NASA Astrophysics Data System (ADS)
Mateas, D. J.; Tick, G.; Carroll, K. C.
2016-12-01
A remediation method was developed to reduce the aqueous solubility and mass-flux of target NAPL contaminants through the in-situ creation of a NAPL mixture source-zone. This method was tested in the laboratory using equilibrium batch tests and two-dimensional flow-cell experiments. The creation of two different NAPL mixture source zones were tested in which 1) volumes of relatively insoluble n-hexadecane (HEX) or vegetable oil (VO) were injected into a trichloroethene (TCE) contaminant source-zone; and 2) pre-determined HEX-TCE and VO-TCE mixture ratio source zones were emplaced into the flow cell prior to water flushing. NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE and toluene (TOL) and to design optimal NAPL (HEX or VO) injection volumes for the flow-cell experiments. Uniform NAPL mixture source-zones were able to quickly decrease contaminant mass-flux, as demonstrated by the emplaced source-zone experiments. The success of the HEX and VO injections to also decrease mass flux was dependent on the ability of these injectants to homogeneously mix with TCE source-zone. Upon injection, both HEX and VO migrated away from the source-zone, to some extent. However, the lack of a steady-state dissolution phase and the inefficient mass-flux-reduction/mass-removal behavior produced after VO injection suggest that VO was more effective than HEX for mixing and partitioning within the source-zone region to form a more homogeneous NAPL mixture with TCE. VO appears to be a promising source-zone injectant-NAPL due to its negligible long-term toxicity and lower mobilization potential.
Mateas, Douglas J; Tick, Geoffrey R; Carroll, Kenneth C
2017-09-01
Widely used flushing and in-situ destruction based remediation techniques (i.e. pump-and treat, enhanced-solubilization, and chemical oxidation/reduction) for sites contaminated by nonaqueous phase liquid (NAPL) contaminant sources have been shown to be ineffective at complete mass removal and reducing aqueous-phase contaminant of concern (COC) concentrations to levels suitable for site closure. A remediation method was developed to reduce the aqueous solubility and mass-flux of COCs within NAPL through the in-situ creation of a NAPL mixture source-zone. In contrast to remediation techniques that rely on the rapid removal of contaminant mass, this technique relies on the stabilization of difficult-to-access NAPL sources to reduce COC mass flux to groundwater. A specific amount (volume) of relatively insoluble n-hexadecane (HEXDEC) or vegetable oil (VO) was injected into a trichloroethene (TCE) contaminant source-zone through a bench-scale flow cell port (i.e. well) to form a NAPL mixture of targeted mole fraction (TCE:HEXDEC or TCE:VO). NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE to design optimal NAPL (HEXDEC or VO) injection volumes for the flow-cell experiments. The NAPL-stabilization flow-cell experiments initiated and sustained significant reductions in COC concentration and mass flux due to a combination of both reduced relative permeability (increased NAPL-saturation) and via modification of NAPL composition (decreased TCE mole fraction). Variations in remediation performance (i.e. impacts on TCE concentration and mass flux reduction) between the different HEXDEC injection volumes were relatively minor, and therefore inconsistent with Raoult's Law predictions. This phenomenon likely resulted from non-uniform mixing of the injected HEXDEC with TCE in the source-zone. VO injection caused TCE concentrations and mass-flux to decrease more rapidly than with HEXDEC injections. This phenomenon occurred because the injected VO was observed to mix more uniformly with TCE in the source-zone due to a lower mobilization potential. The relative lower density differences (buoyancy effects) between VO and the flushing solution (water) was the primary factor contributing to the lower mobilization potential for VO. Overall, this study indicated that the delivery of HEXDEC or VO into the toxic TCE source-zone was effective in significantly reducing contaminant aqueous-phase concentration and mass-flux. However, the effectiveness of this in-situ NAPL stabilization technique depends on source delivery, uniform mixing of amendment, and that the amendment remains immobilized within and around the NAPL contaminant source. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Changyong; Werth, Charles J; Webb, Andrew G
2008-09-10
Magnetic resonance imaging (MRI) was used to visualize the NAPL source zone architecture before and after surfactant-enhanced NAPL dissolution in three-dimensional (3D) heterogeneously packed flowcells characterized by different longitudinal correlation lengths: 2.1 cm (aquifer 1) and 1.1 cm (aquifer 2). Surfactant flowpaths were determined by imaging the breakthrough of a paramagnetic tracer (MnCl(2)) analyzed by the method of moments. In both experimental aquifers, preferential flow occurred in high permeability materials with low NAPL saturations, and NAPL was preferentially removed from the top of the aquifers with low saturation. Alternate flushing with water and two surfactant pulses (5-6 pore volumes each) resulted in approximately 63% of NAPL mass removal from both aquifers. However, overall reduction in mass flux (Mass Flux 1) exiting the flowcell was lower in aquifer 2 (68%) than in aquifer 1 (81%), and local effluent concentrations were found to increase by as high as 120 times at local sampling ports from aquifer 2 after surfactant flushing. 3D MRI images of NAPL revealed that NAPL migrated downward and created additional NAPL source zones in previously uncontaminated areas at the bottom of the aquifers. The additional NAPL source zones were created in the direction transverse to flow in aquifer 2, which explains the higher mass flux relative to aquifer 1. Analysis using a total trapping number indicates that mobilization of NAPL trapped in the two coarsest sand fractions is possible when saturation is below 0.5 and 0.4, respectively. Results from this study highlight the potential impacts of porous media heterogeneity and NAPL source zone architecture on advanced in-situ flushing technologies.
Zhang, Changyong; Werth, Charles J; Webb, Andrew G
2007-05-15
A direct visualization method using magnetic resonance imaging (MRI) was developed to characterize sand grain size distribution, nonaqueous phase liquid (NAPL) source zone architecture, and aqueous flowpaths in a three-dimensional (3-D) flowcell (26.5 cm x 10.5 cm x 10.5 cm) packed with a heterogeneous distribution of five different sand fractions. All images were acquired at a resolution of 0.1875 cm x 0.1875 cm x 0.225 cm. A 1H image of pore water resolved the heterogeneous permeability field; grain size differences as small as 0.1 mm could be distinguished. A time series of 1H images of water doped with the paramagnetic tracer MnCl2 were acquired and used to obtain voxel-scale breakthrough curves. Water preferentially flowed through coarse sands before NAPL release. After NAPL release, the flow bypassed NAPLzones, and bypassing was more evident for high NAPL saturation zones. A time series of 19F images of NAPL were acquired and used to determine voxel-scale NAPL saturation (Sn) during dissolution. Results show that 93% of NAPL mass was in the coarsest sand, most NAPL was trapped as pools and not as residual ganglia, NAPL saturation increased with depth, and the NAPL dissolution front moved vertically from the top to the bottom of the flowcell during the first 170 pore volumes of waterflushed. NAPL component effluent concentrations initially increased due to the development of flow in zones with decreasing NAPL saturation. Flowpath images suggest that this occurs as NAPL transitions from pools (Sn > 0.15) to residual ganglia. The results highlight the importance of flow bypassing and provide the opportunity to develop more accurate NAPL dissolution models.
Effects of Contaminated Site Age on Dissolution Dynamics
NASA Astrophysics Data System (ADS)
Jawitz, J. W.
2004-12-01
This work presents a streamtube-based analytical approach to evaluate reduction in groundwater contaminant flux resulting from partial mass reduction in a nonaqueous phase liquid (NAPL) source zone. The reduction in contaminant flux, Rj, discharged from the source zone is a remediation performance metric that has a direct effect on the fundamental drivers of remediation: protection of human health risks and the environment. Spatial variability is described within a Lagrangian framework where aquifer hydrodynamic heterogeneities are characterized using nonreactive travel time distributions, while NAPL spatial distribution heterogeneity can be similarly described using reactive travel time distributions. The combined statistics of these distributions are used to evaluate the relationship between reduction in contaminant mass, Rm, and Rj. A portion of the contaminant mass in the source zone is assumed to be removed via in-situ flushing remediation, with the initial and final conditions defined as steady-state natural-gradient groundwater flow through the contaminant source zone. The combined effect of aquifer and NAPL heterogeneities are shown to be captured in a single parameter, reactive travel time variability, that was determined to be the most important factor controlling the relationship between Rm and Rj. Increased values of the following parameters are shown to result in more favorable contaminant elution dynamics (i.e., greater flux reduction for a given reduction in mass): aquifer hydrodynamic heterogeneity, NAPL source zone heterogeneity, positive correlation between travel time and NAPL content, and time since the contamination event. Less favorable elution behavior is shown to result from negative correlations between travel time and NAPL content and rate-limited dissolution. The specific emphasis of this presentation is on the effects of the length of time that has elapsed since the contamination event (site age) on the dissolution dynamics.
2013-11-15
was conducted. As expected, a cylinder was formed similar to the one shown in Figure 5.9 using potassium permanganate , with slight elongation in the...clean water injections at 400 mg/L. This was not necessary during the ISCO disturbance test, as potassium permanganate (KMnO4), which forms a deep
Oscillatory hydraulic testing as a strategy for NAPL source zone monitoring: Laboratory experiments
NASA Astrophysics Data System (ADS)
Zhou, YaoQuan; Cardiff, Michael
2017-05-01
Non-aqueous phase liquids (NAPLs) have a complex mode of transport in heterogeneous aquifers, which can result in pools and lenses of NAPLs (the "source zone") that are difficult to detect and can cause long-term contamination via slow dissolution into groundwater (the "dissolved plume"). Characterizing the extent and evolution of NAPL contamination within the source zone is a useful strategy for designing and adapting appropriate remedial actions at many contaminated sites. As a NAPL flows into a given aquifer volume, the effective hydraulic conductivity (K) and specific storage (Ss) of the volume changes associated with the viscosity and compressibility of the impinging fluid, meaning that NAPL movement may be detectable with hydraulic testing. Recently, the use of oscillatory pumping tests - in which sinusoidal pumping variations are implemented and oscillatory pressure changes are detected at monitoring locations - has been suggested as a low-impact hydraulic testing strategy for characterizing aquifer properties (Cardiff et al., 2013; Zhou et al., 2016). Here, we investigate this strategy in an experimental laboratory sandbox where dyed vegetable oil is injected and allowed to migrate as a NAPL. Initial qualitative analyses demonstrate that measurable changes in pressure signal amplitude and phase provide clear evidence for NAPL plume emplacement and migration. Using the approach developed in Zhou et al. (2016), we then apply tomographic analyses to estimate the location of effective K changes (representing fluid changes) and their movement throughout time. This approach provides a method for monitoring ongoing NAPL movement without net extraction or injection of fluid, making it advantageous in field remediation applications.
Zhu, Jianting; Sun, Dongmin
2016-09-01
Groundwater flowing through residual nonaqueous phase liquid (NAPL) source zone will cause NAPL dissolution and generate large contaminant plume. The use of contaminant mass discharge (CMD) measurements in addition to NAPL aqueous phase concentration to characterize site conditions and assess remediation performance is becoming popular. In this study, we developed new and generic numerical models to investigate the significance of groundwater flux temporal variations on the NAPL source dynamics. The developed models can accommodate any temporal variations of groundwater flux in the source zone. We examined the various features of groundwater flux using a few selected functional forms of linear increase/decrease, gradual smooth increase/decrease, and periodic fluctuations with a general trend. Groundwater flux temporal variations have more pronounced effects on the contaminant mass discharge dynamics than the aqueous concentration. If the groundwater flux initially increases, then the reduction in contaminant mass discharge (CMDR) vs. NAPL mass reduction (MR) relationship is mainly downward concave. If the groundwater flux initially decreases, then CMDR vs. MR relationship is mainly upward convex. If the groundwater flux variations are periodic, the CMDR vs. MR relationship tends to also have periodic variations ranging from upward convex to downward concave. Eventually, however, the CMDR vs. MR relationship approaches 1:1 when majority of the NAPL mass becomes depleted. Copyright © 2016 Elsevier B.V. All rights reserved.
PARTITIONING INTERWELL TRACER TEST FOR NAPL SOURCE CHARACTERIZATION: A GENERAL OVERVIEW
Innovative and nondestructive characterization techniques have been developed to locate and quantify nonaqueous phase liquids (NAPLs) in the vadose and saturated zones in the subsurface environment. One such technique is the partitioning interwell tracer test (PITT). The PITT i...
Denatured ethanol release into gasoline residuals, Part 1: source behaviour.
Freitas, Juliana G; Barker, James F
2013-05-01
With the increasing use of ethanol in fuels, it is important to evaluate its fate when released into the environment. While ethanol is less toxic than other organic compounds present in fuels, one of the concerns is the impact ethanol might have on the fate of gasoline hydrocarbons in groundwater. One possible concern is the spill of denatured ethanol (E95: ethanol containing 5% denaturants, usually hydrocarbons) in sites with pre-existing gasoline contamination. In that scenario, ethanol is expected to increase the mobility of the NAPL phase by acting as a cosolvent and decreasing interfacial tension. To evaluate the E95 behaviour and its impacts on pre-existing gasoline, a field test was performed at the CFB-Borden aquifer. Initially gasoline contamination was created releasing 200 L of E10 (gasoline with 10% ethanol) into the unsaturated zone. One year later, 184 L of E95 was released on top of the gasoline contamination. The site was monitored using soil cores, multilevel wells and one glass access tube. At the end of the test, the source zone was excavated and the compounds remaining were quantified. E95 ethanol accumulated and remained within the capillary fringe and unsaturated zone for more than 200 days, despite ~1m oscillations in the water table. The gasoline mobility increased and it was redistributed in the source zone. Gasoline NAPL saturations in the soil increased two fold in the source zone. However, water table oscillations caused a separation between the NAPL and ethanol: NAPL was smeared and remained in deeper positions while ethanol moved upwards following the water table rise. Similarly, the E95 denaturants that initially were within the ethanol-rich phase became separated from ethanol after the water table oscillation, remaining below the ethanol rich zone. The separation between ethanol and hydrocarbons in the source after water table oscillation indicates that ethanol's impact on hydrocarbon residuals is likely limited to early times. Copyright © 2013 Elsevier B.V. All rights reserved.
NAPL detection with ground-penetrating radar (Invited)
NASA Astrophysics Data System (ADS)
Bradford, J. H.
2013-12-01
Non-polar organic compounds are common contaminants and are collectively referred to as nonaqueous-phase liquids (NAPLs). NAPL contamination problems occur in virtually every environment on or near the earth's surface and therefore a robust suite of geophysical tools is required to accurately characterize NAPL spills and monitor their remediation. NAPLs typically have low dielectric permittivity and low electric conductivity relative to water. Thus a zone of anomalous electrical properties often occurs when NAPL displaces water in the subsurface pore space. Such electric property anomalies make it possible to detect NAPL in the subsurface using electrical or electromagnetic geophysical methods including ground-penetrating radar (GPR). The GPR signature associated with the presence of NAPL is manifest in essentially three ways. First, the decrease in dielectric permittivity results in increased EM propagation velocity. Second, the decrease in permittivity can significantly change reflectivity. Finally, electric conductivity anomalies lead to anomalous GPR signal attenuation. The conductivity anomaly may be either high or low depending on the state of NAPL degradation, but with either high or low conductivity, GPR attenuation analysis can be a useful tool for identifying contaminated-zones. Over the past 15 years I have conducted numerous modeling, laboratory, and field tests to investigate the ability to use GPR to measure NAPL induced anomalies. The emphasis of this work has been on quantitative analysis to characterize critical source zone parameters such as NAPL concentration. Often, the contaminated zones are below the conventional resolution of the GPR signal and require thin layer analysis. Through a series of field examples, I demonstrate 5 key GPR analysis tools that can help identify and quantify NAPL contaminants. These tools include 1) GPR velocity inversion from multi-fold data, 2) amplitude vs offset analysis, 3) spectral decomposition, 4) frequency dependent attenuation analysis, and 5) reflectivity inversion. Examples are taken from a variety of applications that include oil spills on the ocean, oil spills on and under sea ice, and both LNAPL and DNAPL contaminated groundwater systems. Many factors conspire to complicate field data analysis, yet careful analysis and integration of multiple techniques has proven robust. Use of these methods in practical application has been slow to take root. Nonetheless, a best practices working model integrates geophysics from the outset and mirrors the approach utilized in hydrocarbon exploration. This model ultimately minimizes site characterization and remediation costs.
NASA Astrophysics Data System (ADS)
Abbott, J. B., III; Tick, G. R.; Greenberg, R. R.; Carroll, K. C.
2017-12-01
The remediation of nonaqueous liquid (NAPL) contamination sources in groundwater has been shown to be challenging and have limited success in the field. The presence of multicomponent NAPL sources further complicates the remediation due to variability of mass-transfer (dissolution) behavior as a result of compositional and molecular structure variations between the different compounds within the NAPL phase. This study investigates the effects of the contaminant of concern (COC) composition and the bulk-NAPL components molecular structure (i.e. carbon chain length, aliphatic and aromatic) on dissolution and aqueous phase concentrations in groundwater. The specific COCs tested include trichloroethene (TCE), toluene (TOL), and perfluorooctanoic acid (PFOA). Each COC was tested in a series of binary batch experiments using insoluble bulk NAPL including n-hexane (HEX), n-decane (DEC), and n-hexadecane (HEXDEC). These equilibrium batch tests were performed to understand how different carbon-chain-length (NAPL) systems affect resulting COC aqueous phase concentrations. The experiments were conducted with four different COC mole fractions mixed within the bulk-NAPL derivatives (0.1:0.9, 0.05:0.95, 0.01:0.99, 0.001:0.999). Raoult's Law was used to assess the relative ideality of the mass transfer processes for each binary equilibrium dissolution experiment. Preliminary results indicate that as mole fraction of the COC decreases (composition effects), greater deviance from dissolution ideality occurs. It was also shown that greater variation in molecular structure (i.e. greater carbon chain length of bulk-NAPL with COC and aromatic COC presence) exhibited greater dissolution nonideality via Raoult's Law analysis. For instance, TOL (aromatic structure) showed greater nonideality than TCE (aliphatic structure) in the presence of the different bulk-NAPL derivatives (i.e. of various aliphatic carbon chains lengths). The results suggest that the prediction of aqueous phase concentration, from complex multicomponent NAPL sources, is highly dependent upon both composition and molecular structure variations of COC-NAPL mixtures, and such impacts should be taken into account when designing and evaluating a remediation strategy and/or predicting COC concentrations from a source zone region.
Assessing Potential Additional PFAS Retention Processes in the Subsurface
NASA Astrophysics Data System (ADS)
Brusseau, M. L.
2017-12-01
Understanding the transport and fate of per- and poly-fluorinated alkyl substances (PFASs) in the subsurface is critical for accurate risk assessments and design of effective remedial actions. Current conceptual and mathematical models are based on an assumption that solid-phase adsorption is the sole source of retention for PFASs. However, additional retention processes may be relevant for PFAS compounds in vadose-zone systems and in source zones that contain trapped immiscible organic liquids. These include adsorption at the air-water interface, partitioning to the soil atmosphere, adsorption at the NAPL-water interface, and absorption by NAPL. A multi-process retention model is proposed to account for these potential additional sources of PFAS retardation. An initial assessment of the relative magnitudes and significance of these retention processes was conducted for three representative PFASs, perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and 8:2 fluorotelomer alcohol (FTOH). Data collected from the literature were used to determine measured or estimated values for the relevant distribution coefficients, which were in turn used to calculate retardation factors for a representative porous medium. Adsorption at the air-water interface was shown to be a primary source of retention for PFOA and PFOS, contributing approximately 80% of total retardation. Adsorption to NAPL-water interfaces and absorption by bulk NAPL were also shown to be significant sources of retention for PFOS and PFOA. The latter process was the predominant source of retention for 8:2 FTOH, contributing 98% of total retardation. These results indicate that we may anticipate significant retention of PFASs by these additional processes. In such cases, retardation of PFASs in source areas may be significantly greater than what is typically estimated based on the standard assumption of solid-phase adsorption as the sole retention mechanism. This has significant ramifications for accurate determination of the migration potential and magnitude of mass flux to groundwater, as well as for calculations of contaminant mass residing in source zones.
Column Experiments of Smouldering Combustion as a Remediation Technology for NAPL Source Zones
NASA Astrophysics Data System (ADS)
Pironi, P.; Switzer, C.; Rein, G.; Torero, J. L.; Gerhard, J. I.
2008-12-01
Smouldering combustion is an innovative approach that has significant potential for the remediation of industrial sites contaminated by non-aqueous phase liquids (NAPLs). Many common liquid contaminants, including coal tar, solvents, oils and petrochemicals are combustible and release significant amounts of heat when burned. Smouldering combustion is the flameless burning of a condensed fuel that derives heat from surface oxidation reactions. Gerhard et al., 2006 (Eos Trans., 87(52), Fall Meeting Suppl. H24A) presented proof-of-concept experiments demonstrating that NAPLs embedded in a porous medium may be effectively destroyed via smouldering. Based upon that work, it was hypothesized that the process can be self- sustaining, such that, a short duration energy input (i.e., ignition) at a single location is sufficient to generate a reaction that propagates itself through the NAPL source zone until the NAPL is eliminated, provided that enough air is injected into the soil. In this work, this hypothesis is proven via column experiments at the intermediate bench scale (~ 30 cm) utilizing coal tar-contaminated quartz sands. Over 30 such experiments examine the sensitivity of NAPL smouldering to a series of fluid-media system variables and engineering control parameters, including contaminant type, NAPL saturation, water saturation, porous media type and air injection rate. Diagnostic techniques employed to characterize the results include temperature mapping, off-gas analysis (via FTIR), heat front mapping via digital imaging, and pre- and post-treatment soil analysis. The derived relationships between the manipulated system variables and experimental results are providing understanding of the mechanisms controlling the ignition and propagation of liquid smouldering. Such insight is necessary for the ongoing design of both ex situ and in situ pilot applications.
Brusseau, Mark L
2018-02-01
A comprehensive understanding of the transport and fate of per- and poly-fluoroalkyl substances (PFAS) in the subsurface is critical for accurate risk assessments and design of effective remedial actions. A multi-process retention model is proposed to account for potential additional sources of retardation for PFAS transport in source zones. These include partitioning to the soil atmosphere, adsorption at air-water interfaces, partitioning to trapped organic liquids (NAPL), and adsorption at NAPL-water interfaces. An initial assessment of the relative magnitudes and significance of these retention processes was conducted for two PFAS of primary concern, perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), and an example precursor (fluorotelomer alcohol, FTOH). The illustrative evaluation was conducted using measured porous-medium properties representative of a sandy vadose-zone soil. Data collected from the literature were used to determine measured or estimated values for the relevant distribution coefficients, which were in turn used to calculate retardation factors for the model system. The results showed that adsorption at the air-water interface was a primary source of retention for both PFOA and PFOS, contributing approximately 50% of total retention for the conditions employed. Adsorption to NAPL-water interfaces and partitioning to bulk NAPL were also shown to be significant sources of retention. NAPL partitioning was the predominant source of retention for FTOH, contributing ~98% of total retention. These results indicate that these additional processes may be, in some cases, significant sources of retention for subsurface transport of PFAS. The specific magnitudes and significance of the individual retention processes will depend upon the properties and conditions of the specific system of interest (e.g., PFAS constituent and concentration, porous medium, aqueous chemistry, fluid saturations, co-contaminants). In cases wherein these additional retention processes are significant, retardation of PFAS in source areas would likely be greater than what is typically estimated based on the standard assumption of solid-phase adsorption as the sole retention mechanism. This has significant ramifications for accurate determination of the migration potential and magnitude of mass flux to groundwater, as well as for calculations of contaminant mass residing in source zones. Both of which have critical implications for human-health risk assessments. Copyright © 2017 Elsevier B.V. All rights reserved.
A set of constitutive relationships accounting for residual NAPL in the unsaturated zone.
Wipfler, E L; van der Zee, S E
2001-07-01
Although laboratory experiments show that non-aqueous phase liquid (NAPL) is retained in the unsaturated zone, no existing multiphase flow model has been developed to account for residual NAPL after NAPL drainage in the unsaturated zone. We developed a static constitutive set of saturation-capillary pressure relationships for water, NAPL and air that accounts for both this residual NAPL and entrapped NAPL. The set of constitutive relationships is formulated similarly to the set of scaled relationships that is frequently applied in continuum models. The new set consists of three fluid-phase systems: a three-phase system and a two-phase system, that both comply with the original constitutive model, and a newly introduced residual NAPL system. The new system can be added relatively easily to the original two- and three-phase systems. Entrapment is included in the model. The constitutive relationships of the non-drainable residual NAPL system are based on qualitative fluid behavior derived from a pore scale model. The pore scale model reveals that the amount of residual NAPL depends on the spreading coefficient and the water saturation. Furthermore, residual NAPL is history-dependent. At the continuum scale, a critical NAPL pressure head defines the transition from free, mobile NAPL to residual NAPL. Although the Pc-S relationships for water and total liquid are not independent in case of residual NAPL, two two-phase Pc-S relations can represent a three-phase residual system of Pc-S relations. A newly introduced parameter, referred to as the residual oil pressure head, reflects the mutual dependency of water and oil. Example calculations show consistent behavior of the constitutive model. Entrapment and retention in the unsaturated zone cooperate to retain NAPL. Moreover, the results of our constitutive model are in agreement with experimental observations.
NASA Astrophysics Data System (ADS)
Olson, Mitchell R.; Sale, Tom C.
2015-06-01
Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (> 96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (< 4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (> 10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to > 99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time.
Olson, Mitchell R; Sale, Tom C
2015-01-01
Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (>96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (<4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (>10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to >99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jawitz, J. W.; Basu, N.; Chen, X.
2007-05-01
Interwell application of coupled nonreactive and reactive tracers through aquifer contaminant source zones enables quantitative characterization of aquifer heterogeneity and contaminant architecture. Parameters obtained from tracer tests are presented here in a Lagrangian framework that can be used to predict the dissolution of nonaqueous phase liquid (NAPL) contaminants. Nonreactive tracers are commonly used to provide information about travel time distributions in hydrologic systems. Reactive tracers have more recently been introduced as a tool to quantify the amount of NAPL contaminant present within the tracer swept volume. Our group has extended reactive tracer techniques to also characterize NAPL spatial distribution heterogeneity. By conceptualizing the flow field through an aquifer as a collection of streamtubes, the aquifer hydrodynamic heterogeneities may be characterized by a nonreactive tracer travel time distribution, and NAPL spatial distribution heterogeneity may be similarly described using reactive travel time distributions. The combined statistics of these distributions are used to derive a simple analytical solution for contaminant dissolution. This analytical solution, and the tracer techniques used for its parameterization, were validated both numerically and experimentally. Illustrative applications are presented from numerical simulations using the multiphase flow and transport simulator UTCHEM, and laboratory experiments of surfactant-enhanced NAPL remediation in two-dimensional flow chambers.
NASA Astrophysics Data System (ADS)
Andre, Laurent; Kedziorek, Monika A. M.; Bourg, Alain C. M.; Haeseler, Frank; Blanchet, Denis
2009-05-01
SummarySoils need to be thoroughly investigated regarding their potential for the natural attenuation of non-aqueous phase liquids (NAPL). Laboratory investigations truly representative of degradation processes in field conditions are difficult to implement for porous media partially saturated with water, NAPL and air. We propose an innovative protocol to investigate degradation processes under steady-state vadose zone conditions. Experiments are carried out in glass columns filled with a sand and, as bacteria source, a soil from a diesel-fuel-polluted site. Water and NAPL ( n-hexadecane diluted in heptamethylnonane (HMN)) are added to the porous medium in a two-step procedure using ceramic membranes placed at the bottom of the column. This procedure results, for appropriate experimental conditions, in a uniform distribution of the two fluids (water and NAPL) throughout the column. In a biodegradation experiment non-biodegradable HMN is used to provide NAPL mass, while keeping biodegradable n-hexadecane small enough to monitor its rapid degradation. Biodegradation is followed as a function of time by measuring oxygen consumption, using a respirometer. Degradative activity is controlled by diffusive transfers in the porous network, of oxygen from the gas phase to the water phase and of n-hexadecane from the NAPL phase to the water phase.
Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones
NASA Astrophysics Data System (ADS)
Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.
2009-12-01
Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low-saturation ganglia, while diffusion within the DNAPL should be considered for larger NAPL pools. These results offer important insights to the monitoring and interpretation of bioremediation strategies employed within DNAPL source zones.
In this paper, a screening model for flow of a nonaqueous phase liquid (NAPL) and associated chemical transport in the vadose zone is developed. he model is based on kinematic approximation of the governing equations for both the NAPL and a partitionable chemical constituent. he ...
Numerical Modelling of Smouldering Combustion as a Remediation Technology for NAPL Source Zones
NASA Astrophysics Data System (ADS)
Macphee, S. L.; Pironi, P.; Gerhard, J. I.; Rein, G.
2009-05-01
Smouldering combustion of non-aqueous phase liquids (NAPLs) is a novel concept that has significant potential for the remediation of contaminated industrial sites. Many common NAPLs, including coal tar, solvents, oils and petrochemicals are combustible and capable of generating substantial amounts of heat when burned. Smouldering is a flameless form of combustion in which a condensed phase fuel undergoes surface oxidation reactions within a porous matrix. Gerhard et al., 2006 (Eos Trans., 87(52), Fall Meeting Suppl. H24A) presented proof-of-concept experiments demonstrating the successful destruction of NAPLs embedded in a porous medium via smouldering. Pironi et al., 2008 (Eos Trans., 89(53), Fall Meet. Suppl. H34C) presented a series of column experiments illustrating the self-sustaining nature of the NAPL smouldering process and examined its sensitivity to a variety of key system parameters. In this work, a numerical model capable of simulating the propagation of a smouldering front in NAPL-contaminated porous media is presented. The model couples the multiphase flow code DNAPL3D-MT [Gerhard and Grant, 2007] with an analytical model for fire propagation [Richards, 1995]. The fire model is modified in this work for smouldering behaviour; in particular, incorporating a correlation of the velocity of the smouldering front to key parameters such as contaminant type, NAPL saturation, water saturation, porous media type and air injection rate developed from the column experiments. NAPL smouldering simulations are then validated against the column experiments. Furthermore, multidimensional simulations provide insight into scaling up the remediation process and are valuable for evaluating process sensitivity at the scales of in situ pilot and field applications.
Visualization of dyed NAPL concentration in transparent porous media using color space components.
Kashuk, Sina; Mercurio, Sophia R; Iskander, Magued
2014-07-01
Finding a correlation between image pixel information and non-aqueous phase liquid (NAPL) saturation is an important issue in bench-scale geo-environmental model studies that employ optical imaging techniques. Another concern is determining the best dye color and its optimum concentration as a tracer for use in mapping NAPL zones. Most bench scale flow studies employ monochromatic gray-scale imaging to analyze the concentration of mostly red dyed NAPL tracers in porous media. However, the use of grayscale utilizes a third of the available information in color images, which typically contain three color-space components. In this study, eight color spaces consisting of 24 color-space components were calibrated against dye concentration for three color-dyes. Additionally, multiple color space components were combined to increase the correlation between color-space data and dyed NAPL concentration. This work is performed to support imaging of NAPL migration in transparent synthetic soils representing the macroscopic behavior of natural soils. The transparent soil used in this study consists of fused quartz and a matched refractive index mineral-oil solution that represents the natural aquifer. The objective is to determine the best color dye concentration and ideal color space components for rendering dyed sucrose-saturated fused quartz that represents contamination of the natural aquifer by a dense NAPL (DNAPL). Calibration was achieved for six NAPL zone lengths using 3456 images (24 color space components×3 dyes×48 NAPL combinations) of contaminants within a defined criteria expressed as peak signal to noise ratio. The effect of data filtering was also considered and a convolution average filter is recommended for image conditioning. The technology presented in this paper is fast, accurate, non-intrusive and inexpensive method for quantifying contamination zones using transparent soil models. Copyright © 2014 Elsevier B.V. All rights reserved.
In this paper, a screening model for flow of a nonaqueous phase liquid (NAPL) and associated chemical transport in the vadose zone is developed. The model is based on kinematic approximation of the governing equations for both the NAPL and a partitionable chemical constituent. Th...
NASA Astrophysics Data System (ADS)
Koproch, Nicolas; Popp, Steffi; Köber, Ralf; Beyer, Christof; Bauer, Sebastian; Dahmke, Andreas
2016-04-01
Shallow thermal energy storage has great potential for heat storage especially in urban and industrial areas. However, frequently existing organic groundwater contaminations in such areas were currently seen as exclusion criteria for thermal use of the shallow subsurface, since increased contaminant discharge is feared as consequence of heating. Contaminant discharge is influenced by a complex interaction of processes and boundary conditions as e.g. solubility, dispersion, viscosity and degradation, where there is still a lack of experimental evidence of the temperature dependent interaction. Even existing studies on basic influencing factors as e.g. temperature dependent solubilities show contradictory results. Such knowledge gaps should be reduced to improve the basis and liability of numerical model simulations and the knowledge base to enable a more differentiated and optimized use of resources. For this purpose batch as well as 1- and 2-dimensional experimental studies concerning the temperature dependent release of TCE (trichloroethylene) from a NAPL (non aqueous phase liquid) source are presented and discussed. In addition, this experimental studies are accompanied by a numerical model verification, where extensions of existing numerical model approaches on basis of this obtained experimental results are developed. Firstly, temperature dependent TCE solubility data were collected using batch experiments with significantly better temperature resolution compared to earlier studies, showing a distinct minimum at 35°C and increased solubility towards 5°C and 70°C. Secondly, heated 1-dimensional stainless steel columns homogenously filled with quartz sand were used to quantify source zone depletion and contaminant discharge at 10-70°C. Cumulative mass discharge curves indicated two blob categories with distinct differences in dissolution kinetics. Increasing the temperature showed here an increase of the amount of fast dissolving blobs indicating higher NAPL-water contact areas. Thirdly, heatable 2D-tanks (40 cm x 25 cm x 10 cm) homogenously filled with quartz sand and percolated by distilled H2O were used to investigate the dissolution behavior and plume development of TCE from a residual source zone (5 cm x 5 cm x 10 cm) at 10-70°C. Using NAPL source zone saturation of 5% (Case A) and 20% (Case B) two exemplary cases of a depleted and a fresh source zone were investigated. TCE outflow concentrations in case A increased continuously with increasing temperature, but were controlled by the temperature-dependent solubility in Case B. The experimental results showed that the TCE mass transfer rate has a minimum at about 40°C, if dissolution is non-rate limited and a continuous increase with increasing temperature for rate-limited systems. Implementation of temperature dependent NAPL dissolution and two different blob categories with different mass transfer rate coefficients in the OpenGeoSys code proved successful in reproducing the experimental results. Acknowledgments: The presented work is part of the ANGUS+ project (03EK3022) funded by the German Ministry of Education and Research (BMBF).
PARTITIONING TRACERS FOR MEASURING RESIDUAL NAPL: FIELD-SCALE TEST RESULTS
The difficult task of locating and quantifying nonaqueous phase liquids (NAPLs) present in the vadose and saturated zones has prompted the development of innovative, nondestructive characterization techniques. The use of the interwell partitioning tracer's (IWPT) test, in which ...
Nilsson, Bertel; Tzovolou, Dimitra; Jeczalik, Maciej; Kasela, Tomasz; Slack, William; Klint, Knud E; Haeseler, Frank; Tsakiroglou, Christos D
2011-03-01
A steam injection pilot-scale experiment was performed on the unsaturated zone of a strongly heterogeneous fractured soil contaminated by jet fuel. Before the treatment, the soil was stimulated by creating sub-horizontal sand-filled hydraulic fractures at three depths. The steam was injected through one hydraulic fracture and gas/water/non-aqueous phase liquid (NAPL) was extracted from the remaining fractures by applying a vacuum to extraction wells. The injection strategy was designed to maximize the heat delivery over the entire cell (10 m × 10 m × 5 m). The soil temperature profile, the recovered NAPL, the extracted water, and the concentrations of volatile organic compounds (VOCs) in the gas phase were monitored during the field test. GC-MS chemical analyses of pre- and post-treatment soil samples allowed for the quantitative assessment of the remediation efficiency. The growth of the heat front followed the configuration of hydraulic fractures. The average concentration of total hydrocarbons (g/kg of soil) was reduced by ∼ 43% in the upper target zone (depth = 1.5-3.9 m) and by ∼ 72% over the entire zone (depth = 1.5-5.5 m). The total NAPL mass removal based on gas and liquid stream measurements and the free-NAPL product were almost 30% and 2%, respectively, of those estimated from chemical analyses of pre- and post-treatment soil samples. The dominant mechanisms of soil remediation was the vaporization of jet fuel compounds at temperatures lower than their normal boiling points (steam distillation) enhanced by the ventilation of porous matrix due to the forced convective flow of air. In addition, the significant reduction of the NAPL mass in the less-heated deeper zone may be attributed to the counter-current imbibition of condensed water from natural fractures into the porous matrix and the gravity drainage associated with seasonal fluctuations of the water table. Copyright © 2010 Elsevier Ltd. All rights reserved.
TRACERS FORECAST THE PERFORMANCE OF NAPL REMEDIATION PROJECTS
Organic tracers which partition to residual NAPL contamination have been used to estimate the mass of contamination in the swept zone of the tracer. This paper expands on this approach using the same data to estimate the heterogeneity of the flow domain and the heterogeneity of ...
NASA Astrophysics Data System (ADS)
Rivett, Michael O.; Wealthall, Gary P.; Dearden, Rachel A.; McAlary, Todd A.
2011-04-01
Reliable prediction of the unsaturated zone transport and attenuation of dissolved-phase VOC (volatile organic compound) plumes leached from shallow source zones is a complex, multi-process, environmental problem. It is an important problem as sources, which include solid-waste landfills, aqueous-phase liquid discharge lagoons and NAPL releases partially penetrating the unsaturated zone, may persist for decades. Natural attenuation processes operating in the unsaturated zone that, uniquely for VOCs includes volatilisation, may, however, serve to protect underlying groundwater and potentially reduce the need for expensive remedial actions. Review of the literature indicates that only a few studies have focused upon the overall leached VOC source and plume scenario as a whole. These are mostly modelling studies that often involve high strength, non-aqueous phase liquid (NAPL) sources for which density-induced and diffusive vapour transport is significant. Occasional dissolved-phase aromatic hydrocarbon controlled infiltration field studies also exist. Despite this lack of focus on the overall problem, a wide range of process-based unsaturated zone — VOC research has been conducted that may be collated to build good conceptual model understanding of the scenario, particularly for the much studied aromatic hydrocarbons and chlorinated aliphatic hydrocarbons (CAHs). In general, the former group is likely to be attenuated in the unsaturated zone due to their ready aerobic biodegradation, albeit with rate variability across the literature, whereas the fate of the latter is far less likely to be dominated by a single mechanism and dependent upon the relative importance of the various attenuation processes within individual site — VOC scenarios. Analytical and numerical modelling tools permit effective process representation of the whole scenario, albeit with potential for inclusion of additional processes — e.g., multi-mechanistic sorption phase partitioning, and provide good opportunity for further sensitivity analysis and development to practitioner use. There remains a significant need to obtain intermediate laboratory-scale and particularly field-scale (actual site and controlled release) datasets that address the scenario as a whole and permit validation of the available models. Integrated assessment of the range of simultaneous processes that combine to influence leached plume generation, transport and attenuation in the unsaturated zone is required. Component process research needs are required across the problem scenario and include: the simultaneous volatilisation and dissolution of source zones; development of appropriate field-scale dispersion estimates for the unsaturated zone; assessment of transient VOC exchanges between aqueous, vapour and sorbed phases and their influence upon plume attenuation; development of improved field methods to recognise and quantify biodegradation of CAHs; establishment of the influence of co-contaminants; and, finally, translation of research findings into more robust practitioner practice.
Mechanism for detecting NAPL using electrical resistivity imaging.
Halihan, Todd; Sefa, Valina; Sale, Tom; Lyverse, Mark
2017-10-01
The detection of non-aqueous phase liquid (NAPL) related impacts in freshwater environments by electrical resistivity imaging (ERI) has been clearly demonstrated in field conditions, but the mechanism generating the resistive signature is poorly understood. An electrical barrier mechanism which allows for detecting NAPLs with ERI is tested by developing a theoretical basis for the mechanism, testing the mechanism in a two-dimensional sand tank with ERI, and performing forward modeling of the laboratory experiment. The NAPL barrier theory assumes at low bulk soil NAPL concentrations, thin saturated NAPL barriers can block pore throats and generate a detectable electrically resistive signal. The sand tank experiment utilized a photographic technique to quantify petroleum saturation, and to help determine whether ERI can detect and quantify NAPL across the water table. This experiment demonstrates electrical imaging methods can detect small quantities of NAPL of sufficient thickness in formations. The bulk volume of NAPL is not the controlling variable for the amount of resistivity signal generated. The resistivity signal is primarily due to a zone of high resistivity separate phase liquid blocking current flow through the fully NAPL saturated pores spaces. For the conditions in this tank experiment, NAPL thicknesses of 3.3cm and higher in the formation was the threshold for detectable changes in resistivity of 3% and greater. The maximum change in resistivity due to the presence of NAPL was an increase of 37%. Forward resistivity models of the experiment confirm the barrier mechanism theory for the tank experiment. Copyright © 2017 Elsevier B.V. All rights reserved.
Organic contaminant transport and fate in the subsurface: Evolution of knowledge and understanding
NASA Astrophysics Data System (ADS)
Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.
2015-07-01
Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.
Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding
Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.
2015-01-01
Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.
2013-09-01
M.4.1. Two-dimensional domains cropped out of three-dimensional numerically generated realizations; (a) 3D PCE-NAPL realizations generated by UTCHEM...165 Figure R.3.2. The absolute error vs relative error scatter plots of pM and gM from SGS data set- 4 using multi-task manifold...error scatter plots of pM and gM from TP/MC data set using multi- task manifold regression
2011-04-01
27 III.1.2.3. Gum Arabic Emulsion ……………………………………………. 29 III.1.2.4. Reactivity Studies GA...GA Gum Arabic HLB Hydrophobic Lipophilic Balance IFT Interfacial Tension MISER Michigan Soil-Vapor Extraction Remediation model mRNIP Modified...trichloroethylene (TCE) (99.9%) were supplied by Fischer Scientific. Sodium borohydride (NaBH4) (98+%) and Gum Arabic were supplied by Acros Organics. Purified water
NAPL source zone depletion model and its application to railroad-tank-car spills.
Marruffo, Amanda; Yoon, Hongkyu; Schaeffer, David J; Barkan, Christopher P L; Saat, Mohd Rapik; Werth, Charles J
2012-01-01
We developed a new semi-analytical source zone depletion model (SZDM) for multicomponent light nonaqueous phase liquids (LNAPLs) and incorporated this into an existing screening model for estimating cleanup times for chemical spills from railroad tank cars that previously considered only single-component LNAPLs. Results from the SZDM compare favorably to those from a three-dimensional numerical model, and from another semi-analytical model that does not consider source zone depletion. The model was used to evaluate groundwater contamination and cleanup times for four complex mixtures of concern in the railroad industry. Among the petroleum hydrocarbon mixtures considered, the cleanup time of diesel fuel was much longer than E95, gasoline, and crude oil. This is mainly due to the high fraction of low solubility components in diesel fuel. The results demonstrate that the updated screening model with the newly developed SZDM is computationally efficient, and provides valuable comparisons of cleanup times that can be used in assessing the health and financial risk associated with chemical mixture spills from railroad-tank-car accidents. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
Estimating exposure to groundwater contaminants in karst areas
NASA Astrophysics Data System (ADS)
Butscher, C.
2012-12-01
Large multidisciplinary projects investigate health effects and environmental impacts of contamination. Such multidisciplinary projects challenge groundwater hydrologist because they demand estimations of human or environmental exposure to groundwater contaminants. But especially in karst regions, groundwater quality is subject to rapid changes resulting from highly dynamic flow systems with rapid groundwater recharge and contaminant transport in karst conduits. There is a strong need for tools that allow the quantification of the risk of contaminant exposure via the karst groundwater and its temporal variation depending on rainfall events and overall hydrological conditions. A fact that makes the assessment of contaminant exposure even more difficult is that many contaminants behave differently in the subsurface than the groundwater, because they do not dissolve and exist as a separate phase. Important examples are particulate contaminants, such as bacteria, and non-aqueous phase liquids (NAPLs), such as many organic compounds. Both are ubiquitous in the environment and have large potential for health impacts. It is known from bacterial contamination of karst springs that such contamination is strongly related to flow conditions. Bacteria, which are present at the land surface, in the soil, rock matrix or the conduit system, are immobile during base flow conditions. During storm events however, they become mobilized and are rapidly transported through the conduit flow system from sources to areas of potential exposure. As a result, bacteria concentrations that most times are low at a spring can show a high peak during storm flow. Conceptual models exist that suggest that the transport of NAPLs in karst aquifers is, just like bacterial contamination, related to flow conditions. Light NAPLs that reach the saturated zone float and accumulate on the water table; and dense NAPLs sink downward in the aquifer until they are trapped in pores, fractures and conduits where they remain stationary under base flow conditions. During storm flows, however, they can be dragged downstream or flushed as suspensions and emulsions. As a result, storm flow can send previously immobilized NAPLs to exposure zones in toxic pulses. An approach is presented to estimate the risk of contaminant exposure by bacteria and NAPLs via the groundwater under variable hydrological conditions (Butscher et al. 2011). The approach uses an indicator that is expressed as the Dynamic Vulnerability Index (DVI). This index is defined as the ratio of conduit to matrix flow contributions to spring discharge, and is calculated based on a numerical model simulating karst groundwater flow. The approach is illustrated at a test site in Switzerland, where calculated DVI was compared to the occurrence of fecal indicators during five storm flow events. Key words: karst hydrogeology; groundwater contamination; fecal indicators; NAPLs; numerical modeling References: Butscher, C. Auckenthaler, A., Scheidler, S., Huggenberger, P. (2011). Validation of a Numerical Indicator of Microbial Contamination for Karst Springs. Ground Water 49 (1), 66-76.
REMEDIATION FLUID RECYCLING - APPLICATION OF PERVAPORATION TECHNOLOGY TO MATERIAL RECOVERY AND REUSE
In an effort to aggressively remove NAPL source areas, agents such as surfactants and alcohols have been added to in situ flusing systems to enhance the solubility of the NAPL components. Such an approach has the potential to reduce the risk posed by a long term source of ground...
REMEDIATION FLUID RECYCLING: APPLICATION OF PERVAPORATION TECHNOLOGY TO MATERIAL RECOVERY AND REUSE
In an effort to aggressively remove NAPL source areas, agents such as surfactants and alcohols have been added to in situ flushing systems to enhance the solubility of the NAPL components. Such an approach has the potential to reduce the risk posed by a long term source of groun...
In an effort to aggressively remove NAPL source areas, agents such as surfactants and alcohols have been added to in situ flusing systems to enhance the solubility of the NAPL components. Such an approach has the potential to reduce the risk posed by a long term source of ground...
NASA Astrophysics Data System (ADS)
Ramos, Débora Toledo; Lazzarin, Helen Simone Chiaranda; Alvarez, Pedro J. J.; Vogel, Timothy M.; Fernandes, Marilda; do Rosário, Mário; Corseuil, Henry Xavier
2016-10-01
The behavior of biodiesel blend spills have received limited attention in spite of the increasing and widespread introduction of biodiesel to the transportation fuel matrix. In this work, a controlled field release of biodiesel B20 (100 L of 20:80 v/v soybean biodiesel and diesel) was monitored over 6.2 years to assess the behavior and natural attenuation of constituents of major concern (e.g., BTEX (benzene, toluene, ethyl-benzene and xylenes) and PAHs (polycyclic aromatic hydrocarbons)) in a sandy aquifer material. Biodiesel was preferentially biodegraded compared to diesel aromatic compounds with a concomitant increase in acetate, methane (near saturation limit (≈ 22 mg L- 1)) and dissolved BTEX and PAH concentrations in the source zone during the first 1.5 to 2.0 years after the release. Benzene and benzo(a)pyrene concentrations remained above regulatory limits in the source zone until the end of the experiment (6.2 years after the release). Compared to a previous adjacent 100-L release of ethanol-amended gasoline, biodiesel/diesel blend release resulted in a shorter BTEX plume, but with higher residual dissolved hydrocarbon concentrations near the source zone. This was attributed to greater persistence of viscous (and less mobile) biodiesel than the highly-soluble and mobile ethanol in the source zone. This persistence of biodiesel/diesel NAPL at the source zone slowed BTEX and PAH biodegradation (by the establishment of an anaerobic zone) but reduced the plume length by reducing mobility. This is the first field study to assess biodiesel/diesel blend (B20) behavior in groundwater and its effects on the biodegradation and plume length of priority groundwater pollutants.
Ramos, Débora Toledo; Lazzarin, Helen Simone Chiaranda; Alvarez, Pedro J J; Vogel, Timothy M; Fernandes, Marilda; do Rosário, Mário; Corseuil, Henry Xavier
2016-10-01
The behavior of biodiesel blend spills have received limited attention in spite of the increasing and widespread introduction of biodiesel to the transportation fuel matrix. In this work, a controlled field release of biodiesel B20 (100L of 20:80 v/v soybean biodiesel and diesel) was monitored over 6.2years to assess the behavior and natural attenuation of constituents of major concern (e.g., BTEX (benzene, toluene, ethyl-benzene and xylenes) and PAHs (polycyclic aromatic hydrocarbons)) in a sandy aquifer material. Biodiesel was preferentially biodegraded compared to diesel aromatic compounds with a concomitant increase in acetate, methane (near saturation limit (≈22mgL -1 )) and dissolved BTEX and PAH concentrations in the source zone during the first 1.5 to 2.0years after the release. Benzene and benzo(a)pyrene concentrations remained above regulatory limits in the source zone until the end of the experiment (6.2years after the release). Compared to a previous adjacent 100-L release of ethanol-amended gasoline, biodiesel/diesel blend release resulted in a shorter BTEX plume, but with higher residual dissolved hydrocarbon concentrations near the source zone. This was attributed to greater persistence of viscous (and less mobile) biodiesel than the highly-soluble and mobile ethanol in the source zone. This persistence of biodiesel/diesel NAPL at the source zone slowed BTEX and PAH biodegradation (by the establishment of an anaerobic zone) but reduced the plume length by reducing mobility. This is the first field study to assess biodiesel/diesel blend (B20) behavior in groundwater and its effects on the biodegradation and plume length of priority groundwater pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Wade, S. C.; Saleem, Z. A.
1997-02-01
Subsurface fate and transport models are utilized to predict concentrations of chemicals leaching from wastes into downgradient receptor wells. The contaminant concentrations in groundwater provide a measure of the risk to human health and the environment. The level of potential risk is currently used by the U.S. Environmental Protection Agency to determine whether management of the wastes should conform to hazardous waste management standards. It is important that the transport and fate of contaminants is simulated realistically. Most models in common use are inappropriate for simulating the migration of wastes containing significant fractions of nonaqueous-phase liquids (NAPLs). The migration of NAPL and its dissolved constituents may not be reliably predicted using conventional aqueous-phase transport simulations. To overcome this deficiency, an efficient and robust regulatory assessment model incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment has been developed. The proposed composite model takes into account all of the major transport processes including infiltration and ambient flow of NAPL, entrapment of residual NAPL, adsorption, volatilization, degradation, dissolution of chemical constituents, and transport by advection and hydrodynamic dispersion. Conceptually, the subsurface is treated as a composite unsaturated zone-saturated zone system. The composite simulator consists of three major interconnected computational modules representing the following components of the migration pathway: (1) vertical multiphase flow and transport in the unsaturated zone; (2) areal movement of the free-product lens in the saturated zone with vertical equilibrium; and (3) three-dimensional aqueous-phase transport of dissolved chemicals in ambient groundwater. Such a composite model configuration promotes computational efficiency and robustness (desirable for regulatory assessment applications). Two examples are presented to demonstrate the model verification and a site application. Simulation results obtained using the composite modeling approach are compared with a rigorous numerical solution and field observations of crude oil saturations and plume concentrations of total dissolved organic carbon at a spill site in Minnesota, U.S.A. These comparisons demonstrate the ability of the present model to provide realistic depiction of field-scale situations.
NASA Astrophysics Data System (ADS)
Tick, G. R.; Wei, S.; Sun, H.; Zhang, Y.
2016-12-01
Pore-scale heterogeneity, NAPL distribution, and sorption/desorption processes can significantly affect aqueous phase elution and mass flux in porous media systems. The application of a scale-independent fractional derivative model (tFADE) was used to simulate elution curves for a series of columns (5 cm, 7 cm, 15 cm, 25 cm, and 80 cm) homogeneously packed with 20/30-mesh sand and distributed with uniform saturations (7-24%) of NAPL phase trichloroethene (TCE). An additional set of columns (7 cm and 25 cm) were packed with a heterogeneous distribution of quartz sand upon which TCE was emplaced by imbibing the immiscible liquid, under stable displacement conditions, to simulate a spill-type process. The tFADE model was able to better represent experimental elution behavior for systems that exhibited extensive long-term concentration tailing requiring much less parameters compared to typical multi-rate mass transfer models (MRMT). However, the tFADE model was not able to effectively simulate the entire elution curve for such systems with short concentration tailing periods since it assumes a power-law distribution for the dissolution rate for TCE. Such limitations may be solved using the tempered fractional derivative model, which can capture the single-rate mass transfer process and therefore the short elution concentration tailing behavior. Numerical solution for the tempered fractional-derivative model in bounded domains however remains a challenge and therefore requires further study. However, the tFADE model shows excellent promise for understanding impacts on concentration elution behavior for systems in which physical heterogeneity, non-uniform NAPL distribution, and pronounced sorption-desorption effects dominate or are present.
NASA Astrophysics Data System (ADS)
Roy, James W.; Smith, James E.
2007-01-01
Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.
Roy, James W; Smith, James E
2007-01-30
Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.
Evaluation of Long-term Performance of Enhanced Anaerobic Source Zone Bioremediation using mass flux
NASA Astrophysics Data System (ADS)
Haluska, A.; Cho, J.; Hatzinger, P.; Annable, M. D.
2017-12-01
Chlorinated ethene DNAPL source zones in groundwater act as potential long term sources of contamination as they dissolve yielding concentrations well above MCLs, posing an on-going public health risk. Enhanced bioremediation has been applied to treat many source zones with significant promise, but long-term sustainability of this technology has not been thoroughly assessed. This study evaluated the long-term effectiveness of enhanced anaerobic source zone bioremediation at chloroethene contaminated sites to determine if the treatment prevented contaminant rebound and removed NAPL from the source zone. Long-term performance was evaluated based on achieving MCL-based contaminant mass fluxes in parent compound concentrations during different monitoring periods. Groundwater concertation versus time data was compiled for 6-sites and post-remedial contaminant mass flux data was then measured using passive flux meters at wells both within and down-gradient of the source zone. Post-remedial mass flux data was then combined with pre-remedial water quality data to estimate pre-remedial mass flux. This information was used to characterize a DNAPL dissolution source strength function, such as the Power Law Model and the Equilibrium Stream tube model. The six-sites characterized for this study were (1) Former Charleston Air Force Base, Charleston, SC; (2) Dover Air Force Base, Dover, DE; (3) Treasure Island Naval Station, San Francisco, CA; (4) Former Raritan Arsenal, Edison, NJ; (5) Naval Air Station, Jacksonville, FL; and, (6) Former Naval Air Station, Alameda, CA. Contaminant mass fluxes decreased for all the sites by the end of the post-treatment monitoring period and rebound was limited within the source zone. Post remedial source strength function estimates suggest that decreases in contaminant mass flux will continue to occur at these sites, but a mass flux based on MCL levels may never be exceeded. Thus, site clean-up goals should be evaluated as order-of-magnitude reductions. Additionally, sites may require monitoring for a minimum of 5-years in order to sufficiently evaluate remedial performance. The study shows that enhanced anaerobic source zone bioremediation contributed to a modest reduction of source zone contaminant mass discharge and appears to have mitigated rebound of chlorinated ethenes.
Enhanced Retention of Chemotactic Bacteria in a Pore Network with Residual NAPL Contamination
NASA Astrophysics Data System (ADS)
Ford, R.; Wang, X.
2013-12-01
Nonaqueous phase liquid (NAPL) contaminants are difficult to eliminate from natural aquifers due, in part, to the heterogeneous structure of the soil matrix. Residual NAPL ganglia remain trapped in regions where the hydraulic conductivity is relatively low. Bioremediation processes depend on adequate mixing of microbial populations and the groundwater contaminants that they degrade. The ability of bacteria to sense a chemical gradient and swim preferentially toward locations of higher concentration, known as chemotaxis, can enhance the mixing of bacteria with contaminant sources that may not be readily accessible by advection and dispersion alone. The impact of chemotaxis on bacterial abundance within a low conductivity NAPL-contaminated region of a well-characterized porous matrix was investigated. A microfluidic device was designed to mimic heterogeneous features of a contaminated groundwater system. NAPL ganglia (toluene) were trapped within a fine pore network, and bacteria were injected into the system through a highly conductive adjacent channel. Chemotactic bacteria (P. putida F1) migrated preferentially towards and accumulated in the vicinity of NAPL contaminant sources. The accumulation of chemotactic bacteria was 15% greater in comparison to a nonchemotactic mutant (P. putida F1 CheA). Bacteria in the microfluidic device were subjected to different flow velocities from 0.25 to 5 m/d encompassing the range of typical groundwater flow rates. Chemotactic bacteria exhibited greater accumulation near the intersection between the macrochannel and the porous network at a flow velocity of 0.5 m/d than both the nonchemotactic mutant control and the chemotactic bacteria at a higher flow velocity of 5 m/d. Breakthrough curves observed at the outlet provided indirect evidence that chemotactic bacteria were retained within the contaminated low permeable region for a longer time than the nonchemotactic bacteria at a flow velocity of 0.25 m/d. This retention was diminished at a higher flow velocity of 5 m/d. Numerical solutions of the governing equations for bacterial transport yielded outcomes that were consistent with the experimental results, and statistical analysis also supported the experimental comparisons. The chemotactic response aided efficient delivery of bacteria to NAPL contaminant sources within the low conductivity pore network. Because toluene is degraded by P. putida F1, the greater accumulation of chemotactic bacteria around the NAPL sources is also expected to increase contaminant consumption and improve the efficiency of bioremediation.
Effect of sequential release of NAPLs on NAPL migration in porous media
NASA Astrophysics Data System (ADS)
Bang, Woohui; Yeo, In Wook
2016-04-01
NAPLs (Non-aqueous phase liquids) are common groundwater contaminants and are classified as LNAPLs (Light non-aqueous phase liquids) and DNAPLs (Dense non-aqueous phase liquids) according to relative density for water. Due to their low solubility in water, NAPLs remain for a long time in groundwater, and they pose a serious environmental problem. Therefore, understanding NAPLs migration in porous media is essential for effective NAPLs remediation. DNAPLs tend to move downward through the water table by gravity force because its density is higher than water. However, if DNAPLs do not have sufficient energy which breaks capillary force of porous media, they will just accumulate above capillary zone or water table. Mobile phase of LNAPLs rises and falls depending on fluctuation of water table, and it could change the wettability of porous media from hydrophilic to hydrophobic. This could impacts on the migration characteristics of subsequently-released DNAPLs. LNAPLs and DNAPLs are sometime disposed at the same place (for example, the Hill air force base, USA). Therefore, this study focuses on the effect of sequential release of NAPLs on NAPLs (in particular, DNAPL) migration in porous media. We have conducted laboratory experiments. Gasoline, which is known to change wettability of porous media from hydrophilic to intermediate, and TCE (Trichloroethylene) were used as LNAPL and DNAPL, respectively. Glass beads with the grain size of 1 mm and 2 mm were prepared for two sets of porous media. Gasoline and TCE was dyed for visualization. First, respective LNAPL and DNAPL of 10 ml were separately released into prepared porous media. For the grain size of 2 mm glass beads, LNAPL became buoyant above the water table, and DNAPL just moved downward through porous media. However, for the experiment with the grain size of 1 mm glass beads, NAPLs behaved very differently. DNAPL did not migrate downward below and just remained above the water table due to capillary pressure of porous media. To study the effect of subsequent release of NAPLs, as soon as LNAPL was released to porous medium with 1 mm of glass beads, being buoyant above water table, water table was lowered, which left residuals along the path of LNAPL. DNAPL was subsequently released. DNAPL was breaking through the water table now, which was opposed to only DNAPL release case. This study indicates that sequential release of NAPLs can leads to different migration characteristics of NAPLs, compared with the release of single phase NAPL into porous media.
Non-aqueous phase liquid spreading during soil vapor extraction
Kneafsey, Timothy J.; Hunt, James R.
2010-01-01
Many non-aqueous phase liquids (NAPLs) are expected to spread at the air – water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enhance the SVE contaminant recovery compared to conditions where the liquid does not spread. Experiments were conducted with spreading volatile oils hexane and heptane in wet porous media and capillary tubes, where spreading was observed at the scale of centimeters. Within porous medium columns up to a meter in height containing stagnant gas, spreading was less than ten centimeters and did not contribute significantly to hexane volatilization. Water film thinning and oil film pinning may have prevented significant oil film spreading, and thus did not enhance SVE at the scale of a meter. The experiments performed indicate that volatile oil spreading at the field scale is unlikely to contribute significantly to the efficiency of SVE. PMID:14734243
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oostrom, Mart; Dane, J. H.; Wietsma, Thomas W.
2007-08-01
A review is presented of original multidimensional, intermediate-scale experiments involving non-aqueous phase liquid (NAPL) flow behavior, imaging, and detection/quantification with solute tracers. In a companion paper (Oostrom, M., J.H. Dane, and T.W. Wietsma. 2006. A review of multidimensional, multifluid intermediate-scale experiments: Nonaqueous phase dissolution and enhanced remediation. Vadose Zone Journal 5:570-598) experiments related to aqueous dissolution and enhanced remediation were discussed. The experiments investigating flow behavior include infiltration and redistribution experiments with both light and dense NAPLs in homogeneous and heterogeneous porous medium systems. The techniques used for NAPL saturation mapping for intermediate-scale experiments include photon-attenuation methods such as gammamore » and X-ray techniques, and photographic methods such as the light reflection, light transmission, and multispectral image analysis techniques. Solute tracer methods used for detection and quantification of NAPL in the subsurface are primarily limited to variations of techniques comparing the behavior of conservative and partitioning tracers. Besides a discussion of the experimental efforts, recommendations for future research at this laboratory scale are provided.« less
De Simone, Gabriele; Lucchetti, Carlo; Pompilj, Francesca; Galli, Gianfranco; Tuccimei, Paola; Curatolo, Pierpaolo; Giorgi, Riccardo
2017-05-01
A soil radon-deficit survey was carried out in a site polluted with kerosene (Rome, Italy) in winter 2016 to assess the contamination due to the NAPL residual component in the vadose zone and to investigate the role of the vapor plume. Radon is indeed more soluble in the residual NAPL than in air or water, but laboratory experiments demonstrated that it is also preferentially partitioned in the NAPL vapors that transport it and may influence soil radon distribution patterns. Specific experimental configurations were designed and applied to a 31-station grid to test this hypothesis; two RAD7 radon monitors were placed in-series and connected to the top of a hollow probe driven up to 80-cm depth; the first instrument was directly attached to the probe and received humid soil gas, which was counted and then conveyed to the second monitor through a desiccant (drierite) cylinder capturing moisture and eventually the NAPL volatile component plus the radon dissolved in vapors. The values from the two instruments were cross-calibrated through specifically designed laboratory experiments and compared. The results are in agreement within the error range, so the presence of significant NAPL vapors, eventually absorbed by drierite, was ruled out. This is in agreement with low concentrations of soil VOCs. Accordingly, the radon-deficit is ascribed to the residual NAPL in the soil pores, as shown very well also by the obtained maps. Preferential areas of radon-deficit were recognised, as in previous surveys. An average estimate of 21 L (17 Kg) of residual NAPL per cubic meter of terrain is provided on the basis of original calculations, developed from published equations. A comparison with direct determination of total hydrocarbon concentration (23 kg per cubic meter of terrain) is provided. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparison of residual NAPL source removal techniques in 3D metric scale experiments
NASA Astrophysics Data System (ADS)
Atteia, O.; Jousse, F.; Cohen, G.; Höhener, P.
2017-07-01
This study compared four treatment techniques for the removal of a toluene/n-decane as NAPL (Non Aqueous Phase Liquid) phase mixture in identical 1 cubic meter tanks filled with different kind of sand. These four treatment techniques were: oxidation with persulfate, surfactant washing with Tween80®, sparging with air followed by ozone, and thermal treatment at 80 °C. The sources were made with three lenses of 26 × 26 × 6.5 cm, one having a hydraulic conductivity similar to the whole tank and the two others a value 10 times smaller. The four techniques were studied after conditioning the tanks with tap water during approximately 80 days. The persulfate treatment tests showed average removal of the contaminants but significant flux decrease if density effects are considered. Surfactant flushing did not show a highly significant increase of the flux of toluene but allowed an increased removal rate that could lead to an almost complete removal with longer treatment time. Sparging removed a significant amount but suggests that air was passing through localized gas channels and that the removal was stagnating after removing half of the contamination. Thermal treatment reached 100% removal after the target temperature of 80 °C was kept during more than 10 d. The experiments emphasized the generation of a high-spatial heterogeneity in NAPL content. For all the treatments the overall removal was similar for both n-decane and toluene, suggesting that toluene was removed rapidly and n-decane more slowly in some zones, while no removal existed in other zones. The oxidation and surfactant results were also analyzed for the relation between contaminant fluxes at the outlet and mass removal. For the first time, this approach clearly allowed the differentiation of the treatments. As a conclusion, experiments showed that the most important differences between the tested treatment techniques were not the global mass removal rates but the time required to reach 99% decrease in the contaminant fluxes, which were different for each technique. This paper presents the first comparison of four remediation techniques at the scale of 1 m3 tanks including heterogeneities. Sparging, persulfate and surfactant only remove 50% of the mass, while it is more than 99% for thermal. In terms of flux removal oxidant addition performs better when density effects are used.
NASA Astrophysics Data System (ADS)
Zhong, L.; Szecsody, J.; Li, X.; Oostrom, M.; Truex, M.
2010-12-01
In many contamination sites, removal of contaminants by any active remediation efforts is not practical due to the high cost and technological limitations. Alternatively, in situ remediation is expected to be the most important remediation strategy. Delivery of reactive amendment to the contamination zone is essential for the reactions between the contaminants and remedial amendments to proceed in situ. It is a challenge to effectively deliver remedial amendment to the subsurface contamination source areas in both aquifer and vadose zone. In aquifer, heterogeneity induces fluid bypassing the low-permeability zones, resulting in certain contaminated areas inaccessible to the remedial amendment delivered by water injection, thus inhibiting the success of remedial operations. In vadose zone in situ remediation, conventional solution injection and infiltration for amendment delivery have difficulties to achieve successful lateral spreading and uniform distribution of the reactive media. These approaches also tend to displace highly mobile metal and radionuclide contaminants such as hexavalent chromium [Cr(VI)] and technetium (Tc-99), causing spreading of contaminations. Shear thinning fluid and aqueous foam can be applied to enhance the amendment delivery and improve in situ subsurface remediation efficiency under aquifer and vadose zone conditions, respectively. Column and 2-D flow cell experiments were conducted to demonstrate the enhanced delivery and improved remediation achieved by the application of shear thinning fluid and foam injection at the laboratory scale. Solutions of biopolymer xanthan gum were used as the shear thinning delivering fluids. Surfactant sodium lauryl ether sulfate (STEOL CS-330) was the foaming agent. The shear thinning fluid delivery (STFD) considerably improved the sweeping efficiency over a heterogeneous system and enhanced the non-aqueous liquid phase (NAPL) removal. The delivery of amendment into low-perm zones (LPZs) by STFD also increased the persistence of amendment solution in the LPZs after injection. Immobilization of Tc-99 was improved when a reductant was delivered by foam versus by water-based solution to contaminated vadose zone sediments. Foam delivery remarkably improved the lateral distribution of fluids compared to direct liquid injection. In heterogeneous vadose zone formation, foam injection increased the liquid flow in the high permeable zones into which very limited fluid was distributed during liquid infiltration, demonstrating improved amendment distribution uniformity in the heterogeneous system by foam delivery.
Spatial distribution of jet fuel in the vadoze zone of a heterogeneous and fractured soil.
Tzovolou, D N; Benoit, Y; Haeseler, F; Klint, K E; Tsakiroglou, C D
2009-04-01
The goal of the present work is to screen and evaluate all available data before selecting and testing remediation technologies on heterogeneous soils polluted by jet fuel. The migration pathways of non-aqueous phase liquids (NAPLs) in the subsurface relate closely with soil properties. A case study is performed on the vadoze zone of a military airport of north-west Poland contaminated by jet fuel. Soil samples are collected from various depths of two cells, and on-site and off-site chemical analyses of hydrocarbons are conducted by using Pollut Eval apparatus and GC-MS, respectively. The geological conceptual model of the site along with microscopic and hydraulic properties of the porous matrix and fractures enable us to interpret the non-uniform spatial distribution of jet fuel constituents. The total concentration of the jet fuel and its main hydrocarbon families (n-paraffins, major aromatics) over the two cells is governed by the slow preferential flow of NAPL through the porous matrix, the rapid NAPL convective flow through vertical desiccation and sub-horizontal glaciotectonic fractures, and n-paraffin biodegradation in upper layers where the rates of oxygen transfer is not limited by complexities of the pore structure. The information collected is valuable for the selection, implementation and evaluation of two in situ remediation methods.
Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy
Rolandi, G.; Bellucci, F.; Heizler, M.T.; Belkin, H.E.; de Vivo, B.
2003-01-01
The Campanian Plain is an 80 x 30 km region of southern Italy, bordered by the Apennine Chain, that has experienced subsidence during the Quaternary. This region, volcanologically active in the last 600 ka, has been identified as the Campanian Volcanic Zone (CVZ). The products of three periods of trachytic ignimbrite volcanism (289-246 ka, 157 ka and 106 ka) have been identified in the Apennine area in the last 300 ka. These deposits probably represent distal ash flow units of ignimbrite eruptions which occurred throughout the CVZ. The resulting deposits are interstratified with marine sediments indicating that periods of repeated volcano-tectonic emergence and subsidence may have occurred in the past. The eruption, defined as the Campanian Ignimbrite (CI), with the largest volume (310 km3), occurred in the CVZ 39 ka ago. The products of the CI eruption consist of two units (unit-1 and unit-2) formed from a single compositionally zoned magma body. Slightly different in composition, three trachytic melts constitute the two units. Unit-1 type A is an acid trachyte, type B is a trachyte and type C of unit-2 is a mafic trachyte. The CI, vented from pre-existing neotectonic faults, formed during the Apennine uplift, Initially the venting of volatile-rich type A magma deposited the products to the N-NE of the CVZ. During the eruption, the Acerra graben already affected by a NE-SW fault system, was transected by E-W faults, forming a cross-graben that extended to the gulf of Naples. E-W faults were then further dislocated by NE-SW transcurrent movements. This additional collapse significantly influenced the deposition of the B-type magma of unit-1, and the C-type magma of unit-2 toward the E-SE and S, in the Bay of Naples. The pumice fall deposit underlying the CI deposits, until now thought to be associated with the CI eruption, is not a strict transition from plinian to CI-forming activity. It is derived instead from an independent source probably located near the Naples area. This initial volcanic activity is assumed to be a precursor to the CI trachytic eruptions, which vented along regional faults.
