPB-Zg) was non-motile and rod-shaped with blunted ends (0.5-1 mm x 3-4 mm long). Doubling times with acetate at 30-35 degrees C were 5.6-8.1 days. The methanogen grew only on acetate. Analysis of the 16S rRNA sequence showed that AMPB-Zg is closely related to Methanosaeta concilii. The isolated sulfate-reducing bacterium (strain ASRB-Zg) was rod-shaped with pointed ends (0.5-0.7 mm x 1.5-3.5 mm long), weakly motile, spore forming, and gram positive. At the optimum growth temperature of 30 degrees C the doubling times with acetate were 3.9-5.3 days. The bacterium grew on a range of organic acids, such as acetate, butyrate, fumarate, and benzoate, but did not grow autotrophically with H2, CO2, and sulfate. The closest relative of strain ASRB-Zg is Desulfotomaculum acetoxidans. The nitrate-reducing bacterium (strain ANRB-Zg) was rod-shaped (0.5-0.7 mm x 0.7-1 mm long), weakly motile, and gram negative. Optimum growth with acetate occurred at 20-25 degrees C. The bacterium grew on a range of organic substrates, such as acetate, butyrate, lactate, and glucose, and did grow autotrophically with H2, CO2, and oxygen but not with nitrate. In the presence of acetate and nitrate, thiosulfate was oxidized to sulfate. Phylogenetically, the closest relative of strain ANRB-Zg is Variovorax paradoxus.

  12. Optimization of technological conditions for one-pot synthesis of (S)-alpha-cyano-3-phenoxybenzyl acetate in organic media.

    PubMed

    Zhang, Ting-Zhou; Yang, Li-Rong; Zhu, Zi-Qiang

    2005-03-01

    Optically active form of alpha-cyano-3-phenoxybenzyl (CPB) alcohol, building block of pyrethroid insecticides, was synthesized as its acetate by the combination of anion-exchange resin (D301)-catalyzed transcyanation between m-phenoxybenzaldehyde (m-PBA) and acetone cyanohydrin (AC), and lipase (from Alcaligenes sp.)-catalyzed enantioselective transesterification of the resulting cyanohydrin with vinyl acetate. Through optimizing technological conditions, the catalyzing efficiency was improved considerably compared to methods previously reported. Concentrations of CPB acetate were determined by gas chromatograph. The enantio excess (e.e.) values of CPB acetate were measured by NMR (nuclear magnetic resonance) method. Effects of solvents and temperatures on this reaction were studied. Cyclohexane was shown to be the best solvent among the three tested solvents. 55 degrees C was the optimal temperature for higher degree of conversion. External diffusion limitation was excluded by raising the rotational speed to 220 r/min. However, internal diffusion could not be ignored, since the catalyst (lipase) was an immobilized enzyme and its particle dimension was not made small enough. The reaction rate was substantially accelerated when the reactant (m-PBA) concentration was as high as 249 mmol/L, but decreased when the initial concentration of m-PBA reached to 277 mmol/L. It was also found that the catalyzing capability of recovered lipase was high enough to use several batches. Study of the mole ratio of AC to m-PBA showed that 2:1 was the best choice. The strategy of adding base catalyst D301 was found to be an important factor in improving the degree of conversion of the reaction from 20% to 80%. The highest degree of conversion of the reaction has reached up to 80%.

  13. Evaluating acetate metabolism for imaging and targeting in multiple myeloma

    PubMed Central

    Fontana, Francesca; Ge, Xia; Su, Xinming; Hathi, Deep; Xiang, Jingyu; Cenci, Simone; Civitelli, Roberto; Shoghi, Kooresh I.; Akers, Walter J.; D’avignon, Andre

    2016-01-01

    Purpose We hypothesized that in multiple myeloma cells (MMC), high membrane biosynthesis will induce acetate uptake in vitro and in vivo. Here, we studied acetate metabolism and targeting in MMC in vitro and tested the efficacy of 11C-acetate-PET (positron emission tomography) to detect and quantitatively image myeloma treatment response in vivo. Experimental design Acetate fate tracking using 13C-edited-1H NMR (nuclear magnetic resonance) was performed to study in vitro acetate uptake and metabolism in MMC. Effects of pharmacological modulation of acetate transport or acetate incorporation into lipids on MMC cell survival and viability were assessed. Preclinical mouse MM models of subcutaneous and bone tumors were evaluated using 11C-acetate-PET/CT imaging and tissue biodistribution. Results In vitro, NMR showed significant uptake of acetate by MMC, and acetate incorporation into intracellular metabolites and membrane lipids. Inhibition of lipid synthesis and acetate transport was toxic to MMC, while sparing resident bone cells or normal B cells. In vivo, 11C-acetate uptake by PET imaging was significantly enhanced in subcutaneous and bone MMC tumors compared to unaffected bone or muscle tissue. Likewise, 11C-acetate uptake was significantly reduced in MM tumors after treatment. Conclusions Uptake of acetate from the extracellular environment was enhanced in MMC and was critical to cellular viability. 11C-acetate-PET detected the presence of myeloma cells in vivo, including uptake in intramedullary bone disease. 11C-acetate-PET also detected response to therapy in vivo. Our data suggested that acetate metabolism and incorporation into lipids was crucial to MM cell biology and that 11C-acetate-PET is a promising imaging modality for MM. PMID:27486177

  14. Metabolism of indole-3-acetic acid by orange (Citrus sinensis) flavedo tissue during fruit development.

    PubMed

    Chamarro, J; Ostin, A; Sandberg, G

    2001-05-01

    [5-3H, 1'-14C, 13C6, 12C] Indole-3-acetic acid (IAA), was applied to the flavedo (epicarp) of intact orange fruits at different stages of development. After incubation in the dark, at 25 degrees C, the tissue was extracted with MeOH and the partially purified extracts were analyzed by reversed phase HPLC-RC. Six major metabolite peaks were detected and subsequently analyzed by combined HPLC-frit-FAB MS. The metabolite peak 6 contained oxindole-3-acetic acid (OxIAA), indole-3-acetyl-N-aspartic acid (IAAsp) and also indole-3-acetyl-N-glutamic acid (IAGlu). The nature of metabolite 5 remains unknown. Metabolites 3 and 4 were diastereomers of oxindole-3-acetyl-N-aspartic acid (OxIAAsp). Metabolite 2 was identified as dioxindole-3-acetic acid and metabolite 1 as a DiOx-IAA linked in position three to a hexose, which is suggested to be 3-(-O-beta-glucosyl) dioxindole-3-acetic acid (DiOxIAGlc). Identification work as well as feeding experiments with the [5-3H]IAA labeled metabolites suggest that IAA is metabolized in flavedo tissue mainly through two pathways, namely IAA-OxIAA-DiOxIAA-DiOxIAGlc and IAA-IAAsp-OxIAAsp. The flavedo of citrus fruit has a high capacity for IAA catabolism until the beginning of fruit senescence, with the major route having DiOxIAGlc as end product. This capacity is operative even at high IAA concentrations and is accelerated by pretreatment with the synthetic auxins 2,4-D, NAA and the gibberellin GA3.

  15. Antiplasmodial Properties and Bioassay-Guided Fractionation of Ethyl Acetate Extracts from Carica papaya Leaves

    PubMed Central

    Melariri, Paula; Campbell, William; Etusim, Paschal; Smith, Peter

    2011-01-01

    We investigated the antiplasmodial properties of crude extracts from Carica papaya leaves to trace the activity through bioassay-guided fractionation. The greatest antiplasmodial activity was observed in the ethyl acetate crude extract. C. papaya showed a high selectivity for P. falciparum against CHO cells with a selectivity index of 249.25 and 185.37 in the chloroquine-sensitive D10 and chloroquine-resistant DD2 strains, respectively. Carica papaya ethyl acetate extract was subjected to bioassay-guided fractionation to ascertain the most active fraction, which was purified and identified using high-pressure liquid chromatography (HPLC) and GC-MS (Gas chromatography-Mass spectrometry) methods. Linoleic and linolenic acids identified from the ethyl acetate fraction showed IC50 of 6.88 μg/ml and 3.58 μg/ml, respectively. The study demonstrated greater antiplasmodial activity of the crude ethyl acetate extract of Carica papaya leaves with an IC50 of 2.96 ± 0.14 μg/ml when compared to the activity of the fractions and isolated compounds. PMID:22174990

  16. Is aceticlastic methanogen composition in full-scale anaerobic processes related to acetate utilization capacity?

    PubMed

    Yilmaz, Vedat; Ince-Yilmaz, Ebru; Yilmazel, Yasemin Dilsad; Duran, Metin

    2014-06-01

    In this study, biomass samples were obtained from six municipal and nine industrial full-scale anaerobic processes to investigate whether the aceticlastic methanogen population composition is related to acetate utilization capacity and the nature of the wastewater treated, i.e. municipal sludge or industrial wastewater. Batch serum bottle tests were used to determine the specific acetate utilization rate (AUR), and a quantitative real-time polymerase chain reaction protocol was used to enumerate the acetate-utilizing Methanosaeta and Methanosarcina populations in the biomass samples. Methanosaeta was the dominant aceticlastic methanogen in all samples, except for one industrial wastewater-treating anaerobic process. However, Methanosarcina density in industrial biomass samples was higher than the Methanosarcina density in the municipal samples. The average AUR values of municipal and industrial wastewater treatment plant biomass samples were 10.49 and 10.65 mg CH3COO(-)/log(aceticlastic methanogen gene copy).d, respectively. One-way ANOVA test and principle component analysis showed that the acetate utilization capacities and aceticlastic methanogen community composition did not show statistically significant correlation among the municipal digesters and industrial wastewater-treating processes investigated.

  17. Solid phase extraction of metal ions in environmental samples on 1-(2-pyridylazo)-2-naphthol impregnated activated carbon cloth.

    PubMed

    Alothman, Zeid A; Yilmaz, Erkan; Habila, Mohamed; Soylak, Mustafa

    2015-02-01

    1-(2-Pyridylazo)-2-naphthol impregnated activated carbon cloth (PAN-imp-ACC) was prepared as a solid phase sorbent and, for the first time, was used for the simultaneous separation and preconcentration of trace amounts of lead, cadmium and nickel in water, soil and sewage sludge samples prior to determination by flame atomic absorption spectrometry (FAAS). The parameters governing the efficiency of the method were optimized, including the pH, the eluent type and volume, the sample and eluent flow rates, diverse ions effects and the sample volume. A preconcentration factor of 100 was achieved for all the metal ions, with detection limits of 0.1-2.8 µg L(-1) and relative standard deviations below 6.3%. The adsorption capacity of the PAN-imp-ACC for Pb(II), Cd(II) and Ni(II) ions was found to be 45.0 mg g(-1), 45.0 mg g(-1) and 43.2 mg g(-1), respectively. The method was validated by the analysis of the certified reference materials TMDA-64.2 fortified Lake Ontario water and BCR-146R Sewage Sludge Amended Soil (Industrial Origin). The procedure was applied to determine the analytes content in real samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W.

    PubMed

    Noh, Myung Hyun; Lim, Hyun Gyu; Woo, Sung Hwa; Song, Jinyi; Jung, Gyoo Yeol

    2018-03-01

    Utilization of abundant and cheap carbon sources can effectively reduce the production cost and enhance the economic feasibility. Acetate is a promising carbon source to achieve cost-effective microbial processes. In this study, we engineered an Escherichia coli strain to produce itaconic acid from acetate. As acetate is known to inhibit cell growth, we initially screened for a strain with a high tolerance to 10 g/L of acetate in the medium, and the W strain was selected as the host. Subsequently, the WC strain was obtained by overexpression of cad (encoding cis-aconitate decarboxylase) using a synthetic promoter and 5' UTR. However, the WC strain produced only 0.13 g/L itaconic acid because of low acetate uptake. To improve the production, the acetate assimilating pathway and glyoxylate shunt pathway were amplified by overexpression of pathway genes as well as its deregulation. The resulting strain, WCIAG4 produced 3.57 g/L itaconic acid (16.1% of theoretical maximum yield) after 88 hr of fermentation with rapid acetate assimilation. These efforts support that acetate can be a potential feedstock for biochemical production with engineered E. coli. © 2017 Wiley Periodicals, Inc.

  19. Fucoidan as an inhibitor of thermally induced collagen glycation examined by acetate electrophoresis.

    PubMed

    Pielesz, Anna; Paluch, Jadwiga

    2014-08-01

    Non-enzymatic glycation (Maillard reaction) in vitro could be a simple method to obtain glycoconjugates for studying their biological properties. Hence, fucoidan was retained by acetate electrophoresis indicating a strong interaction with the protein. A loss of colour in fucoidan bands was found for samples incubated with collagen as compared with samples of free fucoidan. Also under in vitro conditions at 100°C - simulating a sudden burn incident - fucoidan binds with collagen as a result of the Maillard reaction. In contrast, the colour of the fucoidan bands intensified for samples incubated with collagen, with the addition of glucose. Electrophoretic analyses were carried out after heating the samples to a temperature simulating a burn incident. The bands were found to intensify for samples incubated with collagen during a 30-day-long incubation. Thus, spontaneous in vitro glycation - i.e. without the addition of glucose - was confirmed. This process is highly intensified both by the temperature and time of incubation. For a sample incubated in vitro in a fucoidan solution containing glucose, glycation was confirmed in a preliminary FTIR and acetate electrophoresis examinations, occurring in collagen obtained from chicken skins. In particular, a new band emerging around 1746 cm(-1) was observed for above samples, as was its increasing intensity, as compared with samples without the addition of glucose. In the collagen glycation assay, while glucose reacts with collagen and forms cross-linked aggregates, fucoidan decreases the process of aggregation and recovery of native collagen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ulipristal acetate: An update for Australian GPs.

    PubMed

    Mazza, Danielle

    2017-01-01

    In Australia, use and understanding of emergency contraception among women remains relatively low. This is despite the introduction of levonorgestrel emergency contraceptive pills (ECPs) more than a decade ago. In April 2016, a new ECP with the active ingredient ulipristal acetate became available in Australia. The aims of this article are to increase understanding of the recently introduced ulipristal acetate ECP, including its safety profile, effi-cacy and special considerations; dispel common myths and misconceptions about emergency contraception; and to provide guidance on emergency contraceptive management in general practice, considering the recent advances. Women are more receptive to information about emergency contraception that has been provided by a general practitioner (GP). As such, the availability of the ulipristal acetate ECP in Australia provides an important opportunity for GPs to help women prevent unplanned pregnancies.

  1. [Chemical Constituents of Ethyl Acetate Fraction of Suaeda glauca].

    PubMed

    Qiu, Ping; Wang, Qi-zhi; Yin, Min; Wang, Ming; Zhao, You-yi; Shan, Yu; Feng, Xu

    2015-04-01

    To study the chemical constituents of Suaeda glauca. The chemical constituents were isolated and purified with several separation and purification techniques. Their structures were identified by physicochemical properties and various spectroscopic methods. Ten compounds were isolated from the ethyl acetate fraction as lignoceric acid (1), β-amyrin-n-nonyl ether(2), β-sitosterol(3), β-daucosterol(4), quercetin(5), luteolin(6), luteolin-7-O-β-D-glucoside(7), isorhamnetin(8), scopoletin (9) and stigmasterol(10). Compounds 1, 2, 6, 7, 8, 9 and 10 are isolated from Suaeda genus for the first time and compounds 3 - 5 are isolated from this plant for the first time.

  2. Bicarbonate stabilizes isolated D1/D2/cytochrome b559 complex of photosystem 2 against thermoinactivation.

    PubMed

    Pobeguts, O V; Smolova, T N; Klimov, V V

    2012-02-01

    It has been shown that thermoinactivation of the isolated D1/D2/cytochrome b(559) complex (RC) of photosystem 2 (PS-2) from pea under anaerobic conditions at 35°C in 20 mM Tris-HCl buffer (pH 7.2) depleted of HCO(3)(-), with 35 mM NaCl and 0.05% n-dodecyl-β-maltoside, results in a decrease in photochemical activity measured by photoreduction of the PS-2 primary electron acceptor, pheophytin (by 50% after 3 min of heating), which is accompanied by aggregation of the D1 and D2 proteins. Bicarbonate, formate, and acetate anions added to the sample under these conditions differently influence the maintenance of photochemical activity: a 50% loss of photochemical activity occurs in 11.5 min of heating in the presence of bicarbonate and in 4 and 4.6 min in the presence of formate and acetate, respectively. The addition of bicarbonate completely prevents aggregation of the D1 and D2 proteins as opposed to formate and acetate (their presence has no effect on the aggregation during thermoinactivation). Since the isolated RCs have neither inorganic Mn/Ca-containing core of the water-oxidizing complex nor nonheme Fe(2+), it is supposed that bicarbonate specifically interacts with the hydrophilic domains of the D1 and D2 proteins, which prevents their structural modification that is a signal for aggregation of these proteins and the loss of photochemical activity.

  3. The safety and pharmacokinetics of single-agent and combination therapy with megestrol acetate and dronabinol for the treatment of HIV wasting syndrome. The DATRI 004 Study Group. Division of AIDS Treatment Research Initiative.

    PubMed

    Timpone, J G; Wright, D J; Li, N; Egorin, M J; Enama, M E; Mayers, J; Galetto, G

    1997-03-01

    This randomized, open-labeled, multicenter study was designed to assess safety and pharmacokinetics of dronabinol (Marinol) tablets and megestrol acetate (Megace) micronized tablets, alone and in combination, for treatment of HIV wasting syndrome. Weight and quality of life data were also collected. Fifty-two patients (mean CD4+ count, 59 cells/microliter) were randomized to one of four treatment arms: dronabinol 2.5 mg twice/day (D); megestrol acetate 750 mg/day (M750); megestrol acetate 750 mg/day+dronabinol 2.5 mg twice/day (M750+D); or megestrol acetate 250 mg/day+dronabinol 2.5 mg twice/day (M250+D). After therapy initiation, 47 patients returned for at least one visit, and 39 completed the planned 12 weeks of study visits. Occurrence of adverse events, drug discontinuation, new AIDS-defining conditions, or CD4+ T lymphocyte changes were not statistically significantly different among arms. Serious adverse events assessed as related to dronabinol included CNS events (e.g., confusion, anxiety, emotional lability, euphoria, hallucinations) and those assessed as related to megestrol acetate included dyspnea, liver enzyme changes, and hyperglycemia. The mean weight change +/- SE over 12 weeks was as follows: D, -2.0 +/- 1.3 kg; M750, +6.5 +/- 1.1 kg; M750+D, +6.0 +/- 1.0 kg; and M250+D, -0.3 +/- 1.0 kg (difference among treatment arms, p = 0.0001). Pharmacokinetic parameters measured after 2 weeks of therapy for M750 were Cmax = 985 ng/ml and AUC = 22,487 ng x hr/ml, and for dronabinol and its active metabolite (HO-THC), respectively, were Cmax = 2.01; 4.61 ng/ml and AUC = 5.3; 23.7 ng x hr/ml. For megestrol acetate, but not dronabinol, there was a positive correlation at week 2 between both Cmax and AUC with each of the following: (1) weight change, (2) breakfast visual analog scale for hunger (VASH) score, and (3) dinner VASH score.

  4. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  5. Detection of CIN by naked eye visualization after application of acetic acid.

    PubMed

    Londhe, M; George, S S; Seshadri, L

    1997-06-01

    A prospective study was undertaken to determine the sensitivity and specificity of acetic application to the cervix followed by naked eye visualization as a screening test for detection of cervical intraepithelial neoplasia. Three hundred and seventy two sexually active woman in the reproductive age group were studied. All the women underwent Papanicolaou test, acetic acid test and colposcopy. One hundred and seventy five woman were acetic acid test negative, 197 women were acetic acid test positive. The sensitivity of acetic acid test was 72.4%, specificity 54% and false negative rate 15.2%, as compared to papanicolaou test which had a sensitivity of 13.2%, specificity of 96.3% and false negative rate of 24.4%. The advantage of the acetic acid test lies in its easy technique, low cost and high sensitivity which are important factors for determining the efficacy of any screening programme in developing countries.

  6. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  7. Selective liquid chromatographic separation of yttrium from heavier rare earth elements using acetic acid as a novel eluent.

    PubMed

    Kifle, Dejene; Wibetoe, Grethe

    2013-09-13

    One of the major difficulties in the rare earth elements separation is purification of yttrium from heavy rare earth elements. Thus, an HPLC method using acetic acid as novel eluent was explored for selective separation of yttrium form the heavy rare earth elements. When acetic acid is used as a mobile phase yttrium eluted with the lighter lanthanides. This is contrary to its relative position amongst heavier lanthanides when eluents commonly used for separation of rare earth elements were employed. The shift in elution position of yttrium with acetic acid as eluent may reflect a relatively lower stability constant of the yttrium-AcOH complex (in the same order as for the lighter lanthanides) compared to the corresponding AcOH complexes with heavy lanthanides, enabling selective separation of yttrium from the latter. The method was successfully used for selective separation of yttrium in mixed rare earth sample containing about 80% of yttrium and about 20% of heavy rare earth oxides. Thus, the use of AcOH as eluent is an effective approach for separating and determining the trace amounts of heavy rare earth elements in large amounts of yttrium matrix. Separation was performed on C18 column by running appropriate elution programs. The effluent from the column was monitored with diode array detector at absorbance wavelength of 658nm after post column derivatization with Arsenazo III. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    PubMed

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen.

    PubMed

    Kimura, Zen-ichiro; Okabe, Satoshi

    2013-08-01

    Anodic microbial communities in acetate-fed microbial fuel cells (MFCs) were analyzed using stable-isotope probing of 16S rRNA genes followed by denaturing gradient gel electrophoresis. The results revealed that Geobacter sulfurreducens and Hydrogenophaga sp. predominated in the anodic biofilm. Although the predominance of Geobacter sp. as acetoclastic exoelectrogens in acetate-fed MFC systems has been often reported, the ecophysiological role of Hydrogenophaga sp. is unknown. Therefore, we isolated and characterized a bacterium closely related to Hydrogenophaga sp. (designated strain AR20). The newly isolated strain AR20 could use molecular hydrogen (H2), but not acetate, with carbon electrode as the electron acceptor, indicating that the strain AR20 was a hydrogenotrophic exoelectrogen. This evidence raises a hypothesis that acetate was oxidized by G. sulfurreducens in syntrophic cooperation with the strain AR20 as a hydrogen-consuming partner in the acetate-fed MFC. To prove this hypothesis, G. sulfurreducens strain PCA was cocultivated with the strain AR20 in the acetate-fed MFC without any dissolved electron acceptors. In the coculture MFC of G. sulfurreducens and strain AR20, current generation and acetate degradation were the highest, and the growth of strain AR20 was observed. No current generation, acetate degradation and cell growth occurred in the strain AR20 pure culture MFC. These results show for the first time that G. sulfurreducens can oxidize acetate in syntrophic cooperation with the isolated Hydrogenophaga sp. strain AR20, with electrode as the electron acceptor.

  10. Enzymatic production of ethanol from cellulose using soluble cellulose acetate as an intermediate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downing, K.M.; Ho, C.S.; Zabriskie, D.W.

    1987-01-01

    A two-stage process for the enzymatic conversion of cellulose to ethanol is proposed as an alternative to currently incomplete and relatively slow enzymatic conversion processes employing natural insoluble cellulose. This alternative approach is designed to promote faster and more complete conversion of cellulose to fermentable sugars through the use of a homogeneous enzymatic hydrolysis reaction. Cellulose is chemically dissolved in the first stage to form water-soluble cellulose acetate (WSCA). The WSCA is then converted to ethanol in a simultaneous saccharification-fermentation with Pestalotiopsis westerdijkii enzymes (containing cellulolytic and acetyl esterase components) and yeast.

  11. Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation.

    PubMed

    Hou, Li; Cui, Yuling; Xu, Mingdi; Gao, Zhuangqiang; Huang, Jianxin; Tang, Dianping

    2013-09-15

    A new sandwich-type impedimetric immunosensor based on functionalized graphene oxide nanosheets with a high ratio of horseradish peroxidase (HRP) and detection antibody was developed for the detection of carcinoembryonic antigen (CEA) by coupling with enzymatic biocatalytic precipitation of 4-chloro-1-naphthol (4-CN) on the captured antibody-modified glassy carbon electrode. Two molecular tags (with and without the graphene oxide nanosheets) were investigated for the detection of CEA and improved analytical features were acquired with the graphene-based labeling. With the labeling method, the performance and factors influencing the properties of the impedimetric immunosensors were also studied and evaluated. Under the optimal conditions, the dynamic concentration range of the impedimetric immunosensors spanned from 1.0pgmL(-1) to 80ngmL(-1) CEA with a detection limit (LOD) of 0.64pgmL(-1). Intra- and inter-assay coefficients of variation were less than 7.5% and 11%, respectively. Additionally, the methodology was evaluated for CEA analysis of 10 clinical serum samples and 5 diluted serum samples, receiving in a good accordance with the results obtained by the impedimetric immunoassay and the commercialized electrochemiluminescent method. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    PubMed

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore

  13. Characterization of cellulose acetates according to DS and molar mass using two-dimensional chromatography.

    PubMed

    Ghareeb, Hewa Othman; Radke, Wolfgang

    2013-11-06

    A two-dimensional liquid chromatographic method (2D LC) was developed to analyze the heterogeneities of cellulose acetates (CA) in the DS-range DS=1.5-2.9 with respect to both, molar mass and degree of substitution (DS). The method uses gradient liquid chromatography (HPLC) as the first dimension in order to separate by DS followed by separation of the different fractions by size (SEC) in the second dimension. The 2D experiments revealed different correlations between gradient and SEC elution volume. These correlations might arise from differences in the synthetic conditions. The newly developed 2D LC separation therefore provides new insights into the heterogeneity of CAs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    PubMed

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  15. Free acetic acid as the key factor for the inhibition of hydrogenotrophic methanogenesis in mesophilic mixed culture fermentation.

    PubMed

    Zhang, Wei; Dai, Kun; Xia, Xiu-Yang; Wang, Hua-Jie; Chen, Yun; Lu, Yong-Ze; Zhang, Fang; Zeng, Raymond Jianxiong

    2018-05-18

    The inhibition of acetate under acidic pH is an ideal way to reduce methanogenesis in mesophilic mixed culture fermentation (MCF). However, the effects of acetate concentration and acidic pH on methanogenesis remain unclear. Besides, although hydrogenotrophic methanogens can be suitable targets in MCF, they are generally ignored. Therefore, we intentionally enriched hydrogenotrophic methanogens and found that free acetic acid (FAA, x) concentration and specific methanogenic activity (SMA, y) were correlated according to the equation: y = 0.86 × 0.31/(0.31 + x) (R 2  = 0.909). The SMA was decreased by 50% and 90% at the FAA concentrations of 0.31 and 2.36 g/L, respectively. The coenzyme M concentration and relative electron transport activity agreed well with the FAA concentration. Moreover, the methanogenic activity could not be recovered when the FAA concentration exceeded 0.81 g/L. These findings indicated that neither acetate nor acidic pH, but FAA was the key factor to inhibit methanogenesis in MCF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O4 Nanosheets as a Highly Selective Anode Catalyst

    PubMed Central

    2016-01-01

    Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst. Those nanosheets were synthesized by a one-pot, templateless hydrothermal method with the use of ammonia. NH3 was demonstrated critical to the overall formation of ultrathin Co3O4 nanosheets. With abundant active sites on Co3O4 (111), the as-synthesized ultrathin Co3O4 nanosheets exhibited enhanced electrocatalytic activities toward water and ethanol oxidations in alkaline media. More importantly, over the Co3O4 nanosheets, the electrooxidation from ethanol to ethyl acetate was so selective that no other oxidation products were yielded. With such a high selectivity, an electrolyzer cell using Co3O4 nanosheets as the anode electrocatalyst and Ni–Mo nanopowders as the cathode electrocatalyst has been successfully built for ethanol reforming. The electrolyzer cell was readily driven by a 1.5 V battery to achieve the effective production of both H2 and ethyl acetate. After the bulk electrolysis, about 95% of ethanol was electrochemically reformed into ethyl acetate. This work opens up new opportunities in designing a material system for building unique devices to generate both hydrogen and high-value organics at room temperature by utilizing electric energy from renewable sources. PMID:27610415

  17. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O4 Nanosheets as a Highly Selective Anode Catalyst.

    PubMed

    Dai, Lei; Qin, Qing; Zhao, Xiaojing; Xu, Chaofa; Hu, Chengyi; Mo, Shiguang; Wang, Yu Olivia; Lin, Shuichao; Tang, Zichao; Zheng, Nanfeng

    2016-08-24

    Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst. Those nanosheets were synthesized by a one-pot, templateless hydrothermal method with the use of ammonia. NH3 was demonstrated critical to the overall formation of ultrathin Co3O4 nanosheets. With abundant active sites on Co3O4 (111), the as-synthesized ultrathin Co3O4 nanosheets exhibited enhanced electrocatalytic activities toward water and ethanol oxidations in alkaline media. More importantly, over the Co3O4 nanosheets, the electrooxidation from ethanol to ethyl acetate was so selective that no other oxidation products were yielded. With such a high selectivity, an electrolyzer cell using Co3O4 nanosheets as the anode electrocatalyst and Ni-Mo nanopowders as the cathode electrocatalyst has been successfully built for ethanol reforming. The electrolyzer cell was readily driven by a 1.5 V battery to achieve the effective production of both H2 and ethyl acetate. After the bulk electrolysis, about 95% of ethanol was electrochemically reformed into ethyl acetate. This work opens up new opportunities in designing a material system for building unique devices to generate both hydrogen and high-value organics at room temperature by utilizing electric energy from renewable sources.

  18. Hydrolyses of alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester.

    PubMed

    Kirkeby, S; Moe, D

    1983-01-01

    Using simultaneous coupling azo dye techniques kidney enzymes active against alpha-naphthyl acetate, beta-naphthyl acetate, and acetyl-DL-phenylalanine beta-naphthyl ester are characterized. The enzymes show identical distribution in the section. The banding patterns in zymograms are the same after incubation with the different substrates. The enzymes might, however, be separated by difference in pH optimum, initial velocity and sensitivity to inhibitors and activators.

  19. Formate, acetate, and propionate as substrates for sulfate reduction in sub-arctic sediments of Southwest Greenland

    PubMed Central

    Glombitza, Clemens; Jaussi, Marion; Røy, Hans; Seidenkrantz, Marit-Solveig; Lomstein, Bente A.; Jørgensen, Bo B.

    2015-01-01

    Volatile fatty acids (VFAs) are key intermediates in the anaerobic mineralization of organic matter in marine sediments. We studied the role of VFAs in the carbon and energy turnover in the sulfate reduction zone of sediments from the sub-arctic Godthåbsfjord (SW Greenland) and the adjacent continental shelf in the NE Labrador Sea. VFA porewater concentrations were measured by a new two-dimensional ion chromatography-mass spectrometry method that enabled the direct analysis of VFAs without sample pretreatment. VFA concentrations were low and surprisingly constant (4–6 μmol L−1 for formate and acetate, and 0.5 μmol L−1 for propionate) throughout the sulfate reduction zone. Hence, VFAs are turned over while maintaining a stable concentration that is suggested to be under a strong microbial control. Estimated mean diffusion times of acetate between neighboring cells were <1 s, whereas VFA turnover times increased from several hours at the sediment surface to several years at the bottom of the sulfate reduction zone. Thus, diffusion was not limiting the VFA turnover. Despite constant VFA concentrations, the Gibbs energies (ΔGr) of VFA-dependent sulfate reduction decreased downcore, from −28 to −16 kJ (mol formate)−1, −68 to −31 kJ (mol acetate)−1, and −124 to −65 kJ (mol propionate)−1. Thus, ΔGr is apparently not determining the in-situ VFA concentrations directly. However, at the bottom of the sulfate zone of the shelf station, acetoclastic sulfate reduction might operate at its energetic limit at ~ −30 kJ (mol acetate)−1. It is not clear what controls VFA concentrations in the porewater but cell physiological constraints such as energetic costs of VFA activation or uptake could be important. We suggest that such constraints control the substrate turnover and result in a minimum ΔGr that depends on cell physiology and is different for individual substrates. PMID:26379631

  20. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    DOEpatents

    Ramprasad, D.; Waller, F.J.

    1999-04-06

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  1. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    DOEpatents

    Ramprasad, Dorai; Waller, Francis Joseph

    1999-01-01

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  2. Final report on the safety assessment of ethoxyethanol and ethoxyethanol acetate.