Transfer Kinetics at the Aqueous/Non-Aqueous Phase Liquid Interface. A Statistical Mechanic Approach
NASA Astrophysics Data System (ADS)
Doss, S. K.; Ezzedine, S.; Ezzedine, S.; Ziagos, J. P.; Hoffman, F.; Gelinas, R. J.
2001-05-01
Many modeling efforts in the literature use a first-order, linear-driving-force model to represent the chemical dissolution process at the non-aqueous/aqueous phase liquid (NAPL/APL) interface. In other words, NAPL to APL phase flux is assumed to be equal to the difference between the solubility limit and the "bulk aqueous solution" concentrations times a mass transfer coefficient. Under such assumptions, a few questions are raised: where, in relation to a region of pure NAPL, does the "bulk aqueous solution" regime begin and how does it behave? The answers are assumed to be associated with an arbitrary, predetermined boundary layer, which separates the NAPL from the surrounding solution. The mass transfer rate is considered to be, primarily, limited by diffusion of the component through the boundary layer. In fact, compositional models of interphase mass transfer usually assume that a local equilibrium is reached between phases. Representing mass flux as a rate-limiting process is equivalent to assuming diffusion through a stationary boundary layer with an instantaneous local equilibrium and linear concentration profile. Some environmental researchers have enjoyed success explaining their data using chemical engineering-based correlations. Correlations are strongly dependent on the experimental conditions employed. A universally applicable theory for NAPL dissolution in natural systems does not exist. These correlations are usually expressed in terms of the modified Sherwood number as a function of Reynolds, Peclet, and Schmidt numbers. The Sherwood number may be interpreted as the ratio between the grain size and the thickness of the Nernst stagnant film. In the present study, we show that transfer kinetics at the NAPL/APL interface under equilibrium conditions disagree with approaches based on the Nernst stagnant film concept. It is unclear whether local equilibrium assumptions used in current models are suitable for all situations.A statistical mechanic framework has been chosen to study the transfer kinetic processes at the microscale level. The rationale for our approach is based on both the activation energy of transfer of an ion and its velocity across the NAPL/APL interface. There are four major energies controlling the interfacial NAPL dissolution kinetics: (de)solvation energy, interfacial tension energy, electrostatic energy, and thermal fluctuation energy. Transfer of an ion across the NAPL/APL interface is accelerated by the viscous forces which can be described using the averaged Langevin master equation. The resulting energies and viscous forces were combined using the Boltzmann probability distribution. Asymptotic time limits of the resulting kinetics lead to instantaneous local equilibrium conditions that contradict the Nernst equilibrium equation. The NAPL/APL interface is not an ideal one: it does not conserve energy and heat. In our case the interface is treated as a thin film or slush zone that alters the thermodynamic variables. Such added zone, between the two phases, is itself a phase, and, therefore, the equilibrium does not occur between two phases but rather three. All these findings led us to develop a new non-linearly coupled flow and transport system of equations which is able to account for specific chemical dissolution processes and precludes the need for empirical mass-transfer parameters. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-28
... Naples, St. Petersburg, Cape Coral, and Sarasota, Florida. These safety zones are necessary to protect...:30 a.m. on January 1, 2012. 3. Cape Coral, Florida. All waters within a 235 yard radius of position...:30 a.m. on January 1, 2012. (3) Cape Coral, FL. All waters within a 235 yard radius of position 26...
NASA Astrophysics Data System (ADS)
Tonini, R.; Anita, G.
2011-12-01
In both worldwide and regional historical catalogues, most of the tsunamis are caused by earthquakes and a minor percentage is represented by all the other non-seismic sources. On the other hand, tsunami hazard and risk studies are often applied to very specific areas, where this global trend can be different or even inverted, depending on the kind of potential tsunamigenic sources which characterize the case study. So far, few probabilistic approaches consider the contribution of landslides and/or phenomena derived by volcanic activity, i.e. pyroclastic flows and flank collapses, as predominant in the PTHA, also because of the difficulties to estimate the correspondent recurrence time. These considerations are valid, for example, for the city of Naples, Italy, which is surrounded by a complex active volcanic system (Vesuvio, Campi Flegrei, Ischia) that presents a significant number of potential tsunami sources of non-seismic origin compared to the seismic ones. In this work we present the preliminary results of a probabilistic multi-source tsunami hazard assessment applied to Naples. The method to estimate the uncertainties will be based on Bayesian inference. This is the first step towards a more comprehensive task which will provide a tsunami risk quantification for this town in the frame of the Italian national project ByMuR (http://bymur.bo.ingv.it). This three years long ongoing project has the final objective of developing a Bayesian multi-risk methodology to quantify the risk related to different natural hazards (volcanoes, earthquakes and tsunamis) applied to the city of Naples.
Power, Christopher; Gerhard, Jason I; Karaoulis, Marios; Tsourlos, Panagiotis; Giannopoulos, Antonios
2014-07-01
Practical, non-invasive tools do not currently exist for mapping the remediation of dense non-aqueous phase liquids (DNAPLs). Electrical resistivity tomography (ERT) exhibits significant potential but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites. This study explores the effectiveness of recently developed four-dimensional (4D, i.e., 3D space plus time) time-lapse surface ERT to monitor DNAPL source zone remediation. A laboratory experiment demonstrated the approach for mapping a changing NAPL distribution over time. A recently developed DNAPL-ERT numerical model was then employed to independently simulate the experiment, providing confidence that the DNAPL-ERT model is a reliable tool for simulating real systems. The numerical model was then used to evaluate the potential for this approach at the field scale. Four DNAPL source zones, exhibiting a range of complexity, were initially simulated, followed by modeled time-lapse ERT monitoring of complete DNAPL remediation by enhanced dissolution. 4D ERT inversion provided estimates of the regions of the source zone experiencing mass reduction with time. Results show that 4D time-lapse ERT has significant potential to map both the outline and the center of mass of the evolving treated portion of the source zone to within a few meters in each direction. In addition, the technique can provide a reasonable, albeit conservative, estimate of the DNAPL volume remediated with time: 25% underestimation in the upper 2m and up to 50% underestimation at late time between 2 and 4m depth. The technique is less reliable for identifying cleanup of DNAPL stringers outside the main DNAPL body. Overall, this study demonstrates that 4D time-lapse ERT has potential for mapping where and how quickly DNAPL mass changes in real time during site remediation. Copyright © 2014 Elsevier B.V. All rights reserved.
Pore-scale Investigation of Surfactant Induced Mobilization for the Remediation of LNAPL
NASA Astrophysics Data System (ADS)
Ghosh, J.; Tick, G. R.
2011-12-01
The presence of nonaqueous phase liquids within the subsurface can significantly limit the effectiveness of groundwater remediation. Specifically, light nonaqueous phase liquids (LNAPLs) present unique challenges as they can become "smeared" within zones above and below the water table. The aim of this research is to understand the interfacial phenomena at the pore scale influencing residual saturation of LNAPL distribution as function of media heterogeneity and remediation processes from various aquifer systems. A series of columns were packed with three types of unconsolidated sand of increasing heterogeneity in grain size distribution and were established with residual saturations of light and heavy crude oil fractions, respectively. These columns were then subjected to flooding with 0.1% anionic surfactant solution in various episodes to initiate mobilization and enhanced recovery of NAPL phase contamination. Synchrotron X-ray microtomography (SXM) imaging technology was used to study three-dimensional (3-D) distributions of crude-oil-blobs before and after sequential surfactant flooding events. Results showed that LNAPL blob distributions became more heterogeneous after each subsequent surfactant flooding episode for all porous-media systems. NAPL recovery was most effective from the homogenous porous medium whereby 100% recovery resulted after 5 pore volumes (PVs) of flushing. LNAPL within the mildly heterogeneous porous medium produced a limited but consistent reduction in saturation after each surfactant flooding episode (23% and 43% recovery for light and heavy after the 5-PV flood). The highly heterogeneous porous medium showed greater NAPL recovery potential (42% and 16% for light and heavy) only after multiple pore volumes of flushing, at which point the NAPL blobs become fragmented into the smaller fragments in response to the reduced interfacial tension. The heterogeneity of the porous media (i.e. grain-size distribution) was a dominant control on the NAPL-blob-size-distribution trapped as residual saturation. The mobility of the NAPL blobs, as a result of surfactant flooding, was primarily controlled by the relative permeability of the medium and the reduction of interfacial tension between the wetting phase (water) and NAPL phase.
NASA Astrophysics Data System (ADS)
Roy, J. W.; Smith, J. E.
2006-12-01
A number of mechanisms can lead to the presence of disconnected bubbles or ganglia of gas phase in groundwater. When associated with or near a DNAPL phase, the disconnected gas phase experiences mass transfer of dissolved gases including the volatile components of the DNAPL. The properties of the gas phase interface, such as interfacial tension and contact angle, can also be affected. This work addresses the behavior of spontaneous continual growth of initially trapped seed gas bubbles within DNAPL source zones. Three different experiments were performed in a 2-dimensional transparent flow cell 15 cm by 20 cm by 1.5 cm. In each case, a DNAPL pool was created within larger glass beads over smaller glass beads that served as a capillary barrier. The DNAPL consisted of either a 1:2 (v/v) tetrachloroethene (PCE) to benzene mixture, single component PCE, or single component TCE. The experiments effectively demonstrate spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone. A cycle of gas phase growth and mobilization was facilitated by the presence of secondary seed bubbles left behind due to snap-off during vertical bubble (ganglion) mobilization. This gas phase growth process was relatively slow but continuous and could be expected to continue until the NAPL is completely dissolved. Some implications of the demonstrated behavior for water flow and mass transfer within and near the DNAPL source zone are highlighted.
NASA Astrophysics Data System (ADS)
Kaye, Andrew J.; Cho, Jaehyun; Basu, Nandita B.; Chen, Xiaosong; Annable, Michael D.; Jawitz, James W.
2008-11-01
This study investigated the benefits of partial removal of dense nonaqueous phase liquid (DNAPL) source zones using enhanced dissolution in eight laboratory scale experiments. The benefits were assessed by characterizing the relationship between reductions in DNAPL mass and the corresponding reduction in contaminant mass flux. Four flushing agents were evaluated in eight controlled laboratory experiments to examine the effects of displacement fluid property contrasts and associated override and underride on contaminant flux reduction ( Rj) vs. mass reduction ( Rm) relationships ( Rj( Rm)): 1) 50% ethanol/50% water (less dense than water), 2) 40% ethyl-lactate/60% water (more dense than water), 3) 18% ethanol/26% ethyl-lactate/56% water (neutrally buoyant), and 4) 2% Tween-80 surfactant (also neutrally buoyant). For each DNAPL architecture evaluated, replicate experiments were conducted where source zone dissolution was conducted with a single flushing event to remove most of the DNAPL from the system, and with multiple shorter-duration floods to determine the path of the Rj( Rm) relationship. All of the single-flushing experiments exhibited similar Rj( Rm) relationships indicating that override and underride effects associated with cosolvents did not significantly affect the remediation performance of the agents. The Rj( Rm) relationship of the multiple injection experiments for the cosolvents with a density contrast with water tended to be less desirable in the sense that there was less Rj for a given Rm. UTCHEM simulations supported the observations from the laboratory experiments and demonstrated the capability of this model to predict Rj( Rm) relationships for non-uniformly distributed NAPL sources.
Sustainable Remediation for Enhanced NAPL Recovery from Groundwater
NASA Astrophysics Data System (ADS)
Javaher, M.
2012-12-01
Sustainable remediation relates to the achievement of balance between environmental, social, and economic elements throughout the remedial lifecycle. A significant contributor to this balance is the use of green and sustainable technologies which minimize environmental impacts, while maximizing social and economic benefits of remedial implementation. To this end, a patented mobile vapor energy generation (VEG) technology has been developed targeting variable applications, including onsite soil remediation for unrestricted reuse and enhanced non-aqueous phase liquid (NAPL) recover at the water table. At the core of the mobile VEG technology is a compact, high efficiency vapor generator, which utilizes recycled water and propane within an entirely enclosed system to generate steam as high as 1100°F. Operating within a fully enclosed system and capturing all heat that is generated within this portable system, the VEG technology eliminates all emissions to the atmosphere and yields an undetected carbon footprint with resulting carbon dioxide concentrations that are below ambient levels. Introduction of the steam to the subsurface via existing wells results in a desired change in the NAPL viscosity and the interfacial tension at the soil, water, NAPL interface; in turn, this results in mobilization and capture of the otherwise trapped, weathered NAPL. Approved by the California Air Resources Control Board (and underlying Air Quality Management Districts) and applied in California's San Joaquin Valley, in-well heating of NAPLs trapped at the water table using the VEG technology has proven as effective as electrical resistivity heating (ERH) in changing the viscosity of and mobilizing NAPLs in groundwater in support of recovery, but has achieved these results while minimizing the remedial carbon footprint by 90%, reducing energy use by 99%, and reducing remedial costs by more than 95%. NAPL recovery using VEG has also allowed for completion of source removal historically stalled, thereby eliminating ongoing and future groundwater impacts; in turn, this has increased project efficiency and stakeholder satisfaction by as much as 100%.
A comprehensive Probabilistic Tsunami Hazard Assessment for the city of Naples (Italy)
NASA Astrophysics Data System (ADS)
Anita, G.; Tonini, R.; Selva, J.; Sandri, L.; Pierdominici, S.; Faenza, L.; Zaccarelli, L.
2012-12-01
A comprehensive Probabilistic Tsunami Hazard Assessment (PTHA) should consider different tsunamigenic sources (seismic events, slide failures, volcanic eruptions) to calculate the hazard on given target sites. This implies a multi-disciplinary analysis of all natural tsunamigenic sources, in a multi-hazard/risk framework, which considers also the effects of interaction/cascade events. Our approach shows the ongoing effort to analyze the comprehensive PTHA for the city of Naples (Italy) including all types of sources located in the Tyrrhenian Sea, as developed within the Italian project ByMuR (Bayesian Multi-Risk Assessment). The project combines a multi-hazard/risk approach to treat the interactions among different hazards, and a Bayesian approach to handle the uncertainties. The natural potential tsunamigenic sources analyzed are: 1) submarine seismic sources located on active faults in the Tyrrhenian Sea and close to the Southern Italian shore line (also we consider the effects of the inshore seismic sources and the associated active faults which we provide their rapture properties), 2) mass failures and collapses around the target area (spatially identified on the basis of their propensity to failure), and 3) volcanic sources mainly identified by pyroclastic flows and collapses from the volcanoes in the Neapolitan area (Vesuvius, Campi Flegrei and Ischia). All these natural sources are here preliminary analyzed and combined, in order to provide a complete picture of a PTHA for the city of Naples. In addition, the treatment of interaction/cascade effects is formally discussed in the case of significant temporary variations in the short-term PTHA due to an earthquake.
The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confin...
Kaye, Andrew J; Cho, Jaehyun; Basu, Nandita B; Chen, Xiaosong; Annable, Michael D; Jawitz, James W
2008-11-14
This study investigated the benefits of partial removal of dense nonaqueous phase liquid (DNAPL) source zones using enhanced dissolution in eight laboratory scale experiments. The benefits were assessed by characterizing the relationship between reductions in DNAPL mass and the corresponding reduction in contaminant mass flux. Four flushing agents were evaluated in eight controlled laboratory experiments to examine the effects of displacement fluid property contrasts and associated override and underride on contaminant flux reduction (R(j)) vs. mass reduction (R(m)) relationships (R(j)(R(m))): 1) 50% ethanol/50% water (less dense than water), 2) 40% ethyl-lactate/60% water (more dense than water), 3) 18% ethanol/26% ethyl-lactate/56% water (neutrally buoyant), and 4) 2% Tween-80 surfactant (also neutrally buoyant). For each DNAPL architecture evaluated, replicate experiments were conducted where source zone dissolution was conducted with a single flushing event to remove most of the DNAPL from the system, and with multiple shorter-duration floods to determine the path of the R(j)(R(m)) relationship. All of the single-flushing experiments exhibited similar R(j)(R(m)) relationships indicating that override and underride effects associated with cosolvents did not significantly affect the remediation performance of the agents. The R(j)(R(m)) relationship of the multiple injection experiments for the cosolvents with a density contrast with water tended to be less desirable in the sense that there was less R(j) for a given R(m). UTCHEM simulations supported the observations from the laboratory experiments and demonstrated the capability of this model to predict R(j)(R(m)) relationships for non-uniformly distributed NAPL sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeze, R.A.; McWhorter, D.B.
Many emerging remediation technologies are designed to remove contaminant mass from source zones at DNAPL sites in response to regulatory requirements. There is often concern in the regulated community as to whether mass removal actually reduces risk, or whether the small risk reductions achieved warrant the large costs incurred. This paper sets out a proposed framework for quantifying the degree to which risk is reduced as mass is removed from DNAPL source areas in shallow, saturated, low-permeability media. Risk is defined in terms of meeting an alternate concentration limit (ACL) at a compliance well in an aquifer underlying the sourcemore » zone. The ACL is back-calculated from a carcinogenic health-risk characterization at a downgradient water-supply well. Source-zone mass-removal efficiencies are heavily dependent on the distribution of mass between media (fractures, matrix) and phase (aqueous, sorbed, NAPL). Due to the uncertainties in currently available technology performance data, the scope of the paper is limited to developing a framework for generic technologies rather than making specific risk-reduction calculations for individual technologies. Despite the qualitative nature of the exercise, results imply that very high total mass-removal efficiencies are required to achieve significant long-term risk reduction with technology applications of finite duration. This paper is not an argument for no action at contaminated sites. Rather, it provides support for the conclusions of Cherry et al. (1992) that the primary goal of current remediation should be short-term risk reduction through containment, with the aim to pass on to future generations site conditions that are well-suited to the future applications of emerging technologies with improved mass-removal capabilities.« less
Assessment of ambient air quality in the port of Naples.
Prati, Maria Vittoria; Costagliola, Maria Antonietta; Quaranta, Franco; Murena, Fabio
2015-08-01
Two experimental monitoring campaigns were carried out in 2012 to investigate the air quality in the port of Naples, the most important in southern Italy for traffic of passengers and one of the most important for goods. Therefore, it represents an important air pollution source located close to the city of Naples. The concentrations of sulfur dioxide (SO₂), nitrogen dioxide (NO₂), and BTEX (benzene, toluene, ethylbenzene, and xylenes) in the air were measured at 15 points inside the Naples port area through the use of passive samplers. In addition, a mobile laboratory was positioned in a fixed point inside the port area to measure continuous concentration of pollutants together with particulate matter, ambient parameters, and wind direction and intensity. The pollution levels monitored were compared with those observed in the urban area of Naples and in other Mediterranean ports. Even though the observation time was limited, measured concentrations were also compared with limit values established by European legislation. All the measured pollutants were below the limits with the exception of nitrogen dioxide: its average concentration during the exposition time exceeded the yearly limit value. A spatial analysis of data, according to the measured wind direction and intensity, provided information about the effects that ship emissions have on ambient air quality in the port area. The main evidence indicates that ship emissions influence sulfur dioxide concentration more than any other pollutants analyzed.
Dai, D; Barranco, F T; Illangasekare, T H
2001-12-15
Research on the use of partitioning and interfacial tracers has led to the development of techniques for estimating subsurface NAPL amount and NAPL-water interfacial area. Although these techniques have been utilized with some success at field sites, current application is limited largely to NAPL at residual saturation, such as for the case of post-remediation settings where mobile NAPL has been removed through product recovery. The goal of this study was to fundamentally evaluate partitioning and interfacial tracer behavior in controlled column-scale test cells for a range of entrapment configurations varying in NAPL saturation, with the results serving as a determinant of technique efficacy (and design protocol) for use with complexly distributed NAPLs, possibly at high saturation, in heterogeneous aquifers. Representative end members of the range of entrapment configurations observed under conditions of natural heterogeneity (an occurrence with residual NAPL saturation [discontinuous blobs] and an occurrence with high NAPL saturation [continuous free-phase LNAPL lens]) were evaluated. Study results indicated accurate prediction (using measured tracer retardation and equilibrium-based computational techniques) of NAPL amount and NAPL-water interfacial area for the case of residual NAPL saturation. For the high-saturation LNAPL lens, results indicated that NAPL-water interfacial area, but not NAPL amount (underpredicted by 35%), can be reasonably determined using conventional computation techniques. Underprediction of NAPL amount lead to an erroneous prediction of NAPL distribution, as indicated by the NAPL morphology index. In light of these results, careful consideration should be given to technique design and critical assumptions before applying equilibrium-based partitioning tracer methodology to settings where NAPLs are complexly entrapped, such as in naturally heterogeneous subsurface formations.
The role of intra-NAPL diffusion on mass transfer from MGP residuals
NASA Astrophysics Data System (ADS)
Shafieiyoun, Saeid; Thomson, Neil R.
2018-06-01
An experimental and computational study was performed to investigate the role of multi-component intra-NAPL diffusion on NAPL-water mass transfer. Molecular weight and the NAPL component concentrations were determined to be the most important parameters affecting intra-NAPL diffusion coefficients. Four NAPLs with different viscosities but the same quantified mass were simulated. For a spherical NAPL body, a combination of NAPL properties and interphase mass transfer rate can result in internal diffusion limitations. When the main intra-NAPL diffusion coefficients are in the range of self-diffusion coefficients (10-5 to 10-6 cm2/s), dissolution is not limited by internal diffusion except for high mass transfer rate coefficients (>180 cm/day). For a complex and relatively high viscous NAPL (>50 g/(cm s)), smaller intra-NAPL diffusion coefficients (<10-8) are expected and even low mass transfer rate coefficients ( 6 cm/day) can result in diffusion-limited dissolution.
Enhanced mobility of non aqueous phase liquid (NAPL) during drying of wet sand
NASA Astrophysics Data System (ADS)
Govindarajan, Dhivakar; Deshpande, Abhijit P.; Raghunathan, Ravikrishna
2018-02-01
Enhanced upward mobility of a non aqueous phase liquid (NAPL) present in wet sand during natural drying, and in the absence of any external pressure gradients, is reported for the first time. This mobility was significantly higher than that expected from capillary rise. Experiments were performed in a glass column with a small layer of NAPL-saturated sand trapped between two layers of water-saturated sand. Drying of the wet sand was induced by flow of air across the top surface of the wet sand. The upward movement of the NAPL, in the direction of water transport, commenced when the drying effect reached the location of the NAPL and continued as long as there was significant water evaporation in the vicinity of NAPL, indicating a clear correlation between the NAPL rise and water evaporation. The magnitude and the rate of NAPL rise was measured at different water evaporation rates, different initial locations of the NAPL, different grain size of the sand and the type of NAPL (on the basis of different NAPL-glass contact angle, viscosity and density). A positive correlation was observed between average rate of NAPL rise and the water evaporation while a negative correlation was obtained between the average NAPL rise rate and the NAPL properties of contact angle, viscosity and density. There was no significant correlation of average NAPL rise rate with variation of sand grain size between 0.1 to 0.5 mm. Based on these observations and on previous studies reported in the literature, two possible mechanisms are hypothesized -a) the effect of the spreading coefficient resulting in the wetting of NAPL on the water films created and b) a moving water film due to evaporation that "drags" the NAPL upwards. The NAPL rise reported in this paper has implications in fate and transport of chemicals in NAPL contaminated porous media such as soils and exposed dredged sediment material, which are subjected to varying water saturation levels due to drying and rewetting.
Marinozzi, S; Gazzaniga, V; Giuffra, V; Fornaciari, G
2011-06-01
Among the mummies preserved in the Basilica of San Domenico Maggiore in Naples, there are the bodies of the wife and three children of Jean Antoine Michel Agar, Minister of Finance of Naple's Kingdom during the Monarchy of Joachim Murat (1808-1815). Between 1983 and 1987 paleopathological analyses were performed; in particular, X-ray examination allowed investigation of the health status of the Agar family members and reconstruction of the embalming processes used to preserve the bodies. In addition, an analysis of the historical and archival documents was carried out, to formulate hypotheses about the causes of death, demonstrating how these sources could become important instruments to obtain diagnoses and pathological histories.
DEVELOPMENT OF A DATA EVALUATION/DECISION SUPPORT SYSTEM FOR REMEDIATION OF SUBSURFACE CONTAMINATION
Subsurface contamination frequently originates from spatially distributed sources of multi-component nonaqueous phase liquids (NAPLs). Such chemicals are typically persistent sources of ground-water contamination that are difficult to characterize. This work addresses the feasi...
Application of the UTCHEM simulator to DNAPL site characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, G.W.
1995-12-31
Numerical simulation using the University of Texas Chemical Flood Simulator (UTCHEM) was used to evaluate two dense, nonaqueous phase liquid (DNAPL) characterization methods. The methods involved the use of surfactants and partitioning tracers to characterize a suspected trichloroethene (TCE) DNAPL zone beneath a US Air Force Plant in Texas. The simulations were performed using a cross-sectional model of the alluvial aquifer in an area that is believed to contain residual TCE at the base of the aquifer. Characterization simulations compared standard groundwater sampling, an interwell NAPL Solubilization Test, and an interwell NAPL Partitioning Tracer Test. The UTCHEM simulations illustrated howmore » surfactants and partitioning tracers can be used to give definite evidence of the presence and volume of DNAPL in a situation where conventional groundwater sampling can only indicate the existence of the dissolved contaminant plume.« less
The Naples University 3 MV tandem accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campajola, L.; Brondi, A.
2013-07-18
The 3 MV tandem accelerator of the Naples University is used for research activities and applications in many fields. At the beginning of operation (1977) the main utilization was in the field of nuclear physics. Later, the realization of new beam lines allowed the development of applied activities as radiocarbon dating, ion beam analysis, biophysics, ion implantation etc. At present, the availability of different ion sources and many improvements on the accelerator allow to run experiments in a wide range of subjects. An overview of the characteristics and major activities of the laboratory is presented.
[Steam and air co-injection in removing TCE in 2D-sand box].
Wang, Ning; Peng, Sheng; Chen, Jia-Jun
2014-07-01
Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio.
SOURCE CONTROL BY HYDROLOGICAL ISOLATION: APPLICATION OF THE ANKENY MOAT
Treatment of NAPLs as source areas for plumes of contamination in ground water has proven problematic under certain regulatory programs. Under the EPA risk management paradigm, hydrological isolation of a fuel spill is a valid and acceptable alternative to treatment. A system o...
Numerical simulation of field scale cosolvent flooding for LNAPL remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roeder, E.; Brame, S.E.; Falta, R.W.
1995-12-31
This paper describes a modeling study which will support remediation of contaminated soils at Hill Air Force Base in Utah. The site is contaminated with a mixture of solvents, jet fuel, and other organic substances which form a separate phase of low density on top of the water table. A test cell within the contaminant zone will be flooded with a cosolvent/water mixture to drive the nonaqueous phase liquids (NAPLs) out. The modeling study is designed to deterine if buoyancy of the flooding solution will cause it to float on top, if heterogeneity of the ground will channel the cosolventmore » around pockets of NAPL, and the sensitivity of the predicted remediation effectiveness to the uncertainty in ternary information. The modeling effort will use UTCHEM, a 3-dimensional finite-difference flooding simulator which solves mass balance equations for up to 21 components in up to 4 phases.« less
NASA Astrophysics Data System (ADS)
Seyedabbasi, M.; Pirestani, K.; Holland, S. B.; Imhoff, P. T.
2005-12-01
Two major processes influencing the elution of solutes from porous media contaminated with nonaqueous phase liquids (NAPLs) are external mass transfer between the NAPL and groundwater and internal diffusion through NAPL ganglia and pools. There is a relatively large body of literature on the dissolution of single-species NAPLs. Less is known about the rates of elution of compounds dissolving from multicomponent NAPLs. We examined the mass transfer of one solute, 2,3-dimethyl-2-butanol (DMB) - a partitioning tracer, between groundwater and a dense NAPL - trichloroethylene (TCE). Diffusion cell experiments were used to measure the molecular diffusion coefficient of DMB in pure TCE and in porous media contaminated with a TCE pool. Measured diffusion coefficients were compared with empirical correlations (pure TCE) and a parallel resistance model (TCE pool). Based on the results from these analyses, a dimensionless Biot number was derived to express the ratio of the external rate of mass transfer from a NAPL pool to the internal rate of diffusion within the pool, which varies with NAPL saturation and NAPL-water partition coefficient. Biot numbers were then estimated for several laboratory scale experiments involving DMB transport between NAPL pools and groundwater. The estimated Biot numbers were in good agreement with experimental results. The expression for the Biot number developed here may be used to assess the processes controlling the elution of solutes from NAPL pools, which has implications on long-term predictions of solute dissolution from NAPLs in the field.
In situ fluidization for peat bed rupture, and preliminary economic analysis.
Niven, R K; Khalili, N
2002-11-01
This study concerns in situ fluidization (ISF), a new remediation method with potential application to the remediation of NAPL and heavy metal contaminants, by their release from the fluidized zone generated by a water jet. The present study examines the effect of ISF on layers of peat, of significance owing to its role as an important NAPL and metal contaminant trap. Once trapped, such contaminants are not readily accessible by most remedial methods, due to the low permeability and diffusivity of the peat. A simple tank experiment is used to demonstrate rupture of a peat layer by ISF, with removal of the peat as elutriated fines and segregated peat chunks. The application of ISF in the field is then examined by three field trials in uncontaminated sands, in both saturated and unsaturated conditions. Fluidized depths of up to 1.9 m in the saturated zone (with refusal on a peat layer) and 2.5 m in the unsaturated zone (no refusal) were attained, using a 1.9-m-long, 50 mm diameter jet operated at 5-13 1 s(-1). Pulses of dark turbidity and shell fragments in the effluent indicated the rupture of peat and shelly layers. The experiments demonstrate the hydraulic viability of ISF in the field, and its ability to remove peat-based contaminants. The issues of appropriate jet design and water generation during ISF are discussed, followed by a preliminary economic analysis of ISF relative to existing remediation methods.
NASA Astrophysics Data System (ADS)
Ponsin, Violaine; Chablais, Amélie; Dumont, Julien; Cardetti, Marc; Radakovitch, Olivier; Höhener, Patrick
2014-05-01
In august 2009, five hectares of the pristine gravel aquifer of Crau in southern France were contaminated by 5,100 m3 of crude oil due to the sudden break of a pipeline. The remediation of this site is still ongoing and consists in replacement and off-site disposal of contaminated topsoils, plume management by hydraulic groundwater barriers with re-injection of activated charcoal-treated waters, and dual-phase LNAPL extraction in the source zone. It is anticipated to stop these remediation actions when the rate of hydrocarbon extraction becomes inefficient. The volume of LNAPL is estimated between 100 and 1000 m3. A more accurate estimation is needed for the implementation of natural attenuation once physical treatment is discontinued. 222Rn has been introduced as a natural tracer for the quantification of LNAPL saturation in porous media under natural gradient conditions (Hunkeler et al., 1997; Semprini et al., 2000; Schubert et al., 2007). The objective of this study was to investigate whether 222Rn in groundwater can be used as a tracer for LNAPL quantification at a field site treated by LNAPL removal. To this end, groundwater samples were obtained in pristine monitoring wells from upgradient the contamination using submersible electric pumps, and in LNAPL recovery wells. There, samples were obtained from the tap on the hard PVC tubing used for pumping groundwater to the treatment facility. For 222Rn analysis, flasks of 250 mL were gently filled and were capped thereafter without permitting air bubbles. The flasks were analysed within 6 to 24 hours. The 222Rn activity of groundwater was measured by a Rn detector (RAD7-Durridge, Co. Inc.). The measurements were spaced over more than 15 months in order to account for seasonal changes. Each well was sampled at least 3 times. In pristine groundwater, the radon activity was relatively constant and remained always > 14 Bq/L. The radon activities in the groundwater of source zone wells were also relatively constant and the mean activities were generally significantly lower than upgradient. This is due to partitioning into the oil phase. Decreases were correlated with NAPL recovery efficiency. The laboratory-determined crude oil-water partitioning coefficient of 38,5 ± 2,9 was used for estimating LNAPL saturation in each recovery well. However, extrapolations of LNAPL saturations to whole-site oil volume estimations are difficult since at low water tables, the volume in the capillary fringe is not assessed. Nevertheless, we find that 222Rn is a useful and cheap groundwater tracer for finding zones of good LNAPL recovery in a heavily pumped aquifer. Hunkeler, D., E. Hoehn, P. Höhener and J. Zeyer, 1997. 222Rn as a partitioning tracer to detect mineral oil contaminations: laboratory experiments and field study. Environmental Science and Technology 31, 3180-3187. Semprini, L., O.S. Hopkins and B.R. Tasker, 2000. Laboratory, field and modeling studies of radon-222 as a natural tracer for monitoring NAPL contamination. Transport in Porous Media 38, 223-240. Schubert, M., A. Paschke, S. Lau, W. Geyer and K. Knöller, 2007. Radon as a naturally occurring tracer for the assessment of residual NAPL contamination of aquifers. Environmental Pollution 145, 920-927.
Clifton, Lisa M; Dahlen, Paul R; Johnson, Paul C
2014-05-06
Aquifer physical model experiments were performed to investigate if diffusive emissions from nonaqueous phase liquid (NAPL)-impacted low-permeability layers into groundwater moving through adjacent NAPL-free high-permeability layers can be reduced by creating an aerobic biotreatment zone at the interface between the two, and if over time that leads to reduced emissions after treatment ceases. Experiments were performed in two 1.2-m long × 1.2-m high × 5.4 cm wide stainless steel tanks; each with a high-permeability sand layer overlying a low-permeability crushed granite layer containing a NAPL mixture of indane and benzene. Each tank was water-saturated with horizontal flow primarily through the sand layer. The influent water was initially deoxygenated and the emissions and concentration distributions were allowed to reach near-steady conditions. The influent dissolved oxygen (DO) level was increased stepwise to 6.5-8.5 mg/L and 17-20 mg/L, and then decreased back to deoxygenated conditions. Each condition was maintained for at least 45 days. Relative to the near-steady benzene emission at the initial deoxygenated condition, the emission was reduced by about 70% when the DO was 6.5-8.5 mg/L, 90% when the DO was 17-20 mg/L, and ultimately 60% when returning to low DO conditions. While the reductions were substantial during treatment, longer-term reductions after 120 d of elevated DO treatment, relative to an untreated condition predicted by theory, were low: 29% and 6% in Tank 1 and Tank 2, respectively. Results show a 1-2 month lag between the end of DO delivery and rebound to the final near-steady emissions level. This observation has implications for post-treatment performance monitoring sampling at field sites.
Jet A fuel recovery using micellar flooding: Design and implementation.
Kostarelos, Konstantinos; Lenschow, Søren R; Stylianou, Marinos A; de Blanc, Phillip C; Mygind, Mette Marie; Christensen, Anders G
2016-09-01
Surfactants offer two mechanisms for recovering NAPLs: 1) to mobilize NAPL by reducing NAPL/water interfacial tension, and; 2) to increase the NAPL's aqueous solubility-called solubilization-as an enhancement to pump & treat. The second approach has been well-studied and applied successfully in several pilot-scale and a few full-scale tests within the last 15years, known as Surfactant Enhanced Aquifer Remediation (SEAR). A useful source of information for this second approach is the "Surfactant-enhanced aquifer remediation (SEAR) design manual" from the U.S. Navy Facilities Engineering Command. Few attempts, however, have been made at recovering NAPLs using the mobilization approach presented in this paper. Now, a full-scale field implementation of the mobilization approach is planned to recover an LNAPL (Jet A fuel) from a surficial sand aquifer located in Denmark using a smaller amount of surfactant solution and fewer PVs of throughput compared with the SEAR approach. The approach will rely on mobilizing the LNAPL so that it is recovered ahead of the surfactant microemulsion, also known as a micellar flood. This paper will review the laboratory work performed as part of the design for a full-scale implementation of a micellar flood. Completed lab work includes screening of surfactants, phase behavior and detailed salinity scans of the most promising formulations, and generating a ternary diagram to be used for the numerical simulations of the field application. The site owners and regulators were able to make crucial decisions such as the anticipated field results based on this work. Copyright © 2016 Elsevier B.V. All rights reserved.
Simulated formation and flow of microemulsions during surfactant flushing of contaminated soil.
Ouyan, Ying; Cho, Jong Soo; Mansell, Robert S
2002-01-01
Contamination of groundwater resources by non-aqueous phase liquids (NAPLs) has become an issue of increasing environmental concern. This study investigated the formation and flow of microemulsions during surfactant flushing of NAPL-contaminated soil using the finite difference model UTCHEM, which was verified with our laboratory experimental data. Simulation results showed that surfactant flushing of NAPLs (i.e., trichloroethylene and tetrachloroethylene) from the contaminated soils was an emulsion-driven process. Formation of NAPL-in-water microemulsions facilitated the removal of NAPLs from contaminated soils. Changes in soil saturation pressure were used to monitor the mobilization and entrapment of NAPLs during surface flushing process. In general, more NAPLs were clogged in soil pores when the soil saturation pressure increased. Effects of aquifer salinity on the formation and flow of NAPL-in-water microemulsions were significant. This study suggests that the formation and flow of NAPL-in-water microemulsions through aquifer systems are complex physical-chemical phenomena that are critical to effective surfactant flushing of contaminated soils.
NASA Astrophysics Data System (ADS)
Cai, Z.; Wilson, R. D.
2009-05-01
Techniques for optimizing the removal of NAPL mass in source zones have advanced at a more rapid rate than strategies to assess treatment performance. Informed selection of remediation approaches would be easier if measurements of performance were more directly transferable. We developed a number of methods based on data generated from multilevel sampler (MLS) transects to assess the effectiveness of a bioaugmentation/biostimulation trial in a TCE source residing in a terrace gravel aquifer in the East Midlands, UK. In this spatially complex aquifer, treatment inferred from long screen monitoring well data was not as reliable as that from consideration of mass flux changes across transects installed in and downgradient of the source. Falling head tests were conducted in the MLS ports to generate the necessary hydraulic conductivity (K) data. Combining K with concentration provides a mass flux map that allows calculation of mass turnover and an assessment of where in the complex geology the greatest turnover occurred. Five snapshots over a 600-day period indicate a marked reduction in TCE flux, suggesting a significant reduction in DNAPL mass over that expected due to natural processes. However, persistence of daughter products suggested that complete dechlorination did not occur. The MLS fence data also revealed that delivery of both carbon source and pH buffer were not uniform across the test zone. This may have lead to the generation of niches of iron(III) and sulphate reduction as well as methanogenesis, which impacted on dechlorination processes. In the absence of this spatial data, it is difficult to reconcile apparent treatment as indicated in monitoring well data to on-going processes.
Modeling of the Inter-phase Mass Transfer during Cosolvent-Enhanced NAPL Remediation
NASA Astrophysics Data System (ADS)
Agaoglu, B.; Scheytt, T. J.; Copty, N. K.
2012-12-01
This study investigates the factors influencing inter-phase mass transfer during cosolvent-enhanced NAPL remediation and the ability of the REV (Representative Elementary Volume) modeling approach to simulate these processes. The NAPLs considered in this study consist of pure toluene, pure benzene and known mixtures of these two compounds, while ethanol-water mixtures were selected as the remedial flushing solutions. Batch tests were performed to identify both the equilibrium and non-equilibrium properties of the multiphase system. A series of column flushing experiments involving different NAPLs were conducted for different ethanol contents in the flushing solution and for different operational parameters. Experimental results were compared to numerical simulations obtained with the UTCHEM multiphase flow simulator (Delshad et al., 1996). Results indicate that the velocity of the flushing solution is a major parameter influencing the inter-phase mass transport processes at the pore scale. Depending on the NAPL composition and porous medium properties, the remedial solution may follow preferential flow paths and be subject to reduced contact with the NAPL. This leads to a steep decrease in the apparent mass transfer coefficient. Correlations of the apparent time-dependent mass transfer coefficient as a function of flushing velocity are developed for various porous media. Experimental results also show that the NAPL mass transfer coefficient into the cosolvent solution increases when the NAPL phase becomes mobile. This is attributed to the increase in pore scale contact area between NAPL and the remedial solution when NAPL mobilization occurs. These results suggest the need to define a temporal and spatially variable mass transfer coefficient of the NAPL into the cosolvent solution to reflect the occurrence of subscale preferential flow paths and the transient bypassing of the NAPL mass. The implications of these findings on field scale NAPL remediation with cosolvents are discussed.
NASA Astrophysics Data System (ADS)
Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K.
2012-10-01
This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations was also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with low flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. Model simulations over-estimated NAPL recovery for high specific discharges and rate-limited mass transfer, suggesting a constant mass transfer coefficient for the entire flushing experiment may not be valid. When multi-component NAPLs are present, the dissolution rate of individual organic compounds (namely, toluene and benzene) into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values.
NASA Astrophysics Data System (ADS)
Chen, Mingjie; Abriola, Linda M.; Amos, Benjamin K.; Suchomel, Eric J.; Pennell, Kurt D.; Löffler, Frank E.; Christ, John A.
2013-08-01
Reductive dechlorination catalyzed by organohalide-respiring bacteria is often considered for remediation of non-aqueous phase liquid (NAPL) source zones due to cost savings, ease of implementation, regulatory acceptance, and sustainability. Despite knowledge of the key dechlorinators, an understanding of the processes and factors that control NAPL dissolution rates and detoxification (i.e., ethene formation) is lacking. A recent column study demonstrated a 5-fold cumulative enhancement in tetrachloroethene (PCE) dissolution and ethene formation (Amos et al., 2009). Spatial and temporal monitoring of key geochemical and microbial (i.e., Geobacter lovleyi and Dehalococcoides mccartyi strains) parameters in the column generated a data set used herein as the basis for refinement and testing of a multiphase, compositional transport model. The refined model is capable of simulating the reactive transport of multiple chemical constituents produced and consumed by organohalide-respiring bacteria and accounts for substrate limitations and competitive inhibition. Parameter estimation techniques were used to optimize the values of sensitive microbial kinetic parameters, including maximum utilization rates, biomass yield coefficients, and endogenous decay rates. Comparison and calibration of model simulations with the experimental data demonstrate that the model is able to accurately reproduce measured effluent concentrations, while delineating trends in dechlorinator growth and reductive dechlorination kinetics along the column. Sensitivity analyses performed on the optimized model parameters indicate that the rates of PCE and cis-1,2-dichloroethene (cis-DCE) transformation and Dehalococcoides growth govern bioenhanced dissolution, as long as electron donor (i.e., hydrogen flux) is not limiting. Dissolution enhancements were shown to be independent of cis-DCE accumulation; however, accumulation of cis-DCE, as well as column length and flow rate (i.e., column residence time), strongly influenced the extent of reductive dechlorination. When cis-DCE inhibition was neglected, the model over-predicted ethene production ten-fold, while reductions in residence time (i.e., a two-fold decrease in column length or two-fold increase in flow rate) resulted in a more than 70% decline in ethene production. These results suggest that spatial and temporal variations in microbial community composition and activity must be understood to model, predict, and manage bioenhanced NAPL dissolution.
NASA Astrophysics Data System (ADS)
Agaoglu, B.; Scheytt, T. J.; Copty, N. K.
2011-12-01
This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations were also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with slow flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. The results were less consistent for fast non-equilibrium flow conditions. The dissolution process from the NAPL mixture into the water-ethanol flushing solutions was found to be more complex than dissolution expressions incorporated in the numerical model. The dissolution rate of individual organic compounds (namely Toluene and Benzene) from a mixture NAPL into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values.The implications of this controlled experimental and modeling study on field cosolvent remediation applications are discussed.
Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K
2012-10-01
This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations was also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with low flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. Model simulations over-estimated NAPL recovery for high specific discharges and rate-limited mass transfer, suggesting a constant mass transfer coefficient for the entire flushing experiment may not be valid. When multi-component NAPLs are present, the dissolution rate of individual organic compounds (namely, toluene and benzene) into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghafouri, H. R.; Mosharaf-Dehkordi, M.; Afzalan, B.
2017-07-01
A simulation-optimization model is proposed for identifying the characteristics of local immiscible NAPL contaminant sources inside aquifers. This model employs the UTCHEM 9.0 software as its simulator for solving the governing equations associated with the multi-phase flow in porous media. As the optimization model, a novel two-level saturation based Imperialist Competitive Algorithm (ICA) is proposed to estimate the parameters of contaminant sources. The first level consists of three parallel independent ICAs and plays as a pre-conditioner for the second level which is a single modified ICA. The ICA in the second level is modified by dividing each country into a number of provinces (smaller parts). Similar to countries in the classical ICA, these provinces are optimized by the assimilation, competition, and revolution steps in the ICA. To increase the diversity of populations, a new approach named knock the base method is proposed. The performance and accuracy of the simulation-optimization model is assessed by solving a set of two and three-dimensional problems considering the effects of different parameters such as the grid size, rock heterogeneity and designated monitoring networks. The obtained numerical results indicate that using this simulation-optimization model provides accurate results at a less number of iterations when compared with the model employing the classical one-level ICA. A model is proposed to identify characteristics of immiscible NAPL contaminant sources. The contaminant is immiscible in water and multi-phase flow is simulated. The model is a multi-level saturation-based optimization algorithm based on ICA. Each answer string in second level is divided into a set of provinces. Each ICA is modified by incorporating a new knock the base model.
Modeling NAPL dissolution from pendular rings in idealized porous media
NASA Astrophysics Data System (ADS)
Huang, Junqi; Christ, John A.; Goltz, Mark N.; Demond, Avery H.
2015-10-01
The dissolution rate of nonaqueous phase liquid (NAPL) often governs the remediation time frame at subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and assume that the NAPL is the nonwetting fluid. However, field evidence suggests that some waste sites might be organic wet. Thus, formulations that assume the NAPL is nonwetting may be inappropriate for estimating the rates of NAPL dissolution. An exact solution to the Young-Laplace equation, assuming NAPL resides as pendular rings around the contact points of porous media idealized as spherical particles in a hexagonal close packing arrangement, is presented in this work to provide a theoretical prediction for NAPL-water interfacial area. This analytic expression for interfacial area is then coupled with an exact solution to the advection-diffusion equation in a capillary tube assuming Hagen-Poiseuille flow to provide a theoretical means of calculating the mass transfer rate coefficient for dissolution at the NAPL-water interface in an organic-wet system. A comparison of the predictions from this theoretical model with predictions from empirically derived formulations from the literature for water-wet systems showed a consistent range of values for the mass transfer rate coefficient, despite the significant differences in model foundations (water wetting versus NAPL wetting, theoretical versus empirical). This finding implies that, under these system conditions, the important parameter is interfacial area, with a lesser role played by NAPL configuration.
Infrared thermography in the restoration of cultural properties
NASA Astrophysics Data System (ADS)
Carlomagno, Giovanni M.; Carosena, Meola
2001-03-01
Some of the work carried out at DETEC on the use of infrared thermography in the architectural restoration field is examined. Three different techniques, pulse thermography (PT), modulated thermography (MT) and pulse phase thermography (PPT) are analyzed through the control of some art treasures such as mosaics and frescoes. In particular, the following artifacts are considered: mosaics covering some external walls of the building of the Faculty of Engineering of Naples, frescoes in the Duomo of Sarno, frescoes in the Cripta SS. Stefani in Vaste (Le), mosaics and frescoes in the Archeological Museum of Naples coming from Pompeii and Ruvo. It is found that the choice of the technique depends on the specific surface to be tested: if only qualitative information about detachments and cracks are needed the pulse thermography is sufficient; if the surface is not very sensitive to temperature rising, the pulse phase thermography can be applied which gives information about the location of the defected zone. If instead, the analysis regards rare art treasures, lockin thermography is the only response.
NASA Astrophysics Data System (ADS)
Chan, T. P.; Govindaraju, Rao S.
2006-10-01
Remediation schemes for contaminated sites are often evaluated to assess their potential for source zone reduction of mass, or treatment of the contaminant between the source and a control plane (CP) to achieve regulatory limits. In this study, we utilize a stochastic stream tube model to explain the behavior of breakthrough curves (BTCs) across a CP. At the local scale, mass dissolution at the source is combined with an advection model with first-order decay for the dissolved plume. Field-scale averaging is then employed to account for spatial variation in mass within the source zone, and variation in the velocity field. Under the assumption of instantaneous mass transfer from the source to the moving liquid, semi-analytical expressions for the BTC and temporal moments are developed, followed by derivation of expressions for effective velocity, dispersion, and degradation coefficients using the method of moments. It is found that degradation strongly influences the behavior of moments and the effective parameters. While increased heterogeneity in the velocity field results in increased dispersion, degradation causes the center of mass of the plume to shift to earlier times, and reduces the dispersion of the BTC by lowering the concentrations in the tail. Modified definitions of effective parameters are presented for degrading solutes to account for the normalization constant (zeroth moment) that keeps changing with time or distance to the CP. It is shown that anomalous dispersion can result for high degradation rates combined with wide variation in velocity fluctuations. Implications of model results on estimating cleanup times and fulfillment of regulatory limits are discussed. Relating mass removal at the source to flux reductions past a control plane is confounded by many factors. Increased heterogeneity in velocity fields causes mass fluxes past a control plane to persist, however, aggressive remediation between the source and CP can reduce these fluxes.
NASA Astrophysics Data System (ADS)
Dugan, P. J.; Siegrist, R. L.; Crimi, M. L.
2004-12-01
Within the last decade, surfactant-enhanced aquifer remediation \\(SEAR\\), and more recently, in-situ chemical oxidation \\(ISCO\\) show promise for remediation of dense nonaqueous phase liquid \\(DNAPL\\) contamination in the subsurface. DNAPL removal is typically difficult to achieve with one remedial technique; however, coupling of treatments can be a highly effective method for remediation of DNAPL contamination. Little research has been completed to date to evaluate such coupling and the factors that impact appropriate engineering design and remediation performance assessment. Partitioning tracer tests (PTTs) are a promising method for estimating the volume and distribution of DNAPL. PTTs have several useful purposes: locating subsurface DNAPL zones, estimating NAPL saturation or volume within these contaminated zones, and providing a quantitative and qualitative means of assessing remediation performance. PTT theory permits direct calculation of the NAPL saturation from the chromatographic separation of a tracer pulse consisting of suites of partitioning and non-partitioning tracers that travel with the advecting groundwater. The PTT has been used with limited success after surfactant/cosolvent recovery but has not been assessed as a performance assessment tool after ISCO. There are several factors that could potentially impact the feasibility of the PTT after ISCO. First, previous batch experiments indicate that partitioning tracers degrade in the presence of the oxidant potassium permanganate. Secondly, tracer partitioning could be inhibited by manganese dioxide film formation after chemical oxidation of DNAPL. Both of these factors have potential to influence partitioning tracer transport, which could lead to inaccurate estimates of the post-remediation NAPL saturation, and therefore remediation efficiency. There is a need for researching PTTs after surfactant/cosolvent coupling with ISCO. In general, DNAPL-zone characterization methods have significant uncertainty, and assessing remediation efficiency is difficult. Effluent concentrations can be monitored in the extraction fluid during surfactant/cosolvent flushing, as an independent measure of mass removed. However, a challenge with ISCO in terms of performance assessment is that there is no way to directly measure mass destroyed, except through post-remediation characterization (i.e., PTTs or soil cores). Column and 2-D cell studies were conducted to investigate removal of DNAPL with surfactant/cosolvent flushing coupled with ISCO using the oxidant potassium permanganate. Partitioning and non-partitioning tracers were used in the pre- and post-remediation studies to investigate the effect of these remedial techniques on the viability of PTT.
NASA Astrophysics Data System (ADS)
Becker, J. G.; Seagren, E. A.
2006-12-01
The presence of dense non-aqueous phase liquids (DNAPLs) at many chlorinated ethene-contaminated sites can greatly extend the time frames needed to reduce dissolved contaminants to regulatory levels using bioremediation. However, it has been demonstrated that mass removal from chlorinated ethene DNAPLs can potentially be enhanced through dehalorespiration of dissolved contaminants near the NAPL-water interface. Although promising, the amount of "bioenhancement" that can be achieved under optimal conditions is currently not known, and the real significance and engineering potential of this phenomenon currently are not well understood, in part because it can be influenced by a complex set of factors, including DNAPL properties, hydrodynamics, substrate concentrations, and microbial competition for growth substrates. In this study it is hypothesized that: (1) different chlorinated ethene-respiring strains may dominate within different zones of a contaminant plume emanating from a DNAPL source zone due to variations in substrate availability, and microbial competition for chlorinated ethenes and/or electron donors; and (2) the outcome of competitive interactions near the DNAPL source zone will affect the longevity of DNAPL source zones by influencing the degree of dissolution bioenhancement, while the outcome of competitive interactions further downgradient will determine the extent of contaminant dechlorination. To demonstrate the validity of the proposed hypothesis, a series of simple, "proof-of-concept," mathematical simulations evaluating the effects of competitive interactions on the distribution of dehalorespirers at the DNAPL-water interface, the dissolution of tetrachloroethene (PCE), and extent of PCE detoxification were performed in a model competition scenario, in which Dehalococcoides ethenogenes and another dehalorespirer (Desulfuromonas michiganensis) compete for the electron acceptor (PCE) and/or electron donor. The model domain for this evaluation simulates a contaminant-source zone consisting of DNAPL ganglia trapped in a subsurface porous medium that slowly releases organic pollutants into the groundwater flowing past it. The model used in the simulations was based on a biokinetic model recently developed by Becker [Environ. Sci. Technol. 40(14):4473-4480] to describe competition among PCE-respiring populations in a homogenous continuously-stirred tank reactor. Becker's model was expanded by adding terms for chlorinated ethene partitioning between the DNAPL and aqueous phases, as well as advection and dispersion of aqueous chlorinated ethenes. The results of these preliminary simulations demonstrate that the outcome of competition between populations for growth substrates can have a significant impact on bioenhancement and, thus, on DNAPL source zone longevity. Although these proof-of- concept simulations do not incorporate all of the complexity of actual field systems, the modeling results are useful for identifying which parameters are important in determining the outcome of competition in the different scenarios and its impact on DNAPL dissolution. This information is needed to understand how biostimulation and bioaugmentation affect bioenhancement by stimulating different populations and develop bioremediation strategies that incorporate these treatment technologies while balancing the twin clean-up goals of reduced source longevity and complete detoxification.
Barth, Gilbert R.; Illangasekare, T.H.; Rajaram, H.
2003-01-01
This work considers the applicability of conservative tracers for detecting high-saturation nonaqueous-phase liquid (NAPL) entrapment in heterogeneous systems. For this purpose, a series of experiments and simulations was performed using a two-dimensional heterogeneous system (10??1.2 m), which represents an intermediate scale between laboratory and field scales. Tracer tests performed prior to injecting the NAPL provide the baseline response of the heterogeneous porous medium. Two NAPL spill experiments were performed and the entrapped-NAPL saturation distribution measured in detail using a gamma-ray attenuation system. Tracer tests following each of the NAPL spills produced breakthrough curves (BTCs) reflecting the impact of entrapped NAPL on conservative transport. To evaluate significance, the impact of NAPL entrapment on the conservative-tracer breakthrough curves was compared to simulated breakthrough curve variability for different realizations of the heterogeneous distribution. Analysis of the results reveals that the NAPL entrapment has a significant impact on the temporal moments of conservative-tracer breakthrough curves. ?? 2003 Elsevier B.V. All rights reserved.
FORNACIARI, GINO; MARINOZZI, SILVIA; GAZZANIGA, VALENTINA; GIUFFRA, VALENTINA; PICCHI, MALAYKA SAMANTHA; GIUSIANI, MARIO; MASETTI, MASSIMO
2011-01-01
The hair samples of Ferdinand II of Aragon (1467–1496), King of Naples, whose mummy is preserved in the Basilica of San Domenico Maggiore in Naples, showed a high content of mercury, with a value of 827ppm. Furthermore, examination using a stereomicroscope and a scanning electron microscope (SEM) of head and pubic hairs of Ferdinand II, revealed a lice infestation. The reasons for the massive presence of the mercury in the king's hair are discussed and contemporary literature regarding the use of this metal in medical therapies and in cosmetic practices is analysed. As a result, the high value of mercury in the hair of Ferdinand II can be attributed to antipediculosis therapy, applied as a topic medicament. This case represents an important finding for the history of medicine, because demonstrates that in the Renaissance mercury was applied locally not only to treat syphilis, as well attested by direct and indirect sources, but also to prevent or eliminate lice infestation. PMID:23752867
DOE Office of Scientific and Technical Information (OSTI.GOV)
ZHONG,LIRONG; MAYER,ALEX; GLASS JR.,ROBERT J.
Surfactant-enhanced aquifer remediation is an emerging technology for aquifers contaminated with nonaqueous phase liquids (NAPLs). A two-dimensional micromodel and image capture system were applied to observe NAPL mobilization and solubilization phenomena. In each experiment, a common residual NAPL field was established, followed by a series of mobilization and solubilization experiments. Mobilization floods included pure water floods with variable flow rates and surfactant floods with variations in surfactant formulations. At relatively low capillary numbers (N{sub ca}<10{sup {minus}3}), the surfactant mobilization floods resulted in higher NAPL saturations than for the pure water flood, for similar N{sub ca}.These differences in macroscopic saturations aremore » explained by differences in micro-scale mobilization processes. Solubilization of the residual NAPL remaining after the mobilization stage was dominated by the formation of dissolution fingers, which produced nonequilibrium NAPL solubilization. A macroemulsion phase also as observed to form spontaneously and persist during the solubilization stage of the experiments.« less
Characterization of TCE DNAPL and Dissolved Phase Transport in Karst Media
NASA Astrophysics Data System (ADS)
Carmona, M.; Padilla, I. Y.
2015-12-01
Trichloroethylene (TCE) contaminated sites are a threat to the environment and human health. Of particular concerns is the contamination of karst groundwater systems (KGWSs). Their heterogeneous character, rapid flow through conduits, high permeability zones, and strong storage capacity in the rock porous-matrix pose a high risk of exposure over large areas and temporal scales. To achieve effective remedial actions for TCE removal, it is important to understand and quantify the fate and transport process of trichloroethylene in these systems. This research studies the fate, transport, and distribution of TCE Non-Aqueous Phase Liquids (NAPLs) and associated dissolved species in KGWSs. Experiments are conducted in a karstified limestone physical model, a limestone rock mimicking a saturated confined karst aquifer. After injecting TCE solvent into a steady groundwater flow field, samples are taken spatially and temporally and analyzed for TCE NAPL and dissolved phases. Data analysis shows the rapid detection of TCE NAPL and high aqueous concentrations along preferential pathway, even at distances far away from the injection point. Temporal distribution curves exhibit spatial variations related to the limestone rock heterogeneity. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response with long tailing indicates rate-limited diffusive transport in the rock matrix. Overall, results indicate that karstified limestone has a high capacity to rapidly transport pure and dissolved TCE along preferential flow paths, and to store and slowly release TCE over long periods of time.
NASA Astrophysics Data System (ADS)
Menghan, Wang; Stefano, Albanese; Annamaria, Lima; Claudia, Cannatelli; Antonio, Cosenza; Wanjun, Lu; Marco, Sacchi; Angela, Doherty; Benedetto, De Vivo
2015-07-01
This paper presents the results of an environmental geochemical investigation of the Gulfs of Naples and Salerno, near the Campania plain (Southern Italy). Surface marine sediment samples were collected during three field campaigns: 96 from the Gulfs of Naples and Salerno (NaSa); 123 from the Bagnoli site coastal area (BaSi); and 11 from the ports around the Gulf of Naples (PoNa). Elemental concentrations were determined and their interpolated distribution maps were compiled. Three geochemical sources (or processes) were determined associating elemental distribution with the results obtained from a R-mode factor analysis: 1) geogenic, 2) water kinetics and 3) anthropogenic. The results are presented as raw data single element distributions of eight potential toxic elements (PTEs) (As, Cd, Cr, Cu, Hg, Pb, Ni and Zn) in the forms of raw data and additive log-ratio transformed data. The latter showed advantages in revealing the actual distribution patterns. Geochemical background reference values of PTEs were determined from the median value of local background reference values. Based on these values, pollution impact analysis was carried out to both BaSi and PoNa samples, indicating most of BaSi and PoNa sediments were affected by moderate to strong Pb, Zn, Cd and Hg pollution. An ecological risk assessment was subsequently carried out on the entire database, pointing a toxic risk ranking in the order Pb > As > Ni > Cd > Hg > Cr.
A critical evaluation of the local-equilibrium assumption in modeling NAPL-pool dissolution
NASA Astrophysics Data System (ADS)
Seagren, Eric A.; Rittmann, Bruce E.; Valocchi, Albert J.
1999-07-01
An analytical modeling analysis was used to assess when local equilibrium (LE) and nonequilibrium (NE) modeling approaches may be appropriate for describing nonaqueous-phase liquid (NAPL) pool dissolution. NE mass-transfer between NAPL pools and groundwater is expected to affect the dissolution flux under conditions corresponding to values of Sh'St (the modified Sherwood number ( Lxkl/ Dz) multiplied by the Stanton number ( kl/ vx))<≈400. A small Sh'St can be brought about by one or more of: a large average pore water velocity ( vx), a large transverse dispersivity ( αz), a small pool length ( Lx), or a small mass-transfer coefficient ( kl). On the other hand, at Sh'St>≈400, the NE and LE solutions converge, and the LE assumption is appropriate. Based on typical groundwater conditions, many cases of interest are expected to fall in this range. The parameter with the greatest impact on Sh'St is kl. The NAPL pool mass-transfer coefficient correlation of Pfannkuch [Pfannkuch, H.-O., 1984. Determination of the contaminant source strength from mass exchange processes at the petroleum-ground-water interface in shallow aquifer systems. In: Proceedings of the NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water—Prevention, Detection, and Restoration, Houston, TX. Natl. Water Well Assoc., Worthington, OH, Nov. 1984, pp. 111-129.] was evaluated using the toluene pool data from Seagren et al. [Seagren, E.A., Rittmann, B.E., Valocchi, A.J., 1998. An experimental investigation of NAPL-pool dissolution enhancement by flushing. J. Contam. Hydrol., accepted.]. Dissolution flux predictions made with kl calculated using the Pfannkuch correlation were similar to the LE model predictions, and deviated systematically from predictions made using the average overall kl=4.76 m/day estimated by Seagren et al. [Seagren, E.A., Rittmann, B.E., Valocchi, A.J., 1998. An experimental investigation of NAPL-pool dissolution enhancement by flushing. J. Contam. Hydrol., accepted.] and from the experimental data for vx>18 m/day. The Pfannkuch correlation kl was too large for vx>≈10 m/day, possibly because of the relatively low Peclet number data used by Pfannkuch [Pfannkuch, H.-O., 1984. Determination of the contaminant source strength from mass exchange processes at the petroleum-ground-water interface in shallow aquifer systems. In: Proceedings of the NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water—Prevention, Detection, and Restoration, Houston, TX. Natl. Water Well Assoc., Worthington, OH, Nov. 1984, pp. 111-129.]. The results of the modeling analyses were evaluated by comparing pool dissolution fluxes from the literature to each other and to the corresponding LE and NE model predictions. The LE model described most of the pool dissolution flux data reasonably well, given the uncertainty in some of the model parameter estimates, suggesting that the LE model can be a useful tool for describing steady-state NAPL pool dissolution under some conditions. However, a conclusive test of the LE assumption was difficult due to the limited range of experimental conditions covered and the uncertainties in some of the model input parameters, including the mass-transfer coefficient correlation required for the NE model.
Natural attenuation software (NAS): Assessing remedial strategies and estimating timeframes
Mendez, E.; Widdowson, M.; Chapelle, F.; Casey, C.
2005-01-01
Natural Attenuation Software (NAS) is a screening tool to estimate remediation timeframes for monitored natural attenuation (MNA) and to assist in decision-making on the level of source zone treatment in conjunction with MNA using site-specific remediation objectives. Natural attenuation processes that NAS models include are advection, dispersion, sorption, non-aqueous phase liquid (NAPL) dissolution, and biodegradation of either petroleum hydrocarbons or chlorinated ethylenes. Newly-implemented enhancements to NAS designed to maximize the utility of NAS for site managers were observed. NAS has expanded source contaminant specification options to include chlorinated ethanes and chlorinated methanes, and to allow for the analysis of any other user-defined contaminants that may be subject to microbially-mediated transformations (heavy metals, radioisotopes, etc.). Included is the capability to model co-mingled plumes, with constituents from multiple contaminant categories. To enable comparison of remediation timeframe estimates between MNA and specific engineered remedial actions , NAS was modified to incorporate an estimation technique for timeframes associated with pump-and-treat remediation technology for comparison to MNA. This is an abstract of a paper presented at the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).
A mathematical and numerical model is developed to simulate the transport and fate of NAPLs (Non-Aqueous Phase Liquids) in near-surface granular soils. The resulting three-dimensional, three phase simulator is called NAPL. The simulator accommodates three mobile phases: water, NA...
Using Stable Isotopes to Understand Degradation of Organic Contaminants in Ground Water
Stable isotopes are a powerful tool to understand biodegradation. However, there are two interactions that can substantially confuse the interpretation of CSIR data: heterogeneity in flow paths in the aquifer and proximity to NAPL or other source of contamination to ground wate...
Laboratory Experiments and Modeling of Pooled NAPL Dissolution in Porous Media
NASA Astrophysics Data System (ADS)
Copty, N. K.; Sarikurt, D. A.; Gokdemir, C.
2017-12-01
The dissolution of non-aqueous phase liquids (NAPLs) entrapped in porous media is commonly modeled at the continuum scale as the product of a chemical potential and an interphase mass transfer coefficient, the latter expressed in terms of Sherwood correlations that are related to flow and porous media properties. Because of the lack of precise estimates of the interface area separating the NAPL and aqueous phase, numerous studies have lumped the interfacial area into the interphase mass transfer coefficient. In this paper controlled dissolution experiments from a pooled NAPL were conducted. The immobile NAPL mass is placed at the bottom of a flow cell filled with porous media with water flowing on top. Effluent aqueous phase concentrations were measured for a wide range of aqueous phase velocities and for two types of porous media. To interpret the experimental results, a two-dimensional pore network model of the NAPL dissolution was developed. The well-defined geometry of the NAPL-water interface and the observed effluent concentrations were used to compute best-fit mass transfer coefficients and non-lumped Sherwood correlations. Comparing the concentrations predicted with the pore network model to simple previously used one-dimensional analytic solutions indicates that the analytic model which ignores the transverse dispersion can lead to over-estimation of the mass transfer coefficient. The predicted Sherwood correlations are also compared to previously published data and implications on NAPL remediation strategies are discussed.
BIOSURFACTANT-ENHANCED SOLUBILIZATION OF NAPL MIXTURES. (R827112)
Remediation of nonaqueous phase liquids (NAPLs) by conventional pump-and-treat methods (i.e., water flushing) is generally considered to be ineffective due to low water solubilities of NAPLs and to mass-transfer constraints. Chemical flushing techniques, such as surfactant flushi...
Pore space analysis of NAPL distribution in sand-clay media
Matmon, D.; Hayden, N.J.
2003-01-01
This paper introduces a conceptual model of clays and non-aqueous phase liquids (NAPLs) at the pore scale that has been developed from a mathematical unit cell model, and direct micromodel observation and measurement of clay-containing porous media. The mathematical model uses a unit cell concept with uniform spherical grains for simulating the sand in the sand-clay matrix (???10% clay). Micromodels made with glass slides and including different clay-containing porous media were used to investigate the two clays (kaolinite and montmorillonite) and NAPL distribution within the pore space. The results were used to understand the distribution of NAPL advancing into initially saturated sand and sand-clay media, and provided a detailed analysis of the pore-scale geometry, pore size distribution, NAPL entry pressures, and the effect of clay on this geometry. Interesting NAPL saturation profiles were observed as a result of the complexity of the pore space geometry with the different packing angles and the presence of clays. The unit cell approach has applications for enhancing the mechanistic understanding and conceptualization, both visually and mathematically, of pore-scale processes such as NAPL and clay distribution. ?? 2003 Elsevier Science Ltd. All rights reserved.
COUPLED GEOPHYSICAL-HYDROLOGICAL MODELING OF A CONTROLLED NAPL SPILL
Past studies have shown reasonable sensitivity of geophysical data for detecting or monitoring the movement of non-aqueous phase liquids (NAPLs) in the subsurface. However, heterogeneity in subsurface properties and in NAPL distribution commonly results in non-unique data
...
NAPL: SIMULATOR DOCUMENTATION (EPA/600/SR-97/102)
A mathematical and numerical model is developed to simulate the transport and fate of NAPLs (Non-Aqueous Phase Liquids) in near-surface granular soils. The resulting three-dimensional, three phase simulator is called NAPL. The simulator accommodates three mobile phases: water, NA...
2008-10-01
and UTCHEM (Clement et al., 1998). While all four of these software packages use conservation of mass as the basic principle for tracking NAPL...simulate dissolution of a single NAPL component. UTCHEM can be used to simulate dissolution of a multiple NAPL components using either linear or first...parameters. No UTCHEM a/ 3D model, general purpose NAPL simulator. Yes Virulo a/ Probabilistic model for predicting leaching of viruses in unsaturated
Bacterial Adhesion to Hexadecane (Model NAPL)-Water Interfaces
NASA Astrophysics Data System (ADS)
Ghoshal, S.; Zoueki, C. R.; Tufenkji, N.
2009-05-01
The rates of biodegradation of NAPLs have been shown to be influenced by the adhesion of hydrocarbon- degrading microorganisms as well as their proximity to the NAPL-water interface. Several studies provide evidence for bacterial adhesion or biofilm formation at alkane- or crude oil-water interfaces, but there is a significant knowledge gap in our understanding of the processes that influence initial adhesion of bacteria on to NAPL-water interfaces. In this study bacterial adhesion to hexadecane, and a series of NAPLs comprised of hexadecane amended with toluene, and/or with asphaltenes and resins, which are the surface active fractions of crude oils, were examined using a Microbial Adhesion to Hydrocarbons (MATH) assay. The microorganisms employed were Mycobacterium kubicae, Pseudomonas aeruginosa and Pseudomonas putida, which are hydrocarbon degraders or soil microorganisms. MATH assays as well as electrophoretic mobility measurements of the bacterial cells and the NAPL droplet surfaces in aqueous solutions were conducted at three solution pHs (4, 6 and 7). Asphaltenes and resins were shown to generally decrease microbial adhesion. Results of the MATH assay were not in qualitative agreement with theoretical predictions of bacteria- hydrocarbon interactions based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model of free energy of interaction between the cell and NAPL droplets. In this model the free energy of interaction between two colloidal particles is predicted based on electrical double layer, van der Waals and hydrophobic forces. It is likely that the steric repulsion between bacteria and NAPL surfaces, caused by biopolymers on bacterial surfaces and aphaltenes and resins at the NAPL-water interface contributed to the decreased adhesion compared to that predicted by the XDLVO model.
NASA Astrophysics Data System (ADS)
Kiaalhosseini, Saeed
In modern contaminant hydrology, management of contaminated sites requires a holistic characterization of subsurface conditions. Delineation of contaminant distribution in all phases (i.e., aqueous, non-aqueous liquid, sorbed, and gas), as well as associated biogeochemical processes in a complex heterogeneous subsurface, is central to selecting effective remedies. Arguably, a factor contributing to the lack of success of managing contaminated sites effectively has been the limitations of site characterization methods that rely on monitoring wells and grab sediment samples. The overarching objective of this research is to advance a set of third-generation (3G) site characterization methods to overcome shortcomings of current site characterization techniques. 3G methods include 1) cryogenic core collection (C3) from unconsolidated geological subsurface to improve recovery of sediments and preserving key attributes, 2) high-throughput analysis (HTA) of frozen core in the laboratory to provide high-resolution, depth discrete data of subsurface conditions and processes, 3) resolution of non-aqueous phase liquid (NAPL) distribution within the porous media using a nuclear magnetic resonance (NMR) method, and 4) application of a complex resistivity method to track NAPL depletion in shallow geological formation over time. A series of controlled experiments were conducted to develop the C 3 tools and methods. The critical aspects of C3 are downhole circulation of liquid nitrogen via a cooling system, the strategic use of thermal insulation to focus cooling into the core, and the use of back pressure to optimize cooling. The C3 methods were applied at two contaminated sites: 1) F.E. Warren (FEW) Air Force Base near Cheyenne, WY and 2) a former refinery in the western U.S. The results indicated that the rate of core collection using the C3 methods is on the order of 30 foot/day. The C3 methods also improve core recovery and limits potential biases associated with flowing sands. HTA of frozen core was employed at the former refinery and FEW. Porosity and fluid saturations (i.e., aqueous, non-aqueous liquid, and gas) from the former refinery indicate that given in situ freezing, the results are not biased by drainage of pore fluids from the core during sample collection. At FEW, a comparison between the results of HTA of the frozen core collected in 2014 and the results of site characterization using unfrozen core, (second-generation (2G) methods) at the same locations (performed in 2010) indicate consistently higher contaminant concentrations using C 3. Many factors contribute to the higher quantification of contaminant concentrations using C3. The most significant factor is the preservation of the sediment attributes, in particular, pore fluids and volatile organic compounds (VOCs) in comparison to the unfrozen conventional sediment core. The NMR study was performed on laboratory-fabricated sediment core to resolve NAPL distribution within the porous media qualitatively and quantitatively. The fabricated core consisted of Colorado silica sand saturated with deionized water and trichloroethylene (TCE). The cores were scanned with a BRUKER small-animal scanner (2.3 Tesla, 100 MHz) at 20 °C and while the core was frozen at -25 °C. The acquired images indicated that freezing the water within the core suppressed the NMR signals of water-bound hydrogen. The hydrogen associated with TCE was still detectable since the TCE was in its liquid state (melting point of TCE is -73 °C). Therefore, qualitative detection of TCE within the sediment core was performed via the NMR scanning by freezing the water. A one-dimensional NMR scanning method was used for quantification of TCE mass distribution within the frozen core. However, the results indicated inconsistency in estimating the total TCE mass within the porous media. Downhole NMR logging was performed at the former refinery in the western U.S. to detect NAPL and to discriminate NAPL from water in the formation. The results indicated that detection of NMR signals to discriminate NAPL from water is compromised by the noise stemming from the active facilities and/or power lines passing over the site. A laboratory experiment was performed to evaluate the electrical response of unconsolidated porous media through time (30 days) while NAPL was being depleted. Sand columns (Colorado silica sand) contaminated with methyl tert-butyl ether (MTBE, a light non-aqueous phase liquid (LNAPL)) were studied. A multilevel electrode system was used to measure electrical resistivity of impacted sand by imposing alternative current. The trend of reduction in resistivity through the depth of columns over time followed depletion of LNAPL by volatilization. Finally, a field experiment was performed at the former refinery in the western U.S. to track natural losses of LNAPL over time. Multilevel systems consisting of water samplers, thermocouples, and electrodes were installed at a clean zone (background zone) and an LNAPL-impacted zone. In situ measurements of complex resistivity and temperature were taken and water sampling was performed for each depth (from 3 to 14 feet below the ground surface at one-foot spacing) within almost a year. At both locations, the results indicated decreases in apparent resistivity below the water table over time. This trend was supported by the geochemistry of the pore fluids. Overall, results indicate that application of the electrical resistivity method to track LNAPL depletion at field sites is difficult due to multiple conflicting factors affecting the geoelectrical response of LNAPL-impacted zones over time.
75 FR 76067 - Noise Exposure Map Notice, Naples Municipal Airport, Naples, FL
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Noise Exposure Map Notice, Naples... Federal Aviation Administration (FAA) announces its determination that the Noise Exposure Maps submitted.... seq (Aviation Safety and Noise Abatement Act) and 14 CFR part 150 are in compliance with applicable...
Modeling NAPL dissolution from pendular rings in idealized porous media
The rate of NAPL dissolution often governs the clean-up time for subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and assume that the NAPL is the non-wetting fluid. However, field evidence suggests that some waste sites might be organic...
For complex nonaqueous phase liquids (NAPLs), the composition of the NAPL retained in the pore space of geologic material weathers until the residual NAPL no longer acts a liquid and exists as discrete regions of hydrocarbon (termed residual hydrocarbons) in association with the ...
Oils, tars, and other non-aqueous phase hydrocarbon liquids (NAPLs) are common sources of contamination in aquatic sediments, and the toxicity of such contamination has generally been attributed to component chemicals, particularly PAHs. While there is no doubt PAHs can be toxic ...
NASA Technical Reports Server (NTRS)
1981-01-01
The modern city of Naples (41.0N, 14.5E) and the ancient volcano of Mount Vesuvius on the shores of the Bay of Naples, Italy are the most striking features in this scene. The Roman city of Pompei, buried in the AD 79 volcano eruption can be seen on the coast just to the south of Vesuvius.
Dillard, L.A.; Essaid, H.I.; Blunt, M.J.
2001-01-01
A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai. Kdissai was computed as a function of modified Peclet number (Pe???) for various NAPL saturations (SN) and ai during drainage and imbibition and during dissolution without displacement. The largest contributor to ai was the interfacial area in the water-filled corners of chambers and tubes containing NAPL. When Kdissai was divided by ai, the resulting curves of dissolution coefficient, Kdiss versus Pe??? suggested that an approximate value of Kdiss could be obtained as a weak function of hysteresis or SN. Spatially and temporally variable maps of Kdissai calculated using the network model were used in field-scale simulations of NAPL dissolution. These simulations were compared to simulations using a constant value of Kdissai and the empirical correlation of Powers et al. [Water Resour. Res. 30(2) (1994b) 321]. Overall, a methodology was developed for incorporating pore-scale processes into field-scale prediction of NAPL dissolution. Copyright ?? 2001 .
Nakamura, Keita; Kikumoto, Mamoru
2018-07-01
The Leverett concept is used conventionally to model the relationship between the capillary pressures and the degrees of saturation in the water-nonaqueous phase liquid (NAPL)-air three-phase system in porous media. In this paper, the limitation of the Leverett concept that the concept is not applicable in the case of nonspreading NAPLs is discussed through microscopic consideration. A new concept that can be applied in the case of nonspreading NAPLs as well as spreading NAPLs is then proposed. The validity of the proposed concept is confirmed by comparing with past experimental data and simulation results obtained using the conventional model based on the Leverett concept. It is confirmed that the proposed concept can correctly predict the observed distributions of NAPLs, including those of nonspreading ones. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Trento, L. M.; Tsourlos, P.; McMaster, M.; Liefl, D.; Sims, A.; Dominguez, J. L. G.; Vidumsky, J.; Gerhard, J.
2016-12-01
Self-sustaining Treatment for Active Remediation (STAR) technology destroys non-aqueous phase liquid (NAPL) in situ using principles of smouldering combustion. It involves propagating an exothermic (400-1000C) oxidation reaction outwards from an ignition well. A full-scale STAR system is currently being applied at an industrial site contaminated with coal tar below the water table in New Jersey, USA. STAR is typically tracked using multi-level thermocouples, which are discrete and sparse in space and time. This study evaluates two surface-based geophysical methods - Electrical Resistivity Tomography (ERT) and Self-Potential (SP) - for the ability to map the STAR reaction in real time at the New Jersey site. Both techniques involve placing electrode arrays on the surface and monitoring electrical signals over time (i.e., time-lapse). It is hypothesized that ERT should be able to monitor the resistive dry zone that precedes the reaction front and/or the growing NAPL-depleted zone. SP is expected to be able to detect the potential difference associated with thermal gradients generated by the reaction. Approximately 72 ERT electrodes in a "swiss cross" pattern plus 10 SP electrodes will be emplaced over single STAR treatment cell (six ignition wells). This setup will be employed to monitor both a deep (25 feet) and shallow (8 feet) STAR treatments. The geophysics will be complemented by in situ temperature measurements, continuous gas measurements, and pre- and post-treatment coring. The primary goal of this research is to evaluate the effectiveness of using ERT and SP for STAR under field conditions. The tests will be conducted in August 2016.
Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D
2013-03-15
Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brovelli, A.; Robinson, C.; Barry, A.; Kouznetsova, I.; Gerhard, J.
2008-12-01
Various techniques have been proposed to enhance biologically-mediated reductive dechlorination of chlorinated solvents in the subsurface, including the addition of fermentable organic substrate for the generation of H2 as an electron donor. One rate-limiting factor for enhanced dechlorination is the pore fluid pH. Organic acids and H+ ions accumulate in dechlorination zones, generating unfavorable conditions for microbial activity (pH < 6.5). The pH variation is a nonlinear function of the amount of reduced chlorinated solvents, and is affected by the organic material fermented, the chemical composition of the pore fluid and the soil's buffering capacity. Consequently, in some cases enhanced remediation schemes rely on buffer injection (e.g., bicarbonate) to alleviate this problem, particularly in the presence of solvent nonaqueous phase liquid (NAPL) source zones. However, the amount of buffer required - particularly in complex, evolving biogeochemical environments - is not well understood. To investigate this question, this work builds upon a geochemical numerical model (Robinson et al., Science of the Total Environment, submitted), which computes the amount of additional buffer required to maintain the pH at a level suitable for bacterial activity for batch systems. The batch model was coupled to a groundwater flow/solute transport/chemical reaction simulator to permit buffer optimization computations within the context of flowing systems exhibiting heterogeneous hydraulic, physical and chemical properties. A suite of simulations was conducted in which buffer optimization was examined within the bounds of the minimum concentration necessary to sustain a pH favorable to microbial activity and the maximum concentration to avoid excessively high pH values (also not suitable to bacterial activity) and mineral precipitation (e.g., calcite, which may lead to pore-clogging). These simulations include an examination of the sensitivity of this buffer concentration range to aquifer heterogeneity and groundwater velocity. This work is part of SABRE (Source Area BioREmediation), a collaborative international research project that aims to evaluate and improve enhanced bioremediation of chlorinated solvent source zones. In this context, numerical simulations are supporting the upscaling of the technique, including identifying the most appropriate buffer injection strategies for field applications
Role of natural attenuation in modeling the leaching of contaminants in the risk analysis framework.
Verginelli, Iason; Baciocchi, Renato
2013-01-15
Natural attenuation (NA) processes occurring in the subsurface can significantly affect the impact on groundwater from contamination sources located in the vadose zone, especially when mobile and readily biodegradable compounds, such as BTEX, are present. Besides, in the last decades several studies have shown natural attenuation to take place also for more persistent compounds, such as Polycyclic Aromatic Hydrocarbons (PAHs). Nevertheless, common risk analysis frameworks, based on the ASTM RBCA (Risk Based Corrective Action) approach, do not include NA pathways in the fate and transport models, thus possibly leading to an overestimation of the calculated risk. The aim of this study was to provide an insight on the relevance of the different key natural attenuation processes usually taking place in the subsurface and to highlight for which contamination scenarios their inclusion in the risk-analysis framework could provide a more realistic risk assessment. To this end, an analytical model accounting for source depletion and biodegradation, dispersion and diffusion during leaching was developed and applied to several contamination scenarios. These scenarios included contamination by BTEX, characterized by relatively high mobility and biodegradation rate, and PAHs, i.e. a more persistent class of compounds. The obtained results showed that BTEX are likely to be attenuated in the source zone due to their mobility and ready biodegradation (assuming biodegradation constant rates in the order of 0.01-1 d(-1)). Instead, attenuation along transport through the vadose zone was found to be less important, as the residence time of the contaminant in the unsaturated zone is often too low with respect to the time required to get a relevant biodegradation of BTEX. On the other hand, heavier compounds such as PAHs, were found to be attenuated during leaching since the residence time in the vadose zone can reach values up to thousands of years. In these cases, even with the relatively slow biodegradation rate of PAHs, in the order of 0.0001-0.001 d(-1), attenuation can result significant. These conclusions were also confirmed by comparing the model results with experimental data collected at an hydrocarbon-contaminated site. The proposed model, that neglects the transport of NAPLs, could be easily included in the risk-analysis framework, allowing to get a more realistic assessment of risks, while keeping the intrinsic simplicity of the ASTM-RBCA approach. Copyright © 2012 Elsevier Ltd. All rights reserved.
Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas.
Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido
2016-03-01
We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2-3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions.
Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas
Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido
2016-01-01
We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2–3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions. PMID:26925957
NASA Astrophysics Data System (ADS)
Mastrolorenzo, G.; Pappalardo, L.; de Natale, G.; Troise, C.; Rossano, S.; Panizza, A.
2009-04-01
Probabilistic approaches based on available volcanological data from real eruptions of Campi Flegrei and Somma-Vesuvius, are assembled in a comprehensive assessment of volcanic hazards at the Neapolitan area. This allows to compare the volcanic hazards related to the different types of events, which can be used for evaluating the conditional probability of flows and falls hazard in case of a volcanic crisis. Hazard maps are presented, based on a rather complete set of numerical simulations, produced using field and laboratory data as input parameters relative to a large range (VEI 1 to 5) of fallout and pyroclastic-flow events and their relative occurrence. The results allow us to quantitatively evaluate and compare the hazard related to pyroclastic fallout and density currents (PDCs) at the Neapolitan volcanoes and their surroundings, including the city of Naples. Due to its position between the two volcanic areas, the city of Naples is particularly exposed to volcanic risk from VEI>2 eruptions, as recorded in the local volcanic succession. Because dominant wind directions, the area of Naples is particularly prone to fallout hazard from Campi Flegrei caldera eruptions in the VEI range 2-5. The hazard from PDCs decreases roughly radially with distance from the eruptive vents and is strongly controlled by the topographic heights. Campi Flegrei eruptions are particularly hazardous for Naples, although the Camaldoli and Posillipo hills produce an effective barrier to propagation to the very central part of Naples. PDCs from Vesuvius eruptions with VEI>4 can cover the city of Naples, whereas even VEI>3 eruptions have a moderate fallout hazard there.
Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Javanbakht, Gina; Arshadi, Maziar; Qin, Tianzhu; Goual, Lamia
2017-07-01
Industrial processes such as remediation of oil-contaminated aquifers and enhanced oil recovery (EOR) often utilize chemical additives to increase the removal of non-aqueous phase liquids (NAPLs) from subsurface formations. Although the majority of crude oils are classified as LNAPLs, they often contain heavy molecules (DNAPLs) such as asphaltenes that tend to adsorb on minerals and alter their wettability. Effective additives are therefore those that can reduce the threshold capillary pressure, thus mobilizing LNAPL inside pore spaces and solubilizing DNAPL from rock surfaces. Nonionic surfactants in brine have often been injected to oil or contaminated aquifer formations in order to enhance NAPL displacement through IFT reduction. Recent studies revealed that surfactant-based microemulsions have a higher tendency to alter the wettability of surfaces, compared to surfactants alone, leading to more effective NAPL removal. However, the impact of these additives on pore-scale displacement mechanisms and multi-phase fluid occupancy in porous media is, to date, still unclear. In this study, x-ray microtomography experiments were performed to investigate the impact of surfactants and microemulsions on the mobilization and solubilization of NAPL in heterogeneous rocks. Saturation profiles indicated that an incremental NAPL removal was attained by addition of microemulsion to brine, compared with surfactant. Residual cluster size distributions revealed that microemulsions could break up large clusters into smaller disconnected ones, improving their mobilization in the rock. In-situ contact angle measurements showed that microemulsions could reverse the wettability of rough contaminated surfaces to a higher extent than surfactants. Unlike surfactant alone, the surfactant-solvent blend in the carrier fluid of microemulsions was able to penetrate rough grain surfaces, particularly those of dolomite cement, and desorb asphaltenes in the form of small-emulsified NAPL droplets, which were eventually washed away by the continuous flow process. The greater wettability alteration caused by microemulsions resulted in a lower threshold capillary pressure, which in turn promoted the mobilization of NAPL ganglia more than surfactant alone.
NASA Astrophysics Data System (ADS)
comegna, alessandro; coppola, antonio; dragonetti, giovanna; chaali, nesrine; sommella, angelo
2014-05-01
Hydrocarbons may be present in soils as non-aqueous phase liquids (NAPLs), which means that these organic compounds, exist as a separate and immiscible phase with respect to water and air commonly present in the soil. NAPLs, which can be accidentally introduced in the environment (for example by waste disposal sites, industrial spills, gasoline stations, etc), constitutes a serious geo-environmental problem, given the toxicity level and the high mobility. Time domain reflectometry (TDR) has became, over several decades, an important technique for water estimation in soils. In order to expand the potentiality of the TDR technique, the main objective of this study is to explore the capacity of dielectric response to detect the presence of NAPLs in volcanic soils. In laboratory, soil samples were oven dried at 105° C and passed through a 2 mm sieve. Known quantities of soil, water and NAPL (corn oil, a non-volatile and non-toxic organic compound) were mixed and repacked into plastic cylinders (16 cm high and 9.5 cm in diameter); in order to obtain forty different volumetric combinations of water and oil (i.e. θfg = θwater + θNAPL), with θNAPL varying from 0.05 to 0.40 by 0.05 cm3/cm3 increments. Data collected were employed to implement a multiphase mixing model which permitted conversion from a dielectric permittivity domain into a θf domain and vice versa. The results of this study show that, the TDR device is NAPL-sensitive, especially for θf values greater than 0.20. Further works will be built on this initial study, concentrating on improving the dielectric response-database, in order to: i) enhancing the model efficiency in terms of NAPL capability detention, and ii) validating the developed TDR interpretation tool with field results.
In Situ Bioremediation of Chlorinated Solvents Source Areas with Enhanced Mass Transfer
2009-11-01
cells within NAPL Area 3 ................................. 22 Figure 6. Impact of whey injection on pH in the treatment cells...locations following 1% and 10% whey injections. ............................ 39 Figure 12. Total chlorinated ethene concentration contours at select time...points. ................ 40 Figure 13. Relationship between interfacial tension reduction and enhanced solubility of TCE DNAPL as a function of whey
Severe Weather Guide - Mediterranean Ports. 8. Toulon
1988-03-01
CA 93943-5006 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N00228-84-D-3187 10 SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. PROJECT NO...1990 PORT GAETA, ITALY NAPLES, ITALY CATANIA, ITALY AUGUSTA BAY, ITALY CAGLIARI, ITALY LA MADDALENA, ITALY MARSEILLE, FINANCE TOULON, FRANCE ...VILLEFRANCHE, FRANCE 10 MALAGA, SPAIN 11 NICE, FRANCE 12 CANNES, FRANCE MONACO ASHDOD, ISRAEL HAIFA, ISRAEL BARCELONA, SPAIN PALMA
NASA Astrophysics Data System (ADS)
Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D.; Bastow, Trevor P.; Rayner, John L.; Davis, Greg B.
2017-01-01
Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141 days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time.
Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D; Bastow, Trevor P; Rayner, John L; Davis, Greg B
2017-01-01
Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time. Copyright © 2016. Published by Elsevier B.V.
Boyd, Glen R; Ocampo-Gómez, Ana M; Li, Minghua; Husserl, Johana
2006-11-20
Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for remediation of DNAPL contaminated ground water sites.
Carrión, Ricardo E.; Cornblatt, Barbara A.; Burton, Cynthia Z.; Tso, Ivy F; Auther, Andrea; Adelsheim, Steven; Calkins, Roderick; Carter, Cameron S.; Niendam, Tara; Taylor, Stephan F.; McFarlane, William R.
2016-01-01
Objective In the current issue, Cannon and colleagues, as part of the second phase of the North American Prodrome Longitudinal Study (NAPLS2), report on a risk calculator for the individualized prediction of developing a psychotic disorder in a 2-year period. The present study represents an external validation of the NAPLS2 psychosis risk calculator using an independent sample of subjects at clinical high risk for psychosis collected as part of the Early Detection, Intervention, and Prevention of Psychosis Program (EDIPPP). Methods 176 subjects with follow-up (from the total EDIPPP sample of 210) rated as clinical high-risk (CHR) based on the Structured Interview for Prodromal Syndromes were used to construct a new prediction model with the 6 significant predictor variables in the NAPLS2 psychosis risk calculator (unusual thoughts, suspiciousness, Symbol Coding, verbal learning, social functioning decline, baseline age, and family history). Discrimination performance was assessed with the area under the receiver operating curve (AUC). The NAPLS2 risk calculator was then used to generate a psychosis risk estimate for each case in the external validation sample. Results The external validation model showed good discrimination, with an AUC of 79% (95% CI 0.644–0.937). In addition, the personalized risk generated by the NAPLS calculator provided a solid estimation of the actual conversion outcome in the validation sample. Conclusions In the companion papers in this issue, two independent samples of CHR subjects converge to validate the NAPLS2 psychosis risk calculator. This prediction calculator represents a meaningful step towards early intervention and personalized treatment of psychotic disorders. PMID:27363511
Ahn, Dayoung; Choi, Jae-Kyeong; Kim, Heonki
2017-06-07
This study examines the effect of controlled groundwater flow paths induced by hydraulic barriers on the removal of NAPL constituent. An aqueous solution of thickener [0.05% (w/v) sodium carboxymethyl cellulose, SCMC] was continuously injected into a horizontally set two-dimensional physical model (sand-packed), forming aqueous plume(s) of high viscosity. The water flux at the down gradient of the model was measured using a flux tracer (n-octanol) and passive flux meter (PFM, packs of granular activated carbon). A non-reactive tracer (pentafluorobenzoic acid, PFBA) was used to identify the plume of high viscosity (hydraulic barrier) and ambient groundwater. When the barrier of high viscosity was formed, the plume was separated from the background water with little mixing, which was confirmed by the concentration profile of PFBA; whereas, the measured flux of ambient groundwater showed a distinctive distribution, due to the hydraulic barrier. When two barriers were set, the ambient water flux was enhanced in the middle, and the removal rate of PCE from the non-aqueous phase liquid (NAPL), measured by PFM, was found to improve by 26% during three hours of water flushing. When an aqueous solution of surfactant [0.37% (w/v), sodium dodecyl sulfate, SDS] was applied instead of water into the domain with two barriers set around the NAPL-contaminated spot, the removal of PCE from the NAPL increased by 101% for a three-hour time period. Based on the observations made in this study, hydraulic barriers formed by continuous injection of thickener solution change the flow direction of groundwater, and may increase the flux of groundwater (or aqueous solution of remediation agent) through a NAPL-contaminated region, improving the removal of NAPL.
Ghafouri, H R; Mosharaf-Dehkordi, M; Afzalan, B
2017-07-01
A simulation-optimization model is proposed for identifying the characteristics of local immiscible NAPL contaminant sources inside aquifers. This model employs the UTCHEM 9.0 software as its simulator for solving the governing equations associated with the multi-phase flow in porous media. As the optimization model, a novel two-level saturation based Imperialist Competitive Algorithm (ICA) is proposed to estimate the parameters of contaminant sources. The first level consists of three parallel independent ICAs and plays as a pre-conditioner for the second level which is a single modified ICA. The ICA in the second level is modified by dividing each country into a number of provinces (smaller parts). Similar to countries in the classical ICA, these provinces are optimized by the assimilation, competition, and revolution steps in the ICA. To increase the diversity of populations, a new approach named knock the base method is proposed. The performance and accuracy of the simulation-optimization model is assessed by solving a set of two and three-dimensional problems considering the effects of different parameters such as the grid size, rock heterogeneity and designated monitoring networks. The obtained numerical results indicate that using this simulation-optimization model provides accurate results at a less number of iterations when compared with the model employing the classical one-level ICA. Copyright © 2017 Elsevier B.V. All rights reserved.
2012-01-01
After more than 30 years, landmark progress has been made in the treatment of cancer, and melanoma in particular, with the success of new molecules such as ipilimumab, vemurafenib and active specific immunization. After the first congress in December 2010, the second edition of “Melanoma Research: a bridge from Naples to the World” meeting, organized by Paolo A. Ascierto (INT, Naples, Italy), Francesco M. Marincola (NIH, Bethesda, USA), and Nicola Mozzillo (INT, Naples, Italy) took place in Naples, on 5–6 December 2011. We have identified four new topics of discussion: Innovative Approaches in Prevention, Diagnosis and Surgical Treatment, New Pathways and Targets in Melanoma: An Update about Immunotherapy, and Combination Strategies. This international congress gathered more than 30 international faculty members and was focused on recent advances in melanoma molecular biology, immunology and therapy, and created an interactive atmosphere which stimulated discussion of new approaches and strategies in the field of melanoma. PMID:22551296
Methodology for Estimating Times of Remediation Associated with Monitored Natural Attenuation
Chapelle, Francis H.; Widdowson, Mark A.; Brauner, J. Steven; Mendez, Eduardo; Casey, Clifton C.
2003-01-01
Natural attenuation processes combine to disperse, immobilize, and biologically transform anthropogenic contaminants, such as petroleum hydrocarbons and chlorinated ethenes, in ground-water systems. The time required for these processes to lower contaminant concentrations to levels protective of human health and the environment, however, varies widely between different hydrologic systems, different chemical contaminants, and varying amounts of contaminants. This report outlines a method for estimating timeframes required for natural attenuation processes, such as dispersion, sorption, and biodegradation, to lower contaminant concentrations and mass to predetermined regulatory goals in groundwater systems. The time-of-remediation (TOR) problem described in this report is formulated as three interactive components: (1) estimating the length of a contaminant plume once it has achieved a steady-state configuration from a source area of constant contaminant concentration, (2) estimating the time required for a plume to shrink to a smaller, regulatoryacceptable configuration when source-area contaminant concentrations are lowered by engineered methods, and (3) estimating the time needed for nonaqueous phase liquid (NAPL) contaminants to dissolve, disperse, and biodegrade below predetermined levels in contaminant source areas. This conceptualization was used to develop Natural Attenuation Software (NAS), an interactive computer aquifers. NAS was designed as a screening tool and requires the input of detailed site information about hydrogeology, redox conditions, and the distribution of contaminants. Because NAS is based on numerous simplifications of hydrologic, microbial, and geochemical processes, the program may introduce unacceptable errors for highly heterogeneous hydrologic systems. In such cases, application of the TOR framework outlined in this report may require more detailed, site-specific digital modeling. The NAS software may be downloaded from the Web site http://www.cee.vt.edu/NAS/ Application of NAS illustrates several general characteristics shared by all TOR problems. First, the distance of stabilization of a contaminant plume is strongly dependent on the natural attenuation capacity of particular ground-water systems. The time that it takes a plume to reach a steady-state configuration, however, is independent of natural attenuation capacity. Rather, the time of stabilization is most strongly affected by the sorptive capacity of the aquifer, which is dependent on the organic matter content of the aquifer sediments, as well as the sorptive properties of individual contaminants. As a general rule, a high sorptive capacity retards a plume.s growth or shrinkage, and increases the time of stabilization. Finally, the time of NAPL dissolution depends largely on NAPL mass, composition, geometry, and hydrologic factors, such as ground-water flow rates. An example TOR analysis for petroleum hydrocarbon NAPL was performed for the Laurel Bay site in South Carolina. About 500 to 1,000 pounds of gasoline leaked into the aquifer at this site in 1991, and the NAS simulations suggested that TOR would be on the order of 10 years for soluble and poorly sorbed compounds, such as benzene and methyl tertiary-butyl ether (MTBE). Conversely, TOR would be on the order of 40 years for less soluble, more strongly sorbed compounds, such as toluene, ethylbenzene, and xylenes (TEX). These TOR estimates are roughly consistent with contaminant concentrations observed over 10 years of monitoring at this site where benzene and MTBE concentrations were observed to decrease rapidly and are approaching regulatory maximum concentration limits, whereas toluene, ethylbenzene, and xylene concentrations decreased at a slower rate and have remained relatively high. An example TOR analysis for petroleum hydrocarbon NAPL was performed for the Laurel Bay site in South Carolina. About 500 to 1,000 pounds of gasoline leaked into the a
Padgett, Mark C; Tick, Geoffrey R; Carroll, Kenneth C; Burke, William R
2017-03-01
The influence of chemical structure on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux was examined. The variability of measured and UNIFAC modeled NAPL activity coefficients as a function of mole fraction was compared for two NAPL mixtures containing structurally-different contaminants of concern including toluene (TOL) or trichloroethene (TCE) within a hexadecane (HEXDEC) matrix. The results showed that dissolution from the NAPL mixtures transitioned from ideality for mole fractions >0.05 to nonideality as mole fractions decreased. In particular, the TCE generally exhibited more ideal dissolution behavior except at lower mole fractions, and may indicate greater structural/polarity similarity between the two compounds. Raoult's Law and UNIFAC generally under-predicted the batch experiment results for TOL:HEXDEC mixtures especially for mole fractions ≤0.05. The dissolution rate coefficients were similar for both TOL and TCE over all mole fractions tested. Mass flux reduction (MFR) analysis showed that more efficient removal behavior occurred for TOL and TCE with larger mole fractions compared to the lower initial mole fraction mixtures (i.e. <0.2). However, compared to TOL, TCE generally exhibited more efficient removal behavior over all mole fractions tested and may have been the result of structural and molecular property differences between the compounds. Activity coefficient variability as a function of mole fraction was quantified through regression analysis and incorporated into dissolution modeling analyses for the dynamic flushing experiments. TOL elution concentrations were modeled (predicted) reasonable well using ideal and equilibrium assumptions, but the TCE elution concentrations could not be predicted using the ideal model. Rather, the dissolution modeling demonstrated that TCE elution was better described by the nonideal model whereby NAPL-phase activity coefficient varied as a function of COC mole fraction. For dynamic column flushing experiments, dissolution rate kinetics can vary significantly with changes in NAPL volume and surface area. However, under conditions whereby NAPL volume and area are not significantly altered during dissolution, mixture nonideality effects may have a greater relative control on dissolution (elution) and MFR behavior compared to kinetic rate limitations. Copyright © 2017 Elsevier B.V. All rights reserved.
Spectral induced polarization (SIP) measurement of NAPL contaminated soils
NASA Astrophysics Data System (ADS)
Schwartz, N.; Huisman, J. A.; Furman, A.
2010-12-01
The potential applicability of spectral induce polarization (SIP) as a tool to map NAPLs (non aqueous phase liquids) contaminants at the subsurface lead researchers to investigate the electric signature of those contaminant on the spectral response. However, and despite the cumulative efforts, the effect of NAPL on the electrical properties of soil, and the mechanisms that control this effect are largely unknown. In this work a novel experiment is designed to further examine the effect of NAPL on the electrical properties of partially saturated soil. The measurement system that used is the ZEL-SIP04 impedance meter developed at the Forschungszentrum Julich, Germany. The system accurately (nominal phase precision of 0.1 mrad below 1 kHz) measures the phase and the amplitude of a material possessing a very low polarization (such as soil). The sample holder has a dimension of 60 cm long and 4.6 cm in diameter. Current and potential electrodes were made of brass, and while the current electrodes were inserted in full into the soil, the contact between the potential electrode and the soil was made through an Agarose bridge. Two types of soils were used: clean quartz sand, and a mixture of sand with clean Bentonite. Each soil (sandy or clayey) was mixed with water to get saturation degree of 30%. Following the mixture with water, NAPL was added and the composite were mixed again. Packing was done by adding and compressing small portions of the soil to the column. A triplicate of each mixture was made with a good reproducible bulk density. Both for the sandy and clayey soils, the results indicate that additions of NAPL decrease the real part of the complex resistivity. Additionally, for the sandy soil this process is time depended, and that a further decrease in resistivity develops over time. The results are analyzed considering geometrical factors: while the NAPL is electrically insulator, addition of NAPL to the soil is expected to increase the connectivity of the water phase, and therefore a decrease in the real part of the complex resistivity occurs.
NASA Astrophysics Data System (ADS)
Padgett, Mark C.; Tick, Geoffrey R.; Carroll, Kenneth C.; Burke, William R.
2017-03-01
The influence of chemical structure on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux was examined. The variability of measured and UNIFAC modeled NAPL activity coefficients as a function of mole fraction was compared for two NAPL mixtures containing structurally-different contaminants of concern including toluene (TOL) or trichloroethene (TCE) within a hexadecane (HEXDEC) matrix. The results showed that dissolution from the NAPL mixtures transitioned from ideality for mole fractions > 0.05 to nonideality as mole fractions decreased. In particular, the TCE generally exhibited more ideal dissolution behavior except at lower mole fractions, and may indicate greater structural/polarity similarity between the two compounds. Raoult's Law and UNIFAC generally under-predicted the batch experiment results for TOL:HEXDEC mixtures especially for mole fractions ≤ 0.05. The dissolution rate coefficients were similar for both TOL and TCE over all mole fractions tested. Mass flux reduction (MFR) analysis showed that more efficient removal behavior occurred for TOL and TCE with larger mole fractions compared to the lower initial mole fraction mixtures (i.e. < 0.2). However, compared to TOL, TCE generally exhibited more efficient removal behavior over all mole fractions tested and may have been the result of structural and molecular property differences between the compounds. Activity coefficient variability as a function of mole fraction was quantified through regression analysis and incorporated into dissolution modeling analyses for the dynamic flushing experiments. TOL elution concentrations were modeled (predicted) reasonable well using ideal and equilibrium assumptions, but the TCE elution concentrations could not be predicted using the ideal model. Rather, the dissolution modeling demonstrated that TCE elution was better described by the nonideal model whereby NAPL-phase activity coefficient varied as a function of COC mole fraction. For dynamic column flushing experiments, dissolution rate kinetics can vary significantly with changes in NAPL volume and surface area. However, under conditions whereby NAPL volume and area are not significantly altered during dissolution, mixture nonideality effects may have a greater relative control on dissolution (elution) and MFR behavior compared to kinetic rate limitations.
A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation1[OPEN
Pareek, Ashwani; Singla-Pareek, Sneh Lata
2016-01-01
Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307
Modeling unstable alcohol flooding of DNAPL-contaminated columns
NASA Astrophysics Data System (ADS)
Roeder, Eberhard; Falta, Ronald W.
Alcohol flooding, consisting of injection of a mixture of alcohol and water, is one source removal technology for dense non-aqueous phase liquids (DNAPLs) currently under investigation. An existing compositional multiphase flow simulator (UTCHEM) was adapted to accurately represent the equilibrium phase behavior of ternary and quaternary alcohol/DNAPL systems. Simulator predictions were compared to laboratory column experiments and the results are presented here. It was found that several experiments involved unstable displacements of the NAPL bank by the alcohol flood or of the alcohol flood by the following water flood. Unstable displacement led to additional mixing compared to ideal displacement. This mixing was approximated by a large dispersion in one-dimensional simulations and or by including permeability heterogeneities on a very small scale in three-dimensional simulations. Three-dimensional simulations provided the best match. Simulations of unstable displacements require either high-resolution grids, or need to consider the mixing of fluids in a different manner to capture the resulting effects on NAPL recovery.
NASA Astrophysics Data System (ADS)
Guarino, Paolo Maria; Santo, Antonio
2013-04-01
In the last years, many studies about sinkholes have been produced. These sudden phenomena can be generated from natural or artificial causes: the first ones are developed in soluble rocks like carbonate or sulphates, the second are linked to the presence of artificial caves or mines. In Italy both the typologies are widely present, but more often the anthropogenic sinkholes are cause of most damages and fatalities, because many ancient city center were built using the local rock, giving rise to complex and widespread networks of underground cavities, whose collapse brings about the formation of sinkholes. Examples are the Lazio, Toscana, Umbria, Campania, Puglia and Sicily regions, where important towns like Rome, Naples and Palermo are frequently affected by sinkholes. Identifying and analyzing natural and anthropogenic predisposing and triggering factors are essential steps for evaluating susceptibility to sinkholes; nevertheless, the susceptibility zoning must be considered the starting point towards further detailed studies. This study aims to provide a contribution to the definition of a more accurate planning of geological studies at the municipality scale, in order to mitigate the risk in densely urbanized areas affected by anthropogenic sinkholes. The considered study area includes the metropolitan area northeast of Naples (Italy), where sinkholes are very frequent because of the widespread presence of artificial caves dug in pyroclastic rocks. In a first phase, data and information relative to stratigraphic logs, presence and distribution of cavities and sinkholes phenomena were collected and organized in a GIS associated database. Thereafter, the processing of contour maps of tuff top surface and caves depth has been realized, as well as fully detailed cross sections, in order to recognize different characteristics and genesis of sinkholes. At the end, with reference to high susceptibility areas, a list of possible geological surveys and monitoring systems as well early warning activities were reported in order to mitigate the risk.
Mohamed, A M I; El-menshawy, Nabil; Saif, Amany M
2007-05-01
Pollutants in the form of non-aqueous phase liquids (NAPLs), such as petroleum products, pose a serious threat to the soil and groundwater. A mathematical model was derived to study the unsteady pollutant concentrations through water saturated contaminated soil under air sparging conditions for different NAPLs and soil properties. The comparison between the numerical model results and the published experimental results showed acceptable agreement. Furthermore, an experimental study was conducted to remove NAPLs from the contaminated soil using the sparging air technique, considering the sparging air velocity, air temperature, soil grain size and different contaminant properties. This study showed that sparging air at ambient temperature through the contaminated soil can remove NAPLs, however, employing hot air sparging can provide higher contaminant removal efficiency, by about 9%. An empirical correlation for the volatilization mass transfer coefficient was developed from the experimental results. The dimensionless numbers used were Sherwood number (Sh), Peclet number (Pe), Schmidt number (Sc) and several physical-chemical properties of VOCs and porous media. Finally, the estimated volatilization mass transfer coefficient was used for calculation of the influence of heated sparging air on the spreading of the NAPL plume through the contaminated soil.
NASA Astrophysics Data System (ADS)
Molson, J.; Mocanu, M.; Barker, J.
2008-07-01
Dissolution of oxygenated gasoline, as well as buoyancy-driven groundwater flow and transport of the multicomponent dissolved phase plumes, is simulated numerically in three dimensions. The simulations are based on a field experiment described by Mocanu (2007) in which three oxygenated gasoline sources were emplaced as nonaqueous phase liquids (NAPLs) below the water table of the shallow sand aquifer at Canadian Forces Base Borden, Ontario. The sources were composed of an ethanol-free gasoline mixture spiked with 9.8% methyl tert-butyl ether and 0.2% tert-butyl alcohol (GMT-E0), a gasoline with 10% ethanol (E10), and a source with 95% ethanol (E95). The numerical model includes dissolution of gasoline as a NAPL, density-dependent groundwater flow, advective-dispersive transport of the dissolved components, and ethanol cosolvency and degradation. Buoyancy effects in the dissolved plumes were compared under a homogeneous hydraulic conductivity field as well as with five realizations of spatially correlated random fields representing the Borden aquifer. The simulations showed that buoyancy was most significant in the E95 source plumes within the homogeneous system, having induced after 150 days a net upward displacement of the local peak concentrations for all but the least soluble component of approximately 1.5 m. The peak rise in ethanol from the GMT-E0 and E10 plumes was about 0.6 m. The results highlight the importance of shallow monitoring wells when monitoring high oxygenate fraction gasoline spills in groundwater and have implications for assessing mass fluxes and biodegradation rates.
Improved Filed Evaluation of NAPL Dissolution and Source Longevity
2011-10-01
waterflood, a non- condensable vapor flow (i.e., soil vapor extraction), a steamflood, and the co-injection of air and steam. The purpose of the testing was...are typically inserted into groundwater monitoring wells where they passively intercept ambient groundwater flow. Inside the PFM is a permeable...mean soil particle diameter θ = soil porosity U = groundwater velocity νw = kinematic viscosity of water β = mass transfer correlation
Anthropogenic sinkholes in the town of Naples
NASA Astrophysics Data System (ADS)
Vennari, Carmela; Parise, Mario
2016-04-01
The importance of sinkhole as a natural hazard is often underrated when compared with landslides, floods, volcanic eruptions and earthquakes in Italy. Sinkholes are rarely included in risk analysis despite their frequent occurrence in several parts of Italy, especially in karst lands or in those sectors of the country where artificial cavities have been realized underground by man for different purposes. Among the most affected Italian regions, Campania (southern Italy) stands out for several reasons, with particular regard to the town of Naples, highly affected by anthropogenic sinkholes. These latter have caused serious damage to society, and above all to people in terms of deaths, missing persons, and injured people, due to the high urbanization of the city, developed above a complex and extensive network of cavities, excavated during the 2000 years of history of the town. Among the different typologies of artificial cavities, it is worth mentioning the high number of ancient quarry used to extract the building materials for the town construction. The Institute of Research for the Hydrological Protection (IRPI) of the National Research Council of Italy (CNR) has been working in the last years at populating a specific chronological database on sinkholes in the whole Italian country. On the base of the collected data, Naples appears to have been affected by not less than 250 events from the beginning of the century to nowadays. The IRPI database includes only sinkholes for which a temporal reference on their time of occurrence is known. Particular attention was given on this information, since the catalogue idea is to make a starting point for a complete sinkhole hazard analysis. At this aim, knowledge of the time of occurrence is mandatory. Day, month and year of the event are known for about 70% of sinkholes that took place in Naples, but the hour of occurrence is known for just 6% of the data. Information about site of occurrence are, on the other hand, highly precise in the town of Naples. This is related, beside the several studies performed, to the fact that in many cases sinkholes caused damage to buildings or infrastructures, which have been in some ways documented. An hazard analysis is mandatory in a town highly prone to sinkhole occurrence. In addition to the collection of information and documentation about past events, a detailed map of the underground cavities below the town could for sure represent a very important source of information for any action dedicated to the sinkhole risk mitigation.
LIGHT NONAQUEOUS PHASE LIQUIDS
Nonaqueous phase liquids (NAPLS) are hydrocarbons that exist as a separate, immiscible phase when in contact with water and/or air. ifferences in the physical and chemical properties of water and NAPL result in the formation of a physical interface between the liquids which preve...
USING TRACERS TO DESCRIBE NAPL HETEROGENEITY
Tracers are frequently used to estimate both the average travel time for water flow through the tracer swept volume and NAPL saturation. The same data can be used to develop a statistical distribution describing the hydraulic conductivity in the sept volume and a possible distri...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
...: May 27, 2011. FOR FURTHER INFORMATION CONTACT: Roger Kaplan, Acting Director, Audits and Self-Inspection, Office of Field Operations, at 202-325-4543 or by e-mail at Roger.Kaplan@dhs.gov . SUPPLEMENTARY...
THREE-DIMENSIONAL NAPL FATE AND TRANSPORT MODEL
We have added several new and significant capabilities to UTCHEM to make it into a general-purpose NAPL simulator. The simulator is now capable of modeling transient and steady-state three-dimensional flow and mass transport in the groundwater (saturated) and vadose (unsaturated...
Sixth International Conference on Squeezed States and Uncertainty Relations
NASA Technical Reports Server (NTRS)
Han, D. (Editor); Kim, Y. S. (Editor); Solimento, S. (Editor)
2000-01-01
These proceedings contain contributions from about 200 participants to the 6th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'99) held in Naples May 24-29, 1999, and organized jointly by the University of Naples "Federico II," the University of Maryland at College Park, and the Lebedev Institute, Moscow. This was the sixth of a series of very successful meetings started in 1990 at the College Park Campus of the University of Maryland. The other meetings in the series were held in Moscow (1992), Baltimore (1993), Taiyuan P.R.C. (1995) and Balatonfuered, Hungary (1997). The present one was held at the campus Monte Sant'Angelo of the University "Federico II" of Naples. The meeting sought to provide a forum for updating and reviewing a wide range of quantum optics disciplines, including device developments and applications, and related areas of quantum measurements and quantum noise. Over the years, the ICSSUR Conference evolved from a meeting on quantum measurement sector of quantum optics, to a wide range of quantum optics themes, including multifacet aspects of generation, measurement, and applications of nonclassical light (squeezed and Schrodinger cat radiation fields, etc.), and encompassing several related areas, ranging from quantum measurement to quantum noise. ICSSUR'99 brought together about 250 people active in the field of quantum optics, with special emphasis on nonclassical light sources and related areas. The Conference was organized in 8 Sections: Squeezed states and uncertainty relations; Harmonic oscillators and squeeze transformations; Methods of quantum interference and correlations; Quantum measurements; Generation and characterisation of non-classical light; Quantum noise; Quantum communication and information; and Quantum-like systems.
Fate and transport of mercury in soil systems : a numerical model in HP1 and sensitivity analysis
NASA Astrophysics Data System (ADS)
Leterme, Bertrand; Jacques, Diederik
2013-04-01
Mercury (Hg) poses threats for human health and the environment, notably due to its persistence and its ability to bioaccumulate in ecosystems. Anthropogenic activities are major contributors of mercury release to soils. Main sources of contamination include manufacturing (chlor-alkali plants, manometer spill), mine tailings from mercury, gold and silver mining industries, wood preservation. The objective of this study was to develop a reactive transport model for simulating mercury fate and transport in the unsaturated zone, and to gain insight in the fate and transport of Hg following anthropogenic soil contamination. The present work is done in the framework of the IMaHg project, which aims at providing recommendations to improve management of sites contaminated by mercury within the SNOWMAN funding framework. A model of mercury fate and transport in soil systems was developed using the reactive transport code HP1 (Jacques and Šimůnek, 2010). The geochemical database THERMODDEM (Blanc et al., 2012) is used, augmented with some speciation data from (Skyllberg, 2012). The main processes accounted for in the model are : Hg aqueous speciation (including complexation with dissolved organic matter (DOM) - humic and fulvic acids, and thiol groups), Hg sorption to solid organic matter (SOM), dissolution of solid phase Hg (e.g. cinnabar HgS(s)), dissolution of Hg non-aqueous liquid phase (NAPL), sunlight-driven Hg(II) reduction to Hg(0), Hg(0) diffusion in the gas phase and volatilization, DOM sorption to soil minerals. Colloid facilitated transport is implicitly accounted for by solute transport of Hg-DOM complexes. Because we focused on soil systems having a high Hg contamination, some processes showing relatively smaller Hg fluxes could be neglected such as vegetation uptake and atmospheric wet and dry deposition. NAPL migration and entrapment is not modelled, as pollution is assumed to be historical and only residual NAPL to be present. Mercury methylation and demethylation was not implemented, because it could be neglected in an oxidising environment. However, if the model is to be tested in more reducing conditions (e.g. shallow groundwater table), methyl- and dimethylmercury formation can be non negligible. Using 50 year time series of daily weather observations in Dessel (Belgium) and a typical sandy soil with deep groundwater (free drainage, oxic conditions), a sensitivity analysis was performed to assess the relative importance of processes and parameters within the model. We used the elementary effects method (Morris, 1991; Campolongo et al., 2007), which draws trajectories across the parameter space to derive information on the global sensitivity of the selected input parameters. The impact of different initial contamination phases (solid, NAPL, aqueous and combinations of these) was also tested. Simulation results are presented in terms of (i) Hg volatilized to the atmosphere; (ii) Hg leached out of the soil profile; (iii) Hg still present in the soil horizon originally polluted; and (iv) Hg still present in the soil profile but below the original contaminated horizon. Processes and parameters identified as critical based on the sensitivity analysis differ from one scenario to the other ; depending on pollution type (cinnabar, NAPL, aqueous Hg), on the indicator assessed and on time (after 5, 25 or 50 years). However, in general DOM in soil water was the most critical parameter. Other important parameters were those related to Hg sorption on SOM (thiols, and humic and fulvic acids), and to Hg complexation with DOM. Initial Hg concentration was also often identified as a sensitive parameter. Interactions between factors and non linear effects as measured by the elementary effect method were generally important, but also dependent on the type of contamination and on time. No model calibration was performed until now. The numerical tool could greatly benefit from partial model calibration and/or validation. Ideally, detailed speciation data on a contaminated sites would be required, together with a good characterization of the pollution source. References : Blanc, P., Lassin, A. and Piantone, P. (2012), THERMODDEM a database devoted to waste minerals, BRGM, Orléans, France. http://thermoddem.brgm.fr Campolongo, F., Cariboni, J. and Saltelli, A. (2007), An effective screening design for sensitivity analysis of large models, Environmental Modelling & Software 22(10): 1509-1518. Jacques, D. and Šimůnek, J. (2010), Notes on HP1 - a software package for simulating variably-saturated water flow, heat transport, solute transport and biogeochemistry in porous media, HP1 Version 2.2 SCK•CEN-BLG-1068, Waste & Disposal Department, SCK•CEN, Mol, Belgium: 113 p. Morris, M. D. (1991), Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics 33(2): 161-174. Skyllberg, U. (2012), Chemical Speciation of Mercury in Soil and Sediment. Environmental Chemistry and Toxicology of Mercury, John Wiley & Sons, Inc.: 219-258.
Sherwood correlation for dissolution of pooled NAPL in porous media
NASA Astrophysics Data System (ADS)
Aydin Sarikurt, Derya; Gokdemir, Cagri; Copty, Nadim K.
2017-11-01
The rate of interphase mass transfer from non-aqueous phase liquids (NAPLs) entrapped in the subsurface into the surrounding mobile aqueous phase is commonly expressed in terms of Sherwood (Sh) correlations that are expressed as a function of flow and porous media properties. Because of the lack of precise methods for the estimation of the interfacial area separating the NAPL and aqueous phases, most studies have opted to use modified Sherwood expressions that lump the interfacial area into the interphase mass transfer coefficient. To date, there are only two studies in the literature that have developed non-lumped Sherwood correlations; however, these correlations have undergone limited validation. In this paper controlled dissolution experiments from pooled NAPL were conducted. The immobile NAPL mass is placed at the bottom of a flow cell filled with porous media with water flowing horizontally on top. Effluent aqueous phase concentrations were measured for a wide range of aqueous phase velocities and for two different porous media. To interpret the experimental results, a two-dimensional pore network model of the NAPL dissolution kinetics and aqueous phase transport was developed. The observed effluent concentrations were then used to compute best-fit mass transfer coefficients. Comparison of the effluent concentrations computed with the two-dimensional pore network model to those estimated with one-dimensional analytical solutions indicates that the analytical model which ignores the transport in the lateral direction can lead to under-estimation of the mass transfer coefficient. Based on system parameters and the estimated mass transfer coefficients, non-lumped Sherwood correlations were developed and compared to previously published data. The developed correlations, which are a significant improvement over currently available correlations that are associated with large uncertainties, can be incorporated into future modeling studies requiring non-lumped Sh expressions.
NASA Astrophysics Data System (ADS)
Benioug, M.; Yang, X.
2017-12-01
The evolution of microbial phase within porous medium is a complex process that involves growth, mortality, and detachment of the biofilm or attachment of moving cells. A better understanding of the interactions among biofilm growth, flow and solute transport and a rigorous modeling of such processes are essential for a more accurate prediction of the fate of pollutants (e.g. NAPLs) in soils. However, very few works are focused on the study of such processes in multiphase conditions (oil/water/biofilm systems). Our proposed numerical model takes into account the mechanisms that control bacterial growth and its impact on the dissolution of NAPL. An Immersed Boundary - Lattice Boltzmann Model (IB-LBM) is developed for flow simulations along with non-boundary conforming finite volume methods (volume of fluid and reconstruction methods) used for reactive solute transport. A sophisticated cellular automaton model is also developed to describe the spatial distribution of bacteria. A series of numerical simulations have been performed on complex porous media. A quantitative diagram representing the transitions between the different biofilm growth patterns is proposed. The bioenhanced dissolution of NAPL in the presence of biofilms is simulated at the pore scale. A uniform dissolution approach has been adopted to describe the temporal evolution of trapped blobs. Our simulations focus on the dissolution of NAPL in abiotic and biotic conditions. In abiotic conditions, we analyze the effect of the spatial distribution of NAPL blobs on the dissolution rate under different assumptions (blobs size, Péclet number). In biotic conditions, different conditions are also considered (spatial distribution, reaction kinetics, toxicity) and analyzed. The simulated results are consistent with those obtained from the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, D.E.; Alexander, M.
1997-08-01
A study was conducted to determine the effects of biodegradability of nonaqueous-phase liquids (NAPLs) and microbial competition on the biodegradation in soil of a constituent of the NAPLs. The rates of mineralization of phenanthrene dissolved in 8 mg of 2,2,4,4,6,8,8-heptamethylnonane (HMN), di(2-ethylhexyl) phthalate (DEHP), or pristane per g of soil were faster than the rates when the compound was dissolved in hexadecane or dodecane. Addition of inorganic N and P to the soil increased the mineralization rate in the first two but not the last two NAPLs. N and P addition did not enhance mineralization of phenanthrene when added inmore » 500 {micro}g of hexadecane, pristane, or HMN per g of soil. Hexadecane was rapidly degraded, pristane was slowly metabolized, DEHP was still slower, and HMN was not mineralized in the test period. Mixing the soil stimulated mineralization of phenanthrene dissolved in HMN but not in hexadecane. Mineralization of phenanthrene dissolved in HMN was the same if the gas phase contained 21%, 2.1%, or traces of O{sub 2}. In contrast, the biodegradation of phenanthrene dissolved in hexadecane, although the same at 21 and 2.1% O{sub 2}, was not observed if traces of O{sub 2} were present. The mineralization was slower in unshaken soil-water mixtures if phenanthrene was added in hexadecane than in HMN or pristane, but the rates with the 3 NAPLs were increased by shaking the suspensions. The authors suggest that the biodegradability of major components of NAPLs and microbial competition for N, P, or O{sub 2} will have a major impact on the rate of transformation of minor constituents of NAPLs.« less
Structural integrity of well construction, sampling, and remediation materials may be compromised at many hazardous sites by nonaqueous phase liquids (NAPLs) and their dissolved constituents. A literature review of compatibility theory and qualitative field experiences are provid...
An Analysis of Port-Visit Costs of U.S. Navy Aircraft Carriers
2008-06-01
Klang, Portsmouth, and Tarragona. Medium-cost ports are: Corfu, Freemantle, Limassol, Marseille, Naples, Palma, Rhodes, Souda Bay, and Valletta . Low...Split, Sydney Low Cost Manama Manama Corfu, Fremantle, Limassol, Marseille, Naples, Palma De Mallorca, Rhodes, Souda Bay, Valletta Medium Cost
[Naples: the historic capital of Italian paediatrics].
Farnetani, I; Farnetani, F
2008-06-01
No other Italian city has contributed to the birth and development of paediatrics more than Naples. This is why it can be considered the historic capital of Italian paediatrics. Here are the main reasons: Luigi Somma was the first professor of Italian paediatrics whereas Francesco Fede was the first president of the Italian Paediatrics Association. Neapolitan paediatricians have been the most numerous amongst the founder members. The first three Italian journals of paediatrics were founded in Naples as well as the journal ''La Pediatria'' which was the most distributed and long-lasting journal in this field. Moreover, Neapolitans have been the most numerous presidents of the Italian Paediatrics Association, while Rocco Jemma was the one who remained the longest in charge. ''Rocco Jemma's school'' taught not only to most professors in paediatrics who afterwards taught in most Italian universities, but also four out of five paediatricians who took charge of the position as president. The first regional department of the Italian Paediatrics Association was founded in Naples as well as the Association of Nipiology.
Buonaguro, Franco Maria; Tornesello, Maria Lina; Buonaguro, Luigi
2015-01-27
Vaccines are the most successful strategy developed in Medicine to prevent and even eradicate the most dreadful epidemic infectious diseases. The history of smallpox vaccination in Naples is quite unique. Although Galbiati established the retro-vaccination (1803) and developed the "calf" lymph vaccine, recognized and implemented since 1864 as the optimal smallpox vaccine in the following hundred years, Naples general population was mainly vaccinated with "human" lymph from abandoned children until 1893. Mini-epidemics of syphilis and serum hepatitis were periodically reported as results of arm-to-arm procedure. The risk of transmission of blood-related pathogens was higher in Naples where >80% of abandoned children, used as repository of cowpox virus, were dying in their first year of life. Recent vaccinology standards finally eliminated the risk of adventitious contaminating pathogens. Implementation of hepatitis B vaccination since 1991 eventually contributed to current HBV prevalence in Campania region <1%, within the range of the European Countries.
NASA Astrophysics Data System (ADS)
Gerhard, J.; Zanoni, M. A. B.; Torero, J. L.
2017-12-01
Smouldering (i.e., flameless combustion) underpins the technology Self-sustaining Treatment for Active Remediation (STAR). STAR achieves the in situ destruction of nonaqueous phase liquids (NAPLs) by generating a self-sustained smouldering reaction that propagates through the source zone. This research explores the nature of the travelling reaction and the influence of key in situ and engineered characteristics. A novel one-dimensional numerical model was developed (in COMSOL) to simulate the smouldering remediation of bitumen-contaminated sand. This model was validated against laboratory column experiments. Achieving model validation depended on correctly simulating the energy balance at the reaction front, including properly accounting for heat transfer, smouldering kinetics, and heat losses. Heat transfer between soil and air was demonstrated to be generally not at equilibrium. Moreover, existing heat transfer correlations were found to be inappropriate for the low air flow Reynold's numbers (Re < 30) relevant in this and similar thermal remediation systems. Therefore, a suite of experiments were conducted to generate a new heat transfer correlation, which generated correct simulations of convective heat flow through soil. Moreover, it was found that, for most cases of interest, a simple two-step pyrolysis/oxidation set of kinetic reactions was sufficient. Arrhenius parameters, calculated independently from thermogravimetric experiments, allowed the reaction kinetics to be validated in the smouldering model. Furthermore, a simple heat loss term sufficiently accounted for radial heat losses from the column. Altogether, these advances allow this simple model to reasonably predict the self-sustaining process including the peak reaction temperature, the reaction velocity, and the complete destruction of bitumen behind the front. Simulations with the validated model revealed numerous unique insights, including how the system inherently recycles energy, how air flow rate and NAPL saturation dictate contaminant destruction rates, and the extremes that lead to extinction. Overall, this research provides unique insights into the complex interplay of thermochemical processes that govern the success of smouldering as well as other thermal remediation approaches.
Mt. Vesuvius and Naples, Italy as seen from STS-58
NASA Technical Reports Server (NTRS)
1993-01-01
The ancient eruption of Vesuvius (the volcanoe near the center of the frame) destroyed the town of Pompeii located on the southeast flank. But the larger town of Naples, between Vesuvius (to the south) and the large, circular, lake-filled caldera of Campi Flegrei (to the west) is also close to volcanic hazards. In this view, Naples is the gray urban area with substantial coastal development just northwest of Vesuvius. Other landmarks marking the Italian coast include the small island of Capri, just off the west-pointing peninsula, and the city of Salerno on the coast just south of the same peninsula.
TERMINAL ELECTRON ACCEPTOR MASS BALANCE: LIGHT NONAQUEOUS PHASE LIQUIDS AND NATURAL ATTENUATION
Nonaqueous phase liquids (NAPLs) in subsurface systems contain a relatively large amount of biodegradable organic material. During the biochemical oxidation of the organic compounds in the NAPL, electrons are transferred to terminal electron acceptors (TEA) (i.e., O2, NO3-, Mn(I...
Coupled geophysical-hydrological modeling of controlled NAPL spill
NASA Astrophysics Data System (ADS)
Kowalsky, M. B.; Majer, E.; Peterson, J. E.; Finsterle, S.; Mazzella, A.
2006-12-01
Past studies have shown reasonable sensitivity of geophysical data for detecting or monitoring the movement of non-aqueous phase liquids (NAPLs) in the subsurface. However, heterogeneity in subsurface properties and in NAPL distribution commonly results in non-unique data interpretation. Combining multiple geophysical data types and incorporating constraints from hydrological models will potentially decrease the non-uniqueness in data interpretation and aid in site characterization. Large-scale laboratory experiments have been conducted over several years to evaluate the use of various geophysical methods, including ground-penetrating radar (GPR), seismic, and electrical methods, for monitoring controlled spills of tetrachloroethylene (PCE), a hazardous industrial solvent that is pervasive in the subsurface. In the current study, we consider an experiment in which PCE was introduced into a large tank containing a heterogeneous distribution of sand and clay mixtures, and allowed to migrate while time-lapse geophysical data were collected. We consider two approaches for interpreting the surface GPR and crosswell seismic data. The first approach involves (a) waveform inversion of the surface GPR data using a non-gradient based optimization algorithm to estimate the dielectric constant distributions and (b) conversion of crosswell seismic travel times to acoustic velocity distributions; the dielectric constant and acoustic velocity distributions are then related to NAPL saturation using appropriate petrophysical models. The second approach takes advantage of a recently developed framework for coupled hydrological-geophysical modeling, providing a hydrological constraint on interpretation of the geophysical data and additionally resulting in quantitative estimates of the most relevant hydrological parameters that determine NAPL behavior in the system. Specifically, we simulate NAPL migration using the multiphase multicomponent flow simulator TOUGH2 with a 2-D radial model that takes advantage of radial symmetry in the experimental setup. The flow model is coupled to forward models for simulating the GPR and seismic measurements, and joint inversion of the multiple data types results in images of time-varying NAPL saturation distributions. Comparison of the two approaches with results of the post-experiment excavation indicate that combining geophysical data types and incorporating hydrological constraints improves estimates of NAPL saturation relative to the conventional interpretation of the geophysical data sets. Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect the official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation by EPA for use. This work was supported, in part, by the U.S. Dept. of Energy under Contract No. DE-AC02- 05CH11231.
30 CFR Appendix to Part 253 - List of U.S. Geological Survey Topographic Maps
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Florida (1:24,000 scale): Allanton; Alligator Bay; Anna Maria; Apalachicola; Aripeka; Bayport; Beacon...; Miramar Beach; Myakka River; Naples North; Naples South; Navarre; New Inlet; Niceville; Nutall Rise... Level; Rock Islands; Royal Palm Hammock; Safety Harbor; Saint Joseph Point; Saint Joseph Spit; Saint...
USING PHASE DIAGRAMS TO PREDICT THE PERFORMANCE OF COSOLVENT FLOODS FOR NAPL REMEDIATION
Cosolvent flooding using water miscible solvents such as alcohols has been proposed as an in-situ NAPL remediation technique. This process is conceptually similar to enhanced oil recovery (EOR) using alcohols and some surfactant formulations. As a result of interest in the EOR ...
Mt. Vesuvius and Naples, Italy as seen from STS-58
1993-10-20
STS058-73-024 (18 Oct-1 Nov 1993) --- The ancient eruption of Vesuvius (the volcano near the center of the frame) destroyed the town of Pompeii located on its southeast flank. But the larger town of Naples, between Vesuvius (to the south) and the large, circular, lake-filled caldera of Campi Flegrei (to the west) also lives with the constant threat of volcanic hazards. In this view, Naples is the gray urban area with substantial coastal development just northwest of Vesuvius. Other landmarks marking the Italian coast include the small island of Capri, just off the west-pointing peninsula, and the city of Salerno on the coast just south of the same peninsula.
NASA Astrophysics Data System (ADS)
Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.
2008-12-01
A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems, particularly at the laboratory scale.
Kinetic limitations on tracer partitioning in ganglia dominated source zones.
Ervin, Rhiannon E; Boroumand, Ali; Abriola, Linda M; Ramsburg, C Andrew
2011-11-01
Quantification of the relationship between dense nonaqueous phase liquid (DNAPL) source strength, source longevity and spatial distribution is increasingly recognized as important for effective remedial design. Partitioning tracers are one tool that may permit interrogation of DNAPL architecture. Tracer data are commonly analyzed under the assumption of linear, equilibrium partitioning, although the appropriateness of these assumptions has not been fully explored. Here we focus on elucidating the nonlinear and nonequilibrium partitioning behavior of three selected alcohol tracers - 1-pentanol, 1-hexanol and 2-octanol in a series of batch and column experiments. Liquid-liquid equilibria for systems comprising water, TCE and the selected alcohol illustrate the nonlinear distribution of alcohol between the aqueous and organic phases. Complete quantification of these equilibria facilitates delineation of the limits of applicability of the linear partitioning assumption, and assessment of potential inaccuracies associated with measurement of partition coefficients at a single concentration. Column experiments were conducted under conditions of non-equilibrium to evaluate the kinetics of the reversible absorption of the selected tracers in a sandy medium containing a uniform entrapped saturation of TCE-DNAPL. Experimental tracer breakthrough data were used, in conjunction with mathematical models and batch measurements, to evaluate alternative hypotheses for observed deviations from linear equilibrium partitioning behavior. Analyses suggest that, although all tracers accumulate at the TCE-DNAPL/aqueous interface, surface accumulation does not influence transport at concentrations typically employed for tracer tests. Moreover, results reveal that the kinetics of the reversible absorption process are well described using existing mass transfer correlations originally developed to model aqueous boundary layer resistance for pure-component NAPL dissolution. Copyright © 2011 Elsevier B.V. All rights reserved.
Art Competition Encourages Student Dreams
ERIC Educational Resources Information Center
Gartel, Laurence
2010-01-01
In 1971, members of the Naples Art Association (NAA) in Naples, Florida, initiated a scholarship program designed to encourage local young artists to realize their dreams of becoming professionals in the visual arts. Since then, awards have been given annually by the NAA to Collier County high-school students in conjunction with an exhibition of…
Yoon, Hongkyu; Oostrom, Mart; Wietsma, Thomas W; Werth, Charles J; Valocchi, Albert J
2009-10-13
The purpose of this work is to identify the mechanisms that govern the removal of carbon tetrachloride (CT) during soil vapor extraction (SVE) by comparing numerical and analytical model simulations with a detailed data set from a well-defined intermediate-scale flow cell experiment. The flow cell was packed with a fine-grained sand layer embedded in a coarse-grained sand matrix. A total of 499 mL CT was injected at the top of the flow cell and allowed to redistribute in the variably saturated system. A dual-energy gamma radiation system was used to determine the initial NAPL saturation profile in the fine-grained sand layer. Gas concentrations at the outlet of the flow cell and 15 sampling ports inside the flow cell were measured during subsequent CT removal using SVE. Results show that CT mass was removed quickly in coarse-grained sand, followed by a slow removal from the fine-grained sand layer. Consequently, effluent gas concentrations decreased quickly at first, and then started to decrease gradually, resulting in long-term tailing. The long-term tailing was mainly due to diffusion from the fine-grained sand layer to the coarse-grained sand zone. An analytical solution for a one-dimensional advection and a first-order mass transfer model matched the tailing well with two fitting parameters. Given detailed knowledge of the permeability field and initial CT distribution, we were also able to predict the effluent concentration tailing and gas concentration profiles at sampling ports using a numerical simulator assuming equilibrium CT evaporation. The numerical model predictions were accurate within the uncertainty of independently measured or literature derived parameters. This study demonstrates that proper numerical modeling of CT removal through SVE can be achieved using equilibrium evaporation of NAPL if detailed fine-scale knowledge of the CT distribution and physical heterogeneity is incorporated into the model. However, CT removal could also be fit by a first-order mass transfer analytical model, potentially leading to an erroneous conclusion that the long-term tailing in the experiment was kinetically controlled due to rate-limited NAPL evaporation.
2014-07-01
into a building ....149 Figure 5.52: Effect of infiltration at 1 mm/hr for 24 hours on vapor signals in sandy clay loam scenario...shown above, there will also likely be large diameter sanitary sewers running the length of each street. Each house on the street will have a sewer...permeability, a discontinuous clay layer system, and a system with scattered obstacles (e.g. utilities). The layered systems indicated that the sequence of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semprini, L.; Istok, J.
'The objective of this research is to develop a unique method of using naturally occurring radon-222 as a tracer for locating and quantitatively describing the presence of subsurface NAPL contamination. The research will evaluate using radon as an inexpensive, yet highly accurate, means of detecting NAPL contamination and assessing the effectiveness of NAPL remediation. Laboratory, field, and modeling studies are being performed to evaluate this technique, and to develop methods for its successful implementation in practice. This report summarizes work that has been accomplished after 1-year of a 3-year project. The research to date has included radon tracer tests inmore » physical aquifer models (PAMs) and field studies at Site 300 of the Lawrence Livermore National Laboratory, CA, and Site 100D at Hanford DOE Facility, WA. The PAM tests have evaluated the ability of radon as a tracer to monitor the remediation of TCE NAPL contamination using surfactant treatment, and oxidation with permanganate. The surfactant tests were performed in collaboration with Dr. Jack Istok and Dr. Jennifer Field and their EMSP project ``In-situ, Field-Scale Evaluation of Surfactant Enhanced DNAPL Recovery Using a Single-Well-Push-Pull Test.'''' This collaboration enabled the EMSP radon project to make rapid progress. The PAM surfactant tests were performed in a radial flow geometry to simulate the push-pull-method that is being developed for surfactant field tests. The radon tests were easily incorporated into these experiments, since they simply rely on measuring the natural radon present in the subsurface fluids. Two types of radon tests were performed: (1) static tests where radon was permitted to build-up to steady-state concentrations in the pore fluids and the groundwater concentrations were monitored, and (2) dynamic tests were the radon response during push-pull surfactant tests was measured. Both methods were found to be useful in determining how NAPL remediation was progressing.'« less
NASA Astrophysics Data System (ADS)
D'Aniello, Elena; di Fiore, Vincenzo; Sacchi, Marco; Rapolla, Antonio
2010-05-01
During the cruise CAFE_07 - Leg 3 conducted in the Gulf of Naples and Pozzuoli in January 2008, on board of the R/V URANIA of the CNR it was carried out the acquisition of a grid of ca. 800 km of high-resolution multichannel reflection seismic profiles (Sacchi et al., 2009; Di Fiore et al., 2009). The aim of the cruise was the understanding of the stratigraphic-structural setting of the Pozzuoli Bay area, with specific reference to the major offshore volcanic features, such as Nisida Bank, Pentapalummo Bank, M.Dolce-Pampano Bank and Miseno Bank and others. The Gulf of Pozzuoli is placed in the Volcanic district of Campi Flegrei, an area of active volcanism located at North West of Naples city, along the Tyrrhenian margin, in an extensional collapsed area called Campanian Plain, filled by siliciclastic, epiclastic and volcaniclastic sediments, deposited during Late Pliocene and Quaternary. Several studies present in literature suggest a relation between volcanic system of Campi Flegrei and faults system; in particular, at the Gulf of Pozzuoli we can observe some volcanic banks and submarine volcanic edifices, as Pentapalummo, Nisida and Miseno Banks, are aligned along the NE-SW trending Magnaghi-Sebeto fault line, that separates the Bay of Naples into two sectors: the first, at NW of the Bay, characterized by volcanism activity and magnetic anomalies and the second, at SE of the bay, involved only by sedimentary activity, with the exceptions of the circular anomalies in the offshore of Torre del Greco city (Bruno et al., 2003; Secomandi et al., 2003); other volcanic hights are instead positioned along NW-SE structural discontinuities (Bruno, 2004). The magnetic and gravimetric analysis of the Bay of Naples confirms the tectonic control of the Campanian volcanism: we can observe a good correspondence of high magnetic anomalies with the main volcanic structures at the North-Western side of the bay, just the Gulf of Pozzuoli, where both NE-SW and NW-SE normal faults were recognized. The correspondence between magnetic structures, interpreted as volcanic bodies, and the faults NE-SW and NW-SE trending, supports the hypothesis that the magma rises along normal faults cutting the carbonate platform. We here present two significant seismic profiles: their interpretation reveals a complex stratigraphic and structural setting, dominated by the occurrence of volcanic bodies and siliciclastic depositional units, mostly deriving from the dismantling of the adjacent vents and volcaniclastic units. The results of this preliminary research include the recognition of volcanic features and structures not yet described in the literature that may represent a relevant contribute to the understanding of the Late Quaternary evolution of the Campi Flegrei area. References: Bruno P.P., Rapolla A., Di Fiore V., 2003. Structural setting of the Bay of Naples (Italy) seismic reflection data: implications for Campanian volcanism. Tectonophysics, 372, 193-213. Bruno P.P., 2004. Structure and evolution of the Bay of Pozzuoli (Italy) using marine seismic reflection data: implication for collapse of the Campi Flegrei caldera. Bull. Volcanol., 66, 342-355. Di Fiore V., D'Aniello E., Rapolla A., Sacchi M., Secomandi M., Spiess V., 2009. Multichannel seismic survey in coastal Campania area by two different resolution sources. EGU General Assembly 2009, vol.11. Sacchi M., Alessio G., Aquino I., Esposito E., Molisso F., Nappi R., Porfido S., Violante C., 2008. Risultati preliminari della campagna oceanografica CAFE_07 - Leg 3 nei Golfi di Napoli e Pozzuoli, Mar Tirreno Orientale. Quaderni di Geofisica, n. 64. Secomandi M., Paoletti V., Aiello G., Fedi M., Marsella E., Ruggieri S., D'Argenio B., Rapolla A., 2003. Analysis of the magnetic anomaly field of the volcanic district of the Bay of Naples, Italy. Marine Geophysical Researches. 24: 207-221.