    PubMed

    Johnson, Wilbur

    2002-01-01

    Ethoxyethanol is an ether alcohol described as a solvent and viscosity-decreasing agent for use in cosmetics. Ethoxyethanol Acetate is the ester of Ethoxyethanol and acetic acid described as a solvent for use in cosmetics. Although these ingredients have been used in the past, neither ingredient is in current use. Ethoxyethanol is produced by reacting ethylene oxide with ethyl alcohol. Ethoxyethanol Acetate is produced via an esterification of Ethoxyethanol and acetic acid, acetic acid anhydride, or acetic chloride. Ethoxyethanol is metabolized to ethoxyacetaldehyde, which is further metabolized to ethoxyacetic acid, which is also a metabolite of Ethoxyethanol Acetate. Low to moderate acute inhalation toxicity is seen in animals studies. Acute oral toxicity studies in several species reported kidney damage, including extreme tubular degeneration. Kidney damage was also seen in acute dermal toxicity studies in rats and rabbits. Minor liver and kidney damage was also seen in short-term studies of rats injected subcutaneously with Ethoxyethanol, but was absent in dogs dosed intravenously. Mixed toxicity results were also seen in subchronic tests in mice and rats. Ethoxyethanol and Ethoxyethanol Acetate were mild to moderate eye irritants in rabbits; mild skin irritants in rabbits, and nonsensitizing in guinea pigs. Most genotoxicity tests were negative, but chromosome aberrations and sister-chromatid exchanges were among the positive results seen. Numerous reproductive and developmental toxicity studies, across several species, involving various routes of administration, indicate that Ethoxyethanol and Ethoxyethanol Acetate are reproductive toxicants and teratogens. Mild anemia was reported in individuals exposed occupationally to Ethoxyethanol, which resolved when the chemical was not used. Reproductive effects have been noted in males exposed occupationally to Ethoxyethanol. Although there are insufficient data to determine the potential carcinogenic effects of

  3. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen

    PubMed Central

    Kimura, Zen-ichiro; Okabe, Satoshi

    2013-01-01

    Anodic microbial communities in acetate-fed microbial fuel cells (MFCs) were analyzed using stable-isotope probing of 16S rRNA genes followed by denaturing gradient gel electrophoresis. The results revealed that Geobacter sulfurreducens and Hydrogenophaga sp. predominated in the anodic biofilm. Although the predominance of Geobacter sp. as acetoclastic exoelectrogens in acetate-fed MFC systems has been often reported, the ecophysiological role of Hydrogenophaga sp. is unknown. Therefore, we isolated and characterized a bacterium closely related to Hydrogenophaga sp. (designated strain AR20). The newly isolated strain AR20 could use molecular hydrogen (H2), but not acetate, with carbon electrode as the electron acceptor, indicating that the strain AR20 was a hydrogenotrophic exoelectrogen. This evidence raises a hypothesis that acetate was oxidized by G. sulfurreducens in syntrophic cooperation with the strain AR20 as a hydrogen-consuming partner in the acetate-fed MFC. To prove this hypothesis, G. sulfurreducens strain PCA was cocultivated with the strain AR20 in the acetate-fed MFC without any dissolved electron acceptors. In the coculture MFC of G. sulfurreducens and strain AR20, current generation and acetate degradation were the highest, and the growth of strain AR20 was observed. No current generation, acetate degradation and cell growth occurred in the strain AR20 pure culture MFC. These results show for the first time that G. sulfurreducens can oxidize acetate in syntrophic cooperation with the isolated Hydrogenophaga sp. strain AR20, with electrode as the electron acceptor. PMID:23486252

  4. The Effect of Cellulose Acetate Concentration from Coconut Nira on Ultrafiltration Membrane Characters

    NASA Astrophysics Data System (ADS)

    Vaulina, E.; Widyaningsih, S.; Kartika, D.; Romdoni, M. P.

    2018-04-01

    Cellulose acetate is one of material in produce ultrafiltration membrane. Many efforts have been done to produce cellulose acetate from natural product to replace commercial one. In this research, ultrafiltration membrane has been produced from coconut flower water (nira). Ultrafiltration membrane is widely used in separation processes. This research aims to determine the characteristics of ultrafiltration membrane at a various concentration of cellulose acetate. The ultrafiltration membrane is conducted by phase inversion method at various concentration of cellulose acetate. The cellulose acetate concentration was 20%, 23% and 25% (w/w) with formamide as additives. The results showed that the greater the concentration of cellulose acetate, the smaller the flux value. The highest flux was a membrane with 20% cellulose acetate concentration with water flux value 55.34 L/(m2. h). But the greater the concentration of cellulose acetate the greater the rejection. The highest rejection value was on a membrane with 25% cellulose acetate concentration of 82.82%. While from the tensile strength test and the pore size analysis, the greater the cellulose acetate concentration the greater the tensile strength and the smaller the pore size

  5. Metabolic Acetate Therapy for the Treatment of Traumatic Brain Injury

    PubMed Central

    Arun, Peethambaran; Ariyannur, Prasanth S.; Moffett, John R.; Xing, Guoqiang; Hamilton, Kristen; Grunberg, Neil E.; Ives, John A.

    2010-01-01

    Abstract Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury. PMID:19803785

  6. Metabolic acetate therapy for the treatment of traumatic brain injury.

    PubMed

    Arun, Peethambaran; Ariyannur, Prasanth S; Moffett, John R; Xing, Guoqiang; Hamilton, Kristen; Grunberg, Neil E; Ives, John A; Namboodiri, Aryan M A

    2010-01-01

    Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury.

  7. Lipid oxidation of stored eggs enriched with very long chain n-3 fatty acids, as affected by dietary olive leaves (Olea europea L.) or α-tocopheryl acetate supplementation.

    PubMed

    Botsoglou, E; Govaris, A; Fletouris, D; Botsoglou, N

    2012-09-15

    The antioxidant potential of dietary olive leaves or α-tocopheryl acetate supplementation on lipid oxidation of refrigerated stored hen eggs enriched with very long-chain n-3 fatty acids, was investigated. Ninety-six brown Lohmann laying hens, were equally assigned into three groups. Hens within the control group were given a typical diet containing 3% fish oil, whereas other groups were given the same diet further supplemented with 10 g ground olive leaves/kg feed or 200mg α-tocopheryl acetate/kg feed. Results showed that α-tocopheryl acetate or olive leaves supplementation had no significant effect on the fatty acid composition and malondialdehyde (MDA) levels of fresh eggs but reduced their lipid hydroperoxide levels compared to controls. Storage for 60 d decreased the proportions of polyunsaturated fatty acids (PUFAs) but increased those of monounsaturated fatty acids (MUFAs) in eggs from the control group, while had no effect on the fatty acid composition of the eggs from the other two groups, which showed decreased levels of lipid hydroperoxides and MDA. Therefore, the very long chain n-3 PUFAs in eggs were protected from undergoing deterioration partly by olive leaves supplementation and totally by α-tocopheryl acetate supplementation. In addition, incorporating tocopherols into eggs might also provide a source of tocopherols for the human diet. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Fate and residues of trenbolone acetate in edible tissues from sheep amd calves implanted with tritium-labeled trenbolone acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evrard, P.; Maghuin-Rogister, G.; Rico, A.G.

    1989-06-01

    In order to study the fate and residues of trenbolone acetate in edible tissues, two groups of six animals from two ruminant species (ewes and calves) were implanted with (3H)trenbolone acetate. The distribution of extractable radioactive residues was measured in liver, kidney and muscle. We found that the largest proportion of residues was not extractable and thus was considered as covalently bound residues. The proportion of the main extractable metabolites (17 alpha-trenbolone, trendione, 17 beta-trenbolone) was measured. The evaluation of the distribution of trenbolone acetate metabolites directly soluble in water showed that unknown metabolite(s) were predominant. The covalent binding tomore » nucleic acids was measured. It was so low that it was not detectable. The results are discussed in light of the data presented in the scientific report on anabolic agents in animal production from the European scientific working group.« less

  9. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes

    PubMed Central

    Westerholm, Maria; Dolfing, Jan; Sherry, Angela; Gray, Neil D; Head, Ian M; Schnürer, Anna

    2011-01-01

    Changes in communities of syntrophic acetate-oxidizing bacteria (SAOB) and methanogens caused by elevated ammonia levels were quantified in laboratory-scale methanogenic biogas reactors operating at moderate temperature (37°C) using quantitative polymerase chain reaction (qPCR). The experimental reactor was subjected to gradually increasing ammonia levels (0.8–6.9 g NH4+-N l−1), whereas the level of ammonia in the control reactor was kept low (0.65–0.90 g NH4+-N l−1) during the entire period of operation (660 days). Acetate oxidation in the experimental reactor, indicated by increased production of 14CO2 from acetate labelled in the methyl carbon, occurred when ammonia levels reached 5.5 and 6.9 g NH4+-N l−1. Syntrophic acetate oxidizers targeted by newly designed qPCR primers were Thermacetogenium phaeum, Clostridium ultunense, Syntrophaceticus schinkii and Tepidanaerobacter acetatoxydans. The results showed a significant increase in abundance of all these bacteria except T. phaeum in the ammonia-stressed reactor, coincident with the shift to syntrophic acetate oxidation. As the abundance of the bacteria increased, a simultaneous decrease was observed in the abundance of aceticlastic methanogens from the families Methanosaetaceae and Methanosarcinaceae. qPCR analyses of sludge from two additional high ammonia processes, in which methane production from acetate proceeded through syntrophic acetate oxidation (reactor SB) or through aceticlastic degradation (reactor DVX), demonstrated that SAOB were significantly more abundant in the SB reactor than in the DVX reactor. PMID:23761313

  11. Acetate Metabolism in Anaerobes from the Domain Archaea

    PubMed Central

    Ferry, James G.

    2015-01-01

    Acetate and acetyl-CoA play fundamental roles in all of biology, including anaerobic prokaryotes from the domains Bacteria and Archaea, which compose an estimated quarter of all living protoplasm in Earth’s biosphere. Anaerobes from the domain Archaea contribute to the global carbon cycle by metabolizing acetate as a growth substrate or product. They are components of anaerobic microbial food chains converting complex organic matter to methane, and many fix CO2 into cell material via synthesis of acetyl-CoA. They are found in a diversity of ecological habitats ranging from the digestive tracts of insects to deep-sea hydrothermal vents, and synthesize a plethora of novel enzymes with biotechnological potential. Ecological investigations suggest that still more acetate-metabolizing species with novel properties await discovery. PMID:26068860

  12. An in vitro synthetic biosystem based on acetate for production of phloroglucinol.

    PubMed

    Zhang, Rubing; Liu, Wei; Cao, Yujin; Xu, Xin; Xian, Mo; Liu, Huizhou

    2017-08-08

    Phloroglucinol is an important chemical, and the biosynthesis processes which can convert glucose to phloroglucinol have been established. However, due to approximate 80% of the glucose being transformed into undesirable by-products and biomass, this biosynthesis process only shows a low yield with the highest value of about 0.20 g/g. The industrial applications are usually hindered by the low current productivity and yield and also by the high costs. Generally, several different aspects limit the development of phloroglucinol biosynthesis. The yield of phloroglucinol is one of the most important parameters for its bioconversion especially from economic and ecological points of view. The in vitro biosynthesis of bio-based chemicals, is a flexible alternative with potentially high-yield to in vivo biosynthetic technology. By comparing the activity of acetyl-CoA synthetase (ACS) from Escherichia coli and Acetobacter pasteurianus, the highly active ACS2 was identified in A. pasteurianus. Acetyl-CoA carboxylase (ACC) from Acinetobacter calcoaceticus and phloroglucinol synthase (PhlD) from Pseudomonas fluorescens pf-5 were expressed and purified. Acetate was successfully transformed into phloroglucinol by the combined activity of above-mentioned enzymes and required cofactor. After optimization of the in vitro reaction system, phloroglucinol was then produced with a yield of nearly 0.64 g phloroglucinol/g acetic acid, which was equal to 91.43% of the theoretically possible maximum. In this work, a novel in vitro synthetic system for a highly efficient production of phloroglucinol from acetate was demonstrated. The system's performance suggests that in vitro synthesis of phloroglucinol has some advantages and is potential to become a feasible industrial alternative. Based on the results presented herewith, it is believed that in vitro biosystem will provide a feasible option for production of important industrial chemicals from acetate, which could work as a versatile

  13. Genome-Guided Analysis of Clostridium ultunense and Comparative Genomics Reveal Different Strategies for Acetate Oxidation and Energy Conservation in Syntrophic Acetate-Oxidising Bacteria

    PubMed Central

    Manzoor, Shahid; Schnürer, Anna; Müller, Bettina

    2018-01-01

    Syntrophic acetate oxidation operates close to the thermodynamic equilibrium and very little is known about the participating organisms and their metabolism. Clostridium ultunense is one of the most abundant syntrophic acetate-oxidising bacteria (SAOB) that are found in engineered biogas processes operating with high ammonia concentrations. It has been proven to oxidise acetate in cooperation with hydrogenotrophic methanogens. There is evidence that the Wood-Ljungdahl (WL) pathway plays an important role in acetate oxidation. In this study, we analysed the physiological and metabolic capacities of C. ultunense strain Esp and strain BST on genome scale and conducted a comparative study of all the known characterised SAOB, namely Syntrophaceticus schinkii, Thermacetogenium phaeum, Tepidanaerobacter acetatoxydans, and Pseudothermotoga lettingae. The results clearly indicated physiological robustness to be beneficial for anaerobic digestion environments and revealed unexpected metabolic diversity with respect to acetate oxidation and energy conservation systems. Unlike S. schinkii and Th. phaeum, C. ultunense clearly does not employ the oxidative WL pathway for acetate oxidation, as its genome (and that of P. lettingae) lack important key genes. In both of those species, a proton motive force is likely formed by chemical protons involving putative electron-bifurcating [Fe-Fe] hydrogenases rather than proton pumps. No genes encoding a respiratory Ech (energy-converting hydrogenase), as involved in energy conservation in Th. phaeum and S. schinkii, were identified in C. ultunense and P. lettingae. Moreover, two respiratory complexes sharing similarities to the proton-translocating ferredoxin:NAD+ oxidoreductase (Rnf) and the Na+ pumping NADH:quinone hydrogenase (NQR) were predicted. These might form a respiratory chain that is involved in the reduction of electron acceptors rather than protons. However, involvement of these complexes in acetate oxidation in C. ultunense

  14. Genome-Guided Analysis of Clostridium ultunense and Comparative Genomics Reveal Different Strategies for Acetate Oxidation and Energy Conservation in Syntrophic Acetate-Oxidising Bacteria.

    PubMed

    Manzoor, Shahid; Schnürer, Anna; Bongcam-Rudloff, Erik; Müller, Bettina

    2018-04-23

    Syntrophic acetate oxidation operates close to the thermodynamic equilibrium and very little is known about the participating organisms and their metabolism. Clostridium ultunense is one of the most abundant syntrophic acetate-oxidising bacteria (SAOB) that are found in engineered biogas processes operating with high ammonia concentrations. It has been proven to oxidise acetate in cooperation with hydrogenotrophic methanogens. There is evidence that the Wood-Ljungdahl (WL) pathway plays an important role in acetate oxidation. In this study, we analysed the physiological and metabolic capacities of C. ultunense strain Esp and strain BS T on genome scale and conducted a comparative study of all the known characterised SAOB, namely Syntrophaceticus schinkii , Thermacetogenium phaeum , Tepidanaerobacter acetatoxydans , and Pseudothermotoga lettingae . The results clearly indicated physiological robustness to be beneficial for anaerobic digestion environments and revealed unexpected metabolic diversity with respect to acetate oxidation and energy conservation systems. Unlike S. schinkii and Th. phaeum , C. ultunense clearly does not employ the oxidative WL pathway for acetate oxidation, as its genome (and that of P. lettingae ) lack important key genes. In both of those species, a proton motive force is likely formed by chemical protons involving putative electron-bifurcating [Fe-Fe] hydrogenases rather than proton pumps. No genes encoding a respiratory Ech (energy-converting hydrogenase), as involved in energy conservation in Th. phaeum and S. schinkii, were identified in C. ultunense and P. lettingae . Moreover, two respiratory complexes sharing similarities to the proton-translocating ferredoxin:NAD⁺ oxidoreductase (Rnf) and the Na⁺ pumping NADH:quinone hydrogenase (NQR) were predicted. These might form a respiratory chain that is involved in the reduction of electron acceptors rather than protons. However, involvement of these complexes in acetate oxidation in C

  15. Involvement of formate as an interspecies electron carrier in a syntrophic acetate-oxidizing anaerobic microorganism in coculture with methanogens.

    PubMed

    Hattori, S; Luo, H; Shoun, H; Kamagata, Y

    2001-01-01

    To determine whether formate is involved in interspecies electron transfer between substrate-oxidizing bacteria and hydrogenotrophic microorganisms under anaerobic conditions, a syntrophic acetate-oxidizing bacterium Thermacetogenium phaeum strain PB was cocultured either with a formate /H2-utilizing methanogen strain TM (designated as PB/TM coculture), or an H2-utilizing methanogen strain deltaH (designated as PB/deltaH coculture). Acetate oxidation and subsequent methanogenesis in PB/TM coculture were found to be significantly faster than in PB/deltaH coculture. Formate dehydrogenase and hydrogenase were both detected in strains PB and TM. H2 partial pressures in the PB/TM coculture were kept lower (20 to 40 Pa) than those of the PB/deltaH coculture (40 to 60 Pa) during the exponential growth phase. Formate was also detected in both PB/TM and PB/deltaH cocultures, and the concentration of formate was maintained at a lower level in the PB/TM coculture (5 to 9 microM) than in the PB/deltaH coculture. Thermodynamic calculations revealed that the concentrations of both H2 and formate severely affect the syntrophic oxidation of acetate. These results strongly indicate that not only H2 but also formate may be involved in interspecies electron transfer.

  16. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  17. Acute Alcohol Intoxication Decreases Glucose Metabolism but Increases Acetate Uptake in the Human Brain

    PubMed Central

    Volkow, Nora D.; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S.; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2012-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in thalamus. In contrast, alcohol intoxication caused a significant increase in [1-11C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in cerebellum and the smallest in thalamus. In heavy alcohol drinkers [1-11C]acetate brain uptake during alcohol challenge trended to be higher than in occasional drinkers (p <0.06) and the increases in [1-11C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-11C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (ie ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541

  18. Ulipristal acetate versus placebo for fibroid treatment before surgery.

    PubMed

    Donnez, Jacques; Tatarchuk, Tetyana F; Bouchard, Philippe; Puscasiu, Lucian; Zakharenko, Nataliya F; Ivanova, Tatiana; Ugocsai, Gyula; Mara, Michal; Jilla, Manju P; Bestel, Elke; Terrill, Paul; Osterloh, Ian; Loumaye, Ernest

    2012-02-02

    The efficacy and safety of oral ulipristal acetate for the treatment of symptomatic uterine fibroids before surgery are uncertain. We randomly assigned women with symptomatic fibroids, excessive uterine bleeding (a score of >100 on the pictorial blood-loss assessment chart [PBAC, an objective assessment of blood loss, in which monthly scores range from 0 to >500, with higher numbers indicating more bleeding]) and anemia (hemoglobin level of ≤10.2 g per deciliter) to receive treatment for up to 13 weeks with oral ulipristal acetate at a dose of 5 mg per day (96 women) or 10 mg per day (98 women) or to receive placebo (48 women). All patients received iron supplementation. The coprimary efficacy end points were control of uterine bleeding (PBAC score of <75) and reduction of fibroid volume at week 13, after which patients could undergo surgery. At 13 weeks, uterine bleeding was controlled in 91% of the women receiving 5 mg of ulipristal acetate, 92% of those receiving 10 mg of ulipristal acetate, and 19% of those receiving placebo (P<0.001 for the comparison of each dose of ulipristal acetate with placebo). The rates of amenorrhea were 73%, 82%, and 6%, respectively, with amenorrhea occurring within 10 days in the majority of patients receiving ulipristal acetate. The median changes in total fibroid volume were -21%, -12%, and +3% (P=0.002 for the comparison of 5 mg of ulipristal acetate with placebo, and P=0.006 for the comparison of 10 mg of ulipristal acetate with placebo). Ulipristal acetate induced benign histologic endometrial changes that had resolved by 6 months after the end of therapy. Serious adverse events occurred in one patient during treatment with 10 mg of ulipristal acetate (uterine hemorrhage) and in one patient during receipt of placebo (fibroid protruding through the cervix). Headache and breast tenderness were the most common adverse events associated with ulipristal acetate but did not occur significantly more frequently than with placebo

  19. Transition-Metal-Catalyzed Carbonylation of Methyl Acetate.

    ERIC Educational Resources Information Center

    Polichnowski, S. W.

    1986-01-01

    Presents a study of the rhodium-catalyzed, ioding-promoted carbonylation of methyl acetate. This study provides an interesting contrast between the carbonylation of methyl acetate and the carbonylation of methanol when similar rhodium/iodine catalyst systems are used. (JN)

  20. Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion.

    PubMed

    Geider, Klaus; Gernold, Marina; Jock, Susanne; Wensing, Annette; Völksch, Beate; Gross, Jürgen; Spiteller, Dieter

    2015-12-01

    Bacteria were isolated from necrotic apple and pear tree tissue and from dead wood in Germany and Austria as well as from pear tree exudate in China. They were selected for growth at 37 °C, screened for levan production and then characterized as Gram-negative, facultatively anaerobic rods. Nucleotide sequences from 16S rRNA genes, the housekeeping genes dnaJ, gyrB, recA and rpoB alignments, BLAST searches and phenotypic data confirmed by MALDI-TOF analysis showed that these bacteria belong to the genus Gibbsiella and resembled strains isolated from diseased oaks in Britain and Spain. Gibbsiella-specific PCR primers were designed from the proline isomerase and the levansucrase genes. Acid secretion was investigated by screening for halo formation on calcium carbonate agar and the compound identified by NMR as acetic acid. Its production by Gibbsiella spp. strains was also determined in culture supernatants by GC/MS analysis after derivatization with pentafluorobenzyl bromide. Some strains were differentiated by the PFGE patterns of SpeI digests and by sequence analyses of the lsc and the ppiD genes, and the Chinese Gibbsiella strain was most divergent. The newly investigated bacteria as well as Gibbsiella querinecans, Gibbsiella dentisursi and Gibbsiella papilionis, isolated in Britain, Spain, Korea and Japan, are taxonomically related Enterobacteriaceae, tolerate and secrete acetic acid. We therefore propose to unify them in the species Gibbsiella acetica sp. nov. Copyright © 2015. Published by Elsevier GmbH.

  1. Air Cushion Equipment Transporter (ACET) Testing. Volume 2.

    DTIC Science & Technology

    1986-10-01

    m: lllllhllllEEE 1.0. 1-2-5 w lw w w w w -- * e %. f~n4% AD-A188 369 AFWAL-TR-86-3088 VOLUME 11 AIR CUSHION EQ~UIPuMNT TRNSPO’jRTERi (ACET) TESTING T.D... E . COLCLOUGH, J Chief Vehicle E eupment Division .. If your address has changed, if you wish to be removed from our mailing list, or if the addressee...and ZIP CodeI 10. SOURCE OF FUNDING NOS. PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO NO NO II TITLE (includ. Securito C f e ,,n 62201F 2402 01 34 12

  2. Effect of surface oxygen vacancy sites on ethanol synthesis from acetic acid hydrogenation on a defective In2O3(110) surface.

    PubMed

    Lyu, Huisheng; Liu, Jiatao; Chen, Yifei; Li, Guiming; Jiang, Haoxi; Zhang, Minhua

    2018-03-07

    Developing a new type of low-cost and high-efficiency non-noble metal catalyst is beneficial for industrially massive synthesis of alcohols from carboxylic acids which can be obtained from renewable biomass. In this work, the effect of active oxygen vacancies on ethanol synthesis from acetic acid hydrogenation over defective In 2 O 3 (110) surfaces has been studied using periodic density functional theory (DFT) calculations. The relative stabilities of six surface oxygen vacancies from O v1 to O v6 on the In 2 O 3 (110) surface were compared. D1 and D4 surfaces with respective O v1 and O v4 oxygen vacancies were chosen to map out the reaction paths from acetic acid to ethanol. A reaction cycle mechanism between the perfect and defective states of the In 2 O 3 surface was found to catalyze the formation of ethanol from acetic acid hydrogenation. By H 2 reduction the oxygen vacancies on the In 2 O 3 surface play key roles in promoting CH 3 COO* hydrogenation and C-O bond breaking in acetic acid hydrogenation. The acetic acid, in turn, benefits the creation of oxygen vacancies, while the C-O bond breaking of acetic acid refills the oxygen vacancy and, thereby, sustains the catalytic cycle. The In 2 O 3 based catalysts were shown to be advantageous over traditional noble metal catalysts in this paper by theoretical analysis.

  3. Microorganisms having enhanced resistance to acetate and methods of use

    DOEpatents

    Brown, Steven D; Yang, Shihui

    2014-10-21

    The present invention provides isolated or genetically modified strains of microorganisms that display enhanced resistance to acetate as a result of increased expression of a sodium proton antiporter. The present invention also provides methods for producing such microbial strains, as well as related promoter sequences and expression vectors. Further, the present invention provides methods of producing alcohol from biomass materials by using microorganisms with enhanced resistance to acetate.

  4. Acetate biostimulation as an effective treatment for cleaning up alkaline soil highly contaminated with Cr(VI).

    PubMed

    Lara, Paloma; Morett, Enrique; Juárez, Katy

    2017-11-01

    Stimulation of microbial reduction of Cr(VI) to the less toxic and less soluble Cr(III) through electron donor addition has been regarded as a promising approach for the remediation of chromium-contaminated soil and groundwater sites. However, each site presents different challenges; local physicochemical characteristics and indigenous microbial communities influence the effectiveness of the biostimulation processes. Here, we show microcosm assays stimulation of microbial reduction of Cr(VI) in highly alkaline and saline soil samples from a long-term contaminated site in Guanajuato, Mexico. Acetate was effective promoting anaerobic microbial reduction of 15 mM of Cr(VI) in 25 days accompanied by an increase in pH from 9 to 10. Our analyses showed the presence of Halomonas, Herbaspirillum, Nesterenkonia/Arthrobacter, and Bacillus species in the soil sample collected. Moreover, from biostimulated soil samples, it was possible to isolate Halomonas spp. strains able to grow at 32 mM of Cr(VI). Additionally, we found that polluted groundwater has bacterial species different to those found in soil samples with the ability to resist and reduce chromate using acetate and yeast extract as electron donors.

  5. Syntrophic acetate oxidation in industrial CSTR biogas digesters.

    PubMed

    Sun, Li; Müller, Bettina; Westerholm, Maria; Schnürer, Anna

    2014-02-10

    The extent of syntrophic acetate oxidation (SAO) and the levels of known SAO bacteria and acetate- and hydrogen-consuming methanogens were determined in sludge from 13 commercial biogas production plants. Results from these measurements were statistically related to the prevailing operating conditions, through partial least squares (PLS) analysis. This revealed that high abundance of microorganisms involved in SAO was positively correlated with relatively low abundance of aceticlastic methanogens and high concentrations of free ammonia (>160 mg/L) and volatile fatty acids (VFA). Temperature was identified as another influencing factor for the population structure of the syntrophic acetate oxidising bacteria (SAOB). Overall, there was a high abundance of SAOB in the different digesters despite differences in their operating parameters, indicating that SAOB are an enduring and important component of biogas-producing consortia. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  7. RP-HPLC Method Development and Validation for Determination of Eptifibatide Acetate in Bulk Drug Substance and Pharmaceutical Dosage Forms

    PubMed Central

    Bavand Savadkouhi, Maryam; Vahidi, Hossein; Ayatollahi, Abdul Majid; Hooshfar, Shirin; Kobarfard, Farzad

    2017-01-01

    A new, rapid, economical and isocratic reverse phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of eptifibatide acetate, a small synthetic antiplatelet peptide, in bulk drug substance and pharmaceutical dosage forms. The developed method was validated as per of ICH guidelines. The chromatographic separation was achieved isocratically on C18 column (150 x 4.60 mm i.d., 5 µM particle size) at ambient temperature using acetonitrile (ACN), water and trifluoroacetic acid (TFA) as mobile phase at flow rate of 1 mL/min and UV detection at 275 nm. Eptifibatide acetate exhibited linearity over the concentration range of 0.15-2 mg/mL (r2=0.997) with limit of detection of 0.15 mg/mL The accuracy of the method was 96.4-103.8%. The intra-day and inter-day precision were between 0.052% and 0.598%, respectively. The present successfully validated method with excellent selectivity, linearity, sensitivity, precision and accuracy was applicable for the assay of eptifibatide acetate in bulk drug substance and pharmaceutical dosage forms. PMID:28979304

  8. RP-HPLC Method Development and Validation for Determination of Eptifibatide Acetate in Bulk Drug Substance and Pharmaceutical Dosage Forms.

    PubMed

    Bavand Savadkouhi, Maryam; Vahidi, Hossein; Ayatollahi, Abdul Majid; Hooshfar, Shirin; Kobarfard, Farzad

    2017-01-01

    A new, rapid, economical and isocratic reverse phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of eptifibatide acetate, a small synthetic antiplatelet peptide, in bulk drug substance and pharmaceutical dosage forms. The developed method was validated as per of ICH guidelines. The chromatographic separation was achieved isocratically on C18 column (150 x 4.60 mm i.d., 5 µM particle size) at ambient temperature using acetonitrile (ACN), water and trifluoroacetic acid (TFA) as mobile phase at flow rate of 1 mL/min and UV detection at 275 nm. Eptifibatide acetate exhibited linearity over the concentration range of 0.15-2 mg/mL (r 2 =0.997) with limit of detection of 0.15 mg/mL The accuracy of the method was 96.4-103.8%. The intra-day and inter-day precision were between 0.052% and 0.598%, respectively. The present successfully validated method with excellent selectivity, linearity, sensitivity, precision and accuracy was applicable for the assay of eptifibatide acetate in bulk drug substance and pharmaceutical dosage forms.

  9. Dexamethasone acetate encapsulation into Trojan particles.

    PubMed

    Gómez-Gaete, Carolina; Fattal, Elias; Silva, Lídia; Besnard, Madeleine; Tsapis, Nicolas

    2008-05-22

    We have combined the therapeutic potential of nanoparticles systems with the ease of manipulation of microparticles by developing a hybrid vector named Trojan particles. We aim to use this new delivery vehicle for intravitreal administration of dexamethasone. Initialy, dexamethasone acetate (DXA) encapsulation into biodegradable poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles was optimized. Then, Trojan particles were formulated by spray drying 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC), hyaluronic acid (HA) and different concentrations of nanoparticle suspensions. The effect of nanoparticles concentration on Trojan particle physical characteristics was investigated as well as the effect of the spray drying process on nanoparticles size. Finally, DXA in vitro release from nanoparticles and Trojan particles was evaluated under sink condition. SEM and confocal microscopy show that most of Trojan particles are spherical, hollow and possess an irregular surface due to the presence of nanoparticles. Neither Trojan particle tap density nor size distribution are significantly modified as a function of nanoparticles concentration. The mean nanoparticles size increase significantly after spray drying. Finally, the in vitro release of DXA shows that the excipient matrix provides protection to encapsulated nanoparticles by slowing drug release.

  10. Zuclopenthixol acetate for acute schizophrenia and similar serious mental illnesses

    PubMed Central

    Jayakody, Kaushadh; Gibson, Roger Carl; Kumar, Ajit; Gunadasa, Shalmini

    2014-01-01

    and six days (RR 0.74, 95% CI 0.43 to 1.27). Compared with haloperidol or clotiapine, people allocated zuclopenthixol did not seem to be at more risk of a range of movement disorders (< 20%). Three studies found no difference in the proportion of people getting blurred vision/dry mouth (n = 192, 2 RCTs, RR at 24 hours 0.90, 95% CI 0.48 to 1.70). Similarly, dizziness was equally infrequent for those allocated zuclopenthixol acetate compared with haloperidol (n = 192, 2 RCTs, RR at 24 hours 1.15, 95% CI 0.46 to 2.88). There was no difference between treatments for leaving the study before completion (n = 522, RR 0.85, 95% CI 0.31 to 2.31). One study reported no difference in adverse effects and outcome scores, when high dose (50-100 mg/injection) zuclopenthixol acetate was compared with low dose (25-50 mg/injection) zuclopenthixol acetate. Authors’ conclusions Recommendations on the use of zuclopenthixol acetate for the management of psychiatric emergencies in preference to ‘standard’ treatment have to be viewed with caution. Most of the small trials present important methodological flaws and findings are poorly reported. This review did not find any suggestion that zuclopenthixol acetate is more or less effective in controlling aggressive acute psychosis, or in preventing adverse effects than intramuscular haloperidol, and neither seemed to have a rapid onset of action. Use of zuclopenthixol acetate may result in less numerous coercive injections and low doses of the drug may be as effective as higher doses. Well-conducted pragmatic randomised controlled trials are needed. PMID:22513898

  11. GENE EXPRESSION PATTERNS OF CD-1 DAY-8 EMBRYO CULTURES EXPOSED TO BROMOCHLORO ACETIC ACID

    EPA Science Inventory

    Gene expression patterns of CD-1 day-8 embryo cultures exposed to bromochloro acetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductiv...