Appolloni, L; Sandulli, R; Vetrano, G; Russo, G F
2018-05-15
Marine Protected Areas are considered key tools for conservation of coastal ecosystems. However, many reserves are characterized by several problems mainly related to inadequate zonings that often do not protect high biodiversity and propagule supply areas precluding, at the same time, economic important zones for local interests. The Gulf of Naples is here employed as a study area to assess the effects of inclusion of different conservation features and costs in reserve design process. In particular eight scenarios are developed using graph theory to identify propagule source patches and fishing and exploitation activities as costs-in-use for local population. Scenarios elaborated by MARXAN, software commonly used for marine conservation planning, are compared using multivariate analyses (MDS, PERMANOVA and PERMDISP) in order to assess input data having greatest effects on protected areas selection. MARXAN is heuristic software able to give a number of different correct results, all of them near to the best solution. Its outputs show that the most important areas to be protected, in order to ensure long-term habitat life and adequate propagule supply, are mainly located around the Gulf islands. In addition through statistical analyses it allowed us to prove that different choices on conservation features lead to statistically different scenarios. The presence of propagule supply patches forces MARXAN to select almost the same areas to protect decreasingly different MARXAN results and, thus, choices for reserves area selection. The multivariate analyses applied here to marine spatial planning proved to be very helpful allowing to identify i) how different scenario input data affect MARXAN and ii) what features have to be taken into account in study areas characterized by peculiar biological and economic interests. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Arcidiacono, Caterina; Procentese, Fortuna
2005-01-01
Inspired by the impact of an increase in tourism in the Old Center of Naples, Fondazione Laboratorio Mediterraneo, a nonprofit organization that promotes sustainable town development and encourages participation, has undertaken the participatory action research described in this article. The inhabitants' sense of community (McMillan & Chavis,…
The development of efficient numerical time-domain modeling methods for geophysical wave propagation
NASA Astrophysics Data System (ADS)
Zhu, Lieyuan
This Ph.D. dissertation focuses on the numerical simulation of geophysical wave propagation in the time domain including elastic waves in solid media, the acoustic waves in fluid media, and the electromagnetic waves in dielectric media. This thesis shows that a linear system model can describe accurately the physical processes of those geophysical waves' propagation and can be used as a sound basis for modeling geophysical wave propagation phenomena. The generalized stability condition for numerical modeling of wave propagation is therefore discussed in the context of linear system theory. The efficiency of a series of different numerical algorithms in the time-domain for modeling geophysical wave propagation are discussed and compared. These algorithms include the finite-difference time-domain method, pseudospectral time domain method, alternating directional implicit (ADI) finite-difference time domain method. The advantages and disadvantages of these numerical methods are discussed and the specific stability condition for each modeling scheme is carefully derived in the context of the linear system theory. Based on the review and discussion of these existing approaches, the split step, ADI pseudospectral time domain (SS-ADI-PSTD) method is developed and tested for several cases. Moreover, the state-of-the-art stretched-coordinate perfect matched layer (SCPML) has also been implemented in SS-ADI-PSTD algorithm as the absorbing boundary condition for truncating the computational domain and absorbing the artificial reflection from the domain boundaries. After algorithmic development, a few case studies serve as the real-world examples to verify the capacities of the numerical algorithms and understand the capabilities and limitations of geophysical methods for detection of subsurface contamination. The first case is a study using ground penetrating radar (GPR) amplitude variation with offset (AVO) for subsurface non-aqueous-liquid (NAPL) contamination. The numerical AVO study reveals that the normalized residual polarization (NRP) variation with offset does not respond to subsurface NAPL existence when the offset is close to or larger than its critical value (which corresponds to critical incident angle) because the air and head waves dominate the recorded wave field and severely interfere with reflected waves in the TEz wave field. Thus it can be concluded that the NRP AVO/GPR method is invalid when source-receiver angle offset is close to or greater than its critical value due to incomplete and severely distorted reflection information. In other words, AVO is not a promising technique for detection of the subsurface NAPL, as claimed by some researchers. In addition, the robustness of the newly developed numerical algorithms is also verified by the AVO study for randomly-arranged layered media. Meanwhile, this case study also demonstrates again that the full-wave numerical modeling algorithms are superior to ray tracing method. The second case study focuses on the effect of the existence of a near-surface fault on the vertically incident P- and S- plane waves. The modeling results show that both P-wave vertical incidence and S-wave vertical incidence cases are qualified fault indicators. For the plane S-wave vertical incidence case, the horizontal location of the upper tip of the fault (the footwall side) can be identified without much effort, because all the recorded parameters on the surface including the maximum velocities and the maximum accelerations, and even their ratios H/V, have shown dramatic changes when crossing the upper tip of the fault. The centers of the transition zone of the all the curves of parameters are almost directly above the fault tip (roughly the horizontal center of the model). Compared with the case of the vertically incident P-wave source, it has been found that the S-wave vertical source is a better indicator for fault location, because the horizontal location of the tip of that fault cannot be clearly identified with the ratio of the horizontal to vertical velocity for the P-wave incident case.
Bergslien, Elisa; Fountain, John
2006-12-15
By using translucent epoxy replicas of natural single fractures, it is possible to optically measure aperture distribution and directly observe NAPL flow. However, detailed characterization of epoxy reveals that it is not a sufficiently good analogue to natural rock for many two-phase flow studies. The surface properties of epoxy, which is hydrophobic, are quite unlike those of natural rock, which is generally assumed to be hydrophilic. Different surface wettabilities result in dramatically different two-phase flow behavior and residual distributions. In hydrophobic replicas, the NAPL flows in well-developed channels, displacing water and filling all of the pore space. In hydrophilic replicas, the invading NAPL is confined to the largest aperture pathways and flow frequently occurs in pulses, with no limited or no stable channel development, resulting in isolated blobs with limited accessible surface area. The pulsing and channel abandonment behaviors described are significantly different from the piston-flow frequently assumed in current modeling practice. In addition, NAPL never achieved total saturation in hydrophilic models, indicating that significantly more than a monolayer of water was bound to the model surface. Despite typically only 60-80% NAPL saturation, there was generally good agreement between theoretically calculated Young-Laplace aperture invasion boundaries and the observed minimum apertures invaded. The key to determining whether surface wettability is negligible, or not, lies in accurate characterization of the contaminant-geologic media system under study. As long as the triple-point contact angle of the system is low (<20 degrees), the assumption of perfect water wettability is not a bad one.
NASA Astrophysics Data System (ADS)
Troiano, A.; Di Giuseppe, M. G.; Patella, D.; Troise, C.; De Natale, G.
2014-05-01
We describe the results from a combined controlled source audio magnetotelluric (CSAMT) and natural source magnetotelluric (MT) survey carried out in the Solfatara-Pisciarelli (S-P) area, located in the central part of the Campi Flegrei (CF) composite caldera, west of Naples, Southern Italy. The S-P area represents the most active zone within the CF caldera, in terms of hydrothermal manifestations and local seismicity. Since 1969, the CF caldera is experiencing ground deformation, seismicity and geochemical fluid changes, which are particularly evident in the S-P area. A 1 km long, nearly W-E directed CSAMT-MT profile crossing the fumarole field was carried out in the S-P area with the aim of deducting a resistivity model of the structural setting of the hydrothermal system in the first 3 km depth. An interpretation of the modelled section across the profile is given in this paper, taking advantage from already existing seismic, gravity and geochemical data in the same area. Three well distinct zones have been outlined. The first zone is a very shallow, electrically conductive body localized beneath the westernmost segment of the profile, which, within a short distance of about 100 m, dips westwards from near surface down to some hundred metres in depth. Mostly accounting for the very low resistivity (1-10 Ω m) and the exceedingly high values of vP/vS (> 4), this shallow zone has been ascribed to a water-saturated, high-pressurized geothermal reservoir. The second zone, which has been localized below the west-central portion of the CSAMT-MT transect, appears as a composite body made up of a nearly vertical plumelike structure that escapes at about 2.25 km depth from the top edge of the east side of a presumably horizontal platelike body. The plumelike structure rises up to the free surface in correspondence of the fumarole field, whereas the platelike structure deepens at least down to the 3 km of maximum exploration depth. The combined interpretation of resistivity (50-100 Ω m), body wave velocity ratio (vP/vS < 2.0), mass density contrast (Δσ < 0 g/cm3), and geochemical data indicates that the plumelike portion can likely be associated with a steam/gas-saturated column and the platelike portion with a high temperature (> 300 °C), over-pressurized, gas-saturated reservoir. Finally, the third zone, which has been localized beneath the eastern half of the transect, from about 1.2 km down to about 3 km of depth, is also characterized by very low resistivity values (1-10 Ω m). Jointly interpreted with seismic (vP/vS < 1.73) and gravity (⨂⌠ > 0 g/cm3) data, this last electrically conductive structure appears to be associated with a hydrothermally mineralized, clay-rich body.
ERIC Educational Resources Information Center
Quintano, Claudio; Castellano, Rosalia; D'Agostino, Antonella
2008-01-01
The quality of jobs of economics graduates was studied in terms of educational mismatch. The returns of over-education on earnings and on the job-search were also investigated. The discussion regards the second wave of a longitudinal survey of a random sample of economics graduates from the University of Naples "Parthenope", a major…
The goal of this study was to assess the oxidation of NAPL in soil, 30% of which were composed of chlorinated ethanes and ethenes, using catalyzed hydrogen peroxide (CHP), activated persulfate (AP), and H2O2–persulfate (HP) co-amendment systems. Citrate, a buffer and iron ligand,...
Infiltration characteristics of non-aqueous phase liquids in undisturbed loessal soil cores.
Wang, Yunqiang; Shao, Ming'an
2009-01-01
The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 cm) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had significant effects on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density could reduce oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective stratage to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good stratage to improve the accuracy of experimental results. Our results revealed that crude and diesel oils, rather than their components, have a practical value for remediation of contaminated loessal soils.
Comparison of theory and experiment for NAPL dissolution in porous media
NASA Astrophysics Data System (ADS)
Bahar, T.; Golfier, F.; Oltéan, C.; Lefevre, E.; Lorgeoux, C.
2018-04-01
Contamination of groundwater resources by an immiscible organic phase commonly called NAPL (Non Aqueous Phase Liquid) represents a major scientific challenge considering the residence time of such a pollutant. This contamination leads to the formation of NAPL blobs trapped in the soil and impact of this residual saturation cannot be ignored for correct predictions of the contaminant fate. In this paper, we present results of micromodel experiments on the dissolution of pure hydrocarbon phase (toluene). They were conducted for two values of the Péclet number. These experiments provide data for comparison and validation of a two-phase non-equilibrium theoretical model developed by Quintard and Whitaker (1994) using the volume averaging method. The model was directly upscaled from the averaged pore-scale mass balance equations. The effective properties of the macroscopic model were calculated over periodic unit cells designed from images of the experimental flow cell. Comparison of experimental and numerical results shows that the transport model predicts correctly - with no fitting parameters - the main mechanisms of NAPL mass transfer. The study highlights the crucial need of having a fair recovery of pore-scale characteristic lengths to predict the mass transfer coefficient with accuracy.
NASA Astrophysics Data System (ADS)
Totsche, K. U.; Hensel, D.; Jann, S.; Jaesche, P.; Kögel-Knabner, I.; Scheibke, R.
The contamination of the unsaturated soil zone with organic pollutants (PAH, BTEX, PCB, Phenols, etc.) and pollutant mixtures, e.g. light/dense non-aqueous phase liq- uids (L/D-NAPLs), represents a specific challenge for sanitation and remediation of contaminated sites. Monitored natural attenuation as an alternative option for remedi- ation of such sites requires (1) the proof of an effective pollutant reduction potential and (2) the proof that a further spreading of the contaminants and their potentially toxic metabolites is minimized to an acceptable minimum concentration level. These demands apply equally likely to contaminated soil and groundwater environments. However, a major problem arises when the task is to monitor the release and transport of contaminants within the unsaturated soil zone over a longer period (> 10 years) of time at an expenditure as small as possible. The aim of our presentation is to employ and test a survey technique to monitor pollutant release and redistribution within the unsaturated soil zone in the context of MNA. The proposed technique is based on the combination of laboratory-column and field-lysimeter studies. The first is used to ac- quire knowledge on the governing processes, the latter is used to monitor release and transport of the contaminants.
Earth Observations taken by the Expedition 17 Crew
2008-06-20
ISS017-E-009734 (20 June 2008) --- Island of Ischia, Italy is featured in this image photographed by an Expedition 17 crewmember on the International Space Station. The island of Ischia is located approximately 30 kilometers to the southwest of Naples, in the western Bay of Naples (part of the Tyrrenhian Sea). While the island's rocks are volcanic in origin, much of the island's geology and current appearance is characterized by uplifted -- horst -- and downdropped -- graben -- fault structures. For example, the highest point on the island of Ischia is Monte Epomeo (789 meters). The mountain is not a volcanic cone, but rather is composed of erupted materials uplifted by faulting. The green slopes of Monte Epomeo are enclosed by urban development (light grey speckled areas) that rings the island. According to scientists, the last volcanic activity on Ischia took place in 1302. The neighboring island of Procida (top right) was formed from the same magma sources as Ischia, and scientists believe it likely shared the same volcanic "plumbing system". Today, the island of Ischia is a popular tourist destination due to its hot springs, hot mud baths, and the hiking opportunities afforded by Monte Epomeo. Several boat wakes are visible around both islands in this view.
A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai
A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai
Source apportion of atmospheric particulate matter: a joint Eulerian/Lagrangian approach.
Riccio, A; Chianese, E; Agrillo, G; Esposito, C; Ferrara, L; Tirimberio, G
2014-12-01
PM2.5 samples were collected during an annual monitoring campaign (January 2012-January 2013) in the urban area of Naples, one of the major cities in Southern Italy. Samples were collected by means of a standard gravimetric sampler (Tecora Echo model) and characterized from a chemical point of view by ion chromatography. As a result, 143 samples together with their ionic composition have been collected. We extend traditional source apportionment techniques, usually based on multivariate factor analysis, interpreting the chemical analysis results within a Lagrangian framework. The Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) model was used, providing linkages to the source regions in the upwind areas. Results were analyzed in order to quantify the relative weight of different source types/areas. Model results suggested that PM concentrations are strongly affected not only by local emissions but also by transboundary emissions, especially from the Eastern and Northern European countries and African Saharan dust episodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCray, J.E.; Boving, T.B.; Brusseau, M.L.
2000-12-31
Reagents that enhance the aqueous solubility of nonaqueous phase organic liquid (NAPL) contaminants are under investigation for use in enhanced subsurface remediation technologies. Cyclodextrin, a glucose-based molecule, is such a reagent. In this paper, laboratory experiments and numerical model simulations are used to evaluate and understand the potential remediation performance of cyclodextrin. Physical properties of cyclodextrin solutions such as density, viscosity, and NAPL-aqueous interfacial tension are measured. Their analysis indicates that no serious obstacles exist related to fluid properties that would prevent the use of cyclodextrin solutions for subsurface NAPL remediation. Cyclodextrin-enhanced solubilization for a large suite of typical groundmore » water contaminants is measured in the laboratory, and the results are related to the physiochemical properties of the organic compounds. The most-hydrophobic contaminants experience a larger relative solubility enhancement than the less-hydrophobic contaminants but have lower aqueous-phase apparent solubilities. Numerical model simulations of enhanced-solubilization flushing of NAPL-contaminated soil demonstrate that the more-hydrophilic compounds exhibit the greatest mass-removal relates due to their greater apparent solubilities, and thus are initially more effectively removed from soil by enhanced-solubilization-flushing reagents. However, the relatively more hydrophobic contaminants exhibit a greater improvement in contaminant mass-removal (compared with water flushing) than that exhibited for the relatively hydrophilic contaminants.« less
Tornero, Victoria; Ribera d'Alcalà, Maurizio
2014-01-01
During the 7th FW EU Programme, a large group of research institutions with a strong tradition in marine science designed PERSEUS, a policy-oriented, marine research project aimed at identifying human-derived pressures and their impacts in the Southern European Seas. PERSEUS is about gathering and analyzing the data on our marine ecosystems and developing recommendations to assist policy makers in the implementation of the Marine Strategy Framework Directive (MSFD). In its initial phase, the project focuses on the analysis and evaluation of human pressures in selected coastal areas across the Mediterranean and Black Seas. This paper reports on the results about the chemical pollution pressure in the Gulf of Naples, one of the sites selected for the analysis, and surrounding waters of the Southern Tyrrhenian Sea. Based on a systematic up-to-date literature review, the paper brings together for the first time the available information on the presence, severity and distribution of contaminants on the site. In spite of methodological and sampling heterogeneity among studies, this review compiles the data in a harmonized and effective way, so that the current status, knowledge gaps and research priorities can be established. Thus, the review wishes not only to provide a contribution to the scientific community, but also to help to extract recommendations for mitigating pollution sources and risks in the area of concern. A similar process of analysis may be carried out for other areas and pressures in order to facilitate policy making at the European level. © 2013.
Volcanism offshore of Vesuvius Volcano in Naples Bay
Milia, A.; Mirabile, L.; Torrente, M.M.; Dvorak, J.J.
1998-01-01
High-resolution seismic reflection data are used to identify structural features in Naples Bay near Vesuvius Volcano. Several buried seismic units with reflection-free interiors are probably volcanic deposits erupted during and since the formation of the breached crater of Monte Somma Volcano, which preceded the growth of Vesuvius. The presumed undersea volcanic deposits are limited in extent; thus, stratigraphie relationships cannot be established among them. Other features revealed by our data include (a) the warping of lowstand marine deposits by undersea cryptodomes located approximately 10 km from the summit of Vesuvius, (b) a succession of normal step faults that record seaward collapse of the volcano, and (c) a small undersea slump in the uppermost marine deposits of Naples Bay, which may be the result of nue??e ardentes that entered the sea during a major eruption of Vesuvius in 1631. Detection of these undersea features illustrates some capabilities of making detailed seismic reflection profiles across undersea volcanoes.
Roma, Antonella De; Abete, Maria Cesarina; Brizio, Paola; Picazio, Giuseppe; Caiazzo, Marcello; D'auria, Jacopo Luigi; Esposito, Mauro
2017-07-01
Human exposure to contaminated food is a general health concern worldwide; it is necessary to evaluate food safety with respect to contaminants present in the edible parts of major food crops. This study evaluated the concentrations of 17 trace elements (As, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, and Zn) from 51 potato plantations in the Campania region, inside the area known as the "Triangle of Death," with inductively coupled plasma mass spectrometry analysis. Results confirm that the potatoes collected from the suburban area of Naples contained concentrations of trace elements below the safe limits prescribed by the Food and Agriculture Organization of the United Nations and the World Health Organization. The concentrations of elements were similar to those reported for potatoes grown in other countries. Monitoring the content of toxic and potentially toxic elements is one of the most important aspects of food quality assurance. The environmental persistence of metals may result in the accumulation of significant levels of these contaminants in plants. They are absorbed to different extents, depending on their source, soil and climatic factors, plant genotype, and agrotechnical conditions, thereby entering the food chain and representing a risk to human health.
Dimensionless Analysis Applied to Bacterial Chemotaxis towards NAPL Contaminants
NASA Astrophysics Data System (ADS)
Wang, X.; GAO, B.; Zhong, W.; Kihaule, K. S.; Ford, R.
2017-12-01
The use of chemotactic bacteria in bioremediation may improve the efficiency and decrease the cost of restoration, which means it has the potential to address environmental problems caused by oil spills. However, most previous studies were focused at the laboratory-scale and there lacks a formalism that can use these laboratory-scale results as input to evaluate the relative importance of chemotaxis at the field scale. In this study, a dimensionless equation is formulated to solve this problem. First, the main influential factors were extracted based on previous researches in environmental bioremediation and then five sets of dimensionless numbers were obtained according to Buckingham theory. After collecting basic parameter values and supplementary calculations to determine the concentration gradient of the chemoattractant, all dimensionless numbers were calculated and categorized into two types, those that were sensitive to chemotaxis or those to groundwater velocity. The bacteria ratio (BR), defined as the ratio of maximum bacteria concentration to its original value, was correlated with a combination of dimensionless numbers to yield, BR=cP1-0.085P20.329P30.1P4-0.098. For a bacterial ratio greater than one, the bioremediation strategy based on chemotaxis is expected to be effective, and chemotactic bacteria are expected to accumulate around NAPL contaminant sources efficiently.
Navy Ship Names: Background for Congress
2012-03-01
17, 1973. It is the only Naval vessel to date to have received a Papal blessing by Pope John Paul II in Naples, Italy, on September 4, 1981...received a Papal blessing by Pope John Paul II in Naples, Italy, on September 4, 1981. (9) The U.S.S. Capodanno was decommissioned on July 30, 1993...young officers and the esteemed ship from falling into Confederate hands. (13) In 1896, Congressman John F. ‘‘Honey Fitz ’’ Fitzgerald introduced
Navy Ship Names: Background for Congress
2012-10-18
to have received a Papal blessing by Pope John Paul II in Naples, Italy, on September 4, 1981. (9) The U.S.S. Capodanno was decommissioned on July...It is the only Naval vessel to date to have received a Papal blessing by Pope John Paul II in Naples, Italy, on September 4, 1981...Island, preventing the young officers and the esteemed ship from falling into Confederate hands. (13) In 1896, Congressman John F. ‘‘Honey Fitz
Bisaccia, Carmela; De Santo, Natale Gaspare; De Santo, Luca S
2016-02-01
There is confusion about the first description of the association between crush syndrome and renal failure. It has been traditionally attributed to Bywaters and Beall. The present study aims to analyze the problem by analyzing medical reports on the Messina-Reggio Calabria earth-quake of December 28, 1908 by using documents heretofore unknown. It demonstrates that first description of rabdomyolysis with renal failure is attributed to Antonino DAntona (1842- 1913). DAntona, professor of surgery at the University of Naples, coordinated the health net organized in Naples to assist persons wounded during the quake. Many of them in shock were transferred to Naples by ships. Franz von Colmers (1875-1960) was the chief surgeon of the German Mission of the Red Cross after the quake. Because his late arrival, he did not treat patients with shock. He described rabdomyolysis. The third medical report is that of Rocco Caminiti (1868-1946), collaborator of DAntona at the University of Naples, and chief of surgery at the Loreto Hospital. He directed a rescue group in Villa San Giovanni and Reggio Calabria. In 1910, he reported on rabdomyolysis in patients treated in the place of the disaster. Therefore the present study indicates that Antonino DAntona holds the priority for description of rabdomyolysis and kidney injury. There is no longer a place for the eponym Bywaters syndrome.
Radon-222 as Natural Tracer for Monitoring the Remediation of NAPL Contamination in the Subsurface
2008-03-01
aquifer interrogated during the test using: w NAPL S S K1R +== radon tracer V V (3) where R is the retardation factor (dimensionless), Vtracer is...NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND...MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION/AVAILABILITY STATEMENT
NASA Astrophysics Data System (ADS)
Herring, A. L.; Wildenschild, D.; Andersson, L.; Harper, E.; Sheppard, A.
2015-12-01
The transport of immiscible fluids within porous media is a topic of great importance for a wide range of subsurface processes; e.g. oil recovery, geologic sequestration of CO2, gas-water mass transfer in the vadose zone, and remediation of non-aqueous phase liquids (NAPLs) from groundwater. In particular, the trapping and mobilization of nonwetting phase fluids (e.g. oil, CO2, gas, or NAPL in water-wet media) is of significant concern; and has been well documented to be a function of both wetting and nonwetting fluid properties, morphological characteristics of the porous medium, and system history. However, generalization of empirical trends and results for application between different fluid-fluid-medium systems requires careful consideration and characterization of the relevant system properties. We present a comprehensive and cohesive description of nonwetting phase behaviour as observed via a suite of three dimensional x-ray microtomography imaging experiments investigating immiscible fluid flow, trapping, and interfacial interactions of wetting (brine) and nonwetting (air, oil, and supercritical CO2) phase in sandstones and synthetic media. Microtomographic images, acquired for drainage and imbibition flow processes, allow for precise and extensive characterization of nonwetting phase fluid saturation, topology, and connectivity; imaging results are paired with externally measured capillary pressure data to provide a comprehensive description of fluid states. Fluid flow and nonwetting phase trapping behaviour is investigated as a function of system history, morphological metrics of the geologic media, and nonwetting phase fluid characteristics; and particular emphasis is devoted to the differences between ambient condition (air-brine) and reservoir condition (supercritical CO2-brine) studies. Preliminary results provide insight into the applicability of using ambient condition experiments to explore reservoir condition processes, and also elucidate the underlying physics of trapping and mobilization of nonwetting phase fluids.
The Project Serapis: High Resolution Seismic Imagingof The Campi Flegrei Caldera Structure
NASA Astrophysics Data System (ADS)
Zollo, A.; Virieux, J.; Capuano, P.; Chiarabba, C.; de Franco, R.; Makris, J.; Michelini, A.; Musacchio, G.; Serapis Group
During September 2001, an extended active seismic survey has been performed in the gulfs of Naples and Pozzuoli in the framework of the so called SERAPIS (SEismic Re- flection Acquisition Project for Imaging Structures). The project SERAPIS is aimed at the acquisition in the bays of Naples and Pozzuoli, on land and at the sea bottom (using sea bottom seismographs), of seismic signals emitted by a very dense network of airgun sources. The energization is performed through the syncronized implosion of bubbles produced by a battery of three to twelve, 16 liters airguns, mounted on the oceanographic vessel NADIR, owned by the french company IFREMER, which supported the project at no cost. The experiment has been designed to have 2D-3D acquisition lay-outs and its objective is the high resolution imaging of the main shal- low crustal discontinuities underneath the major neapolitan volcanic complexes. In particular some desired targets are the location and spatial definition of the magmatic feeding system of Campi Flegrei and the morphologic reconstruction of the interface separating the shallow volcano-alluvium sediments and the Mesozoic carbonates, re- cently detected and accurately imaged underneath Mt.Vesuvius volcano. A secondary but not less important objective is the denser re-sampling of areas in the Bay of Naples prospicient to Mt.Vesuvius, which have been investigated during the last marine sur- vey using the same vessel in 1997 (MareVes 97). Sixty, three-component stations have been installed on-land in the areas of Campi Flegrei, Mt.Vesuvius and on the islands of Ischia and Procida. In particular, the Mt.Vesuvius stations have been deployed along a 40 km long, SE-NW profile crossing the Campanian Plain toward the limestone out- crops. 72 sea bottom seismographs (OBS) have been installed in the gulfs of Naples and Pozzuoli by the University of Hamburg, with the logistic support of Geopro smbh and Geolab Italia. The OBS network geometry follows the main expected NE-SW and SE-NW structural trends and it has been designed to get 2D/3D images of the crustal structure at a regional scale. A denser 2D network of 35 OBSs has been deployed in the bay of Pozzuoli aimed at detecting and modeling reflected/converted waves from 1 the possible shallow to deep discontinuities beneath the Campi Flegrei caldera. The main target of this particular receiver lay-out is the detailed imaging of the magma chamber top, expected at 4-5 km depth, according to temperature measurements in wells and sparse seismic observations. About 5000 shots have been performed dur- ing the SERAPIS experiment, at an average spatial spacing of 125 m, for a total ship travel path of 620 km. All of the seismic lines have been re-sampled at least twice, using a staggered configuration, which results in a smaller source spacing (less than 65m). In the gulf of Pozzuoli the source array had a geometry of a 5x5 km grid, slightly shifted south with respect to the OBS array. Seismic signals produced by air- guns have been well detected up to 50-60 km distance and the whole Campi Flegrei, Ischia and Procida on-land networks have recorded high quality seismograms pro- duced by the gridded source array in the bay of Pozzuoli. Due to the extended and very dense source and receiver arrays used for SERAPIS, this campaign can provide an innovative contribution to the accurate reconstruction of the Campi Flegrei caldera structure and to the definition of its feeding system at depth. *SERAPIS group: Auger Emmanuel, Bernard Marie-Lise, Bobbio Antonella, Bonagura Mariateresa, Cantore Luciana, Convertito Vincenzo, D'Auria Luca, De Matteis Raffaella, Emolo Anto- nio, Festa Gaetano, Gasparini Paolo, Giberti Grazia, Herrero Andre, Improta Luigi, Lancieri Maria Flora, Nielsen Stefan, Nisii Vincenzo, Russo Guido, Satriano Clau- dio, Simini Mariella, Vassallo Maurizio, Bruno Pier Paolo, Buonocunto Ciro, Capello Marco, Del Pezzo Edoardo, Galluzzo Danilo, Gaudiosi Germana, Giuliana Alessio, Iannaccone Giovanni, La Rocca Mario, Saccorotti Gilberto, Cattaneo Marco, De Mar- tin Martina , Colasanti Gianfranco, Moretti Milena, Marcello Silvestri, Edoardo Gian- domenico, Raffaele Stefano, Graziano Boniolo, Maria Rosaria Tondi, Maistrello Mar- iano, Gomez Antonio, Piccareda Carlo, Paolo Di Bartolomeo, Marco Romanelli, So- phie Peyrat, Christophe Larroque, Claude Pambrun, Tony Monfret, Stephane Gaffet, Mark Noble, Sylvain Nguyen 2
Development of a pore network simulation model to study nonaqueous phase liquid dissolution
Dillard, Leslie A.; Blunt, Martin J.
2000-01-01
A pore network simulation model was developed to investigate the fundamental physics of nonequilibrium nonaqueous phase liquid (NAPL) dissolution. The network model is a lattice of cubic chambers and rectangular tubes that represent pore bodies and pore throats, respectively. Experimental data obtained by Powers [1992] were used to develop and validate the model. To ensure the network model was representative of a real porous medium, the pore size distribution of the network was calibrated by matching simulated and experimental drainage and imbibition capillary pressure‐saturation curves. The predicted network residual styrene blob‐size distribution was nearly identical to the observed distribution. The network model reproduced the observed hydraulic conductivity and produced relative permeability curves that were representative of a poorly consolidated sand. Aqueous‐phase transport was represented by applying the equation for solute flux to the network tubes and solving for solute concentrations in the network chambers. Complete mixing was found to be an appropriate approximation for calculation of chamber concentrations. Mass transfer from NAPL blobs was represented using a corner diffusion model. Predicted results of solute concentration versus Peclet number and of modified Sherwood number versus Peclet number for the network model compare favorably with experimental data for the case in which NAPL blob dissolution was negligible. Predicted results of normalized effluent concentration versus pore volume for the network were similar to the experimental data for the case in which NAPL blob dissolution occurred with time.
Effects of surface active agents on DNAPL migration and distribution in saturated porous media.
Cheng, Zhou; Gao, Bin; Xu, Hongxia; Sun, Yuanyuan; Shi, Xiaoqing; Wu, Jichun
2016-11-15
Dissolved surface active agents such as surfactant and natural organic matter can affect the distribution and fate of dense nonaqueous liquids (DNAPLs) in soil and groundwater systems. This work investigated how two common groundwater surface active agents, humic acid (HA) and Tween 80, affected tetrachloroethylene (PCE) migration and source zone architecture in saturated porous media under environmentally relevant conditions. Batch experiments were first conducted to measure the contact angles and interfacial tensions (IFT) between PCE and quartz surface in water containing different amount of surface active agents. Results showed that the contact angle increased and IFT decreased with concentration of surface active agent increasing, and Tween 80 was much more effective than HA. Five 2-D flow cell experiments were then conducted. Correspondingly, Tween 80 showed strong effects on the migration and distribution of PCE in the porous media due to its ability to change the medium wettability from water-wet into intermediate/NAPL-wet. The downward migration velocities of the PCE in three Tween 80 cells were slower than those in the other two cells. In addition, the final saturation of the PCE in the cells containing surface active agents was higher than that in the water-only cell. Results from this work indicate that the presence of surface active agents in groundwater may strongly affect the fate and distribution of DNAPL through altering porous medium wettability. Copyright © 2016 Elsevier B.V. All rights reserved.
Experimental Analyses of Yellow Tuff Spandrels of Post-medieval Buildings in the Naples Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calderoni, B.; Cordasco, E. A.; Lenza, P.
2008-07-08
Experimental analyses have been carried out on tuff masonry specimens in order to investigate the structural behaviour of historical buildings in the Naples area (Southern Italy). Spandrels of post-medieval buildings (late XVI to early XX century) have been analysed, with emphasis on morphological characteristics according to chronological indicators. Results of the experimentation on scaled models (1:10) are discussed and the better behaviour of historical masonry typologies on respect to the modern one is highlighted. Comparison with theoretical formulations of ultimate shear resistance are provided too.
Viciano, Joan; Alemán, Inmaculada; D'Anastasio, Ruggero; Capasso, Luigi; Botella, Miguel C
2011-05-01
Sex determination of subadult skeletal remains with satisfactory accuracy represents one of the most important limitations of archaeological research and forensic practice. Teeth are one of the most durable physical elements of an individual that remain after death, and constitute a potential source of information about the biological sex of that individual. This study was based on the skeletal remains of 117 individuals from the ancient city of Herculaneum (Naples, Italy), victims of the eruption of the nearby volcano Vesuvius on 24/25 August, 79 AD. It has been possible to develop discriminant function formulae based on dental dimensions of adult individuals whose sex had previously been determined based on descriptive osteologic criteria. These formulae were subsequently applied to the permanent dentitions of immature individuals of the same population in order to estimate their sex. The results show that the canine is the tooth with the greatest sex dimorphism in adults, providing percentages of correct assignment of sex between 76.5% and 100% depending on the dimension used. Of the 30 subadult individuals in the target sample, estimation of sex was possible for 22 individuals. Sex assignments matched those determined from descriptive characteristics of the ilia and mandible in 73.33% of the cases. The results provide some optimism that this method may be applicable to juvenile archaeological samples. Copyright © 2011 Wiley-Liss, Inc.
Developing the ISCO Technology Practices Manual: The SERDP/ESTCP ISCO Initiative
2010-12-01
8741 mg/L [TCE] / [TCE]o MnO4- and TCE reacting 2nd-order reaction [TCE]o = 1000 mg/L [NOD]o = 0 Temp. = 20C MnO4- = 1311 mg/L k2 = 0.89 L mol -1 s...1 Ea = 78 kJ mol -1 k2 = 0.89 at 20C 0.30 at 10C 7 d TCE[ ] dt = −k2 TCE[ ]1 MnO4 −[ ]1 Source: Siegrist et al. 2001. ● NAPLs can be degraded via...Phenols (e.g., chlorophenols) Ketones Fuel oxygenates (MTBE, TAME) PCBs Alcohols Dioxins /Furans 1,4-dioxane 5 Basic Screening Is the CSM adequately
NASA Astrophysics Data System (ADS)
Schouten, Stefan; Schoell, Martin; Rijpstra, W. Irene C.; Sinninghe Damsté, Jaap S.; de Leeuw, Jan W.
1997-05-01
The 300 m section of the Miocene Monterey Formation outcropping at Shell Beach (Pismo basin; ca. 15-11 Ma) is composed of calcareous phosphatic (15.1-14.5 Ma) and siliceous facies (14.5-11.0 Ma). An objective of this paper is to document lateral paleoenvironmental changes in the Miocene Moneterey Formation by comparing the Shell Beach (SB) profile with the Naples Beach (NB) section in the Santa Barbara-Ventura basin (Schouten et al., 1997) which is ˜80 km to the south. Eight samples (one sample representing, on average, a time period of ca. 2000 y) from this section were analyzed for variations of extractable biomarkers and their carbon isotopic signatures as indicators for paleoenvironmental change during the Miocene. Saturated hydrocarbons present include 28,30-dinorhopane, phytane, n-alkanes (C 17sbnd C 31), lycopane, and 17β,21β(H)-homohopane. The biomarkers released after desulfurization of the polar fractions predominantly consist of phytane, 2,6,10,14-tetramethyl-7-(3-methylpentyl)pentadecane, C 17sbnd C 31n-alkanes, regular 5α- and 5β-steranes, dinosteranes, and (22R)-17β,21β(H)-pentakishomohopane. Steranes have similar carbon isotopic compositions (-25 to -27‰) throughout the section and are isotopically similar at both sites, indicating laterally similar and vertically stable environmental conditions for algae living in the upper part of the photic zone. Free and S-bound n-alkanes at SB mainly originate from marine organisms and not from terrestrial sources as in the NB section. S-bound pentakishomohopane is ca. 1-4‰ depleted compared to the steranes and is thought to be derived from the deeper water dwelling cyanobacteria. These findings are consistent with stable carbon isotopic data obtained for these compounds from Middle Miocene Monterey sediments at Naples Beach and indicates similar environmental conditions in the depositional environments of the Santa Barbara-Ventura and the Pismo basin. S-bound highly branched isoprenoids have, at both sites, different isotopic compositions indicating the presence of different diatom species, special growth conditions, or different bloom periods in the Pismo basin. The carbon isotopic composition of 28,30-dinorhopane shifts to more depleted values up section, suggesting that the dinorhopane-synthesizing organism or organisms live on CO 2, which is isotopically influenced by methane production and oxidation. The C 31 hopane is enriched by 1-4‰ in 13C compared to other hopanes and steranes. Specific bacteria, possibly heterotrophs, may have been the organisms producing this compound.
The Gold of Naples: the volcanic landscape throught photography
NASA Astrophysics Data System (ADS)
Fedele, Alessandro; Serio, Claudio; De Natale, Giuseppe
2016-04-01
In the last twenty years, the National Institute of Geophysics and Volcanology, section of Naples Vesuvius Observatory, public research institute in charge of volcanic research and surveillance, Italy, publish a thematic calendar about volcanoes. This year, the Vesuvius Observatory has produced a calendar dedicated to the volcanoes of the city of Naples, from Mount Vesuvius, the island of Ischia and the Campi Flegrei caldera. The great treasures of this beautiful city, among the oldest in Europe ever, are exemplified here by its volcanoes. 'The Gold of Naples', the subject of this calendar, is represented by the splendor of the territory, the culture and the passion of its people, and is inextricably linked to the presence of volcanoes. The volcanoes have given the fertility, the splendor of the landscape and the climate, the warmth and flavor of its thermal waters, the gentle hills and the safe haven of its natural inlets; and they have always been, for people that lives and loves this country since at least 4,000 years, an irresistible attraction. The meaning that we wanted to give is to look at the volcanoes not only as risk, but also as a large land resources, as they were always considered. In the images of the calendar we wanted to put in evidence the bridge between of art and science through photography, the impression of beauty and strength given to this land from its volcanoes, and along with their interaction with the history and culture of these areas. An immanent presence that certainly have to, now more than ever, warn us to respect volcanic nature, very rich but dangerous, using the knowledge to defend ourselves against the most devastating manifestations, fortunately rare, of volcanoes themselves. A tribute to Naples, its beauty and passion, which implies a strong hope in the future: the volcanic risk is seen today as an opportunity to redesign and make safe and accessible one of the most beautiful territory in the world, enhancing at most the great resources that volcanoes offer us.
NASA Astrophysics Data System (ADS)
Mulas, Marco; Corsini, Alessandro; Soldati, Mauro; Marcato, Gianluca; Pasuto, Alessandro; Crespi, Mattia; Mazzoni, Augusto; Benedetti, Elisa; Branzanti, Mara; Manunta, Michele; Ojha, Chandrakanta; Chinellato, Giulia; Cuozzo, Giovanni; Costa, Armin; Monsorno, Roberto; Thiebes, Benni; Piantelli, Elena; Magnani, Massimo; Meroni, Marco; Mair, Volkmar
2015-04-01
The Corvara landslide is an active, large-scale, deep-seated and slow moving earthslide of about 30 Mm3 located in the Dolomites (Italy). It is frequently damaging a national road and, occasionally, isolated buildings and recreational ski facilities. Since the mid '90s it has been mapped, dated and monitored thanks to field surveys, boreholes, radiocarbon dating, inclinometers, piezometers and periodic D-GPS measurements, carried out by the Geology and the Forestry Planning offices of the Autonomous Province of Bolzano, the Municipality of Corvara in Badia, the University of Modena and Reggio Emilia, the IRPI-CNR of Padua. In 2013, a new phase of characterization and monitoring has started which also involves the EURAC's Institute for Applied Remote Sensing, the geodesy group of University La Sapienza, the CNR-IREA of Naples and the Leica Geosystems office in Italy. This new phase of characterization and monitoring is meant to investigate the opportunities of innovative SAR interferometry, D-GPS and in-place inclinometers techniques to provide for a high frequency monitoring of the study site in support to the analysis of the investigation of forcing factors leading unsteady, nonuniform landslide motion through different seasons of the year. Monitoring results are also expected to provide a validation of innovative interferometric techniques so to fully evaluate their conformity to be used as a long-term monitoring system in land-use planning and risk management procedures. The monitoring infrastructure now integrates: 16 Corner Reflector for satellite X-Band SAR interferometric products, 13 benchmarks for D-GPS periodic surveys, three on-site GPS receivers for continuous positioning and remote ftp data pushing, two in-place inclinometers and a pressure transducer to record pore-pressure variations. The coupling of SAR-based products with GPS records is achieved using especially designed Corner Reflectors having an appendix dedicated to hold Dual-Frequency GPS antennas. COSMO-SkyMed X-Band SAR acquisitions started on October 2013 and are ongoing with a temporal resolution of 16 days using STRIPMAP (HIMAGE) measuring mode. Discontinuous D-GPS Fast-Static surveys are scheduled with a triple frequency: annual for 24 points outside recent activation areas, monthly for 13 points in the active zone and a bi-weekly for 6 points located in the most active zone. Displacement high-frequency data are acquired thank to the installation of 3 Dual-Frequency GPS in permanent acquisition that have been located in the accumulation, track and source zone of the active portion of the landslide. High frequency data are also obtained by the two inclinometers operating in continuous acquisition located across the main slide surface at 48 m depth into a 90 m borehole drilled in the accumulation zone. A piezometer installed in the source zone and the meteorological station of Piz La Ila (3 km far away) of the Autonomous Province of Bolzano complete the system. The poster presents the infrastructural details of the monitoring network, the technical characteristics of data acquisition systems, the data processing procedures and the latest ongoing results.
NASA Astrophysics Data System (ADS)
Huyakorn, P. S.; Panday, S.; Wu, Y. S.
1994-06-01
A three-dimensional, three-phase numerical model is presented for stimulating the movement on non-aqueous-phase liquids (NAPL's) through porous and fractured media. The model is designed for practical application to a wide variety of contamination and remediation scenarios involving light or dense NAPL's in heterogeneous subsurface systems. The model formulation is first derived for three-phase flow of water, NAPL and air (or vapor) in porous media. The formulation is then extended to handle fractured systems using the dual-porosity and discrete-fracture modeling approaches The model accommodates a wide variety of boundary conditions, including withdrawal and injection well conditions which are treated rigorously using fully implicit schemes. The three-phase of formulation collapses to its simpler forms when air-phase dynamics are neglected, capillary effects are neglected, or two-phase-air-liquid, liquid-liquid systems with one or two active phases are considered. A Galerkin procedure with upstream weighting of fluid mobilities, storage matrix lumping, and fully implicit treatment of nonlinear coefficients and well conditions is used. A variety of nodal connectivity schemes leading to finite-difference, finite-element and hybrid spatial approximations in three dimensions are incorporated in the formulation. Selection of primary variables and evaluation of the terms of the Jacobian matrix for the Newton-Raphson linearized equations is discussed. The various nodal lattice options, and their significance to the computational time and memory requirements with regards to the block-Orthomin solution scheme are noted. Aggressive time-stepping schemes and under-relaxation formulas implemented in the code further alleviate the computational burden.
Mastrolorenzo, Giuseppe; Palladino, Danilo M; Pappalardo, Lucia; Rossano, Sergio
2017-01-01
The Campi Flegrei volcanic field (Italy) poses very high risk to the highly urbanized Neapolitan area. Eruptive history was dominated by explosive activity producing pyroclastic currents (hereon PCs; acronym for Pyroclastic Currents) ranging in scale from localized base surges to regional flows. Here we apply probabilistic numerical simulation approaches to produce PC hazard maps, based on a comprehensive spectrum of flow properties and vent locations. These maps are incorporated in a Geographic Information System (GIS) and provide all probable Volcanic Explosivity Index (VEI) scenarios from different source vents in the caldera, relevant for risk management planning. For each VEI scenario, we report the conditional probability for PCs (i.e., the probability for a given area to be affected by the passage of PCs in case of a PC-forming explosive event) and related dynamic pressure. Model results indicate that PCs from VEI<4 events would be confined within the Campi Flegrei caldera, PC propagation being impeded by the northern and eastern caldera walls. Conversely, PCs from VEI 4-5 events could invade a wide area beyond the northern caldera rim, as well as part of the Naples metropolitan area to the east. A major controlling factor of PC dispersal is represented by the location of the vent area. PCs from the potentially largest eruption scenarios (analogous to the ~15 ka, VEI 6 Neapolitan Yellow Tuff or even the ~39 ka, VEI 7 Campanian Ignimbrite extreme event) would affect a large part of the Campanian Plain to the north and the city of Naples to the east. Thus, in case of renewal of eruptive activity at Campi Flegrei, up to 3 million people will be potentially exposed to volcanic hazard, pointing out the urgency of an emergency plan. Considering the present level of uncertainty in forecasting the future eruption type, size and location (essentially based on statistical analysis of previous activity), we suggest that appropriate planning measures should face at least the VEI 5 reference scenario (at least 2 occurrences documented in the last 10 ka).
Mastrolorenzo, Giuseppe; Palladino, Danilo M.; Pappalardo, Lucia; Rossano, Sergio
2017-01-01
The Campi Flegrei volcanic field (Italy) poses very high risk to the highly urbanized Neapolitan area. Eruptive history was dominated by explosive activity producing pyroclastic currents (hereon PCs; acronym for Pyroclastic Currents) ranging in scale from localized base surges to regional flows. Here we apply probabilistic numerical simulation approaches to produce PC hazard maps, based on a comprehensive spectrum of flow properties and vent locations. These maps are incorporated in a Geographic Information System (GIS) and provide all probable Volcanic Explosivity Index (VEI) scenarios from different source vents in the caldera, relevant for risk management planning. For each VEI scenario, we report the conditional probability for PCs (i.e., the probability for a given area to be affected by the passage of PCs in case of a PC-forming explosive event) and related dynamic pressure. Model results indicate that PCs from VEI<4 events would be confined within the Campi Flegrei caldera, PC propagation being impeded by the northern and eastern caldera walls. Conversely, PCs from VEI 4–5 events could invade a wide area beyond the northern caldera rim, as well as part of the Naples metropolitan area to the east. A major controlling factor of PC dispersal is represented by the location of the vent area. PCs from the potentially largest eruption scenarios (analogous to the ~15 ka, VEI 6 Neapolitan Yellow Tuff or even the ~39 ka, VEI 7 Campanian Ignimbrite extreme event) would affect a large part of the Campanian Plain to the north and the city of Naples to the east. Thus, in case of renewal of eruptive activity at Campi Flegrei, up to 3 million people will be potentially exposed to volcanic hazard, pointing out the urgency of an emergency plan. Considering the present level of uncertainty in forecasting the future eruption type, size and location (essentially based on statistical analysis of previous activity), we suggest that appropriate planning measures should face at least the VEI 5 reference scenario (at least 2 occurrences documented in the last 10 ka). PMID:29020018
The ShakeMap Atlas for the City of Naples, Italy
NASA Astrophysics Data System (ADS)
Pierdominici, Simona; Faenza, Licia; Camassi, Romano; Michelini, Alberto; Ercolani, Emanuela; Lauciani, Valentino
2016-04-01
Naples is one of the most vulnerable cities in the world because it is threatened by several natural and man-made hazards: earthquakes, volcanic eruptions, tsunamis, landslides, hydrogeological disasters, and morphologic alterations due to human interference. In addition, the risk is increased by the high density of population (Naples and the surrounding area are among the most populated in Italy), and by the type and condition of buildings and monuments. In light of this, it is crucial to assess the ground shaking suffered by the city. We take into account and integrate data information from five Italian databases and catalogues (DBMI11; CPTI11; CAMAL11; MOLAL08; ITACA) to build a reliable ShakeMap atlas for the area and to recreate the seismic history of the city from historical to recent times (1293 to 1999). This large amount of data gives the opportunity to explore several sources of information, expanding the completeness of our data set in both time and magnitude. 84 earthquakes have been analyzed and for each event, a Shakemap set has been computed using an ad hoc implementation developed for this application: (1) specific ground-motion prediction equations (GMPEs) accounting for the different attenuation properties in volcanic areas compared with the tectonic ones, and (2) detailed local microzonation to include the site effects. The ShakeMap atlas has two main applications: a) it is an important instrument in seismic risk management. It quantifies the level of shaking suffered by a city during its history, and it could be implemented to the quantification of the number of people exposed to certain degrees of shaking. Intensity data provide the evaluation of the damage caused by earthquakes; the damage is closely linked with the ground shaking, building type, and vulnerability, and it is not possible to separate these contributions; b) the Atlas can be used as starting point for Bayesian estimation of seismic hazard. This technique allows for the merging of the more standard approach adopted in the compilation of the national hazard map of Italy. These Shakemaps are provided in terms of Mercalli-Cancani-Sieberg intensity (MCS hereinafter) and peak ground acceleration (PGA).
De Miguel, Eduardo; Barrio-Parra, Fernando; Elío, Javier; Izquierdo-Díaz, Miguel; García-González, Jerónimo Emilio; Mazadiego, Luis Felipe; Medina, Rafael
2018-06-02
The applicability of radon ( 222 Rn) measurements to delineate non-aqueous phase liquids (NAPL) contamination in subsoil is discussed at a site with lithological discontinuities through a blind test. Three alpha spectroscopy monitors were used to measure radon in soil air in a 25,000-m 2 area, following a regular sampling design with a 20-m 2 grid. Repeatability and reproducibility of the results were assessed by means of duplicate measurements in six sampling positions. Furthermore, three points not affected by oil spills were sampled to estimate radon background concentration in soil air. Data histograms, Q-Q plots, variograms, and cluster analysis allowed to recognize two data populations, associated with the possible path of a fault and a lithological discontinuity. Even though the concentration of radon in soil air was dominated by this discontinuity, the characterization of the background emanation in each lithological unit allowed to distinguish areas potentially affected by NAPL, thus justifying the application of radon emanometry as a screening technique for the delineation of NAPL plumes in sites with lithological discontinuities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barlow, R.S.
This report documents the proceedings of the International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, held in Naples, Italy on July 26--27, 1996. Contents include materials that were distributed to participants at the beginning of the workshop, as well as a Summary of Workshop Accomplishments that was generated at the close to this Naples meeting. The Naples workshop involved sixty-one people from eleven countries. The primary objectives were: (1) to select a set of well-documented and relatively simple flames that would be appropriate for collaborative comparisons of model predictions; and (2) to specify common submodels to be usedmore » in these predictions, such that models for the coupling of turbulence and chemistry might be isolated and better understood. Studies involve hydrogen and natural gas fuels. These proceedings are also published on the Web and those interested in the ongoing process of data selection and model comparison should consult the workshop page for the most recent and complete information on these collaborative research efforts. The URL is: http://www/ca.sandia/gov/tdf/Workshop.html.« less
1981-04-14
STS001-13-442 (14 April 1981) --- This photograph showing much of Italy was taken with a handheld 70mm camera from 276 kilometers above Earth as the NASA space shuttle Columbia and its crew were marking their last few hours in space on the historic first space mission utilizing a reusable vehicle. Included in the area of the frame are Golfo de Napoli, Napoli (Naples), Castellammare, Amalfi, Capri, Sorrento, Mt. Vesuvius and the ruins of Pompei. Astronauts John W. Young and Robert L. Crippen exposed eight magazines of color 70mm film during their two and one-third days in Earth orbit. Photo credit: NASA
Anthropogenic sinkholes in the territory of the city of Naples (Southern Italy)
NASA Astrophysics Data System (ADS)
Guarino, Paolo M.; Nisio, Stefania
About 190 anthropogenic sinkholes occurred within the territory of the city of Naples (Southern Italy) between 1915 and 2010. In the study area, the genesis of sinkholes can be ascribed to two major factors, often strongly interacting with each other: the existence of a complex network of underground man-made cavities, and the inadequacy of the sewage disposal system. Rainfall has been identified as the main triggering factor combined with anthropogenic activity. Based on such predisposing factors, in addition to the geological setting, a susceptibility map of the territory has been realised.
Severe Weather Guide - Mediterranean Ports. 2. Naples
1988-01-01
Include Security Classification) S^ere Weather Guide - Mediterranean Ports - 2. Naples (U) ? SONAi <^UTHOR(S) .■/ L,^glebretson, Ronald E. (LCDR...AN ( j. ) HIJ-H F’B (2i 040200 ■ CI ’ 3) (U) C A (b) o I..; i E W C E A F’ P L. IC A T.[ G N Ei IN ! E R N...threatened try actual or -forecast 51 r D n q w i n d s , n i g n a e a s , r s s t r i c t e d v i s i D1111 y o i- thunderstcjrms m the port
Laboratory study of polymer solutions used for mobility control during in situ NAPL recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martel, K.E.; Martel, R.; Lefebvre, R.
1998-12-31
The use of surfactant solutions for the in situ recovery of residual NAPL in aquifers is increasingly considered as a viable remediation technique. The injection of a few pore volumes of high-concentration surfactant solutions can mobilize or solubilize most of the residual NAPL contacted by the solutions. However, the washing solutions` physico-chemical properties (low density and high viscosity), combined with the natural porous media heterogeneity, can prevent a good sweep of the entire contaminated volume. The objective of this laboratory study is first to select and characterize polymers that would be suitable for aquifer restoration. Their experiments showed that amongmore » several polymers, xanthan gum is the most suitable for aquifer remediation. An evaluation of xanthan gum solution rheology was made in order to predict shear rates, xanthan gum concentrations, salinity, and temperature effects on solution viscosity. The second set of experiments were made with a sand box which was designed to reproduce a simple heterogeneous media consisting of layers of sand with different permeability. These tests illustrate the xanthan gum solution`s ability to increase surfactant solution`s sweep efficiency and limit viscous fingering.« less
Between Site Reliability of Startle Prepulse Inhibition Across Two Early Psychosis Consortia
Addington, Jean; Cannon, Tyrone D.; Cornblatt, Barbara A.; de la Fuente-Sandoval, Camilo; Mathalon, Dan H.; Perkins, Diana O.; Seidman, Larry J.; Tsuang, Ming; Walker, Elaine F.; Woods, Scott W.; Bachman, Peter; Belger, Ayse; Carrión, Ricardo E.; Donkers, Franc C.L.; Duncan, Erica; Johannesen, Jason; León-Ortiz, Pablo; Light, Gregory; Mondragón, Alejandra; Niznikiewicz, Margaret; Nunag, Jason; Roach, Brian J.; Solís-Vivanco, Rodolfo
2014-01-01
Prepulse inhibition (PPI) and reactivity of the acoustic startle response are widely used biobehavioral markers in psychopathology research. Previous studies have demonstrated that PPI and startle reactivity exhibit substantial within-site stability; between-site stability, however, has not been established. In two separate consortia investigating biomarkers of early psychosis, traveling subjects studies were performed as part of quality assurance procedures in order to assess the fidelity of data across sites. In the North American Prodromal Longitudinal Studies (NAPLS) Consortium, 8 normal subjects traveled to each of the 8 NAPLS sites and were tested twice at each site on the startle PPI paradigm. In preparation for a binational study, 10 healthy subjects were assessed twice in both San Diego and Mexico City. Intraclass correlations between and within sites were significant for PPI and startle response parameters, confirming the reliability of startle measures across sites in both consortia. There were between site differences in startle magnitude in the NAPLS study that did not appear to be related to methods or equipment. In planning multi-site studies, it is essential to institute quality assurance procedures early and establish between site reliability to assure comparable data across sites. PMID:23799460
Effect of travel restriction on PM10 concentrations in Naples: One year of experience
NASA Astrophysics Data System (ADS)
Polichetti, Giuliano
2017-02-01
The PM10 is an ubiquitarian and most common pollutant in the world, especially in the Western countries, and it is responsible onset of many pathologies from cancer to cardiorespiratory diseases and human reproduction, on the pregnant women and birth outcomes, in addition to recently has been associated with metabolic diseases (like diabetes). In the light of this scenario, the city of Naples decided in 2010, attempting to reduce PM10 concentrations, to establish a travel restriction for the cars over the city to time slots and on alternate days. We have analyzed the PM10 data from eight monitoring stations dislocated on the city ground. The period of analysis was a year, from July 2010 to July 2011. The results were not absolutely close to expectations, having practically demonstrated that there is no statistically significant difference between the days and hours when the travel restriction was active and those where no have the travel restriction. In conclusion, the travel restriction at time slots and alternate days as structured in the city of Naples seems have not significant improvement of air quality but should need further studies to obtain more reliable data.
Study on Two-Phase Flow in Heterogeneous Porous Media by Light Transmission Method
NASA Astrophysics Data System (ADS)
Qiao, W.
2015-12-01
The non-aqueous phase liquid (NAPL) released to the subsurface can form residual ganglia and globules occupying pores and also accumulate and form pools, in which multiphase system forms. Determining transient fluid saturations in a multiphase system is essential to understand the flow characteristics of systems and to perform effective remediation strategies. As a non-destructive and non-invasive laboratory technique utilized for the measurement of liquid saturation in porous media, light transmission is of the lowest cost and safe. Utilization of Coupled Charge Device camera in light transmission systems provides a nearly instantaneous high-density array of spatial measurements over a very large dynamic range. The migration of NAPL and air spariging technique applied to remove NAPL in aquifer systems are typically two-phase flow problem. Because of the natural aquifer normally being heterogeneous, two 2-D sandboxes (Length55cm×width1.3cm×hight45cm) are set up to study the migration of gas and DNAPL in heterogeneous porous media based on light transmission method and its application in two-phase flow. Model D for water/gas system developed by Niemet and Selker (2001) and Model NW-A for water/NAPL system developed by Zhang et al. (2014) are applied for the calculation of fluid saturation in the two experiments, respectively. The gas injection experiments show that the gas moves upward in the irregular channels, piling up beneath the low permeability lenses and starting lateral movement. Bypassing the lenses, the gas moves upward and forms continuous distribution in the top of the sandbox. The faster of gas injects, the wider of gas migration will be. The DNAPL infiltration experiment shows that TCE mainly moves downward as the influence of gravity, stopping vertical infiltration when reaching the low permeability lenses because of its failure to overcome the capillary pressure. Then, TCE accumulates on the surface and starts transverse movement. Bypassing the lenses, TCE migrates down again and eventually accumulates at the bottom of the sandbox. The two models of quantification of fluid saturations for water/gas system and water/NAPL system developed in homogenous porous media give comparatively fit results to the observations and can be used to quantify fluid saturations in heterogeneous porous media.
Christ, John A.; Ramsburg, C. Andrew; Abriola, Linda M.; Pennell, Kurt D.; Löffler, Frank E.
2005-01-01
The infiltration of dense non-aqueous-phase liquids (DNAPLs) into the saturated subsurface typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase groundwater contamination. Applications of aggressive physical–chemical technologies to such source zones may remove > 90% of the contaminant mass under favorable conditions. The remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations within the treated zone. Stimulation of microbial reductive dechlorination within the source zone after aggressive mass removal has recently been proposed as a promising staged-treatment remediation technology for transforming the remaining contaminant mass. This article reviews available laboratory and field evidence that supports the development of a treatment strategy that combines aggressive source-zone removal technologies with subsequent promotion of sustained microbial reductive dechlorination. Physical–chemical source-zone treatment technologies compatible with posttreatment stimulation of microbial activity are identified, and studies examining the requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are investigated. Illustrative calculations are presented to explore the potential effects of source-zone management alternatives. Results suggest that, for the favorable conditions assumed in these calculations (i.e., statistical homogeneity of aquifer properties, known source-zone DNAPL distribution, and successful bioenhancement in the source zone), source longevity may be reduced by as much as an order of magnitude when physical–chemical source-zone treatment is coupled with reductive dechlorination. PMID:15811838
Space Radar Image of Vesuvius, Italy
NASA Technical Reports Server (NTRS)
1994-01-01
Mt. Vesuvius, one of the best known volcanoes in the world primarily for the eruption that buried the Roman city of Pompeii, is shown in the center of this radar image. The central cone of Vesuvius is the dark purple feature in the center of the volcano. This cone is surrounded on the northern and eastern sides by the old crater rim, called Mt. Somma. Recent lava flows are the pale yellow areas on the southern and western sides of the cone. Vesuvius is part of a large volcanic zone which includes the Phalagrean Fields, the cluster of craters seen along the left side of the image. The Bay of Naples, on the left side of the image, is separated from the Gulf of Salerno, in the lower left, by the Sorrento Peninsula. Dense urban settlement can be seen around the volcano. The city of Naples is above and to the left of Vesuvius; the seaport of the city can be seen in the top of the bay. Pompeii is located just below the volcano on this image. The rapid eruption in 79 A.D. buried the victims and buildings of Pompeii under several meters of debris and killed more than 2,000 people. Due to the violent eruptive style and proximity to populated areas, Vesuvius has been named by the international scientific community as one of fifteen Decade Volcanoes which are being intensively studied during the 1990s. The image is centered at 40.83 degrees North latitude, 14.53 degrees East longitude. It shows an area 100 kilometers by 55 kilometers (62 miles by 34 miles.) This image was acquired on April 15, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.
Space Radar Image of Vesuvius, Italy
1999-04-15
Mt. Vesuvius, one of the best known volcanoes in the world primarily for the eruption that buried the Roman city of Pompeii, is shown in the center of this radar image. The central cone of Vesuvius is the dark purple feature in the center of the volcano. This cone is surrounded on the northern and eastern sides by the old crater rim, called Mt. Somma. Recent lava flows are the pale yellow areas on the southern and western sides of the cone. Vesuvius is part of a large volcanic zone which includes the Phalagrean Fields, the cluster of craters seen along the left side of the image. The Bay of Naples, on the left side of the image, is separated from the Gulf of Salerno, in the lower left, by the Sorrento Peninsula. Dense urban settlement can be seen around the volcano. The city of Naples is above and to the left of Vesuvius; the seaport of the city can be seen in the top of the bay. Pompeii is located just below the volcano on this image. The rapid eruption in 79 A.D. buried the victims and buildings of Pompeii under several meters of debris and killed more than 2,000 people. Due to the violent eruptive style and proximity to populated areas, Vesuvius has been named by the international scientific community as one of fifteen Decade Volcanoes which are being intensively studied during the 1990s. The image is centered at 40.83 degrees North latitude, 14.53 degrees East longitude. It shows an area 100 kilometers by 55 kilometers (62 miles by 34 miles.) This image was acquired on April 15, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. http://photojournal.jpl.nasa.gov/catalog/PIA01780
Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials
NASA Astrophysics Data System (ADS)
Revil, A.; Mahardika, H.
2013-02-01
A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the position of this front. This is not the case for other geophysical methods.
Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials
Revil, A; Mahardika, H
2013-01-01
A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the position of this front. This is not the case for other geophysical methods. PMID:23741078
Poetry or pathology? Jesuit hypochondria in early modern Naples.
Haskell, Yasmin
2007-01-01
In their didactic poems on fishing and chocolate, both published in 1689, two Neapolitan Jesuits digressed to record and lament a devastating 'plague' of 'hypochondria'. The poetic plagues of Niccolò Giannettasio and Tommaso Strozzi have literary precedents in Lucretius, Vergil, and Fracastoro, but it will be argued that they also have a real, contemporary significance. Hypochondria was considered to be a serious (and epidemic) illness in the seventeenth century, with symptoms ranging from depression to delusions. Not only did our Jesuit poets claim to have suffered from it, but so did prominent members of the 'Accademia degl'Investiganti', a scientific society in Naples that was at odds with both the religious and medical establishments.
Seasonal Trend of PAHs Concentrations in Farmed Mussels from the Coastal Areas of the Naples, Italy.
Esposito, Mauro; Perugini, Monia; Lambiase, Sara; Conte, Annamaria; Baldi, Loredana; Amorena, Michele
2017-09-01
This paper reports on the results about the chemical pollution pressure in the Gulf of Naples and nearby coastal areas. Farmed mussels were analysed for the presence of polycyclic aromatic hydrocarbons (PAHs). The results documented a decreasing trend in the PAHs levels respect to the past years. The Bay of Pozzuoli remains as the most contaminated site within the Lucrino area with the highest reported number of samples exceeding the benzo(a)pyrene and PAHs sum limits. All the samples with concentrations above the European regulatory limit were collected in the winter period illustrating a seasonal trend of PAHs distribution in mussels during the 4 years investigated.
Dawes, Antonia
2018-01-10
This paper is based on ethnographic research conducted with migrant and Italian street vendors in Naples, southern Italy, in 2012. It tells the story of Via Bologna market which was nearly closed down by the City Hall at the time. Naples is a city where issues of poverty and unemployment pre-date and have been exacerbated by manifold narratives of crisis now unfolding across Europe regarding the economy, political legitimacy, security and migration. Street markets have always been an important and visible economic survival strategy for both Neapolitans and migrants there. This article shows how the Via Bologna street vendors appropriated and adapted discourses about crisis to form their own cosmopolitan social movement that halted the closure of the market. It argues that, in the age of globalized migration, the multilingual nature of such collective action is central to understanding social struggles that must be organized between marginalized groups of people divided by race, religion, politics and legal status. This, frequently ambiguous, transcultural solidarity speaks back against a mainstream post-racial discourse - often articulated by the Neapolitan street vendors at the market - that would reduce the complexity of such collective action to questions of poverty and class struggle. © London School of Economics and Political Science 2018.
FUTURO REMOTO 2015: researchers meet people.
NASA Astrophysics Data System (ADS)
De Lucia, Maddalena; Fedele, Alessandro; Esposito, Roberta; Torello, Vincenzo; Nave, Rosella; Pino, Nicola Alessandro; Russo, Massimo; Alessio, Giuliana; Gaudiosi, Germana; Nappi, Rosa; Belviso, Pasquale; Carandente, Antonio; De Cesare, Walter; Sansivero, Fabio; Siniscalchi, Valeria; Borgstrom, Sven; Milano, Girolamo; Pasquale Ricciardi, Giovanni; De Natale, Giuseppe
2016-04-01
As participant of the 29th Edition of the cultural initiative "Futuro Remoto 2015", the INGV section of Naples Osservatorio Vesuviano has realized a temporary exhibition aimed to build bridges between the scientific community and the public. The event, a festival of art, culture, science and technology, has taken place on October 15th - 19th 2015, in Naples, Italy, in the city center, and was organized by "Città della Scienza", the science center of the city of Naples, belonging to the ECSITE netwok.. The total number of visitors was about 130.000 people. It was a free and open access event, funded by public institutions. Sharing their scientific expertise with the public, in the "Terra" ("Earth") stand the INGV-OV researchers have shown, with interactive labs, how progress in technology and research develope and allow a better understanding of the dynamic processes and of the evolution of our planet. Popularizing science, when widely accessible to the people, make the knowledge not remaining confined to an elite, being efficiently spread in society, with deep implications in the social role of researchers. Practical activities and labs, dialogues and interaction with researchers of INGV-OV have allowed young and adult public, schools, students, experts or simply curious people to deepen burning issues in an area exposed to high seismic and volcanic risk.
Rathfelder, K M; Abriola, L M; Taylor, T P; Pennell, K D
2001-04-01
A numerical model of surfactant enhanced solubilization was developed and applied to the simulation of nonaqueous phase liquid recovery in two-dimensional heterogeneous laboratory sand tank systems. Model parameters were derived from independent, small-scale, batch and column experiments. These parameters included viscosity, density, solubilization capacity, surfactant sorption, interfacial tension, permeability, capillary retention functions, and interphase mass transfer correlations. Model predictive capability was assessed for the evaluation of the micellar solubilization of tetrachloroethylene (PCE) in the two-dimensional systems. Predicted effluent concentrations and mass recovery agreed reasonably well with measured values. Accurate prediction of enhanced solubilization behavior in the sand tanks was found to require the incorporation of pore-scale, system-dependent, interphase mass transfer limitations, including an explicit representation of specific interfacial contact area. Predicted effluent concentrations and mass recovery were also found to depend strongly upon the initial NAPL entrapment configuration. Numerical results collectively indicate that enhanced solubilization processes in heterogeneous, laboratory sand tank systems can be successfully simulated using independently measured soil parameters and column-measured mass transfer coefficients, provided that permeability and NAPL distributions are accurately known. This implies that the accuracy of model predictions at the field scale will be constrained by our ability to quantify soil heterogeneity and NAPL distribution.
NASA Astrophysics Data System (ADS)
Jin, Minquan; Delshad, Mojdeh; Dwarakanath, Varadarajan; McKinney, Daene C.; Pope, Gary A.; Sepehrnoori, Kamy; Tilburg, Charles E.; Jackson, Richard E.
1995-05-01
In this paper we present a partitioning interwell tracer test (PITT) technique for the detection, estimation, and remediation performance assessment of the subsurface contaminated by nonaqueous phase liquids (NAPLs). We demonstrate the effectiveness of this technique by examples of experimental and simulation results. The experimental results are from partitioning tracer experiments in columns packed with Ottawa sand. Both the method of moments and inverse modeling techniques for estimating NAPL saturation in the sand packs are demonstrated. In the simulation examples we use UTCHEM, a comprehensive three-dimensional, chemical flood compositional simulator developed at the University of Texas, to simulate a hypothetical two-dimensional aquifer with properties similar to the Borden site contaminated by tetrachloroethylene (PCE), and we show how partitioning interwell tracer tests can be used to estimate the amount of PCE contaminant before remedial action and as the remediation process proceeds. Tracer tests results from different stages of remediation are compared to determine the quantity of PCE removed and the amount remaining. Both the experimental (small-scale) and simulation (large-scale) results demonstrate that PITT can be used as an innovative and effective technique to detect and estimate the amount of residual NAPL and for remediation performance assessment in subsurface formations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, M.; Delshad, M.; Dwarakanath, V.
1995-05-01
In this paper we present a partitioning interwell tracer test (PITT) technique for the detection, estimation, and remediation performance assessment of the subsurface contaminated by nonaqueous phase liquids (NAPLs). We demonstrate the effectiveness of this technique by examples of experimental and simulation results. The experimental results are from partitioning tracer experiments in columns packed with Ottawa sand. Both the method of moments and inverse modeling techniques for estimating NAPL saturation in the sand packs are demonstrated. In the simulation examples we use UTCHEM, a comprehensive three-dimensional, chemical flood compositional simulator developed at the University of Texas, to simulate a hypotheticalmore » two-dimensional aquifer with properties similar to the Borden site contaminated by tetrachloroethylene (PCE), and we show how partitioning interwell tracer tests can be used to estimate the amount of PCE contaminant before remedial action and as the remediation process proceeds. Tracer test results from different stages of remediation are compared to determine the quantity of PCE removed and the amount remaining. Both the experimental (small-scale) and simulation (large-scale) results demonstrate that PITT can be used as an innovative and effective technique to detect and estimate the amount of residual NAPL and for remediation performance assessment in subsurface formations. 43 refs., 10 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.
2008-07-01
Tephra fall is a relevant hazard of Campi Flegrei caldera (Southern Italy), due to the high vulnerability of Naples metropolitan area to such an event. Here, tephra derive from magmatic as well as phreatomagmatic activity. On the basis of both new and literature data on known, past eruptions (Volcanic Explosivity Index (VEI), grain size parameters, velocity at the vent, column heights and erupted mass), and factors controlling tephra dispersion (wind velocity and direction), 2D numerical simulations of fallout dispersion and deposition have been performed for a large number of case events. A bayesian inversion has been applied to retrieve the best values of critical parameters (e.g., vertical mass distribution, diffusion coefficients, velocity at the vent), not directly inferable by volcanological study. Simulations are run in parallel on multiple processors to allow a fully probabilistic analysis, on a very large catalogue preserving the statistical proprieties of past eruptive history. Using simulation results, hazard maps have been computed for different scenarios: upper limit scenario (worst-expected scenario), eruption-range scenario, and whole-eruption scenario. Results indicate that although high hazard characterizes the Campi Flegrei caldera, the territory to the east of the caldera center, including the whole district of Naples, is exposed to high hazard values due to the dominant westerly winds. Consistently with the stratigraphic evidence of nature of past eruptions, our numerical simulations reveal that even in the case of a subplinian eruption (VEI = 3), Naples is exposed to tephra fall thicknesses of some decimeters, thereby exceeding the critical limit for roof collapse. Because of the total number of people living in Campi Flegrei and the city of Naples (ca. two million of inhabitants), the tephra fallout risk related to a plinian eruption of Campi Flegrei largely matches or exceeds the risk related to a similar eruption at Vesuvius.
NASA Astrophysics Data System (ADS)
Porfido, Sabina; Alessio, Giuliana; Gaudiosi, Germana; Nappi, Rosa; Spiga, Efisio
2017-04-01
The recent seismic sequence that struck central Italy, started the August 24, 2016, is characterized by five events with magnitude Mw> 5.0. The strongest events of the seismic sequence were the August 24, with Mw = 6.0 located between Accumoli and Amatrice towns and the October 30 with Mw = 6.5, located between Norcia and Visso town. These earthquakes shocked not only Central Italy, with the death of about 300 people and the almost complete destruction of historical towns (Amatrice, Arquata del Tronto, Accumoli, Pescara del Tronto, Castelluccio, Norcia, Visso), but also shook the entire Italian country, strongly proposing the issue of the vulnerability of the city historical centers. The knowledge, the conservation and preservation of the natural and urban environment represent issues to be faced urgently for preventing the devastation of our heritage, unique in the world. The historical center of Naples was affected by the 30 event October 2016 with an intensity I = V MCS. In the last millennium more than a hundred earthquakes hit Naples, with intensity I> III MCS, ten of which has exceeded the damage level, sometimes with intensity greater of VII MCS. The historical Neapolitan urban context suffered devastating effects, reaching levels of damage equal to the VIII degree MCS, as a result of the large earthquakes occurred in 1456 (I0=XI MCS), 1688 (I0=XI MCS) and 1805 (I0=X MCS). In the twentieth century the city of Napoli was shaken by the 1930, 1962 and 1980, the three strong earthquakes occurred in southern Apennines, between Irpinia and Basilicata regions. The review of earthquakes with higher energy (M> 6) shows that the metropolitan area of Naples suffered high damage levels with intensity I = VIII MCS, especially in the historical center, with a damage recurring on the same architectonic elements of the historical heritage. The recent past of the seismic history teaches us that the Apennines is highly seismic, consequently in the future we can expected seismic events of the same magnitude that could still cause damages to the city of Naples. This brief review of the strong Apennines earthquakes highlights that the city of Naples has a high seismic risk level. Therefore is crucial to implement all appropriate measures to reduce seismic risk, but also for planning measures of prevention, useful for the preservation of the rich local architectural heritage declared a World Heritage Site by UNESCO in 1995. References Porfido, et al., 2007-Seismically induced ground effects of the 1805, 1930 and 1980 earthquakes in the southern Apennines, in «Boll. Soc. Geol. It.»,126, p. 333-346 Porfido S., Alessio G., Gaudiosi G., Nappi R., Spiga E., 2017-Analisi dei risentimenti dei forti terremoti appenninici che hanno colpito Napoli. Proc. Int, Conf.:La Baia di Napoli. Strategie integrate per la conservazione e la fruizione del paesaggio culturale". (in press) Pucci S., P. M. De Martini, R. Civico, F. Villani, R. Nappi et al. 2017 - Coseismic ruptures of the 24 August 2016, Mw 6.0 Amatrice earthquake (central Italy) DOI: 10.1002/2016GL071859
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.
2008-07-29
Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscositymore » of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a density difference between the fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior. The simulator may be used to predict the subsurface remediation performance when a shear thinning fluid is used to remediate a heterogeneous system.« less
NASA Astrophysics Data System (ADS)
Caricchia, Anna Maria; Chiavarini, Salvatore; Pezza, Massimo
An investigation on PAH in the atmospheric particulate matter of the city of Naples has been carried out. Urban atmospheric particulate matter was sampled in three sampling sites (West, East and central areas of the city), whose characteristics were representative of the prevailing conditions. In each site, 24 h samplings for 7 consecutive days were performed during three sampling campaigns, in 1996-1997. The results were comparable with those reported in literature for similar investigations. Total PAH were in the range 2-130 ng m -3, with a seasonal variation (autumn/winter vs. summer) in the range 1.5-4.5. The relative contribution of diesel engines vs. gasoline fuelled engines was evidenced.
Fornaciari, Gino; Giuffra, Valentina; Marinozzi, Silvia; Picchi, Malayka Samantha; Masetti, Massimo
2009-07-01
Pediculosis seems to have afflicted humans since the most ancient times and lice have been found in several ancient human remains. Examination of the head hair and pubic hair of the artificial mummy of Ferdinand II of Aragon (1467-1496), King of Naples, revealed a double infestation with two different species of lice, Pediculus capitis, the head louse, and Pthirus pubis, the pubic louse. The hair samples were also positive for the presence of mercury, probably applied as an anti-pediculosis therapy. This is the first time that these parasites have been found in the hair of a king, demonstrating that even members of the wealthy classes in the Renaissance were subject to louse infestation.
Quarto, Maria; Pugliese, Mariagabriella; Loffredo, Filomena; La Verde, Giuseppe; Roca, Vincenzo
2016-01-01
Indoor radon activity concentrations were measured in seven Museums of University of Naples, very old buildings of great historical value. The measurements were performed using a time-integrated technique based on LR-115 solid-state nuclear track detectors. The annual average concentrations were found to range from 40 up to 1935 Bq m(-3) and in 26 % of measurement sites, the values were higher than 500 Bq m(-3) which is the limit value of Italian legislation for workplace. Moreover, we analysed the seasonal variations of radon concentrations observing the highest average in cold weather than in warm. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Formisano, Antonio; Ciccone, Giuseppe; Mele, Annalisa
2017-11-01
This paper investigates about the seismic vulnerability and risk of fifteen masonry churches located in the historical centre of Naples. The used analysis method is derived from a procedure already implemented by the University of Basilicata on the churches of Matera. In order to evaluate for the study area the seismic vulnerability and hazard indexes of selected churches, the use of appropriate technical survey forms is done. Data obtained from applying the employed procedure allow for both plotting of vulnerability maps and providing seismic risk indicators of all churches. The comparison among the indexes achieved allows for the evaluation of the health state of inspected churches so to program a priority scale in performing future retrofitting interventions.
Increasing CO2 flux at Pisciarelli, Campi Flegrei, Italy
NASA Astrophysics Data System (ADS)
Queißer, Manuel; Granieri, Domenico; Burton, Mike; Arzilli, Fabio; Avino, Rosario; Carandente, Antonio
2017-09-01
The Campi Flegrei caldera is located in the metropolitan area of Naples (Italy) and has been undergoing different stages of unrest since 1950, evidenced by episodes of significant ground uplift followed by minor subsidence, increasing and fluctuating emission strengths of water vapor and CO2 from fumaroles, and periodic seismic crises. We deployed a scanning laser remote-sensing spectrometer (LARSS) that measured path-integrated CO2 concentrations in the Pisciarelli area in May 2017. The resulting mean CO2 flux is 578 ± 246 t d-1. Our data suggest a significant increase in CO2 flux at this site since 2015. Together with recent geophysical observations, this suggests a greater contribution of the magmatic source to the degassing and/or an increase in permeability at shallow levels. Thanks to the integrated path soundings, LARSS may help to give representative measurements from large regions containing different CO2 sources, including fumaroles, low-temperature vents, and degassing soils, helping to constrain the contribution of deep gases and their migration mechanisms towards the surface.
A one-dimensional diffusion model was used to investigate the effects of dense non-aqueous phase liquid (DNAPL) source zone dissolution and remediation on the storage and release of contaminants from aquitards. Source zone dissolution was represented by a power-law source depleti...
Quantitative analysis of pulse thermography data for degradation assessment of historical buildings
NASA Astrophysics Data System (ADS)
Di Maio, Rosa; Piegari, Ester; Mancini, Cecilia; Chiapparino, Antonella
2015-06-01
In the last decades, infrared thermography has been successfully applied to various materials and structures for the assessment of their state of conservation and planning suitable restoration works. To this aim, mathematical models are required to characterize thermal anomaly sources, such as detachments, water infiltration and material decomposition processes. In this paper, an algorithm based on the conservative finite difference method is used to analyse pulse thermography data acquired on an ancient building in the Pompeii archaeological site (Naples, Italy). The numerical study is applied to both broad and narrow elongated thermal anomalies. In particular, from the comparison between simulated and experimental thermal decays, the plaster thickness was characterized in terms of thermal properties and areas of possible future detachments, and moisture infiltration depths were identified.
Apothecary activity in Dubrovnik Dominican Monastery from 17th to the beginning 19th century.
Krasic, Stjepan
2011-01-01
The origin of the Dominican monastery pharmacy is not clear, but sources suggest that it had operated from the eve of the great earthquake in Dubrovnik in 1667 to the beginning of the 19th century. Its last pharmacist, praised for his competence, passed away in 1803, leaving no one behind The prior travelled all the way to Naples to find a competent pharmacist in his stead, but never returned. Story has it that on the way back, the abbot and the pharmacist lost their lives in a shipwreck. The French army occupied the town in 1806, and the monastery was turned into a military camp. Following the retreat of the French army in 1814, the monastery was returned to the Dominicans, but the pharmacy was never restored.
Smoldering Remediation of Coal-Tar-Contaminated Soil: Pilot Field Tests of STAR.
Scholes, Grant C; Gerhard, Jason I; Grant, Gavin P; Major, David W; Vidumsky, John E; Switzer, Christine; Torero, Jose L
2015-12-15
Self-sustaining treatment for active remediation (STAR) is an emerging, smoldering-based technology for nonaqueous-phase liquid (NAPL) remediation. This work presents the first in situ field evaluation of STAR. Pilot field tests were performed at 3.0 m (shallow test) and 7.9 m (deep test) below ground surface within distinct lithological units contaminated with coal tar at a former industrial facility. Self-sustained smoldering (i.e., after the in-well ignition heater was terminated) was demonstrated below the water table for the first time. The outward propagation of a NAPL smoldering front was mapped, and the NAPL destruction rate was quantified in real time. A total of 3700 kg of coal tar over 12 days in the shallow test and 860 kg over 11 days in the deep test was destroyed; less than 2% of total mass removed was volatilized. Self-sustaining propagation was relatively uniform radially outward in the deep test, achieving a radius of influence of 3.7 m; strong permeability contrasts and installed barriers influenced the front propagation geometry in the shallow test. Reductions in soil hydrocarbon concentrations of 99.3% and 97.3% were achieved in the shallow and deep tests, respectively. Overall, this provides the first field evaluation of STAR and demonstrates that it is effective in situ and under a variety of conditions and provides the information necessary for designing the full-scale site treatment.
Toward Broadband Source Modeling for the Himalayan Collision Zone
NASA Astrophysics Data System (ADS)
Miyake, H.; Koketsu, K.; Kobayashi, H.; Sharma, B.; Mishra, O. P.; Yokoi, T.; Hayashida, T.; Bhattarai, M.; Sapkota, S. N.
2017-12-01
The Himalayan collision zone is characterized by the significant tectonic setting. There are earthquakes with low-angle thrust faulting as well as continental outerrise earthquakes. Recently several historical earthquakes have been identified by active fault surveys [e.g., Sapkota et al., 2013]. We here investigate source scaling for the Himalayan collision zone as a fundamental factor to construct source models toward seismic hazard assessment. As for the source scaling for collision zones, Yen and Ma [2011] reported the subduction-zone source scaling in Taiwan, and pointed out the non-self-similar scaling due to the finite crustal thickness. On the other hand, current global analyses of stress drop do not show abnormal values for the continental collision zones [e.g., Allmann and Shearer, 2009]. Based on the compile profiling of finite thickness of the curst and dip angle variations, we discuss whether the bending exists for the Himalayan source scaling and implications on stress drop that will control strong ground motions. Due to quite low-angle dip faulting, recent earthquakes in the Himalayan collision zone showed the upper bound of the current source scaling of rupture area vs. seismic moment (< Mw 8.0), and does not show significant bending of the source scaling. Toward broadband source modeling for ground motion prediction, we perform empirical Green's function simulations for the 2009 Butan and 2015 Gorkha earthquake sequence to quantify both long- and short-period source spectral levels.
NASA Astrophysics Data System (ADS)
Wallace, K. A.; Abriola, L.; Chen, M.; Ramsburg, A.; Pennell, K. D.; Christ, J.
2009-12-01
Multiphase, compositional simulators were employed to investigate the spill characteristics and subsurface properties that lead to pool-dominated, dense non-aqueous phase liquid (DNAPL) source zone architectures. DNAPL pools commonly form at textural interfaces where low permeability lenses restrict the vertical migration of DNAPL, allowing for DNAPL to accumulate, reaching high saturation. Significant pooling has been observed in bench-scale experiments and field settings. However, commonly employed numerical simulations rarely predict the pooling suspected in the field. Given the importance of pooling on the efficacy of mass recovery and the down-gradient contaminant signal, it is important to understand the predominant factors affecting the creation of pool-dominated source zones and their subsequent mass discharge. In this work, contaminant properties, spill characteristics and subsurface permeability were varied to investigate the factors contributing to the development of a pool-dominated source zone. DNAPL infiltration and entrapment simulations were conducted in two- and three-dimensional domains using the University of Texas Chemical Compositional (UTCHEM) simulator. A modified version of MT3DMS was then used to simulate DNAPL dissolution and mass discharge. Numerical mesh size was varied to investigate the importance of numerical model parameters on simulations results. The temporal evolution of commonly employed source zone architecture metrics, such as the maximum DNAPL saturation, first and second spatial moments, and fraction of DNAPL mass located in pools, was monitored to determine how the source zone architecture evolved with time. Mass discharge was monitored to identify the link between source zone architecture and down-gradient contaminant flux. Contaminant characteristics and the presence of extensive low permeability lenses appeared to have the most influence on the development of a pool-dominated source zone. The link between DNAPL mass recovery and contaminant mass discharge was significantly influenced by the fraction of mass residing in DNAPL pools. The greater the fraction of mass residing in DNAPL pools the greater the likelihood for significant reductions in contaminant mass discharge at modest levels of mass removal. These results will help guide numerical and experimental studies on the remediation of pool-dominated source zones and will likely guide future source zone characterization efforts.
Inhalation exposure to cleaning products: application of a two-zone model.
Earnest, C Matt; Corsi, Richard L
2013-01-01
In this study, modifications were made to previously applied two-zone models to address important factors that can affect exposures during cleaning tasks. Specifically, we expand on previous applications of the two-zone model by (1) introducing the source in discrete elements (source-cells) as opposed to a complete instantaneous release, (2) placing source cells in both the inner (near person) and outer zones concurrently, (3) treating each source cell as an independent mixture of multiple constituents, and (4) tracking the time-varying liquid concentration and emission rate of each constituent in each source cell. Three experiments were performed in an environmentally controlled chamber with a thermal mannequin and a simplified pure chemical source to simulate emissions from a cleaning product. Gas phase concentration measurements were taken in the bulk air and in the breathing zone of the mannequin to evaluate the model. The mean ratio of the integrated concentration in the mannequin's breathing zone to the concentration in the outer zone was 4.3 (standard deviation, σ = 1.6). The mean ratio of measured concentration in the breathing zone to predicted concentrations in the inner zone was 0.81 (σ = 0.16). Intake fractions ranged from 1.9 × 10(-3) to 2.7 × 10(-3). Model results reasonably predict those of previous exposure monitoring studies and indicate the inadequacy of well-mixed single-zone model applications for some but not all cleaning events.
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geoscientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
Electroosmosis remediation of DNAPLS in low permeability soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, S V.
1996-08-01
Electroosmosis is the movement of water through a soil matrix induced by a direct current (DC) electric field. The technique has been used since the 1930s for dewatering and stabilizing fine-grained soils. More recently, electroosmosis has been considered as an in-situ method for soil remediation in which water is injected into the soil at the anode region to flush the contaminants to the cathode side for further treatment or disposal. The major advantage of electroosmosis is its inherent ability to move water uniformly through clayey, silty soils at 100 to 1000 times faster than attainable by hydraulic means, and withmore » very low energy usage. Drawbacks of electroosmosis as a stand-alone technology include slow speed, reliance on solubilizing the contaminants into the groundwater for removal, potentially an unstable process for long term operation, and necessary additional treatment and disposal of the collected liquid. Possible remediation applications of electroosmosis for DNAPLs would be primarily in the removal of residual DNAPLs in the soil pores by electroosmotic flushing. The future of electroosmosis as a broad remedial method lies in how well it can be coupled with complementary technologies. Examples include combining electroosmosis with vacuum extraction, with surfactant usage to deal with non-aqueous phase liquids (NAPLs) through enhanced solubilization or mobilization, with permeability enhancing methods (hydrofracturing, pneumatic fracturing, etc.) to create recovery zones, and with in-situ degradation zones to eliminate aboveground treatment. 33 refs., 1 fig., 1 tab.« less
Ribechini, Erika; Modugno, Francesca; Baraldi, Cecilia; Baraldi, Pietro; Colombini, Maria Perla
2008-01-15
Within the framework of an Italian research project aimed at studying organic residues found in archaeological objects from the Roman period, the chemical composition of the contents of several glass vessels recovered from archaeological sites from the Vesuvian area (Naples, Italy) was investigated. In particular, this paper deals with the study of an organic material found in a glass bottle from the archaeological site of Pompeii using a multi-analytical approach, including FT-IR, direct exposure mass spectrometry (DE-MS) and GC-MS techniques. The overall results suggest the occurrence of a lipid material of vegetable origin. The hypothesis that the native lipid material had been subjected to a chemical transformation procedure before being used is presented and discussed.
2001-10-22
This ASTER image of Mt. Vesuvius Italy was acquired September 26, 2000, and covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. The image is centered at 40.8 degrees north latitude, 14.4 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA11091
Pyrolysis reactor and fluidized bed combustion chamber
Green, Norman W.
1981-01-06
A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.
Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan
2013-08-01
Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.
NASA Astrophysics Data System (ADS)
Krol, M.; Kokkinaki, A.; Sleep, B.
2014-12-01
The persistence of dense-non-aqueous-phase liquids (DNAPLs) in the subsurface has led practitioners and regulatory agencies to turn towards low-maintenance, low-cost remediation methods. Biological degradation has been suggested as a possible solution, based on the well-proven ability of certain microbial species to break down dissolved chlorinated ethenes under favorable conditions. However, the biodegradation of pure phase chlorinated ethenes is subject to additional constraints: the continuous release of electron acceptor at a rate governed by mass transfer kinetics, and the temporal and spatial heterogeneity of DNAPL source zones which leads to spatially and temporally variable availability of the reactants for reductive dechlorination. In this work, we investigate the relationship between various DNAPL source zone characteristics and reaction kinetics using COMPSIM, a multiphase groundwater model that considers non-equilibrium mass transfer and Monod-type kinetics for reductive dechlorination. Numerical simulations are performed for simple, homogeneous trichloroethene DNAPL source zones to demonstrate the effect of single source zone characteristics, as well as for larger, more realistic heterogeneous source zones. It is shown that source zone size, and mass transfer kinetics may have a decisive effect on the predicted bio-enhancement. Finally, we evaluate the performance of DNAPL bioremediation for realistic, thermodynamically constrained, concentrations of electron donor. Our results indicate that the latter may be the most important limitation for the success of DNAPL bioremediation, leading to reduced bio-enhancement and, in many cases, comparable performance with water flooding.
NASA Astrophysics Data System (ADS)
Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Springer, E. P.
1994-06-01
This paper discusses the verification and application of the three-dimensional (3-D) multiphase flow model presented by Huyakorn et al. (Part 1 in this issue) for assessing contamination due to subsurface releases of non-aqueous-phase liquids (NAPL's). Attention is focussed on situations involving one-, two- and three-dimensional flow through porous media. The model formulations and numerical schemes are tested for highly nonlinear field conditions. The utility and accuracy of various simplifications to certain simulation scenarios are assessed. Five simulation examples are included for demonstrative purposes. The first example verifies the model for vertical flow and compares the performance of the fully three-phase and the passive-air-phase formulations. Air-phase boundary conditions are noted to have considerable effects on simulation results. The second example verifies the model for cross-sectional analyses involving LNAPL and DNAPL migration. Finite-difference (5-point) and finite-element (9-point) spatial approximations are compared for different grid aspect ratios. Unless corrected, negative-transmissivity conditions were found to have undesirable impact on the finite-element solutions. The third example provides a model validation against laboratory experimental data on 5-spot water-flood treatment of oil reservoirs. The sensitivity to grid orientation is noted for the finite-difference schemes. The fourth example demonstrates model utility in characterizing the 3-D migration of LNAPL and DNAPL from surface sources. The final example present a modeling study of air sparging. Critical parameters affecting the performance of air-sparging system are examined. In general, the modeling results indicate sparging is more effective in water-retentive soils, and larger values of sparge influence radius may be achieved for certain anisotropic conditions.
Volcanic risk perception in the Campi Flegrei area
NASA Astrophysics Data System (ADS)
Ricci, T.; Barberi, F.; Davis, M. S.; Isaia, R.; Nave, R.
2013-03-01
The Campi Flegrei which includes part of the city of Naples, is an active volcanic system; its last eruption occurred in 1538 AD. More recently two significant crises occurred between 1969 and 72 and 1982-84 and were accompanied by ground movements (bradyseism) and seismic activity, forcing people of the town of Pozzuoli to be evacuated. Since 1984 development of a volcanic emergency plan has been underway. In 2000 Civil Protection published a risk map which defined the Red Zone, an area highly at risk from pyroclastic flows, which would need to be evacuated before an eruption. The first study to evaluate the volcanic risk perceptions of the people living within the Campi Flegrei area was completed in spring 2006, resulting in the largest sample ever studied on this topic except for one on Vesuvio area residents by Barberi et al. (2008). A 46 item questionnaire was distributed to 2000 of the approximately 300,000 residents of the Campi Flegrei Red Zone, which includes three towns and four neighborhoods within the city of Naples. A total of 1161 questionnaires were returned, for an overall response rate of 58%. Surveys were distributed to junior high and high school students, as well as to adult members of the general population. Results indicated that unlike issues such as crime, traffic, trash, and unemployment, volcanic hazards are not spontaneously mentioned as a major problem facing their community. However, when asked specific questions about volcanic risks, respondents believe that an eruption is likely and could have serious consequences for themselves and their communities and they are quite worried about the threat. Considering the events of 1969-72 and 1982-84, it was not surprising that respondents indicated earthquakes and ground deformations as more serious threats than eruptive phenomena. Of significant importance is that only 17% of the sample knows about the existence of the Emergency Plan, announced in 2001, and 65% said that they have not received enough information about the possible effects of an eruption. In addition, residents' sense of community was significantly positively correlated with both confidence in local authorities and Civil Protection as well as residents' feelings of self efficacy regarding their ability to protect themselves from a potential eruption. These results indicate that most residents of Campi Flegrei, while aware of the volcanic threat posed by Vesuvio, are not familiar with more local volcanic hazards in their area. This, coupled with little knowledge about the Emergency Plan and the very low level of information residents have about the effects of a possible eruption, suggests that authorities, in collaboration with the scientific community, should direct their efforts to better educate and inform the population about volcanic hazards and the Emergency Plan, and that such efforts could be facilitated by trying to encourage stronger community bonds.
NASA Astrophysics Data System (ADS)
Spiess, V.; Metzen, J.; Fekete, N.; Palamenghi, L.; Sacchi, M.
2009-04-01
The Gulf of Naples receives particular attention due to its proximity to major volcanic features, as the Somma-Vesuvius stratovolcano and the Campi Flegrei Volcanic Fields, both being viewed to bear extreme hazard potential in the highly populated area. Accordingly, a better understanding of the geologic history of the region and its volcanic activity is of high value for predictive approaches. In January 2008, a dedicated shallow water multichannel seismic survey on R/V URANIA was carried out by the Institute for Coastal Marine Environment in cooperation with the University of Bremen in Pozzuoli Bay as well as in its surroundings to image subseafloor volcanic features as well as the neotectonic framework, as it is documented in Holocene sediments. Furthermore, volcanoclastic events, volcanic edifices, pyroclastic flows and lava flows were identified complicating the stratigraphic interpretation. Major units as the Campanian Ignimbrite and the Neapoltian Yellow Tuff could be traced on regional scales. Particular focus was put on the nearshore surveys, to connect the onland future ICDP drilling results with the marine deposits and planned IODP drill sites in the vicinity of the survey area. It turned out particularly difficult to collect seismic data in the coastal zone due to intense usage and protected areas. The equipment used was optimized to collect multichannel seismic data in shallow and very shallow environments. A 50 m long streamer with 48 single hydrophone channels allowed to record undistorted seismic response in waters shallower than 10 meters, and high shot rates - 2 to 4 seconds - provide high coverage and a lateral resolution as good as 1 meter. A modified mini-GI Gun with a reduced volume of only 0.1 L, called micro-GI Gun, generated a frequency spectrum up to 1000 Hz, optimizing also the vertical resolution to less than 1 meter. Examples will be shown to demonstrate the capability of the equipment for use in amphibic projects, where ICDP and IODP cross the borders of land and sea, and where quality and seismic resolution play a major role to achieve goals of proper site surveys and stratigraphic interpretation.
Predicting DNAPL Source Zone and Plume Response Using Site-Measured Characteristics
2017-05-19
FINAL REPORT Predicting DNAPL Source Zone and Plume Response Using Site- Measured Characteristics SERDP Project ER-1613 MAY 2017...Final Report 3. DATES COVERED (From - To) 2007 - 2017 4. TITLE AND SUBTITLE PREDICTING DNAPL SOURCE ZONE AND PLUME RESPONSE USING SITE- MEASURED ...historical record of concentration and head measurements , particularly in the near-source region. For each site considered, currently available data
Bags with oven-dried moss for the active monitoring of airborne trace elements in urban areas.
Giordano, S; Adamo, P; Monaci, F; Pittao, E; Tretiach, M; Bargagli, R
2009-10-01
To define a harmonized methodology for the use of moss and lichen bags as active monitoring devices of airborne trace elements in urban areas, we evaluated the element accumulation in bags exposed in Naples in different spring weather conditions for 6- and 12-weeks. Three different pre-exposure treatments were applied to moss and lichen materials: water-washing, acid-washing and oven-drying. During the different exposure periods in the Naples urban environment the moss accumulated always higher amounts of elements (except Hg) than lichens and the element accumulation increased during wetter weather and higher PM(10) conditions. The oven pre-treatment did not substantially modify the morphology and element composition of moss and the exposure in bags of this material for 6-weeks was sufficient to detect the pattern of airborne trace elements.
Lamberti, Monica; Uccello, Rossella; Monaco, Maria Grazia Lourdes; Muoio, Mariarosaria; Sannolo, Nicola; Arena, Paola; Mazzarella, Gennaro; Arnese, Antonio; La Cerra, Giuseppe
2015-01-01
The risk of tuberculosis (TBC) in nurses is related to its incidence in the general population. Nursing students involved in clinical training could be exposed to occupational risks similar to those of healthcare workers (HCWs). To better understand the epidemiology of nosocomial TBC among nurses in a context of low endemicity, we recruited a cohort of young nursing trainees at the Second University of Naples. A screening programme for LTBI in nursing students was conducted between January 2012 and December 2013, at the Second University of Naples, with clinical evaluations, tuberculin skin test (TST) and, in positive TST student, the interferon-g release assays (IGRA). Putative risk factors for LTBI were assessed by a standardized questionnaire. 1577 nursing students attending the Second University of Naples have been submitted to screening programme for TBC. 1575 have performed TST as first level test and 2 Quantiferon test (QFT). 19 students were TST positive and continued the diagnostic workup practicing QFT, that was positive in 1 student. Of the 2 subjects that have practiced QFT as first level test only 1 was positive. In 2 students positive to QFT test we formulated the diagnosis of LTBI by clinical and radiographic results. The prevalence of LTBI among nursing students in our study resulted very low. In countries with a low incidence of TBC, the screening programs of healthcare students can be useful for the early identification and treatment of the sporadic cases of LTBI.
NASA Astrophysics Data System (ADS)
Heap, Michael J.; Farquharson, Jamie I.; Kushnir, Alexandra R. L.; Lavallée, Yan; Baud, Patrick; Gilg, H. Albert; Reuschlé, Thierry
2018-06-01
Neapolitan Yellow Tuff (NYT) has been used in construction in Naples (Italy) since the Greeks founded the city—then called Neapolis—in the sixth century BCE. We investigate here whether this popular building stone is weaker when saturated with water, an issue important for assessments of weathering damage and monument preservation. To this end, we performed 28 uniaxial compressive strength measurements on dry and water-saturated samples cored from a block of the lithified Upper Member of the NYT. Our experiments show that the strength of the zeolite-rich NYT is systematically reduced when saturated with water (the ratio of wet to dry strength is 0.63). Complementary experiments show that two other common Neapolitan building stones—Piperno Tuff and the grey Campanian Ignimbrite (both facies of the Campanian Ignimbrite deposit devoid of zeolites)—do not weaken when wet. From these data, and previously published data for tuffs around the globe, we conclude that the water-weakening in NYT is a consequence of the presence of abundant zeolites (the block tested herein contains 46 wt.% of zeolites). These data may help explain weathering damage in NYT building stones (due to rainfall, rising damp, and proximity to the sea or water table) and the observed link between rainfall and landslides, rock falls, and sinkhole formation in Naples, and the weathering of other buildings built from zeolite-rich tuffs worldwide.
Implementing a method of screening one-well hydraulic barrier design alternatives.
Rubin, Hillel; Shoemaker, Christine A; Köngeter, Jürgen
2009-01-01
This article provides details of applying the method developed by the authors (Rubin et al. 2008b) for screening one-well hydraulic barrier design alternatives. The present article with its supporting information (manual and electronic spreadsheets with a case history example) provides the reader complete details and examples of solving the set of nonlinear equations developed by Rubin et al. (2008b). It allows proper use of the analytical solutions and also depicting the various charts given by Rubin et al. (2008b). The final outputs of the calculations are the required position and the discharge of the pumping well. If the contaminant source is nonaqueous phase liquid (NAPL) entrapped within the aquifer, then the method provides an estimate of the aquifer remediation progress (which is a by-product) due to operating the hydraulic barrier.
NASA Astrophysics Data System (ADS)
Cicchella, D.; De Vivo, B.; Lima, A.; Somma, R.
2001-12-01
Heavy metals pollution, which mainly originates from automobile exhausts and industry, is a serious danger for human health. The source and extension of heavy metals pollution in the top soils has been studied extensively in the past 30 years. The role of the soil processes in accumulating or mobilising metals is very important in environmental science due to the central position of the soil in the hydrological cycle and ecosystem. Concentrations of heavy metals in top soils, collected in green areas and public parks in metropolitan Naples area have been determined to provide information on specific emission sources. In addition to toxic metals, such as Pb, As, Cd, Cr and others, we have investigated the top soils as well for Pt group elements (PGEs), because since 1993 it is mandatory within EC for all new petrol driven motor vehicles to be equipped with Pt/Pd/Rh catalytic converter. In Italy this law has come into effect in 1998, but still is allowed to old vehicles use lead gasoline, though now the big majority of cars is equipped with Pt/Pd/Rh catalytic converters. Emission of abraded fragments of catalytic converters in vehicle exhausts will certainly determine environmental contamination with Pt group elements (PGEs), since many Pt complexes are highly cytotoxic and, in small dose, are strong allergens and potent sensitiser. The metropolitan area of Naples due to intense human activities and vehicles traffic is an interesting area to be monitored in order to check the pollution state of the soils. The geology of the area is prevalently represented by volcanics, erupted from the Upper Pleistocene to Recent by Mt. Somma-Vesuvius on the east and the Campi Flegrei fields on the west. To compile multi-element geochemical maps baseline we have sampled in situ and transported top soil for a total of 200 samples. The survey have been carried at about 200 sites covering an area of about 120 Km2, with a grid of 0.5 x 0.5 km in the highly urbanised area and 1 km x 1 km in the sub urban areas. In each sampled site has been determined the pH (5.93- 8.21); and measured partial and total radioactivity (U, Th, K) using a portable scintillometer. All soil samples were analysed for 40 elements by ICP-MS and AES. The data for some of the harmful metals (as mg Kg-1) range as follows: Cd from 0.03 to 6.9, Cr from 0.8 to 189, Ni from 0.8 to 67, Pb from 17 to 2052, Co from 3 to 37, Hg from 0.01 to 2.6, Pt from 0.001 to 0.1, Pd from 0.002 to 0.052. The geochemical data, have been processed by means of GIS to compile geochemical single element distribution, R-mode factor analysis element associations and risk maps. The latter in particular, are useful to enhance areas potentially at risk for residential/recreational and commercial/industrial land use, following intervention criteria fixed by Italian
77 FR 19648 - Receipt of Application for a Permit Modification
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... primarily in the region of the Florida coast from Naples to Key West, encompassing the Ten Thousand Islands... following offices: Permits and Conservation Division, Office of Protected Resources, NMFS, 1315 East-West...
75 FR 9580 - Marine Mammals and Endangered Species; File Nos. 13544 and 14586
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-03
..., Conservancy of Southwest Florida, Naples, FL 34102, has requested a modification to scientific research Permit... form to conduct scientific research (File No. 14586). DATES: Written, telefaxed, or e-mail comments...
Ground movement at Somma-Vesuvius from Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Marturano, Aldo; Aiello, Giuseppe; Barra, Diana; Fedele, Lorenzo; Morra, Vincenzo
2012-01-01
Detailed micropalaeontological and petrochemical analyses of rock samples from two boreholes drilled at the archaeological excavations of Herculaneum, ~ 7 km west of the Somma -Vesuvius crater, allowed reconstruction of the Late Quaternary palaeoenvironmental evolution of the site. The data provide clear evidence for ground uplift movements involving the studied area. The Holocenic sedimentary sequence on which the archaeological remains of Herculaneum rest has risen several meters at an average rate of ~ 4 mm/yr. The uplift has involved the western apron of the volcano and the Sebeto-Volla Plain, a populous area including the eastern suburbs of Naples. This is consistent with earlier evidence for similar uplift for the areas of Pompeii and Sarno valley (SE of the volcano) and the Somma -Vesuvius eastern apron. An axisimmetric deep source of strain is considered responsible for the long-term uplift affecting the whole Somma -Vesuvius edifice. The deformation pattern can be modeled as a single pressure source, sited in the lower crust and surrounded by a shell of Maxwell viscoelastic medium, which experienced a pressure pulse that began at the Last Glacial Maximum.
NASA Astrophysics Data System (ADS)
Schaefer, Andreas; Wenzel, Friedemann
2017-04-01
Subduction zones are generally the sources of the earthquakes with the highest magnitudes. Not only in Japan or Chile, but also in Pakistan, the Solomon Islands or for the Lesser Antilles, subduction zones pose a significant hazard for the people. To understand the behavior of subduction zones, especially to identify their capabilities to produce maximum magnitude earthquakes, various physical models have been developed leading to a large number of various datasets, e.g. from geodesy, geomagnetics, structural geology, etc. There have been various studies to utilize this data for the compilation of a subduction zone parameters database, but mostly concentrating on only the major zones. Here, we compile the largest dataset of subduction zone parameters both in parameter diversity but also in the number of considered subduction zones. In total, more than 70 individual sources have been assessed and the aforementioned parametric data have been combined with seismological data and many more sources have been compiled leading to more than 60 individual parameters. Not all parameters have been resolved for each zone, since the data completeness depends on the data availability and quality for each source. In addition, the 3D down-dip geometry of a majority of the subduction zones has been resolved using historical earthquake hypocenter data and centroid moment tensors where available and additionally compared and verified with results from previous studies. With such a database, a statistical study has been undertaken to identify not only correlations between those parameters to estimate a parametric driven way to identify potentials for maximum possible magnitudes, but also to identify similarities between the sources themselves. This identification of similarities leads to a classification system for subduction zones. Here, it could be expected if two sources share enough common characteristics, other characteristics of interest may be similar as well. This concept technically trades time with space, considering subduction zones where we have likely not observed the maximum possible event yet. However, by identifying sources of the same class, the not-yet observed temporal behavior can be replaced by spatial similarity among different subduction zones. This database aims to enhance the research and understanding of subduction zones and to quantify their potential in producing mega earthquakes considering potential strong motion impact on nearby cities and their tsunami potential.
NASA Astrophysics Data System (ADS)
Živanović, Vladimir; Jemcov, Igor; Dragišić, Veselin; Atanacković, Nebojša
2017-04-01
Delineation of sanitary protection zones of groundwater source is a comprehensive and multidisciplinary task. Uniform methodology for protection zoning for various type of aquifers is not established. Currently applied methods mostly rely on horizontal groundwater travel time toward the tapping structure. On the other hand, groundwater vulnerability assessment methods evaluate the protective function of unsaturated zone as an important part of groundwater source protection. In some particular cases surface flow might also be important, because of rapid transfer of contaminants toward the zones with intense infiltration. For delineation of sanitary protection zones three major components should be analysed: vertical travel time through unsaturated zone, horizontal travel time through saturated zone and surface water travel time toward intense infiltration zones. Integrating the aforementioned components into one time-dependent model represents a basis of presented method for delineation of groundwater source protection zones in rocks and sediments of different porosity. The proposed model comprises of travel time components of surface water, as well as groundwater (horizontal and vertical component). The results obtained using the model, represent the groundwater vulnerability as the sum of the surface and groundwater travel time and corresponds to the travel time of potential contaminants from the ground surface to the tapping structure. This vulnerability assessment approach do not consider contaminant properties (intrinsic vulnerability) although it can be easily improved for evaluating the specific groundwater vulnerability. This concept of the sanitary protection zones was applied at two different type of aquifers: karstic aquifer of catchment area of Blederija springs and "Beli Timok" source of intergranular shallow aquifer. The first one represents a typical karst hydrogeological system with part of the catchment with allogenic recharge, and the second one, the groundwater source within shallow intergranular alluvial aquifer, dominantly recharged by river bank filtration. For sanitary protection zones delineation, the applied method has shown the importance of introducing all travel time components equally. In the case of the karstic source, the importance of the surface flow toward ponor zones has been emphasized, as a consequence of rapid travel time of water in relation to diffuse infiltration from autogenic part. When it comes to the shallow intergranular aquifer, the character of the unsaturated zone gets more prominent role in the source protection, as important buffer of the vertical movement downward. The applicability of proposed method has been shown regardless of the type of the aquifer, and at the same time intelligible results of the delineated sanitary protection zones are possible to validate with various methods. Key words: groundwater protection zoning, time dependent model, karst aquifer, intergranular aquifer, groundwater source protection
NASA Astrophysics Data System (ADS)
Henri, Christopher V.; Fernàndez-Garcia, Daniel; de Barros, Felipe P. J.
2016-02-01
The release of industrial contaminants into the subsurface has led to a rapid degradation of groundwater resources. Contamination caused by Dense Non-Aqueous Phase Liquids (DNAPLs) is particularly severe owing to their limited solubility, slow dissolution and in many cases high toxicity. A greater insight into how the DNAPL source zone behavior and the contaminant release towards the aquifer impact human health risk is crucial for an appropriate risk management. Risk analysis is further complicated by the uncertainty in aquifer properties and contaminant conditions. This study focuses on the impact of the DNAPL release mode on the human health risk propagation along the aquifer under uncertain conditions. Contaminant concentrations released from the source zone are described using a screening approach with a set of parameters representing several scenarios of DNAPL architecture. The uncertainty in the hydraulic properties is systematically accounted for by high-resolution Monte Carlo simulations. We simulate the release and the transport of the chlorinated solvent perchloroethylene and its carcinogenic degradation products in randomly heterogeneous porous media. The human health risk posed by the chemical mixture of these contaminants is characterized by the low-order statistics and the probability density function of common risk metrics. We show that the zone of high risk (hot spot) is independent of the DNAPL mass release mode, and that the risk amplitude is mostly controlled by heterogeneities and by the source zone architecture. The risk is lower and less uncertain when the source zone is formed mostly by ganglia than by pools. We also illustrate how the source zone efficiency (intensity of the water flux crossing the source zone) affects the risk posed by an exposure to the chemical mixture. Results display that high source zone efficiencies are counter-intuitively beneficial, decreasing the risk because of a reduction in the time available for the production of the highly toxic subspecies.
Su, Shiliang; Li, Dan; Zhang, Qi; Xiao, Rui; Huang, Fang; Wu, Jiaping
2011-02-01
The increasingly serious river water pollution in developing countries poses great threat to environmental health and human welfare. The assignment of river function to specific uses, known as zoning, is a useful tool to reveal variations of water environmental adaptability to human impact. Therefore, characterizing the temporal trend and identifying responsible pollution sources in different functional zones could greatly improve our knowledge about human impacts on the river water environment. The aim of this study is to obtain a deeper understanding of temporal trends and sources of water pollution in different functional zones with a case study of the Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites in four categories of functional zones during the period 1996-2004. An exploratory approach, which combines smoothing and non-parametric statistical tests, was applied to characterize trends of four significant parameters (permanganate index, ammonia nitrogen, total cadmium and fluoride) accounting for differences among different functional zones identified by discriminant analysis. Aided by GIS, yearly pollution index (PI) for each monitoring site was further mapped to compare the within-group variations in temporal dynamics for different functional zones. Rotated principal component analysis and receptor model (absolute principle component score-multiple linear regression, APCS-MLR) revealed that potential pollution sources and their corresponding contributions varied among the four functional zones. Variations of APCS values for each site of one functional zone as well as their annual average values highlighted the uncertainties associated with cross space-time effects in source apportionment. All these results reinforce the notion that the concept of zoning should be taken seriously in water pollution control. Being applicable to other rivers, the framework of management-oriented source apportionment is thus believed to have potentials to offer new insights into water management and advance the source apportionment framework as an operational basis for national and local governments. © 2010 Elsevier Ltd. All rights reserved.
Plasma-catalyzed fuel reformer
Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele
2013-06-11
A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.
Efficient growth of HTS films with volatile elements
Siegal, M.P.; Overmyer, D.L.; Dominguez, F.
1998-12-22
A system is disclosed for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source. 3 figs.
NASA Technical Reports Server (NTRS)
2001-01-01
This ASTER image of Mt. Vesuvius Italy was acquired September 26, 2000, and covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. The image is centered at 40.8 degrees north latitude, 14.4 degrees east longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.NASA Technical Reports Server (NTRS)
2002-01-01
This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. Vesuvius, Italy was acquired September 26, 2000. The full-size false-color image covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. (Popocatepetl and Mount Fuji are other volcanos surrounded by dense urban areas.) In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team
A questionnaire to assess social stigma.
Tavormina, Maurilio Giuseppe Maria; Tavormina, Romina; Nemoianni, Eugenio; Tavormina, Giuseppe
2015-09-01
Psychiatric patients often suffer for two reasons: due to the illness and due to the social stigma of mental illness, that increases the uneasiness and psychic pain of the person suffering from serious psychiatric disorder. This unwell person is often the object of stigma because he is "different" from others, and he also can be margenalised by society. In this study we intend to assess whether these margenalising attitudes might be also present among mental health professionals who have presented psychic problems in a previous period of their life, against sick persons suffering of the same illness even if he is a mental health professional. Two questionnaires have been developed, one for professionals and another for the patients, with the aim of identifying these marginalising attitudes. We intend that this study shall be a multicenter, observational and international study, promoted by the Mental Health Dept. of Naples (ASL Naples 3 South, Italy).
NASA Astrophysics Data System (ADS)
Damiano, E.; Mercogliano, P.; Netti, N.; Olivares, L.
2012-04-01
This paper proposes a Multidisciplinary Decision Support System (MDSS) as an approach to manage rainfall-induced shallow landslides of the flow type (flowslides) in pyroclastic deposits. We stress the need to combine information from the fields of meteorology, geology, hydrology, geotechnics and economics to support the agencies engaged in land monitoring and management. The MDSS consists of a "simulation chain" to link rainfall to effects in terms of infiltration, slope stability and vulnerability. This "simulation chain" was developed at the Euro-Mediterranean Centre for Climate Change (CMCC) (meteorological aspects), at the Geotechnical Laboratory of the Second University of Naples (hydrological and geotechnical aspects) and at the Department of Economics of the University of Naples "Federico II" (economic aspects). The results obtained from the application of this simulation chain in the Cervinara area during eleven years of research allowed in-depth analysis of the mechanisms underlying a flowslide in pyroclastic soil.
Volcanic hazard at Vesuvius: An analysis for the revision of the current emergency plan
NASA Astrophysics Data System (ADS)
Rolandi, G.
2010-01-01
Mt Somma-Vesuvius is a composite volcano on the southern margin of the Campanian Plain which has been active since 39 ka BP and which poses a hazard and risk for the people living around its base. The volcano last erupted in 1944, and since this date has been in repose. As the level of volcanic risk perception is very high in the scientific community, in 1995 a hazard and risk evaluation, and evacuation plan, was published by the Italian Department of Civil Protection ( Dipartimento della Protezione Civile) . The plan considered the response to a worst-case scenario, taken to be a subplinian eruption on the scale of the 1631 AD eruption, and based on a volcanological reconstruction of this eruption, assumes that a future eruption will be preceded by about two weeks of ground uplift at the volcano's summit, and about one week of locally perceptible seismic activity. Moreover, by analogy with the 1631 events, the plan assumes that ash fall and pyroclastic flow should be recognized as the primary volcanic hazard. To design the response to this subplinian eruption, the emergency plan divided the Somma-Vesuvius region into three hazard zones affected by pyroclastic flows (Red Zone), tephra fall (Yellow and Green Zone), and floods (Blue Zone). The plan at present is the subject of much controversy, and, in our opinion, several assumptions need to be modified according to the following arguments: a) For the precursory unrest problem, recent scientific studies show that at present neither forecast capability is realistic, so that the assumption that a future eruption will be preceded by about two weeks of forecasts need to be modified; b) Regarding the exposure of the Vesuvius region to flow phenomena, the Red Zone presents much inconsistency near the outer border as it has been defined by the administrative limits of the eighteen municipality area lying on the volcano. As this outer limit shows no uniformity, a pressing need exists to define appropriately the flow hazard zone, since there are some important public structures not considered in the current Red Zone that could be exposed to flow risk; c) Modern wind records clearly indicate that at the time of a future eruption winds could blow not only from the west, but also from the east, so that the Yellow Zone (the area with the potential to be affected by significant tephra fall deposits) must be redefined. As a result the relationship between the Yellow Zone and Green Zone (the area within and beyond which the impact of tephra fall is expected to be insignificant) must be reconsidered mainly in the Naples area; d) The May 1998 landslide, caused in the Apennine region east of the volcano by continuous rain fall, led to the definition of a zone affected by re-mobilisation of tephra (Blue Zone), confined in the Nola valley. However, as described in the 1631 chronicles of the eruption, if generation of debris flows occurs during and after a future eruption, a much wider region east of the Somma-Vesuvius must be affected by events of this type.
Analysis of dead zone sources in a closed-loop fiber optic gyroscope.
Chong, Kyoung-Ho; Choi, Woo-Seok; Chong, Kil-To
2016-01-01
Analysis of the dead zone is among the intensive studies in a closed-loop fiber optic gyroscope. In a dead zone, a gyroscope cannot detect any rotation and produces a zero bias. In this study, an analysis of dead zone sources is performed in simulation and experiments. In general, the problem is mainly due to electrical cross coupling and phase modulation drift. Electrical cross coupling is caused by interference between modulation voltage and the photodetector. The cross-coupled signal produces spurious gyro bias and leads to a dead zone if it is larger than the input rate. Phase modulation drift as another dead zone source is due to the electrode contamination, the piezoelectric effect of the LiNbO3 substrate, or to organic fouling. This modulation drift lasts for a short or long period of time like a lead-lag filter response and produces gyro bias error, noise spikes, or dead zone. For a more detailed analysis, the cross-coupling effect and modulation phase drift are modeled as a filter and are simulated in both the open-loop and closed-loop modes. The sources of dead zone are more clearly analyzed in the simulation and experimental results.
Bär Deucher, A; Hengartner, M P; Kawohl, W; Konrad, J; Puschner, B; Clarke, E; Slade, M; Del Vecchio, V; Sampogna, G; Égerházi, A; Süveges, Á; Krogsgaard Bording, M; Munk-Jørgensen, P; Rössler, W
2016-05-01
The purpose of this paper was to examine national differences in the desire to participate in decision-making of people with severe mental illness in six European countries. The data was taken from a European longitudinal observational study (CEDAR; ISRCTN75841675). A sample of 514 patients with severe mental illness from the study centers in Ulm, Germany, London, England, Naples, Italy, Debrecen, Hungary, Aalborg, Denmark and Zurich, Switzerland were assessed as to desire to participate in medical decision-making. Associations between desire for participation in decision-making and center location were analyzed with generalized estimating equations. We found large cross-national differences in patients' desire to participate in decision-making, with the center explaining 47.2% of total variance in the desire for participation (P<0.001). Averaged over time and independent of patient characteristics, London (mean=2.27), Ulm (mean=2.13) and Zurich (mean=2.14) showed significantly higher scores in desire for participation, followed by Aalborg (mean=1.97), where scores were in turn significantly higher than in Debrecen (mean=1.56). The lowest scores were reported in Naples (mean=1.14). Over time, the desire for participation in decision-making increased significantly in Zurich (b=0.23) and decreased in Naples (b=-0.14). In all other centers, values remained stable. This study demonstrates that patients' desire for participation in decision-making varies by location. We suggest that more research attention be focused on identifying specific cultural and social factors in each country to further explain observed differences across Europe. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Lamberti, Monica; Uccello, Rossella; Monaco, Maria Grazia Lourdes; Muoio, Mariarosaria; Sannolo, Nicola; Arena, Paola; Mazzarella, Gennaro; Arnese, Antonio; La Cerra, Giuseppe
2015-01-01
Introduction: The risk of tuberculosis (TBC) in nurses is related to its incidence in the general population. Nursing students involved in clinical training could be exposed to occupational risks similar to those of healthcare workers (HCWs). To better understand the epidemiology of nosocomial TBC among nurses in a context of low endemicity, we recruited a cohort of young nursing trainees at the Second University of Naples. Methods: A screening programme for LTBI in nursing students was conducted between January 2012 and December 2013, at the Second University of Naples, with clinical evaluations, tuberculin skin test (TST) and, in positive TST student, the interferon-g release assays (IGRA). Putative risk factors for LTBI were assessed by a standardized questionnaire. Results: 1577 nursing students attending the Second University of Naples have been submitted to screening programme for TBC. 1575 have performed TST as first level test and 2 Quantiferon test (QFT). 19 students were TST positive and continued the diagnostic workup practicing QFT, that was positive in 1 student. Of the 2 subjects that have practiced QFT as first level test only 1 was positive. In 2 students positive to QFT test we formulated the diagnosis of LTBI by clinical and radiographic results. Conclusion: The prevalence of LTBI among nursing students in our study resulted very low. In countries with a low incidence of TBC, the screening programs of healthcare students can be useful for the early identification and treatment of the sporadic cases of LTBI. PMID:25852786
RECOVERY OF VOCS FROM SURFACTANT SOLUTION BY PERVAPORATION
Surfactant-based processes are emerging as promising technologies to enhance conventional pump-and-treat methods for remediating soils contaminated with nonaqueous phase liquids (NAPLs), primarily due to the potential to significantly reduce the remediation time. In order to reus...
Top Soils Geochemical and Radioactivity Survey of Naples (Italy) Metropolitan.
NASA Astrophysics Data System (ADS)
Somma, R.; De Vivo, B.; Cicchella, D.
2001-05-01
The metropolitan area of Naples due to intense human activities is an emblematic area affected by various environmental pollution of soils and waters in addition to hydrogeological volcanic, seismic and bradyseismic hazards. The geology of the area is prevailing represented by volcanics erupted, from the Upper Pleistocene to Recent by Mt. Somma-Vesuvius on the east and the Campi Flegrei fields on the west. The morphology of the metropolitan area of Naples city can be subdivided in flat areas, constituted by reworked pyroclastic terrains, and by hills originated by the overlapping of different welded pyroclastic flows (i.e.: Campanian Ignimbrite and Neapoletan Yellow Tuff) intercalated with pyroclastic deposits of different origins (i.e.: Campi Flegrei, Mt. Somma-Vesuvius, Ischia) and ages. In order to compile a multi-element baseline geochemical and radioactivity mapping of the metropolitan area of the Napoli we have sampled for this study, in situ top soil and imported filling material (mainly soil, volcanic ash, pumice and scoriae). The sampling and radioactivity survey has been carried out on about 200 sampling sites covering an area of about 150 Km2, with a grid of 0.5 x 0.5 km in the urbanised downtown and 1 km x 1 km in the sub urban areas. In each site has been determined a radioactivity by a Scintrex GRS-500 at different emission spectra as total radioactivity (> 0.08 MeV and > 0.40 MeV), 238U (at 1.76 MeV mostly from 214Bi), 232Th (at 2.6 MeV mostly from 208Tl) and 40K (at 1.46 MeV mostly for 40K). The range of values of in situ soils are as follow for the in situ soils (Total radioactivity: 1327- 360 and 114- 47; 238U: 2.6- 1.3; 40K: 8.1- 3.1; 232U: 0.5- 0.1). Analyses of major, metallic elements and pH of each soil sample are in progress, while Pb isotopes compositions, for a selected number of samples, will be determined to discriminate the natural (geogenic) from the anthropogenic components in the soils by versus the anthropogenetic origin. The data collected will be statistically analysed and will be utilised, using a GIS, to compile multi-elements geochemical maps of the entire metropolitan areas of the Naples.
Dynamics of Fluids and Transport in Fractured Rock
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geo-scientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
NASA Astrophysics Data System (ADS)
Troiano, Antonio; Giulia Di Giuseppe, Maria; Patella, Domenico; Troise, Claudia; De Natale, Giuseppe
2014-05-01
We describe the results from a combined CSAMT and MT survey carried out in the Solfatara-Pisciarelli area, located in the central part of the Campi Flegrei composite caldera, west of Naples, Southern Italy. The Solfatara-Pisciarelli area represents the most active zone within the CF area, in terms of hydrothermal manifestations and local seismicity. Since 1969, the caldera is experiencing ground deformation, seismicity and geochemical fluid changes, which are particularly evident in this area. A 1 km long, nearly W-E directed CSAMT-MT profile crossing the fumaroles field was carried out with the aim of deducting an EM model of the structural setting of the hydrothermal system in the first 3 km depth. An interpretation of the EM modelled section is given in this paper, taking advantage from already existing seismic, gravity and geochemical data in the same area. Three well distinct EM zones have been outlined. The first EM zone is a very shallow, electrically conductive body localized beneath the westernmost segment of the profile, which, within a short distance of about 100 m, dips westwards from near surface down to some hundred metres depth. Mostly accounting for the very low resistivity (1-10 Ωm) and the exceedingly high values of vP/vS (>4), this shallow zone has been ascribed to a water-saturated, high-pressurized geothermal reservoir. The second EM zone, which has been localized below the west-central portion of the EM transect, appears as a composite body made of a nearly vertical plumelike structure that escapes at about 2.25 km depth from the top edge of the east side of a presumably horizontal platelike body. The plumelike structure rises up to the free surface in correspondence of the fumaroles field, whereas the platelike structure deepens at least down to the 3 km of maximum EM exploration depth. The combined interpretation of resistivity, wave velocity, gravity and geochemical data indicates the plumelike portion is likely associated with a steam/gas-saturated column and the platelike portion to a high temperature (>300°C), over-pressurized, gas-saturated reservoir. Finally, the third EM zone, which has been localized beneath the eastern half of the EM transect, from about 1.2 km down to about 3 km of depth, is also characterized by the lowest resistivity values (1-10 Ωm). When jointly interpreted with seismic and gravity data, this feature can be associated to a hydrothermally mineralized, clay-rich body.
Field-scale forward and back diffusion through low-permeability zones
NASA Astrophysics Data System (ADS)
Yang, Minjune; Annable, Michael D.; Jawitz, James W.
2017-07-01
Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle.
Field-scale forward and back diffusion through low-permeability zones.
Yang, Minjune; Annable, Michael D; Jawitz, James W
2017-07-01
Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.
Gomes, Rui B; Nogueira, Regina; Oliveira, José M; Peixoto, João; Brito, António G
2009-09-01
Polycyclic aromatic hydrocarbons (PAHs) are often found in oily wastewaters. Their presence is usually the result of human activities and has a negative effect on the environment. One important step in addressing this problem is to evaluate the effectiveness of PAH removal by biological processes since these are the most cost-effective treatments known today. Many techniques are presently available for PAH determination in wastewaters. Solid phase microextracion (SPME) is known to be one of the most effective techniques for this purpose. When analyzing complex matrices with substances such as natural organic matter (NOM) and non-aqueous phase liquids (NAPL), it is important to differentiate the free dissolved PAH from matrix-bonded PAH. PAHs associated with the bonded fraction are less susceptible to biological treatment. The present study concerns the development of a simple and suitable methodology for the determination of the freely dissolved and the total fraction of PAHs present in oily wastewaters. The methodology was then applied to an oily wastewater from a fuel station retention basin. Headspace SPME was used for analyzing PAH since the presence of a complex or dirty matrix in direct contact with the fiber may damage it. Four model PAHs-anthracene, fluorene, phenanthrene, and pyrene-were analyzed by GC-MS. Negligible depletion SPME technique was used to determine the free fraction. Total PAH was determined by enhancing the mass transfer from the bonded phase to the freely dissolved phase by temperature optimization and the use of the method of standard additions. The PAH absorption kinetics were determined in order to define the optimal sampling conditions for this method. The fitting of the experimental data to a mathematical model was accomplished using Berkeley Madonna software. Humic acid and silicon oil were used as model NOM and NAPL, respectively, to study the effect of these compounds on the decrease of SPME response. Then, the method was evaluated with wastewater from a fuel station spill retention basin. The SPME kinetic parameters-k (1) (uptake rate), k (2) (desorption rate), and K (SPME) (partition coefficient)-were determined from experimental data modeling. The determination of the free fraction required 15-min sampling to ensure that PAH depletion from sample was below 1%. For total PAH, a 30-min extraction at 100 degrees C ensured the maximum signal response in the GC-MS. For the determination of free and total PAHs, extractions were performed before reaching the SPME equilibrium. The wastewater used in this study had no free fraction of the analyzed PAHs. However, the four studied PAHs were found when the method for total PAH was used. The addition of NOM and NAPL dramatically decreased the efficiency of the SPME. This decrease was the result of a greater partition of the PAHs to the NAPL and NOM phases. This fact was also observed in the analysis of the fuel station spill retention basin, where no free PAH was measured. However, using the method of standard addition for the determination of total PAH, it was possible to quantify all four PAHs. The method developed in the present study was found to be adequate to differentiate between free and total PAH present in oily wastewater. It was determined that the presence of NOM and NAPL had a negative effect on SPME efficiency. The presence of binding substances had a great influence on SPME kinetics. Therefore, it is of extreme importance to determine their degree of interference when analyzing oily wastewaters or results can otherwise be erroneous. Other factors influencing the total PAH determinations should be considered in further studies.
NASA Astrophysics Data System (ADS)
Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M.
2018-04-01
Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of sorption, especially for the case of non-ideal sorption, demonstrating the limitations of employing 2-D predictions for field-scale modeling.
NASA Astrophysics Data System (ADS)
Falta, R. W.
2004-05-01
Analytical solutions are developed that relate changes in the contaminant mass in a source area to the behavior of biologically reactive dissolved contaminant groundwater plumes. Based on data from field experiments, laboratory experiments, numerical streamtube models, and numerical multiphase flow models, the chemical discharge from a source region is assumed to be a nonlinear power function of the fraction of contaminant mass removed from the source zone. This function can approximately represent source zone mass discharge behavior over a wide range of site conditions ranging from simple homogeneous systems, to complex heterogeneous systems. A mass balance on the source zone with advective transport and first order decay leads to a nonlinear differential equation that is solved analytically to provide a prediction of the time-dependent contaminant mass discharge leaving the source zone. The solution for source zone mass discharge is coupled semi-analytically with a modified version of the Domenico (1987) analytical solution for three-dimensional reactive advective and dispersive transport in groundwater. The semi-analytical model then employs the BIOCHLOR (Aziz et al., 2000; Sun et al., 1999) transformations to model sequential first order parent-daughter biological decay reactions of chlorinated ethenes and ethanes in the groundwater plume. The resulting semi-analytic model thus allows for transient simulation of complex source zone behavior that is fully coupled to a dissolved contaminant plume undergoing sequential biological reactions. Analyses of several realistic scenarios show that substantial changes in the ground water plume can result from the partial removal of contaminant mass from the source zone. These results, however, are sensitive to the nature of the source mass reduction-source discharge reduction curve, and to the rates of degradation of the primary contaminant and its daughter products in the ground water plume. Aziz, C.E., C.J. Newell, J.R. Gonzales, P. Haas, T.P. Clement, and Y. Sun, 2000, BIOCHLOR Natural Attenuation Decision Support System User's Manual Version 1.0, US EPA Report EPA/600/R-00/008 Domenico, P.A., 1987, An analytical model for multidimensional transport of a decaying contaminant species, J. Hydrol., 91: 49-58. Sun, Y., J.N. Petersen, T.P. Clement, and R.S. Skeen, 1999, A new analytical solution for multi-species transport equations with serial and parallel reactions, Water Resour. Res., 35(1): 185-190.
EVALUATION OF SUB-MICELLAR SYNTHETIC SURFACTANTS VERSUS BIOSURFACTANTS FOR ENHANCED LNAPL RECOVERY
Biosurfactants could potentially replace or be used in conjunction with synthetic surfactants to provide for more cost-effective subsurface remediation. To design effective biosurfactant/surfactant formulations, information about the surface-active agent and the targeted NAPL ...
GROUND-WATER SAMPLING AND GEOPHYSICAL METHODS DEVELOPMENT AND EVALUATION
Inadequate site characterization and a lack of knowledge of subsurface contaminant distributions (particularly Non-Aqueous Phase Liquids [NAPLs]) hinder our ability to make good decisions on remediation options and to conduct adequate cleanup efforts at contaminated sites. Non-i...
AUTOMATIC CALIBRATION OF A STOCHASTIC-LAGRANGIAN TRANSPORT MODEL (SLAM)
Numerical models are a useful tool in evaluating and designing NAPL remediation systems. Traditional constitutive finite difference and finite element models are complex and expensive to apply. For this reason, this paper presents the application of a simplified stochastic-Lagran...
FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS
A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-10
..., Templeton, Pennsylvania; Marsha L. Snyder, and Richard J. Krauland, both of Pittsburgh, Pennsylvania; Bryan... Bradford, Pennsylvania; Kelly J. Holmberg, and Hailey J. Holmberg, both of Naples, Florida; and Charles H...
This document has been prepared by the Remediation Technologies Development Forum (RTDF) NAPL Cleanup Alliance to provide a guide to practicable and reasonable approaches for management of LNAPL petroleum hydrocarbons in the subsurface.
Many sites of environmental concern contain groundwater contaminated with nonaqueous phase liquids (NAPL). In such sites interfacial processes may affect both the equilibrium and kinetic behavior of the system. In particular, insoluble hydrocarbon partitioning and microbial biode...
Method for forming synthesis gas using a plasma-catalyzed fuel reformer
Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele
2015-04-28
A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.
Spherical loudspeaker array for local active control of sound.
Rafaely, Boaz
2009-05-01
Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.
Brusseau, M. L.; Hatton, J.; DiGuiseppi, W.
2011-01-01
The long-term impact of source-zone remediation efforts was assessed for a large site contaminated by trichloroethene. The impact of the remediation efforts (soil vapor extraction and in-situ chemical oxidation) was assessed through analysis of plume-scale contaminant mass discharge, which was measured using a high-resolution data set obtained from 23 years of operation of a large pump-and-treat system. The initial contaminant mass discharge peaked at approximately 7 kg/d, and then declined to approximately 2 kg/d. This latter value was sustained for several years prior to the initiation of source-zone remediation efforts. The contaminant mass discharge in 2010, measured several years after completion of the two source-zone remediation actions, was approximately 0.2 kg/d, which is ten times lower than the value prior to source-zone remediation. The time-continuous contaminant mass discharge data can be used to evaluate the impact of the source-zone remediation efforts on reducing the time required to operate the pump-and-treat system, and to estimate the cost savings associated with the decreased operational period. While significant reductions have been achieved, it is evident that the remediation efforts have not completely eliminated contaminant mass discharge and associated risk. Remaining contaminant mass contributing to the current mass discharge is hypothesized to comprise poorly-accessible mass in the source zones, as well as aqueous (and sorbed) mass present in the extensive lower-permeability units located within and adjacent to the contaminant plume. The fate of these sources is an issue of critical import to the remediation of chlorinated-solvent contaminated sites, and development of methods to address these sources will be required to achieve successful long-term management of such sites and to ultimately transition them to closure. PMID:22115080
NASA Astrophysics Data System (ADS)
Schwartz, N.; Huisman, J. A.; Furman, A.
2012-12-01
In recent years, there is a growing interest in using geophysical methods in general and spectral induced polarization (SIP) in particular as a tool to detect and monitor organic contaminants within the subsurface. The general idea of the SIP method is to inject alternating current through a soil volume and to measure the resultant potential in order to obtain the relevant soil electrical properties (e.g. complex impedance, complex conductivity/resistivity). Currently, a complete mechanistic understanding of the effect of organic contaminants on the SIP response of soil is still absent. In this work, we combine laboratory experiments with modeling to reveal the main processes affecting the SIP signature of soil contaminated with organic pollutant. In a first set of experiments, we investigate the effect of non-aqueous phase liquids (NAPL) on the complex conductivity of unsaturated porous media. Our results show that addition of NAPL to the porous media increases the real component of the soil electrical conductivity and decreases the polarization of the soil (imaginary component of the complex conductivity). Furthermore, addition of NAPL to the soil resulted in an increase of the electrical conductivity of the soil solution. Based on these results, we suggest that adsorption of NAPL to the soil surface, and exchange process between polar organic compounds in the NAPL and inorganic ions in the soil are the main processes affecting the SIP signature of the contaminated soil. To further support our hypothesis, the temporal change of the SIP signature of a soil as function of a single organic cation concentration was measured. In addition to the measurements of the soil electrical properties, we also measured the effect of the organic cation on the chemical composition of both the bulk and the surface of the soil. The results of those experiments again showed that the electrical conductivity of the soil increased with increasing contaminant concentration. In addition, direct evidence showed that the organic cation was adsorbed on the soil surface and exchanged with inorganic ions that usually exist in soil. This experiment confirmed that adsorption to the soil surface and the associated release of inorganic ions is the main mechanism affecting the complex conductivity of the contaminated porous media. Furthermore, our results show that adsorption of organic ions to the soil surface resulted in a decrease of the soil polarization. Using a chemical complexation model of the soil surface and a model for the polarization of the Stern layer, we were able to show that the decrease in the polarization of the soil can be related to the decrease in the surface site density of inorganic ions, and that the contribution of the soil-organic complexes to the polarization of the soil is negligible. We attribute this to the strong interaction between polar organic compounds and soil which results in a significant decrease in the mobility of the organic compounds in the Stern layer. The results of this work are essential to better interpret SIP signatures of soil contaminated with organic contaminants.
Integration of numerical modeling and observations for the Gulf of Naples monitoring network
NASA Astrophysics Data System (ADS)
Iermano, I.; Uttieri, M.; Zambianchi, E.; Buonocore, B.; Cianelli, D.; Falco, P.; Zambardino, G.