  12. Regulation of Acetate Utilization by Monocarboxylate Transporter 1 (MCT1) in Hepatocellular Carcinoma (HCC).

    PubMed

    Jeon, Jeong Yong; Lee, Misu; Whang, Sang Hyun; Kim, Jung-Whan; Cho, Arthur; Yun, Mijin

    2018-01-19

    Altered energy metabolism is a biochemical fingerprint of cancer cells. Hepatocellular carcinoma (HCC) shows reciprocal [18F]fluorodeoxyglucose (FDG) and [11C]acetate uptake, as revealed by positron emission tomography/computed tomography (PET/CT). Previous studies have focused on the role of FDG uptake in cancer cells. In this study, we evaluated the mechanism and roles of [11C]acetate uptake in human HCCs and cell lines. The expression of monocarboxylate transporters (MCTs) was assessed to determine the transporters of [11C]acetate uptake in HCC cell lines and human HCCs with different [11C]acetate uptake. Using two representative cell lines with widely different [11C]acetate uptake (HepG2 for high uptake and Hep3B for low uptake), changes in [11C]acetate uptake were measured after treatment with an MCT1 inhibitor or MCT1-targeted siRNA. To verify the roles of MCT1 in cells, oxygen consumption rate and the amount of lipid synthesis were measured. HepG2 cells with high [11C]acetate uptake showed higher MCT1 expression than other HCC cell lines with low [11C]acetate uptake. MCT1 expression was elevated in human HCCs with high [11C]acetate uptake compared to those with low [11C]acetate uptake. After blocking MCT1 with AR-C155858 or MCT1 knockdown, [11C]acetate uptake in HepG2 cells was significantly reduced. Additionally, inhibition of MCT1 suppressed mitochondrial oxidative phosphorylation, lipid synthesis, and cellular proliferation in HCC cells with high [11C]acetate uptake. MCT1 may be a new therapeutic target for acetate-dependent HCCs with high [11C]acetate uptake, which can be selected by [11C]acetate PET/CT imaging in clinical practice.

  13. Differential Response to Abiraterone Acetate and Di-n-butyl Phthalate in an Androgen-Sensitive Human Fetal Testis Xenograft Bioassay

    PubMed Central

    Boekelheide, Kim

    2014-01-01

    In utero exposure to antiandrogenic xenobiotics such as di-n-butyl phthalate (DBP) has been linked to congenital defects of the male reproductive tract, including cryptorchidism and hypospadias, as well as later life effects such as testicular cancer and decreased sperm counts. Experimental evidence indicates that DBP has in utero antiandrogenic effects in the rat. However, it is unclear whether DBP has similar effects on androgen biosynthesis in human fetal testis. To address this issue, we developed a xenograft bioassay with multiple androgen-sensitive physiological endpoints, similar to the rodent Hershberger assay. Adult male athymic nude mice were castrated, and human fetal testis was xenografted into the renal subcapsular space. Hosts were treated with human chorionic gonadotropin for 4 weeks to stimulate testosterone production. During weeks 3 and 4, hosts were exposed to DBP or abiraterone acetate, a CYP17A1 inhibitor. Although abiraterone acetate (14 d, 75mg/kg/d po) dramatically reduced testosterone and the weights of androgen-sensitive host organs, DBP (14 d, 500mg/kg/d po) had no effect on androgenic endpoints. DBP did produce a near-significant trend toward increased multinucleated germ cells in the xenografts. Gene expression analysis showed that abiraterone decreased expression of genes related to transcription and cell differentiation while increasing expression of genes involved in epigenetic control of gene expression. DBP induced expression of oxidative stress response genes and altered expression of actin cytoskeleton genes. PMID:24284787

  14. Role of the glyoxylate pathway in acetic acid production by Acetobacter aceti.

    PubMed

    Sakurai, Kenta; Yamazaki, Shoko; Ishii, Masaharu; Igarashi, Yasuo; Arai, Hiroyuki

    2013-01-01

    Wild-type Acetobacter aceti NBRC 14818 possesses genes encoding isocitrate lyase (aceA) and malate synthase (glcB), which constitute the glyoxylate pathway. In contrast, several acetic acid bacteria that are utilized for vinegar production lack these genes. Here, an aceA-glcB knockout mutant of NBRC 14818 was constructed and used for investigating the role of the glyoxylate pathway in acetate productivity. In medium containing ethanol as a carbon source, the mutant grew normally during ethanol oxidation to acetate, but exhibited slower growth than that of the wild-type strain as the accumulated acetate was oxidized. The mutant grew similarly to that of the wild-type strain in medium containing glucose as a carbon source, indicating that the glyoxylate pathway was not necessary for glucose utilization. However, in medium containing both ethanol and glucose, the mutant exhibited significantly poorer growth and lower glucose consumption compared to the wild-type strain. Notably, the mutant oxidized ethanol nearly stoichiometrically to acetate, which was retained in the medium for a longer period of time than the acetate produced by wild-type strain. The features of the aceA-glcB knockout mutant revealed here indicate that the lack of the glyoxylate pathway is advantageous for industrial vinegar production by A. aceti. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. The dynamics of the metabolism of acetate and bicarbonate associated with use of hemodialysates in the ABChD trial: a phase IV, prospective, single center, single blind, randomized, cross-over, two week investigation.

    PubMed

    Smith, William B; Gibson, Sandy; Newman, George E; Hendon, Kendra S; Askelson, Margarita; Zhao, James; Hantash, Jamil; Flanagan, Brigid; Larkin, John W; Usvyat, Len A; Thadhani, Ravi I; Maddux, Franklin W

    2017-08-29

    In the United States, hemodialysis (HD) is generally performed via a bicarbonate dialysate. It is not known if small amounts of acid used in dialysate to buffer the bicarbonate can meaningfully contribute to overall buffering administered during HD. We aimed to investigate the metabolism of acetate with use of two different acid buffer concentrates and determine if it effects blood bicarbonate concentrations in HD patients. The Acid-Base Composition with use of hemoDialysates (ABChD) trial was a Phase IV, prospective, single blind, randomized, cross-over, 2 week investigation of peridialytic dynamics of acetate and bicarbonate associated with use of acid buffer concentrates. Eleven prevalent HD patients participated from November 2014 to February 2015. Patients received two HD treatments, with NaturaLyte® and GranuFlo® acid concentrates containing 4 and 8 mEq/L of acetate, respectively. Dialysate order was chosen in a random fashion. The endpoint was to characterize the dynamics of acetate received and metabolized during hemodialysis, and how it effects overall bicarbonate concentrations in the blood and dialysate. Acetate and bicarbonate concentrations were assessed before, at 8 time points during, and 6 time points after the completion of HD. Data from 20 HD treatments for 11 patients (10 NaturaLyte® and 10 GranuFlo®) was analyzed. Cumulative trajectories of arterialized acetate were unique between NaturaLyte® and GranuFlo® (p = 0.003), yet individual time points demonstrated overlap without remarkable differences. Arterialized and venous blood bicarbonate concentrations were similar at HD initiation, but by 240 min into dialysis, mean arterialized bicarbonate concentrations were 30.2 (SD ± 4.16) mEq/L in GranuFlo® and 28.8 (SD ± 4.26) mEq/L in NaturaLyte®. Regardless of acid buffer concentrate, arterial blood bicarbonate was primarily dictated by the prescribed bicarbonate level. Subjects tolerated HD with both acid buffer concentrates without

  16. Biodegradable tocopherol acetate as a drug carrier to prevent ureteral stent-associated infection.

    PubMed

    Elayarajah; Rajendran, R; Venkatrajah; Sreekumar, Sweda; Sudhakar, Asa; Janiga; Sreekumar, Soumya

    2011-03-01

    Biomaterial-centred bacterial infections present common and challenging complications with medical implants like ureteral stent which provide substratum for the biofilm formation. Hence the purpose of this study is to make antibacterial stent surface with biodegradable polymer (tocopherol acetate) and anti-infective agents (norfloxacin and metronidazole) using a modified dip-coating procedure. This is done by impregnating the stent pieces in the anti-infective solution (a mixture of norfloxacin-metronidazole and polymer) for uniform surface coating (drug-carrier-coated stents). After coating, agar diffusion test was performed as qualitative test to find out the sensitivity of coated stents against the clinical isolates, Staphylococcus epidermidis and Escherichia coli. Quantitative test was measured by calculating the numbers of adhered bacteria on coated and uncoated stents by incubating the stent pieces in artificial urine. Difference in the number of viable bacteria adhered on the surface of coated and uncoated stents were statistically calculated using chi square test with p < 0.05 considered significant. The stent colonising ability of Staphylococcus epidermidis and Escherichia coli in a controlled environment chamber was determined using two-challenge dose of the isolates by in vitro challenge test. In qualitative test, the zone of inhibition around the coated stents showed sensitivity against the clinical isolates. In quantitative test, the number of adhered bacteria on the surface of coated stents was reduced to a significant level (p < 0.05). The polymer, tocopherol acetate is highly biodegradable in nature. Due to its degrading ability in body tissues, it releases the anti-infective drugs at a constant and sustained rate.

  17. Glatiramer Acetate administration does not reduce damage after cerebral ischemia in mice.

    PubMed

    Poittevin, Marine; Deroide, Nicolas; Azibani, Feriel; Delcayre, Claude; Giannesini, Claire; Levy, Bernard I; Pocard, Marc; Kubis, Nathalie

    2013-01-15

    Inflammation plays a key role in ischemic stroke pathophysiology: microglial/macrophage cells and type-1 helper cells (Th1) seem deleterious, while type-2 helper cells (Th2) and regulatory T cells (Treg) seem protective. CD4 Th0 differentiation is modulated by microglial cytokine secretion. Glatiramer Acetate (GA) is an immunomodulatory drug that has been approved for the treatment of human multiple sclerosis by means of a number of mechanisms: reduced microglial activation and pro-inflammatory cytokine production, Th0 differentiation shifting from Th2 to Th2 and Treg with anti-inflammatory cytokine production and increased neurogenesis. We induced permanent (pMCAo) or transient middle cerebral artery occlusion (tMCAo) and GA (2 mg) or vehicle was injected subcutaneously immediately after cerebral ischemia. Mice were sacrificed at D3 to measure neurological deficit, infarct volume, microglial cell density and qPCR of TNFα and IL-1β (pro-inflammatory microglial cytokines), IFNγ (Th2 cytokine), IL-4 (Th2 cytokine), TGFβ and IL-10 (Treg cytokines), and at D7 to evaluate neurological deficit, infarct volume and neurogenesis assessment. We showed that in GA-treated pMCAo mice, infarct volume, microglial cell density and cytokine secretion were not significantly modified at D3, while neurogenesis was enhanced at D7 without significant infarct volume reduction. In GA-treated tMCAo mice, microglial pro-inflammatory cytokines IL-1β and TNFα were significantly decreased without modification of microglial/macrophage cell density, cytokine secretion, neurological deficit or infarct volume at D3, or modification of neurological deficit, neurogenesis or infarct volume at D7. In conclusion, Glatiramer Acetate administered after cerebral ischemia does not reduce infarct volume or improve neurological deficit in mice despite a significant increase in neurogenesis in pMCAo and a microglial pro-inflammatory cytokine reduction in tMCAo. Copyright © 2012 Elsevier B.V. All rights

  18. Experience with cyproterone acetate in the treatment of precocious puberty.

    PubMed

    Laron, Z; Kauli, R

    2000-07-01

    The authors review their experience (1967-present) in the use of cyproterone acetate (CPA) in precocious puberty. CPA was found effective in persistently suppressing pituitary gonadotropic secretion when administered orally at a dose of 50 mg b.i.d. (70-100 mg/d). After the introduction of gonadotropic analogues (GnRHa) for treatment of central precocious puberty, short term use of CPA was found useful to counteract the initial stimulatory effect of the GnRHa as well as an adjunct drug in case of very active adrenarche causing advanced bone age during GnRHa treatment. The final heights of girls treated with CPA and girls treated with D-Trp6-LHRH were found comparable: 157.8+/-5.1 cm vs 159.6+/-6.3 cm, respectively. The main adverse effects were occasional fatigue due to partial adrenal insufficiency with CPA and gynecomastia in a few boys. Liver function tests were normal in all patients with the exception of one boy with severe hypothalamic disease, including precocious puberty, who developed liver cirrhosis 3 years after stopping CPA following 5 years treatment. Other indications for CPA treatment during childhood and adolescence, such as fast puberty, congenital adrenal hyperplasia and acne, are also mentioned.

  19. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  20. [Cellulose acetate membrane electrophoresis CAE and Raman spectroscopy as a method identification of beta-glucans, used as biologically and therapeutically active biomaterials].

    PubMed

    Pielesz, Anna; Biniaś, Włodzimierz; Paluch, Jadwiga

    2012-01-01

    The formation of AGEs progressively increases with normal aging, even in the absence of disease (the pathogenesis of diabetes associated vascular disorders and neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease). However, they are formed at accelerated rates in age-related diseases. The polysaccharides might play a role in wound healing, both internally and externally, and also that they could play a role against inflammation and may lead to the production of better medicines to be used as supplements in cancer treatment. The acid hydrolysis was studied with H2SO4 at 80% concentration to determine the most effective procedure for total hydrolysis of beta-glucan. The standard of beta-glucans acid hydrolysate were compared for commercial oat and oatmeal, mushrooms: Pleurotus ostreatus, Fungus and yeast Saccharomyces cerevisiae. The following materials and reagents were used in the examination: reference beta-(1 --> 3)-(1 --> 6)-glucan, oat and oatmeal, mushrooms: Pleurotus ostreatus, Fungus and yeast Saccharomyces cerevisiae. The Raman spectra of the sample solutions (beta-glucan acid hydrolysates) were recorded on a MAGNA-IR 860 with FT-Raman accessory. Sample was irradiated with a 1064 nm line of the T10-8S Nd spectra-physics model: YAG laser and scattered radiation were collected at 180 degrees, using 4 cm(-1) resolution. The polysaccharide was hydrolyzed into component monosaccharides with 80% H2SO4 at 0 degrees C for 30 minutes and monosaccharide derivatives were subjected to electrophoresis, as in a ealier authors study, on a strip of cellulose acetate membrane (CA-SYS-MINI Cellulose Acetate Systems) in 0.2 M Ca(OAc)2 (pH 7.5) at 10 mA, max. 240 V for 1.5 h. The strips were stained with 0.5% toluidine blue in 3% HOAc solution and then rinsed in distilled water and air-dried. A part of the hexoses (for example glucose) are converted, to products such as 5-hydroxymethylfurfural. Various coloured substances, through the Maillard

  1. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondala, Andro; Hernandez, Rafael; French, Todd

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2%more » w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.« less

  2. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2

    PubMed Central

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru–Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry. PMID:27165850

  3. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2.

    PubMed

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-05-11

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru-Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry.

  4. 21 CFR 520.1341 - Megestrol acetate tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Megestrol acetate tablets. 520.1341 Section 520.1341 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... tablets. (a) Specifications. Each tablet contains 5 or 20 milligrams of megestrol acetate. (b) Sponsor. No...

  5. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    PubMed

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters.

  6. Light-scattering efficiency of starch acetate pigments as a function of size and packing density.

    PubMed

    Penttilä, Antti; Lumme, Kari; Kuutti, Lauri

    2006-05-20

    We study theoretically the light-scattering efficiency of paper coatings made of starch acetate pigments. For the light-scattering code we use a discrete dipole approximation method. The coating layer is assumed to consists of roughly equal-sized spherical pigments packed either at a packing density of 50% (large cylindrical slabs) or at 37% or 57% (large spheres). Because the scanning electron microscope images of starch acetate samples show either a particulate or a porous structure, we model the coatings in two complementary ways. The material can be either inside the constituent spheres (particulate case) or outside of those (cheeselike, porous medium). For the packing of our spheres we use either a simulated annealing or a dropping code. We can estimate, among other things, that the ideal sphere diameter is in the range 0.25-0.4 microm.

  7. Light-scattering efficiency of starch acetate pigments as a function of size and packing density

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Lumme, Kari; Kuutti, Lauri

    2006-05-01

    We study theoretically the light-scattering efficiency of paper coatings made of starch acetate pigments. For the light-scattering code we use a discrete dipole approximation method. The coating layer is assumed to consists of roughly equal-sized spherical pigments packed either at a packing density of 50% (large cylindrical slabs) or at 37% or 57% (large spheres). Because the scanning electron microscope images of starch acetate samples show either a particulate or a porous structure, we model the coatings in two complementary ways. The material can be either inside the constituent spheres (particulate case) or outside of those (cheeselike, porous medium). For the packing of our spheres we use either a simulated annealing or a dropping code. We can estimate, among other things, that the ideal sphere diameter is in the range 0.25-0.4 μm.

  8. Acetate: A better astrobiological indicator of life than methane?

    NASA Astrophysics Data System (ADS)

    Kanik, I.; Russell, M. J.; Hodyss, R. P.; Johnson, P. V.

    2009-12-01

    The emergence of life on the ocean floor of the early Earth has implications for life detection on other rocky planetary bodies having subsurface ocean or ground waters in our solar system. At bottom life hydrogenates carbon dioxide. This is true not only of oxygenic photosynthesis—a relatively late evolutionary invention—but also of autotrophic chemosynthesizers such as the acetogenic bacteria and the methanoarchaea; respectively probably the first and second organisms to have emerged on Earth. Both of these prokaryotes use the acetyl coenzyme-a pathway for biosynthesis, though the variant leading to methanogenesis is substantially more complicated and therefore more highly evolved. Yet serpentinization and volcanism can produce methane with facility—an ambiguity that confounds life detection. In contrast, hydrothermal vent experiments to date along with hot spring analyses have indicated that no significant concentrations of abiotic acetate were produced in spite of the simplicity of the biological pathway. It seems that the geochemical conditions that generate abiotic methane are generally too reducing to produce acetate. Thus, the generation of acetate is solely a biotic process. As there is every reason to believe that the same chemical and electrochemical tensions would occur on other wet rocky planets containing subsurface ocean or ground waters. This encourages us to look into chemical and spectroscopic methods of detecting of acetate (both remotely and in situ) which is a better indicator than methane for the past or present biological activity on planetary bodies such as Mars. We, at the Jet Propulsion Laboratory, have designed laboratory experiments to investigate the feasibility of detecting acetate using conventional chemical and spectroscopic methods. The results and applicability of these techniques for the future astrobiology missions will be discussed.

  9. Two-dimensional isobutyl acetate production pathways to improve carbon yield

    PubMed Central

    Tashiro, Yohei; Desai, Shuchi H.; Atsumi, Shota

    2015-01-01

    For an economically competitive biological process, achieving high carbon yield of a target chemical is crucial. In biochemical production, pyruvate and acetyl-CoA are primary building blocks. When sugar is used as the sole biosynthetic substrate, acetyl-CoA is commonly generated by pyruvate decarboxylation. However, pyruvate decarboxylation during acetyl-CoA formation limits the theoretical maximum carbon yield (TMCY) by releasing carbon, and in some cases also leads to redox imbalance. To avoid these problems, we describe here the construction of a metabolic pathway that simultaneously utilizes glucose and acetate. Acetate is utilized to produce acetyl-CoA without carbon loss or redox imbalance. We demonstrate the utility of this approach for isobutyl acetate (IBA) production, wherein IBA production with glucose and acetate achieves a higher carbon yield than with either sole carbon source. These results highlight the potential for this multiple carbon source approach to improve the TMCY and balance redox in biosynthetic pathways. PMID:26108471

  10. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  11. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  12. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  13. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  14. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  15. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process.

    PubMed

    Ha, Eun-Sol; Kim, Jeong-Soo; Baek, In-Hwan; Yoo, Jin-Wook; Jung, Yunjin; Moon, Hyung Ryong; Kim, Min-Soo

    2015-01-01

    In the present study, solid dispersion nanoparticles with a hydrophilic polymer and surfactant were developed using the supercritical antisolvent (SAS) process to improve the dissolution and oral absorption of megestrol acetate. The physicochemical properties of the megestrol acetate solid dispersion nanoparticles were characterized using scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction, and a particle-size analyzer. The dissolution and oral bioavailability of the nanoparticles were also evaluated in rats. The mean particle size of all solid dispersion nanoparticles that were prepared was <500 nm. Powder X-ray diffraction and differential scanning calorimetry measurements showed that megestrol acetate was present in an amorphous or molecular dispersion state within the solid dispersion nanoparticles. Hydroxypropylmethyl cellulose (HPMC) solid dispersion nanoparticles significantly increased the maximum dissolution when compared with polyvinylpyrrolidone K30 solid dispersion nanoparticles. The extent and rate of dissolution of megestrol acetate increased after the addition of a surfactant into the HPMC solid dispersion nanoparticles. The most effective surfactant was Ryoto sugar ester L1695, followed by D-α-tocopheryl polyethylene glycol 1000 succinate. In this study, the solid dispersion nanoparticles with a drug:HPMC:Ryoto sugar ester L1695 ratio of 1:2:1 showed >95% rapid dissolution within 30 minutes, in addition to good oral bioavailability, with approximately 4.0- and 5.5-fold higher area under the curve (0-24 hours) and maximum concentration, respectively, than raw megestrol acetate powder. These results suggest that the preparation of megestrol acetate solid dispersion nanoparticles using the supercritical antisolvent process is a promising approach to improve the dissolution and absorption properties of megestrol acetate.

  16. As, Cd, Cr, Ni and Pb pressurized liquid extraction with acetic acid from marine sediment and soil samples

    NASA Astrophysics Data System (ADS)

    Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Adela; Bermejo-Barrera, Pilar

    2006-12-01

    Rapid leaching procedures by Pressurized Liquid Extraction (PLE) have been developed for As, Cd, Cr, Ni and Pb leaching from environmental matrices (marine sediment and soil samples). The Pressurized Liquid Extraction is completed after 16 min. The released elements by acetic acid Pressurized Liquid Extraction have been evaluated by inductively coupled plasma-optical emission spectrometry. The optimum multi-element leaching conditions when using 5.0 ml stainless steel extraction cells, were: acetic acid concentration 8.0 M, extraction temperature 100 °C, pressure 1500 psi, static time 5 min, flush solvent 60%, two extraction steps and 0.50 g of diatomaceous earth as dispersing agent (diatomaceous earth mass/sample mass ratio of 2). Results have showed that high acetic acid concentrations and high extraction temperatures increase the metal leaching efficiency. Limits of detection (between 0.12 and 0.5 μg g - 1 ) and repeatability of the over-all procedure (around 6.0%) were assessed. Finally, accuracy was studied by analyzing PACS-2 (marine sediment), GBW-07409 (soil), IRANT-12-1-07 (cambisol soil) and IRANT-12-1-08 (luvisol soil) certified reference materials (CRMs). These certified reference materials offer certified concentrations ranges between 2.9 and 26.2 μg g - 1 for As, from 0.068 to 2.85 μg g - 1 for Cd, between 26.4 and 90.7 μg g - 1 for Cr, from 9.3 to 40.0 μg g - 1 for Ni and between 16.3 and 183.0 μg g - 1 for Pb. Recoveries after analysis were between 95.7 and 105.1% for As, 96.2% for Cd, 95.2 and 100.6% for Cr, 95.7 and 103% for Ni and 94.2 and 105.5% for Pb.

  17. Quantum Tunneling Symmetry of Single Molecule Magnet Mn_12-acetate

    NASA Astrophysics Data System (ADS)

    del Barco, E.; Kent, A. D.; Rumberger, E.; Hendrikson, D. N.; Christou, G.

    2003-03-01

    We have studied the symmetry of magnetic quantum tunneling (MQT) in single crystals of single molecular magnet (SMM) Mn_12-acetate. A superconducting high field vector magnet was used to apply magnetic fields in arbitrary directions respect to the axes of the crystal. The MQT probability is extracted from the change in magnetization measured on sweeping the field through a MQT resonance. This is related to the quantum splitting of the molecules relaxing in the time window of the experiment [1]. The dependence of the MQT probability on the angle between the applied transverse field and the crystallographic axes shows a four-fold rotation pattern, with maxima at angles separated by 90 degrees. By selecting a part of the splitting distribution of the sample by applying an initial transverse field in the direction of one of the observed maxima the situation changes completely. The resulting behavior of the MQT probability shows a two-fold rotation pattern with maxima separated by 180 degrees. Moreover, if the selection is made by applying the initial transverse field in the direction of a complementary four-fold maximum the behavior shows again two-fold symmetry. However, the maxima are found to be shifted by 90 degrees respect to the first selection. The fact that we observe two-fold symmetry for different selections is a clear evidence of the existence of different molecules with lower anisotropy than the imposed by the tetragonal crystallographic site symmetry. The general four-fold symmetry observed is thus due in large part to equal populations of molecules with opposite signs of the second order anisotropy, as suggested by Cornia et al. and appears to be a consequence of to the existence of a discrete set of lower symmetry isomers in a Mn_12-acetate crystal [2]. [1] E. del Barco, A. D. Kent, E. Rumberger, D. N. Hendrikson and G. Christou, Europhys. Lett. 60, 768 (2002) [2] A. Cornia, R. Sessoli, L. Sorace, D. Gatteschi, A. L. Barra and C. Daiguebonne, Phys. Rev

  18. Degradation pathway of the naphthalene azo dye intermediate 1-diazo-2- naphthol-4-sulfonic acid using Fenton's reagent.

    PubMed

    Zhu, Nanwen; Gu, Lin; Yuan, Haiping; Lou, Ziyang; Wang, Liang; Zhang, Xin

    2012-08-01

    Degradation of naphthalene dye intermediate 1-diazo-2- naphthol-4-sulfonic acid (1,2,4-Acid) by Fenton process has been studied in depth for the purpose of learning more about the reactions involved in the oxidation of 1,2,4-Acid. During 1,2,4-Acid oxidation, the solution color initially takes on a dark red, then to dark black associated with the formation of quinodial-type structures, and then goes to dark brown and gradually disappears, indicating a fast degradation of azo group. The observed color changes of the solution are a result of main reaction intermediates, which can be an indicator of the level of oxidization reached. Nevertheless, complete TOC removal is not accomplished, in accordance with the presence of resistant carboxylic acids at the end of the reaction. The intermediates generated along the reaction time have been identified and quantified. UPLC-(ESI)-TOF-HRMS analysis allows the detection of 19 aromatic compounds of different size and complexity. Some of them share the same accurate mass but appear at different retention time, evidencing their different molecular structures. Heteroatom oxidation products like SO(4)(2-) have also been quantified and explanations of their release are proposed. Short-chain carboxylic acids are detected at long reaction time, as a previous step to complete the process of dye mineralization. Finally, considering all the findings of the present study and previous related works, the evolution from the original 1,2,4-Acid to the final products is proposed in a general reaction scheme. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar.

    PubMed

    Castro, Cristina; Cleenwerck, Ilse; Trcek, Janja; Zuluaga, Robin; De Vos, Paul; Caro, Gloria; Aguirre, Ricardo; Putaux, Jean-Luc; Gañán, Piedad

    2013-03-01

    The phylogenetic position of a cellulose-producing acetic acid bacterium, strain ID13488, isolated from commercially available Colombian homemade fruit vinegar, was investigated. Analyses using nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rRNA gene internal transcribed spacer (ITS) sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated the micro-organism to the genus Gluconacetobacter, and more precisely to the Gluconacetobacter xylinus group. Moreover, the data suggested that the micro-organism belongs to a novel species in this genus, together with LMG 1693(T), a non-cellulose-producing strain isolated from vinegar by Kondo and previously classified as a strain of Gluconacetobacter xylinus. DNA-DNA hybridizations confirmed this finding, revealing a DNA-DNA relatedness value of 81 % between strains ID13488 and LMG 1693(T), and values <70 % between strain LMG 1693(T) and the type strains of the closest phylogenetic neighbours. Additionally, the classification of strains ID13488 and LMG 1693(T) into a single novel species was supported by amplified fragment length polymorphism (AFLP) and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains ID13488 and LMG 1693(T) could be differentiated from closely related species of the genus Gluconacetobacter by their ability to produce 2- and 5-keto-d-gluconic acid from d-glucose, their ability to produce acid from sucrose, but not from 1-propanol, and their ability to grow on 3 % ethanol in the absence of acetic acid and on ethanol, d-ribose, d-xylose, sucrose, sorbitol, d-mannitol and d-gluconate as carbon sources. The DNA G+C content of strains ID13488 and LMG 1693(T) was 58.0 and 60.7 mol%, respectively. The major ubiquinone of LMG 1693(T) was Q-10. Taken together these data indicate that strains ID13488 and LMG 1693(T) represent a novel species of the genus Gluconacetobacter for which the name Gluconacetobacter

  20. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  1. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  2. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  3. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  4. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    PubMed

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.

  5. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium

    PubMed Central

    2013-01-01

    Background The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. Results We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, 13C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. Conclusions We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In

  6. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium.

    PubMed

    Varman, Arul M; Yu, Yi; You, Le; Tang, Yinjie J

    2013-11-25

    The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, (13)C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In the late growth phase, the

  7. (1-->6)-beta-D-glucan as cell wall receptor for Pichia membranifaciens killer toxin.

    PubMed

    Santos, A; Marquina, D; Leal, J A; Peinado, J M

    2000-05-01

    The killer toxin from Pichia membranifaciens CYC 1106, a yeast isolated from fermenting olive brines, binds primarily to the (1-->6)-beta-D-glucan of the cell wall of a sensitive yeast (Candida boidinii IGC 3430). The (1-->6)-beta-D-glucan was purified from cell walls of C. boidinii by alkali and hot-acetic acid extraction, a procedure which solubilizes glucans. The major fraction of receptor activity remained with the alkali-insoluble (1-->6)-beta- and (1-->3)-beta-D-glucans. The chemical (gas-liquid chromatography) and structural (periodate oxidation, infrared spectroscopy, and (1)H nuclear magnetic resonance) analyses of the fractions obtained showed that (1-->6)-beta-D-glucan was a receptor. Adsorption of most of the killer toxin to the (1-->6)-beta-D-glucan was complete within 2 min. Killer toxin adsorption to the linear (1-->6)-beta-D-glucan, pustulan, and a glucan from Penicillium allahabadense was observed. Other polysaccharides with different linkages failed to bind the killer toxin. The specificity of the killer toxin for its primary receptor provides an effective means to purify the killer toxin, which may have industrial applications for fermentations in which salt is present as an adjunct, such as olive brines. This toxin shows its maximum killer activity in the presence of NaCl. This report is the first to identify the (1-->6)-beta-D-glucan as a receptor for this novel toxin.

  8. Investigation of charge-transfer hydrogen bonding interaction of 1-(2-pyridylazo)-2-naphthol (PAN) and 4-(2-Pyridylazo)resorcinol (PAR) with chloranilic acid through experimental and DFT studies

    NASA Astrophysics Data System (ADS)

    Karmakar, Animesh; Singh, Bula

    2018-07-01

    The H-bonding interaction of 1-(2-pyridylazo)-2-naphthol (PAN) and 4-(2-Pyridylazo) resorcinol (PAR) with chloranilic acid (CLA) have been considered spectroscopically in methanol solvent. PAN and PAR were used as a ligand and this two ligands has diverse application in spectrophotometric, chelatometric analysis of different metal ions. However, it is seen as of the literature analysis that no molecular complex of PAN and PAR with CLA was reported. The creation of charge-transfer H-bonded adduct gives a outlook to progress the physico-chemical scenery of the donor. So the complex of PAN and PAR with chloranilic acid was recounted in this work in methanol medium. Both the hydrogen-bonded molecular complexes have been prepared and identified using 1H NMR, FT-IR, and elemental analysis. Spectroscopic data point out that PAN and PAR discretely interact with CLA by a physically potent H-bonding interaction. The thermal constancy of the above molecular complexes has been determined by TGA-DTA analysis. The computational calculation also supported the development of the H-bonded charge-transfer adduct.