2012-04-01
Lethal effects of mineral oils on fragile marine and coastal ecosystems are now well known. Risks and damages caused by a maritime accident can be reduced with the help of better forecasts and efficient monitoring systems. The MED project TOSCA (Tracking Oil Spills and Coastal Awareness Network), which gathers 13 partners from 4 Mediterranean countries, has been designed to help create a better response system to maritime accidents. Through the construction of an observational network, based on state of the art technology (HF radars and drifters), TOSCA provides real-time observations and forecasts of the Mediterranean coastal marine environmental conditions. The system is installed and assessed in five test sites on the coastal areas of oil spill outlets (Eastern Mediterranean) and on high traffic areas (Western Mediterranean). The Gulf of Naples, a small semi-closed basin opening to the Tyrrhenian Sea is one of the five test-sites. It is of particular interest from both the environmental point of view, due to peculiar ecosystem properties in the area, and because it sustains important touristic and commercial activities. Currently the Gulf of Naples monitoring network is represented by five automatic weather stations distributed along the coasts of the Gulf, one weather radar, two tide gauges, one waverider buoy, and moored physical, chemical and bio-optical instrumentation. In addition, a CODAR-SeaSonde HF coastal radar system composed of three antennas is located in Portici, Massa Lubrense and Castellammare. The system provides hourly data of surface currents over the entire Gulf with a 1km spatial resolution. A numerical modeling implementation based on Regional Ocean Modeling System (ROMS) is actually integrated in the Gulf of Naples monitoring network. ROMS is a 3-D, free-surface, hydrostatic, primitive equation, finite difference ocean model. In our configuration, the model has high horizontal resolution (250m), and 30 sigma levels in the vertical. Thanks to the cooperation of the Ocean Physics and Modeling Group and of the Atmospheric Modeling and Weather Forecasting Group of the University of Athens (partner of TOSCA project), the model surface air-sea fluxes are computed from the SKIRON Forecasting System. ROMS model is initialized with the High Resolution Atlantic and Mediterranean Product of Mercator Ocean data set and the same data are used as boundary conditions for the western and southern open boundaries of the domain. Realistic model simulations have been performed in the study area for the summer of 2009, in order to make comparisons with specific episodes and structures identified by HF radar data. Typical circulation regimes have been selected from the mentioned year simulation and different flow structures are recognized, that are expected to have a significant effect on the renewal of the coastal waters. The model allows us to further investigate the spatial characteristics of dynamical structures, their generation process and their role in the flushing of the basin improving the understanding of the dynamics governing the circulation of the basin. Model results show a good agreement with HF radar data collected during the analyzed periods in the Gulf of Naples.
IMPACTS OF DNAPL SOURCE TREATMENT ON CONTAMINANT MASS FLUX
Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...
The DNAPL challenge: Is there a case for partial source removal?
NASA Astrophysics Data System (ADS)
Kavanaugh, M. C.; Rao, P. S. C.
2003-04-01
Despite significant advances in the science and technology of DNAPL source zone characterization, and DNAPL removal technologies over the past two decades, source remediation has not become a standard objective at most DNAPL sites. Few documented cases of DNAPL source removal have been published, and achievement of the usual cleanup metric in these source zones, namely, meeting Maximum Contaminant Levels ("MCLs") is rare. At most DNAPL sites, removal of sufficient amounts of DNAPL from the source zones to achieve MCLs is considered technically impracticable, taking cost into consideration. Leaving substantial quantities of DNAPL in source zones and instituting appropriate technologies to eliminate continued migration of groundwater plumes emanating from these source zones requires long-term reliability of barrier technologies (hydraulic or physical), and the permanence institutional controls. This strategy runs the risk of technical or institutional failures and possible liabilities associated with natural resource damage claims. To address this challenge, the U.S. Environmental Protection Agency ("EPA") established a panel of experts ("Panel") on DNAPL issues to provide their opinions on the overarching question of whether DNAPL source remediation is feasible. This Panel, co-chaired by the authors of this paper, has now prepared a report summarizing the opinions of the Panel on the key question of whether DNAPL source removal is achievable. This paper will present the findings of the Panel, addressing such issues as the current status of DNAPL source characterization and remediation technologies, alternative metrics of success for DNAPL source remediation, the potential benefits of partial DNAPL source depletion, and research needs to address data gaps that hinder the more widespread implementation of source removal strategies.
PORE SPACE ANALYSIS OF NAPL DISTRIBUTION IN SAND-CLAY MEDIA. (R827120)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
FIELD EVALUATION OF SOLVENT EXTRACTION RESIDUAL BIOTREATMENT (SERB)
Laboratory and pilot-scale studies have demonstrated that cosolvent-enhanced in situ extraction can remove residual and free-phase nonaqueous phase liquid (NAPL), but may leave levels of contaminants in the ground water and subsurface formations in excess of the regulatory requir...
Analysis of user perception of hydrofoil service
DOT National Transportation Integrated Search
1983-06-01
This memorandum presents the findings from a survey of hydrofoil passengers in Southern Italy. This hydrofoil service links the ports of Palermo and Naples with a stop in Ustica, a resort island off the northern coast of Sicily. The vessel used in th...
Probabilistic and Evolutionary Early Warning System: concepts, performances, and case-studies
NASA Astrophysics Data System (ADS)
Zollo, A.; Emolo, A.; Colombelli, S.; Elia, L.; Festa, G.; Martino, C.; Picozzi, M.
2013-12-01
PRESTo (PRobabilistic and Evolutionary early warning SysTem) is a software platform for Earthquake Early Warning that integrates algorithms for real-time earthquake location, magnitude estimation and damage assessment into a highly configurable and easily portable package. In its regional configuration, the software processes, in real-time, the 3-component acceleration data streams coming from seismic stations, for P-waves arrival detection and, in the case a quite large event is occurring, can promptly performs event detection and location, magnitude estimation and peak ground-motion prediction at target sites. The regional approach has been integrated with a threshold-based early warning method that allows, in the very first seconds after a moderate-to-large earthquake, to identify the most Probable Damaged Zone starting from the real-time measurement at near-source stations located at increasing distances from the earthquake epicenter, of the peak displacement (Pd) and predominant period of P-waves (τc), over a few-second long window after the P-wave arrival. Thus, each recording site independently provides an evolutionary alert level, according to the Pd and τc it measured, through a decisional table. Since 2009, PRESTo has been under continuous real-time testing using data streaming from the Iripinia Seismic Network (Southern Italy) and has produced a bulletin of some hundreds low magnitude events, including all the M≥2.5 earthquakes occurred in that period in Irpinia. Recently, PRESTo has been also implemented at the accelerometric network and broad-band networks in South Korea and in Romania, and off-line tested in Iberian Peninsula, in Turkey, in Israel, and in Japan. The feasibility of an Early Warning System at national scale, is currently under testing by studying the performances of the PRESTo platform for the Italian Accelerometric Network. Moreover, PRESTo is under experimentation in order to provide alert in a high-school located in the neighborhood of Naples at about 100 km from the Irpinia region.
Assessment of macroseismic intensity in the Nile basin, Egypt
NASA Astrophysics Data System (ADS)
Fergany, Elsayed
2018-01-01
This work intends to assess deterministic seismic hazard and risk analysis in terms of the maximum expected intensity map of the Egyptian Nile basin sector. Seismic source zone model of Egypt was delineated based on updated compatible earthquake catalog in 2015, focal mechanisms, and the common tectonic elements. Four effective seismic source zones were identified along the Nile basin. The observed macroseismic intensity data along the basin was used to develop intensity prediction equation defined in terms of moment magnitude. Expected maximum intensity map was proven based on the developed intensity prediction equation, identified effective seismic source zones, and maximum expected magnitude for each zone along the basin. The earthquake hazard and risk analysis was discussed and analyzed in view of the maximum expected moment magnitude and the maximum expected intensity values for each effective source zone. Moderate expected magnitudes are expected to put high risk at Cairo and Aswan regions. The results of this study could be a recommendation for the planners in charge to mitigate the seismic risk at these strategic zones of Egypt.
2011-01-01
Background Body art practices have emerged as common activities among youth, yet few studies have investigated awareness in different age groups of possible health complications associated with piercing and tattooing. Methods We investigated perceptions of and knowledge about health risks. To highlight differences among age groups, we gathered data from students at high schools and universities in the province of Naples. Results Of 9,322 adolescents, 31.3% were pierced and 11.3% were tattooed. Of 3,610 undergraduates, 33% were pierced and 24.5% were tattooed (p < 0.05). A higher number of females were pierced in both samples, but there were no gender differences among tattooed students. Among high school students, 79.4% knew about infectious risks and 46% about non-infectious risks; the respective numbers among university students were 87.2% and 59.1%. Only 3.5% of students in high school and 15% of university undergraduates acknowledged the risk of viral disease transmission; 2% and 3% knew about allergic risks. Among adolescents and young adults, 6.9% and 15.3%, respectively, provided signed informed consent; the former were less knowledgeable about health risks (24.7% vs. 57.1%) (p < 0.05). Seventy-three percent of the high school students and 33.5% of the university students had body art done at unauthorized facilities. Approximately 7% of both samples reported complications from their purchased body art. Conclusions Results indicate a need for adequate information on health risks associated with body art among students in Naples, mainly among high school students. Therefore, adolescents should be targeted for public health education programs. PMID:21819558
Thiele, Stefan; Richter, Michael; Balestra, Cecilia; Glöckner, Frank Oliver; Casotti, Raffaella
2017-04-01
The Gulf of Naples is a dynamical area with intense exchanges between offshore oligotrophic and coastal eutrophic waters with frequent freshwater inputs. The Sarno River, one of the most polluted rivers in Europe, strongly contributes to the pollution of the area, discharging high amounts of heavy metals and organic wastes from heavily cultivated and industrial areas. This paper reports on the diversity and community structure of the marine residential Bacteria and Archaea of the Gulf of Naples in an area close to the river Sarno plume and investigates their small-scale taxonomic diversity and expression patterns as a proxy of potential metabolic activity using metagenomics and metatranscriptomics. Bacteria and Archaea were mainly represented by marine clades, with only minor contributors from freshwater ones. The community was dominated by Alpha- and Gammaproteobacteria, of which Rhodospirillales, Pelagibacteriales, and Oceanospirilalles were most represented. However, Alteromonadales and Rhodobacterales were the most active, despite their relative lower abundance, suggesting that they are important for overall ecosystem functioning and nutrient cycling. Nitrification and a reversed form of dissimilatory sulfate reduction were the major metabolic processes found in the metatrascriptomes and were mainly associated to Nitrosopumilales and Pelagibacter, respectively. No clear indication of transcripts related to stress induced by heavy metals or organic pollutants was found. In general, despite the high loads of pollutants discharged continuously by the Sarno River, the microbial community did not show marks of stress-induced changes neither structural nor functional, thus suggesting that this river has little or no effect on the planktonic bacterial community of the Gulf of Naples. Copyright © 2016 Elsevier B.V. All rights reserved.
Ferrara, L; Iannace, M; Patelli, A M; Arienzo, M
2013-03-01
Since the mid 1980s, Naples and the Campania region have suffered from the dumping of wastes into overfilled landfills. The aim was to characterise a former cave located in Roccarainola (Naples, Italy) for its eventual destination to a controlled landfill site. A detailed hydro-geochemical survey of the area was carried out through drilling of 14 boreholes and four monitoring wells. Samples of water, sediment and soil were analysed for heavy metals and organic contaminants from a dew pond placed in the middle of the cave. The underneath aquifer was also surveyed. The nature of gases emitted from the site was investigated. Results of the geognostic survey revealed the presence of huge volumes of composite wastes, approximately half a million of cubic metre, which accumulated up to a thickness of 25.6 m. In some points, wastes lie below the free surface level of the aquifer. The sampled material from the boreholes revealed levels of As, Cd, Cr, Cu, Hg, Pb, Sn, Tl and Zn exceeding the intervention legal limits. Outstanding loads of Cd, Pb and Zn were found, with levels exceeding of about 50, 100 and 1,870 times the limit. In several points, polycyclic aromatic hydrocarbon load was extremely high, 35 vs 1 mg kg(-1) of the threshold. The aquifer was also very heavily polluted by Cd, Cr-tot, Cu, Fe, Mn, Ni, Pb and Zn, with impressive high load of Cr and Mn, up to 250-370 times the limits. Hot gases up to 62 °C with presence of xylene and ethylbenzene were found. Results indicated that the site needs an urgent intervention of recovery to avoid compromising the surrounding areas and aquifers of the Campania plain.
Simeon, Vittorio; Chiodini, Paolo; Mattiello, Amalia; Sieri, Sabina; Panico, Camilla; Brighenti, Furio; Krogh, Vittorio; Panico, Salvatore
2015-05-01
Cognitive impairment is a common cause of morbidity in the elderly. The relationship between dietary habits and cognitive impairment in a female population living in the metropolitan area of Naples, in the Mediterranean part of Italy, has been evaluated in the Naples EPIC prospective cohort study. The study cohort, enrolled between 1993 and 1997, is composed of 5062 women aged 30-69 years. At time of enrolment anthropometric measures were performed and information about socio-demographic details, clinical data, lifestyle and dietary habits were collected. During 2008 and 2009, women 65 years of age or older received a telephone interview to evaluate cognitive status (TICS); the derived score was used as proxy of cognitive impairment. Analyses were carried out on 1514 participants. Linear regression model showed negative association between TICS score and, respectively, age at baseline (β = -.31, 95% CI -.34, -.24), body mass index (BMI) (β = -.08, 95% CI -.16, -.01), and glycemic load (GL) (β = -.02, 95% CI -.03, -.01), whereas education level (β = 0.62, 95% CI .56, .69) showed positive association. A logistic regression model, used to evaluate determinants of the low cognitive score (TICS score ≤ 15, 1st tertile), confirmed association for previous variables [age (OR 1.1, 95% CI 1.08, 1.15); BMI (OR 1.03, 95% CI 1.001, 1.07); GL (OR 1.005, 95% CI 1.001, 1.011); education level (OR .82, 95% CI .79, .84)] with, in addition, type II diabetes (OR 1.85, 95% CI 1.014, 3.4). This study indicates that GL may play a role in determining risk of cognitive impairment, besides age, BMI, education and diabetes.
Rivezzi, Gaetano; Piscitelli, Prisco; Scortichini, Giampiero; Giovannini, Armando; Diletti, Gianfranco; Migliorati, Giacomo; Ceci, Roberta; Rivezzi, Giulia; Cirasino, Lorenzo; Carideo, Pietro; Black, Dennis M.; Garzillo, Carmine; Giani, Umberto
2013-01-01
Background: The Caserta and Naples areas in Campania Region experience heavy environmental contamination due to illegal waste disposal and burns, thus representing a valuable setting to develop a general model of human contamination with dioxins (PCDDs-PCDFs) and dioxin-like-PCBs (dl-PCBs). Methods: 94 breastfeeding women (aged 19–32 years; mean age 27.9 ± 3.0) were recruited to determine concentrations of PCDDs-PCDFs and dl-PCBs in their milk. Individual milk samples were collected and analyzed according to standard international procedures. A generalized linear model was used to test potential predictors of pollutant concentration in breast milk: age, exposure to waste fires, cigarette smoking, diet, and residence in high/low risk area (defined at high/low environmental pressure by a specific 2007 WHO report). A Structural Equation Model (SEM) analysis was carried out by taking into account PCDDs-PCDFs and dl-PCBs as endogenous variables and age, waste fires, risk area and smoking as exogenous variables. Results: All milk samples were contaminated by PCDDs-PCDFs (8.6 pg WHO-TEQ/98g fat ± 2.7; range 3.8–19) and dl-PCBs (8.0 pg WHO-TEQ/98g fat ± 3.7; range 2.5–24), with their concentrations being associated with age and exposure to waste fires (p < 0.01). Exposure to fires resulted in larger increases of dioxins concentrations in people living in low risk areas than those from high risk areas (p < 0.01). Conclusions: A diffuse human exposure to persistent organic pollutants was observed in the Caserta and Naples areas. Dioxins concentration in women living in areas classified at low environmental pressure in 2007 WHO report was significantly influenced by exposure to burns. PMID:24217180
Hart, Nathan D; Wallace, Matthew K; Scovell, J Field; Krupp, Ryan J; Cook, Chad; Wyland, Douglas J
2012-09-01
Quadriceps rupture off the patella is traditionally repaired by a transosseous tunnel technique, although a single-row suture anchor repair has recently been described. This study biomechanically tested a new transosseous equivalent (TE) double-row suture anchor technique compared with the transosseous repair for quadriceps repair. After simulated quadriceps-patella avulsion in 10 matched cadaveric knees, repairs were completed by either a three tunnel transosseous (TT = 5) or a TE suture anchor (TE = 5) technique. Double-row repairs were done using two 5.5 Bio-Corkscrew FT (fully threaded) (Arthrex, Inc., Naples, FL, USA) and two 3.5 Bio-PushLock anchors (Arthrex, Inc., Naples, FL, USA) with all 10 repairs done with #2 FiberWire suture (Arthrex, Inc., Naples, FL). Cyclic testing from 50 to 250 N for 250 cycles and pull to failure load (1 mm/s) were undertaken. Gap formation and ultimate tensile load (N) were recorded and stiffness data (N/mm) were calculated. Statistical analysis was performed using a Mann-Whitney U test and survival characteristics examined with Kaplan-Meier test. No significant difference was found between the TE and TT groups in stiffness (TE = 134 +/- 15 N/mm, TT = 132 +/- 26 N/mm, p = 0.28). The TE group had significantly less ultimate tensile load (N) compared with the TT group (TE = 447 +/- 86 N, TT = 591 +/- 84 N, p = 0.04), with all failures occurring at the suture eyelets. Although both quadriceps repairs were sufficiently strong, the transosseous repairs were stronger than the TE suture anchor repairs. The repair stiffness and gap formation were similar between the groups.
Castelluccio, Mauro; Agrahari, Sudha; De Simone, Gabriele; Pompilj, Francesca; Lucchetti, Carlo; Sengupta, Debashish; Galli, Gianfranco; Friello, Pierluigi; Curatolo, Pierpaolo; Giorgi, Riccardo; Tuccimei, Paola
2018-05-01
Geochemical and geophysical surveys employing radon deficit, resistivity, and induced polarization (IP) measurements were undertaken on soil contaminated with non-aqueous phase liquids (NAPLs) in two different sites in India and in Italy. Radon deficit, validated through the comparison with average soil radon in reference unpolluted areas, shows the extension of contamination in the upper part of the unsaturated aquifers. In site 1 (Italy), the spill is not recent. A residual film of kerosene covers soil grains, inhibiting their chargeability and reducing electrical resistivity difference with background unpolluted areas. No correlation between the two parameters is observed. Soil volatile organic compounds (VOCs) concentration is not linked with radon deficit, supporting the old age of the spillage. NAPL pollution in sites 2a and 2b (India) is more recent and probably still active, as demonstrated by higher values of electrical resistivity. A good correlation with IP values suggests that NAPL is still distributed as droplets or as a continuous phase in the pores, strengthening the scenario of a fresh spill or leakage. Residual fraction of gasoline in the pore space of sites 2a and 2b is respectively 1.5 and 11.8 kg per cubic meter of terrain. This estimation is referred to the shallower portion of the unsaturated aquifer. Electrical resistivity is still very high indicating that the gasoline has not been strongly degraded yet. Temperature and soil water content influence differently radon deficit in the three areas, reducing soil radon concentration and partly masking the deficit in sites 2a and 2b.
NASA Astrophysics Data System (ADS)
Aiello, Gemma; Marsella, Ennio; Fiore, Vincenzo Di
2012-06-01
A detailed reconstruction of the stratigraphic and tectonic setting of the Gulf of Pozzuoli (Naples Bay) is provided on the basis of newly acquired single channel seismic profiles coupled with already recorded marine magnetics gathering the volcanic nature of some seismic units. Inferences for the tectonic and magmatic setting of the Phlegrean Fields volcanic complex, a volcanic district surrounding the western part of the Gulf of Naples, where volcanism has been active since at least 50 ka, are also discussed. The Gulf of Pozzuoli represents the submerged border of the Phlegrean caldera, resulting from the volcano-tectonic collapse induced from the pyroclastic flow deposits of the Campanian Ignimbrite (35 ka). Several morpho-depositional units have been identified, i.e., the inner continental shelf, the central basin, the submerged volcanic banks and the outer continental shelf. The stratigraphic relationships between the Quaternary volcanic units related to the offshore caldera border and the overlying deposits of the Late Quaternary depositional sequence in the Gulf of Pozzuoli have been highlighted. Fourteen main seismic units, both volcanic and sedimentary, tectonically controlled due to contemporaneous folding and normal faulting have been revealed by geological interpretation. Volcanic dykes, characterized by acoustically transparent sub-vertical bodies, locally bounded by normal faults, testify to the magma uprising in correspondence with extensional structures. A large field of tuff cones interlayered with marine deposits off the island of Nisida, on the western rim of the gulf, is related to the emplacement of the Neapolitan Yellow Tuff deposits. A thick volcanic unit, exposed over a large area off the Capo Miseno volcanic edifice is connected with the Bacoli-Isola Pennata-Capo Miseno yellow tuffs, cropping out in the northern Phlegrean Fields.
Enhanced In Situ Chemical Oxidation Using Surfactants and Shear Thinning Fluids
NASA Astrophysics Data System (ADS)
Hauswirth, S.; Sadeghi, S.; Cerda, C. C.; Espinoza, I.; Schultz, P. B.; Miller, C. T.
2017-12-01
In situ chemical oxidation (ISCO) is an attractive approach for the remediation of recalcitrant contaminants, due to the fact that target compounds are degraded in place, precluding the need for ex situ treatment or disposal. However, field applications of ISCO approaches have been plagued by "rebound" of contaminant concentrations in groundwater weeks to months after treatment. The cause of rebound at a given site may vary, but is typically associated with back-diffusion from finer grained, low permeability units or the presence of non-aqueous phase liquids (NAPLs) that are incompletely degraded during treatment. Modifications to traditional ISCO methods have been proposed to overcome these challenges, including the use of shear-thinning polymers to improve delivery of oxidants to low permeability units and the addition of surfactants to improve dissolution of contaminants from NAPLs. In this work, we investigate the application of these approaches to the oxidation of manufactured gas plant (MGP) tars—NAPLs composed primarily of polycyclic aromatic hydrocarbons (PAHs). We conducted experiments to determine the mutual impact of each chemical component on the physical and chemical properties of the overall system. Specifically, experiments were designed to: determine the kinetics and overall effectiveness of contaminant-oxidant reactions for multiple oxidant-activator combinations; screen several common surfactants in terms of their ability to increase MGP tar solubility and their compatibility with oxidant systems; measure the impact of oxidants and surfactants on the rheology of several common polymer additives; and assess the effect of surfactants and polymers on the consumption of oxidants/activators and on the kinetics of contaminant-oxidant reactions. The results of this work provide insight into the chemical and physical mechanisms associated with enhanced ISCO approaches and an improved basis with which to model and design ISCO applications at both the lab and field scales.
Chendamarai, Ezhilarasi; Ganesan, Saravanan; Alex, Ansu Abu; Kamath, Vandana; Nair, Sukesh C.; Nellickal, Arun Jose; Janet, Nancy Beryl; Srivastava, Vivi; Lakshmi, Kavitha M.; Viswabandya, Auro; Abraham, Aby; Aiyaz, Mohammed; Mullapudi, Nandita; Mugasimangalam, Raja; Padua, Rose Ann; Chomienne, Christine; Chandy, Mammen; Srivastava, Alok; George, Biju; Balasubramanian, Poonkuzhali; Mathews, Vikram
2015-01-01
There is limited data on the clinical, cellular and molecular changes in relapsed acute promyeloytic leukemia (RAPL) in comparison with newly diagnosed cases (NAPL). We undertook a prospective study to compare NAPL and RAPL patients treated with arsenic trioxide (ATO) based regimens. 98 NAPL and 28 RAPL were enrolled in this study. RAPL patients had a significantly lower WBC count and higher platelet count at diagnosis. IC bleeds was significantly lower in RAPL cases (P=0.022). The ability of malignant promyelocytes to concentrate ATO intracellularly and their in-vitro IC50 to ATO was not significantly different between the two groups. Targeted NGS revealed PML B2 domain mutations in 4 (15.38%) of the RAPL subset and none were associated with secondary resistance to ATO. A microarray GEP revealed 1744 genes were 2 fold and above differentially expressed between the two groups. The most prominent differentially regulated pathways were cell adhesion (n=92), cell survival (n=50), immune regulation (n=74) and stem cell regulation (n=51). Consistent with the GEP data, immunophenotyping revealed significantly increased CD34 expression (P=0.001) in RAPL cases and there was in-vitro evidence of significant microenvironment mediated innate resistance (EM-DR) to ATO. Resistance and relapse following treatment with ATO is probably multi-factorial, mutations in PML B2 domain while seen only in RAPL may not be the major clinically relevant cause of subsequent relapses. In RAPL additional factors such as expansion of the leukemia initiating compartment along with EM-DR may contribute significantly to relapse following treatment with ATO based regimens. PMID:25822503
Towards a network of Urban Forest Eddy Covariance stations: a unique case study in Naples
NASA Astrophysics Data System (ADS)
Guidolotti, Gabriele; Pallozzi, Emanuele; Esposito, Raffaela; Mattioni, Michele; Calfapietra, Carlo
2015-04-01
Urban forests are by definition integrated in highly human-made areas, and interact with different components of our cities. Thanks to those interactions, urban forests provide to people and to the urban environment a number of ecosystem services, including the absorption of CO2 and air pollutants thus influencing the local air quality. Moreover, in urban areas a relevant role is played by the photochemical pollution which is strongly influenced by the interactions between volatile organic compounds (VOC) and nitrogen oxides (NOx). In several cities, a high percentage of VOC is of biogenic origin mainly emitted from the urban trees. Despite their importance, experimental sites monitoring fluxes of trace gases fluxes in urban forest ecosystems are still scarce. Here we show the preliminary results of an innovative experimental site located in the Royal Park of Capodimonte within the city of Naples (40°51'N-14°15'E, 130 m above sea level). The site is mainly characterised by Quercus ilex with some patches of Pinus pinea and equipped with an eddy-covariance tower measuring the exchange of CO2, H2O, N2O, CH4, O3, PM, VOCs and NOx using state-of-the art instrumentations; it is running since the end of 2014 and it is part of the large infrastructural I-AMICA project. We suggest that the experience gained with research networks such as Fluxnet and ICOS should be duplicated for urban forests. This is crucial for carbon as there is now the ambition to include urban forests in the carbon stocks accounting system. This is even more important to understand the difficult interactions between anthropogenic and biogenic sources that often have negative implications for urban air quality. Urban environment can thus become an extraordinary case study and a network of such kind of stations might represent an important strategy both from the scientific and the applicative point of view.
Personal sound zone reproduction with room reflections
NASA Astrophysics Data System (ADS)
Olik, Marek
Loudspeaker-based sound systems, capable of a convincing reproduction of different audio streams to listeners in the same acoustic enclosure, are a convenient alternative to headphones. Such systems aim to generate "sound zones" in which target sound programmes are to be reproduced with minimum interference from any alternative programmes. This can be achieved with appropriate filtering of the source (loudspeaker) signals, so that the target sound's energy is directed to the chosen zone while being attenuated elsewhere. The existing methods are unable to produce the required sound energy ratio (acoustic contrast) between the zones with a small number of sources when strong room reflections are present. Optimization of parameters is therefore required for systems with practical limitations to improve their performance in reflective acoustic environments. One important parameter is positioning of sources with respect to the zones and room boundaries. The first contribution of this thesis is a comparison of the key sound zoning methods implemented on compact and distributed geometrical source arrangements. The study presents previously unpublished detailed evaluation and ranking of such arrangements for systems with a limited number of sources in a reflective acoustic environment similar to a domestic room. Motivated by the requirement to investigate the relationship between source positioning and performance in detail, the central contribution of this thesis is a study on optimizing source arrangements when strong individual room reflections occur. Small sound zone systems are studied analytically and numerically to reveal relationships between the geometry of source arrays and performance in terms of acoustic contrast and array effort (related to system efficiency). Three novel source position optimization techniques are proposed to increase the contrast, and geometrical means of reducing the effort are determined. Contrary to previously published case studies, this work presents a systematic examination of the key problem of first order reflections and proposes general optimization techniques, thus forming an important contribution. The remaining contribution considers evaluation and comparison of the proposed techniques with two alternative approaches to sound zone generation under reflective conditions: acoustic contrast control (ACC) combined with anechoic source optimization and sound power minimization (SPM). The study provides a ranking of the examined approaches which could serve as a guideline for method selection for rooms with strong individual reflections.
MODELING MULTICOMPONENT ORGANIC CHEMICAL TRANSPORT IN THREE-FLUID-PHASE POROUS MEDIA
A two dimensional finite-element model was developed to predict coupled transient flow and multicomponent transport of organic chemicals which can partition between NAPL, water, gas and solid phases in porous media under the assumption of local chemical equilibrium. as-phase pres...
SURFACTANT-ENHANCED SOLUBILIZATION OF RESIDUAL DODECANE IN SOIL COLUMNS - 2. MATHEMATICAL MODELING
A mathematical model is developed to describe surfactant-enhanced solubilization of nonaqueous-phase liquids (NAPLs) in porous media. The model incorporates aqueous-phase transport equations for organic and surfactant components as well as a mass balance for the organic phase. Ra...
SURFACTANT ENHANCED SOLUBILIZATION OF RESIDUAL DODECANE IN SOIL COLUMNS 1. MATHEMATICAL MODELING
A mathematical model is developed to describe surfactant enhanced solubilization of nonaqueous phase liquids (NAPLS) in porous media. he model incorporates aqueous phase transport equations for organic and surfactant components as well as a mass balance on the organic phase. ate-...
The potential for nonaqueous phase liquid (NAPL) mobilization is one of the most important considerations in the development and implementation of surfactant-based remediation technologies. Column experiments were performed to investigate the onset and extent of tetrachloroethyle...
A semi-analytical method for simulating transient contaminant transport originating from the dissolution of multicomponent nonaqueous phase liquid (NAPL) pools in three-dimensional, saturated, homogeneous porous media is presented. Each dissolved component may undergo first-order...
Surfactant-enhanced subsurface remediation can dramatically improve contaminant removal rates compared to the traditional pump-and-treat technology. Surfactants can be used to significantly enhance the solubilization of non-aqueous phase liquids (NAPL) constituents, or they can b...
An approximation algorithm for the Noah's Ark problem with random feature loss.
Hickey, Glenn; Blanchette, Mathieu; Carmi, Paz; Maheshwari, Anil; Zeh, Norbert
2011-01-01
The phylogenetic diversity (PD) of a set of species is a measure of their evolutionary distinctness based on a phylogenetic tree. PD is increasingly being adopted as an index of biodiversity in ecological conservation projects. The Noah's Ark Problem (NAP) is an NP-Hard optimization problem that abstracts a fundamental conservation challenge in asking to maximize the expected PD of a set of taxa given a fixed budget, where each taxon is associated with a cost of conservation and a probability of extinction. Only simplified instances of the problem, where one or more parameters are fixed as constants, have as of yet been addressed in the literature. Furthermore, it has been argued that PD is not an appropriate metric for models that allow information to be lost along paths in the tree. We therefore generalize the NAP to incorporate a proposed model of feature loss according to an exponential distribution and term this problem NAP with Loss (NAPL). In this paper, we present a pseudopolynomial time approximation scheme for NAPL.
A lead isotope perspective on urban development in ancient Naples.
Delile, Hugo; Keenan-Jones, Duncan; Blichert-Toft, Janne; Goiran, Jean-Philippe; Arnaud-Godet, Florent; Romano, Paola; Albarède, Francis
2016-05-31
The influence of a sophisticated water distribution system on urban development in Roman times is tested against the impact of Vesuvius volcanic activity, in particular the great eruption of AD 79, on all of the ancient cities of the Bay of Naples (Neapolis). Written accounts on urbanization outside of Rome are scarce and the archaeological record sketchy, especially during the tumultuous fifth and sixth centuries AD when Neapolis became the dominant city in the region. Here we show that isotopic ratios of lead measured on a well-dated sedimentary sequence from Neapolis' harbor covering the first six centuries CE have recorded how the AD 79 eruption was followed by a complete overhaul of Neapolis' water supply network. The Pb isotopic signatures of the sediments further reveal that the previously steady growth of Neapolis' water distribution system ceased during the collapse of the fifth century AD, although vital repairs to this critical infrastructure were still carried out in the aftermath of invasions and volcanic eruptions.
Age as predictor in patients with cutaneous melanoma submitted to sentinel lymph node biopsy.
Caracò, C; Marone, U; Botti, G; Celentano, E; Lastoria, S; Mozzillo, N
2006-11-01
To analyse the age as prognostic factor exploring the melanoma database at the National Cancer Institute in Naples. Three hundred and ninety-nine patients with cutaneous melanoma were treated with sentinel lymph node biopsy from 1996 to 2003 at the National Cancer Institute of Naples. The results were analysed with particular attention to the overall survival among patients younger or older than 50 years of age. No differences were recorded between the younger and older group in terms of the identification rate and incidence of metastases. The analyses of disease-free survival and overall survival showed a significantly more favourable outcome in younger patients. The 5-year overall survival and the 5-year disease free survival were 81.8% vs. 68.0% and 76.3% vs. 59.1% for the younger and older group, respectively. The results suggest that in the management of cutaneous melanoma, age might be considered as prognostic factor both for disease free survival and overall survival.
A lead isotope perspective on urban development in ancient Naples
Delile, Hugo; Keenan-Jones, Duncan; Goiran, Jean-Philippe; Arnaud-Godet, Florent; Romano, Paola; Albarède, Francis
2016-01-01
The influence of a sophisticated water distribution system on urban development in Roman times is tested against the impact of Vesuvius volcanic activity, in particular the great eruption of AD 79, on all of the ancient cities of the Bay of Naples (Neapolis). Written accounts on urbanization outside of Rome are scarce and the archaeological record sketchy, especially during the tumultuous fifth and sixth centuries AD when Neapolis became the dominant city in the region. Here we show that isotopic ratios of lead measured on a well-dated sedimentary sequence from Neapolis’ harbor covering the first six centuries CE have recorded how the AD 79 eruption was followed by a complete overhaul of Neapolis’ water supply network. The Pb isotopic signatures of the sediments further reveal that the previously steady growth of Neapolis’ water distribution system ceased during the collapse of the fifth century AD, although vital repairs to this critical infrastructure were still carried out in the aftermath of invasions and volcanic eruptions. PMID:27185923
Guerra, Corinna
2015-08-01
This essay that examines the role of the volcano as a chemical site in the late eighteenth century, as the "new chemistry" spread throughout the southern Italian Kingdom of Naples, resulting in lively debates. In Naples itself, these scientific debates were not confined to academies, courts, and urban spaces. In the absence of well-equipped chemical laboratories, Neapolitan scholars also carried out research on chemistry on the slopes of Mount Vesuvius, a natural site that furnished them with all the tools and substances necessary for practising chemistry. By examining various Neapolitan publications on Vesuvius and the chemical reactions and products associated with its periodic eruptions, I argue that the volcano's presence contributed to a distinctive, local approach to chemical theory and practice. Several case studies examine the ways in which proximity to Vesuvius was exploited by Neapolitan scholars as they engaged with the new chemistry, including Giuseppe Vairo, Michele Ferrara, Francesco Semmola, and Emanuele Scotti.
Study of ancient mortars from the Roman Villa of Pollio Felice in Sorrento (Naples)
NASA Astrophysics Data System (ADS)
Benedetti, D.; Valetti, S.; Bontempi, E.; Piccioli, C.; Depero, L. E.
The study of ancient mortars is an important aspect of building conservation: the choice of the materials has varied according to historical period, regional habits, and their specific function in the structure. Ancient mortars are composites, comprising hydraulic or aerial binding materials, and aggregates, passive or active, which may react with binding material. Moreover, they were modified during setting, hardening, and aging, according to processes not yet well known. In this paper, we present a study of ancient mortars from the Villa of Pollio Felice of Sorrento (Naples). The analysis has been performed by conventional techniques (grain-size distribution, lime-percentage analysis, optical and electron microscopy, and X-ray diffraction) and by means of a laboratory X-ray microdiffractometer equipped with an image plate detector. This system, applied for the first time to archaeological studies, can reach a spatial resolution of a few tenths of microns and it allows us to obtain separate phase identification of binder and filler particles.
Constructing and Representing: a New Project for 3d Surveying of Yazilikaya - HATTUŠA
NASA Astrophysics Data System (ADS)
Repola, L.; Marazzi, M.; Tilia, S.
2017-05-01
Within the cooperation project between the University Suor Orsola Benincasa of Naples and the archaeological mission in Hattuša of the German Archaeological Institute of Istanbul, directed by Andreas Schachner, in agreement with the Turkish Ministry of Culture and Tourism, the workgroup of the University of Naples, has carried out, in September 2015, a first survey campaign of the whole rocky site of Yazılıkaya. The experimentation has been finalized at constructing a global 3D territorial and monumental model of the site, capable that is, through the application of differing scanning procedures, according to the different components (topography, rocky complex, the cultural spaces therein, complex of sculptural reliefs, inscriptions accompanying the divine representations), of virtually reproducing in detail, for safegaurd, exhibition and study purposes (in particular from an epigraphical and historic-artistic point of view) all the aspects characterizing the artefact and not completely visible to the naked eye today.
Volcanic risk perception in the Vesuvius population
NASA Astrophysics Data System (ADS)
Barberi, F.; Davis, M. S.; Isaia, R.; Nave, R.; Ricci, T.
2008-05-01
A volcanic risk perception study of the population residing near Vesuvius was carried out between May and July, 2006. A total of 3600 questionnaires with 45 items were distributed to students, their parents and the general population. The largest number of surveys (2812) were distributed in the 18 towns of the Red Zone, the area nearest to the volcano that is exposed to pyroclastic flow hazards and whose 550,000 residents, according to the civil protection emergency plan (in operation since 1995), should be evacuated in case of an eruption crisis. The remaining 788 questionnaires were distributed in 3 additional towns and 3 neighborhoods of Naples, all within the Yellow Zone, which is an area exposed to pyroclastic fallout hazards. A total of 2655 surveys were returned, resulting in a response rate of 73.7%. Results indicated that people have a realistic view of the risk: they think that an eruption is likely, that it will have serious consequences for their towns and for themselves and their families and they are quite worried about the threat. However, several other social, economic, and security-related issues were listed as a problem more often than Vesuvius. The study also demonstrated a widespread lack of knowledge about the emergency plan, a lack of confidence in the plan's success and in public officials and low feelings of self-efficacy. People want to be more deeply involved in public discussions with scientists and civil protection officials on emergency planning and individual preparedness measures. It is clear from the results that a major education-information effort is still needed to improve the public's knowledge, confidence and self-efficacy, thereby improving their collective and individual capability to positively face a future volcanic emergency.
Srirattana, Supawan; Piaowan, Kitsanateen; Lowry, Gregory V; Phenrat, Tanapon
2017-09-01
Nanoscale zerovalent iron (NZVI) is a promising remediation agent for volatile organic compound (VOC) contamination in saturated sub-surfaces, but is rarely applied to the vadose zone as there are not enough water molecules in the unsaturated zone to participate in reductive dechlorination. In this study, we evaluated the possibility of using foam as a carrying vehicle to emplace NZVI in unsaturated porous media followed by the application of low frequency-electromagnetic field (LF-EMF) to enhance VOC volatilization in laboratory batch reactors. We found that the optimal condition for generating foam-based NZVI (F-NZVI) was using sodium lauryl ether sulfate (SLES) at a concentration of 3% (w/w) and a N 2 flow rate of 500 mL/min. Also, F-NZVI could carry as much as 41.31 g/L of NZVI in the liquid phase of the foam and generate heat to raise ΔT to 77 °C in 15 min under an applied LF-EMF (150 kHz and 13 A). Under these conditions, F-NZVI together with LF-EMF enhanced trichloroethylene (TCE) volatilization from TCE-dense non-aqueous phase liquid (DNAPL) in unsaturated sand by 39.51 ± 6.59-fold compared to reactors without LF-EMF application. This suggested that using F-NZVI together with LF-EMF could theoretically be an alternative to radio frequency heating (RFH) as it requires a much lower irradiation frequency (336-fold lower), which should result in significantly lower capital and operational costs compared to RFH. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
de Barros, Felipe P. J.
2018-07-01
Quantifying the uncertainty in solute mass discharge at an environmentally sensitive location is key to assess the risks due to groundwater contamination. Solute mass fluxes are strongly affected by the spatial variability of hydrogeological properties as well as release conditions at the source zone. This paper provides a methodological framework to investigate the interaction between the ubiquitous heterogeneity of the hydraulic conductivity and the mass release rate at the source zone on the uncertainty of mass discharge. Through the use of perturbation theory, we derive analytical and semi-analytical expressions for the statistics of the solute mass discharge at a control plane in a three-dimensional aquifer while accounting for the solute mass release rates at the source. The derived solutions are limited to aquifers displaying low-to-mild heterogeneity. Results illustrate the significance of the source zone mass release rate in controlling the mass discharge uncertainty. The relative importance of the mass release rate on the mean solute discharge depends on the distance between the source and the control plane. On the other hand, we find that the solute release rate at the source zone has a strong impact on the variance of the mass discharge. Within a risk context, we also compute the peak mean discharge as a function of the parameters governing the spatial heterogeneity of the hydraulic conductivity field and mass release rates at the source zone. The proposed physically-based framework is application-oriented, computationally efficient and capable of propagating uncertainty from different parameters onto risk metrics. Furthermore, it can be used for preliminary screening purposes to guide site managers to perform system-level sensitivity analysis and better allocate resources.
Computerized Workstation for Tsunami Hazard Monitoring
NASA Astrophysics Data System (ADS)
Lavrentiev-Jr, Mikhail; Marchuk, Andrey; Romanenko, Alexey; Simonov, Konstantin; Titov, Vasiliy
2010-05-01
We present general structure and functionality of the proposed Computerized Workstation for Tsunami Hazard Monitoring (CWTHM). The tool allows interactive monitoring of hazard, tsunami risk assessment, and mitigation - at all stages, from the period of strong tsunamigenic earthquake preparation to inundation of the defended coastal areas. CWTHM is a software-hardware complex with a set of software applications, optimized to achieve best performance on hardware platforms in use. The complex is calibrated for selected tsunami source zone(s) and coastal zone(s) to be defended. The number of zones (both source and coastal) is determined, or restricted, by available hardware resources. The presented complex performs monitoring of selected tsunami source zone via the Internet. The authors developed original algorithms, which enable detection of the preparation zone of the strong underwater earthquake automatically. For the so-determined zone the event time, magnitude and spatial location of tsunami source are evaluated by means of energy of the seismic precursors (foreshocks) analysis. All the above parameters are updated after each foreshock. Once preparing event is detected, several scenarios are forecasted for wave amplitude parameters as well as the inundation zone. Estimations include the lowest and the highest wave amplitudes and the least and the most inundation zone. In addition to that, the most probable case is calculated. In case of multiple defended coastal zones, forecasts and estimates can be done in parallel. Each time the simulated model wave reaches deep ocean buoys or tidal gauge, expected values of wave parameters and inundation zones are updated with historical events information and pre-calculated scenarios. The Method of Splitting Tsunami (MOST) software package is used for mathematical simulation. The authors suggest code acceleration for deep water wave propagation. As a result, performance is 15 times faster compared to MOST, original version. Performance gain is achieved by compiler options, use of optimized libraries, and advantages of OpenMP parallel technology. Moreover, it is possible to achieve 100 times code acceleration by using modern Graphics Processing Units (GPU). Parallel evaluation of inundation zones for multiple coastal zones is also available. All computer codes can be easily assembled under MS Windows and Unix OS family. Although software is virtually platform independent, the most performance gain is achieved while using the recommended hardware components. When the seismic event occurs, all valuable parameters are updated with seismic data and wave propagation monitoring is enabled. As soon as the wave passes each deep ocean tsunameter, parameters of the initial displacement at source are updated from direct calculations based on original algorithms. For better source reconstruction, a combination of two methods is used: optimal unit source linear combination from preliminary calculated database and direct numerical inversion along the wave ray between real source and particular measurement buoys. Specific dissipation parameter along with the wave ray is also taken into account. During the entire wave propagation process the expected wave parameters and inundation zone(s) characteristics are updated with all available information. If recommended hardware components are used, monitoring results are available in real time. The suggested version of CWTHM has been tested by analyzing seismic precursors (foreshocks) and the measured tsunami waves at North Pacific for the Central Kuril's tsunamigenic earthquake of November 15, 2006.
Analytical solutions describing the time-dependent DNAPL source-zone mass and contaminant discharge rate are used as a flux-boundary condition in a semi-analytical contaminant transport model. These analytical solutions assume a power relationship between the flow-averaged sourc...
Marble, J.C.; Brusseau, M.L.; Carroll, K.C.; Plaschke, M.; Fuhrig, L.; Brinker, F.
2015-01-01
The purpose of this study is to examine the development and effectiveness of a persistent dissolved-phase treatment zone, created by injecting potassium permanganate solution, for mitigating discharge of contaminant from a source zone located in a relatively deep, low-permeability formation. A localized 1,1-dichloroethene (DCE) source zone comprising dissolved- and sorbed-phase mass is present in lower permeability strata adjacent to a sand/gravel unit in a section of the Tucson International Airport Area (TIAA) Superfund Site. The results of bench-scale studies conducted using core material collected from boreholes drilled at the site indicated that natural oxidant demand was low, which would promote permanganate persistence. The reactive zone was created by injecting a permanganate solution into multiple wells screened across the interface between the lower-permeability and higher-permeability units. The site has been monitored for nine years to characterize the spatial distribution of DCE and permanganate. Permanganate continues to persist at the site, and a substantial and sustained decrease in DCE concentrations in groundwater has occurred after the permanganate injection.. These results demonstrate successful creation of a long-term, dissolved-phase reactive-treatment zone that reduced mass discharge from the source. This project illustrates the application of in-situ chemical oxidation as a persistent dissolved-phase reactive-treatment system for lower-permeability source zones, which appears to effectively mitigate persistent mass discharge into groundwater. PMID:26300570
NASA Astrophysics Data System (ADS)
Xiaoying, Jin; Huijun, Jin
2017-04-01
Permafrost degradation caused by climate warming has markedly changed ecological environment in the Source Area of the Yellow River, in the northeast of the Qinghai Tibetan Plateau. However, related research about ecological impact of permafrost degradation is limited in this area. More attentions should be paid to the impact of permafrost degradation on alpine grassland. In this study vegetation characteristics (plant species composition, vegetation cover and biomass, etc.) at different permafrost degradation stages (as represented by the continuous and discontinuous permafrost zone, transitional zone, and seasonally frozen ground zone) is investigated. The results showed that (1) there are total 64 species in continuous and discontinuous permafrost zone, transitional zone, and seasonally frozen ground zone, and seasonally frozen ground zone has more species than transitional zone and permafrost zone, (2) sedge is the dominant species in three zones. But Shrub only presented in the seasonally frozen ground zone. These results suggest that permafrost degradation affect the species number and species composition of alpine grassland.
Investigation of spherical loudspeaker arrays for local active control of sound.
Peleg, Tomer; Rafaely, Boaz
2011-10-01
Active control of sound can be employed globally to reduce noise levels in an entire enclosure, or locally around a listener's head. Recently, spherical loudspeaker arrays have been studied as multiple-channel sources for local active control of sound, presenting the fundamental theory and several active control configurations. In this paper, important aspects of using a spherical loudspeaker array for local active control of sound are further investigated. First, the feasibility of creating sphere-shaped quiet zones away from the source is studied both theoretically and numerically, showing that these quiet zones are associated with sound amplification and poor system robustness. To mitigate the latter, the design of shell-shaped quiet zones around the source is investigated. A combination of two spherical sources is then studied with the aim of enlarging the quiet zone. The two sources are employed to generate quiet zones that surround a rigid sphere, investigating the application of active control around a listener's head. A significant improvement in performance is demonstrated in this case over a conventional headrest-type system that uses two monopole secondary sources. Finally, several simulations are presented to support the theoretical work and to demonstrate the performance and limitations of the system. © 2011 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Muñoz-Martín, Alfonso; Antón, Loreto; Granja, Jose Luis; Villarroya, Fermín; Montero, Esperanza; Rodríguez, Vanesa
2016-04-01
Soil contamination can come from diffuse sources (air deposition, agriculture, etc.) or local sources, these last being related to anthropogenic activities that are potentially soil contaminating activities. According to data from the EU, in Spain, and particularly for the Autonomous Community of Madrid, it can be considered that heavy metals, toxic organic compounds (including Non Aqueous Phases Liquids, NAPLs) and combinations of both are the main problem of point sources of soil contamination in our community. The five aspects that will be applied in Caresoil Program (S2013/MAE-2739) in the analysis and remediation of a local soil contamination are: 1) the location of the source of contamination and characterization of soil and aquifer concerned, 2) evaluation of the dispersion of the plume, 3) application of effective remediation techniques, 4) monitoring the evolution of the contaminated soil and 5) risk analysis throughout this process. These aspects involve advanced technologies (hydrogeology, geophysics, geochemistry,...) that require new developing of knowledge, being necessary the contribution of several researching groups specialized in the fields previously cited, as they are those integrating CARESOIL Program. Actually two cases concerning hydrocarbon spills, as representative examples of soil local contamination in Madrid area, are being studied. The first is being remediated and we are monitoring this process to evaluate its effectiveness. In the second location we are defining the extent of contamination in soil and aquifer to define the most effective remediation technique.
75 FR 62751 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
..., Naples, FL 34112. Alpena County, Michigan (All Jurisdictions) Lake Huron From approximately 1.3 None +583 City of Alpena, miles northwest of the Township of Alpena. intersection of Rockport Road and Old Grade... and Brousseau Road. Long Lake Entire shoreline within None +651 Township of Alpena. Alpena County...
Chlorinated hydrocarbons are ubiquitous ground water contaminants due to their widespread use as organic solvents and cleaners/degreasers. The immiscibility of chlorinated organis with ground water causes them to exists as nonaqueous phase liquids (NAPLs); this results in their o...
The Effect of Bubble Formation on the Flow of NAPLs during Thermal Remediation
There have long been concerns about the possibility of downward migration during thermal remediation due to observations made during laboratory tests, although field data has not indicated that it has occurred in the field. Recent laboratory tests have demonstrated that nonaqueo...
Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei
2015-02-01
The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.
Mirus, Benjamin B.; Perkins, Kim S.; Nimmo, John R.
2011-01-01
Waste byproducts associated with operations at the Idaho Nuclear Technology and Engineering Center (INTEC) have the potential to contaminate the eastern Snake River Plain (ESRP) aquifer. Recharge to the ESRP aquifer is controlled largely by the alternating stratigraphy of fractured volcanic rocks and sedimentary interbeds within the overlying vadose zone and by the availability of water at the surface. Beneath the INTEC facilities, localized zones of saturation perched on the sedimentary interbeds are of particular concern because they may facilitate accelerated transport of contaminants. The sources and timing of natural and anthropogenic recharge to the perched zones are poorly understood. Simple approaches for quantitative characterization of this complex, variably saturated flow system are needed to assess potential scenarios for contaminant transport under alternative remediation strategies. During 2009-2011, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, employed data analysis and numerical simulations with a recently developed model of preferential flow to evaluate the sources and quantity of recharge to the perched zones. Piezometer, tensiometer, temperature, precipitation, and stream-discharge data were analyzed, with particular focus on the possibility of contributions to the perched zones from snowmelt and flow in the neighboring Big Lost River (BLR). Analysis of the timing and magnitude of subsurface dynamics indicate that streamflow provides local recharge to the shallow, intermediate, and deep perched saturated zones within 150 m of the BLR; at greater distances from the BLR the influence of streamflow on recharge is unclear. Perched water-level dynamics in most wells analyzed are consistent with findings from previous geochemical analyses, which suggest that a combination of annual snowmelt and anthropogenic sources (for example, leaky pipes and drainage ditches) contribute to recharge of shallow and intermediate perched zones throughout much of INTEC. The source-responsive fluxes model was parameterized to simulate recharge via preferential flow associated with intermittent episodes of streamflow in the BLR. The simulations correspond reasonably well to the observed hydrologic response within the shallow perched zone. Good model performance indicates that source-responsive flow through a limited number of connected fractures contributes substantially to the perched-zone dynamics. The agreement between simulated and observed perched-zone dynamics suggest that the source-responsive fluxes model can provide a valuable tool for quantifying rapid preferential flow processes that may result from different land management scenarios.
Dominant seismic sources for the cities in South Sumatra
NASA Astrophysics Data System (ADS)
Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya
2017-07-01
Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.
2009-09-01
nuclear industry for conducting performance assessment calculations. The analytical FORTRAN code for the DNAPL source function, REMChlor, was...project. The first was to apply existing deterministic codes , such as T2VOC and UTCHEM, to the DNAPL source zone to simulate the remediation processes...but describe the spatial variability of source zones unlike one-dimensional flow and transport codes that assume homogeneity. The Lagrangian models
NASA Astrophysics Data System (ADS)
Marble, J.; Carroll, K. C.; Brusseau, M. L.; Plaschke, M.; Brinker, F.
2013-12-01
Source zones located in relatively deep, low-permeability formations provide special challenges for remediation. Application of permeable reactive barriers, in-situ thermal, or electrokinetic methods would be expensive and generally impractical. In addition, the use of enhanced mass-removal approaches based on reagent injection (e.g., ISCO, enhanced-solubility reagents) is likely to be ineffective. One possible approach for such conditions is to create a persistent treatment zone for purposes of containment. This study examines the efficacy of this approach for containment and treatment of contaminants in a lower permeability zone using potassium permanganate (KMnO4) as the reactant. A localized 1,1-dichloroethene (DCE) source zone is present in a section of the Tucson International Airport Area (TIAA) Superfund Site. Characterization studies identified the source of DCE to be located in lower-permeability strata adjacent to the water table. Bench-scale studies were conducted using core material collected from boreholes drilled at the site to measure DCE concentrations and determine natural oxidant demand. The reactive zone was created by injecting ~1.7% KMnO4 solution into multiple wells screened within the lower-permeability unit. The site has been monitored for ~8 years to characterize the spatial distribution of DCE and permanganate. KMnO4 continues to persist at the site, demonstrating successful creation of a long-term reactive zone. Additionally, the footprint of the DCE contaminant plume in groundwater has decreased continuously with time. This project illustrates the application of ISCO as a reactive-treatment system for lower-permeability source zones, which appears to effectively mitigate persistent mass flux into groundwater.
NASA Astrophysics Data System (ADS)
Sharma, S. P.; Biswas, A.
2012-12-01
South Purulia Shear Zone (SPSZ) is an important region for prospecting of uranium mineralization. Geological studies and hydro-uranium anomaly suggest the presence of Uranium deposit around Raghunathpur village which lies about 8 km north of SPSZ. However, detailed geophysical investigations have not been carried out in this region for investigation of uranium mineralization. Since surface signature of uranium mineralization is not depicted near the location, a deeper subsurface source is expected for hydro uranium anomaly. To delineate the subsurface structure and to investigate the origin of hydro-uranium anomaly present in the area, Vertical Electrical Sounding (VES) using Schlumberger array and Gradient Resistivity Profiling (GRP) were performed at different locations along a profile perpendicular to the South Purulia Shear Zone. Apparent resistivity computed from the measured sounding data at various locations shows a continuously increasing trend. As a result, conventional apparent resistivity data is not able to detect the possible source of hydro uranium anomaly. An innovative approach is applied which depicts the apparent conductivity in the subsurface revealed a possible connection from SPSZ to Raghunathpur. On the other hand resistivity profiling data suggests a low resistive zone which is also characterized by low Self-Potential (SP) anomaly zone. Since SPSZ is characterized by the source of uranium mineralization; hydro-uranium anomaly at Raghunathpur is connected with the SPSZ. The conducting zone has been delineated from SPSZ to Raghunathpur at deeper depths which could be uranium bearing. Since the location is also characterized by a low gravity and high magnetic anomaly zone, this conducting zone is likely to be mineralized zone. Keywords: Apparent resistivity; apparent conductivity; Self Potential; Uranium mineralization; shear zone; hydro-uranium anomaly.
NASA Astrophysics Data System (ADS)
Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa
2016-03-01
In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P < 0.001) in the urban-traffic site (NA02) than in the urban-background site (NA01). The filters were then extracted with dichloromethane using an ultrasonicator (SONICA) to perform a detailed characterization of 12 priority PAHs proposed by the USEPA, by gas chromatography-mass spectrometer (GC-MS) analysis. The concentration of Benzo[a]Pyrene, BaP (EU and National limit value: 1 ng m-3 in PM10), varied from 0.065 ng m-3 during autumn time to 0.872 ng m-3 in spring time (NA01) and from 0.120 ng m-3 during autumn time to 1.48 ng m-3 of winter time (NA02) with four overshoots. In NA02 the trend of Σ12 PAHs was comparable to NA01 but were observed higher values than NA01. In fact, the mean concentration of Σ12 PAHs, in urban-traffic site was generally 2 times greater than in urban-background site in all the campaigns. PAHs with 5 and 6 ring, many of which are suspected carcinogens or genotoxic agents, (i.e Benzo[a]Pyrene, Indeno[1,2,3-cd]Pyrene, Benzo[b]Fluoranthene, Benzo[k]Fluoranthene and Benzo[g,h,i]Perylene), had a large contribution (∼50-55%) of total PAHs concentration in PM10 in two sites and in each of the campaigns. Diagnostic ratio analysis and PCA suggested a substantial contributions from traffic emission with minimal influence from coal combustion and natural gas emissions. In particular diesel vehicular emissions were the major source of PAHs at the studied sites. The use of Toxicity Equivalence Quantity (TEQ) concentration provide a better estimation of carcinogenicity activities; health risk to adults and children associated with PAHs inhalation was assessed by taking into account the lifetime average daily dose and corresponding incremental lifetime cancer risk (ILCR). The ILCR was within the acceptable range (10-6-10-4), indicating a low health risk to residents in these areas.
FIELD-SCALE EVALUATION OF IN SITU COSOLVENT FLUSHING FOR ENCHANCED AQUIFER REMEDIATION
A comprehensive, field-scale evaluation of in situ cosolvent flushing for enhanced remediation of nonaqueous phase liquid (NAPL)-contaminated aquifers was performed in a hydraulically isolated test cell (about 4.3 m x 3.6 m) constructed at a field site at Hill Air Force Base, Uta...
The widespread release of organic chemicals in the environment frequently leads to ground-water contamination with non-aqueous phase liquids (NAPLs) because many of these organic chemicals are barely soluble in water. Understanding the mechanisms of transport and biotic transf...
This manual describes a two-dimensional, finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. low and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are consider...
This issue paper provides a comprehensive literature review regarding the compatibility of NAPLs with a wide variety of materials used at hazardous waste sites. A condensed reference table of compatibility data for 207 chemicals and 28 commonly used well construction and sampling...
32 CFR 757.13 - Responsibility for MCRA actions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Judge Advocate General (Claims and Tort Litigation Division) (Code 15); and the (ii) Commanding Officer, Naval Legal Service Command Europe and Southwest Asia (NLSC EURSWA), Naples, Italy, in its area of....S.C. 1095 claims are brought to the attention of the appropriate JAG designee. (2) The MTF reports...
A pilot-scale field experiment was conducted to compare the remediation effectiveness of an enhanced-solubilization technique to that of water flushing for removal of multicomponent nonaqueous-phase organic liquid (NAPL) contaminants form a phreatic aquifer. This innovative remed...
Ice Storage System for School Complex.
ERIC Educational Resources Information Center
Montgomery, Ross D.
1998-01-01
Describes a project at the Manatee Education Center in Naples, Florida, which won an ASHRAE award. Project involved the implementation of ice-storage technology in 19 schools. Compares the performance of ice-storage systems with traditional chiller designs in two other schools. Tables illustrate costs for the campuses. Addresses the maintenance…
Mainhagu, Jon; Morrison, C.; Truex, Michael J.; ...
2014-08-05
A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. Amore » well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. We found that the results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.« less
NASA Astrophysics Data System (ADS)
Reiser, Fabienne; Schmelzbach, Cedric; Maurer, Hansruedi; Greenhalgh, Stewart; Hellwig, Olaf
2017-04-01
A primary focus of geothermal seismic imaging is to map dipping faults and fracture zones that control rock permeability and fluid flow. Vertical seismic profiling (VSP) is therefore a most valuable means to image the immediate surroundings of an existing borehole to guide, for example, the placing of new boreholes to optimize production from known faults and fractures. We simulated 2D and 3D acoustic synthetic seismic data and processed it through to pre-stack depth migration to optimize VSP survey layouts for mapping moderately to steeply dipping fracture zones within possible basement geothermal reservoirs. Our VSP survey optimization procedure for sequentially selecting source locations to define the area where source points are best located for optimal imaging makes use of a cross-correlation statistic, by which a subset of migrated shot gathers is compared with a target or reference image from a comprehensive set of source gathers. In geothermal exploration at established sites, it is reasonable to assume that sufficient à priori information is available to construct such a target image. We generally obtained good results with a relatively small number of optimally chosen source positions distributed over an ideal source location area for different fracture zone scenarios (different dips, azimuths, and distances from the surveying borehole). Adding further sources outside the optimal source area did not necessarily improve the results, but rather resulted in image distortions. It was found that fracture zones located at borehole-receiver depths and laterally offset from the borehole by 300 m can be imaged reliably for a range of the different dips, but more source positions and large offsets between sources and the borehole are required for imaging steeply dipping interfaces. When such features cross-cut the borehole, they are particularly difficult to image. For fracture zones with different azimuths, 3D effects are observed. Far offset source positions contribute less to the image quality as fracture zone azimuth increases. Our optimization methodology is best suited for designing future field surveys with a favorable benefit-cost ratio in areas with significant à priori knowledge. Moreover, our optimization workflow is valuable for selecting useful subsets of acquired data for optimum target-oriented processing.
NASA Astrophysics Data System (ADS)
Somei, K.; Asano, K.; Iwata, T.; Miyakoshi, K.
2012-12-01
After the 1995 Kobe earthquake, many M7-class inland earthquakes occurred in Japan. Some of those events (e.g., the 2004 Chuetsu earthquake) occurred in a tectonic zone which is characterized as a high strain rate zone by the GPS observation (Sagiya et al., 2000) or dense distribution of active faults. That belt-like zone along the coast in Japan Sea side of Tohoku and Chubu districts, and north of Kinki district, is called as the Niigata-Kobe tectonic zone (NKTZ, Sagiya et al, 2000). We investigate seismic scaling relationship for recent inland crustal earthquake sequences in Japan and compare source characteristics between events occurring inside and outside of NKTZ. We used S-wave coda part for estimating source spectra. Source spectral ratio is obtained by S-wave coda spectral ratio between the records of large and small events occurring close to each other from nation-wide strong motion network (K-NET and KiK-net) and broad-band seismic network (F-net) to remove propagation-path and site effects. We carefully examined the commonality of the decay of coda envelopes between event-pair records and modeled the observed spectral ratio by the source spectral ratio function with assuming omega-square source model for large and small events. We estimated the corner frequencies and seismic moment (ratio) from those modeled spectral ratio function. We determined Brune's stress drops of 356 events (Mw: 3.1-6.9) in ten earthquake sequences occurring in NKTZ and six sequences occurring outside of NKTZ. Most of source spectra obey omega-square source spectra. There is no obvious systematic difference between stress drops of events in NKTZ zone and others. We may conclude that the systematic tendency of seismic source scaling of the events occurred inside and outside of NKTZ does not exist and the average source scaling relationship can be effective for inland crustal earthquakes. Acknowledgements: Waveform data were provided from K-NET, KiK-net and F-net operated by National Research Institute for Earth Science and Disaster Prevention Japan. This study is supported by Multidisciplinary research project for Niigata-Kobe tectonic zone promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.
Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
Rivett, Michael O; Dearden, Rachel A; Wealthall, Gary P
2014-12-01
A detailed field-scale investigation of processes controlling the architecture, persistence and dissolution of a 20 to 45year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source zone located within a heterogeneous sand/gravel aquifer at a UK industrial site is presented. The source zone was partially enclosed by a 3-sided cell that allowed detailed longitudinal/fence transect monitoring along/across a controlled streamtube of flow induced by an extraction well positioned at the cell closed end. Integrated analysis of high-resolution DNAPL saturation (Sn) (from cores), dissolved-phase plume concentration (from multilevel samplers), tracer test and permeability datasets was undertaken. DNAPL architecture was determined from soil concentration data using partitioning calculations. DNAPL threshold soil concentrations and low Sn values calculated were sensitive to sorption assumptions. An outcome of this was the uncertainty in demarcation of secondary source zone diffused and sorbed mass that is distinct from trace amounts of low Sn DNAPL mass. The majority of source mass occurred within discrete lenses or pools of DNAPL associated with low permeability geological units. High residual saturation (Sn>10-20%) and pools (Sn>20%) together accounted for almost 40% of the DNAPL mass, but only 3% of the sampled source volume. High-saturation DNAPL lenses/pools were supported by lower permeability layers, but with DNAPL still primarily present within slightly more permeable overlying units. These lenses/pools exhibited approximately linearly declining Sn profiles with increasing elevation ascribed to preferential dissolution of the uppermost DNAPL. Bi-component partitioning calculations on soil samples confirmed that the dechlorination product cDCE (cis-dichloroethene) was accumulating in the TCE DNAPL. Estimated cDCE mole fractions in the DNAPL increased towards the DNAPL interface with the uppermost mole fraction of 0.04 comparable to literature laboratory data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4tonnes per annum over a 16m(2) cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies. Copyright © 2014. Published by Elsevier B.V.
Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone
NASA Astrophysics Data System (ADS)
Rivett, Michael O.; Dearden, Rachel A.; Wealthall, Gary P.
2014-12-01
A detailed field-scale investigation of processes controlling the architecture, persistence and dissolution of a 20 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source zone located within a heterogeneous sand/gravel aquifer at a UK industrial site is presented. The source zone was partially enclosed by a 3-sided cell that allowed detailed longitudinal/fence transect monitoring along/across a controlled streamtube of flow induced by an extraction well positioned at the cell closed end. Integrated analysis of high-resolution DNAPL saturation (Sn) (from cores), dissolved-phase plume concentration (from multilevel samplers), tracer test and permeability datasets was undertaken. DNAPL architecture was determined from soil concentration data using partitioning calculations. DNAPL threshold soil concentrations and low Sn values calculated were sensitive to sorption assumptions. An outcome of this was the uncertainty in demarcation of secondary source zone diffused and sorbed mass that is distinct from trace amounts of low Sn DNAPL mass. The majority of source mass occurred within discrete lenses or pools of DNAPL associated with low permeability geological units. High residual saturation (Sn > 10-20%) and pools (Sn > 20%) together accounted for almost 40% of the DNAPL mass, but only 3% of the sampled source volume. High-saturation DNAPL lenses/pools were supported by lower permeability layers, but with DNAPL still primarily present within slightly more permeable overlying units. These lenses/pools exhibited approximately linearly declining Sn profiles with increasing elevation ascribed to preferential dissolution of the uppermost DNAPL. Bi-component partitioning calculations on soil samples confirmed that the dechlorination product cDCE (cis-dichloroethene) was accumulating in the TCE DNAPL. Estimated cDCE mole fractions in the DNAPL increased towards the DNAPL interface with the uppermost mole fraction of 0.04 comparable to literature laboratory data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4 tonnes per annum over a 16 m2 cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies.
McMahon, P.B.; Böhlke, J.K.; Kauffman, L.J.; Kipp, K.L.; Landon, M.K.; Crandall, C.A.; Burow, K.R.; Brown, C.J.
2008-01-01
In 2003–2005, systematic studies in four contrasting hydrogeologic settings were undertaken to improve understanding of source and transport controls on nitrate movement to public supply wells (PSW) in principal aquifers of the United States. Chemical, isotopic, and age tracer data show that agricultural fertilizers and urban septic leachate were the primary sources of large nitrate concentrations in PSW capture zones at Modesto, California (Central Valley aquifer system) and York, Nebraska (High Plains aquifer). Urban septic leachate and fertilizer (possibly nonfarm) were the primary sources of large nitrate concentrations in PSW capture zones at Woodbury, Connecticut (glacial aquifer system), and Tampa, Florida (Floridan aquifer system), respectively. Nitrate fluxes to the water table were larger in agricultural settings than urban settings, indicating that it would be beneficial to reduce PSW capture zone areas in agricultural regions. Mixing calculations indicate that about 50 to 85% of the nitrate in water from the PSW could be from those modern anthropogenic sources, with the remainder coming from sources in old (>50 years) recharge or sources in young recharge in undisturbed settings such as forests. Excess N2 concentrations and age tracers showed that denitrification at Modesto occurred gradually (first‐order rate constant of 0.02/a) in a thick reaction zone following a ∼30‐year lag time after recharge. Denitrification generally was not an important nitrate sink at Woodbury. At York and Tampa, denitrification occurred rapidly (0.5 to 6/a) in thin reaction zones in fine‐grained sediments that separated the anoxic PSW producing zones from overlying oxic, high‐nitrate ground water. Particle tracking showed that a major pathway by which anthropogenic nitrate reached the York and Tampa PSW was by movement through long well screens crossing multiple hydrogeologic units (York) and by movement through karst features (Tampa), processes which reduced ground water residence times in the denitrifying zones. These results illustrate how PSW vulnerability to nitrate contamination depends on complex variations and interactions between contaminant sources, reaction rates, transit times, mixing, and perturbation of ground water flow in contrasting hydrogeologic settings.
NASA Astrophysics Data System (ADS)
McMahon, P. B.; BöHlke, J. K.; Kauffman, L. J.; Kipp, K. L.; Landon, M. K.; Crandall, C. A.; Burow, K. R.; Brown, C. J.
2008-04-01
In 2003-2005, systematic studies in four contrasting hydrogeologic settings were undertaken to improve understanding of source and transport controls on nitrate movement to public supply wells (PSW) in principal aquifers of the United States. Chemical, isotopic, and age tracer data show that agricultural fertilizers and urban septic leachate were the primary sources of large nitrate concentrations in PSW capture zones at Modesto, California (Central Valley aquifer system) and York, Nebraska (High Plains aquifer). Urban septic leachate and fertilizer (possibly nonfarm) were the primary sources of large nitrate concentrations in PSW capture zones at Woodbury, Connecticut (glacial aquifer system), and Tampa, Florida (Floridan aquifer system), respectively. Nitrate fluxes to the water table were larger in agricultural settings than urban settings, indicating that it would be beneficial to reduce PSW capture zone areas in agricultural regions. Mixing calculations indicate that about 50 to 85% of the nitrate in water from the PSW could be from those modern anthropogenic sources, with the remainder coming from sources in old (>50 years) recharge or sources in young recharge in undisturbed settings such as forests. Excess N2 concentrations and age tracers showed that denitrification at Modesto occurred gradually (first-order rate constant of 0.02/a) in a thick reaction zone following a ˜30-year lag time after recharge. Denitrification generally was not an important nitrate sink at Woodbury. At York and Tampa, denitrification occurred rapidly (0.5 to 6/a) in thin reaction zones in fine-grained sediments that separated the anoxic PSW producing zones from overlying oxic, high-nitrate ground water. Particle tracking showed that a major pathway by which anthropogenic nitrate reached the York and Tampa PSW was by movement through long well screens crossing multiple hydrogeologic units (York) and by movement through karst features (Tampa), processes which reduced ground water residence times in the denitrifying zones. These results illustrate how PSW vulnerability to nitrate contamination depends on complex variations and interactions between contaminant sources, reaction rates, transit times, mixing, and perturbation of ground water flow in contrasting hydrogeologic settings.
Komor, Stephen C.; Magner, Joseph A.