  9. Silver acetate interactions with nicotine and non-nicotine smoke components.

    PubMed

    Rose, Jed E; Behm, Frédérique M; Murugesan, Thangaraju; McClernon, F Joseph

    2010-12-01

    Oral topical silver-containing formulations were marketed in the 1970s and 1980s as smoking deterrents, based on the finding that when using such formulations, an unpleasant taste occurs upon smoking. This approach has not been widely adopted, however, in part because of a lack of efficacy data. The advent of new pharmacologic treatments for smoking cessation renews the possibility that such a taste aversion approach may be a useful adjunct to smoking cessation treatment. This study explored the basic mechanistic question of whether topical oral silver acetate solution interacts with nicotine as opposed to non-nicotine smoke constituents. We recruited 20 smoking volunteers to rate nicotine-containing or denicotinized cigarettes, as well as the Nicotrol nicotine vapor inhaler and sham (air) puffs. In two sessions, subjects rated the sensory and hedonic qualities of puffs after rinsing their mouths with either silver acetate solution or deionized water (placebo). Silver acetate relative to placebo solution substantially reduced liking and satisfaction ratings for the usual brand and denicotinized cigarettes; in contrast, for the nicotine inhaler these ratings were unaffected by the silver-based treatment. These results support the conclusion that silver acetate not only renders the taste of cigarette smoke less appealing, but also that the compound appears to interact selectively with non-nicotine smoke constituents. Moreover, these data suggest silver acetate would be compatible with buccal nicotine delivery systems (e.g., nicotine lozenge or gum). Combined use of taste aversion with nicotine replacement therapy could provide the smoker with additional assistance to resist relapse. Further exploration is warranted of the use of silver-based preparations as a short-term adjunct to smoking cessation treatment. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  10. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    PubMed

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Inhibition of rat mammary carcinogenesis by short dietary exposure to retinyl acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, D.L.; Burns, F.J.; Albert, R.E.

    1980-04-01

    This study was designed to determine whether retinyl acetate was an effective inhibitor when given for short periods at the time of and after the administration of the carcinogen. Virgin female Lewis rats were given 20 mg 7,12-dimethylbenz(a)anthracene intragastrically at 50 days of age. The rats were fed Purina laboratory chow supplemented with 250 ppM retinyl acetate in groups of 20 for various lengths of time. At 30 weeks all groups receiving retinyl acetate except one showed a significant decrease in tumor multiplicity in comparison to non-retinyl acetate-treated controls. In the +1 to +12 group, the inhibition of tumor developmentmore » was temporary, inasmuch as tumor values returned to control levels by Week 30. These results indicate that retinyl acetate inhibition of mammary cancer is not limited to the late stage of the disease, because the retinoid was almost equally effective when given for a short period at the time of carcinogen availability.« less

  12. Activation of methyl acetate on Pd(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lijun; Xu, Ye

    2010-01-01

    The absorption and activation of methyl acetate (CH{sub 3}COOCH{sub 3}), one of the simplest carboxylic esters, on Pd(111) have been studied using self-consistent periodic density functional theory calculations. Methyl acetate adsorbs weakly through the carbonyl oxygen. Its activation occurs via dehydrogenation, instead of direct C-O bond dissociation, on clean Pd(111): It is much more difficult to dissociate the C--O bonds ({epsilon}{sub a} ? 2.0 eV for the carbonyl and acetate-methyl bonds; {epsilon}{sub a} = 1.0 eV for the acetyl-methoxy bond) than to dissociate the C-H bonds to produce enolate (CH{sub 2}COOCH{sub 3}; {epsilon}{sub a} = 0.74 eV) or methylene acetatemore » (CH{sub 3}COOCH{sub 2}; {epsilon}{sub a} = 0.82 eV). The barriers for C-H and C-O bond dissociation are directly calculated for enolate and methylene acetate, and estimated for further dehydrogenated derivatives (CH{sub 3}COOCH, CH{sub 2}COOCH{sub 2}, and CHCOOCH{sub 3}) based on the Bronsted-Evans-Polanyi linear energy relations formed by the calculated steps. The enolate pathway leads to successive dehydrogenation to CCOOCH{sub 3}, whereas methylene acetate readily dissociates to yield acetyl. The selectivity for dissociating the acyl-alkoxy C-O bond, which is desired for alcohol formation, is therefore fundamentally limited by the facility of dehydrogenation under vacuum/low-pressure conditions on Pd(111).« less

  13. Male Fishia yosemitae (Grote)(Lepidoptera: Noctuidae) captured in traps baited with (Z)-7-dodecenyl acetate and (Z)-9-tetradecenyl acetate

    USDA-ARS?s Scientific Manuscript database

    Traps baited with sex pheromone lures for the noctuid moths Chrysodeixis eriosoma (Doubleday) and Feltia jaculifera (Guenee) captured males of another noctuid moth Fishia yosemitae (Grote). These lures included both (Z)-7-dodecenyl acetate (Z7-12Ac) and (Z)-9-tetradecenyl acetate (Z9-14AC). When the...

  14. Water requirements of the rayon- and acetate-fiber industry

    USGS Publications Warehouse

    Mussey, Orville Durey

    1957-01-01

    Water is required for several purposes in the manufacture of rayon and acetate fiber. These water requirements, as indicated by a survey of the water used by the plants operating in 1953, are both quantitative and qualitative. About 300 mgd (million gallons per day) of water was used in 1953 in the preparation of purified wood cellulose and cotton linters, the basic material from which the rayon and acetate fiber is made. An additional 620 mgd was used in the process of converting the cellulose to rayon and acetate fiber. The total, 920 mgd, is about 1 percent of the total estimated withdrawals of industrial water in the United States in 1953. The rayon- and acetate-fiber plants are scattered through eastern United States and generally are located in small towns or rural areas where there are abundant supplies of clean, soft water. Water use at a typical rayon-fiber plant was about 9 mgd, and at a typical acetate-fiber plant about 38 mgd. About 110 gallons of water was used to produce a pound of rayon fiber 32 gallons per pound was process water and the remainder was used largely for cooling in connection with power production and air conditioning. For the manufacture of a pound of acetate fiber about 170 gallons of water was used. However, the field survey on which this report is based indicated a wide range in the amount of water used per pound of product. For example, in the manufacture of viscose rayon, the maximum unit water use was 8 times the minimum unit water use. Water use in summer was about 22 percent greater than average annual use. About 8 mgd of water was consumed by evaporation in the manufacture of rayon and acetate fiber. More than 90 percent of the water used by the rayon and acetate industry was withdrawn from surface-water sources, about 8 percent from ground water, and less than 2 percent from municipal water supplies. All available analyses of the untreated waters used by the rayon and acetate industry were collected and studied. The

  15. Safety Profile of Eslicarbazepine Acetate as Add-On Therapy in Adults with Refractory Focal-Onset Seizures: From Clinical Studies to 6 Years of Post-Marketing Experience.

    PubMed

    Gama, Helena; Vieira, Mariana; Costa, Raquel; Graça, Joana; Magalhães, Luís M; Soares-da-Silva, Patrício

    2017-12-01

    Eslicarbazepine acetate was first approved in the European Union in 2009 as adjunctive therapy in adults with partial-onset seizures with or without secondary generalization. The objective of this study was to review the safety profile of eslicarbazepine acetate analyzing the data from several clinical studies to 6 years of post-marketing surveillance. We used a post-hoc pooled safety analysis of four phase III, double-blind, randomized, placebo-controlled studies (BIA-2093-301, -302, -303, -304) of eslicarbazepine acetate as add-on therapy in adults. Safety data of eslicarbazepine acetate in special populations of patients aged ≥65 years with partial-onset seizures (BIA-2093-401) and subjects with moderate hepatic impairment (BIA-2093-111) and renal impairment (BIA-2093-112) are also considered. The incidences of treatment-emergent adverse events, treatment-emergent adverse events leading to discontinuation, and serious adverse events were analyzed. The global safety database of eslicarbazepine acetate was analyzed for all cases from post-marketing surveillance from 1 October, 2009 to 21 October, 2015. From a pooled analysis of four phase III studies, it was concluded that the incidence of treatment-emergent adverse events, treatment-emergent adverse events leading to discontinuation, and adverse drug reactions were dose dependent. Dizziness, somnolence, headache, and nausea were the most common treatment-emergent adverse events (≥10% of patients) and the majority were of mild-to-moderate intensity. No dose-dependent trend was observed for serious adverse events and individual serious adverse events were reported in less than 1% of patients. Hyponatremia was classified as a possibly related treatment-emergent adverse event in phase III studies (1.2%); however, after 6 years of post-marketing surveillance it represents the most frequently (10.2%) reported adverse drug reaction, with more than half of these cases occurring with eslicarbazepine acetate at

  16. Rediscovering Acetate Metabolism: Its Potential Sources and Utilization for Biobased Transformation into Value-Added Chemicals.

    PubMed

    Lim, Hyun Gyu; Lee, Ji Hoon; Noh, Myung Hyun; Jung, Gyoo Yeol

    2018-04-25

    One of the great advantages of microbial fermentation is the capacity to convert various carbon compounds into value-added chemicals. In this regard, there have been many efforts to engineer microorganisms to facilitate utilization of abundant carbon sources. Recently, the potential of acetate as a feedstock has been discovered; efforts have been made to produce various biochemicals from acetate based on understanding of its metabolism. In this review, we discuss the potential sources of acetate and summarized the recent progress to improve acetate utilization with microorganisms. Furthermore, we also describe representative studies that engineered microorganisms for the production of biochemicals from acetate.

  17. Spirulina platensis attenuates the associated neurobehavioral and inflammatory response impairments in rats exposed to lead acetate.

    PubMed

    Khalil, Samah R; Khalifa, Hesham A; Abdel-Motal, Sabry M; Mohammed, Hesham H; Elewa, Yaser H A; Mahmoud, Hend Atta

    2018-08-15

    Heavy metals are well known as environmental pollutants with hazardous impacts on human and animal health because of their wide industrial usage. In the present study, the role of Spirulina platensis in reversing the oxidative stress-mediated brain injury elicited by lead acetate exposure was evaluated. In order to accomplish this aim, rats were orally administered with 300 mg/kg bw Spirulina for 15 d, before and simultaneously with an intraperitoneal injection of 50 mg/kg bw lead acetate [6 injections through the two weeks]. As a result, the co-administration of Spirulina with lead acetate reversed the most impaired open field behavioral indices; however, this did not happen for swimming performance, inclined plane, and grip strength tests. In addition, it was observed that Spirulina diminished the lead content that accumulated in both the blood and the brain tissue of the exposed rats, and reduced the elevated levels of oxidative damage indices, and brain proinflammatory markers. Also, because of the Spirulina administration, the levels of the depleted biomarkers of antioxidant status and interleukin-10 in the lead-exposed rats were improved. Moreover, Spirulina protected the brain tissue (cerebrum and cerebellum) against the changes elicited by lead exposure, and also decreased the reactivity of HSP70 and Caspase-3 in both cerebrum and cerebellum tissues. Collectively, our findings demonstrate that Spirulina has a potential use as a food supplement in the regions highly polluted with heavy metals. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Response of anaerobes to methyl fluoride, 2-bromoethanesulfonate and hydrogen during acetate degradation.

    PubMed

    Hao, Liping; Lü, Fan; Li, Lei; Shao, Liming; He, Pinjing

    2013-05-01

    To use the selective inhibition method for quantitative analysis of acetate metabolism in methanogenic systems, the responses of microbial communities and metabolic activities, which were involved in anaerobic degradation of acetate, to the addition of methyl fluoride (CH3F), 2-bromoethanesulfonate (BES) and hydrogen were investigated in a thermophilic batch experiment. Both the methanogenic inhibitors, i.e., CH3F and BES, showed their effectiveness on inhibiting CH4 production, whereas acetate metabolism other than acetoclastic methanogenesis was stimulated by BES, as reflected by the fluctuated acetate concentration. Syntrophic acetate oxidation was thermodynamically blocked by hydrogen (H2), while H2-utilizing reactions as hydrogenotrophic methanogenesis and homoacetogenesis were correspondingly promoted. Results of PCR-DGGE fingerprinting showed that, CH3F did not influence the microbial populations significantly. However, the BES and hydrogen notably altered the bacterial community structures and increased the diversity. BES gradually changed the methanogenic community structure by affecting the existence of different populations to different levels, whilst H2 greatly changed the abundance of different methanogenic populations, and induced growth of new species.

  19. [Physiological response to acetic acid stress of Acetobacter pasteuranus during vinegar fermentation].

    PubMed

    Qi, Zhengliang; Yang, Hailin; Xia, Xiaole; Wang, Wu; Leng, Yunwei; Yu, Xiaobin; Quan, Wu

    2014-03-04

    The aim of the study is to propose a dynamic acetic acid resistance mechanism through analysis on response of cellular morphology, physiology and metabolism of A. pasteurianus CICIM B7003 during vinegar fermentation. Vinegar fermentation was carried out in a Frings 9 L acetator by strain B7003 and cultures were sampled at different cellular growth phases. Simultaneously, percentage of capsular polysaccharide versus dry cells weight, ratio of unsaturated fatty acids to saturated fatty acids, transcription of acetic acid resistance genes, activity of alcohol respiratory chain enzymes and ATPase were detected for these samples to assay the responses of bacterial morphology, physiology and metabolism. When acetic acid was existed, no obvious capsular polysaccharide was secreted by cells. As vinegar fermentation proceeding, percentage of capsular polysaccharide versus dry cells weight was reduced from 2.5% to 0.89%. Ratio of unsaturated fatty acids to saturated fatty acids was increased obviously which can improve membrane fluidity. Also transcription level of acetic acid resistance genes was promoted. Interestingly, activity of alcohol respiratory chain and ATPase was not inhibited but promoted obviously with acetic acid accumulation which could provide enough energy for acetic acid resistance mechanism. On the basis of the results obtained from the experiment, A. pasteurianus CICIM B7003 relies mainly on the cooperation of changes of extracellular capsular polysaccharide and membrane fatty acids, activation of acid resistance genes transcription, enhancement of activity of alcohol respiratory chain and rapid energy production to tolerate acidic environment.

  20. Metabolic and skeletal effects of low and high doses of calcium acetate in patients with preterminal chronic renal failure.

    PubMed

    Phelps, Kenneth R; Stern, Marc; Slingerland, Alice; Heravi, Mahin; Strogatz, David S; Haqqie, Syed S

    2002-01-01

    Secondary hyperparathyroidism commonly evolves, as the glomerular filtration rate falls. The metabolic and skeletal effects of a possible remedy, calcium acetate, have not been studied in patients with preterminal chronic renal failure. Men with a mean creatinine clearance of approximately 30 ml/min took calcium acetate for 24 weeks at doses which provided 507 or 1,521 mg calcium/day with meals. Metabolic determinations were made at intervals of 4-8 weeks, and the bone mineral density (BMD) was measured at the beginning and at the end of the trial. The low-dose regimen produced no metabolic or skeletal effect. In subjects prescribed the high-dose regimen, the 24-hour urine phosphorus excretion fell from 0.53 mg/mg creatinine to values ranging from 0.34 to 0.41 mg/mg creatinine. The theoretical phosphorus threshold concentration rose by a maximum of 38.6%, and the serum phosphorus concentration did not change. The mean serum calcium concentration rose by a maximum of 7.2%. The mean fractional changes in parathyroid hormone and 1,25-dihydroxyvitamin D concentrations ranged from -27.0 to -39.6% and from -5.0 to -20.3%, respectively. The BMD increased at L1, L3, and L4. Calcium acetate prescribed to deliver 1,521 mg calcium/day with meals reduced parathyroid hormone and 1,25-dihydroxyvitamin D concentrations and increased lumbar BMD in men with preterminal chronic renal failure. Copyright 2002 S. Karger AG, Basel

  1. Nonenzymatic and enzymatic hydrolysis of alkyl halides: A theoretical study of the SN2 reactions of acetate and hydroxide ions with alkyl chlorides

    PubMed Central

    Maulitz, Andreas H.; Lightstone, Felice C.; Zheng, Ya-Jun; Bruice, Thomas C.

    1997-01-01

    The SN2 displacements of chloride ion from CH3Cl, C2H5Cl, and C2H4Cl2 by acetate and hydroxide ions have been investigated, using ab initio molecular orbital theory at the HF/6–31+G(d), MP2/6–31+G(d), and MP4/6–31+G(d) levels of theory. The central barriers (calculated from the initial ion–molecule complex) of the reactions, the differences of the overall reaction energies, and the geometries of the transition states are compared. Essential stereochemical changes before and after the displacement reactions are described for selected cases. The gas phase reactions of hydroxide with CH3Cl, C2H5Cl, and C2H4Cl2 have no overall barrier, but there is a small overall barrier for the reactions of acetate with CH3Cl, C2H5Cl, and C2H4Cl2. A self-consistent reaction field solvation model was used to examine the SN2 reactions between methyl chloride and hydroxide ion and between 1,2-dichloroethane and acetate in solution. As expected, the reactions in polar solvent have a large barrier. However, the transition state structures determined by ab initio calculations change only slightly in the presence of a highly polar solvent as compared with the gas phase. We also calibrated the PM3 method for future study of an enzymatic SN2 displacement of halogen. PMID:9192609

  2. Water in polymer membranes. 4. Raman scattering from cellulose acetate films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, J.R.; Bailey, G.F.; Kint, S.

    Raman scattering was observed from thin film optical waveguides of cellulose acetate exposed to water vapor from 0% to 100% relative humidity (RH), and from dilute solutions of water in methyl acetate. Spectra of cellulose acetate (CA398, 39.8% acetyl) at low RH and cellulose triacetate (CTA) at low and high RH are consistent with the presence of water monomers that are weakly hydrogen bonded to acetyl C=O groups. Differences between the spectra of water in CA398 and CTA at low RH are attributed to sequential hydrogen bonding involving OH groups in CA398. At high RH, CA398 and CTA (to amore » lesser extent) show bands attributed to water/water interactions that are similar to those found in sequentially hydrogen-bonded hydrates. CA398 films that are annealed at high temperatures exhibit decreased water/water interactions at high RH. Exposure of CA398 films to D/sub 2/O converts > 90% of all polymer OH groups to OD groups. This indicates that water is accessible to nearly all regions of the polymer containing OH groups. Annealing does not alter this accessibility but does reduce the total water content by roughly half, at 100% RH. Hydrogen-bonded C=O groups are associated with a band centered at 1731 cm/sup -1/ which increases in intensity with increasing water content in the film but does not shift in frequency. 38 references, 16 figures, 1 table.« less

  3. Ethylene-Vinyl Acetate Potential Problems for Photovoltaic Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K. M.

    2006-01-01

    Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support, optical coupling, electrical isolation, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate, it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about -15 degC. Temperatures lower thanmore » this can be reached for extended periods of time in some climates. Because of increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL1703.« less

  4. Biodegradation of Phenylmercuric Acetate by Mercury-Resistant Bacteria

    PubMed Central

    Nelson, J. D.; Blair, W.; Brinckman, F. E.; Colwell, R. R.; Iverson, W. P.

    1973-01-01

    Selected cultures of mercury-resistant bacteria degrade the fungicide-slimicide phenylmercuric acetate. By means of a closed system incorporating a flameless atomic absorption spectrophotometer and a vapor phase chromatograph, it was demonstrated that elemental mercury vapor and benzene were products of phenylmercuric acetate degradation. PMID:4584577

  5. Efficacy of Acetic Acid against Listeria monocytogenes Attached to Poultry Skin during Refrigerated Storage

    PubMed Central

    Gonzalez-Fandos, Elena; Herrera, Barbara

    2014-01-01

    This work evaluates the effect of acetic acid dipping on the growth of L. monocytogenes on poultry legs stored at 4 °C for eight days. Fresh inoculated chicken legs were dipped into either a 1% or 2% acetic acid solution (v/v) or distilled water (control). Changes in mesophiles, psychrotrophs, Enterobacteriaceae counts and sensorial characteristics (odor, color, texture and overall appearance) were also evaluated. The shelf life of the samples washed with acetic acid was extended by at least two days over the control samples washed with distilled water. L. monocytogenes counts before decontamination were 5.57 log UFC/g, and after treatment with 2% acetic acid (Day 0), L. monocytogenes counts were 4.47 log UFC/g. Legs washed with 2% acetic acid showed a significant (p < 0.05) inhibitory effect on L. monocytogenes compared to control legs, with a decrease of about 1.31 log units after eight days of storage. Sensory quality was not adversely affected by acetic acid. This study demonstrates that while acetic acid did reduce populations of L. monocytogenes on meat, it did not completely inactivate the pathogen. The application of acetic acid may be used as an additional hurdle contributing to extend the shelf life of raw poultry and reducing populations of L. monocytogenes. PMID:28234335

  6. Thermal decarboxylation of acetic acid: Implications for origin of natural gas

    USGS Publications Warehouse

    Kharaka, Y.K.; Carothers, W.W.; Rosenbauer, R.J.

    1983-01-01

    Laboratory experiments on the thermal decarboxylation of solutions of acetic acid at 200??C and 300??C were carried out in hydrothermal equipment allowing for on-line sampling of both the gas and liquid phases for chemical and stable-carbon-isotope analyses. The solutions had ambient pH values between 2.5 and 7.1; pH values and the concentrations of the various acetate species at the conditions of the experiments were computed using a chemical model. Results show that the concentrations of acetic acid, and not total acetate in solution, control the reaction rates which follow a first order equation based on decreasing concentrations of acetic acid with time. The decarboxylation rates at 200??C (1.81 ?? 10-8 per second) and 300??C (8.17 ?? 10-8 per second) and the extrapolated rates at lower temperatures are relatively high. The activation energy of decarboxylation is only 8.1 kcal/mole. These high decarboxylation rates, together with the distribution of short-chained aliphatic acid anions in formation waters, support the hypothesis that acid anions are precursors for an important portion of natural gas. Results of the ??13C values of CO2, CH4, and total acetate show a reasonably constant fractionation factor of about 20 permil between CO2 and CH4 at 300??C. The ??13C values of CO2 and CH4 are initially low and become higher as decarboxylation increases. ?? 1983.

  7. Ionic liquid catalyzed one-pot multi-component synthesis, characterization and antibacterial activity of novel chromeno[2,3-d]pyrimidin-8-amine derivatives

    NASA Astrophysics Data System (ADS)

    Kanakaraju, Sankari; Prasanna, Bethanamudi; Basavoju, Srinivas; Chandramouli, G. V. P.

    2012-06-01

    An efficient, simple and convenient method for the one-pot multi-component synthesis of novel chromeno[2,3-d]pyrimidin-8-amine derivatives has been accomplished by starting from α-naphthol, aryl aldehydes, malononitrile and NH4Cl. The reaction has been catalyzed by 1-butyl-3-methylimidazolium tetrafluoroborate [bmim]BF4 ionic liquid. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, mass spectra, and elemental analysis. The structure of compound 4a was confirmed by single-crystal X-ray diffraction. All the synthesized compounds were evaluated for their in vitro antibacterial activity.

  8. Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils.

    PubMed

    Küsel, Kirsten; Wagner, Christine; Trinkwalter, Tanja; Gössner, Anita S; Bäumler, Rupert; Drake, Harold L

    2002-04-01

    Soils contain anoxic microzones, and acetate is an intermediate during the turnover of soil organic carbon. Due to negligible methanogenic activities in well-drained soils, acetate accumulates under experimentally imposed short-term anoxic conditions. In contrast to forest, agricultural, and prairie soils, grassland soils from Hawaii rapidly consumed rather than formed acetate when incubated under anoxic conditions. Thus, alternative electron acceptors that might be linked to the anaerobic oxidation of soil organic carbon in Hawaiian soils were assessed. Under anoxic conditions, high amounts of Fe(II) were formed by Hawaiian soils as soon as soils were depleted of nitrate. Rates of Fe(II) formation for different soils ranged from 0.01 to 0.31 micromol (g dry weight soil)(-1) h(-1), but were not positively correlated to increasing amounts of poorly crystallized iron oxides. In general, sulfate-reducing and methanogenic activities were negligible. Supplemental acetate was rapidly oxidized to CO2 via the sequential reduction of nitrate and Fe(III) in grassland soil (obtained near Kaena State Park). Supplemental H2 stimulated the formation of Fe(II), but H2-utilizing acetogens appeared to also be involved in the consumption of H2. Approximately 270 micromol Fe(III) (g dry weight soil)(-1) was available for Fe(III)-reducing bacteria, and acetate became a stable end product when Fe(III) was depleted in long-term incubations. Most-probable-number estimates of H2- and acetate-utilizing Fe(III) reducers and of H2-utilizing acetogens were similar. These results indicate that (i) the microbial reduction of Fe(III) is an important electron-accepting process for the anaerobic oxidation of organic matter in Fe(III)-rich Hawaiian soils of volcanic origin, and (ii) acetate, formed by the combined activity of fermentative and acetogenic bacteria, is an important trophic link in anoxic microsites of these soils.

  9. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.

    PubMed

    Mira, Nuno P; Palma, Margarida; Guerreiro, Joana F; Sá-Correia, Isabel

    2010-10-25

    Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5). Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to this weak acid. These are novel candidate genes for genetic

  10. Properties of Acetate Kinase Isozymes and a Branched-Chain Fatty Acid Kinase from a Spirochete

    PubMed Central

    Harwood, Caroline S.; Canale-Parola, Ercole

    1982-01-01

    Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l-leucine, l-isoleucine, and l-valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids. PMID:6288660

  11. Probing the Methyl Torsional Barriers of the E and Z Isomers of Butadienyl Acetate by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jabri, Atef; Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Van, Vinh; Stahl, Wolfgang

    2016-06-01

    The Fourier transform microwave spectra of the E and the Z isomer of butadienyl acetate have been measured in the frequency range from 2 to 26.5 GHz under molecular beam conditions. The most stable conformer of each isomer, in which all heavy atoms are located in a symmetry plane, was identified after analyzing the spectrum by comparison with results from quantum chemical calculations. The barrier to internal rotation of the acetyl methyl group was found to be 149.1822(20) cm-1 and 150.2128(48) cm-1 for the E and the Z isomer, respectively, which are similar to that of vinyl acetate. A comparison between two theoretical approaches treating internal rotations, the rho axis method (using the program BELGI-Cs) and combined axis method (using the program XIAM), is also performed. Since several years we study the barriers to internal rotation of the acetyl methyl group in acetates, CH3-COOR. Currently, we assume that all acetates can be divided into three classes. Class I contains α,β saturated acetates, where the torsional barrier is always close to 100 cm-1. Examples are a series of alkyl acetates such as methyl acetate and ethyl acetate. Class II contains α,β-unsaturated acetates where the C=C double bond is located in the COO plane. This is the case of vinyl acetate and butadienyl acetate. Finally, in class III with isopropenyl acetate and phenyl acetate as two representatives, α,β-unsaturated acetates, in which the double bond is not located in the COO plane, are collected. There, we observed a barrier height around 135 cm-1. This observation will be discussed in details. B. Velino, A. Maris, S. Melandri, W. Caminati, J. Mol. Spectrosc. 2009, 256, 228 H. V. L. Nguyen, A. Jabri, V. Van, and W. Stahl, J. Phys. Chem. A, 2014, 118, 12130.

  12. Inhibition of Ice Growth and Recrystallization by Zirconium Acetate and Zirconium Acetate Hydroxide

    PubMed Central

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications. PMID:23555701

  13. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    NASA Astrophysics Data System (ADS)

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  14. Prostate-Specific Antigen and Prostate-Specific Antigen Velocity as Threshold Indicators in 11C-Acetate PET/CTAC Scanning for Prostate Cancer Recurrence

    PubMed Central

    Dusing, Reginald W.; Peng, Warner; Lai, Sue-Min; Grado, Gordon L.; Holzbeierlein, Jeffrey M.; Thrasher, J. Brantley; Hill, Jacqueline; Van Veldhuizen, Peter J.

    2014-01-01

    Purpose The aim of this study was to identify which patient characteristics are associated with the highest likelihood of positive findings on 11C-acetate PET/computed tomography attenuation correction (CTAC) (PET/CTAC) scan when imaging for recurrent prostate cancer. Methods From 2007 to 2011, 250 11C-acetate PET/CTAC scans were performed at a single institution on patients with prostate cancer recurrence after surgery, brachytherapy, or external beam radiation. Of these patients, 120 met our inclusion criteria. Logistic regression analysis was used to examine the relationship between predictability of positive findings and patients’ characteristics, such as prostate-specific antigen (PSA) level at the time of scan, PSA kinetics, Gleason score, staging, and type of treatment before scan. Results In total, 68.3% of the 120 11C-acetate PET/CTAC scans were positive. The percentage of positive scans and PSA at the time of scanning and PSA velocity (PSAV) had positive correlations. The putative sensitivity and specificity were 86.6% and 65.8%, respectively, when a PSA level greater than 1.24 ng/mL was used as the threshold for scanning. The putative sensitivity and specificity were 74% and 75%, respectively, when a PSAV level greater than 1.32 ng/mL/y was used as the threshold. No significant associations were found between scan positivity and age, PSA doubling time, Gleason score, staging, or type of treatment before scanning. Conclusions This retrospective study suggests that threshold models of PSA greater than 1.24 ng/mL or PSAV greater than 1.32 ng/mL per year are independent predictors of positive findings in 11C-acetate PET/CTAC imaging of recurrent prostate cancer. PMID:25036021

  15. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.

    1992-01-01

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H.sub.2 O and/or CO.sub.2 and H.sub.2 in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate.

  16. Stress degradation studies and development of stability-indicating TLC-densitometry method for determination of prednisolone acetate and chloramphenicol in their individual and combined pharmaceutical formulations

    PubMed Central

    2012-01-01

    A rapid and reproducible stability indicating TLC method was developed for the determination of prednisolone acetate and chloramphenicol in presence of their degraded products. Uniform degradation conditions were maintained by refluxing sixteen reaction mixtures for two hours at 80°C using parallel synthesizer including acidic, alkaline and neutral hydrolysis, oxidation and wet heating degradation. Oxidation at room temperature, photochemical and dry heating degradation studies were also carried out. Separation was done on TLC glass plates, pre-coated with silica gel 60F-254 using chloroform: methanol (14:1 v/v). Spots at Rf 0.21 ± 0.02 and Rf 0.41 ± 0.03 were recognized as chloramphenicol and prednisolone acetate, respectively. Quantitative analysis was done through densitometric measurements at multiwavelength (243 nm, λmax of prednisolone acetate and 278 nm, λmax of chloramphenicol), simultaneously. The developed method was optimized and validated as per ICH guidelines. Method was found linear over the concentration range of 200-6000 ng/spot with the correlation coefficient (r2 ± S.D.) of 0.9976 ± 3.5 and 0.9920 ± 2.5 for prednisolone acetate and chloramphenicol, respectively. The developed TLC method can be applied for routine analysis of prednisolone acetate and chloramphenicol in presence of their degraded products in their individual and combined pharmaceutical formulations. PMID:22264235

  17. Inhibition of benzo(a)pyrene-induced mammary carcinogenesis by retinyl acetate. [Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, D.L.; Burns, F.J.; Albert, R.E.

    1981-03-01

    The administration of a 250-ppM retinyl acetate dietary supplement for various periods relative to intragastric administration of 50 mg benzo(a)pyrene (BP) significantly inhibited the induction of mammary cancers in virgin female inbred LEW/Mai rats. With day of BP administration taken as time 0, groups receiving the retinoid from weeks -2 to +1, +1 to +90, +20 to +90, and -2 to +90 showed a significant reduction in tumor response as compared to controls. The inhibition of carcinogenesis achieved by a +1 to +20 administration schedule was temporary. A 2-week exposure to supplemental retinyl acetate significantly reduced the mammary gland parenchymalmore » cell labeling index in ductal, alveolar, and terminal end bud structures. Beginning the retinyl acetate supplement 1 week after the administration of BP significantly reduced the number of terminal ductal hyperplasias. The inhibition of carcinogenesis achieved by a short period of retinyl acetate administration before and during the period of carcinogen availability as well as the inhibition achieved by long-term postcarcinogen retinoid exposure may involve an antiproliferative effect on the rat mammary gland.« less

  18. Anti-inflammatory and chemopreventive effects of triterpene cinnamates and acetates from shea fat.

    PubMed

    Akihisa, Toshihiro; Kojima, Nobuo; Kikuchi, Takashi; Yasukawa, Ken; Tokuda, Harukuni; T Masters, Eliot; Manosroi, Aranya; Manosroi, Jiradej

    2010-01-01

    Four triterpene acetates, alpha-amyrin acetate (1a), beta-amyrin acetate (2a), lupeol acetate (3a), and butyrospermol acetate (4a), and four triterpene cinnamates, alpha-amyrin cinnamate (1c), beta-amyrin cinnamate (2c), lupeol cinnamate (3c), and butyrospermol cinnamate (4c), were isolated from the kernel fat (n-hexane extract) of the shea tree (Vitellaria paradoxa; Sapotaceae). Upon evaluation of these eight triterpene esters for inhibitory activity against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation (1 microg/ear) in mice, all of the compounds tested exhibited marked anti-inflammatory activity, with ID50 values in the range of 0.15-0.75 micromol/ear, and among which compound 3c showed the highest activity with ID(50) of 0.15 micromol/ear. Compound 3c (10 mg/kg) further exhibited anti-inflammatory activity on rat hind paw edema induced by carrageenan, with the percentage of inflammation at 1, 3, and 5 h of 35.4, 41.5, and 45.5%, respectively. The eight triterpene esters were then evaluated for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) in Raji cells as a primary screening test for inhibitors of tumor promoters. All the compounds showed moderate inhibitory effects. Furthermore, compound 3c exhibited inhibitory effect on skin tumor promotion in an in vivo two-stage carcinogenesis test using 7,12-dimethylbenz [a] anthracene (DMBA) as an initiator and TPA as a promoter. The biological activities of triterpene acetate and cinnamate esters, together with the exceptionally high levels of these triterpenes in shea fat, indicate that shea nuts and shea fat (shea butter) constitute a significant source of anti-inflammatory and anti-tumor promoting compounds.

  19. Bacteria contributing to behaviour of radiocarbon in sodium acetate.

    PubMed

    Ishii, Nobuyoshi; Uchida, Shigeo

    2011-07-01

    An acetate-utilising bacterium was isolated and identified from deionised water that was used for flooding of paddy soils in this study's batch culture experiments. Bacteria in the deionised water samples formed colonies on agar plates containing [1,2-(14)C] sodium acetate, and the autoradiograms showed that all the colonies were positive for (14)C utilisation. Then one of the acetate-utilising bacteria was isolated. The isolate was characterised by phylogenetic analysis, cell morphology, Gram staining and growth at 30 °C. Phylogenetic analysis based on 16S rRNA sequencing showed that the isolate belonged to the genus Burkholderia. The bacterium was gram-negative rods and grew at 30 °C under aerobic conditions. Based on these characteristics, the isolate was identified as Burkholderia gladioli. Because B. gladioli is often found in soil, water and the rhizosphere, attention must be paid to the relationships between bacteria and the behaviour of (14)C to for the safety assessment of geological disposal of transuranic waste.

  20. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae.

    PubMed

    Pan, Shuo; Jia, Bin; Liu, Hong; Wang, Zhen; Chai, Meng-Zhe; Ding, Ming-Zhu; Zhou, Xiao; Li, Xia; Li, Chun; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae . Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae . We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively   puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.

  1. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae

    PubMed Central

    Kawazoe, Nozomi; Kimata, Yukio; Izawa, Shingo

    2017-01-01

    Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER) and unfolded protein response (UPR) has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v). Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid) and mild ethanol stress (5% ethanol) induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH. PMID:28702017

  2. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production with high butyrate/acetate ratio.

    PubMed

    Suo, Yukai; Ren, Mengmeng; Yang, Xitong; Liao, Zhengping; Fu, Hongxin; Wang, Jufang

    2018-05-01

    Butyric acid fermentation by Clostridium couples with the synthesis of acetic acid. But the presence of acetic acid reduces butyric acid yield and increases separation and purification costs of butyric acid. Hence, enhancing the butyrate/acetate ratio is important for economical butyric acid production. This study indicated that enhancing the acetyl-CoA to butyrate flux by overexpression of both the butyryl-CoA/acetate CoA transferase (cat1) and crotonase (crt) genes in C. tyrobutyricum could significantly reduce acetic acid concentration. Fed-batch fermentation of ATCC 25755/cat1 + crt resulted in increased butyrate/acetate ratio of 15.76 g/g, which was 2.24-fold higher than that of the wild-type strain. Furthermore, in order to simultaneously increase the butyrate/acetate ratio, butyric acid concentration and productivity, the recombinant strain ATCC 25755/ppcc (co-expression of 6-phosphofructokinase (pfkA) gene, pyruvate kinase (pykA) gene, cat1, and crt) was constructed. Consequently, ATCC 25755/ppcc produced more butyric acid (46.8 vs. 35.0 g/L) with a higher productivity (0.83 vs. 0.49 g/L·h) and butyrate/acetate ratio (13.22 vs. 7.22 g/g) as compared with the wild-type strain in batch fermentation using high glucose concentration (120 g/L). This study demonstrates that enhancing the acetyl-CoA to butyrate flux is an effective way to reduce acetic acid production and increase butyrate/acetate ratio.

  3. Room temperature ionic liquid-based dispersive liquid phase microextraction for the separation/preconcentration of trace Cd(2+) as 1-(2-pyridylazo)-2-naphthol (PAN) complex from environmental and biological samples and determined by FAAS.

    PubMed

    Khan, Sumaira; Soylak, Mustafa; Kazi, Tasneem Gul

    2013-12-01

    The current work develops a new green methodology for the separation/preconcentration of cadmium ions (Cd(2+)) using room temperature ionic liquid-dispersive liquid phase microextraction (RTIL-DLME) prior to analysis by flame atomic absorption spectrometry with microsample introduction system. Room temperature ionic liquids (RTIL) are considered "Green Solvents" for their thermally stable and non-volatile properties, here 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] was used as an extractant. The preconcentration of Cd(2+) in different waters and acid digested scalp hair samples were complexed with 1-(2-pyridylazo)-2-naphthol and extracted into the fine drops of RTILs. Some significant factors influencing the extraction efficiency of Cd(2+) and its subsequent determination, including pH, amount of ligand, volume of RTIL, dispersant solvent, sample volume, temperature, and incubation time were investigated in detail. The limit of detection and the enhancement factor under the optimal conditions were 0.05 μg/L and 50, respectively. The relative standard deviation of 100 μg/L Cd(2+) was 4.3 %. The validity of the proposed method was checked by determining Cd(2+) in certified reference material (TM-25.3 fortified water). The sufficient recovery (>98 %) of Cd(2+) with the certified value. The mean concentrations of Cd in lake water 13.2, waste water 15.7 and hair sample 16.8 μg/L, respectively and the developed method was applied satisfactorily to the preconcentration and determination of Cd(2+) in real samples.

  4. Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches.

    PubMed

    Ni, Bing-Jie; Liu, He; Nie, Yan-Qiu; Zeng, Raymond J; Du, Guo-Cheng; Chen, Jian; Yu, Han-Qing

    2011-02-01

    Homoacetogenesis is an important potential hydrogen sink in acetogenesis, in which hydrogen is used to reduce carbon dioxide to acetate. So far the acetate production from homoacetogenesis, especially its kinetics, has not been given sufficient attention. In this work, enhanced production of acetate from anaerobic conversion of glucose through coupling glucose fermentation and homoacetogenesis is investigated with both experimental and mathematical approaches. Experiments are conducted to explore elevated acetate production in a coupled anaerobic system. Acetate production could be achieved by homoacetogenesis with a relative high acetate yield under mixed fermentation conditions. With the experimental observations, a kinetic model is formulated to describe such a homoacetogenic process. The maximum homoacetogenic rate (k(m,homo)) is estimated to be 28.5 ± 1.7 kg COD kg⁻¹ COD day⁻¹ with an uptake affinity constant of 3.7 × 10⁻⁵± 3.1 × 10⁻⁶kg COD m⁻³. The improved calculation of homoacetogenic kinetics by our approach could correct the underestimation of homoacetogenesis in anaerobic fermentation processes, as it often occurs in these systems supported by literature analysis. The model predictions match the experimental results in different cases well and provide insights into the dynamics of anaerobic glucose conversion and acetate production. Furthermore, acetate production via homoacetogenesis increases by about 40% through utilizing the fed-batch coupling system, attributed to a balance between the hydrogen production in the acetogenesis phase and the hydrogen consumption in the homoacetogenesis phase. This work provides an effective way for increased anaerobic acetate production, and gives us a better understanding about the homoacetogenic kinetics in the anaerobic fermentation process. © 2010 Wiley Periodicals, Inc.

  5. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOEpatents

    Gaddy, J.L.; Clausen, E.C.

    1992-12-22

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H[sub 2]O and/or CO[sub 2] and H[sub 2] in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate. 3 figs.

  6. Development of Acetic Acid Removal Technology for the UREX+Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for themore » removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.« less

  7. Diagnosis of Exclusion: A Case Report of Probable Glatiramer Acetate-Induced Eosinophilic Myocarditis

    PubMed Central

    Michaud, Christopher J.; Bockheim, Heather M.; Daum, Timothy E.

    2014-01-01

    Importance. Medication-induced eosinophilia is an acknowledged, often self-limiting occurrence. Glatiramer acetate, a biologic injection used in the management of relapsing-remitting multiple sclerosis, is widely regarded as a safe and effective medication and lists eosinophilia as an infrequent side effect in its package insert. Contrary to reports of transient, benign drug-induced eosinophilia, we describe a case of probable glatiramer acetate-induced eosinophilia that ultimately culminated in respiratory distress, shock, and eosinophilic myocarditis. Observations. A 59-year-old female was admitted to the hospital after routine outpatient labs revealed leukocytosis (43,000 cells/mm3) with pronounced hypereosinophilia (63%). This patient had been using glatiramer acetate without complication for over 10 years prior to admission. Leukocytosis and hypereosinophilia persisted as a myriad of diagnostic evaluations returned negative, ultimately leading to respiratory depression, shock, and myocarditis. Glatiramer acetate was held for the first time on day 6 of the hospital stay with subsequent resolution of leukocytosis, hypereosinophilia, respiratory distress, and shock. Conclusions and Relevance. Glatiramer acetate was probably the cause of this observed hypereosinophilia and the resulting complications. Reports of glatiramer-induced eosinophilia are rare, and few case reports regarding medication-induced hypereosinophilia describe the severe systemic manifestations seen in this patient. PMID:25105037

  8. Diagnosis of exclusion: a case report of probable glatiramer acetate-induced eosinophilic myocarditis.

    PubMed

    Michaud, Christopher J; Bockheim, Heather M; Nabeel, Muhammad; Daum, Timothy E

    2014-01-01

    Importance. Medication-induced eosinophilia is an acknowledged, often self-limiting occurrence. Glatiramer acetate, a biologic injection used in the management of relapsing-remitting multiple sclerosis, is widely regarded as a safe and effective medication and lists eosinophilia as an infrequent side effect in its package insert. Contrary to reports of transient, benign drug-induced eosinophilia, we describe a case of probable glatiramer acetate-induced eosinophilia that ultimately culminated in respiratory distress, shock, and eosinophilic myocarditis. Observations. A 59-year-old female was admitted to the hospital after routine outpatient labs revealed leukocytosis (43,000 cells/mm(3)) with pronounced hypereosinophilia (63%). This patient had been using glatiramer acetate without complication for over 10 years prior to admission. Leukocytosis and hypereosinophilia persisted as a myriad of diagnostic evaluations returned negative, ultimately leading to respiratory depression, shock, and myocarditis. Glatiramer acetate was held for the first time on day 6 of the hospital stay with subsequent resolution of leukocytosis, hypereosinophilia, respiratory distress, and shock. Conclusions and Relevance. Glatiramer acetate was probably the cause of this observed hypereosinophilia and the resulting complications. Reports of glatiramer-induced eosinophilia are rare, and few case reports regarding medication-induced hypereosinophilia describe the severe systemic manifestations seen in this patient.

  9. Samarium electrodeposited acetate and oxide thin films on stainless steel substrate characterized by XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myhre, Kristian; Burns, Jonathan; Meyer, Harry

    Characterization of a samarium thin film deposited on a stainless steel substrate using molecular electrodeposition was carried out using a Thermo Scientific K-Alpha X-ray photoelectron spectrometer. We studied two types of samarium electrodeposition samples, one as-deposited and one heated to 700 °C in an air flow. Survey scans include peaks coming from the stainless steel substrate, such as Fe and Cr. An X-ray photoelectron spectroscopy (XPS) survey spectrum, Sm 3d, C 1s, and O 1s narrow scans are shown. It was determined that the heating process decomposed the deposited Sm acetate to Sm 2O 3 using XPS.

  10. Samarium electrodeposited acetate and oxide thin films on stainless steel substrate characterized by XPS

    DOE PAGES

    Myhre, Kristian; Burns, Jonathan; Meyer, Harry; ...

    2016-06-01

    Characterization of a samarium thin film deposited on a stainless steel substrate using molecular electrodeposition was carried out using a Thermo Scientific K-Alpha X-ray photoelectron spectrometer. We studied two types of samarium electrodeposition samples, one as-deposited and one heated to 700 °C in an air flow. Survey scans include peaks coming from the stainless steel substrate, such as Fe and Cr. An X-ray photoelectron spectroscopy (XPS) survey spectrum, Sm 3d, C 1s, and O 1s narrow scans are shown. It was determined that the heating process decomposed the deposited Sm acetate to Sm 2O 3 using XPS.

  11. Biosynthesis of the Halogenated Auxin, 4-Chloroindole-3-Acetic Acid1[W][OA

    PubMed Central

    Tivendale, Nathan D.; Davidson, Sandra E.; Davies, Noel W.; Smith, Jason A.; Dalmais, Marion; Bendahmane, Abdelhafid I.; Quittenden, Laura J.; Sutton, Lily; Bala, Raj K.; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B.; Ross, John J.

    2012-01-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  12. Simple, rapid and, cost-effective fabrication of PDMS electrophoresis microchips using poly(vinyl acetate) as photoresist master.

    PubMed

    Lobo-Júnior, Eulício O; Gabriel, Ellen F M; Dos Santos, Rodrigo A; de Souza, Fabrício R; Lopes, Wanderson D; Lima, Renato S; Gobbi, Angelo L; Coltro, Wendell K T

    2017-01-01

    This study describes a simple, rapid, and cost-effective fabrication of PDMS electrophoresis microchips using poly(vinyl acetate) (PVAc) emulsion as photoresist master. High-relief microfluidic structures were defined on poly(vinyl acetate) previously deposited on printed circuit boards surfaces without cleanroom facilities and sophisticated instrumentation. After a UV exposure, channels with heights ranging from 30 to 140 μm were obtained by controlling the emulsion mass deposited on the master surface. The developing stage was performed using water rather than the organic solvents that are applied for conventional masks. The surface morphology was characterized by optical imaging, profilometry, and SEM. Based on the achieved results, the proposed method offers suitable reproducibility for the prototyping of electrophoresis microchips in PDMS. The feasibility of the resulting PDMS electrophoresis chips was successfully demonstrated with the separation of major inorganic cations within 100 s using a contactless conductivity detection system. The separation efficiencies ranged from ca. 67 900 to 125 600 plates/m. Due to the satisfactory performance and simplified instrumentation, we believe this fabrication protocol presents potential to be implemented in any chemical, biochemical, or biological laboratory. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    PubMed Central

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-01-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089

  15. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge.

    PubMed

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-12-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with (14)C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with (13)C(6)-glucose and (13)C(3)-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with (13)C-glucose and (13)C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with (14)C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high K(m) for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5-10  mM). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta.

  16. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge

    PubMed Central

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-01-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with 14C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with 13C6-glucose and 13C3-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with 13C-glucose and 13C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with 14C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high Km for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5–10 m). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta. PMID:21562600

  17. Impact of acetic acid concentration, application volume, and adjuvants on weed control efficacy

    USDA-ARS?s Scientific Manuscript database

    Vinegar has been identified as a potential organic herbicide, yet additional information is needed to determine the influence of acetic acid concentration, application volume, and adjuvants on weed control. Acetic acid is a contact herbicide, injuring and killing plants by first destroying the cell ...

  18. Structure-odor relationships of linalool, linalyl acetate and their corresponding oxygenated derivatives

    NASA Astrophysics Data System (ADS)

    Elsharif, Shaimaa; Banerjee, Ashutosh; Buettner, Andrea

    2015-10-01

    Linalool 1 is an odorant that is commonly perceived as having a pleasant odor, but is also known to elicit physiological effects such as inducing calmness and enhancing sleep. However, no comprehensive studies are at hand to show which structural features are responsible for these prominent effects. Therefore, a total of six oxygenated derivatives were synthesized from both 1 and linalyl acetate 2, and were tested for their odor qualities and relative odor thresholds (OTs) in air. Linalool was found to be the most potent odorant among the investigated compounds, with an average OT of 3.2 ng/L, while the 8-hydroxylinalool derivative was the least odorous compound with an OT of 160 ng/L; 8-carboxylinalool was found to be odorless. The odorant 8-oxolinalyl acetate, which has very similar odor properties to linalool, was the most potent odorant besides linalool, exhibiting an OT of 5.9 ng/L. By comparison, 8-carboxylinalyl acetate had a similar OT (6.1 ng/L) as its corresponding 8-oxo derivative but exhibited divergent odor properties (fatty, greasy, musty). Overall, oxygenation on carbon 8 had a substantial effect on the aroma profiles of structural derivatives of linalool and linalyl acetate.

  19. Acetate ester production by Chinese yellow rice wine yeast overexpressing the alcohol acetyltransferase-encoding gene ATF2.

    PubMed

    Zhang, J; Zhang, C; Qi, Y; Dai, L; Ma, H; Guo, X; Xiao, D

    2014-11-27

    Acetate ester, which are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction, are responsible for the fruity character of fermented alcoholic beverages such as Chinese yellow rice wine. Alcohol acetyltransferase (AATase) is currently believed to be the key enzyme responsible for the production of acetate ester. In order to determine the precise role of the ATF2 gene in acetate ester production, an ATF2 gene encoding a type of AATase was overexpressed and the ability of the mutant to form acetate esters (including ethyl acetate, isoamyl acetate, and isobutyl acetate) was investigated. The results showed that after 5 days of fermentation, the concentrations of ethyl acetate, isoamyl acetate, and isobutyl acetate in yellow rice wines fermented with EY2 (pUC-PIA2K) increased to 137.79 mg/L (an approximate 4.9-fold increase relative to the parent cell RY1), 26.68 mg/L, and 7.60 mg/L, respectively. This study confirms that the ATF2 gene plays an important role in the production of acetate ester production during Chinese yellow rice wine fermentation, thereby offering prospects for the development of yellow rice wine yeast starter strains with optimized ester-producing capabilities.

  20. Cyproterone acetate in treatment of precocious puberty.

    PubMed Central

    Kauli, R; Pertzelan, A; Prager-Lewin, R; Grünebaum, M; Laron, Z

    1976-01-01

    Twenty-nine children (23 girls, 6 boys) with precocious puberty were treated with cyproterone acetate for various periods of time ranging from 6 months to 3 years 4 months. They received an oral dose ranging from 70-150 mg/m2 per day, or an intramuscular depot injection once a fortnight or once a month at a dose ranging from 107-230 mg/m2. Both forms of therapy were found to suppress the signs of sexual maturation, but the oral form proved to be superior. Only the younger patients with a bone age under 11 years showed a beneficial effect upon linear growth and bone maturation. No side effects were noted, but additional advantageous effects upon behaviour and sociability were. It is concluded that at present cyproterone acetate by mouth is the drug of choice in the treatment of precocious puberty. The treatment should be initiated as early as possible to attain maximum benefit. PMID:952553

  1. A double-blind placebo controlled trial of medroxyprogesterone acetate and cyproterone acetate with seven pedophiles.

    PubMed

    Cooper, A J; Sandhu, S; Losztyn, S; Cernovsky, Z

    1992-12-01

    Seven of ten pedophiles in hospital completed a double-blind, placebo-controlled two-dose comparison of medroxyprogesterone acetate and cyproterone acetate. Sequential measures during the 28 week study were: patient self-reports, nurses' observations, phallometry, hormone levels and side-effects. The drugs, which performed equivalently, reduced sexual thoughts and fantasies, the frequency of early morning erections on awakening, the frequency and pleasure of masturbation, and level of sexual frustration. Penile responses were also reduced but to a lesser degree and were more variable. Serum testosterone FSH and LH all declined during drug administration, but by the end of the final placebo phase had essentially returned to (or exceeded) pre-drug values. Our experience suggests that only a minority of pedophiles are likely to accept libido-reducing drugs.

  2. Physiological responses of insects to microbial fermentation products: Insights from the interactions between Drosophila and acetic acid.

    PubMed

    Kim, Geonho; Huang, Jia Hsin; McMullen, John G; Newell, Peter D; Douglas, Angela E

    2018-04-01

    Acetic acid is a fermentation product of many microorganisms, including some that inhabit the food and guts of Drosophila. Here, we investigated the effect of dietary acetic acid on oviposition and larval performance of Drosophila. At all concentrations tested (0.34-3.4%), acetic acid promoted egg deposition by mated females in no-choice assays; and females preferred to oviposit on diet with acetic acid relative to acetic acid-free diet. However, acetic acid depressed larval performance, particularly extending the development time of both larvae colonized with the bacterium Acetobacter pomorum and axenic (microbe-free) larvae. The larvae may incur an energetic cost associated with dissipating the high acid load on acetic acid-supplemented diets. This effect was compounded by suppressed population growth of A. pomorum on the 3.4% acetic acid diet, such that the gnotobiotic Drosophila on this diet displayed traits characteristic of axenic Drosophila, specifically reduced developmental rate and elevated lipid content. It is concluded that acetic acid is deleterious to larval Drosophila, and hypothesized that acetic acid may function as a reliable cue for females to oviposit in substrates bearing microbial communities that promote larval nutrition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 21 CFR 524.1484i - Neomycin sulfate, hydrocortisone acetate, sterile ointment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Neomycin sulfate, hydrocortisone acetate, sterile... NEW ANIMAL DRUGS § 524.1484i Neomycin sulfate, hydrocortisone acetate, sterile ointment. (a..., and 5 milligrams of hydrocortisone acetate in each gram of ointment.1 (b) Sponsor. No. 000009 in § 510...

  4. 21 CFR 524.1484i - Neomycin sulfate, hydrocortisone acetate, sterile ointment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Neomycin sulfate, hydrocortisone acetate, sterile... NEW ANIMAL DRUGS § 524.1484i Neomycin sulfate, hydrocortisone acetate, sterile ointment. (a..., and 5 milligrams of hydrocortisone acetate in each gram of ointment.1 (b) Sponsor. No. 000009 in § 510...

  5. 21 CFR 524.1484i - Neomycin sulfate, hydrocortisone acetate, sterile ointment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate, hydrocortisone acetate, sterile... NEW ANIMAL DRUGS § 524.1484i Neomycin sulfate, hydrocortisone acetate, sterile ointment. (a..., and 5 milligrams of hydrocortisone acetate in each gram of ointment.1 (b) Sponsor. No. 000009 in § 510...

  6. 21 CFR 524.1484i - Neomycin sulfate, hydrocortisone acetate, sterile ointment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Neomycin sulfate, hydrocortisone acetate, sterile... NEW ANIMAL DRUGS § 524.1484i Neomycin sulfate, hydrocortisone acetate, sterile ointment. (a..., and 5 milligrams of hydrocortisone acetate in each gram of ointment.1 (b) Sponsor. No. 000009 in § 510...

  7. Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid.

    PubMed

    Zhang, Mingming; Zhang, Keyu; Mehmood, Muhammad Aamer; Zhao, Zongbao Kent; Bai, Fengwu; Zhao, Xinqing

    2017-12-01

    The aim of this work was to study the effects of deleting acetate transporter gene ADY2 on growth and fermentation of Saccharomyces cerevisiae in the presence of inhibitors. Comparative transcriptome analysis revealed that three genes encoding plasma membrane carboxylic acid transporters, especially ADY2, were significantly downregulated under the zinc sulfate addition condition in the presence of acetic acid stress, and the deletion of ADY2 improved growth of S. cerevisiae under acetic acid, ethanol and hydrogen peroxide stresses. Consistently, a concomitant increase in ethanol production by 14.7% in the presence of 3.6g/L acetic acid was observed in the ADY2 deletion mutant of S. cerevisiae BY4741. Decreased intracellular acetic acid, ROS accumulation, and plasma membrane permeability were observed in the ADY2 deletion mutant. These findings would be useful for developing robust yeast strains for efficient ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Stable Isotope Labeling, in Vivo, of d- and l-Tryptophan Pools in Lemna gibba and the Low Incorporation of Label into Indole-3-Acetic Acid 1

    PubMed Central

    Baldi, Bruce G.; Maher, Barbara R.; Slovin, Janet Pernise; Cohen, Jerry D.

    1991-01-01

    We present evidence that the role of tryptophan and other potential intermediates in the pathways that could lead to indole derivatives needs to be reexamined. Two lines of Lemna gibba were tested for uptake of [15N-indole]-labeled tryptophan isomers and incorporation of that label into free indole-3-acetic acid (IAA). Both lines required levels of l-[15N]tryptophan 2 to 3 orders of magnitude over endogenous levels in order to obtain measurable incorporation of label into IAA. Labeled l-tryptophan was extractable from plant tissue after feeding and showed no measurable isomerization into d-tryptophan. d-[15N]tryptophan supplied to Lemna at rates of approximately 400 times excess of endogenous d-tryptophan levels (to yield an isotopic enrichment equal to that which allowed detection of the incorporation of l-tryptophan into IAA), did not result in measurable incorporation of label into free IAA. These results demonstrate that l-tryptophan is a more direct precursor to IAA than the d isomer and suggest (a) that the availability of tryptophan in vivo is not a limiting factor in the biosynthesis of IAA, thus implying that other regulatory mechanisms are in operation and (b) that l-tryptophan also may not be a primary precursor to IAA in plants. PMID:16668112

  9. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert sponge...

  10. An acetate prodrug of a pyridinol-based vitamin E analogue.

    PubMed

    Khdour, Omar M; Lu, Jun; Hecht, Sidney M

    2011-11-01

    To investigate of an approach to stabilize a novel pyridinol based α-tocopherol analogue (1) as a prodrug by acetylation of its phenol moiety. Biochemical indicators of oxidative stress in mitochondria were utilized to gain insight into the cytoprotective mechanism(s) of compound 1 acetate. Oxygen free radical scavenging activity was measured using DCF probe in a cultured cell model system that had been placed under oxidative stress. Lipid peroxidation was examined both in a cell-free system and in oxidatively stressed cultured cells. The bioenergetic parameters of mitochondria were evaluated by measuring mitochondrial membrane potential (Δψ(m)) and the MPT. The present results suggest strongly that the antioxidant efficacy of compound 1 can be improved by using it as a prodrug. The tested prodrug has shown to be activated as a function of time, presumably due to susceptibility to enzymatic hydrolysis, and exhibits an antioxidant effect in time-dependent manner, providing a compound that is more effective than α-tocopherol acetate with regard to all protective properties studied. An effective approach to stabilize compound 1 was realized by using its acetate as a prodrug.

  11. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell.

    PubMed

    Liu, Hong; Cheng, Shaoan; Logan, Bruce E

    2005-01-15

    Hydrogen can be recovered by fermentation of organic material rich in carbohydrates, but much of the organic matter remains in the form of acetate and butyrate. An alternative to methane production from this organic matter is the direct generation of electricity in a microbial fuel cell (MFC). Electricity generation using a single-chambered MFC was examined using acetate or butyrate. Power generated with acetate (800 mg/L) (506 mW/m2 or 12.7 mW/ L) was up to 66% higher than that fed with butyrate (1000 mg/L) (305 mW/m2 or 7.6 mW/L), demonstrating that acetate is a preferred aqueous substrate for electricity generation in MFCs. Power output as a function of substrate concentration was well described by saturation kinetics, although maximum power densities varied with the circuit load. Maximum power densities and half-saturation constants were Pmax = 661 mW/m2 and Ks = 141 mg/L for acetate (218 ohms) and Pmax = 349 mW/m2 and Ks = 93 mg/L for butyrate (1000 ohms). Similar open circuit potentials were obtained in using acetate (798 mV) or butyrate (795 mV). Current densities measured for stable power outputwere higher for acetate (2.2 A/m2) than those measured in MFCs using butyrate (0.77 A/m2). Cyclic voltammograms suggested that the main mechanism of power production in these batch tests was by direct transfer of electrons to the electrode by bacteria growing on the electrode and not by bacteria-produced mediators. Coulombic efficiencies and overall energy recovery were 10-31 and 3-7% for acetate and 8-15 and 2-5% for butyrate, indicating substantial electron and energy losses to processes other than electricity generation. These results demonstrate that electricity generation is possible from soluble fermentation end products such as acetate and butyrate, but energy recoveries should be increased to improve the overall process performance.

  12. 21 CFR 582.5892 - a-Tocopherol acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false a-Tocopherol acetate. 582.5892 Section 582.5892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  13. 21 CFR 582.5933 - Vitamin A acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Vitamin A acetate. 582.5933 Section 582.5933 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  14. 21 CFR 582.5933 - Vitamin A acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Vitamin A acetate. 582.5933 Section 582.5933 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  15. 21 CFR 582.5892 - a-Tocopherol acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false a-Tocopherol acetate. 582.5892 Section 582.5892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  16. Synthesis of 4-substituted pyrido[2,3-d]pyrimidin-4(1H)-one as analgesic and anti-inflammatory agents.

    PubMed

    El-Gazzar, Abdel-Rahman B A; Hafez, Hend N

    2009-07-01

    4-Substituted-pyrido[2,3-d]pyrimidin-4(1H)-ones 4a-c were synthesized by oxidation of 4-substituted-dihydropyrido[2,3-d]pyrimidin-4(1H)-ones 3a-c which were in turn prepared from arylidenemalononitriles 1a-c and 6-aminothiouracil 2. The reactivity of compounds 4a-c towards some reagents such as formamide, carbon disulfide, urea, thiourea, formic and acetic acids were studied. All the synthesized compounds were characterized by spectroscopic means and elemental analysis. Compound 4c exhibited 64% and 72% analgesic activity. Also, compound 4b showed 50% and 65% anti-inflammatory activity. Interestingly these compounds showed one-third of ulcer index of the reference aspirin and diclofenac.

  17. The Japan Flavour and Fragrance Materials Association's (JFFMA) safety assessment of acetal food flavouring substances uniquely used in Japan.

    PubMed

    Okamura, Hiroyuki; Abe, Hajime; Hasegawa-Baba, Yasuko; Saito, Kenji; Sekiya, Fumiko; Hayashi, Shim-Mo; Mirokuji, Yoshiharu; Maruyama, Shinpei; Ono, Atsushi; Nakajima, Madoka; Degawa, Masakuni; Ozawa, Shogo; Shibutani, Makoto; Maitani, Tamio

    2015-01-01

    Using the procedure devised by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), we performed safety evaluations on five acetal flavouring substances uniquely used in Japan: acetaldehyde 2,3-butanediol acetal, acetoin dimethyl acetal, hexanal dibutyl acetal, hexanal glyceryl acetal and 4-methyl-2-pentanone propyleneglycol acetal. As no genotoxicity study data were available in the literature, all five substances had no chemical structural alerts predicting genotoxicity. Using Cramer's classification, acetoin dimethyl acetal and hexanal dibutyl acetal were categorised as class I, and acetaldehyde 2,3-butanediol acetal, hexanal glyceryl acetal and 4-methyl-2-pentanone propyleneglycol acetal as class III. The estimated daily intakes for all five substances were within the range of 1.45-6.53 µg/person/day using the method of maximised survey-derived intake based on the annual production data in Japan from 2001, 2005, 2008 and 2010, and 156-720 µg/person/day using the single-portion exposure technique (SPET), based on the average use levels in standard portion sizes of flavoured foods. The daily intakes of the two class I substances were below the threshold of toxicological concern (TTC) - 1800 μg/person/day. The daily intakes of the three class III substances exceeded the TTC (90 μg/person/day). Two of these, acetaldehyde 2,3-butanediol acetal and hexanal glyceryl acetal, were expected to be metabolised into endogenous products after ingestion. For 4-methyl-2-pentanone propyleneglycol acetal, one of its metabolites was not expected to be metabolised into endogenous products. However, its daily intake level, based on the estimated intake calculated by the SPET method, was about 1/15 000th of the no observed effect level. It was thus concluded that all five substances raised no safety concerns when used for flavouring foods at the currently estimated intake levels. While no information on in vitro and in vivo toxicity for all five substances was available

  18. Effect of oral contraceptives containing estradiol and nomegestrol acetate or ethinyl-estradiol and chlormadinone acetate on primary dysmenorrhea.

    PubMed

    Grandi, Giovanni; Napolitano, Antonella; Xholli, Anjeza; Tirelli, Alessandra; Di Carlo, Costantino; Cagnacci, Angelo

    2015-10-01

    To study the three cycles effect on primary dysmenorrhea of the monophasic 24/4 estradiol/nomegestrol acetate (E2/NOMAC) and of the 21/7 ethinyl-estradiol/chlormadinone acetate (EE/CMA) oral contraceptive. The tolerability and the effect of both preparations on metabolism and health-related quality of life were also evaluated. Prospective observational cohort study. Tertiary gynecologic center for pelvic pain. Subjects with primary dysmenorrhea requiring an oral contraceptive, who spontaneously selected either E2/NOMAC (n = 20) or EE/CMA (n = 20). Visual Analogue Scale (VAS) score for dysmenorrhea, Short Form-36 questionnaire for health-related quality of life, lipoproteins and days of menstrual bleeding (withdrawal bleeding during oral contraceptive). Mean age and body mass index (BMI) were similar between the two groups. The final analysis was performed on 34 women, 15 in E2/NOMAC and 19 in EE/CMA group. Compliance with treatment was significantly higher with EE/CMA (100%) than E2/NOMAC (75%) (p = 0.02). Both treatments significantly (p < 0.0001) reduced VAS of primary dysmenorrhea, similarly (E2/NOMAC by a mean of 74.7%, EE/CMA by a mean of 78.4%; p = 0.973). Only E2/NOMAC significantly increased SF-36 score (p = 0.001), both in physical (p = 0.001) and mental domains (p = 0.004). The mean number of days of menstrual bleeding was significantly reduced in E2/NOMAC group (from 4.86 ± 1.20 d to 2.64 ± 1.59 d, p = 0.0005 versus baseline, p = 0.007 versus EE/CMA group). BMI did not vary in either group. E2/NOMAC did not change lipoproteins and apoproteins while EE/CMA increased total cholesterol (p = 0.0114), HDL-cholesterol (p = 0.0008), triglycerides (p = 0.002), apoprotein-A1 (Apo-A1; p = 0.0006) and apopoprotein-B (Apo-B; p = 0.008), decreasing LDL/HDL ratio (p = 0.024). Both oral contraceptives reduced similarly primary dysmenorrhea, with E2/NOMAC also reducing withdrawal bleedings and

  19. Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid.

    PubMed

    Khor, Way Cern; Roume, Hugo; Coma, Marta; Vervaeren, Han; Rabaey, Korneel

    2016-10-01

    Lactic acid is a high-in-demand chemical, which can be produced through fermentation of lignocellulosic feedstock. However, fermentation of complex substrate produces a mixture of products at efficiencies too low to justify a production process. We hypothesized that the background acetic acid concentration plays a critical role in lactic acid yield; therefore, its retention via selective extraction of lactic acid or its addition would improve overall lactic acid production and eliminate net production of acetic acid. To test this hypothesis, we added 10 g/L of acetate to fermentation broth to investigate its effect on products composition and concentration and bacterial community evolution using several substrate-inoculum combinations. With rumen fluid inoculum, lactate concentrations increased by 80 ± 12 % (cornstarch, p < 0.05) and 16.7 ± 0.4 % (extruded grass, p < 0.05) while with pure culture inoculum (Lactobacillus delbrueckii and genetically modified (GM) Escherichia coli), a 4 to 23 % increase was observed. Using rumen fluid inoculum, the bacterial community was enriched within 8 days to >69 % lactic acid bacteria (LAB), predominantly Lactobacillaceae. Higher acetate concentration promoted a more diverse LAB population, especially on non-inoculated bottles. In subsequent tests, acetate was added in a semi-continuous percolation system with grass as substrate. These tests confirmed our findings producing lactate at concentrations 26 ± 5 % (p < 0.05) higher than the control reactor over 20 days operation. Overall, our work shows that recirculating acetate has the potential to boost lactic acid production from waste biomass to levels more attractive for application.

  20. Unexpected competitiveness of Methanosaeta populations at elevated acetate concentrations in methanogenic treatment of animal wastewater.

    PubMed

    Chen, Si; Cheng, Huicai; Liu, Jiang; Hazen, Terry C; Huang, Vicki; He, Qiang

    2017-02-01

    Acetoclastic methanogenesis is a key metabolic process in anaerobic digestion, a technology with broad applications in biogas production and waste treatment. Acetoclastic methanogenesis is known to be performed by two archaeal genera, Methanosaeta and Methanosarcina. The conventional model posits that Methanosaeta populations are more competitive at low acetate levels (<1 mM) than Methanosarcina and vice versa at higher acetate concentrations. While this model is supported by an extensive body of studies, reports of inconsistency have grown that Methanosaeta were observed to outnumber Methanosarcina at elevated acetate levels. In this study, monitoring of anaerobic digesters treating animal wastewater unexpectedly identified Methanosaeta as the dominant acetoclastic methanogen population at both low and high acetate levels during organic overloading. The surprising competitiveness of Methanosaeta at elevated acetate was further supported by the enrichment of Methanosaeta with high concentrations of acetate (20 mM). The dominance of Methanosaeta in the methanogen community could be reproduced in anaerobic digesters with the direct addition of acetate to above 20 mM, again supporting the competitiveness of Methanosaeta over Methanosarcina at elevated acetate levels. This study for the first time systematically demonstrated that the dominance of Methanosaeta populations in anaerobic digestion could be linked to the competitiveness of Methanosaeta at elevated acetate concentrations. Given the importance of acetoclastic methanogenesis in biological methane production, findings from this study could have major implications for developing strategies for more effective control of methanogenic treatment processes.

  1. Simulation of Pressure-swing Distillation for Separation of Ethyl Acetate-Ethanol-Water

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Zhou, Menglin; Wang, Yujie; Zhang, Xi; Wu, Gang

    2017-12-01

    In the light of the azeotrope of ethyl acetate-ethanol-water, a process of pressure-swing distillation is proposed. The separation process is simulated by Aspen Plus, and the effects of theoretical stage number, reflux ratio and feed stage about the pressure-swing distillation are optimized. Some better process parameters are as follows: for ethyl acetate refining tower, the pressure is 500.0 kPa, theoretical stage number is 16, reflux ratio is 0.6, feed stage is 5; for crude ethanol tower, the pressure is 101.3 kPa, theoretical stage number is 15, reflux ratio is 0.3, feed stage is 4; for ethanol tower, the pressure is 101.3 kPa, theoretical stage number is 25, reflux ratio is 1.2, feed stage is 10. The mass fraction of ethyl acetate in the bottom of the ethyl acetate refining tower reaches 0.9990, the mass fraction of ethanol in the top of the ethanol tower tower reaches 0.9017, the mass fraction of water in the bottom of the ethanol tower tower reaches 0.9622, and there is also no ethyl acetate in the bottom of the ethanol tower. With laboratory tests, experimental results are in good agreement with the simulation results, which indicates that the separation of ethyl acetate ethanol water can be realized by the pressure-swing distillation separation process. Moreover, it has certain practical significance to industrial practice.

  2. Self-assembled nanoparticle of common food constituents that carries a sparingly soluble small molecule.

    PubMed

    Bhopatkar, Deepak; Feng, Tao; Chen, Feng; Zhang, Genyi; Carignano, Marcelo; Park, Sung Hyun; Zhuang, Haining; Campanella, Osvaldo H; Hamaker, Bruce R

    2015-05-06

    A previously reported nanoparticle formed through the self-assembly of common food constituents (amylose, protein, and fatty acids) was shown to have the capacity to carry a sparingly soluble small molecule (1-naphthol) in a dispersed system. Potentiometric titration showed that 1-naphthol locates in the lumen of the amylose helix of the nanoparticle. This finding was further supported by calorimetric measurements, showing higher enthalpies of dissociation and reassociation in the presence of 1-naphthol. Visually, the 1-naphthol-loaded nanoparticle appeared to be well-dispersed in aqueous solution. Molecular dynamics simulation showed that the self-assembly was favorable, and at 500 ns, the 1-naphthol molecule resided in the helix of the amylose lumen in proximity to the hydrophobic tail of the fatty acid. Thus, sparingly soluble small molecules, such as some nutraceuticals or drugs, could be incorporated and delivered by this soft nanoparticle carrier.

  3. A Simple Way to Pattern Mn_12-acetate Thin Films

    NASA Astrophysics Data System (ADS)

    Kim, K.; Seo, D. M.; Means, J.; Viswanathan, M.; Teizer, W.

    2004-03-01

    We have observed that Mn_12-acetate ([Mn_12O_12(CH_3COO)_16(H_2O)_4]ot2CH_3COOHot4H_2O) molecules, dissolved in organic solvents, can be self-assembled along the edge of the Mn_12 solution droplet on a Si/SiO2 substrate as the solvent is evaporated. This phenomenon may be related to the well known "coffee-stain effect"”, which leads to a dense particulate deposit along the edge of a drying droplet of coffee on a solid surface. In our study, we have observed such a deposit of Mn_12-acetate at the perimeter of a droplet, after a dilute solution in various organic solvents has been dried. We investigated how the deposits depend on the evaporation rate. Also, we controlled the concentration of the solution to find its relation to the resulting pattern deposit. By patterning the surface with resist and performing a lift-off we created what are, to our knowledge, the first artificial patterns of Mn_12-acetate. This may allow for convenient thin film devices of Mn_12-acetate and work in this direction is ongoing. This work was supported by the Texas Higher Education Coordinating Board and Texas A University.

  4. Effects of L-cysteine on lead acetate induced neurotoxicity in albino mice.

    PubMed

    Mahmoud, Y I; Sayed, S S

    2016-07-01

    Lead is a toxic heavy metal that adversely affects nervous tissues; it often occurs as an environmental pollutant. We investigated histological changes in the cerebral cortex, hippocampus and cerebellum of adult albino mice following exposure to lead acetate. We also studied the possible ameliorative effect of the chelating agent, L-cysteine, on lead-induced neurotoxicity. We divided albino mice into six groups: 1) vehicle-only control, 2) L-cysteine control, 3 and 4) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, and 5 and 6) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, followed by 50 mg/kg L-cysteine for 7 days. Lead acetate administration caused disorganization of cell layers, neuronal loss and degeneration, and neuropil vacuolization. Brain sections from lead-intoxicated mice treated with L-cysteine showed fewer pathological changes; the neuropil showed less vacuolization and the neurons appeared less damaged. L-cysteine at the dose we used only marginally alleviated lead-induced toxicity.

  5. PHARMACOKINETICS OF N-BUTYL ACETATE AND ITS METABOLITES IN MALE SPRAGUE DAWLEY RATS AFTER INTRAVENOUS ADMINISTRATION

    EPA Science Inventory

    FAMILY APPROACH PBPK MODELING OF N-BUTYL ACETATE AND ITS METABOLITES IN MALE RATS
    P.J. Deisinger1, J.G. Teeguarden2, H.A. Barton3, J.C. English1, W.D. Faber4, T.R. Tyler5, M.I. Banton6, M.E. Andersen7. 1Health & Environ. Laboratories., Eastman Kodak Company, Rochester, NY, USA...

  6. Interaction of acetic acid and phenylacetaldehyde as attractants for trapping pest species of moths (Lepidoptera: Noctuidae)

    USDA-ARS?s Scientific Manuscript database

    Phenylacetaldehyde is a flower volatile and attractant for many nectar-seeking moths. Acetic acid is a microbial fermentation product that is present in insect sweet baits. It is weakly attractive to some moths and other insects, but can be additive or synergistic with other compounds to make more p...

  7. 21 CFR 182.8892 - α-Tocopherol acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true α-Tocopherol acetate. 182.8892 Section 182.8892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8892 α...

  8. 21 CFR 182.8892 - α-Tocopherol acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false α-Tocopherol acetate. 182.8892 Section 182.8892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8892 α...

  9. 21 CFR 182.8892 - α-Tocopherol acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false α-Tocopherol acetate. 182.8892 Section 182.8892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8892 α...

  10. 21 CFR 182.8892 - α-Tocopherol acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false α-Tocopherol acetate. 182.8892 Section 182.8892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8892 α...

  11. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  12. Ethylene-Vinyl Acetate Potential Problems for Photovoltaic Packaging: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K. M.

    2006-05-01

    Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support, optical coupling, electrical isolation, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate, it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about ?15 C. Temperatures lower thanmore » this can be reached for extended periods of time in some climates. Because of increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL 1703.« less

  13. Short-term effect of acetate and ethanol on methane formation in biogas sludge.

    PubMed

    Refai, Sarah; Wassmann, Kati; Deppenmeier, Uwe

    2014-08-01

    Biochemical processes in biogas plants are still not fully understood. Especially, the identification of possible bottlenecks in the complex fermentation processes during biogas production might provide potential to increase the performance of biogas plants. To shed light on the question which group of organism constitutes the limiting factor in the anaerobic breakdown of organic material, biogas sludge from different mesophilic biogas plants was examined under various conditions. Therefore, biogas sludge was incubated and analyzed in anaerobic serum flasks under an atmosphere of N2/CO2. The batch reactors mirrored the conditions and the performance of the full-scale biogas plants and were suitable test systems for a period of 24 h. Methane production rates were compared after supplementation with substrates for syntrophic bacteria, such as butyrate, propionate, or ethanol, as well as with acetate and H2+CO2 as substrates for methanogenic archaea. Methane formation rates increased significantly by 35 to 126 % when sludge from different biogas plants was supplemented with acetate or ethanol. The stability of important process parameters such as concentration of volatile fatty acids and pH indicate that ethanol and acetate increase biogas formation without affecting normally occurring fermentation processes. In contrast to ethanol or acetate, other fermentation products such as propionate, butyrate, or H2 did not result in increased methane formation rates. These results provide evidence that aceticlastic methanogenesis and ethanol-oxidizing syntrophic bacteria are not the limiting factor during biogas formation, respectively, and that biogas plant optimization is possible with special focus on methanogenesis from acetate.

  14. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch.

    PubMed

    Zhao, Steven; Torres, AnnMarie; Henry, Ryan A; Trefely, Sophie; Wallace, Martina; Lee, Joyce V; Carrer, Alessandro; Sengupta, Arjun; Campbell, Sydney L; Kuo, Yin-Ming; Frey, Alexander J; Meurs, Noah; Viola, John M; Blair, Ian A; Weljie, Aalim M; Metallo, Christian M; Snyder, Nathaniel W; Andrews, Andrew J; Wellen, Kathryn E

    2016-10-18

    Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA) plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY), cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL) and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision.

    PubMed

    Tuijtel, Maarten W; Mulder, Aat A; Posthuma, Clara C; van der Hoeven, Barbara; Koster, Abraham J; Bárcena, Montserrat; Faas, Frank G A; Sharp, Thomas H

    2017-09-05

    Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (-195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy.

  16. Radiofrequency Thermal Ablation: Increase in Lesion Diameter with Continuous Acetic Acid Infusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubienski, Andreas; Duex, Markus; Lubienski, Katrin

    Purpose. To evaluate the influence of continuous infusion of acetic acid 50% during radiofrequency ablation (RFA) on the size of the thermal lesion produced. Methods. Radiofrequency (RF) was applied to excised bovine liver by using an expandable needle electrode with 10 retractable tines (LeVeen Needle Electrode, RadioTherapeutics, Sunnyvale, CA) connected to a commercially available RF generator (RF 2000, RadioTherapeutics, Sunnyvale, CA). Experiments were performed using three different treatment modalities: RF only (n = 15), RF with continuous saline 0.9% infusion (n = 15), and RF with continuous acetic acid 50% infusion (n = 15). RF duration, power output, tissue impedance,more » and time to a rapid rise in impedance were recorded. The ablated lesions were evaluated both macroscopically and histologically. Results. The ablated lesions appeared as spherical or ellipsoid, well-demarcated pale areas with a surrounding brown rim with both RF only and RF plus saline 0.9% infusion. In contrast, thermolesions generated with RF in combination with acetic acid 50% infusion were irregular in shape and the central portion was jelly-like. Mean diameter of the coagulation necrosis was 22.3 {+-} 2.1 mm (RF only), 29.2 {+-} 4.8 mm (RF + saline 0.9%) and 30.7 {+-} 5.7 mm (RF + acetic acid 50%), with a significant increase in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Time to a rapid rise in impedance was significantly prolonged in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Conclusions. A combination of RF plus acetic acid 50% infusion is able to generate larger thermolesions than RF only or RF combined with saline 0.9% infusion.« less

  17. Effect of Chitosan Acetate on Bacteria Occurring on Neungee Mushrooms, Sarcodon aspratus

    PubMed Central

    Park, Bom Soo; Koo, Chang-Duck; Ka, Kang Hyeon

    2008-01-01

    Minimal growth inhibitory concentrations (MICs) of chitosan acetate (M.W. 60 kDa) on heterotrophic bacteria (strains MK1, S, and R) isolated from the soft-rotten tissues of Neungee mushroom (Sarcodon aspratus) were measured. The slimy substance produced by the MK1 strain was responsible for the diseased mushroom's appearance. The S and R strains were members of the Burkholderia cepacia complex. These strains showed different levels of susceptibility toward chitosan acetate. The MIC of chitosan acetate against the MK1 and S strains was 0.06%. The MIC against the R strain was greater than 0.10%. Survival fractions of the MK1 and S strains at the MIC were 3 × 10-4 and 1.4 × 10-3 after 24 h, and 2 × 10-4 and 7 × 10-4 after 48 h, respectively. Survival fractions of the R strain after 24 and 48 hr at 0.1% chitosan acetate were 1 × 10-2 and 6.9 × 10-3, respectively. Compared to the MK1 and S strains, the low susceptibility of the R stain towards chitosan acetate could be due to the ability of the R strain to utilize chitosan as a carbon source. Thirty-eight percent of Neungee pieces treated in a 0.06% chitosan acetate solution for 2~3 second did not show any bacterial growth at 4 days, whereas bacterial growth around untreated mushroom pieces occurred within 2 days. These data suggest that chitosan acetate is highly effective in controlling growth of indigenous microorganisms on Neungee. The scanning electron micrographs of the MK1 strain treated with chitosan revealed a higher degree of disintegrated and distorted cellular structures. PMID:23997635

  18. Development of functional extruded snacks by utilizing paste shrimp (Acetes spp.): process optimization and quality evaluation.

    PubMed

    Kumar, Raushan; Xavier, Ka Martin; Lekshmi, Manjusha; Dhanabalan, Vignaesh; Thachil, Madonna T; Balange, Amjad K; Gudipati, Venkateshwarlu

    2018-04-01

    Functional extruded snacks were prepared using paste shrimp powder (Acetes spp.), which is rich in protein. The process variables required for the preparation of extruded snacks was optimized using response surface methodology. Extrusion temperature (130-144 °C), level of Acetes powder (100-200 g kg -1 ) and feed moisture (140-200 g kg -1 ) were selected as design variables, and expansion ratio, porosity, hardness, crispness and thiobarbituric acid reactive substance value were taken as the response variables. Extrusion temperature significantly influenced all the response variables, while Acetes inclusion influenced all variables except porosity. Feed moisture content showed a significant quadratic effect on all responses and an interactive effect on expansion ratio and hardness. Shrimp powder incorporation increased the protein and mineral content of the final product. The extruded snack made with the combination of extrusion temperature 144.59 °C, feed moisture 178.5 g kg -1 and Acetes inclusion level 146.7 g kg -1 was found to be the best one based on sensory evaluation. The study suggests that use of Acetes species for the development of extruded snacks will serve as a means of utilization of Acetes as well as being a rich source of proteins for human consumption, which would otherwise remain unexploited as a by-catch. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. 40 CFR 721.532 - Substituted hydroxyalkane acetate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.532 Substituted hydroxyalkane acetate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  20. Additive postprandial blood glucose-attenuating and satiety-enhancing effect of cinnamon and acetic acid.

    PubMed

    Mettler, Samuel; Schwarz, Isaline; Colombani, Paolo C

    2009-10-01

    Cinnamon and vinegar or acetic acid were reported to reduce the postprandial blood glucose response. We hypothesized that the combination of these substances might result in an additive effect. Therefore, we determined the 2-hour postprandial blood glucose and satiety response to a milk rice meal supplemented with either cinnamon or acetic acid on their own or in combination. Subjects (n = 27) consumed the meal on 4 occasions as either pure (control trial), with 4 g cinnamon, 28 mmol acetic acid, or the combination of cinnamon + acetic acid. Blood glucose and satiety were assessed before eating and 15, 30, 45, 60, 90, and 120 minutes postprandially. At 15 minutes, the combination of cinnamon + acetic acid resulted in a significantly reduced blood glucose concentration compared with the control meal (P = .021). The incremental area under the blood glucose response curve over 120 minutes did, however, not differ between the trials (P = .539). The satiety score of the cinnamon + acetic acid trial was significantly higher than that in the control trial at 15 (P = .024) and 30 minutes (P = .024), but the incremental area under the curve of the satiety response did not differ (P = .116) between the trials. In conclusion, the significant effect of the combination of cinnamon and acetic acid on blood glucose and satiety immediately after meal intake indicated an additive effect of the 2 substances. Whether larger doses of cinnamon and acetic acid may result in a more substantial additive effect on blood glucose or satiety remains to be investigated.

  1. Protective effects of piperine on lead acetate induced-nephrotoxicity in rats.

    PubMed

    Sudjarwo, Sri Agus; Eraiko, Koerniasari; Sudjarwo, Giftania Wardani; Koerniasari

    2017-11-01

    In this study, we investigated the protective effects of piperine on lead acetate-induced renal damage in rat kidney tissue. Forty male rats were divided into 5 groups: negative control (rats were given aquadest daily), positive control (rats were given lead acetate 30 mg/kg BW orally once a day for 60 days), and the treatment group (rats were given piperine 50 mg; 100 mg and 200 mg/kg BW orally once a day for 65 days, and on 5 th day, were given lead acetate 30 mg/kg BW one hr after piperine administration for 60 days). On day 65 levels of blood urea nitrogen (BUN), creatinine, malondialdehyde (MDA), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPx) were measured. Also, kidney samples were collected for histopathological studies. The results revealed that lead acetate toxicity induced a significant increase in the levels of BUN, creatinine, and MDA; moreover, a significant decrease in SOD and GPx. Lead acetate also altered kidney histopathology (kidney damage, necrosis of tubules) compared to the negative control. However, administration of piperine significantly improved the kidney histopathology, decreased the levels of BUN, creatinine, and MDA, and also significantly increased the SOD and GPx in the kidney of lead acetate-treated rats. From the results of this study it was concluded that piperine could be a potent natural herbal product exhibiting nephroprotective effect against lead acetate induced nephrotoxicity in rats.

  2. Ethylene-vinyl acetate foam as a new lung substitute in radiotherapy.

    PubMed

    Marqués, Enrique; Mancha, Pedro J

    2018-04-01

    The purpose of this study was to evaluate ethylene-vinyl acetate (EVA) foam as a new lung substitute in radiotherapy and to study its physical and dosimetric characteristics. We calculated the ideal vinyl acetate (VA) content of EVA foam sheets to mimic the physical and dosimetric characteristics of the ICRU lung tissue. We also computed the water-to-medium mass collision stopping power ratios, mass attenuation coefficients, CT numbers, effective atomic numbers and electron densities for: ICRU lung tissue, the RANDO commercial phantom, scaled WATER and EVA foam sheets with varying VA contents in a range between the minimum and maximum values supplied by the manufacturer. For all these substitutes, we simulated percent depth-dose curves with EGSnrc Monte Carlo (MC PDDs) in a water-lung substitute-water slab phantom expressed as dose-to-medium and dose-to-water for 3 × 3- and 10 × 10-cm 2 field sizes. PDD for the 10 × 10-cm 2 field size was also calculated with the MultiGrid Superposition algorithm (MGS PDD) for a relative electron density to water ratio of 0.26. The latter was compared with the MC PDDs in dose-to-water for scaled WATER and EVA foam sheets with the VA content that was most similar to the calculated ideal content that is physically achievable in practice. We calculated an ideal VA content of 55%; however, the maximum physically achievable content with current manufacturing techniques is 40%. The physical characteristics of the EVA foam sheets with a VA content of 40% (EVA40) are very close to those of the ICRU lung reference. The physical densities of the EVA40 foam sheets ranged from 0.030 to 0.965 g/cm 3 , almost covering the entire physical density range of the inflated/deflated lung (0.260-1.050 g/cm 3 ). Its mass attenuation coefficient at the effective energy of a 6-MV photon beam agrees within 0.8% of the ICRU reference value, and its CT number agrees within 6 HU. The effective atomic number for EVA40 varies by less than 0.42 of the

  3. Myxospore Coat Synthesis in Myxococcus xanthus: In Vivo Incorporation of Acetate and Glycine

    PubMed Central

    Filer, D.; White, D.; Kindler, S. H.; Rosenberg, E.

    1977-01-01

    Myxospore coat synthesis in Myxococcus xanthus was studied by incorporation of [14C]acetate into intermediates in the biosynthesis of coat polysaccharide and into acid-insoluble material during vegetative growth and after glycerol induction of myxospores. During short labeling periods at 27°C, the radioactivity was shown to be located primarily in N-acetyl groups rather than sugar moieties. Two hours after glycerol induction, the pools of N-acetylglucosamine 6-phosphate and uridine 5′-diphosphate-N-acetylgalactosamine (UDPGalNAc) plus uridine 5′-diphosphate-N-glucosamine increased about twofold and were labeled at twice the rate measured for vegetative cells. The increased rate of synthesis of UDPGalNAc and its precursors could be correlated with increased enzyme activities measured in vitro. Controlled acid hydrolysis revealed that the galactosamine portion of the myxospore coat was N-acetylated. After glycerol induction, the incorporation of acetate into acid-insoluble material increased threefold. This enhanced incorporation was sensitive to neither penicillin nor d-cycloserine. In contrast, bacitracin inhibited the incorporation of [14C]acetate into acid-insoluble material more effectively 2 h after myxospore induction than during vegetative growth. Chloramphenicol added to cells 90 min after induction blocked further increase in the rate of [14C]acetate incorporation. Since the myxospore coat contains glycine, polymer synthesis was also measured by chloramphenicol-insensitive [14C]glycine incorporation into acid-insoluble material. Although protein synthesis decreased after glycerol induction, glycine incorporation increased. Two hours after induction, glycine incorporation was only 75% inhibited by chloramphenicol and rifampin. The chloramphenicol-insensitive rate of incorporation of [14C]glycine increased during the first hour after myxospore induction and reached a peak rate after 2 to 3 h. The chloramphenicol-resistant incorporation of [14C

  4. 1-Ethyl-3-methylimidazolium acetate as a highly efficient organocatalyst for cyanosilylation of carbonyl compounds with trimethylsilyl cyanide

    PubMed Central

    Ullah, Bakhtar; Chen, Jingwen; Zhang, Zhiguo; Xing, Huabin; Yang, Qiwei; Bao, Zongbi; Ren, Qilong

    2017-01-01

    1-Ethyl-3-methylimidazolium acetate is introduced as a robust organocatalyst for solvent-free cyanosilylation of carbonyl compounds with trimethylsilyl cyanide (TMSCN). The catalyst loading can be reduced to as low as 0.1–0.0001 mol % under mild reaction conditions, giving considerably high TOF values from 10,843 h−1 to 10,602,410 h−1 in the field of organocatalyzed transformations. The present protocol not only tolerates with extensive carbonyl compounds but also provides somewhat insight into the mechanism of ionic liquids (ILs)-catalyzed reactions. PMID:28198462

  5. Glycerol triacetate as solvent and acyl donor in the production of isoamyl acetate with Candida antarctica lipase B.

    PubMed

    Wolfson, Adi; Atyya, Aviad; Dlugy, Christina; Tavor, Dorith

    2010-03-01

    Glycerol triacetate was successfully used as a green solvent and as the acyl donor in the transesterification of isoamyl alcohol to produce isoamyl acetate using free and immobilized Candida antarctica lipase B. Immobilized lipase was more catalytically active than free lipase and could be easily separated from the reaction mixture by filtration. In addition, it was found that increasing either the reaction temperature or the enzyme to substrate ratio increased the conversion of isoamyl alcohol. Using triacetin as the solvent also enabled the separation of product by simple extraction with petroleum ether and catalyst recycling.

  6. Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition.

    PubMed

    Roach, Thomas; Sedoud, Arezki; Krieger-Liszkay, Anja

    2013-10-01

    Chlamydomonas reinhardtii is a photoautotrophic green alga, which can be grown mixotrophically in acetate-supplemented media (Tris-acetate-phosphate). We show that acetate has a direct effect on photosystem II (PSII). As a consequence, Tris-acetate-phosphate-grown mixotrophic C. reinhardtii cultures are less susceptible to photoinhibition than photoautotrophic cultures when subjected to high light. Spin-trapping electron paramagnetic resonance spectroscopy showed that thylakoids from mixotrophic C. reinhardtii produced less (1)O2 than those from photoautotrophic cultures. The same was observed in vivo by measuring DanePy oxalate fluorescence quenching. Photoinhibition can be induced by the production of (1)O2 originating from charge recombination events in photosystem II, which are governed by the midpoint potentials (Em) of the quinone electron acceptors. Thermoluminescence indicated that the Em of the primary quinone acceptor (QA/QA(-)) of mixotrophic cells was stabilised while the Em of the secondary quinone acceptor (QB/QB(-)) was destabilised, therefore favouring direct non-radiative charge recombination events that do not lead to (1)O2 production. Acetate treatment of photosystem II-enriched membrane fragments from spinach led to the same thermoluminescence shifts as observed in C. reinhardtii, showing that acetate exhibits a direct effect on photosystem II independent from the metabolic state of a cell. A change in the environment of the non-heme iron of acetate-treated photosystem II particles was detected by low temperature electron paramagnetic resonance spectroscopy. We hypothesise that acetate replaces the bicarbonate associated to the non-heme iron and changes the environment of QA and QB affecting photosystem II charge recombination events and photoinhibition. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Avalanches in Mn12-Acetate: ``Magnetic Burning"

    NASA Astrophysics Data System (ADS)

    McHugh, Sean; Suzuki, Y.; Graybill, D.; Sarachik, M. P.; Avraham, N.; Myasoedov, Y.; Shtrikman, H.; Zeldov, E.; Bagai, R.; Chakov, N. E.; Christou, G.

    2006-03-01

    From local time-resolved measurements of fast reversal of the magnetization in single crystals of the molecular magnet Mn12-acetate, we have shown[1] that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity roughly two orders of magnitude smaller than the speed of sound. This phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance. The propagation speed of the avalanche depends on the energy stored in each molecule, which can be controlled and tuned using an external magnetic field. We report studies of propagation speed with different external fields in Mn12-acetate. [1] Yoko Suzuki, M.P. Sarachik, E.M. Chudnovsky, S. McHugh, R. Gonzalez-Rubio, N. Avraham, Y. Myasoedov, H. Shtrikman, E. Zeldov, N.E. Chakov and G. Christou, Phys. Rev. Lett. 95, 147201 (2005).

  8. Acetic acid in aged vinegar affects molecular targets for thrombus disease management.

    PubMed

    Jing, Li; Yanyan, Zhang; Junfeng, Fan

    2015-08-01

    To elucidate the mechanism underlying the action of dietary vinegar on antithrombotic activity, acetic acid, the main acidic component of dietary vinegar, was used to determine antiplatelet and fibrinolytic activity. The results revealed that acetic acid significantly inhibits adenosine diphosphate (ADP)-, collagen-, thrombin-, and arachidonic acid (AA)-induced platelet aggregation. Acetic acid (2.00 mM) reduced AA-induced platelet aggregation to approximately 36.82 ± 1.31%, and vinegar (0.12 mL L(-1)) reduced the platelet aggregation induced by AA to 30.25 ± 1.34%. Further studies revealed that acetic acid exerts its effects by inhibiting cyclooxygenase-1 and the formation of thromboxane-A2. Organic acids including acetic acid, formic acid, lactic acid, citric acid, and malic acid also showed fibrinolytic activity; specifically, the fibrinolytic activity of acetic acid amounted to 1.866 IU urokinase per mL. Acetic acid exerted its fibrinolytic activity by activating plasminogen during fibrin crossing, thus leading to crosslinked fibrin degradation by the activated plasmin. These results suggest that organic acids in dietary vinegar play important roles in the prevention and cure of cardiovascular diseases.

  9. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.

    PubMed

    Leighton, F; Bergseth, S; Rørtveit, T; Christiansen, E N; Bremer, J

    1989-06-25

    The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.

  10. Ethanol and sodium acetate as a preservation method to delay degradation of environmental DNA

    USGS Publications Warehouse

    Ladell, Bridget A.; Walleser, Liza R.; McCalla, S. Grace; Erickson, Richard A.; Amberg, Jon J.

    2018-01-01

    Environmental DNA (eDNA) samples that are collected from remote locations depend on rapid stabilization of the DNA. The degradation of eDNA in water samples is minimized when samples are stored at ≤ 4 °C. Developing a preservation technique to maintain eDNA integrity at room temperature would allow a wider range of locations to be sampled. We evaluated an ethanol and sodium acetate solution to maintain the integrity of the DNA samples for the time between collection and lab testing. For this evaluation, replicate water samples taken from a tank housing Asian carp were placed on ice or held at room temperature. At both temperatures, water samples were left untreated or were preserved with an ethanol and sodium acetate solution (EtOH–NaAc). Every day for 6 days following collection, a subset of the samples was removed from each preservation method and DNA was extracted and nuclear and mitochondrial markers were assayed with qPCR. Results showed comparable persistence of DNA between iced samples without the EtOH–NaAc treatment and samples that received EtOH–NaAc treatment that were kept at room temperature. We found that DNA can be amplified from preserved samples using an EtOH–NaAc solution after up to 7 days at room temperature.

  11. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir.

    PubMed

    Pan, Pan; Hong, Bo; Mbadinga, Serge Maurice; Wang, Li-Ying; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2017-09-01

    Acetate is a key intermediate in anaerobic crude oil biodegradation and also a precursor for methanogenesis in petroleum reservoirs. The impact of iron oxides, viz. β-FeOOH (akaganéite) and magnetite (Fe 3 O 4 ), on the methanogenic acetate metabolism in production water of a high-temperature petroleum reservoir was investigated. Methane production was observed in all the treatments amended with acetate. In the microcosms amended with acetate solely about 30% of the acetate utilized was converted to methane, whereas methane production was stimulated in the presence of magnetite (Fe 3 O 4 ) resulting in a 48.34% conversion to methane. Methane production in acetate-amended, β-FeOOH (akaganéite)-supplemented microcosms was much faster and acetate consumption was greatly improved compared to the other conditions in which the stoichiometric expected amounts of methane were not produced. Microbial community analysis showed that Thermacetogenium spp. (known syntrophic acetate oxidizers) and hydrogenotrophic methanogens closely related to Methanothermobacter spp. were enriched in acetate and acetate/magnetite (Fe 3 O 4 ) microcosms suggesting that methanogenic acetate metabolism was through hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers. The acetate/β-FeOOH (akaganéite) microcosms, however, differed by the dominance of archaea closely related to the acetoclastic Methanosaeta thermophila. These observations suggest that supplementation of β-FeOOH (akaganéite) accelerated the production of methane further, driven the alteration of the methanogenic community, and changed the pathway of acetate methanogenesis from hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers to acetoclastic.

  12. Evaluation Lactogenic Activity of Ethyl Acetate Fraction of Torbangun (Coleus amboinicus L.) Leaves

    NASA Astrophysics Data System (ADS)

    Damanik, R. M.; Kustiyah, L.; Hanafi, M.; Iwansyah, A. C.

    2017-12-01

    This study aimed to assess the lactogenic property of ethyl acetate fraction of torbangun (Coleus amboinicus L.) leaves and to identify the compounds that responsibility as ‘milk booster’ using LC- MS approach. Lactagogue activity was evaluated in terms of quantity of milk produced from the rats treated with commercial milk booster (AF), ethyl acetate fraction of torbangun leaves (EA), water extraction of torbangun (AQ) and kaempferol (KP). The feed was given orally every two days and starting from Day 2 after giving birth until Day 28. The performance of milk production was measured along the experimental period by weight-suckle-weight method. The level of prolactin serum was determined by ELISA methods. Histopathological analysis of mammary gland, liver, intestines and kidney tissues was carried out. Moreover, in order to profiling and identification of compounds of ethyl acetate fraction, ultra-performance liquid chromatography quadrupole time of flight to electrospray ionization mass spectrometry (UPLC-QTOF-ESI-MS) in the positive-ion mode was performed. The ethyl acetate fraction of torbangun leaves (EA) was induced milk production about 17%, and AF 22% and KP 51% compared to the control group. Meanwhile, the EA was not significantly stimulate the synthesis of serum prolactin at Day 14 and Day 28 (p>0.05). Administration of EA did not cause any signs or symptoms of toxicity. In addition, a total of ten compounds was identified by UPLC-QTOF-ESI/MS in the ethyl acetate fraction of the leaves of C. amboinicus, mostly phenolic compounds, flavonols and some of their glycoside derivatives, such as: digiprolatone, and kaempferol-3-7-O-di-rhamnopyranoside. The present study reveals the ethyl acetate fraction of torbangun leaves and its bioactive compounds has the potency as a remedy for stimulating and improving milk production.

  13. 11C-Acetate clearance as an index of oxygen consumption of the right myocardium in idiopathic pulmonary arterial hypertension: a validation study using 15O-labeled tracers and PET.

    PubMed

    Wong, Yeun Ying; Raijmakers, Pieter; van Campen, Jasmijn; van der Laarse, Willem J; Knaapen, Paul; Lubberink, Mark; Ruiter, Gerrina; Vonk Noordegraaf, Anton; Lammertsma, Adriaan A

    2013-08-01

    Idiopathic pulmonary arterial hypertension (IPAH) results in increased right ventricular (RV) workload and oxygen demand. It has been shown that myocardial oxygen consumption (MVO2) of the hypertrophied right ventricle of IPAH patients can be measured using PET and (15)O-labeled tracers. This method is, however, not very suitable for routine clinical practice. The purpose of the present study was to assess whether MVO2 can also be determined in the right ventricle of IPAH patients from the clearance of (11)C-acetate, a simple method that is in use for MVO2 measurements of the left myocardium. Seventeen of 26 IPAH patients performed the total PET study. Nine other patients were scanned only for (11)C-acetate. (15)O-H2O, (15)O-O2, and (15)O-CO scans were used to derive RV flow, oxygen extraction fraction, and blood volume, respectively, from which RV MVO2 was calculated. The rate of clearance determined by monoexponential curve fitting (K(mono)) and the efflux rate constant k2 were derived from the (11)C-acetate scan. The RV rate-pressure product was also determined by means of right heart catheterization, as an index of the RV MVO2, and was calculated as the product of systolic pulmonary artery pressure and heart rate. Both (11)C-acetate clearance rates, K(mono) (R(2) = 0.41, P = 0.006) and k2 (R(2) = 0.45, P = 0.003), correlated with RV MVO2. They also correlated with RV rate-pressure product (K(mono), R(2) = 0.41, P = 0.0005; k2, R(2) = 0.48, P < 0.0001). (11)C-acetate clearance rates correlated moderately with quantitative RV MVO2 measurements in IPAH. Therefore, (11)C-acetate PET can be used only as an index of RV oxidative metabolism in IPAH patients.

  14. Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial.

    PubMed

    Leffler, Daniel A; Kelly, Ciaran P; Green, Peter H R; Fedorak, Richard N; DiMarino, Anthony; Perrow, Wendy; Rasmussen, Henrik; Wang, Chao; Bercik, Premysl; Bachir, Natalie M; Murray, Joseph A

    2015-06-01

    Celiac disease (CeD) is a prevalent autoimmune condition. Recurrent signs and symptoms are common despite treatment with a gluten-free diet (GFD), yet no approved or proven nondietary treatment is available. In this multicenter, randomized, double-blind, placebo-controlled study, we assessed larazotide acetate 0.5, 1, or 2 mg 3 times daily to relieve ongoing symptoms in 342 adults with CeD who had been on a GFD for 12 months or longer and maintained their current GFD during the study. The study included a 4-week placebo run-in, 12 weeks of treatment, and a 4-week placebo run-out phase. The primary end point was the difference in average on-treatment Celiac Disease Gastrointestinal Symptom Rating Scale score. The primary end point was met with the 0.5-mg dose of larazotide acetate, with fewer symptoms compared with placebo by modified intention to treat (n = 340) (analysis of covariance, P = .022; mixed model for repeated measures, P = .005). The 0.5-mg dose showed an effect on exploratory end points including a 26% decrease in celiac disease patient-reported outcome symptomatic days (P = .017), a 31% increase in improved symptom days (P = .034), a 50% or more reduction from baseline of the weekly average abdominal pain score for 6 or more of 12 weeks of treatment (P = .022), and a decrease in the nongastrointestinal symptoms of headache and tiredness (P = .010). The 1- and 2-mg doses were no different than placebo for any end point. Safety was comparable with placebo. Larazotide acetate 0.5 mg reduced signs and symptoms in CeD patients on a GFD better than a GFD alone. Although results were mixed, this study was a successful trial of a novel therapeutic agent targeting tight junction regulation in patients with CeD who are symptomatic despite a GFD. Clinicaltrials.gov: NCT01396213. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  15. Investigation of applicability of Electro-Fenton method for the mineralization of naphthol blue black in water.

    PubMed

    Özcan, Ayça Atılır; Özcan, Ali

    2018-07-01

    In this study, mineralization and color removal performance of electro-Fenton method were examined in water containing naphthol blue black (NBB), a diazo dye. NBB was totally converted to intermediate species in a 15-min electrolysis at 60 mA, but complete de-colorization took 180 min. A very high oxidation rate constant ((3.35 ± 0.21) x 10 10  M -1 s -1 ) was obtained for NBB, showing its high reactivity towards hydroxyl radicals. A very high total organic carbon (TOC) removal value (45.23 mg L -1 ) was obtained in the first 60 min of the electro-Fenton treatment of an aqueous solution of NBB (0.25 mM) at 300 mA, indicating the mineralization efficiency of the electro-Fenton method. Mineralization current efficiency values obtained at 300 mA gradually decreased from 24.18% to 4.47% with the electrolysis time, indicating the presence of highly parasitic reactions. Gas chromatography-mass spectrometry analyses revealed that the cleavage of azo bonds of NBB led to formation of different aromatic and aliphatic oxidation intermediates. Ion chromatography analysis showed that ammonium, nitrate and sulfate were the mineralization end-products. The concentration of sulfate ion reached to its quantitative value at the 4th h of electrolysis. On the other hand, the total concentration of ammonium and nitrate ions reached to only 61% of the stoichiometric amount of initial nitrogen after a 7 h electrolysis. Finally, it can be said that the electro-Fenton method is a suitable and efficient method for the removal of NBB and its intermediates from water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Sodium acetate induces a metabolic alkalosis but not the increase in fatty acid oxidation observed following bicarbonate ingestion in humans.

    PubMed

    Smith, Gordon I; Jeukendrup, Asker E; Ball, Derek

    2007-07-01

    We conducted this study to quantify the oxidation of exogenous acetate and to determine the effect of increased acetate availability upon fat and carbohydrate utilization in humans at rest. Eight healthy volunteers (6 males and 2 females) completed 2 separate trials, 7 d apart in a single-blind, randomized, crossover design. On each occasion, respiratory gas and arterialized venous blood samples were taken before and during 180 min following consumption of a drink containing either sodium acetate (NaAc) or NaHCO3 at a dose of 2 mmol/kg body mass. Labeled [1,2 -13C] NaAc was added to the NaAc drink to quantify acetate oxidation. Both sodium salts induced a mild metabolic alkalosis and increased energy expenditure (P < 0.05) to a similar magnitude. NaHCO3 ingestion increased fat utilization from 587 +/- 83 kJ/180 min to 693 +/- 101 kJ/180 min (P = 0.01) with no change in carbohydrate utilization. Following ingestion of NaAc, the amount of fat and carbohydrate utilized did not differ from the preingestion values. However, oxidation of the exogenous acetate almost entirely (90%) replaced the additional fat that had been oxidized during the bicarbonate trial. We determined that 80.1 +/- 2.3% of an exogenous source of acetate is oxidized in humans at rest. Whereas NaHCO3 ingestion increased fat oxidation, a similar response did not occur following NaAc ingestion despite the fact both sodium salts induced a similar increase in energy expenditure and shift in acid-base balance.

  17. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  18. Effects of acetic acid on the viability of Ascaris lumbricoides eggs

    PubMed Central

    Beyhan, Yunus E.; Yilmaz, Hasan; Hokelek, Murat

    2016-01-01

    Objectives: To investigate the effects of acetic acid on durable Ascaris lumbricoides (A. lumbricoides) eggs to determine the effective concentration of vinegar and the implementation period to render the consumption of raw vegetables more reliable. Methods: This experimental study was performed in May 2015 in the Parasitology Laboratory, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey. The A. lumbricoides eggs were divided into 2 groups. Eggs in the study group were treated with 1, 3, 5, and 10% acetic acid concentrations, and eggs in the control group were treated with Eosin. The eggs’ viability was observed at the following points in time during the experiment: 0, 10, 15, 20, 30, 45, and 60 minutes. Results: The 1% acetic acid was determined insufficient on the viability of Ascaris eggs. At the 30th minute, 3% acetic acid demonstrated 95% effectiveness, and at 5% concentration, all eggs lost their viability. Treatment of acetic acid at the ratio of 4.8% in 30 minutes, or a ratio of 4.3% in 60 minutes is required for full success of tretment. Conclusion: Since Ascaris eggs have 3 layers and are very resistant, the acetic acid concentration, which can be effective on these eggs are thought to be effective also on many other parasitic agents. In order to attain an active protection, after washing the vegetables, direct treatment with a vinegar containing 5% acetic acid for 30 minutes is essential. PMID:26905351

  19. Protective effects of piperine on lead acetate induced-nephrotoxicity in rats

    PubMed Central

    Sudjarwo, Sri Agus; Eraiko, Koerniasari; Sudjarwo, Giftania Wardani; Koerniasari

    2017-01-01

    Objective(s): In this study, we investigated the protective effects of piperine on lead acetate-induced renal damage in rat kidney tissue. Materials and Methods: Forty male rats were divided into 5 groups: negative control (rats were given aquadest daily), positive control (rats were given lead acetate 30 mg/kg BW orally once a day for 60 days), and the treatment group (rats were given piperine 50 mg; 100 mg and 200 mg/kg BW orally once a day for 65 days, and on 5th day, were given lead acetate 30 mg/kg BW one hr after piperine administration for 60 days). On day 65 levels of blood urea nitrogen (BUN), creatinine, malondialdehyde (MDA), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPx) were measured. Also, kidney samples were collected for histopathological studies. Results: The results revealed that lead acetate toxicity induced a significant increase in the levels of BUN, creatinine, and MDA; moreover, a significant decrease in SOD and GPx. Lead acetate also altered kidney histopathology (kidney damage, necrosis of tubules) compared to the negative control. However, administration of piperine significantly improved the kidney histopathology, decreased the levels of BUN, creatinine, and MDA, and also significantly increased the SOD and GPx in the kidney of lead acetate-treated rats. Conclusion: From the results of this study it was concluded that piperine could be a potent natural herbal product exhibiting nephroprotective effect against lead acetate induced nephrotoxicity in rats. PMID:29299200

  20. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized withmore » ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and

  1. Thermal stability of poly(ethylene-co-vinyl acetate) based materials

    DOE PAGES

    Patel, Mogon; Pitts, Simon; Beavis, Peter; ...

    2013-03-26

    The thermal stability properties of poly (ethylene-co-vinyl acetate) composites have been studied in support of our core programmes in materials qualification and life assessment. The material is used as a binder phase for boron particles in highly filled (70 wt %) composites. Our studies show that the uncured resin readily accumulates acetic acid through hydrolysis of the pendent acetate groups which alters the acidity (pH) of the material. Thermal desorption studies in combination with gas-chromatography-mass spectrometry show that the resin readily evolves acetic acid when thermally aged to temperatures up to 75°C. Gel Permeation Chromatography (GPC) suggests that thermal ageingmore » induces a gradual reduction in resin molecular weight and confirms the susceptibility of the material to chain scission. Heating at elevated temperatures in excess of 300oC is required to induce significant changes in the carbon skeleton through deacetylation and dehydration processes and the production of unsaturated main chain double bonds. Overall, the mechanical response of these filled composites are found to be relatively complex with the extent of polymer-filler interactions possibly playing an important role in determining key engineering properties. Mechanical property studies confirm a small but significant decrease in modulus presumably linked to thermally induced chain scission of the EVA binder.« less

  2. 40 CFR 721.3880 - Polyalkylene glycol substituted acetate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... acetate. 721.3880 Section 721.3880 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... communication program. A significant new use of this substance is any manner or method of manufacture, import, or processing associated with any use of this substance without providing risk notification as...

  3. High acetone-butanol-ethanol production in pH-stat co-feeding of acetate and glucose.

    PubMed

    Gao, Ming; Tashiro, Yukihiro; Wang, Qunhui; Sakai, Kenji; Sonomoto, Kenji

    2016-08-01

    We previously reported the metabolic analysis of butanol and acetone production from exogenous acetate by (13)C tracer experiments (Gao et al., RSC Adv., 5, 8486-8495, 2015). To clarify the influence of acetate on acetone-butanol-ethanol (ABE) production, we first performed an enzyme assay in Clostridium saccharoperbutylacetonicum N1-4. Acetate addition was found to drastically increase the activities of key enzymes involved in the acetate uptake (phosphate acetyltransferase and CoA transferase), acetone formation (acetoacetate decarboxylase), and butanol formation (butanol dehydrogenase) pathways. Subsequently, supplementation of acetate during acidogenesis and early solventogenesis resulted in a significant increase in ABE production. To establish an efficient ABE production system using acetate as a co-substrate, several shot strategies were investigated in batch culture. Batch cultures with two substrate shots without pH control produced 14.20 g/L butanol and 23.27 g/L ABE with a maximum specific butanol production rate of 0.26 g/(g h). Furthermore, pH-controlled (at pH 5.5) batch cultures with two substrate shots resulted in not only improved acetate consumption but also a further increase in ABE production. Finally, we obtained 15.13 g/L butanol and 24.37 g/L ABE at the high specific butanol production rate of 0.34 g/(g h) using pH-stat co-feeding method. Thus, in this study, we established a high ABE production system using glucose and acetate as co-substrates in a pH-stat co-feeding system with C. saccharoperbutylacetonicum N1-4. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Mutants of Saccharomyces Cerevisiae with Defects in Acetate Metabolism: Isolation and Characterization of Acn(-) Mutants

    PubMed Central

    McCammon, M. T.

    1996-01-01

    The two carbon compounds, ethanol and acetate, can be oxidatively metabolized as well as assimilated into carbohydrate in the yeast Saccharomyces cerevisiae. The distribution of acetate metabolic enzymes among several cellular compartments, mitochondria, peroxisomes, and cytoplasm makes it an intriguing system to study complex metabolic interactions. To investigate the complex process of carbon catabolism and assimilation, mutants unable to grow on acetate were isolated. One hundred five Acn(-) (``ACetate Nonutilizing'') mutants were sorted into 21 complementation groups with an additional 20 single mutants. Five of the groups have defects in TCA cycle enzymes: MDH1, CIT1, ACO1, IDH1, and IDH2. A defect in RTG2, involved in the retrograde communication between the mitochondrion and the nucleus, was also identified. Four genes encode enzymes of the glyoxylate cycle and gluconeogenesis: ICL1, MLS1, MDH2, and PCK1. Five other genes appear to be defective in regulating metabolic activity since elevated levels of enzymes in several metabolic pathways, including the glyoxylate cycle, gluconeogenesis, and acetyl-CoA metabolism, were detected in these mutants: ACN8, ACN9, ACN17, ACN18, and ACN42. In summary, this analysis has identified at least 22 and as many as 41 different genes involved in acetate metabolism. PMID:8878673

  5. Environmentally triggered genomic plasticity and capsular polysaccharide formation are involved in increased ethanol and acetic acid tolerance in Kozakia baliensis NBRC 16680.

    PubMed

    Brandt, Julia U; Born, Friederike-Leonie; Jakob, Frank; Vogel, Rudi F

    2017-08-10

    Kozakia baliensis NBRC 16680 secretes a gum-cluster derived heteropolysaccharide and forms a surface pellicle composed of polysaccharides during static cultivation. Furthermore, this strain exhibits two colony types on agar plates; smooth wild-type (S) and rough mutant colonies (R). This switch is caused by a spontaneous transposon insertion into the gumD gene of the gum-cluster, resulting in a heteropolysaccharide secretion deficient, rough phenotype. To elucidate, whether this is a directed switch triggered by environmental factors, we checked the number of R and S colonies under different growth conditions including ethanol and acetic acid supplementation. Furthermore, we investigated the tolerance of R and S strains against ethanol and acetic acid in shaking and static growth experiments. To get new insights into the composition and function of the pellicle polysaccharide, the polE gene of the R strain was additionally deleted, as it was reported to be involved in pellicle formation in other acetic acid bacteria. The number of R colonies was significantly increased upon growth on acetic acid and especially ethanol. The morphological change from K. baliensis NBRC 16680 S to R strain was accompanied by changes in the sugar contents of the produced pellicle EPS. The R:ΔpolE mutant strain was not able to form a regular pellicle anymore, but secreted an EPS into the medium, which exhibited a similar sugar monomer composition as the pellicle polysaccharide isolated from the R strain. The R strain had a markedly increased tolerance towards acetic acid and ethanol compared to the other NBRC 16680 strains (S, R:ΔpolE). A relatively high intrinsic acetic acid tolerance was also observable for K. baliensis DSM 14400 T , which might indicate diverse adaptation mechanisms of different K. baliensis strains in altering natural habitats. The results suggest that the genetically triggered R phenotype formation is directly related to increased acetic acid and ethanol

  6. Process for the preparation of protected 3-amino-1,2-dihydroxypropane acetal and derivatives thereof

    DOEpatents

    Hollingsworth, Rawle I.; Wang, Guijun

    2000-01-01

    A process for producing protected 3-amino-1,2-dihydroxypropane acetal, particularly in chiral forms, for use as an intermediate in the preparation of various 3-carbon compounds which are chiral. In particular, the present invention relates to the process for preparation of 3-amino-1,2-dihydroxypropane isopropylidene acetal. The protected 3-amino-1,2-dihydroxypropane acetal is a key intermediate to the preparation of chiral 3-carbon compounds which in turn are intermediates to various pharmaceuticals.

  7. Investigation of gel formation and volatilization of acetate acid in magnesium acetate droplets by the optical tweezers

    NASA Astrophysics Data System (ADS)

    Lv, Xi-Juan; Wang, Yang; Cai, Chen; Pang, Shu-Feng; Ma, Jia-Bi; Zhang, Yun-Hong

    2018-07-01

    Hygroscopicity and volatility of single magnesium acetate (MgAc2) aerosol particles at various relative humidities (RHs) are studied by a single-beam optical tweezers, and refractive indices (RIs) and morphology are characterized by cavity enhanced Raman spectroscopy. Gel formation and volatilization of acetate acid (HAc) in MgAc2 droplets are observed. Due to the formation of amorphous gel structure, water transposition in droplets at RH < 50% is significantly impeded on a time scale of 140,000 s. Different phase transition at RH < 10% is proposed to explain the distinct water loss after the gel formation. To compare volatilization of HAc in different systems, MgAc2 and sodium acetate (NaAc) droplets are maintained at several different stable RHs during up to 86,000 s. At RH ≈ 74%, magnesium hydroxide (Mg(OH)2) inclusions are formed in MgAc2 droplets due to the volatilization of HAc, and whispering gallery modes (WGMs) of MgAc2 droplets in the Raman spectrum quench after 50,000 s. In sharp contrast, after 86,000 s at RH ≈ 70%, NaAc droplets are in well-mixed liquid states, containing soluble sodium hydroxide (NaOH). At this state, the RI of NaAc droplet is increased, and the quenching of WGMs is not observable.

  8. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Stephen D.; Spies, Kurt A.; Mei, Donghai

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, andmore » activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.« less

  9. Probing the Reactivity of Cyclic "N,O"-Acetals versus Cyclic "O,O"-Acetals with NaBH[subscript 4] and CH[subscript 3]MgI

    ERIC Educational Resources Information Center

    Ciaccio, James A.; Saba, Shahrokh; Bruno, Samantha M.; Bruppacher, John H.; McKnight, Alexa G.

    2018-01-01

    An operationally straightforward, project-like laboratory experiment has been developed in which students directly compare the reactivity of two heterocycles, a cyclic "O,O"-acetal (standard C-O protecting group) and a cyclic "N,O"-acetal (oxazolidine), toward sodium borohydride and methylmagnesium iodide. Students synthesize a…

  10. Ab initio study of excited state electronic circular dichroism. Two prototype cases: methyl oxirane and R-(+)-1,1'-bi(2-naphthol).

    PubMed

    Rizzo, Antonio; Vahtras, Olav

    2011-06-28

    A computational approach to the calculation of excited state electronic circular dichroism (ESECD) spectra of chiral molecules is discussed. Frequency dependent quadratic response theory is employed to compute the rotatory strength for transitions between excited electronic states, by employing both a magnetic gauge dependent and a (velocity-based) magnetic gauge independent approach. Application is made to the lowest excited states of two prototypical chiral molecules, propylene oxide, also known as 1,2-epoxypropane or methyl oxirane, and R-(+)-1,1'-bi(2-naphthol), or BINOL. The dependence of the rotatory strength for transitions between the lowest three excited states of methyl oxirane upon the quality and extension of the basis set is analyzed, by employing a hierarchy of correlation consistent basis sets. Once established that basis sets of at least triple zeta quality, and at least doubly augmented, are sufficient to ensure sufficiently converged results, at least at the Hartree-Fock self-consistent field (HF-SCF) level, the rotatory strengths for all transitions between the lowest excited electronic states of methyl oxirane are computed and analyzed, employing HF-SCF, and density functional theory (DFT) electronic structure models. For DFT, both the popular B3LYP and its recently highly successful CAM-B3LYP extension are exploited. The strong dependence of the spectra upon electron correlation is highlighted. A HF-SCF and DFT study is carried out also for BINOL, a system where excited states show the typical pairing structure arising from the interaction of the two monomeric moieties, and whose conformational changes following photoexcitation were studied recently with via time-resolved CD.

  11. Acetate enhances startup of a H₂-producing microbial biocathode.

    PubMed

    Jeremiasse, Adriaan W; Hamelers, Hubertus V M; Croese, Elsemiek; Buisman, Cees J N

    2012-03-01

    H(2) can be produced from organic matter with a microbial electrolysis cell (MEC). To decrease MEC capital costs, a cathode is needed that is made of low-cost material and produces H(2) at high rate. A microbial biocathode is a low-cost candidate, but suffers from a long startup and a low H(2) production rate. In this study, the effects of cathode potential and carbon source on microbial biocathode startup were investigated. Application of a more negative cathode potential did not decrease the startup time of the biocathode. If acetate instead of bicarbonate was used as carbon source, the biocathode started up more than two times faster. The faster startup was likely caused by a higher biomass yield for acetate than for bicarbonate, which was supported by thermodynamic calculations. To increase the H(2) production rate, a flow through biocathode fed with acetate was investigated. This biocathode produced 2.2 m(3) H(2) m(-3)  reactor day(-1) at a cathode potential of -0.7 V versus NHE, which was seven times that of a parallel flow biocathode of a previous study. Copyright © 2011 Wiley Periodicals, Inc.

  12. Extractive fermentation of acetic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busche, R.M.

    1991-12-31

    In this technoeconomic evaluation of the manufacture of acetic acid by fermentation, the use of the bacterium: Acetobacter suboxydans from the old vinegar process was compared with expected performance of the newer Clostridium thermoaceticum bacterium. Both systems were projected to operate as immobilized cells in a continuous, fluidized bed bioreactor, using solvent extraction to recover the product. Acetobacter metabolizes ethanol aerobically to produce acid at 100 g/L in a low pH medium. This ensures that the product is in the form of a concentrated extractable free acid, rather than as an unextractable salt. Unfortunately, yields from glucose by way ofmore » the ethanol fermentation are poor, but near the biological limits of the organisms involved. Conversely, C. thermoaceticum is a thermophilic anaerobe that operates at high fermentation rates on glucose at neutral pH to produce acetate salts directly in substantially quantitative yields. However, it is severely inhibited by product, which restricts concentration to a dilute 20 g/L. An improved Acetobacter system operating with recycled cells at 50 g/L appears capable of producing acid at $0.38/lb, as compared with a $0.29/lb price for synthetic acid. However, this system has only a limited margin for process improvement. The present Clostridium system cannot compete, since the required selling price would be $0.42/lb. However, if the organism could be adapted to tolerate higher product concentrations at acid pH, selling price could be reduced to $0.22/lb, or about 80% of the price of synthetic acid.« less

  13. Computer simulations of alkali-acetate solutions: Accuracy of the forcefields in difference concentrations

    NASA Astrophysics Data System (ADS)

    Ahlstrand, Emma; Zukerman Schpector, Julio; Friedman, Ran

    2017-11-01

    When proteins are solvated in electrolyte solutions that contain alkali ions, the ions interact mostly with carboxylates on the protein surface. Correctly accounting for alkali-carboxylate interactions is thus important for realistic simulations of proteins. Acetates are the simplest carboxylates that are amphipathic, and experimental data for alkali acetate solutions are available and can be compared with observables obtained from simulations. We carried out molecular dynamics simulations of alkali acetate solutions using polarizable and non-polarizable forcefields and examined the ion-acetate interactions. In particular, activity coefficients and association constants were studied in a range of concentrations (0.03, 0.1, and 1M). In addition, quantum-mechanics (QM) based energy decomposition analysis was performed in order to estimate the contribution of polarization, electrostatics, dispersion, and QM (non-classical) effects on the cation-acetate and cation-water interactions. Simulations of Li-acetate solutions in general overestimated the binding of Li+ and acetates. In lower concentrations, the activity coefficients of alkali-acetate solutions were too high, which is suggested to be due to the simulation protocol and not the forcefields. Energy decomposition analysis suggested that improvement of the forcefield parameters to enable accurate simulations of Li-acetate solutions can be achieved but may require the use of a polarizable forcefield. Importantly, simulations with some ion parameters could not reproduce the correct ion-oxygen distances, which calls for caution in the choice of ion parameters when protein simulations are performed in electrolyte solutions.

  14. Theoretical problems associated with the use of acetic anhydride as a co-solvent for the non-aqueous titration of hydrohalides of organic bases and quaternary ammonium salts.

    PubMed

    Völgyi, Gergely; Béni, Szabolcs; Takács-Novák, Krisztina; Görög, Sándor

    2010-01-05

    A potentiometric titration study of organic base hydrohalides and quaternary ammonium salts using perchloric acid as the titrant and a mixture of acetic anhydride and acetic acid as the solvent was carried out and the titration mixture was analysed by NMR in order to clarify the chemistry of the reactions involved. It was found that in contrast to the general belief the formation of acetyl halides and titratable free acetate ion does not take place prior to the titration but NMR spectra proved the formation of acetyl halides in the course of the titration. This observation and the fact that the shape of the titration curves depends on the nature of the hydrohaloic acid bound to the base or of the anion in the quaternary ammonium salts led to the conclusion that the titrating agent is acetyl perchlorate formed in situ during the titration. Equations of the reactions involved in the titration process are shown in the paper.

  15. Antimicrobial and water-triggered release characteristics of a copper sulfate-polyvinyl acetate adhesive composite

    NASA Astrophysics Data System (ADS)

    De Jesus, A. P. O.; Roxas-Villanueva, R. M. L.; Herrera, M. U.

    2017-05-01

    Water-triggered release of antimicrobial solutions is advantageous in inhibiting the growth of bacteria and fungi in moist and wet environments. In this study, we fabricated a composite, by mixing polyvinyl acetate adhesive with copper sulfate solution, which exhibits antimicrobial activities against bacteria. Polyvinyl acetate adhesive serves as the binder and water soluble substance while copper sulfate serves as the antimicrobial agent. The composite was coated in an acetate film and air-dried. To monitor the rate of release of copper ions, the composite was submerged in water and the conductivity was measured. The conductivity saturation time was determined. The composite showed antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive).

  16. Antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced by enzymatic esterification.

    PubMed

    Vanin, Adriana B; Orlando, Tainara; Piazza, Suelen P; Puton, Bruna M S; Cansian, Rogério L; Oliveira, Debora; Paroul, Natalia

    2014-10-01

    This work reports the maximization of eugenyl acetate production by esterification of essential oil of clove in a solvent-free system using Novozym 435 as catalyst. The antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced were determined. The conditions that maximized eugenyl acetate production were 60 °C, essential oil of clove to acetic anhydride ratio of 1:5, 150 rpm, and 10 wt% of enzyme, with a conversion of 99.87 %. A kinetic study was performed to assess the influence of substrates' molar ratio, enzyme concentration, and temperature on product yield. Results show that an excess of anhydride, enzyme concentration of 5.5 wt%, 50 °C, and essential oil of clove to acetic anhydride ratio of 1:5 afforded nearly a complete conversion after 2 h of reaction. Comparing the antibacterial activity of the essential oil of clove before and after esterification, we observed a decrease in the antimicrobial activity of eugenyl acetate, particularly with regard to minimum inhibitory concentration (MIC). Both eugenyl acetate and clove essential oil were most effective to the gram-negative than gram-positive bacteria group. The results showed a high antioxidant potential for essential oil before and particularly after the esterification reaction thus becoming an option for the formulation of new antioxidant products.

  17. Process development for the production of 15β-hydroxycyproterone acetate using Bacillus megaterium expressing CYP106A2 as whole-cell biocatalyst.

    PubMed

    Kiss, Flora M; Lundemo, Marie T; Zapp, Josef; Woodley, John M; Bernhardt, Rita

    2015-03-05

    CYP106A2 from Bacillus megaterium ATCC 13368 was first identified as a regio- and stereoselective 15β-hydroxylase of 3-oxo-∆4-steroids. Recently, it was shown that besides 3-oxo-∆4-steroids, 3-hydroxy-∆5-steroids as well as di- and triterpenes can also serve as substrates for this biocatalyst. It is highly selective towards the 15β position, but the 6β, 7α/β, 9α, 11α and 15α positions have also been described as targets for hydroxylation. Based on the broad substrate spectrum and hydroxylating capacity, it is an excellent candidate for the production of human drug metabolites and drug precursors. In this work, we demonstrate the conversion of a synthetic testosterone derivative, cyproterone acetate, by CYP106A2 under in vitro and in vivo conditions. Using a Bacillus megaterium whole-cell system overexpressing CYP106A2, sufficient amounts of product for structure elucidation by nuclear magnetic resonance spectroscopy were obtained. The product was characterized as 15β-hydroxycyproterone acetate, the main human metabolite. Since the product is of pharmaceutical interest, our aim was to intensify the process by increasing the substrate concentration and to scale-up the reaction from shake flasks to bioreactors to demonstrate an efficient, yet green and cost-effective production. Using a bench-top bioreactor and the recombinant Bacillus megaterium system, both a fermentation and a transformation process were successfully implemented. To improve the yield and product titers for future industrial application, the main bottlenecks of the reaction were addressed. Using 2-hydroxypropyl-β-cyclodextrin, an effective bioconversion of 98% was achieved using 1 mM substrate concentration, corresponding to a product formation of 0.43 g/L, at a 400 mL scale. Here we describe the successful scale-up of cyproterone acetate conversion from shake flasks to bioreactors, using the CYP106A2 enzyme in a whole-cell system. The substrate was converted to its main human

  18. Fermentative utilization of glycerol residue for the production of acetic acid

    NASA Astrophysics Data System (ADS)

    Irvan; Trisakti, B.; Hasibuan, R.; Joli, M.

    2018-02-01

    Glycerol residue, frequently known as pitch, is a waste produced from the downstream product of crude glycerine distillation. With the increasing need of pure glycerine in the world, the glycerol residue produced is also increasing. Glycerol residue is a solid waste at room temperature, highly alkaline (pH > 13), corrosive, and categorized as hazardous and poisonous waste. In this research, acetic acid was produced from glycerol residue through the anaerobic fermentation process by using purple non-sulphur photosynthetic bacteria. The purpose of this study was to find out the influence of concentration change of glycerol residue on time and to find out the possibility of glycerol residue to be utilized as acetic acid. In this research, at first 400 g of glycerol residue was diluted with 200 ml of distilled water to change the glycerine phase, from solid to liquid at room temperature, acidified by using hydrochloric acid until pH 2. The top layer formed was fatty acid and triglycerides that should be removed. Meanwhile, the bottom layer was diluted glycerol residue which was then neutralized with caustic soda. To produce acetic acid, glycerol residue with various concentrations, salt, and purple non-sulphur photosynthetic bacteria were put together into a 100 ml bottle which had been previously sterilized, then incubated for four weeks under the light of 40-watt bulb. The result showed that on the 28th day of fermentation, the produced acetic acid were 0.28, 1.85, and 0.2% (w/w) by using glycerine with the concentration of 0.5, 1.0, and 1.5% (w/w), respectively.

  19. Genome-Guided Analysis and Whole Transcriptome Profiling of the Mesophilic Syntrophic Acetate Oxidising Bacterium Syntrophaceticus schinkii

    PubMed Central

    Manzoor, Shahid; Bongcam-Rudloff, Erik; Schnürer, Anna; Müller, Bettina

    2016-01-01

    Syntrophaceticus schinkii is a mesophilic, anaerobic bacterium capable of oxidising acetate to CO2 and H2 in intimate association with a methanogenic partner, a syntrophic relationship which operates close to the energetic limits of microbial life. Syntrophaceticus schinkii has been identified as a key organism in engineered methane-producing processes relying on syntrophic acetate oxidation as the main methane-producing pathway. However, due to strict cultivation requirements and difficulties in reconstituting the thermodynamically unfavourable acetate oxidation, the physiology of this functional group is poorly understood. Genome-guided and whole transcriptome analyses performed in the present study provide new insights into habitat adaptation, syntrophic acetate oxidation and energy conservation. The working draft genome of Syntrophaceticus schinkii indicates limited metabolic capacities, with lack of organic nutrient uptake systems, chemotactic machineries, carbon catabolite repression and incomplete biosynthesis pathways. Ech hydrogenase, [FeFe] hydrogenases, [NiFe] hydrogenases, F1F0-ATP synthase and membrane-bound and cytoplasmic formate dehydrogenases were found clearly expressed, whereas Rnf and a predicted oxidoreductase/heterodisulphide reductase complex, both found encoded in the genome, were not expressed under syntrophic growth condition. A transporter sharing similarities to the high-affinity acetate transporters of aceticlastic methanogens was also found expressed, suggesting that Syntrophaceticus schinkii can potentially compete with methanogens for acetate. Acetate oxidation seems to proceed via the Wood-Ljungdahl pathway as all genes involved in this pathway were highly expressed. This study shows that Syntrophaceticus schinkii is a highly specialised, habitat-adapted organism relying on syntrophic acetate oxidation rather than metabolic versatility. By expanding its complement of respiratory complexes, it might overcome limiting bioenergetic

  20. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation.

    PubMed

    Liu, Yu-Fan; Hsieh, Chia-Wen; Chang, Yao-Sheng; Wung, Being-Sun

    2017-08-01

    Acetic acid is a predominant by-product of lignocellulosic biofuel process, which inhibits microbial biocatalysts. Development of bacterial strains that are tolerant to acetic acid is challenging due to poor understanding of the underlying molecular mechanisms. In this study, we generated and characterized two acetic acid-tolerant strains of Zymomonas mobilis using N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-acetate adaptive breeding. Two mutants, ZMA-142 and ZMA-167, were obtained, showing a significant growth rate at a concentration of 244 mM sodium acetate, while the growth of Z. mobilis ATCC 31823 were completely inhibited in presence of 195 mM sodium acetate. Our data showed that acetate-tolerance of ZMA-167 was attributed to a co-transcription of nhaA from ZMO0117, whereas the co-transcription was absent in ATCC 31823 and ZMA-142. Moreover, ZMA-142 and ZMA-167 exhibited a converstion rate (practical ethanol yield to theorical ethanol yield) of 90.16% and 86% at 195 mM acetate-pH 5 stress condition, respectively. We showed that acid adaptation of ZMA-142 and ZMA-167 to 146 mM acetate increased ZMA-142 and ZMA-167 resulted in an increase in ethanol yield by 32.21% and 21.16% under 195 mM acetate-pH 5 stress condition, respectively. The results indicate the acetate-adaptive seed culture of acetate-tolerant strains, ZMA-142 and ZMA-167, could enhance the ethanol production during fermentation.

  1. Toxicity of clove essential oil and its ester eugenyl acetate against Artemia salina.

    PubMed

    Cansian, R L; Vanin, A B; Orlando, T; Piazza, S P; Puton, B M S; Cardoso, R I; Gonçalves, I L; Honaiser, T C; Paroul, N; Oliveira, D

    2017-03-01

    The production of compounds via enzymatic esterification has great scientific and technological interest due to the several inconveniences related to acid catalysis, mainly by these systems do not fit to the concept of "green chemistry". Besides, natural products as clove oil present compounds with excellent biological potential. Bioactives compounds are often toxic at high doses. The evaluation of lethality in a less complex animal organism can be used to a monitoring simple and rapid, helping the identification of compounds with potential insecticide activity against larvae of insect vector of diseases. In this sense, the toxicity against Artemia salina of clove essential oil and its derivative eugenyl acetate obtained by enzymatic esterification using Novozym 435 as biocatalyst was evaluated. The conversion of eugenyl acetate synthesis was 95.6%. The results about the evaluation of toxicity against the microcrustacean Artemia salina demonstrated that both oil (LC50= 0.5993 µg.mL-1) and ester (LC50= 0.1178 µg.mL-1) presented high toxic potential, being the eugenyl acetate almost 5 times more toxic than clove essential oil. The results reported here shows the potential of employing clove oil and eugenyl acetate in insecticide formulations.

  2. Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae.

    PubMed

    Semchyshyn, Halyna M; Abrat, Oleksandra B; Miedzobrodzki, Jacek; Inoue, Yoshiharu; Lushchak, Volodymyr I

    2011-01-01

    The influence of acetic and propionic acids on baker's yeast was investigated in order to expand our understanding of the effect of weak organic acid food preservatives on eukaryotic cells. Both acids decreased yeast survival in a concentration-dependent manner, but with different efficiencies. The acids inhibited the fluorescein efflux from yeast cells. The inhibition constant of fluorescein extrusion from cells treated with acetate was significantly lower in parental strain than in either PDR12 (ABC-transporter Pdr12p) or WAR1 (transcriptional factor of Pdr12p) defective mutants. The constants of inhibition by propionate were virtually the same in all strains used. Yeast exposure to acetate increased the level of oxidized proteins and the activity of antioxidant enzymes, while propionate did not change these parameters. This suggests that various mechanisms underlie the yeast toxicity by acetic and propionic acids. Our studies with mutant cells clearly indicated the involvement of Yap1p transcriptional regulator and de novo protein synthesis in superoxide dismutase up-regulation by acetate. The up-regulation of catalase was Yap1p independent. Yeast pre-incubation with low concentrations of H₂O₂ caused cellular cross-protection against high concentrations of acetate. The results are discussed from the point of view that acetate induces a prooxidant effect in vivo, whereas propionate does not.

  3. Preparation of vinyl acetate grafted natural rubber by irradiation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porntrairat, A.; Pattamaprom, C.

    Improvement in properties of natural rubber could be done by several methods. In this research, gamma radiation technique, which is simple, accurate, easy to control and clean, was applied to enhance the properties of natural rubber (NR) in latex state. The purpose of this research is to study the appropriate condition for preparing grafted natural rubber latex by using irradiation method. Vinyl acetate monomers (VAc) were grafted onto natural rubber latex (NR-g-PVAc) at 0-10 kGys by gamma radiation from Cobalt-60 source at room temperature. Physical properties of grafted natural rubber such as chloroform number, swelling ratio and gel content weremore » measured. The VAc content of NR-g-PVAc was investigated by titration and visualized by FTIR spectroscopy. The FTIR spectra of NR-g-PVAc prepared at 0-10 kGys showed characteristic peaks of the vinyl acetate confirming that VAc could be grafted onto natural rubber molecular chains effectively under appropriate irradiation conditions. From the result, radiation grafting was found to be a useful technique for grafting of vinyl acetate onto natural rubber.« less

  4. Potential Problems with Ethylene-Vinyl Acetate for Photovoltaic Packaging (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K, M.

    2006-05-01

    Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support electrical isolation, optical coupling, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about -15 C. Temperatures lower thanmore » this can be reached for extended periods of time in some climates. Due to increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL 1703.« less

  5. Effect of chain structure on hydrogen bonding in vinyl acetate - vinyl alcohol copolymers

    NASA Astrophysics Data System (ADS)

    Merekalova, Nadezhda D.; Bondarenko, Galina N.; Denisova, Yuliya I.; Krentsel, Liya B.; Litmanovich, Arkadiy D.; Kudryavtsev, Yaroslav V.

    2017-04-01

    FTIR spectroscopy and semi-empirical AM1 method are used to study hydrogen bonding in multiblock and random equimolar copolymers of vinyl acetate and vinyl alcohol. An energetically beneficial zip-holder complex, built on multiple inter- and intrachain hydroxyl-hydroxyl bonds and an intrachain hydroxyl-acetyloxy bond, can be formed between two vinyl alcohol sequences. As a result, multiblock copolymers reveal stronger degree of association that affects crystallinity, as well as various rheological and relaxation properties discussed in the literature. Macromolecular complexes in random copolymers are weak and tend to be destroyed in the presence of residual DMF solvent and adsorbed water. Nevertheless, a rather stable interchain quaternary complex can be formed that includes vinyl alcohol and vinyl acetate units and DMF and water molecules. For a single chain it is shown that an H-bond between neighboring vinyl alcohol and vinyl acetate monomer units mostly engages a carbonyl oxygen atom of the vinyl acetate, if the vinyl alcohol belongs to a short (<5 units) sequence, and an ether oxygen atom in the other case. On the whole, the quantum chemistry calculations shed much light on the origin of distinctions in the copolymer FTIR spectra, which may seem subtle when considered standalone.

  6. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash.

    PubMed

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2007-01-01

    The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations x three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37 degrees C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37 degrees C. At 30 degrees C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37 degrees C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and >or=2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.

  7. Studies of the Acetate Kinase-Phosphotransacetylase and the Butanediol-Forming Systems in Aerobacter aerogenes

    PubMed Central

    Brown, T. D. K.; Pereira, C. R. S.; Størmer, F. C.

    1972-01-01

    Mutants of Aerobacter aerogenes devoid of acetate kinase and phosphotransacetylase activities were isolated by selection for resistance to fluoroacetate on lactate medium. The mutants were used to study the role of the acetate kinase-phosphotransacetylase system in growth on acetate and glucose. Acetate kinase-negative and phosphotransacetylase-negative mutants were unable to grow on acetate minimal medium. Their growth rates on glucose minimal medium were identical with that of the parent strain under aerobic conditions, but lower growth rates were observed in the mutant strains during anaerobic growth on glucose medium. The mutants were unable to incorporate [2-14C]-acetate rapidly while growing on glycerol. Variations in acetate kinase and phosphotransacetylase levels during growth on glucose were studied. The specific activities of the enzymes increased approximately fivefold during aerobic growth on glucose in batch culture. The enzyme levels were also studied during anaerobic growth on glucose at constant pH (pH 5.8 and 7.0). Smaller increases in specific activities were found under these conditions. The role of acetate in the induction of the diacetyl (acetoin) reductase was investigated using a mutant deficient in both acetate kinase and phosphotransacetylase. The effect of pH on the induction of this enzyme during growth on glucose under anaerobic conditions was tested. The data support the idea that free acetic acid is the inducer for the enzymes of the butanediol-forming pathway in A. aerogenes. PMID:4640502

  8. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.

    PubMed

    Papapetridis, Ioannis; van Dijk, Marlous; Dobbe, Arthur P A; Metz, Benjamin; Pronk, Jack T; van Maris, Antonius J A

    2016-04-26

    Acetic acid, an inhibitor of sugar fermentation by yeast, is invariably present in lignocellulosic hydrolysates which are used or considered as feedstocks for yeast-based bioethanol production. Saccharomyces cerevisiae strains have been constructed, in which anaerobic reduction of acetic acid to ethanol replaces glycerol formation as a mechanism for reoxidizing NADH formed in biosynthesis. An increase in the amount of acetate that can be reduced to ethanol should further decrease acetic acid concentrations and enable higher ethanol yields in industrial processes based on lignocellulosic feedstocks. The stoichiometric requirement of acetate reduction for NADH implies that increased generation of NADH in cytosolic biosynthetic reactions should enhance acetate consumption. Replacement of the native NADP(+)-dependent 6-phosphogluconate dehydrogenase in S. cerevisiae by a prokaryotic NAD(+)-dependent enzyme resulted in increased cytosolic NADH formation, as demonstrated by a ca. 15% increase in the glycerol yield on glucose in anaerobic cultures. Additional deletion of ALD6, which encodes an NADP(+)-dependent acetaldehyde dehydrogenase, led to a 39% increase in the glycerol yield compared to a non-engineered strain. Subsequent replacement of glycerol formation by an acetate reduction pathway resulted in a 44% increase of acetate consumption per amount of biomass formed, as compared to an engineered, acetate-reducing strain that expressed the native 6-phosphogluconate dehydrogenase and ALD6. Compared to a non-acetate reducing reference strain under the same conditions, this resulted in a ca. 13% increase in the ethanol yield on glucose. The combination of NAD(+)-dependent 6-phosphogluconate dehydrogenase expression and deletion of ALD6 resulted in a marked increase in the amount of acetate that was consumed in these proof-of-principle experiments, and this concept is ready for further testing in industrial strains as well as in hydrolysates. Altering the cofactor

  9. Administration of hypertonic (3%) sodium chloride/acetate in hyponatremic patients with symptomatic vasospasm following subarachnoid hemorrhage.

    PubMed

    Suarez, J I; Qureshi, A I; Parekh, P D; Razumovsky, A; Tamargo, R J; Bhardwaj, A; Ulatowski, J A

    1999-07-01

    A retrospective study was carried out to evaluate the effect of hypertonic (3%) saline chloride/acetate on various hemodynamic parameters in mildly hyponatremic patients with symptomatic vasospasm following aneurysmal subarachnoid hemorrhage (SAH). We identified 29 hyponatremic (serum sodium < 135 mEq/L) patients who received hypertonic (3%) sodium chloride/acetate as a continuous infusion. Administration of hypertonic (3%) sodium chloride/acetate resulted in higher central venous pressures and positive fluid balance, with a concomitant increase in serum sodium and chloride concentrations without metabolic acidosis. There were no changes in mean cerebral blood flow velocities after infusion of hypertonic (3%) sodium chloride/acetate. We found no reports of congestive heart failure, pulmonary edema, metabolic acidosis, coagulopathy, intracranial hemorrhages, or central pontine myelinolysis in any of these patients. We conclude that hypertonic (3%) sodium chloride/acetate can be administered to patients with mild hyponatremia in the setting of symptomatic vasospasm following SAH without untoward effects. Sample size and limitations of a retrospective analysis preclude conclusions about safety and efficacy of hypertonic (3%) sodium chloride/acetate administration in this patient population. However, our results support justification for a prospective, randomized, double-blind trial of hypertonic (3%) sodium chloride/acetate versus normal saline in patients with symptomatic vasospasm following SAH.

  10. Comparative evaluation of Chitosan, Cellulose Acetate, and Polyethersulfone Nanofiber Scaffolds for Neural Differentiation

    PubMed Central

    Du, Jian; Tan, Elaine; Kim, Hyo Jun; Zhang, Allen; Bhattacharya, Rahul; Yarema, Kevin J

    2013-01-01

    Based on accumulating evidence that the 3D topography and the chemical features of a growth surface influence neuronal differentiation, we combined these two features by evaluating the cytotoxicity, proliferation, and differentiation of the rat PC12 line and human neural stem cells (hNSCs) on chitosan (CS), cellulose acetate (CA), and polyethersulfone (PES)-derived electrospun nanofibers that had similar diameters, centered in the 200 to 500 nm range. None of the nanofibrous materials were cytotoxic compared to 2D (e.g., flat surface) controls; however, proliferation generally was inhibited on the nanofibrous scaffolds although to a lesser extent on the polysaccharide-derived materials compared to PES. In an exception to the trend towards slower growth on the 3D substrates, hNSCs differentiated on the CS nanofibers proliferated faster than the 2D controls and both cell types showed enhanced indication of neuronal differentiation on the CS scaffolds. Together, these results demonstrate beneficial attributes of CS for neural tissue engineering when this polysaccharide is used in the context of the defined 3D topography found in electrospun nanofibers. PMID:24274534

  11. Elevated acetate concentrations in the rhizosphere of Spartina alterniflora and potential influences on sulfate reduction

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Tugel, Joyce B.; Giblin, A. E.; Banta, G. T.; Hobbie, J. E.

    1992-01-01

    Acetate is important in anaerobic metabolism of non-vegetated sediments but its role in salt marsh soils was not investigated thoroughly. Acetate concentrations, oxidation (C-14) and SO4(2-) reduction (S-35) were measured in S. alterniflora soils in NH and MA. Pore water from cores contained greater than 0.1 mM acetate and in some instances greater than 1.0 mM. Non-destructive samples contained less than 0.01 mM. Acetate was associated with roots and concentrations were highest during vegetative growth and varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of SO4(2-) reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a significant percentage of SO4(2-) reduction. These results differ markedly from data for non-vegetated coastal sediments where acetate levels are low, oxidation rate constants are high and acetate oxidation rates greatly exceed rates of SO4(2-) reduction. The discrepancy between rates of acetate oxidation and SO4(2-) reduction in marsh soils may be due either to the utilization of substrates other than acetate by SO4(2-) reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria.

  12. Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies.

    PubMed

    Chakroune, Nassira; Viau, Guillaume; Ammar, Souad; Poul, Laurence; Veautier, Delphine; Chehimi, Mohamed M; Mangeney, Claire; Villain, Françoise; Fiévet, Fernand

    2005-07-19

    Monodisperse ruthenium nanoparticles were prepared by reduction of RuCl3 in 1,2-propanediol. The mean particle size was controlled by appropriate choice of the reduction temperature and the acetate ion concentration. Colloidal solutions in toluene were obtained by coating the metal particles with dodecanethiol. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XANES and EXAFS for the Ru K-absorption edge) were performed on particles of two different diameters, 2 and 4 nm, and in different environments, polyol/acetate or thiol. For particles stored in polyol/acetate XPS studies revealed superficial oxidation limited to one monolayer and a surface coating containing mostly acetate ions. Analysis of the EXAFS spectra showed both oxygen and ruthenium atoms around the ruthenium atoms with a Ru-Ru coordination number N smaller than the bulk value, as expected for fine particles. In the case of 2 nm acetate-capped particles N is consistent with particles made up of a metallic core and an oxidized monolayer. For 2 nm thiol-coated particles, a Ru-S bond was evidenced by XPS and XAS. For the 4 nm particles XANES and XPS studies showed that most of the ruthenium atoms are in the zerovalent state. Nevertheless, in both cases, when capped with thiol, the Ru-Ru coordination number inferred from EXAFS is much smaller than for particles of the same size stored in polyol. This is attributed to a structural disorganization of the particles by thiol chemisorption. HRTEM studies confirm the marked dependence of the structural properties of the ruthenium particles on their chemical environment; they show the acetate-coated particles to be single crystals, whereas the thiol-coated particles appear to be polycrystalline.

  13. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Xia, Kai; Liang, Xin-le; Li, Yu-dong

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  14. Kelp waste extracts combined with acetate enhances the biofuel characteristics of Chlorella sorokiniana.

    PubMed

    Zheng, Shiyan; He, Meilin; Sui, Yangsui; Gebreluel, Temesgen; Zou, Shanmei; Kemuma, Nyabuto Dorothy; Wang, Changhai

    2017-02-01

    To probe the effect of kelp waste extracts (KWE) combined with acetate on biochemical composition of Chlorella sorokiniana, the cultures were performed under independent/combined treatment of KWE and acetate. The results showed that high cell density and biomass were obtained by KWE combined with acetate treatments, whose biomass productivity increased by 79.69-102.57% and 20.04-35.32% compared with 3.0gL -1 acetate and KWE treatments respectively. The maximal neutral lipid per cell and lipid productivity were gained in KWE combined with 3.0gL -1 acetate treatment, which increased by 16.32% and 129.03% compared with 3.0gL -1 acetate, and 253.35% and 70.74% compared with KWE treatment. Meanwhile, C18:3n3 and C18:2n6c contents were reduced to 4.90% and 11.88%, whereas C16:0 and C18:1n9c were improved to 28.71% and 37.76%. Hence, supplementing appropriate acetate in KWE cultures is supposed to be a great potential method for large-scale cultivation of C. sorokiniana to generate biofuel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Coating-type three-dimensional acetate-driven microbial fuel cells.

    PubMed

    Yu, Jin; Tang, Yulan

    2015-08-01

    This study uses sodium acetate as fuel to construct bioelectricity in coating-type three-dimensional microbial fuel cells anode. The coating-type three-dimensional anode was constructed using iron net as structural support, adhering a layer of carbon felt as primary coating and using carbon powder and 30% PTFE solution mixture as coating. The efficiency of electricity production and wastewater treatment were analyzed for the three-dimensional acetate-fed (C2H3NaO2) microbial fuel cells with the various ratio of the coating mixture. The results showed that the efficiency of electricity production was significantly improved when using the homemade coating-type microbial fuel cells anode compared with the one without coating on the iron net, which the apparent internal resistance was decreased by 59.4% and the maximum power density was increased by 1.5 times. It was found the electricity production was greatly influenced by the ratio of the carbon powder and PTFE in the coating. The electricity production was the highest with apparent internal resistance of 190 Ω, and maximum power density of 5189.4 mW m(-3) when 750 mg of carbon powder and 10 ml of PTFE (i.e., ratio 75:1) was used in the coating. With the efficiency of electricity production, wide distribution and low cost of the raw materials, the homemade acetate-fed microbial fuel cells provides a valuable reference to the development of the composition microbial fuel cell anode production. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. [Blood cerebrospinal fluid barrier damage of rats induced by lead acetate or nano-lead exposure].

    PubMed

    Feng, P P; Zhai, F J; Jiang, S F; Wu, J Z; Xue, L; Zheng, M M; Zhou, L L; Meng, C Y; Cao, M Y; Zhang, Y S

    2016-05-20

    To investigate the damage of blood-cerebrospinal fluid barrier (BCB) of rats induced by lead and nano-lead exposure in order to provide the basis for mechanism study of lead neurotoxicity. 39 male rats were randomly divided into control group, lead acetate exposed group and nano-lead exposed group. Rats in lead acetate exposed group and nano-lead exposed group were given 20 mg/kg lead acetate or nano-lead by oral gavage and rats in control groups were given the same amount saline for 9 weeks.Morris maze was used to test the learning function, serum albumin and CSF albumin were determined by ELISA. Confocal laser scanning microscope was applied to detect ZO-1 and Occludin protein expression in choroid plexus, real time-PCR was used to test the expression of ZO-1 and Occludin mRNA expression. Pathological changes of choroid plexus cells were observed by the electron microscopy. Compared with the control group, the escape latency of rats in lead acetate or nano-lead exposure group were longer and times of across platform were less. The levels of CSF albumin and the CSF albumin index in lead acetate or nano-lead exposed rats were obviously higher, and the fluorescence intensity of ZO-1, Occludin as well as mRNA expressions were lower than those in control group(P<0.05). Compared with lead acetate exposed group, the levels of CSF albumin and the CSF albumin index in nano-lead exposure group were higher. The fluorescence intensity and mRNA expressions of ZO-1, Occludin in nano-lead exposure group were than those in lead acetate group(P<0.05). Electron microscopy revealed that lead acetate or nano-lead exposure could induce shorter microvillus of choroid plexus epithelial cells, mitochondrion destruction and partial disconnection in intracellular junctions between two adjacent epithelial cells. Lead acetate and nano-lead exposed can result in the blood-cerebrospinal fluid barrier damage, which may involve in the process of lead induced neurotoxicity. Meanwhile, nano

  17. Thermochromic Excited - State Dipole Moment Measurements of p-Cyano-N,N-diethylaniline in Ethyl Acetate

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kuklinski, B.; Bojarski, P.

    2003-03-01

    The effect of temperature on absorption and fluorescence spectra of p-cyano-N,N-diethylaniline (CDEA) in ethyl acetate has been studied for temperatures ranging from 293 K to 418 K. At T = 293 K two fluorescence bands are observed: long wavelength emission (LE) and short wavelength emission (SE) of much lower intensity compared to the first one.With temperature increase (which leads to the decrease of dielectric constant ɛ of the solvent) the intensity of SE band strongly increases, however its hypsochromic shift compared to the shift of LE band is rather slight. The electric dipole moments for CDEA determined based on this thermochromic method are: μLEe = 13.4 D and μSEe = 7.5 D for μg = 5.5 D, and μLE e = 13.9 D and μSEe = 8.3 D for μg = 6.6 D. The values obtained are compared with those of p-cyano-N,N-dimethylaniline (CDMA) determined using different methods.

  18. Investigation of gel formation and volatilization of acetate acid in magnesium acetate droplets by the optical tweezers.

    PubMed

    Lv, Xi-Juan; Wang, Yang; Cai, Chen; Pang, Shu-Feng; Ma, Jia-Bi; Zhang, Yun-Hong

    2018-07-05

    Hygroscopicity and volatility of single magnesium acetate (MgAc 2 ) aerosol particles at various relative humidities (RHs) are studied by a single-beam optical tweezers, and refractive indices (RIs) and morphology are characterized by cavity enhanced Raman spectroscopy. Gel formation and volatilization of acetate acid (HAc) in MgAc 2 droplets are observed. Due to the formation of amorphous gel structure, water transposition in droplets at RH < 50% is significantly impeded on a time scale of 140,000 s. Different phase transition at RH < 10% is proposed to explain the distinct water loss after the gel formation. To compare volatilization of HAc in different systems, MgAc 2 and sodium acetate (NaAc) droplets are maintained at several different stable RHs during up to 86,000 s. At RH ≈ 74%, magnesium hydroxide (Mg(OH) 2 ) inclusions are formed in MgAc 2 droplets due to the volatilization of HAc, and whispering gallery modes (WGMs) of MgAc 2 droplets in the Raman spectrum quench after 50,000 s. In sharp contrast, after 86,000 s at RH ≈ 70%, NaAc droplets are in well-mixed liquid states, containing soluble sodium hydroxide (NaOH). At this state, the RI of NaAc droplet is increased, and the quenching of WGMs is not observable. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Methane production from bicarbonate and acetate in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Crill, P. M.; Martens, C. S.

    1986-01-01

    Methane production from C-14 labeled bicarbonate and acetate was measured over the top 28 cm of anoxic Cape Lookout Bight sediments during the summer of 1983. The depth distribution and magnitude of summed radioisotopically determined rates compare well with previous measurements of total methane production and the sediment-water methane flux. Methane production from CO2 reduction and acetate fermentation accounts for greater than 80 percent of the total production rate and sediment-water flux. Methane production from bicarbonate was found to occur in all depth intervals sampled except those in the top 2 cm, whereas significant methane production from acetate only occurred at depths below 10 cm where sulfate was exhausted. Acetate provided 20 to 29 percent of the measured methane production integrated over the top 30 cm of the sediments.

  20. Influence of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid.

    PubMed

    Cihanoğlu, Aydın; Gündüz, Gönül; Dükkancı, Meral

    2017-11-01

    The main objective of this study is to investigate the effect of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid, which is one of the most resistant carboxylic acids to oxidation. For this purpose, firstly, the degradation of acetic acid was examined by using ultrasound alone and the effects of different parameters such as: type of sonication system, ultrasonic power, and addition of H 2 O 2 were investigated on the degradation of acetic acid. There was no chemical oxygen demand (COD) reduction in the presence of sonication alone. In the presence of the heterogeneous Fenton-like oxidation process alone, at 303 K, COD reduction reached only 7.1% after 2 h of reaction. However, the combination of the heterogeneous Fenton-like oxidation process with ultrasound increased the COD reduction from 7.1% to 25.5% after 2 h of reaction in an ultrasonic bath operated at 40 kHz, while the COD reduction only increased from 7.1% to 8.9% in the ultrasonic reactor operated at 850 kHz. This result indicates that the hybrid process of ultrasound and heterogeneous Fenton-like oxidation is a promising process to degrade acetic acid.