1996-01-01
This study evaluates processes that affect nitrate concentrations in groundwater beneath riparian zones in an agricultural watershed. Nitrate pathways in the upper 2 m of groundwater were investigated beneath wooded and grass-shrub riparian zones next to cultivated fields. Because trees can be important components of the overall nitrate pathway in wooded riparian zones, water sources used by riparian trees and possible effects of trees on nitrate concentrations in groundwater were also investigated. Average nitrate concentrations in shallow groundwater beneath the cultivated fields were 5.5 mg/L upgradient of the wooded riparian zone and 3.5 mg/L upgradient of the grass-shrub zone. Shallow groundwater beneath the fields passed through the riparian zones and discharged into streams that had average nitrate concentrations of 8.5 mg/L (as N). Lateral variations of δD values in groundwater showed that mixing among different water sources occurred beneath the riparian zones. In the wooded riparian zone, nitrate concentrations in shallow groundwater were diluted by upwelling, nitrate-poor, deep groundwater. Upwelling deep groundwater contained ammonium with a δ15N of 5‰ that upon nitrification and mixing with nitrate in shallow groundwater caused nitrate δ15N values in shallow groundwater to decrease by as much as 19.5‰. Stream water penetrated laterally beneath the wooded riparian zone as far as 19 m from the stream's edge and beneath the grass-shrub zone as far as 27 m from the stream's edge. Nitrate concentrations in shallow groundwater immediately upgradient of where it mixed with stream water averaged 0.4 mg/L in the wooded riparian zone and 0.8 mg/L near the grass-shrub riparian zone. Nitrate concentrations increased toward the streams because of mixing with nitrate-rich stream water. Because nitrate concentrations were larger in stream water than shallow groundwater, concentrated nitrate in the streams cannot have come from shallow groundwater at these sites. Water sources of riparian trees were identified by comparing δD values of sap water, soil water, groundwater, and stream water. Soil water was the main water source for trees in the outer 4 to 6 m of one part of the wooded riparian zone and outer 10 m of another part. Groundwater was a significant water source for trees closer to the streams where the water table was less than about 2.1 to 2.7 m below the surface. No evidence was found in the nitrate concentration profiles that trees close to the streams that took up groundwater through their roots also took up nitrate from groundwater. The lack of such evidence is attributed to the nitrate concentration profiles being insufficiently sensitive indicators of nitrate removal by trees.
Vapor Intrusion Estimation Tool for Unsaturated Zone Contaminant Sources. User’s Guide
2016-08-30
324449 Page Intentionally Left Blank iii Executive Summary Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants...strength and location, vadose zone transport, and a model for estimating movement of soil -gas vapor contamination into buildings. The tool may be...framework for estimating the impact of a vadose zone contaminant source on soil gas concentrations and vapor intrusion into a building
The Seismotectonic Model of Southern Africa
NASA Astrophysics Data System (ADS)
Midzi, Vunganai; Mulabisana, Thifelimbulu; Manzunzu, Brassnavy
2013-04-01
Presented in this report is a summary of the major structures and seismotectonic zones in Southern Africa (Botswana, Lesotho, Namibia, South Africa and Swaziland), which includes available information on fault plane solutions and stress data. Reports published by several experts contributed much to the prepared zones. The work was prepared as part of the requirements for the SIDA/IGCP Project 601 titled "Seismotectonics and Seismic Hazards in Africa" as well as part of the seismic source characterisation of the GEM-Africa Seismic hazard study. The seismic data used are part of the earthquake catalogue being prepared for the GEM-Africa project, which includes historical and instrumental records as collected from various agencies. Seventeen seismic zones/sources were identified and demarcated using all the available information. Two of the identiied sources are faults with reliable evidence of their activity. Though more faults have been identified in unpublished material as being active, more work is being carried out to obtain information that can be used to characterise them before they are included in the seismotectonic model. Explanations for the selected boundaries of the zones are also given in the report. It should be noted that this information is the first draft of the seismic source zones of the region. Futher interpreation of the data is envisaged which might result in more than one version of the zones.
Bubble-facilitated VOC transport: Laboratory experiments and numerical modelling
NASA Astrophysics Data System (ADS)
Mumford, K. G.; Soucy, N. C.
2017-12-01
Most conceptual and numerical models of vapor intrusion assume that the transport of volatile organic compounds (VOCs) from the source to near the building foundation is a diffusion-limited processes. However, the transport of VOCs by mobilized gas bubbles through the saturated zone could lead to increased rates of transport and advection through the unsaturated zone, thereby increasing mass flux and risks associated with vapor intrusion. This mobilized gas could be biogenic (methanogenic) but could also result from the partitioning of VOC to trapped atmospheric gases in light non-aqueous phase liquid (LNAPL) smear zones. The potential for bubble-facilitated VOC transport to increase mass flux was investigated in a series of 1D and 2D laboratory experiments. Pentane source zones were emplaced in sand using sequential drainage and imbibition steps to mimic a water table fluctuation and trap air alongside LNAPL residual. This source was placed below an uncontaminated, water saturated sand (occlusion zone) and a gravel-sized (glass beads) unsaturated zone. Water was pumped laterally through the source zone and occlusion zone to deliver the dissolved gases (air) that are required for the expansion of trapped gas bubbles. Images from 2D flow cell experiments were used to demonstrate fluid rearrangement in the source zone and gas expansion to the occlusion zone, and 1D column experiments were used to measure gas-phase pentane mass flux. This flux was found to be 1-2 orders of magnitude greater than that measured in diffusion-dominated control columns, and showed intermittent behavior consistent with bubble transport by repeated expansion, mobilization, coalescence and trapping. Numerical simulation results under a variety of conditions using an approach that couples macroscopic invasion percolation with mass transfer (MIP-MT) between the aqueous and gas phases will also be presented. The results of this study demonstrate the potential for bubble-facilitated transport to increase transport rates linked to vapor intrusion, and will serve as a basis for further development of conceptual and numerical models to investigate the conditions under which this mechanism may play an important role.
Sihota, Natasha J; Singurindy, Olga; Mayer, K Ulrich
2011-01-15
In order to gain regulatory approval for source zone natural attenuation (SZNA) at hydrocarbon-contaminated sites, knowledge regarding the extent of the contamination, its tendency to spread, and its longevity is required. However, reliable quantification of biodegradation rates, an important component of SZNA, remains a challenge. If the rate of CO(2) gas generation associated with contaminant degradation can be determined, it may be used as a proxy for the overall rate of subsurface biodegradation. Here, the CO(2)-efflux at the ground surface is measured using a dynamic closed chamber (DCC) method to evaluate whether this technique can be used to assess the areal extent of the contaminant source zone and the depth-integrated rate of contaminant mineralization. To this end, a field test was conducted at the Bemidji, MN, crude oil spill site. Results indicate that at the Bemidji site the CO(2)-efflux method is able to both delineate the source zone and distinguish between the rates of natural soil respiration and contaminant mineralization. The average CO(2)-efflux associated with contaminant degradation in the source zone is estimated at 2.6 μmol m(-2) s(-1), corresponding to a total petroleum hydrocarbon mineralization rate (expressed as C(10)H(22)) of 3.3 g m(-2) day(-1).
Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table.
Kim, Jeongkon; Corapcioglu, M Yavuz
2003-08-01
A vertically averaged two-dimensional model was developed to describe areal spreading and migration of light nonaqueous-phase liquids (LNAPLs) introduced into the subsurface by spills or leaks from underground storage tanks. The NAPL transport model was coupled with two-dimensional contaminant transport models to predict contamination of soil gas and groundwater resulting from a LNAPL migrating on the water table. Numerical solutions were obtained by using the finite-difference method. Simulations and sensitivity analyses were conducted with a LNAPL of pure benzene to study LNAPL migration and groundwater contamination. The model was applied to subsurface contamination by jet fuel. Results indicated that LNAPL migration were affected mostly by volatilization. The generation and movement of the dissolved plume was affected by the geology of the site and the free-product plume. Most of the spilled mass remained as a free LNAPL phase 20 years after the spill. The migration of LNAPL for such a long period resulted in the contamination of both groundwater and a large volume of soil.
Principal component analysis of MSBAS DInSAR time series from Campi Flegrei, Italy
NASA Astrophysics Data System (ADS)
Tiampo, Kristy F.; González, Pablo J.; Samsonov, Sergey; Fernández, Jose; Camacho, Antonio
2017-09-01
Because of its proximity to the city of Naples and with a population of nearly 1 million people within its caldera, Campi Flegrei is one of the highest risk volcanic areas in the world. Since the last major eruption in 1538, the caldera has undergone frequent episodes of ground subsidence and uplift accompanied by seismic activity that has been interpreted as the result of a stationary, deeper source below the caldera that feeds shallower eruptions. However, the location and depth of the deeper source is not well-characterized and its relationship to current activity is poorly understood. Recently, a significant increase in the uplift rate has occurred, resulting in almost 13 cm of uplift by 2013 (De Martino et al., 2014; Samsonov et al., 2014b; Di Vito et al., 2016). Here we apply a principal component decomposition to high resolution time series from the region produced by the advanced Multidimensional SBAS DInSAR technique in order to better delineate both the deeper source and the recent shallow activity. We analyzed both a period of substantial subsidence (1993-1999) and a second of significant uplift (2007-2013) and inverted the associated vertical surface displacement for the most likely source models. Results suggest that the underlying dynamics of the caldera changed in the late 1990s, from one in which the primary signal arises from a shallow deflating source above a deeper, expanding source to one dominated by a shallow inflating source. In general, the shallow source lies between 2700 and 3400 m below the caldera while the deeper source lies at 7600 m or more in depth. The combination of principal component analysis with high resolution MSBAS time series data allows for these new insights and confirms the applicability of both to areas at risk from dynamic natural hazards.
Secondary electron ion source neutron generator
Brainard, John P.; McCollister, Daryl R.
1998-01-01
A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof
76 FR 17 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... 24, 2010 080101 1121). of Larimer County February 15, 2010; Johnson, Chair Pro-Tem, (09-08-0465P...: Collier (FEMA Docket No.: B- City of Marco Island February 19, 2010; Mr. Stephen T. Thompson, February 9, 2010 120426 1121). (09-04-7821P). February 26, 2010; Marco Island City Naples Daily News. Manager, 50...
EX.MAIN. Expert System Model for Maintenance and Staff Training.
ERIC Educational Resources Information Center
Masturzi, Elio R.
EX.MAIN, a model for maintenance and staff training which combines knowledge based expert systems and computer based training, was developed jointly by the Department of Production Engineering of the University of Naples and CIRCUMVESUVIANA, the largest private railroad in Italy. It is a global model in the maintenance field which contains both…
A matrix of batch, column and two-dimensional (2-D) box experiments was conducted to investigate the coupled effects of rate-limited solubilization and layering on the entrapment and subsequent recovery of a representative dense NAPL, tetrachloroethylene (PCE)...
Cornell Mixing Zone Expert System
This page provides an overview Cornell Mixing Zone Expert System water quality modeling and decision support system designed for environmental impact assessment of mixing zones resulting from wastewater discharge from point sources
Horizontal gene transfer versus biostimulation: A strategy for bioremediation in Goa.
Pasumarthi, Rajesh; Mutnuri, Srikanth
2016-12-15
Bioaugmentation, Biostimulation and Horizontal gene transfer (HGT) of catabolic genes have been proven for their role in bioremediation of hydrocarbons. It also has been proved that selection of either biostimulation or bioremediation varies for every contaminated site. The reliability of HGT compared to biostimulation and bioremediation was not tested. The present study focuses on reliability of biostimulatiion, bioaugmentation and HGT during biodegradation of Diesel oil and Non aqueous phase liquids (NAPL). Pseudomonas aeruginosa (AEBBITS1) having alkB and NDO genes was used for bioaugmentation and the experiment was conducted using seawater as medium. Based on Gas chromatography results diesel was found to be degraded to 100% in both presence and absence of AEBBITS1. Denturing gradient gel electrophoresis result showed same pattern in presence and absence of AEBBITS1 indicating no HGT. NAPL degradation was found to be more by Biostimulated Bioaugmentation compared to biostimulation and bioaugmentation alone. This proves that biostimulated bioaugmentation is better strategy for oil contamination (tarabll) in Velsao beach, Goa. Copyright © 2016 Elsevier Ltd. All rights reserved.
Navarro-Marí, José María; Gómez-Camarasa, Cristina; Pérez-Ruiz, Mercedes; Sanbonmatsu-Gámez, Sara; Pedrosa-Corral, Irene; Jiménez-Valera, María
2013-01-01
Granada virus (GRV), a new phlebovirus within the Naples serocomplex, has been recently described in phlebotomine sandflies from Spain. The presence of anti-GRV immunoglobulin G (IgG) antibodies was investigated by indirect fluorescence assay (IFA) and neutralization test (NT) in 920 serum samples from the Granada population. By IFA, an overall GRV seroprevalence of 15.8% (N = 145) was observed, significantly increasing up to 65 years. NT was positive in 18% of anti-GRV IFA-positive samples. IgG antibodies against Toscana virus (TOSV), a hyperendemic phlebovirus within Granada province, were detected in 40% of anti-GRV–positive cases. Anti-GRV IgM antibodies were detected in 36 (6.6%) of 547 acute-phase serum samples from individuals with febrile illness, exanthema, and/or acute respiratory infection. All positives were anti-TOSV IgM-negative. GRV may infect humans, with most cases being asymptomatic. The codetection of anti-GRV and anti-TOSV IgG antibodies could be attributable to cross-reactivity or exposure to the same transmission vector. PMID:23419365
Navarro-Marí, José María; Gómez-Camarasa, Cristina; Pérez-Ruiz, Mercedes; Sanbonmatsu-Gámez, Sara; Pedrosa-Corral, Irene; Jiménez-Valera, María
2013-05-01
Granada virus (GRV), a new phlebovirus within the Naples serocomplex, has been recently described in phlebotomine sandflies from Spain. The presence of anti-GRV immunoglobulin G (IgG) antibodies was investigated by indirect fluorescence assay (IFA) and neutralization test (NT) in 920 serum samples from the Granada population. By IFA, an overall GRV seroprevalence of 15.8% (N = 145) was observed, significantly increasing up to 65 years. NT was positive in 18% of anti-GRV IFA-positive samples. IgG antibodies against Toscana virus (TOSV), a hyperendemic phlebovirus within Granada province, were detected in 40% of anti-GRV-positive cases. Anti-GRV IgM antibodies were detected in 36 (6.6%) of 547 acute-phase serum samples from individuals with febrile illness, exanthema, and/or acute respiratory infection. All positives were anti-TOSV IgM-negative. GRV may infect humans, with most cases being asymptomatic. The codetection of anti-GRV and anti-TOSV IgG antibodies could be attributable to cross-reactivity or exposure to the same transmission vector.
Toward direct pore-scale modeling of three-phase displacements
NASA Astrophysics Data System (ADS)
Mohammadmoradi, Peyman; Kantzas, Apostolos
2017-12-01
A stable spreading film between water and gas can extract a significant amount of bypassed non-aqueous phase liquid (NAPL) through immiscible three-phase gas/water injection cycles. In this study, the pore-scale displacement mechanisms by which NAPL is mobilized are incorporated into a three-dimensional pore morphology-based model under water-wet and capillary equilibrium conditions. The approach is pixel-based and the sequence of invasions is determined by the fluids' connectivity and the threshold capillary pressure of the advancing interfaces. In addition to the determination of three-phase spatial saturation profiles, residuals, and capillary pressure curves, dynamic finite element simulations are utilized to predict the effective permeabilities of the rock microtomographic images as reasonable representations of the geological formations under study. All the influential features during immiscible fluid flow in pore-level domains including wetting and spreading films, saturation hysteresis, capillary trapping, connectivity, and interface development strategies are taken into account. The capabilities of the model are demonstrated by the successful prediction of saturation functions for Berea sandstone and the accurate reconstruction of three-phase fluid occupancies through a micromodel.
NASA Astrophysics Data System (ADS)
Esrael, D.; Kacem, M.; Benadda, B.
2017-07-01
We investigate how the simulation of the venting/soil vapour extraction (SVE) process is affected by the mass transfer coefficient, using a model comprising five partial differential equations describing gas flow and mass conservation of phases and including an expression accounting for soil saturation conditions. In doing so, we test five previously reported quations for estimating the non-aqueous phase liquid (NAPL)/gas initial mass transfer coefficient and evaluate an expression that uses a reference NAPL saturation. Four venting/SVE experiments utilizing a sand column are performed with dry and non-saturated sand at low and high flow rates, and the obtained experimental results are subsequently simulated, revealing that hydrodynamic dispersion cannot be neglected in the estimation of the mass transfer coefficient, particularly in the case of low velocities. Among the tested models, only the analytical solution of a convection-dispersion equation and the equation proposed herein are suitable for correctly modelling the experimental results, with the developed model representing the best choice for correctly simulating the experimental results and the tailing part of the extracted gas concentration curve.
Analytical solutions for efficient interpretation of single-well push-pull tracer tests
NASA Astrophysics Data System (ADS)
Huang, Junqi; Christ, John A.; Goltz, Mark N.
2010-08-01
Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations describing the governing processes acting on a dissolved compound during a modified push-pull test (advection, longitudinal and transverse dispersion, first-order decay, and rate-limited sorption/partitioning in steady, divergent, and convergent flow fields) is developed. The coupling of this solution with inverse modeling to estimate aquifer parameters provides an efficient methodology for subsurface characterization. Synthetic data for single-well push-pull tests are employed to demonstrate the utility of the solution for determining (1) estimates of aquifer longitudinal and transverse dispersivities, (2) sorption distribution coefficients and rate constants, and (3) non-aqueous phase liquid (NAPL) saturations. Employment of the solution to estimate NAPL saturations based on partitioning and non-partitioning tracers is designed to overcome limitations of previous efforts by including rate-limited mass transfer. This solution provides a new tool for use by practitioners when interpreting single-well push-pull test results.
NASA Astrophysics Data System (ADS)
Ishihara, T.
2003-12-01
The existence of magnetic anomalies along east-west trending fracture zones in the north Pacific is well known. These anomalies are particularly prominent in the Cretaceous magnetic quiet zone, where no comparable anomalies are observed other than those associated with the Hawaiian Ridge and the Musician Seamounts in a newly compiled magnetic anomaly map. Model calculation was conducted using old magnetic and bathymetric data collected in the Cretaceous magnetic quiet zone. Two-dimensional simple models along north-south lines, which cross the Mendocino, Pioneer, Murray, Molokai and Clarion Fracture Zones, were constructed in order to clarify the sources of these magnetic anomalies. In these model calculations, it was assumed that the source bodies have normal remanent magnetizations with their inclinations of about
Implications of matrix diffusion on 1,4-dioxane persistence at contaminated groundwater sites.
Adamson, David T; de Blanc, Phillip C; Farhat, Shahla K; Newell, Charles J
2016-08-15
Management of groundwater sites impacted by 1,4-dioxane can be challenging due to its migration potential and perceived recalcitrance. This study examined the extent to which 1,4-dioxane's persistence was subject to diffusion of mass into and out of lower-permeability zones relative to co-released chlorinated solvents. Two different release scenarios were evaluated within a two-layer aquifer system using an analytical modeling approach. The first scenario simulated a 1,4-dioxane and 1,1,1-TCA source zone where spent solvent was released. The period when 1,4-dioxane was actively loading the low-permeability layer within the source zone was estimated to be <3years due to its high effective solubility. While this was approximately an order-of-magnitude shorter than the loading period for 1,1,1-TCA, the mass of 1,4-dioxane stored within the low-permeability zone at the end of the simulation period (26kg) was larger than that predicted for 1,1,1-TCA (17kg). Even 80years after release, the aqueous 1,4-dioxane concentration was still several orders-of-magnitude higher than potentially-applicable criteria. Within the downgradient plume, diffusion contributed to higher concentrations and enhanced penetration of 1,4-dioxane into the low-permeability zones relative to 1,1,1-TCA. In the second scenario, elevated 1,4-dioxane concentrations were predicted at a site impacted by migration of a weak source from an upgradient site. Plume cutoff was beneficial because it could be implemented in time to prevent further loading of the low-permeability zone at the downgradient site. Overall, this study documented that 1,4-dioxane within transmissive portions of the source zone is quickly depleted due to characteristics that favor both diffusion-based storage and groundwater transport, leaving little mass to treat using conventional means. Furthermore, the results highlight the differences between 1,4-dioxane and chlorinated solvent source zones, suggesting that back diffusion of 1,4-dioxane mass may be serving as the dominant long-term "secondary source" at many contaminated sites that must be managed using alternative approaches. Copyright © 2016 Elsevier B.V. All rights reserved.
CONTROLLED FIELD STUDY ON THE USE OF NITRATE AND OXYGEN FOR BIOREMEDIATION OF A GASOLINE SOURCE ZONE
Controlled releases of unleaded gasoline were used to evaluate the biotransformation of the soluble aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene isomers, trimethylbenzene isomers, and naphthalene) within a source zone using nitrate and oxygen as electron accepto...
Earthquake Forecasting in Northeast India using Energy Blocked Model
NASA Astrophysics Data System (ADS)
Mohapatra, A. K.; Mohanty, D. K.
2009-12-01
In the present study, the cumulative seismic energy released by earthquakes (M ≥ 5) for a period 1897 to 2007 is analyzed for Northeast (NE) India. It is one of the most seismically active regions of the world. The occurrence of three great earthquakes like 1897 Shillong plateau earthquake (Mw= 8.7), 1934 Bihar Nepal earthquake with (Mw= 8.3) and 1950 Upper Assam earthquake (Mw= 8.7) signify the possibility of great earthquakes in future from this region. The regional seismicity map for the study region is prepared by plotting the earthquake data for the period 1897 to 2007 from the source like USGS,ISC catalogs, GCMT database, Indian Meteorological department (IMD). Based on the geology, tectonic and seismicity the study region is classified into three source zones such as Zone 1: Arakan-Yoma zone (AYZ), Zone 2: Himalayan Zone (HZ) and Zone 3: Shillong Plateau zone (SPZ). The Arakan-Yoma Range is characterized by the subduction zone, developed by the junction of the Indian Plate and the Eurasian Plate. It shows a dense clustering of earthquake events and the 1908 eastern boundary earthquake. The Himalayan tectonic zone depicts the subduction zone, and the Assam syntaxis. This zone suffered by the great earthquakes like the 1950 Assam, 1934 Bihar and the 1951 Upper Himalayan earthquakes with Mw > 8. The Shillong Plateau zone was affected by major faults like the Dauki fault and exhibits its own style of the prominent tectonic features. The seismicity and hazard potential of Shillong Plateau is distinct from the Himalayan thrust. Using energy blocked model by Tsuboi, the forecasting of major earthquakes for each source zone is estimated. As per the energy blocked model, the supply of energy for potential earthquakes in an area is remarkably uniform with respect to time and the difference between the supply energy and cumulative energy released for a span of time, is a good indicator of energy blocked and can be utilized for the forecasting of major earthquakes. The proposed process provides a more consistent model of gradual accumulation of strain and non-uniform release through large earthquakes and can be applied in the evaluation of seismic risk. The cumulative seismic energy released by major earthquakes throughout the period from 1897 to 2007 of last 110 years in the all the zones are calculated and plotted. The plot gives characteristics curve for each zone. Each curve is irregular, reflecting occasional high activity. The maximum earthquake energy available at a particular time in a given area is given by S. The difference between the theoretical upper limit given by S and the cumulative energy released up to that time is calculated to find out the maximum magnitude of an earthquake which can occur in future. Energy blocked of the three source regions are 1.35*1017 Joules, 4.25*1017 Joules and 0.12*1017 in Joules respectively for source zone 1, 2 and 3, as a supply for potential earthquakes in due course of time. The predicted maximum magnitude (mmax) obtained for each source zone AYZ, HZ, and SPZ are 8.2, 8.6, and 8.4 respectively by this model. This study is also consistent with the previous predicted results by other workers.
Active hold-down for heat treating
NASA Technical Reports Server (NTRS)
Collins, E. R., Jr. (Inventor)
1986-01-01
The object of the disclosure is to provide a vacuum hold-down for holding thin sheets to a support surface, which permits the thin sheet to change dimensions as it is held down. The hold-down includes numerous holes in the support surface, through which a vacuum is applied from a vacuum source. The holes are arranged in zones. The vacuum is repeatedly interrupted at only one or a few zones, while it continues to be applied to other zones, to allow the workpiece to creep along that interrupted zone. The vacuum to different zones is interrupted at different times, as by a slowly turning valve number, to allow each zone of the workpiece to creep. A positive pressure may be applied from a pressured air source to a zone when the vacuum is interrupted there, to help lift the corresponding workpiece zone off the surface to aid in creeping. The workpiece may undergo dimensional changes because of heating, cooling, drying, or other procedure.
Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis.
Lessels, Jason S; Tetzlaff, Doerthe; Birkel, Christian; Dick, Jonathan; Soulsby, Chris
2016-01-01
Mixing of waters within riparian zones has been identified as an important influence on runoff generation and water quality. Improved understanding of the controls on the spatial and temporal variability of water sources and how they mix in riparian zones is therefore of both fundamental and applied interest. In this study, we have combined topographic indices derived from a high-resolution Digital Elevation Model (DEM) with repeated spatially high-resolution synoptic sampling of multiple tracers to investigate such dynamics of source water mixing. We use geostatistics to estimate concentrations of three different tracers (deuterium, alkalinity, and dissolved organic carbon) across an extended riparian zone in a headwater catchment in NE Scotland, to identify spatial and temporal influences on mixing of source waters. The various biogeochemical tracers and stable isotopes helped constrain the sources of runoff and their temporal dynamics. Results show that spatial variability in all three tracers was evident in all sampling campaigns, but more pronounced in warmer dryer periods. The extent of mixing areas within the riparian area reflected strong hydroclimatic controls and showed large degrees of expansion and contraction that was not strongly related to topographic indices. The integrated approach of using multiple tracers, geospatial statistics, and topographic analysis allowed us to classify three main riparian source areas and mixing zones. This study underlines the importance of the riparian zones for mixing soil water and groundwater and introduces a novel approach how this mixing can be quantified and the effect on the downstream chemistry be assessed.
Imperato, Pascal James
2015-10-01
For many centuries, unwed mothers in southern Italy were forced to surrender their infants because of a number of social, religious, economic, and political pressures. This study focuses on the policies and practices that were in place in southern Italy regarding illegitimate infants in the late nineteenth century. A detailed analysis of the policies and practices present in the town of Forio d'Ischia during the 20-year period 1880-1899 is also presented. During these two decades, there were 37 illegitimate live births representing 0.70% of the 5249 live births recorded in this town. Although small in number, these illegitimate births, referred to as spuri in Italian, from the Latin spurius, meaning bastard, were managed by standard predetermined procedures. These included anonymity for the parents, the transfer of such infants to an official town receiver of foundlings, and their transport to Naples' orphanage, the Real Casa Santa dell'Annunziata. This orphanage maintained fairly detailed records about the children who were delivered to it. After a few days at the orphanage, infants were often entrusted to the care of external wet nurses, preferably outside of Naples. This was done in the belief that infant survival was better assured in more rural environments. The case of an illegitimate infant, Antonino Spinalbese, is presented in detail. Born on 14 February 1882 in the town of Forio d'Ischia, he was brought to the orphanage 4 days later. Following a two-day stay at the orphanage, he was entrusted to an external wet nurse, Michele Mondella, and her husband, Ciro Fiscale di Felice, a mariner in the town of Torre del Greco. The available evidence indicates that Antonino Spinalbese became a mariner like his stepfather. As a crew member of the passenger ship, Vulcano, he made three trips from Naples to New York City in 1922 and 1923.
The Impact of State Enterprise Zones on Urban Manufacturing Establishments
ERIC Educational Resources Information Center
Greenbaum, Robert T.; Engberg, John B.
2004-01-01
Since the early 1980s, the vast majority of states have implemented enterprise zones. This paper analyzes urban zones in six states, examining the factors that states use to choose zone locations and the subsequent effect of the zones on business activity and employment. The source of outcome data is the U.S. Bureau of Census' longitudinal…
Secondary electron ion source neutron generator
Brainard, J.P.; McCollister, D.R.
1998-04-28
A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter is disclosed. The target contains occluded deuterium, tritium, or a mixture thereof. 4 figs.
FIELD MEASUREMENTS OF CONTAMINANT FLUX BY INTEGRAL PUMPING TESTS (SAN FRANCISCO, CA)
Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of flux measurements before and af...
CONTAMINANT FLUX RESPONSES TO THERMAL TREATMENT OF DNAPL SOURCE ZONES (ABSTRACT ONLY)
Contaminant flux is being proposed as a metric to help elucidate the benefits of DNAPL source-zone remedial efforts. While it is clear that aggressive remediation technologies can rapidly remove DNAPL mass, experience has shown that complete removal is often not practicable. H...
The energy release in earthquakes, and subduction zone seismicity and stress in slabs. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Vassiliou, M. S.
1983-01-01
Energy release in earthquakes is discussed. Dynamic energy from source time function, a simplified procedure for modeling deep focus events, static energy estimates, near source energy studies, and energy and magnitude are addressed. Subduction zone seismicity and stress in slabs are also discussed.
MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE
Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...
THE MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE
Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...
NASA Astrophysics Data System (ADS)
Zhong, L.; Lee, M. H.; Lee, B.; Yang, S.
2016-12-01
Delivery of nutrient to and establish a slow release carbon source in the vadose zone and capillary fringe zone is essential for setting up of a long-lasting bioremediation of contaminations in those zones. Conventional solution-based injection and infiltration approaches are facing challenges to achieve the delivery and remedial goals. Aqueous silica suspensions undergo a delayed gelation process under favorite geochemical conditions. The delay in gelation provides a time window for the injection of the suspension into the subsurface; and the gelation of the amendment-silica suspension enables the amendment-laden gel to stay in the target zone and slowly release the constituents for contaminant remediation. This approach can potentially be applied to deliver bio-nutrients to the vadose zone and capillary fringe zone for enhanced bioremediation and achieve remedial goals. This research was conducted to demonstrate delayed gelation of colloidal silica suspensions when carbon sources were added and to prove the gelation occurs in sediments under vadose conditions. Sodium lactate, vegetable oil, ethanol, and molasses were tested as the examples of carbon source (or nutrient) amendments. The rheological properties of the silica suspensions during the gelation were characterized. The influence of silica, salinity, nutrient concentrations, and the type of nutrients was studied. The kinetics of nutrient release from silica-nutrient gel was quantified using molasses as the example, and the influence of suspension gelation time was evaluated. The injection behavior of the suspensions was investigated by monitoring their viscosity changes and the injection pressures when the suspensions were delivered into sediment columns.
Hydrogen peroxide (H2O2) catalyzed by soluble iron or naturally occurring soil minerals, (i.e., modified Fenton's reagent) was investigated as a basis for mineralizing sorbed and NAPL-phase benzo[a]pyrene (BaP), a hydrophobic and toxic polycyclic a...
Surface Currents. Norwegian and Barents Seas.
1980-01-01
DIRECTION. 231 23 - 6 1 SECONDARY DIRECTION). 2 044 37- 10 06 f ’A, SPEEOS 1.0 KNOT PRIMARy DIRECTION. 0.6 KNOT1 I- t 043 SECONDARY DIRtTION). D I P 0 0...LONDON NWSED MAYPORT NWSED NAPLES NWSED PATUXENT RIVER NWSED ROOSEVELT ROADS NWSED SIGONELLA NWSED SOUDA BAY OTHER GOVT. NOAAINODC NOM ,/NCC SCCUMVVV
Defense.gov Special Report: Travels with Winnefeld: USO Tour
Kaneohe Bay - Hawaii Osan Air Base - South Korea CIA Factbook - Diego Garcia Bagram Air Base - Afghanistan Naval Support Activity - Bahrain Naval Support Activity Naples - Italy Ramstein Air Base - Germany Photo Attacked in Seoul Stars Bring Piece of Home to Bagram Airfield During USO Spring Troop Visit Forward Base
Education for Poor Neapolitan Children: Julie Schwabe's Nineteenth-Century Secular Mission
ERIC Educational Resources Information Center
Albisetti, James C.
2006-01-01
British support for Italian unification in the nineteenth century is well known but little research exists on continued British involvement with Italy after 1860. One of the most remarkable figures of this era was Julie Schwabe, who launched a one-woman campaign to raise funds to establish schools in Naples. Her first institution closed because of…
Depleted UF6 Internet Resources
been used to color glass for almost 2 millennia. A uranium-colored glass object was found near Naples , Italy, and dated to about 79 A.D. Uranium oxide added to glass produces a yellow to greenish hue. more Board Defense Nuclear Facilities Safety Board (DNFSB) The Defense Nuclear Facilities Safety Board
Li, Lei; Wang, Tie-yu; Wang, Xiaojun; Xiao, Rong-bo; Li, Qi-feng; Peng, Chi; Han, Cun-liang
2016-04-15
Based on comprehensive consideration of soil environmental quality, pollution status of river, environmental vulnerability and the stress of pollution sources, a technical method was established for classification of priority area of soil environmental protection around the river-style water sources. Shunde channel as an important drinking water sources of Foshan City, Guangdong province, was studied as a case, of which the classification evaluation system was set up. In detail, several evaluation factors were selected according to the local conditions of nature, society and economy, including the pollution degree of heavy metals in soil and sediment, soil characteristics, groundwater sensitivity, vegetation coverage, the type and location of pollution sources. Data information was mainly obtained by means of field survey, sampling analysis, and remote sensing interpretation. Afterwards, Analytical Hierarchy Process (AHP) was adopted to decide the weight of each factor. The basic spatial data layers were set up respectively and overlaid based on the weighted summation assessment model in Geographical Information System (GIS), resulting in a classification map of soil environmental protection level in priority area of Shunde channel. Accordingly, the area was classified to three levels named as polluted zone, risky zone and safe zone, which respectively accounted for 6.37%, 60.90% and 32.73% of the whole study area. Polluted zone and risky zone were mainly distributed in Lecong, Longjiang and Leliu towns, with pollutants mainly resulted from the long-term development of aquaculture and the industries containing furniture, plastic constructional materials and textile and clothing. In accordance with the main pollution sources of soil, targeted and differentiated strategies were put forward. The newly established evaluation method could be referenced for the protection and sustainable utilization of soil environment around the water sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yixing; Hong, Tianzhen
We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while balancing the simulation run time for UBEM.« less
Chen, Yixing; Hong, Tianzhen
2018-02-20
We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while balancing the simulation run time for UBEM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, R.B.; Nguyen, B.
Earthquake activity in the New Madrid Seismic Zone had been monitored by regional seismic networks since 1975. During this time period, over 3,700 earthquakes have been located within the region bounded by latitudes 35{degrees}--39{degrees}N and longitudes 87{degrees}--92{degrees}W. Most of these earthquakes occur within a 1.5{degrees} x 2{degrees} zone centered on the Missouri Bootheel. Source parameters of larger earthquakes in the zone and in eastern North America are determined using surface-wave spectral amplitudes and broadband waveforms for the purpose of determining the focal mechanism, source depth and seismic moment. Waveform modeling of broadband data is shown to be a powerful toolmore » in defining these source parameters when used complementary with regional seismic network data, and in addition, in verifying the correctness of previously published focal mechanism solutions.« less
The Bolivian source rocks: Sub Andean Zone-Madre de Dios-Chaco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moretti, I.; Montemurro, G.; Aguilera, E.
A complete study of source rocks has been carried out in the Bolivian foothills and foreland (Sub Andean Zone, Chaco and Madre de Dios) in order to quantify the petroleum potential of the area. Besides the classical mid-Devonian source rocks (Tequeje Formation in the north, Limoncito Formation in the center and Los Monos Formation in the south), others are important: the Tomachi Formation (late Devonian) in the north and the Copacabana Formation (Upper Carboniferous-lower Permian) in the northern Sub Andean Zone. Both show an excellent potential with S{sub 2} over 50 mg HC/g and average values higher than 10 mgmore » HC/g over few hundred meters. The Latest Cretaceous Flora Formation present locally a high potential but is very thin. Almost all the source rocks matured during the Neogene due to the subsidence in the Andean foreland and in the piggyback basins, and are thus involved on the current petroleum system. Silurian and Lower Paleozoic units also contain thick shale beds, but these source rocks were mature before the Jurassic in the south of the country. In the center, the Silurian is not nowadays overmature and may play an important role. The different zones are compared based on their Source Potential Index which indicates that the richest areas are the northern Sub Andean Zone and the Madre de Dios basin with SPI greater than 10 t/m{sup 2}. Since these two areas remain almost unexplored, these results allow us to be optimistic about the possibilities for future exploration.« less
Hanson, Stanley L.; Perkins, David M.
1995-01-01
The construction of a probabilistic ground-motion hazard map for a region follows a sequence of analyses beginning with the selection of an earthquake catalog and ending with the mapping of calculated probabilistic ground-motion values (Hanson and others, 1992). An integral part of this process is the creation of sources used for the calculation of earthquake recurrence rates and ground motions. These sources consist of areas and lines that are representative of geologic or tectonic features and faults. After the design of the sources, it is necessary to arrange the coordinate points in a particular order compatible with the input format for the SEISRISK-III program (Bender and Perkins, 1987). Source zones are usually modeled as a point-rupture source. Where applicable, linear rupture sources are modeled with articulated lines, representing known faults, or a field of parallel lines, representing a generalized distribution of hypothetical faults. Based on the distribution of earthquakes throughout the individual source zones (or a collection of several sources), earthquake recurrence rates are computed for each of the sources, and a minimum and maximum magnitude is assigned. Over a period of time from 1978 to 1980 several conferences were held by the USGS to solicit information on regions of the United States for the purpose of creating source zones for computation of probabilistic ground motions (Thenhaus, 1983). As a result of these regional meetings and previous work in the Pacific Northwest, (Perkins and others, 1980), California continental shelf, (Thenhaus and others, 1980), and the Eastern outer continental shelf, (Perkins and others, 1979) a consensus set of source zones was agreed upon and subsequently used to produce a national ground motion hazard map for the United States (Algermissen and others, 1982). In this report and on the accompanying disk we provide a complete list of source areas and line sources as used for the 1982 and later 1990 seismic hazard maps for the conterminous U.S. and Alaska. These source zones are represented in the input form required for the hazard program SEISRISK-III, and they include the attenuation table and several other input parameter lines normally found at the beginning of an input data set for SEISRISK-III.
NASA Astrophysics Data System (ADS)
Loyd, Sean J.; Berelson, William M.; Lyons, Timothy W.; Hammond, Douglas E.; Corsetti, Frank A.
2012-02-01
Carbonate concretions can form as a result of organic matter degradation within sediments. However, the ability to determine specific processes and timing relationships to particular concretions has remained elusive. Previously employed proxies (e.g., carbon and oxygen isotopes) cannot uniquely distinguish among diagenetic alkalinity sources generated by microbial oxidation of organic matter using oxygen, nitrate, metal oxides, and sulfate as electron acceptors, in addition to degradation by thermal decarboxylation. Here, we employ concentrations of carbonate-associated sulfate (CAS) and δ 34S CAS (along with more traditional approaches) to determine the specific nature of concretion authigenesis within the Miocene Monterey Formation. Integrated geochemical analyses reveal that at least three specific organo-diagenetic reaction pathways can be tied to concretion formation and that these reactions are largely sample-site specific. One calcitic concretion from the Phosphatic Shale Member at Naples Beach yields δ 34S CAS values near Miocene seawater sulfate (˜+22‰ VCDT), abundant CAS (ca. 1000 ppm), depleted δ 13C carb (˜-11‰ VPDB), and very low concentrations of Fe (ca. 700 ppm) and Mn (ca. 15 ppm)—characteristics most consistent with shallow formation in association with organic matter degradation by nitrate, iron-oxides and/or minor sulfate reduction. Cemented concretionary layers of the Phosphatic Shale Member at Shell Beach display elevated δ 34S CAS (up to ˜+37‰), CAS concentrations of ˜600 ppm, mildly depleted δ 13C carb (˜-6‰), moderate amounts of Mn (ca. 250 ppm), and relatively low Fe (ca. 1700 ppm), indicative of formation in sediments dominated by sulfate reduction. Finally, concretions within a siliceous host at Montaña de Oro and Naples Beach show minimal CAS concentrations, positive δ 13C values, and the highest concentrations of Fe (ca. 11,300 ppm) and Mn (ca. 440 ppm), consistent with formation in sediments experiencing methanogenesis in a highly reducing environment. This study highlights the promise in combining CAS analysis with more traditional techniques to differentiate among diagenetic reactions as preserved in the geologic record and shows potential for unraveling subsurface biospheric processes in ancient samples with a high degree of specificity.
NASA Astrophysics Data System (ADS)
Tiampo, Kristy; Samsonov, Sergey; González, Pablo; Fernández, Jose; Camacho, Antonio
2014-05-01
Studies identify Campi Flegrei caldera as one of the highest risk volcanic areas in the world because of its close proximity to the city of Naples, the third largest municipality in Italy with population close to 1 million inhabitants, making it one of the most dangerous volcanic areas on Earth (Orsi et al., 2004; De Natale et al., 2006; Isaia et al., 2009). The last major eruption occurred at Monte Nuovo in 1538, following a short term of ground uplift which interrupted a period of secular subsidence that continued after the eruption. Since that time, Campi Flegrei caldera has undergone frequent episodes of ground uplift and subsidence, with uplift phases accompanied by seismic activity (Troise et al., 2007). Well-established volcanic surveillance networks monitor changes in seismicity, gas emissions and active ground deformation occurring in volcanic areas as indicators of renewed volcanic/magmatic activities, potentially culminating in eruption. Since 1988, secular subsidence has continued at the historic rate of approximately 1.5 cm/yr. Surveys revealed significant gravity changes between 1981 and 2001, likely the result of dynamic changes in the subsurface magmatic reservoir (Dvorak & Berrino, 1991; Fernández et al., 2001; Gottsmann et al., 2003), changes within the subsurface hydrothermal systems (Bonafede & Mazzanti, 1998), or a combination (Gottsmann et al., 2005, 2006). In this study we apply the advanced Multidimensional SBAS (MSBAS) InSAR technique to measure ground deformation with high temporal and spatial resolution, and with high precision. We used 2003-2010 ENVISAT and 2009-2013 RADARSAT-2 satellite radar images and produced time series for the vertical and horizontal (east-west) components of deformation. Ground deformation results cover the entire Naples Bay area and, in particular, Campi Flegrei. Starting from June of 2010 we observe a moderate uplift at Campi Flegrei caldera. The rate of uplift substantially increased in 2011 and further accelerated in 2012. Between 2010 and 2013, the maximum cumulative uplift reached about 13 cm. Horizontal motions of up to 7 cm also were observed. We model the observed ground deformation in order to determine source parameters and the implication for volcanic hazard reduction in the Campi Flegrei region.
Estimating organic maturity from well logs, Upper Cretaceous Austin Chalk, Texas Gulf coast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, G.A.; Berg, R.R.
1990-09-01
The Austin Chalk is both a source rock for oil and a fractured reservoir, and the evaluation of its organic maturity from well logs could be an aid to exploration and production. Geochemical measurements have shown three zones of organic maturity for source materials: (1) an immature zone to depths of 6,000 ft, (2) a peak-generation and accumulation zone from 6,000 to 6,500 ft, and (3) a mature, expulsion and migration zone below 6,500 ft. The response of common well logs identifies these zones. True resistivity (R{sub t}) is low in the immature zone, increases to a maximum in themore » peak-generation zone, and decreases to intermediate values in the expulsion zone. Density and neutron porosities are different in the immature zone but are nearly equal in the peak generation and expulsion zones. Correlations with conventional core analyses indicate that R{sub t} values between 9 and 40 ohm-m in the expulsion zone reflect a moveable oil saturation of 10 to 20% in the rock matrix. The moveable saturation provides oil from the matrix to fractures and is essential for sustained oil production. Therefore, the evaluation of moveable oil from well logs could be important in exploration.« less
Juckem, Paul F.; Corsi, Steven R.; McDermott, Colleen; Kleinheinz, Gregory; Fogarty, Lisa R.; Haack, Sheridan K.; Johnson, Heather E.
2013-01-01
Fecal Indicator Bacteria (FIB) concentrations in beach water have been used for many years as a criterion for closing beaches due to potential health concerns. Yet, current understanding of sources and transport mechanisms that drive FIB occurrence remains insufficient for accurate prediction of closures at many beaches. Murphy Park Beach, a relatively pristine beach on Green Bay in Door County, Wis., was selected for a study to evaluate FIB sources and transport mechanisms. Although the relatively pristine nature of the beach yielded no detection of pathogenic bacterial genes and relatively low FIB concentrations during the study period compared with other Great Lakes Beaches, its selection limited the number of confounding FIB sources and associated transport mechanisms. The primary sources of FIB appear to be internal to the beach rather than external sources such as rivers, storm sewer outfalls, and industrial discharges. Three potential FIB sources were identified: sand, swash-zone groundwater, and Cladophora mats. Modest correlations between FIB concentrations in these potential source reservoirs and FIB concentrations at the beach from the same day illustrate the importance of understanding transport mechanisms between FIB sources and the water column. One likely mechanism for transport and dispersion of FIB from sand and Cladophora sources appears to be agitation of Cladophora mats and erosion of beach sand due to storm activity, as inferred from storm indicators including turbidity, wave height, current speed, wind speed, sky visibility, 24-hour precipitation, and suspended particulate concentration. FIB concentrations in beach water had a statistically significant relation (p-value ‹0.05) with the magnitude of these storm indicators. In addition, transport of FIB in swash-zone groundwater into beach water appears to be driven by groundwater recharge associated with multiday precipitation and corresponding increased swash-zone groundwater discharge at the beach, as indicated by an increase in the specific conductance of beach water. Understanding the dynamics of FIB sources (sand, swash-zone groundwater, and Cladophora) and transport mechanisms (dispersion and erosion from storm energy, and swash-zone groundwater discharge) is important for improving predictions of potential health risks from FIB in beach water.
Bedada, Selamawit Yilma; Gallagher, Kathleen; Aregay, Aron Kassahun; Mohammed, Bashir; Maalin, Mohammed Adem; Hassen, Hassen Abdisemed; Ali, Yusuf Mohammed; Braka, Fiona; Kilebou, Pierre M'pele
2017-01-01
Communication is key for the successful implementation of polio vaccination campaigns. The purpose of this study is to review and analyse the sources of information utilized by caregivers during polio supplementary immunization activities (SIAs) in Somali, Ethiopia in 2014 and 2015. Data on sources of information about the polio campaign were collected post campaign from caregivers by trained data collectors as part of house to house independent monitoring. The sources of information analysed in this paper include town criers (via megaphones), health workers, religious leaders, kebele leaders (Kebele is the lowest administrative structure in Ethiopia), radio, television, text message and others. The repetition of these sources of information was analysed across years and zones for trends. Polio vaccination campaign coverage was also reviewed by year and zones within the Somali region in parallel with the major sources of information used in the respective year and zones. 57,745 responses were used for this analysis but the responses were received from < or = 57,745 individuals since some of them may provide more than one response. Moreover, because sampling of households is conducted independently during each round of independent monitoring, the same household may have been included more than once in our analysis. The methodology used for independent monitoring does not allow for the calculation of response rates. Monitors go from house to house until information from 20 households is received. From the total 57,745 responses reviewed, over 37% of respondents reported that town criers were their source for information about the 2014 and 2015 polio SIAs. Zonal trends in using town criers as a major source of information in both study years remained consistent except in two zones. 87.5% of zones that reported at least 90% coverage during both study years had utilized town criers as a major source of information while the rest (12.5%) used health workers. We found that town criers were consistently the major source of information about the polio campaigns for Somali region parents and caregivers during polio immunization days held in 2014 and 2015. Health workers and kebele leaders were also important sources of information about the polio campaign for parents.
NASA Astrophysics Data System (ADS)
Brusseau, M. L.; Carroll, K. C.; Baker, J. B.; Allen, T.; DiGuiseppi, W.; Hatton, J.; Morrison, C.; Russo, A. E.; Berkompas, J. L.
2011-12-01
A large-scale permanganate-based in-situ chemical oxidation (ISCO) effort has been conducted over the past ten years at a federal Superfund site in Tucson, AZ, for which trichloroethene (TCE) is the primary contaminant of concern. Remediation performance was assessed by examining the impact of treatment on contaminant mass discharge, an approach that has been used for only a very few prior ISCO projects. Contaminant mass discharge tests were conducted before and after permanganate injection to measure the impact at the source-zone scale. The results indicate that ISCO caused a significant reduction in mass discharge (approximately 75%). The standard approach of characterizing discharge at the source-zone scale was supplemented with additional characterization at the plume scale, which was evaluated by examining the change in contaminant mass discharge associated with the pump-and-treat system. The integrated contaminant mass discharge decreased by approximately 70%, consistent with the source-zone-scale measurements. The integrated mass discharge rebounded from 0.1 to 0.2 Kg/d within one year after cessation of permanganate injections, after which it has been stable for several years. Collection of the integrated contaminant mass discharge data throughout the ISCO treatment period provided a high-resolution, real-time analysis of the site-wide impact of ISCO, thereby linking source-zone remediation to impacts on overall risk. The results indicate that ISCO was successful in reducing contaminant mass discharge at this site, which comprises a highly heterogeneous subsurface environment. Analysis of TCE sediment concentration data for core material collected before and after ISCO supports the hypothesis that the remaining mass discharge is associated in part with poorly-accessible contaminant mass residing within lower-permeability zones.
Brusseau, M L; Carroll, K C; Allen, T; Baker, J; Diguiseppi, W; Hatton, J; Morrison, C; Russo, A; Berkompas, J
2011-06-15
A large-scale permanganate-based in situ chemical oxidation (ISCO) effort has been conducted over the past ten years at a federal Superfund site in Tucson, AZ, for which trichloroethene (TCE) is the primary contaminant of concern. Remediation performance was assessed by examining the impact of treatment on contaminant mass discharge, an approach that has been used for only a very few prior ISCO projects. Contaminant mass discharge tests were conducted before and after permanganate injection to measure the impact at the source-zone scale. The results indicate that ISCO caused a significant reduction in mass discharge (approximately 75%). The standard approach of characterizing discharge at the source-zone scale was supplemented with additional characterization at the plume scale, which was evaluated by examining the change in contaminant mass discharge associated with the pump-and-treat system. The integrated contaminant mass discharge decreased by approximately 70%, consistent with the source-zone-scale measurements. The integrated mass discharge rebounded from 0.1 to 0.2 kg/d within one year after cessation of permanganate injections, after which it has been stable for several years. Collection of the integrated contaminant mass discharge data throughout the ISCO treatment period provided a high-resolution, real-time analysis of the site-wide impact of ISCO, thereby linking source-zone remediation to impacts on overall risk. The results indicate that ISCO was successful in reducing contaminant mass discharge at this site, which comprises a highly heterogeneous subsurface environment. Analysis of TCE sediment concentration data for core material collected before and after ISCO supports the hypothesis that the remaining mass discharge is associated in part with poorly accessible contaminant mass residing within lower-permeability zones.
Soil water nitrate concentrations in giant cane and forest riparian buffer zones
Jon E. Schoonover; Karl W. J. Williard; James J. Zaczek; Jean C. Mangun; Andrew D. Carver
2003-01-01
Soil water nitrate concentrations in giant cane and forest riparian buffer zones along Cypress Creek in southern Illinois were compared to determine if the riparian zones were sources or sinks for nitrogen in the rooting zone. Suction lysimeters were used to collect soil water samples from the lower rooting zone in each of the two vegetation types. The cane riparian...
PLANT INVASIONS IN RHODE ISLAND RIPARIAN ZONES
The vegetation in riparian zones provides valuable wildlife habitat while enhancing instream habitat and water quality. Forest fragmentation, sunlit edges, and nutrient additions from adjacent development may be sources of stress on riparian zones. Landscape plants may include no...
A field pilot study was conducted to evaluate the performance of a combined ferrous sulfate/sodium dithionite solution for in situ treatment of a saturated zone hexavalent chromium source area at a former ferrochromium alloy production facility in Charleston, S.C. The saturate...
Distributed watershed modeling of design storms to identify nonpoint source loading areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endreny, T.A.; Wood, E.F.
1999-03-01
Watershed areas that generate nonpoint source (NPS) polluted runoff need to be identified prior to the design of basin-wide water quality projects. Current watershed-scale NPS models lack a variable source area (VSA) hydrology routine, and are therefore unable to identify spatially dynamic runoff zones. The TOPLATS model used a watertable-driven VSA hydrology routine to identify runoff zones in a 17.5 km{sup 2} agricultural watershed in central Oklahoma. Runoff areas were identified in a static modeling framework as a function of prestorm watertable depth and also in a dynamic modeling framework by simulating basin response to 2, 10, and 25 yrmore » return period 6 h design storms. Variable source area expansion occurred throughout the duration of each 6 h storm and total runoff area increased with design storm intensity. Basin-average runoff rates of 1 mm h{sup {minus}1} provided little insight into runoff extremes while the spatially distributed analysis identified saturation excess zones with runoff rates equaling effective precipitation. The intersection of agricultural landcover areas with these saturation excess runoff zones targeted the priority potential NPS runoff zones that should be validated with field visits. These intersected areas, labeled as potential NPS runoff zones, were mapped within the watershed to demonstrate spatial analysis options available in TOPLATS for managing complex distributions of watershed runoff. TOPLATS concepts in spatial saturation excess runoff modelling should be incorporated into NPS management models.« less
Widdowson, M.A.; Chapelle, F.H.; Brauner, J.S.; ,
2003-01-01
A method is developed for optimizing monitored natural attenuation (MNA) and the reduction in the aqueous source zone concentration (??C) required to meet a site-specific regulatory target concentration. The mathematical model consists of two one-dimensional equations of mass balance for the aqueous phase contaminant, to coincide with up to two distinct zones of transformation, and appropriate boundary and intermediate conditions. The solution is written in terms of zone-dependent Peclet and Damko??hler numbers. The model is illustrated at a chlorinated solvent site where MNA was implemented following source treatment using in-situ chemical oxidation. The results demonstrate that by not taking into account a variable natural attenuation capacity (NAC), a lower target ??C is predicted, resulting in unnecessary source concentration reduction and cost with little benefit to achieving site-specific remediation goals.
NASA Astrophysics Data System (ADS)
Serchan, S. P.; Wondzell, S. M.; Haggerty, R.; Pennington, R.; Feris, K. P.; Sanfilippo, A. R.; Reeder, W. J.; Tonina, D.
2016-12-01
Hyporheic zone biogeochemical processes can influence stream water chemistry. Some estimates show that 50-90% stream water CO2 is produced in the hyporheic zone through heterotrophic metabolism of organic matter, usually supplied from the stream as dissolved organic carbon (DOC). Preliminary results from our well network at the HJ Andrews WS1, indicate that dissolved inorganic carbon (DIC) is 1.5-2 times higher in the hyporheic zone than in stream water. Conversely, DOC (mg/L) is 1.5 times higher in stream water than in the hyporheic zone throughout the year. Overall, the hyporheic zone appears to be a net source of DIC. However, the increase in DIC along hyporheic flow paths is approximately 10-times greater than the loss of DOC, suggesting that metabolism of buried particulate organic carbon (POC) is a major source of organic carbon for microbial metabolism. However, we cannot completely rule out alternative sources of DIC, especially those originating in the overlying riparian soil, because hyporheic processes are difficult to isolate in well networks. To study hyporheic zone biogeochemical processes, particularly the transformation of organic carbon to inorganic carbon species, we designed and built six replicate 2-m long hyporheic mesocosms in which we are conducting DOC amendment experiments. We examine the role of DOC quality and quantity on hyporheic respiration by injecting labile (acetate) and refractory (fulvic acid) organic carbon and comparing rates of O2 consumption, DOC loss, and DIC gains against a control. We expect that stream source DOC is limiting in this small headwater stream, forcing hyporheic metabolism to rely on buried POC. However, the long burial time of POC suggests it is likely of low quality so that supplying labile DOC in stream water should shift hyporheic metabolism away from POC rather than increase the overall rate of metabolism. Future experiments will examine natural sources of DOC (stream periphyton, leaf, and soil humic horizon leachates), the breakdown of wood buried in the hyporheic zone, and the role of temperature and nutrients in controlling the rate at which buried POC is metabolized.
The ZONMET thermodynamic and kinetic model of metal condensation
NASA Astrophysics Data System (ADS)
Petaev, Michail I.; Wood, John A.; Meibom, Anders; Krot, Alexander N.; Keil, Klaus
2003-05-01
The ZONMET model of metal condensation is a FORTRAN computer code that calculates condensation with partial isolation-type equilibrium partitioning of the 19 most abundant elements among 203 gaseous and 488 condensed phases and growth in the nebula of a zoned metal grain by condensation from the nebular gas accompanied by diffusional redistribution of Ni, Co, and Cr. Of five input parameters of the ZONMET model (chemical composition of the system expressed as the dust/gas [ D/ G] ratio, nebular pressure [ Ptot], isolation degree [ξ], cooling rate ( CR), and seed size), only two—the D/ G ratio and the CR of the nebular source region of a zoned Fe,Ni grain—are important in determining the grain radius and Ni, Co, and Cr zoning profiles. We found no evidence for the supercooling during condensation of Fe,Ni metal that is predicted by the homogeneous nucleation theory. The model allows estimates to be made of physicochemical parameters in the CH chondrite nebular source regions. Modeling growth and simultaneous diffusional redistribution of Ni, Co, and Cr in the zoned metal grains of CH chondrites reveals that the condensation zoning profiles were substantially modified by diffusion while the grains were growing in the nebula. This means that previous estimates of the physicochemical conditions in the nebular source regions of CH and CB chondrites, based on measured zoning profiles of Ni, Co, Cr, and platinum group elements in Fe,Ni metal grains, need to be corrected. The two zoned metal grains in the PAT 91456 and NWA 470 CH chondrites studied so far require nebular source regions with different chemical compositions ( D/ G = 1 and D/ G = 4, respectively) and thermal histories characterized by variable cooling rates ( CR = 0.011 + 0.0022 × Δ T K/h and CR = 0.05 + 0.0035 × Δ T K/h, respectively). It appears that the metal grains of the CH chondrites were formed in multiple nebular source regions or in different events within the same source region as the CB chondrite metal grains were formed.
Hunt, Andrew G.; Lambert, Rebecca B.; Fahlquist, Lynne
2010-01-01
This report evaluates dissolved noble gas data, specifically helium-3 and helium-4, collected by the U.S. Geological Survey, in cooperation with the San Antonio Water System, during 2002-03. Helium analyses are used to provide insight into the sources of groundwater in the freshwater/saline-water transition zone of the San Antonio segment of the Edwards aquifer. Sixty-nine dissolved gas samples were collected from 19 monitoring wells (categorized as fresh, transitional, or saline on the basis of dissolved solids concentration in samples from the wells or from fluid-profile logging of the boreholes) arranged in five transects, with one exception, across the freshwater/saline-water interface (the 1,000-milligrams-per-liter dissolved solids concentration threshold) of the Edwards aquifer. The concentration of helium-4 (the dominant isotope in atmospheric and terrigenic helium) in samples ranged from 63 microcubic centimeters per kilogram at standard temperature (20 degrees Celsius) and pressure (1 atmosphere) in a well in the East Uvalde transect to 160,587 microcubic centimeters per kilogram at standard temperature and pressure in a well in the Kyle transect. Helium-4 concentrations in the 10 saline wells generally increase from the western transects to the eastern transects. Increasing helium-4 concentrations from southwest to northeast in the transition zone, indicating increasing residence time of groundwater from southwest to northeast, is consistent with the longstanding conceptualization of the Edwards aquifer in which water recharges in the southwest, flows generally northeasterly (including in the transition zone, although more slowly than in the fresh-water zone), and discharges at major springs in the northeast. Excess helium-4 was greater than 1,000 percent for 60 of the 69 samples, indicating that terrigenic helium is largely present and that most of the excess helium-4 comes from sources other than the atmosphere. The helium data of this report cannot be used to identify sources of groundwater in and near the transition zone of the Edwards aquifer in terms of specific geologic (stratigraphic) units or hydrogeologic units (aquifers or confining units). However, the data indicate that the source or sources of the helium, and thus the water in which the helium is dissolved, in the transition zone are mostly terrigenic in origin rather than atmospheric. Whether most helium in and near the transition zone of the Edwards aquifer originated either in rocks outside the transition zone and at depth or in the adjacent Trinity aquifer is uncertain; but most of the helium in the transition zone had to enter the transition zone from the Trinity aquifer because the Trinity aquifer is the hydrogeologic unit immediately beneath and laterally adjacent to the transition zone of the Edwards aquifer. Thus the helium data support a hypothesis of sufficient hydraulic connection between the Trinity and Edwards aquifers to allow movement of water from the Trinity aquifer to the transition zone of the Edwards aquifer.
Coda Q Attenuation and Source Parameters Analysis in North East India Using Local Earthquakes
NASA Astrophysics Data System (ADS)
Mohapatra, A. K.; Mohanty, W. K.; Earthquake Seismology
2010-12-01
Alok Kumar Mohapatra1* and William Kumar Mohanty1 *Corresponding author: alokgpiitkgp@gmail.com 1Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur, West Bengal, India. Pin-721302 ABSTRACT In the present study, the quality factor of coda waves (Qc) and the source parameters has been estimated for the Northeastern India, using the digital data of ten local earthquakes from April 2001 to November 2002. Earthquakes with magnitude range from 3.8 to 4.9 have been taken into account. The time domain coda decay method of a single back scattering model is used to calculate frequency dependent values of Coda Q (Qc) where as, the source parameters like seismic moment(Mo), stress drop, source radius(r), radiant energy(Wo),and strain drop are estimated using displacement amplitude spectrum of body wave using Brune's model. The earthquakes with magnitude range 3.8 to 4.9 have been used for estimation Qc at six central frequencies 1.5 Hz, 3.0 Hz, 6.0 Hz, 9.0 Hz, 12.0 Hz, and 18.0 Hz. In the present work, the Qc value of local earthquakes are estimated to understand the attenuation characteristic, source parameters and tectonic activity of the region. Based on a criteria of homogeneity in the geological characteristics and the constrains imposed by the distribution of available events the study region has been classified into three zones such as the Tibetan Plateau Zone (TPZ), Bengal Alluvium and Arakan-Yuma Zone (BAZ), Shillong Plateau Zone (SPZ). It follows the power law Qc= Qo (f/fo)n where, Qo is the quality factor at the reference frequency (1Hz) fo and n is the frequency parameter which varies from region to region. The mean values of Qc reveals a dependence on frequency, varying from 292.9 at 1.5 Hz to 4880.1 at 18 Hz. Average frequency dependent relationship Qc values obtained of the Northeastern India is 198 f 1.035, while this relationship varies from the region to region such as, Tibetan Plateau Zone (TPZ): Qc= 226 f 1.11, Bengal Alluvium and Arakan-Yuma Zone (BAZ) : Qc= 301 f 0.87, Shillong Plateau Zone (SPZ): Qc=126 fo 0.85. It indicates Northeastern India is seismically active but comparing of all zones in the study region the Shillong Plateau Zone (SPZ): Qc= 126 f 0.85 is seismically most active. Where as the Bengal Alluvium and Arakan-Yuma Zone (BAZ) are less active and out of three the Tibetan Plateau Zone (TPZ)is intermediate active. This study may be useful for the seismic hazard assessment. The estimated seismic moments (Mo), range from 5.98×1020 to 3.88×1023 dyne-cm. The source radii(r) are confined between 152 to 1750 meter, the stress drop ranges between 0.0003×103 bar to 1.04×103 bar, the average radiant energy is 82.57×1018 ergs and the strain drop for the earthquake ranges from 0.00602×10-9 to 2.48×10-9 respectively. The estimated stress drop values for NE India depicts scattered nature of the larger seismic moment value whereas, they show a more systematic nature for smaller seismic moment values. The estimated source parameters are in agreement to previous works in this type of tectonic set up. Key words: Coda wave, Seismic source parameters, Lapse time, single back scattering model, Brune's model, Stress drop and North East India.
BYMUR software: a free and open source tool for quantifying and visualizing multi-risk analyses
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Selva, Jacopo
2013-04-01
The BYMUR software aims to provide an easy-to-use open source tool for both computing multi-risk and managing/visualizing/comparing all the inputs (e.g. hazard, fragilities and exposure) as well as the corresponding results (e.g. risk curves, risk indexes). For all inputs, a complete management of inter-model epistemic uncertainty is considered. The BYMUR software will be one of the final products provided by the homonymous ByMuR project (http://bymur.bo.ingv.it/) funded by Italian Ministry of Education, Universities and Research (MIUR), focused to (i) provide a quantitative and objective general method for a comprehensive long-term multi-risk analysis in a given area, accounting for inter-model epistemic uncertainty through Bayesian methodologies, and (ii) apply the methodology to seismic, volcanic and tsunami risks in Naples (Italy). More specifically, the BYMUR software will be able to separately account for the probabilistic hazard assessment of different kind of hazardous phenomena, the relative (time-dependent/independent) vulnerabilities and exposure data, and their possible (predefined) interactions: the software will analyze these inputs and will use them to estimate both single- and multi- risk associated to a specific target area. In addition, it will be possible to connect the software to further tools (e.g., a full hazard analysis), allowing a dynamic I/O of results. The use of Python programming language guarantees that the final software will be open source and platform independent. Moreover, thanks to the integration of some most popular and rich-featured Python scientific modules (Numpy, Matplotlib, Scipy) with the wxPython graphical user toolkit, the final tool will be equipped with a comprehensive Graphical User Interface (GUI) able to control and visualize (in the form of tables, maps and/or plots) any stage of the multi-risk analysis. The additional features of importing/exporting data in MySQL databases and/or standard XML formats (for instance, the global standards defined in the frame of GEM project for seismic hazard and risk) will grant the interoperability with other FOSS software and tools and, at the same time, to be on hand of the geo-scientific community. An already available example of connection is represented by the BET_VH(**) tool, which probabilistic volcanic hazard outputs will be used as input for BYMUR. Finally, the prototype version of BYMUR will be used for the case study of the municipality of Naples, by considering three different natural hazards (volcanic eruptions, earthquakes and tsunamis) and by assessing the consequent long-term risk evaluation. (**)BET_VH (Bayesian Event Tree for Volcanic Hazard) is probabilistic tool for long-term volcanic hazard assessment, recently re-designed and adjusted to be run on the Vhub cyber-infrastructure, a free web-based collaborative tool in volcanology research (see http://vhub.org/resources/betvh).
NASA Astrophysics Data System (ADS)
Singh, A. P.; Mishra, O. P.
2015-10-01
In order to understand the processes involved in the genesis of monsoon induced micro to moderate earthquakes after heavy rainfall during the Indian summer monsoon period beneath the 2011 Talala, Saurashtra earthquake (Mw 5.1) source zone, we assimilated 3-D microstructures of the sub-surface rock materials using a data set recorded by the Seismic Network of Gujarat (SeisNetG), India. Crack attributes in terms of crack density (ε), the saturation rate (ξ) and porosity parameter (ψ) were determined from the estimated 3-D sub-surface velocities (Vp, Vs) and Poisson's ratio (σ) structures of the area at varying depths. We distinctly imaged high-ε, high-ξ and low-ψ anomalies at shallow depths, extending up to 9-15 km. We infer that the existence of sub-surface fractured rock matrix connected to the surface from the source zone may have contributed to the changes in differential strain deep down to the crust due to the infiltration of rainwater, which in turn induced micro to moderate earthquake sequence beneath Talala source zone. Infiltration of rainwater during the Indian summer monsoon might have hastened the failure of the rock by perturbing the crustal volume strain of the causative source rock matrix associated with the changes in the seismic moment release beneath the surface. Analyses of crack attributes suggest that the fractured volume of the rock matrix with high porosity and lowered seismic strength beneath the source zone might have considerable influence on the style of fault displacements due to seismo-hydraulic fluid flows. Localized zone of micro-cracks diagnosed within the causative rock matrix connected to the water table and their association with shallow crustal faults might have acted as a conduit for infiltrating the precipitation down to the shallow crustal layers following the fault suction mechanism of pore pressure diffusion, triggering the monsoon induced earthquake sequence beneath the source zone.
Relationship between mass-flux reduction and source-zone mass removal: analysis of field data.
Difilippo, Erica L; Brusseau, Mark L
2008-05-26
The magnitude of contaminant mass-flux reduction associated with a specific amount of contaminant mass removed is a key consideration for evaluating the effectiveness of a source-zone remediation effort. Thus, there is great interest in characterizing, estimating, and predicting relationships between mass-flux reduction and mass removal. Published data collected for several field studies were examined to evaluate relationships between mass-flux reduction and source-zone mass removal. The studies analyzed herein represent a variety of source-zone architectures, immiscible-liquid compositions, and implemented remediation technologies. There are two general approaches to characterizing the mass-flux-reduction/mass-removal relationship, end-point analysis and time-continuous analysis. End-point analysis, based on comparing masses and mass fluxes measured before and after a source-zone remediation effort, was conducted for 21 remediation projects. Mass removals were greater than 60% for all but three of the studies. Mass-flux reductions ranging from slightly less than to slightly greater than one-to-one were observed for the majority of the sites. However, these single-snapshot characterizations are limited in that the antecedent behavior is indeterminate. Time-continuous analysis, based on continuous monitoring of mass removal and mass flux, was performed for two sites, both for which data were obtained under water-flushing conditions. The reductions in mass flux were significantly different for the two sites (90% vs. approximately 8%) for similar mass removals ( approximately 40%). These results illustrate the dependence of the mass-flux-reduction/mass-removal relationship on source-zone architecture and associated mass-transfer processes. Minimal mass-flux reduction was observed for a system wherein mass removal was relatively efficient (ideal mass-transfer and displacement). Conversely, a significant degree of mass-flux reduction was observed for a site wherein mass removal was inefficient (non-ideal mass-transfer and displacement). The mass-flux-reduction/mass-removal relationship for the latter site exhibited a multi-step behavior, which cannot be predicted using some of the available simple estimation functions.
Rebound of a coal tar creosote plume following partial source zone treatment with permanganate.
Thomson, N R; Fraser, M J; Lamarche, C; Barker, J F; Forsey, S P
2008-11-14
The long-term management of dissolved plumes originating from a coal tar creosote source is a technical challenge. For some sites stabilization of the source may be the best practical solution to decrease the contaminant mass loading to the plume and associated off-site migration. At the bench-scale, the deposition of manganese oxides, a permanganate reaction byproduct, has been shown to cause pore plugging and the formation of a manganese oxide layer adjacent to the non-aqueous phase liquid creosote which reduces post-treatment mass transfer and hence mass loading from the source. The objective of this study was to investigate the potential of partial permanganate treatment to reduce the ability of a coal tar creosote source zone to generate a multi-component plume at the pilot-scale over both the short-term (weeks to months) and the long-term (years) at a site where there is >10 years of comprehensive synoptic plume baseline data available. A series of preliminary bench-scale experiments were conducted to support this pilot-scale investigation. The results from the bench-scale experiments indicated that if sufficient mass removal of the reactive compounds is achieved then the effective solubility, aqueous concentration and rate of mass removal of the more abundant non-reactive coal tar creosote compounds such as biphenyl and dibenzofuran can be increased. Manganese oxide formation and deposition caused an order-of-magnitude decrease in hydraulic conductivity. Approximately 125 kg of permanganate were delivered into the pilot-scale source zone over 35 days, and based on mass balance estimates <10% of the initial reactive coal tar creosote mass in the source zone was oxidized. Mass discharge estimated at a down-gradient fence line indicated >35% reduction for all monitored compounds except for biphenyl, dibenzofuran and fluoranthene 150 days after treatment, which is consistent with the bench-scale experimental results. Pre- and post-treatment soil core data indicated a highly variable and random spatial distribution of mass within the source zone and provided no insight into the mass removed of any of the monitored species. The down-gradient plume was monitored approximately 1, 2 and 4 years following treatment. The data collected at 1 and 2 years post-treatment showed a decrease in mass discharge (10 to 60%) and/or total plume mass (0 to 55%); however, by 4 years post-treatment there was a rebound in both mass discharge and total plume mass for all monitored compounds to pre-treatment values or higher. The variability of the data collected was too large to resolve subtle changes in plume morphology, particularly near the source zone, that would provide insight into the impact of the formation and deposition of manganese oxides that occurred during treatment on mass transfer and/or flow by-passing. Overall, the results from this pilot-scale investigation indicate that there was a significant but short-term (months) reduction of mass emanating from the source zone as a result of permanganate treatment but there was no long-term (years) impact on the ability of this coal tar creosote source zone to generate a multi-component plume.
Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.
2011-12-01
The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and dechlorination kinetics were reflected in a transient, spatially heterogeneous bioavailability number and dissolution enhancement. In agreement with the literature, source zone architecture largely determined the impact of mass transfer on potential dissolution enhancement, with bioavailability decreasing the most at high ganglia to pool ratios. The results of this study suggest that if mass transfer rate limitations are not considered in designing bioremediation applications at DNAPL source zones, the enhancement of DNAPL depletion and the overall effectiveness of enhanced bioremediation may be significantly overestimated.
Geographical mapping of fluoride levels in drinking water sources in Nigeria.
Akpata, Enosakhare S; Danfillo, I S; Otoh, E C; Mafeni, J O
2009-12-01
Knowledge of fluoride levels in drinking water is of importance in dental public health, yet this information is lacking, at national level, in Nigeria. To map out fluoride levels in drinking water sources in Nigeria. Fluoride levels in drinking water sources from 109 randomly selected Local Government Areas (LGAs) in the 6 Nigerian geopolitical zones were determined. From the results, maps showing LGAs with fluoride concentrations exceeding 0.3 ppm, were drawn. ANOVA and t-test were used to determine the significance of the differences between the fluoride levels in the drinking water sources. Fluoride levels were low in most parts of the country, being 0.3 ppm or less in 62% of the LGAs. Fluoride concentrations were generally higher in North Central geopolitical zone, than the other zones in the country (p<0.05). In a few drinking water sources, fluoride concentrations exceeded 1.5 ppm, but was as high as 6.7 ppm in one well. Only 9% of the water sources were from waterworks. Most of the water sources in Nigeria contained low fluoride levels; but few had excessive concentrations and need to be partially defluoridated, or else alternative sources of drinking water provided for the community.
NASA Astrophysics Data System (ADS)
Barker, J.; Nelson, L.; Doughty, C.; Thomson, N.; Lambert, J.
2009-05-01
In the shallow, rather homogeneous, unconfined Borden sand aquifer, field trials of air sparging (Tomlinson et al., 2003) and pulsed air sparging (Lambert et al., 2009) have been conducted, the latter to remediate a residual gasoline source emplaced below the water table. As well, a supersaturated (with CO2) water injection (SWI) technology, using the inVentures inFusion system, has been trialed in two phases: 1. in the uncontaminated sand aquifer to evaluate the radius of influence, extent of lateral gas movement and gas saturation below the water table, and 2. in a sheet pile cell in the Borden aquifer to evaluate the recovery of volatile hydrocarbon components (pentane and hexane) of an LNAPL emplaced below the water table (Nelson et al., 2008). The SWI injects water supersaturated with CO2. The supersaturated injected water moves laterally away from the sparge point, releasing CO2 over a wider area than does gas sparging from a single well screen. This presentation compares these two techniques in terms of their potential for remediating volatile NAPL components occurring below the water table in a rather homogeneous sand aquifer. Air sparging created a significantly greater air saturation in the vicinity of the sparge well than did the CO2 system (60 percent versus 16 percent) in the uncontaminated Borden aquifer. However, SWI pushed water, still supersaturated with CO2, up to about 2.5 m from the injection well. This would seem to provide a considerable advantage over air sparging from a point, in that gas bubbles are generated at a much larger radius from the point of injection with SWI and so should involve additional gas pathways through a residual NAPL. Overall, air sparging created a greater area of influence, defined by measurable air saturation in the aquifer, but air sparging also injected about 12 times more gas than was injected in the SWI trials. The pulsed air sparging at Borden (Lambert et al.) removed about 20 percent (4.6 kg) of gasoline hydrocarbons, mainly pentane and hexane, from the residual gasoline via sparging. A similar mass was estimated to have been removed by aerobic biodegradation. The extent of volatile recovery needs to be better defined and so post-sparging coring and analysis of residual LNAPL is underway. Impressively, the second SWI trial recovered more than 60 percent of the pentane-hexane from the NAPL. In both field experiments there was potential for minor additional recovery if the system had been operated longer. Comparison of efficiency of the pulsed air sparging and SWI systems is difficult in that the initial LNAPL residuals have different chemistry, but similar distribution, different volumes of gas were used, and biodegradation accounted for a significant removal of hydrocarbons only in the air sparging system. The SWI trial recovered an impressive portion of the volatile LNAPL, while using considerably less gas than the air sparging system, but the SWI delivery system was both more complex and more expensive than the air sparging system. Additional trials are underway in more complex aquifers to further assess the performance of the SWI technology, including costs and practical limitations.
MINERVA: An INSAR Monitoring Service for Volcanic Hazard
NASA Astrophysics Data System (ADS)
Tampellini, M. L.; Sansosti, E.; Usai, S.; Lanari, R.; Borgstrom, S.; van Persie, M.; Ricciardi, G. P.; Maddalena, V.; Cicero, L.; Pepe, A.
2004-06-01
MINERVA (Monitoring by Interferometric SAR of Environmental Risk in Volcanic Areas) is a small scale service demonstration project financed by ESA in the Data User Programme framework. The objective of the project is the design, development and assessment of a demonstrative information service based on the interferometric processing of images acquired from either the ASAR instrument on board ENVISAT-I or SAR instruments on board ERS1/2. The system is based on a new approach for the processing of INSAR data, which allows to optimize the quality of interferograms spanning from 35 days up to several years, and to merge them to generate a single solution describing the temporal evolution of the ground deformations in the examined risk area. The system allows to update this solution each time a new SAR image is available, and constitutes therefore an innovative tool for monitoring of the ground displacements in risk areas. The system has been implemented and demonstrated at Osservatorio Vesuviano (Naples, Italy), which is the institution responsible for monitoring the volcanic phenomena in the Neapolitan volcanic district, and for alerting the Italian civil authorities (''Protezione Civile'') in case such monitoring activity reveals signals of imminent eruptions. In particular, the MINERVA system has been used to monitor the ground deformations at the Phlegrean Fields, a densely populated, high-hazard zone which is subject to alternate phases of uplift and subsidence, accompanied often by seismic activity.
Mercury Cadmium Selenide for Infrared Detection
2013-06-01
were grown using elemental mercury (Hg), cadmium (Cd), and selenium (Se) sources. The beam equiva- lent pressure ( BEP ) emanating from all sources was...flux), the BEP measured for the cracker source was found to vary with the cracking zone temperature, tracking with the data found in Ref. 7. This sug...The Se BEP measured for the typical cracking zone temperature of 800 C was found to be close to a factor of two lower than at the typical effusion cell
Seismic velocity structure in the western part of Nankai subduction zone
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Obana, K.; Takahashi, T.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.
2011-12-01
In the Nankai Trough, three major seismogenic zones of megathrust earthquake exist (Tokai, Tonankai and Nankai earthquake regions). The Hyuga-nada region was distinguished from these seismogenic zones because of the lack of megathrust earthquake. However, recent studies show the possibility of simultaneous rupture of the Nankai and Hyuga-nada segments was also pointed out [e.g., Furumura et al, 2010 JGR]. Because seismic velocity structure is one of the useful and basic information for understanding the possibility of seismic linkage of Nankai and Hyuga-nada segments, Japan Agency for Marine-Earth Science and Technology has been carried out a series of wide-angle active source surveys and local seismic observations among the three major seismogenic zones and Hyuga-nada segment from 2008, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan". We are performing two set of three-dimensional seismic velocity tomographic inversions, one is in the Hyuga-nada region and the other is western part of the coseismic rupture area of 1946 Nankai earthquake, to discuss the relationship between the structural heterogeneities and the location of segment boundary between Hyuga-nada and Nankai segment. For the analysis of Hyuga-nada segment, we used both active and passive source data. The obtained velocity model clearly showed the subducted Kyushu-Palau ridge as thick low velocity Philippine Sea slab in the southwestern part. Our velocity image also indicates that "the thin oceanic crust zone" located between Nankai segment and Kyushu-Palau Ridge segment, founded by Nakanishi et al [2010, AGU] by analyzing of the active source survey, continuously exists from trough axis to near the coastline of Kyushu Island. The overriding plate just above the coseismic slip area of 1968 Hyuga-nada earthquake shows relatively high velocity. Although the tomographic study in the western part of Nankai seismogenic zone is still a preliminary stage and we used only a part of the passive source data, we found the anomalous high velocity zone in the overriding plate. This zone is located at just beneath the cape Ashizuri, corresponding to the boundary between the Nankai and Hyuga-nada segments. To clarify more detail structure, we will perform the joint inversion using both active and passive source data in the western Nankai seismogenic zone.
Qualitative and Quantitative Proofs of Security Properties
2013-04-01
Naples, Italy (September 2012) – Australasian Joint Conference on Artifical Intelligence (December 2012). • Causality, Responsibility, and Blame...realistic solution concept, Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), 2009, pp. 153–158. 17. J...Conference on Artificial Intelligence (AAAI-12), 2012, pp. 1917-1923. 29. J. Y. Halpern and S. Leung, Weighted sets of probabilities and minimax
A Winsor Type I surfactant/alcohol mixture was used as an in situ flushing agent to solubilize a muticomponent nonaqueous phase liquid (NAPL) as a single-phase microemulsion (SPME) in a hydraulically isolated test cell at Hill Air Force Base (AFB), Utah. The surfactant (polyoxye...
ERIC Educational Resources Information Center
Levenstein, Aaron, Ed.; Lang, Theodore H.
Papers presented at the fifth annual Conference of the National Center for the Study of Collective Bargaining in Higher Education are provided. The union's and management's views of the impact of fiscal crisis on collective bargaining are given in the first two papers by Robert W. Miner and Caesar Naples. The next two presentations by Robert…
A Containing Environment for Disruptive Adolescents in Search of an Identity
ERIC Educational Resources Information Center
Adamo, Simonetta M. G.; Serpieri, Serenella Adamo
2010-01-01
Chance, a word used in various languages to refer to "possibility" or "opportunity", is the name that was intentionally chosen for a project which has been running for 11 years in Naples and is aimed at young people aged 15-17 who have dropped out of compulsory schooling. Despite being based on a school structure and located…
Provisional tree and shrub seed zones for the Great Plains
Richard A. Cunningham
1975-01-01
Seed collection zones are subdivisions of land areas established to identify seed sources and to control the movement of seed and planting stock. Seed zones are needed for many species because of the genetic variation associated with their geographic distribution. Zone boundaries may be delineated from experimental data that identify genetic variation, or by analysis...
Rare diseases in Italy: analysis of the costs and pharmacotherapy.
Petrelli, Fabio; Grappasonni, Iolanda; Kračmarová, Lenka; Cioffi, Pasquale; Tayebati, Seyed Khosrow; Esposito, Lucia
2013-08-01
Purpose of this research was to analyse the rare diseases drug supply paths in the Italian region of Campania (Health District 47 of the Local Medical Company Naples 1), with a particular focus on current regulations in this field, and quantify the economic incidence of such pathologies in each quarter of 2007 and 2008. Rare, or orphan, diseases are especially serious and onerous from every point of view. Patients meet significant difficulties in obtaining information and in identifying the most appropriate treatment path within the health care system. Pharmaceutical prescriptions were analysed in order to identify the number of patients for each pathology in each quarter of the years 2007 and 2008, the drugs used, the quantity of each drug, and the costs for treatments. Data show a significant increase of costs during each quarter of the year 2008, as well as from 2007 to 2008. In the absence of specific guidelines for the Campania Region, the Local Medical Company of Naples 1 has established a procedure for patients affected by rare diseases that enables them to receive at no cost products that otherwise would not be distributed for free by the health care system.
Phytoremediation removal rates of benzene, toluene, and chlorobenzene.
Limmer, Matt A; Wilson, Jordan; Westenberg, David; Lee, Amy; Siegman, Mark; Burken, Joel G
2018-06-07
Phytoremediation is a sustainable remedial approach, although performance efficacy is rarely reported. In this study, we assessed a phytoremediation plot treating benzene, toluene, and chlorobenzene. A comparison of the calculated phytoremediation removal rate with estimates of onsite contaminant mass was used to forecast cleanup periods. The investigation demonstrated that substantial microbial degradation was occurring in the subsurface. Estimates of transpiration indicated that the trees planted were removing approximately 240,000 L of water per year. This large quantity of water removal implies substantial removal of contaminant due to large amounts of contaminants in the groundwater; however, these contaminants extensively sorb to the soil, resulting in large quantities of contaminant mass in the subsurface. The total estimate of subsurface contaminant mass was also complicated by the presence of non-aqueous phase liquids (NAPL), additional contaminant masses that were difficult to quantify. These uncertainties of initial contaminant mass at the site result in large uncertainty in the cleanup period, although mean estimates are on the order of decades. Collectively, the model indicates contaminant removal rates on the order of 10 -2 -10 0 kg/tree/year. The benefit of the phytoremediation system is relatively sustainable cleanup over the long periods necessary due to the presence of NAPL.
Fifth International Conference on Squeezed States and Uncertainty Relations
NASA Technical Reports Server (NTRS)
Han, D. (Editor); Janszky, J. (Editor); Kim, Y. S. (Editor); Man'ko, V. I. (Editor)
1998-01-01
The Fifth International Conference on Squeezed States and Uncertainty Relations was held at Balatonfured, Hungary, on 27-31 May 1997. This series was initiated in 1991 at the College Park Campus of the University of Maryland as the Workshop on Squeezed States and Uncertainty Relations. The scientific purpose of this series was to discuss squeezed states of light, but in recent years the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics including quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic. As the meeting attracted more participants and started covering more diversified subjects, the fourth meeting was called an international conference. The Fourth International Conference on Squeezed States and Uncertainty Relations was held in 1995 was hosted by Shanxi University in Taiyuan, China. The fifth meeting of this series, which was held at Balatonfured, Hungary, was also supported by the IUPAP. In 1999, the Sixth International Conference will be hosted by the University of Naples in 1999. The meeting will take place in Ravello near Naples.
Liguori, G; Castaldi, S; Signorelli, C; Auxilia, F; Alfano, V; Saccani, E; Visciano, A; Fanti, M; Spinelli, A; Pasquarella, C
2007-01-01
The swimmers health's protection and the maintenance of good safety standards of structures can be guaranteed under observance of rules and the well management of the structures and activities. An anonymous questionnaire, with 38 items, was used in order to analyse and better understand the knowledge and behaviour of the users of three swimming pools in Crema, Naples and Parma. Socio-demographic features were similar in the three centres. One of the most important result was that the necessity of showers and foot-bath before entering the swimming pool is not well understood (77% and 78% respectively); caps and foot bath are, instead, almost always worn (98% and 97%). Knowledge on infection diseases transmitted by water is very poor, warts and mycosis being the best known. Sport structures are places where health and wellness can be affected. It is important to underline the role of behavioural rules as the use of showers, caps, and proper shoes. Authors recognize the swimming pool regulations as a valid tool for health promotion. It must be clear and easily understood and it has to be linked to a proper education pathway of all users and employees.
Bioremediation and phytoremediation of total petroleum hydrocarbons (TPH) under various conditions.
McIntosh, Patrick; Schulthess, Cristian P; Kuzovkina, Yulia A; Guillard, Karl
2017-08-03
Remediation of contaminated soils is often studied using fine-textured soils rather than low-fertility sandy soils, and few studies focus on recontamination events. This study compared aerobic and anaerobic treatments for remediation of freshly introduced used motor oil on a sandy soil previously phytoremediated and bioacclimated (microorganisms already adapted in the soil environment) with some residual total petroleum hydrocarbon (TPH) contamination. Vegetated and unvegetated conditions to remediate anthropogenic fill containing residual TPH that was spiked with nonaqueous phase liquids (NAPLs) were evaluated in a 90-day greenhouse pot study. Vegetated treatments used switchgrass (Panicum virgatum). The concentration of aerobic bacteria were orders of magnitude higher in vegetated treatments compared to unvegetated. Nevertheless, final TPH concentrations were low in all saturated soil treatments, and high in the presence of switchgrass. Concentrations were also low in unvegetated pots with fertilizer. Acclimated indigenous microbial communities were shown to be more effective in breaking down hydrocarbons than introducing microbes from the addition of plant treatments in sandy soils. Remediation of fresh introduced NAPLs on pre-phytoremediated and bioacclimated soil was most efficient in saturated, anaerobic environments, probably due to the already pre-established microbial associations, easily bioavailable contaminants, and optimized soil conditions for microbial establishment and survival.
NASA Astrophysics Data System (ADS)
Campi, M.; di Luggo, A.; Scandurra, S.
2017-02-01
The object of this paper is one of the most ancient palaces of Naples, Palazzo Penne, a fourteenth-century residential building located on a small high ground which originally was in the outer fringe of the built up area in a privileged position enabling to enjoy the landscape and gulf beauty. This building, which today is in the heart of the historical center, was the subject of an extensive analysis and documentary research, as well as of metric laser scanner survey carried out by the group researchers working at the Interdepartmental Centre of Research Urban Eco of the University of Naples Federico II. Starting from scan to bim systems the creation of a parametric model of the current state of the building is completed, by bringing the point cloud elements back to objects to which historical and construction data can be associated. Moreover starting from acquired data, the 3D model shows the reconstructive hypothesis of the original structure and the virtual reconstruction of the building based on traces found on-site and on the comparison with coeval creations allowing to properly hypothesize the design of point features.
Three wars that never happened.
Russell, W M S
2002-01-01
This article discusses three serious wars that were averted and the three men who averted them. In 1478-79, Pope Sixtus IV's hatred of the Medici culminated in aggressive war against Florence, supported by his powerful ally King Ferrante of Naples. The initial stags of this war were indecisive, but it was about to become much more serious, probably involving all the Italian states and possibly meaning the total destruction of Florence. Lorenzo il Magnifico sailed to Naples, convinced Ferrante this more serious war was against his interests and obtained a generous peace. In 1861, the British Government responded to the boarding of a British ship by a vessel of the American North with a peremptory letter. Albert, Prince Consort, though dying of typhoid fever amended the letter to save Lincoln's face and thus averted war with the North. From 1871 to 1890, Otto von Bismarck worked for a stable peace between the European powers to be attained by arranging meetings of most or all of them to accustom them to solving disputes by negotiation. Two such meetings in Berlin secured 36 years of peace between the powers, despite many disputes, and in particular averted war for possessions in Africa, which could have involved them all.
NASA Astrophysics Data System (ADS)
Robinson, C.; Barry, D. A.
2008-12-01
Enhanced anaerobic dechlorination is a promising technology for in situ remediation of chlorinated ethene DNAPL source areas. However, the build-up of organic acids and HCl in the source zone can lead to significant groundwater acidification. The resulting pH drop inhibits the activity of the dechlorinating microorganisms and thus may stall the remediation process. Source zone remediation requires extensive dechlorination, such that it may be common for soil's natural buffering capacity to be exceeded, and for acidic conditions to develop. In these cases bicarbonate addition (e.g., NaHCO3, KHCO3) is required for pH control. As a design tool for treatment strategies, we have developed BUCHLORAC, a Windows Graphical User Interface based on an abiotic geochemical model that allows the user to predict the acidity generated during dechlorination and associated buffer requirements for their specific operating conditions. BUCHLORAC was motivated by the SABRE (Source Area BioREmediation) project, which aims to evaluate the effectiveness of enhanced reductive dechlorination in the treatment of chlorinated solvent source zones.
NASA Astrophysics Data System (ADS)
Catchings, R.; Strayer, L. M.; Goldman, M.
2014-12-01
We used a temporary network of approximately 600 seismographs to record a seismic source generated by the collapse of a 13-story building near the active trace of the Hayward Fault. These data allow us to evaluate variations in ground shaking across a series of 30 2-km-long radial arrays centered on the seismic source. Individual seismographs were spaced at 200-m intervals, forming a series of 360°concentric arrays around the seismic source. The data show variations in amplification caused by (1) soft sediments within the East Bay alluvial plain (EBAP), (2) hard rocks within the East Bay hills (EBH), (3) low-velocity rocks within the Hayward Fault zone (HFZ), and (4) topography. Given that ground shaking varies strongly with distance from the source, the concentric arrays allowed us to measure variations in ground shaking as a function of azimuth at fixed distances from the source. On individual linear profiles within the concentric arrays, we observed decreases in peak ground velocity (PGV) across the HFZ and other faults within the EBH. However, for a given distance from the source, we observe four to five fold amplification from the EBAP sites compared to most sites in the EBH. Topographic and fault-zone amplification effects within the EBH, however, are greater than the EBAP sediment amplification. Thus, for future earthquakes, shaking at many sites within the EBH may be significantly stronger than many sites within the EBAP. These observations suggest amplification can be expected in unconsolidated sediments, but topographic and fault-zone amplification can be larger. This confirms the importance of site effects for hazard mitigation and in interpreting MMI for future and historical earthquakes.
Slab1.0: A three-dimensional model of global subduction zone geometries
NASA Astrophysics Data System (ADS)
Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.
2012-01-01
We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of `average' active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.
Microbial Repopulation Following In Situ STAR Remediation
NASA Astrophysics Data System (ADS)
Gerhard, J.; Overbeeke, G.; Edwards, E.; Lomheim, L.; Grant, G.
2016-12-01
STAR (Self-sustaining Treatment for Active Remediation) is an emerging remediation technology that employs a self-sustaining smouldering reaction to destroy nonaqueous phase liquids (NAPLs) in the subsurface. The reaction front travels outwards from an ignition well at approximately 0.5 per day and subjects the soil to temperatures of 400°C-1000°C. The objectives of this work were to monitor re-saturation of the soil over time and quantify the microbial repopulation of the treated zone. STAR is currently being applied as a full scale, in situ remedy for coal tar beneath a former creosol manufacturing facility in New Jersey, USA. This study analyzed soil cores taken at regular intervals following STAR treatment, allowing time for groundwater to re-infiltrate and for microbial populations to potentially reestablish. Soil and groundwater were analyzed for total number of microorganisms via quantitative Polymerase Chain Reaction (qPCR), as well as microbial diversity via amplicon sequencing. Results demonstrate that microbes rapidly repopulated over a 2 month period to 106 gene copies/g of soil. However, concentrations in the treated zone did not rise above this concentration over 6 months post-STAR, indicating a low carrying capacity of the treated soil. To examine the system in more detail and consider the effects of bio-stimulation, a bench top column study using site soil and artificial groundwater explored the rate at which STAR-treated soil is repopulated with naturally occurring microorganisms in the presence and absence of lactate and a terminal electron acceptor. Results demonstrated that biostimulation did not increase the carrying capacity of the STAR treated sol, but rather shifted the microbial community to reflect the TEA provided, in this case, promoting sulfate reducers. Overall, the work illustrates that microbial populations in STAR treated soil do recover via groundwater infiltration but robust communities will take time to naturally establish.
Scale effect on the water retention curve of a volcanic ash
NASA Astrophysics Data System (ADS)
Damiano, Emilia; Comegna, Luca; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano
2015-04-01
During the last decades, a number of flowslides and debris flows triggered by intense rainfall affected a wide mountainous area surrounding the "Campania Plain" (southern Italy). The involved slopes are constituted by shallow unsaturated air-fall deposits of pyroclastic nature, which stability is guaranteed by the contribution of suction on shear strength. To reliably predict the onset of slope failure triggered by critical precipitations, is essential to understand the infiltration process and the soil suction distribution in such granular deposits. The paper presents the results of a series of investigation performed at different scales to determine the soil water retention curve (SWRC) of a volcanic ash which is an es-sential element in the analysis of the infiltration processes. The soil, a silty sand, was taken at Cervinara hillslope, 30 km East of Naples, just aside an area which had been subjected to a catastrophic flowslide. The SWRC was obtained through: - standard tests in a suction-controlled triaxial apparatus (SCTX), in a pressure plate and by the Wind technique (1968) on small natural and reconstituted soil samples (sample dimensions in the order of the 1•10-6m3) ; - infiltration tests on small-scale model slopes reconstituted in an instrumented flume (sample dimensions in the order of 5•10-3m3); - suction and water content monitoring at the automatic station installed along the Cervinara hillslope. The experimental points generally were defined by coupling suction measurements through jet-fill tensiometers and water content through TDR probes installed close each others. The obtained data sets individuate three different curves characterized by different shapes in the transition zone: at larger volume element dimensions correspond curves which exhibit steeper slopes and lower values of the water content in the transition zone. This result confirms the great role of the volume element dimensions in the de-termination of hydraulic characteristics of the soil which cannot be neglected if a reli-able prediction of the slope behaviour has to be done.
Building a risk-targeted regional seismic hazard model for South-East Asia
NASA Astrophysics Data System (ADS)
Woessner, J.; Nyst, M.; Seyhan, E.
2015-12-01
The last decade has tragically shown the social and economic vulnerability of countries in South-East Asia to earthquake hazard and risk. While many disaster mitigation programs and initiatives to improve societal earthquake resilience are under way with the focus on saving lives and livelihoods, the risk management sector is challenged to develop appropriate models to cope with the economic consequences and impact on the insurance business. We present the source model and ground motions model components suitable for a South-East Asia earthquake risk model covering Indonesia, Malaysia, the Philippines and Indochine countries. The source model builds upon refined modelling approaches to characterize 1) seismic activity from geologic and geodetic data on crustal faults and 2) along the interface of subduction zones and within the slabs and 3) earthquakes not occurring on mapped fault structures. We elaborate on building a self-consistent rate model for the hazardous crustal fault systems (e.g. Sumatra fault zone, Philippine fault zone) as well as the subduction zones, showcase some characteristics and sensitivities due to existing uncertainties in the rate and hazard space using a well selected suite of ground motion prediction equations. Finally, we analyze the source model by quantifying the contribution by source type (e.g., subduction zone, crustal fault) to typical risk metrics (e.g.,return period losses, average annual loss) and reviewing their relative impact on various lines of businesses.
Identifying Attributes of CO2 Leakage Zones in Shallow Aquifers Using a Parametric Level Set Method
NASA Astrophysics Data System (ADS)
Sun, A. Y.; Islam, A.; Wheeler, M.
2016-12-01
Leakage through abandoned wells and geologic faults poses the greatest risk to CO2 storage permanence. For shallow aquifers, secondary CO2 plumes emanating from the leak zones may go undetected for a sustained period of time and has the greatest potential to cause large-scale and long-term environmental impacts. Identification of the attributes of leak zones, including their shape, location, and strength, is required for proper environmental risk assessment. This study applies a parametric level set (PaLS) method to characterize the leakage zone. Level set methods are appealing for tracking topological changes and recovering unknown shapes of objects. However, level set evolution using the conventional level set methods is challenging. In PaLS, the level set function is approximated using a weighted sum of basis functions and the level set evolution problem is replaced by an optimization problem. The efficacy of PaLS is demonstrated through recovering the source zone created by CO2 leakage into a carbonate aquifer. Our results show that PaLS is a robust source identification method that can recover the approximate source locations in the presence of measurement errors, model parameter uncertainty, and inaccurate initial guesses of source flux strengths. The PaLS inversion framework introduced in this work is generic and can be adapted for any reactive transport model by switching the pre- and post-processing routines.
CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone
Walvoord, Michelle Ann; Striegl, Robert G.; Prudic, David E.; Stonestrom, David A.
2005-01-01
Natural unsaturated-zone gas profiles at the U.S. Geological Survey's Amargosa Desert Research Site, near Beatty, Nevada, reveal the presence of two physically and isotopically distinct CO2 sources, one shallow and one deep. The shallow source derives from seasonally variable autotrophic and heterotrophic respiration in the root zone. Scanning electron micrograph results indicate that at least part of the deep CO2 source is associated with calcite precipitation at the 110-m-deep water table. We use a geochemical gas-diffusion model to explore processes of CO2 production and behavior in the unsaturated zone. The individual isotopic species 12CO2, 13CO2, and 14CO2 are treated as separate chemical components that diffuse and react independently. Steady state model solutions, constrained by the measured δ13C (in CO2), and δ14C (in CO2) profiles, indicate that the shallow CO2 source from root and microbial respiration composes ∼97% of the annual average total CO2 production at this arid site. Despite the small contribution from deep CO2 production amounting to ∼0.1 mol m−2 yr−1, upward diffusion from depth strongly influences the distribution of CO2 and carbon isotopes in the deep unsaturated zone. In addition to diffusion from deep CO2 production, 14C exchange with a sorbed CO2 phase is indicated by the modeled δ14C profiles, confirming previous work. The new model of carbon-isotopic profiles provides a quantitative approach for evaluating fluxes of carbon under natural conditions in deep unsaturated zones.
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Sandri, Laura; Costa, Antonio; Selva, Jacopo
2014-05-01
Campi Flegrei (CF) is a large volcanic field located west of the Gulf of Naples, characterized by a wide and almost circular caldera which is partially submerged beneath the Gulf of Pozzuoli. It is known that the magma-water interaction is a key element to determine the character of submarine eruptions and their impact on the surrounding areas, but this phenomenon is still not well understood and it is rarely considered in hazard assessment. The aim of the present work is to present a preliminary study of the effect of the sea on the tephra fall hazard from CF on the municipality of Naples, by introducing a variability in the probability of tephra production according to the eruptive scale (defined on the basis of the erupted volume) and the depth of the opening submerged vents. Four different Probabilistic Volcanic Hazard Assessment (PVHA) models have been defined through the application of the model BET_VH at CF, by accounting for different modeling procedures and assumptions for the submerged part of the caldera. In particular, we take into account: 1) the effect of the sea as null, i.e. as if the water were not present; 2) the effect of the sea as a cap that totally blocks the explosivity of eruptions and consequently the tephra production; 3) an ensemble model between the two models described at the previous points 1) and 2); 4) a variable probability of tephra production depending on the depth of the submerged vent. The PVHA models are then input to pyPHaz, a tool developed and designed at INGV to visualize, analyze and merge into ensemble models PVHA's results and, potentially, any other kind of probabilistic hazard assessment, both natural and anthropic, in order to evaluate the importance of considering a variability among subaerial and submerged vents on tephra fallout hazard from CF in Naples. The analysis is preliminary and does not pretend to be exhaustive, but on one hand it represents a starting point for future works; on the other hand, it is a good case study to show the potentiality of the pyPHaz tool that, thanks to a dedicated Graphical User Interface (GUI), allows to interactively manage and visualize results of probabilistic hazards (hazard curves together with probability and hazard maps for different levels of uncertainties), and to compare or merge different hazard models producing ensemble models. This work has been developed in the framework of two Italian projects, "ByMuR (Bayesian Multi-Risk Assessment: a case study for natural risks in the city of Naples)" funded by the Italian Ministry of Education, Universities and Research (MIUR), and "V1: Probabilistic Volcanic Hazard Assessments" funded by the Italian Department of Civil Protection (DPC).
Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal
NASA Astrophysics Data System (ADS)
Johnston, C. D.; Davis, G. B.; Bastow, T. P.; Woodbury, R. J.; Rao, P. S. C.; Annable, M. D.; Rhodes, S.
2014-08-01
Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L3/L2/T) and mass fluxes (Jc; M/L2/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104 g day- 1 to 24-31 g day- 1 (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also provided further evidence of the source zone architecture and DNAPL mass depletion processes. This was especially apparent in different mass-depletion rates from distinct parts of the CP. High mass fluxes and groundwater fluxes located near the base of the aquifer dominated in terms of the dissolved mass flux in the profile, although not in terms of concentrations. Reductions observed in Jc and MD were used to better target future remedial efforts. Integration of the observations from the PFM deployments and the source mass depletion provided a basis for establishing flux-based management criteria for the site.
Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal.
Johnston, C D; Davis, G B; Bastow, T P; Woodbury, R J; Rao, P S C; Annable, M D; Rhodes, S
2014-08-01
Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L(3)/L(2)/T) and mass fluxes (Jc; M/L(2)/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104gday(-1) to 24-31gday(-1) (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also provided further evidence of the source zone architecture and DNAPL mass depletion processes. This was especially apparent in different mass-depletion rates from distinct parts of the CP. High mass fluxes and groundwater fluxes located near the base of the aquifer dominated in terms of the dissolved mass flux in the profile, although not in terms of concentrations. Reductions observed in Jc and MD were used to better target future remedial efforts. Integration of the observations from the PFM deployments and the source mass depletion provided a basis for establishing flux-based management criteria for the site. Copyright © 2013 Elsevier B.V. All rights reserved.
Chen, Zhe; Rao, Xian-long; Li, Yi-feng; Gu, Xiao-nan; Xu, Mei-xin; Lin, Dan-dan
2015-12-01
To evaluate the effect of schistosomiasis control strategy with emphasis on infection source control in the Yongxiu County promotion zone of Poyang Lake region. The Wucheng Township of Yongxiu County was selected as the observation site, and the effect of the comprehensive control strategy was evaluated by using the method of field surveys combined with retrospective investigations. In 2010, there were 17 persons whose stool tests for schistosome infection were positive, and the number of calculated schistosomiasis patients was 2,331. The infection rate of cattle was 4.5%, and the area with infected Oncomelania hupensis snails was 10.00 hm². In 2011, the comprehensive control strategy was carried out, and in 2012, there were no cattle in the promotion zone. In 2013 and 2014, there were no schistosomiasis patients with positive stool tests. In 2014, no schistosome infected snails were found. The control strategy with emphasis on infection source control effectively controls the transmission of schistosomiasis in Yongxiu County promotion zone.
Overview of seismic potential in the central and eastern United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweig, E.S.
1995-12-31
The seismic potential of any region can be framed in terms the locations of source zones, the frequency of earthquake occurrence for each source, and the maximum size earthquake that can be expect from each source. As delineated by modern and historical seismicity, the most important seismic source zones affecting the eastern United States include the New Madrid and Wabash Valley seismic zones of the central U.S., the southern Appalachians and Charleston, South Carolina, areas in the southeast, and the northern Appalachians and Adirondacks in the northeast. The most prominant of these in terms of current seismicity and historical seismicmore » moment release in the New Madrid seismic zone, which produced three earthquakes of moment magnitude {ge} 8 in 1811 and 1812. The frequency of earthquake recurrence can be examined using the instrumental record, the historical record, and the geological record. Each record covers a unique time period and has a different scale of temporal resolution and completeness of the data set. The Wabash Valley is an example where the long-term geological record indicates a greater potential than the instrumental and historical records. This points to the need to examine all of the evidence in any region in order to obtain a credible estimates of earthquake hazards. Although earthquake hazards may be dominated by mid-magnitude 6 earthquakes within the mapped seismic source zones, the 1994 Northridge, California, earthquake is just the most recent example of the danger of assuming future events will occur on faults known to have had past events and how destructive such an earthquake can be.« less
Xu, Tao; Wang, Fei; Guo, Qiang; Nie, Xiao-Qian; Huang, Ying-Ping; Chen, Jun
2014-04-01
Transfer characteristics of heavy metals and their evaluation of potential risk were studied based on determining concentration of heavy metal in soils from water-level-fluctuating zone (altitude:145-175 m) and bank (altitude: 175-185 m) along Xiangxi River, Three Gorges Reservoir area. Factor analysis-multiple linear regression (FA-MLR) was employed for heavy metal source identification and source apportionment. Results demonstrate that, during exposing season, the concentration of soil heavy metals in water-level-fluctuation zone and bank showed the variation, and the concentration of soil heavy metals reduced in shallow soil, but increased in deep soil at water-level-fluctuation zone. However, the concentration of soil heavy metals reduced in both shallow and deep soil at bank during the same period. According to the geoaccumulation index,the pollution extent of heavy metals followed the order: Cd > Pb > Cu > Cr, Cd is the primary pollutant. FA and FA-MLR reveal that in soils from water-level-fluctuation zone, 75.60% of Pb originates from traffic, 62.03% of Cd is from agriculture, 64.71% of Cu and 75.36% of Cr are from natural rock. In soils from bank, 82.26% of Pb originates from traffic, 68.63% of Cd is from agriculture, 65.72% of Cu and 69.33% of Cr are from natural rock. In conclusion, FA-MLR can successfully identify source of heavy metal and compute source apportionment of heavy metals, meanwhile the transfer characteristic is revealed. All these information can be a reference for heavy metal pollution control.
Model assessment of atmospheric pollution control schemes for critical emission regions
NASA Astrophysics Data System (ADS)
Zhai, Shixian; An, Xingqin; Liu, Zhao; Sun, Zhaobin; Hou, Qing
2016-01-01
In recent years, the atmospheric environment in portions of China has become significantly degraded and the need for emission controls has become urgent. Because more international events are being planned, it is important to implement air quality assurance targeted at significant events held over specific periods of time. This study sets Yanqihu (YQH), Beijing, the location of the 2014 Beijing APEC (Asia-Pacific Economic Cooperation) summit, as the target region. By using the atmospheric inversion model FLEXPART, we determined the sensitive source zones that had the greatest impact on the air quality of the YQH region in November 2012. We then used the air-quality model Models-3/CMAQ and a high-resolution emissions inventory of the Beijing-Tianjian-Hebei region to establish emission reduction tests for the entire source area and for specific sensitive source zones. This was achieved by initiating emission reduction schemes at different ratios and different times. The results showed that initiating a moderate reduction of emissions days prior to a potential event is more beneficial to the air quality of Beijing than initiating a high-strength reduction campaign on the day of the event. The sensitive source zone of Beijing (BJ-Sens) accounts for 54.2% of the total source area of Beijing (BJ), but its reduction effect reaches 89%-100% of the total area, with a reduction efficiency 1.6-1.9 times greater than that of the entire area. The sensitive source zone of Huabei (HuaB-Sens.) only represents 17.6% of the total area of Huabei (HuaB), but its emission reduction effect reaches 59%-97% of the entire area, with a reduction efficiency 4.2-5.5 times greater than that of the total area. The earlier that emission reduction measures are implemented, the greater the effect they have on preventing the transmission of pollutants. In addition, expanding the controlling areas to sensitive provinces and cities around Beijing (HuaB-sens) can significantly accelerate the reduction effects compared to controlling measures only in the Beijing sensitive source zone (BJ-Sens). Therefore, when enacting emission reduction schemes, cooperating with surrounding provinces and cities, as well as narrowing the reduction scope to specific sensitive source zones prior to unfavorable meteorological conditions, can help reduce emissions control costs and improve the efficiency and maneuverability of emission reduction schemes.
Basilone, Gualtiero; Gargano, Antonella; Corriero, Aldo; Zupa, Rosa; Santamaria, Nicoletta; Mangano, Salvatore; Ferreri, Rosalia; Pulizzi, Maurizio; Mazzola, Salvatore; Bonanno, Angelo; Passantino, Letizia
2018-06-01
The goal of the present study was to verify the suitability of using melanomacrophage centres (MMCs) as response biomarkers of marine pollution in European anchovy, which are short-lived, migratory, small pelagic fish. This suitability was verified by analysing the MMC density and cytochrome P450 monooxygenase 1A (CYP1A) expression in livers of anchovies from four areas of southern Italy. Age 2 anchovies sampled from three areas exposed to pollutants of industrial/agricultural origin (Gulf of Gela, Mazara del Vallo and Gulf of Naples) showed liver areas occupied by MMCs and numbers of MMCs that were significantly higher than those in the anchovies from Pozzallo, which is a marine area not subjected to any source of pollution. Anti-CYP1A immunoreactivity was observed in the hepatocytes of all specimens sampled from the Gulf of Gela. These findings suggest the utility of liver MMCs as biomarkers of exposure to pollutants in this small pelagic fish. Copyright © 2018 Elsevier Ltd. All rights reserved.
Basile, Adriana; Loppi, Stefano; Piscopo, Marina; Paoli, Luca; Vannini, Andrea; Monaci, Fabrizio; Sorbo, Sergio; Lentini, Marco; Esposito, Sergio
2017-12-01
The liverwort Lunularia cruciata, known for being a species tolerant to pollution able to colonize urban areas, was collected in the town of Acerra (South Italy) to investigate the biological effects of air pollution in one of the three vertices of the so-called Italian Triangle of Death. The ultrastructural damages observed by transmission electron microscopy in specimens collected in Acerra were compared with samples collected in the city center of Naples and in a small rural site far from sources of air pollution (Riccia, Molise, Southern Italy). The biological response chain to air pollution was investigated considering vitality, photosynthetic efficiency, heat shock protein 70 (Hsp70) induction and gene expression levels, and chlorophyll degradation and related ultrastructural alterations. Particularly, a significant increment in Hsp70 expression and occurrence, and modifications in the chloroplasts' ultrastructure can be strictly related to the environmental pollution conditions in the three sites. The results could be interpreted in relation to the use of these parameters as biomarkers for environmental pollution.
Root-zone temperature and water availability affect early root growth of planted longleaf pine
M.A. Sword
1995-01-01
Longleaf pine seedlings from three seed sources were exposed to three root-zone temperatures and three levels of water availability for 28 days. Root growth declined as temperature and water availability decreased. Root growth differed by seed source. Results suggest that subtle changes in the regeneration environment may influence early root growth of longleaf pine...
A field test of emulsified zero valent iron (EZVI) nanoparticles was conducted at Parris Island, SC, USA and was monitored for two and half years to assess the treatment of subsurface-source zone chlorinated volatile organic compounds (CVOCs) dominated by tetrachloroethene (PCE) ...
Chambers, J E; Wilkinson, P B; Wealthall, G P; Loke, M H; Dearden, R; Wilson, R; Allen, D; Ogilvy, R D
2010-10-21
Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents. Copyright © 2010 S. Yamamoto. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doser, D.I.
1993-04-01
Source parameters determined from the body waveform modeling of large (M [>=] 5.5) historic earthquakes occurring between 1915 and 1956 along the San Jacinto and Imperial fault zones of southern California and the Cerro Prieto, Tres Hermanas and San Miguel fault zones of Baja California have been combined with information from post-1960's events to study regional variations in source parameters. The results suggest that large earthquakes along the relatively young San Miguel and Tres Hermanas fault zones have complex rupture histories, small source dimensions (< 25 km), high stress drops (60 bar average), and a high incidence of foreshock activity.more » This may be a reflection of the rough, highly segmented nature of the young faults. In contrast, Imperial-Cerro Prieto events of similar magnitude have low stress drops (16 bar average) and longer rupture lengths (42 km average), reflecting rupture along older, smoother fault planes. Events along the San Jacinto fault zone appear to lie in between these two groups. These results suggest a relationship between the structural and seismological properties of strike-slip faults that should be considered during seismic risk studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeze, R.A.
Many emerging remediation technologies are designed to remove contaminant mass from source zones at DNAPL sites in response to regulatory requirements. There is often concern in the regulated community as to whether mass removal actually reduces risk, or whether the small risk reductions achieved warrant the large costs incurred. This paper sets out a framework for quantifying the degree to which risk is reduced as mass is removed from shallow, saturated, low-permeability, dual-porosity, DNAPL source zones. Risk is defined in terms of meeting an alternate concentration level (ACL) at a compliance well in an aquifer underlying the source zone. Themore » ACL is back-calculated from a carcinogenic health-risk characterization at a downstream water-supply well. Source-zone mass-removal efficiencies are heavily dependent on the distribution of mass between media (fractures, matrix) and phases (dissolved, sorbed, free product). Due to the uncertainties in currently-available technology performance data, the scope of the paper is limited to developing a framework for generic technologies rather than making risk-reduction calculations for specific technologies. Despite the qualitative nature of the exercise, results imply that very high mass-removal efficiencies are required to achieve significant long-term risk reduction with technology, applications of finite duration. 17 refs., 7 figs., 6 tabs.« less
Field-testing competing runoff source and hydrochemical conceptualisations
NASA Astrophysics Data System (ADS)
Western, A. W.; Saffarpour, S.; Adams, R.; Costelloe, J. F.; McDonnell, J.
2014-12-01
There are competing conceptualisations of heterogeneity in catchment systems. It is often convenient to divide catchments into zones, for example the soil profile, groundwater aquifers (saturated zone), riparian zones, etc. We also often divide flow sources into distinct categories such as surface runoff, interflow and baseflow, implying a few distinct stores of water. In tracer hydrology we typically assume water from such zones has distinct and invariant chemistry that is used to infer the runoff source mixture through conservative mixing model techniques such as End-Member Mixing Analysis (EMMA). An alternative conceptualisation is that catchments consist of a large number of stores with varying residence times. In this case individual stores contribute a variable proportion of flow and may have a temporally varying composition due to processes such as evapo-concentration. Hence they have a variable influence on the hydrochemistry of runoff. In this presentation, examples from two field studies in southern Australia will be presented that examine the relationships between hydrologic and hydrochemical conceptualisations and the relative variation within and between different hydrologic zones. The implications for water quality behaviour will be examined and the additional behavioural complexities associated with interactions between runoff pathways for non-conservative chemical species will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sehlke, Gerald
2003-03-01
The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 mi2 and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL’s drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey’s Hydrological Unit scheme.more » Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency’s Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a thick vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL’s Source Water Assessment. Of the INEEL’s 12 public water systems, three systems rated as low susceptibility (EBR-I, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL’s public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.« less
The Idaho National Engineering and Environmental Laboratory Source Water Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sehlke, G.
2003-03-17
The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unitmore » scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL's public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.« less
DOT National Transportation Integrated Search
2016-12-01
A large magnitude long duration subduction earthquake is impending in the Pacific Northwest, which lies near the : Cascadia Subduction Zone (CSZ). Great subduction zone earthquakes are the largest earthquakes in the world and are the sole source : zo...
Bedada, Selamawit Yilma; Gallagher, Kathleen; Aregay, Aron Kassahun; Mohammed, Bashir; Maalin, Mohammed Adem; Hassen, Hassen Abdisemed; Ali, Yusuf Mohammed; Braka, Fiona; Kilebou, Pierre M’pele
2017-01-01
Introduction Communication is key for the successful implementation of polio vaccination campaigns. The purpose of this study is to review and analyse the sources of information utilized by caregivers during polio supplementary immunization activities (SIAs) in Somali, Ethiopia in 2014 and 2015. Methods Data on sources of information about the polio campaign were collected post campaign from caregivers by trained data collectors as part of house to house independent monitoring. The sources of information analysed in this paper include town criers (via megaphones), health workers, religious leaders, kebele leaders (Kebele is the lowest administrative structure in Ethiopia), radio, television, text message and others. The repetition of these sources of information was analysed across years and zones for trends. Polio vaccination campaign coverage was also reviewed by year and zones within the Somali region in parallel with the major sources of information used in the respective year and zones. 57,745 responses were used for this analysis but the responses were received from < or = 57,745 individuals since some of them may provide more than one response. Moreover, because sampling of households is conducted independently during each round of independent monitoring, the same household may have been included more than once in our analysis. The methodology used for independent monitoring does not allow for the calculation of response rates. Monitors go from house to house until information from 20 households is received. Results From the total 57,745 responses reviewed, over 37% of respondents reported that town criers were their source for information about the 2014 and 2015 polio SIAs. Zonal trends in using town criers as a major source of information in both study years remained consistent except in two zones. 87.5% of zones that reported at least 90% coverage during both study years had utilized town criers as a major source of information while the rest (12.5%) used health workers. Conclusion We found that town criers were consistently the major source of information about the polio campaigns for Somali region parents and caregivers during polio immunization days held in 2014 and 2015. Health workers and kebele leaders were also important sources of information about the polio campaign for parents. PMID:28983395
Cross-Matching Source Observations from the Palomar Transient Factory (PTF)
NASA Astrophysics Data System (ADS)
Laher, Russ; Grillmair, C.; Surace, J.; Monkewitz, S.; Jackson, E.
2009-01-01
Over the four-year lifetime of the PTF project, approximately 40 billion instances of astronomical-source observations will be extracted from the image data. The instances will correspond to the same astronomical objects being observed at roughly 25-50 different times, and so a very large catalog containing important object-variability information will be the chief PTF product. Organizing astronomical-source catalogs is conventionally done by dividing the catalog into declination zones and sorting by right ascension within each zone (e.g., the USNOA star catalog), in order to facilitate catalog searches. This method was reincarnated as the "zones" algorithm in a SQL-Server database implementation (Szalay et al., MSR-TR-2004-32), with corrections given by Gray et al. (MSR-TR-2006-52). The primary advantage of this implementation is that all of the work is done entirely on the database server and client/server communication is eliminated. We implemented the methods outlined in Gray et al. for a PostgreSQL database. We programmed the methods as database functions in PL/pgSQL procedural language. The cross-matching is currently based on source positions, but we intend to extend it to use both positions and positional uncertainties to form a chi-square statistic for optimal thresholding. The database design includes three main tables, plus a handful of internal tables. The Sources table stores the SExtractor source extractions taken at various times; the MergedSources table stores statistics about the astronomical objects, which are the result of cross-matching records in the Sources table; and the Merges table, which associates cross-matched primary keys in the Sources table with primary keys in the MergedSoures table. Besides judicious database indexing, we have also internally partitioned the Sources table by declination zone, in order to speed up the population of Sources records and make the database more manageable. The catalog will be accessible to the public after the proprietary period through IRSA (irsa.ipac.caltech.edu).
Robertson, G.L.; Noble, M.A.; Xu, J. P.; Rosenfeld, L.K.; McGee, C.D.
2005-01-01
Data from pre- and post-disinfection fecal indicator bacteria (FIB) samples from final effluent, an offshore ocean outfall, and surf zone stations off Huntington Beach, CA were compared. Analysis of the results from these data sets confirmed that the ocean outfall was not the FIB source responsible for the postings and closures of local beaches that have occurred each summer since 1999. While FIB counts in the final effluent and offshore showed several order of magnitude reductions after disinfection, there were no significant reductions at the nearby surf zone stations. Additionally, the FIB spectral patterns suggest different sources. The dominant fortnightly cycle suggested that the source was related to the wetting and draining of the land from large spring tide tidal excursions.
JPRS Report Science & Technology Europe & Latin America.
1997-09-11
mixture of barium, yttrium, copper, and oxygen) was that of the Institute for Research in Non -Traditional Materials of the CNR [National Research...the necessary equipment for this kind of experimental work. The problem now is to coordinate all these branches of research which were begun...Nuclear Physics, the CNR [National Research Council] Institute for Non -Traditional Materials Technology, the physics departments of Naples and Salerno
Europe/Latin America Report Science and Technology Italian Research Council: 1986 Status Report.
1987-01-14
reductions), by Emilia Romagna (subject to erratic changes), by Lazio and Lombardy (relatively stable) and by Tuscany (with constant increases...those of Calabria, Emilia Romagna, Lazio, Liguria, Piedmont, Sardinia, Sicily and Tuscany), as well as with public and private organizations and...Calabria, Reggio Calabria Campania Naples, Salerno Molise University of Molise Puglia Bari, Lecce Sardinia Cagliari, Sassari Sicily Catania
Radio Frequency Tomography for Tunnel Detection
2010-03-01
F. Soldovieri is with the Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Italian National Research Council (CNR), 80124 Naples, Italy ...both directions. ACKNOWLEDGMENT The authors would like to thank J. Parker and Dr. M. Ferrara , Air Force Research Laboratory, Prof. R. Ansari...Monte, D. Erricolo, and M. C. Wicks, “Propagation model, optimal geometry and receiver design for RF geotomography,” in Proc. IEEE RadarCon, Rome, Italy
ERIC Educational Resources Information Center
Rutkowski, Edward, Ed.
1986-01-01
The papers of this proceedings are presented in 5 parts. In part 1, "Education in Nineteenth Century Europe," the two papers describe the inception of the Ragged School Union in England and the educational opportunities in Naples. The titles are: "The Ragged Schools of Victorian England and Their Contribution to Child…
ERIC Educational Resources Information Center
Bacchini, Dario; Miranda, Maria Concetta; Affuso, Gaetana
2011-01-01
The aim of the research was to investigate the influence of gender, exposure to community violence, and parental monitoring upon antisocial behavior and anxiety/depression in adolescence. Involved in the study were 489 adolescents (290 males and 189 females) from 4 secondary schools in the city of Naples, Italy. The age of participants ranged from…
Italy seeks geothermal renaissance
NASA Astrophysics Data System (ADS)
Cartlidge, Edwin
2009-03-01
Scientists in Italy are hoping to once again put their country at the forefront of geothermal energy research, by extracting power from one of the Earth's most explosive volcanic areas. Later this year they will drill a well 4 km deep into Campi Flegrei, a geological formation lying just to the west of Naples known as a caldera, which formed from the collapse of several volcanoes over thousands of years.
Arthroscopic repair of a type II SLAP lesion using a single corkscrew anchor.
Kartus, Jüri; Perko, Mark
2002-03-01
The use of a double-looped 5-mm Corkscrew anchor (Arthrex, Naples, FL) enables the surgeon to use a single anchor to perform a secure fixation of both the anterior labrum as well as the biceps insertion in a type II SLAP lesion. The technique involves tying 1 knot through the anterior portal and a second knot through the posterior portal.
Esposito, Eliana P.; Gaiarsa, Stefano; Del Franco, Mariateresa; Crivaro, Valeria; Bernardo, Mariano; Cuccurullo, Susanna; Pennino, Francesca; Triassi, Maria; Marone, Piero; Sassera, Davide; Zarrilli, Raffaele
2017-01-01
The emergence of carbapenemase producing Enterobacteriaceae has raised major public health concern. The aim of this study was to investigate the molecular epidemiology and the mechanism of carbapenem resistance acquisition of multidrug-resistant Klebsiella pneumoniae isolates from 20 neonates in the neonatal intensive care unit (NICU) of the V. Monaldi Hospital in Naples, Italy, from April 2015 to March 2016. Genotype analysis by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) identified PFGE type A and subtypes A1 and A2 in 17, 2, and 1 isolates, respectively, and assigned all isolates to sequence type (ST) 104. K. pneumoniae isolates were resistant to all classes of β-lactams including carbapenems, fosfomycin, gentamicin, and trimethoprim–sulfamethoxazole, but susceptible to quinolones, amikacin, and colistin. Conjugation experiments demonstrated that resistance to third-generation cephems and imipenem could be transferred along with an IncA/C plasmid containing the extended spectrum β-lactamase blaSHV -12 and carbapenem-hydrolyzing metallo-β-lactamase blaV IM-1 genes. The plasmid that we called pIncAC_KP4898 was 156,252 bp in size and included a typical IncA/C backbone, which was assigned to ST12 and core genome (cg) ST12.1 using the IncA/C plasmid MLST (PMLST) scheme. pIncAC_KP4898 showed a mosaic structure with blaV IM-1 into a class I integron, blaSHV -12 flanked by IS6 elements, a mercury resistance and a macrolide 2′-phosphotransferase clusters, ant(3″), aph(3″), aacA4, qnrA1, sul1, and dfrA14 conferring resistance to aminoglycosides, quinolones, sulfonamides, and trimethoprim, respectively, several genes predicted to encode transfer functions and proteins involved in DNA transposition. The acquisition of pIncAC_KP4898 carrying blaV IM-1 and blaSHV -12 contributed to the spread of ST104 K. pneumoniae in the NICU of V. Monaldi Hospital in Naples. PMID:29163422
Keesari, Tirumalesh; Sharma, Diana A; Rishi, Madhuri S; Pant, Diksha; Mohokar, Hemant V; Jaryal, Ajay Kumar; Sinha, U K
2017-11-01
Groundwater samples collected from the alluvial aquifers of southwest Punjab, both shallow and deep zones were measured for environmental tritium ( 3 H) and stable isotopes ( 2 H and 18 O) to evaluate the source of recharge and aquifer dynamics. The shallow groundwater shows wide variation in isotopic signature (δ 18 O: -11.3 to -5.0‰) reflecting multiple sources of recharge. The average isotopic signature of shallow groundwaters (δ 18 O: -6.73 ± 1.03‰) is similar to that of local precipitation (-6.98 ± 1.66‰) indicating local precipitation contributes to a large extent compared to other sources. Other sources have isotopically distinct signatures due to either high altitude recharge (canal sources) or evaporative enrichment (irrigation return flow). Deep groundwater shows relatively depleted isotopic signature (δ 18 O: -8.6‰) and doesn't show any evaporation effect as compared to shallow zone indicating recharge from precipitation occurring at relatively higher altitudes. Environmental tritium indicates that both shallow ( 3 H: 5 - 10 T.U.) and deeper zone ( 3 H: 1.5 - 2.5 T.U.) groundwaters are modern. In general the inter-aquifer connections seem to be unlikely except a few places. Environmental isotope data suggests that shallow groundwater is dynamic, local and prone to changes in land use patterns while deep zone water is derived from distant sources, less dynamic and not impacted by surface manifestations. A conceptual groundwater flow diagram is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrologic Controls on Losses of Individual Components of Crude Oil in the Subsurface
NASA Astrophysics Data System (ADS)
Bekins, B. A.; Baedecker, M. J.; Eganhouse, R. P.; Drennan, D.; Herkelrath, W. N.; Warren, E.; Cozzarelli, I.
2011-12-01
The time frame for natural attenuation of crude oil contamination in the subsurface has been studied for the last 27 years at a spill site located near Bemidji, Minnesota, USA. Data from the groundwater contaminant plume show that dissolved benzene concentrations adjacent to the oil decreased by 50% between 1993 and 2007. Previous studies at the site showed that benzene and ethylbenzene undergo minimal degradation in the methanogenic zone of the plume while toluene and o-xylene degrade rapidly in this zone. Other studies have shown that degradation of benzene under methanogenic conditions occurs in some cases but is generally unreliable in the field. In this study concentrations of volatile components in the crude oil source were examined to determine if the observed benzene decrease near the oil source zone was due a change in the ability of the methanogenic microbial community to degrade benzene or long-term depletion of the oil source. Oil samples collected in 2008 had benzene concentrations ranging from 7-61% of values measured in archived oil representative of the spill consistent with depletion of the oil source. Several lines of evidence indicate that dissolution and conservative transport control the losses of benzene and ethylbenzene from the crude oil. Laboratory microcosms constructed using sediments from the methanogenic zone near the source and incubated for over 13 months with an anaerobic mineral salt solution spiked with ~2 mg/L benzene exhibited no benzene losses. Concentrations of benzene and ethylbenzene in oil samples collected from five wells were linearly correlated to interpolated maximum pore space oil saturations adjacent to each well (R2 =0.72 and 0.55 respectively), indicating that losses of these compounds from the oil were controlled by the relative permeability of groundwater through the oil body. Moreover benzene loss from the oil was greater than ethylbenzene, consistent with their relative aqueous solubilities. Losses of other oil compounds appear to be more strongly controlled by methanogenic degradation occurring in the source zone. Concentrations of these compounds, which include the n-alkanes, toluene, and o-xylene, correlate better with location in the oil body than with pore space oil saturation. Greater degradation rates occur below a topographic depression where focussing of surface runoff leads to an annual recharge rate of almost twice that of a nearby higher elevation site. The oxygen in the recharge over the source zone never reaches the oil at the water table because it is rapidly consumed in the vadose zone by aerobic methanotrophs oxidizing methane produced from oil degradation in the source zone. Other electron acceptors including nitrate and sulphate are insignificant at this site. The data suggest that transport by recharge of the growth nutrients phosphorus and nitrogen is the explanation for the higher degradation rates of the oil components in the focussed recharge area.
Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. To support selection of an appropriate endpoint for the SVE remedy, an evaluation is needed to determine whether vadose zone contamination has been diminished sufficient...
Total Petroleum Systems of the Carpathian - Balkanian Basin Province of Romania and Bulgaria
Pawlewicz, Mark
2007-01-01
The U.S. Geological Survey defined the Moesian Platform Composite Total Petroleum System and the Dysodile Schist-Tertiary Total Petroleum System, which contain three assessment units, in the Carpathian-Balkanian Basin Province of Romania and Bulgaria. The Moesian Platform Assessment Unit, contained within the Moesian Platform Composite Total Petroleum System, is composed of Mesozoic and Cenozoic rocks within the Moesian platform region of southern Romania and northern Bulgaria and also within the Birlad depression in the northeastern platform area. In Romania, hydrocarbon sources are identified as carbonate rocks and bituminous claystones within the Middle Devonian, Middle Jurassic, Lower Cretaceous, and Neogene stratigraphic sequences. In the Birlad depression, Neogene pelitic strata have the best potential for generating hydrocarbons. In Bulgaria, Middle and Upper Jurassic shales are the most probable hydrocarbon sources. The Romania Flysch Zone Assessment Unit in the Dysodile Schist-Tertiary Total Petroleum System encompasses three structural and paleogeographic subunits within the Pre-Carpathian Mountains region: (1) the Getic depression, a segment of the Carpathian foredeep; (2) the flysch zone of the eastern Carpathian Mountains (also called the Marginal Fold nappe); and (3) the Miocene zone (also called the Sub-Carpathian nappe). Source rocks are interpreted to be Oligocene dysodile schist and black claystone, along with Miocene black claystone and marls. Also part of the Dysodile Schist-Tertiary Total Petroleum System is the Romania Ploiesti Zone Assessment Unit, which includes a zone of diapir folds. This zone lies between the Rimnicu Sarat and Dinibovita valleys and between the folds of the inner Carpathian Mountains and the external flanks of the Carpathian foredeep. The Oligocene Dysodile Schist is considered the main hydrocarbon source rock and Neogene black marls and claystones are likely secondary sources; all are thought to be at their maximum thermal maturation. Undiscovered resources in the Carpathian-Balkanian Basin Province are estimated, at the mean, to be 2,076 billion cubic feet of gas, 1,013 million barrels of oil, and 116 million barrels of natural gas liquids.
NASA Astrophysics Data System (ADS)
McMillan, Lindsay A.; Rivett, Michael O.; Wealthall, Gary P.; Zeeb, Peter; Dumble, Peter
2018-03-01
Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a significant contaminant flux pathway and hence representative fraction of source mass flux. Acquisition of complementary, high-resolution, site monitoring data, however, vitally underpins optimal interpretation of monitoring-well datasets and appropriate advancement of a site conceptual model and remedial implementation.
NASA Astrophysics Data System (ADS)
Gu, N.; Zhang, H.
2017-12-01
Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.
Evaluation of volatilization as a natural attenuation pathway for MTBE
Lahvis, Matthew A.; Baehr, Arthur L.; Baker, Ronald J.
2004-01-01
Volatilization and diffusion through the unsaturated zone can be an important pathway for natural attenuation remediation of methyl tert-butyl ether (MTBE) at gasoline spill sites. The significance of this pathway depends primarily on the distribution of immiscible product within the unsaturated zone and the relative magnitude of aqueous-phase advection (ground water recharge) to gaseous-phase diffusion. At a gasoline spill site in Laurel Bay, South Carolina, rates of MTBE volatilization from ground water downgradient from the source are estimated by analyzing the distribution of MTBE in the unsaturated zone above a solute plume. Volatilization rates of MTBE from ground water determined by transport modeling ranged from 0.0020 to 0.0042 g m-2/year, depending on the assumed rate of ground water recharge. Although diffusive conditions at the Laurel Bay site are favorable for volatilization, mass loss of MTBE is insignificant over the length (230 m) of the solute plume. Based on this analysis, significant volatilization of MTBE from ground water downgradient from source areas at other sites is not likely. In contrast, model results indicate that volatilization coupled with diffusion to the atmosphere could be a significant mass loss pathway for MTBE in source areas where residual product resides above the capillary zone. Although not documented, mass loss of MTBE at the Laurel Bay site due to volatilization and diffusion to the atmosphere are predicted to be two to three times greater than mass loading of MTBE to ground water due to dissolution and recharge. This result would imply that volatilization in the source zone may be the critical natural attenuation pathway for MTBE at gasoline spill sites, especially when considering capillary zone limitations on volatilization of MTBE from ground water and the relative recalcitrance of MTBE to biodegradation.
NASA Astrophysics Data System (ADS)
Hodson, Keith R.; Crider, Juliet G.; Huntington, Katharine W.
2016-10-01
Fluid-driven cementation and diagenesis within fault zones can influence host rock permeability and rheology, affecting subsequent fluid migration and rock strength. However, there are few constraints on the feedbacks between diagenetic conditions and structural deformation. We investigate the cementation history of a fault-intersection zone on the Moab Fault, a well-studied fault system within the exhumed reservoir rocks of the Paradox Basin, Utah, USA. The fault zone hosts brittle structures recording different stages of deformation, including joints and two types of deformation bands. Using stable isotopes of carbon and oxygen, clumped isotope thermometry, and cathodoluminescence, we identify distinct source fluid compositions for the carbonate cements within the fault damage zone. Each source fluid is associated with different carbonate precipitation temperatures, luminescence characteristics, and styles of structural deformation. Luminescent carbonates appear to be derived from meteoric waters mixing with an organic-rich or magmatic carbon source. These cements have warm precipitation temperatures and are closely associated with jointing, capitalizing on increases in permeability associated with fracturing during faulting and subsequent exhumation. Earlier-formed non-luminescent carbonates have source fluid compositions similar to marine waters, low precipitation temperatures, and are closely associated with deformation bands. The deformation bands formed at shallow depths very early in the burial history, preconditioning the rock for fracturing and associated increases in permeability. Carbonate clumped isotope temperatures allow us to associate structural and diagenetic features with burial history, revealing that structural controls on fluid distribution are established early in the evolution of the host rock and fault zone, before the onset of major displacement.
Computational studies for a multiple-frequency electron cyclotron resonance ion source (abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.
1996-03-01
The number density of electrons, the energy (electron temperature), and energy distribution are three of the fundamental properties which govern the performance of electron cyclotron resonance (ECR) ion sources in terms of their capability to produce high charge state ions. The maximum electron energy is affected by several processes including the ability of the plasma to absorb power. In principle, the performances of an ECR ion source can be realized by increasing the physical size of the ECR zone in relation to the total plasma volume. The ECR zones can be increased either in the spatial or frequency domains inmore » any ECR ion source based on B-minimum plasma confinement principles. The former technique requires the design of a carefully tailored magnetic field geometry so that the central region of the plasma volume is a large, uniformly distributed plasma volume which surrounds the axis of symmetry, as proposed in Ref. . Present art forms of the ECR source utilize single frequency microwave power supplies to maintain the plasma discharge; because the magnetic field distribution continually changes in this source design, the ECR zones are relegated to thin {open_quote}{open_quote}surfaces{close_quote}{close_quote} which surround the axis of symmetry. As a consequence of the small ECR zone in relation to the total plasma volume, the probability for stochastic heating of the electrons is quite low, thereby compromising the source performance. This handicap can be overcome by use of broadband, multiple frequency microwave power as evidenced by the enhanced performances of the CAPRICE and AECR ion sources when two frequency microwave power was utilized. We have used particle-in-cell codes to simulate the magnetic field distributions in these sources and to demonstrate the advantages of using multiple, discrete frequencies over single frequencies to power conventional ECR ion sources. (Abstract Truncated)« less
Germanium layers grown by zone thermal crystallization from a discrete liquid source
NASA Astrophysics Data System (ADS)
Yatsenko, A. N.; Chebotarev, S. N.; Lozovskii, V. N.; Mohamed, A. A. A.; Erimeev, G. A.; Goncharova, L. M.; Varnavskaya, A. A.
2017-11-01
It is proposed and investigated a method for growing thin uniform germanium layers onto large silicon substrates. The technique uses the hexagonally arranged local sources filled with liquid germanium. Germanium evaporates on very close substrate and in these conditions the residual gases vapor pressure highly reduces. It is shown that to achieve uniformity of the deposited layer better than 97% the critical thickness of the vacuum zone must be equal to l cr = 1.2 mm for a hexagonal arranged system of round local sources with the radius of r = 0.75 mm and the distance between the sources of h = 0.5 mm.
Simulation Model of Mobile Detection Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmunds, T; Faissol, D; Yao, Y
2009-01-27
In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped withmore » 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains a constant range to the vessel being inspected. Finally, a variation of the sequential probability ratio test that is more appropriate when source and detector are not at constant range is available [Nelson 2005]. Each patrol boat in the fleet can be assigned a particular zone of the bay, or all boats can be assigned to monitor the entire bay. Boats assigned to a zone will only intercept and inspect other boats when they enter their zone. In our example simulation, each of two patrol boats operate in a 5 km by 5 km zone. Other parameters for this example include: (1) Detection range - 15 m range maintained between patrol boat and inspected boat; (2) Inbound boat arrival rate - Poisson process with mean arrival rate of 30 boats per hour; (3) Speed of boats to be inspected - Random between 4.5 and 9 knots; (4) Patrol boat speed - 10 knots; (5) Number of detectors per patrol boat - 4-2-inch x 4-inch x 16-inch NaI detectors; (6) Background radiation - 40 counts/sec per detector; and (7) Detector response due to radiation source at 1 meter - 1,589 counts/sec per detector. Simulation results indicate that two patrol boats are able to detect the source 81% of the time without zones and 90% of the time with zones. The average distances between the source and target at the end of the simulation is 5,866 km and 5,712 km for non-zoned and zoned patrols, respectively. Of those that did not reach the target, the average distance to the target is 7,305 km and 6,441 km respectively. Note that a design trade-off exists. While zoned patrols provide a higher probability of detection, the nonzoned patrols tend to detect the source farther from its target. Figure 1 displays the location of the source at the end of 1,000 simulations for the 5 x 10 km bay simulation. The simulation model and analysis described here can be used to determine the number of mobile detectors one would need to deploy in order to have a have reasonable chance of detecting a source in transit. By fixing the source speed to zero, the same model could be used to estimate how long it would take to detect a stationary source. For example, the model could predict how long it would take plant staff performing assigned duties carrying dosimeters to discover a contaminated spot in the facility.« less
NASA Astrophysics Data System (ADS)
Tang, Gong-Jian; Wang, Qiang; Zhang, Chunfu; Wyman, Derek A.; Dan, Wei; Xia, Xiao-Ping; Chen, Hong-Yi; Zhao, Zhen-Hua
2017-09-01
To better understand the compositional diversity of plutonic complexes and crustal growth of the Central Asian Orogenic Belt (CAOB), we conducted an integrated study of the Ertaibei pluton, which obtained geochronological, petrological, geochemical, and isotopic (including whole rock Sr-Nd, in situ zircon Hf-O) data. The pluton (ca. 300 Ma) is composed of granodiorites that contain mafic microgranular enclaves (MMEs), dolerite dikes, and granite dikes containing quartz-tourmaline orbicules. The dolerite dikes were possibly generated by melting of an asthenospheric mantle source, with discrete assimilation of lower crustal components in the MASH (melting, assimilation, storage, and homogenization) zone. The MMEs originated from hybridization between mantle and crust-derived magmas, which spanned a range of melting depths (˜25-30 km) in the MASH zone and were episodically tapped. Melting of the basaltic lower crust in the core of the MASH zone generated magmas to form the granodiorites. The granite dikes originated from melting of an arc-derived volcanogenic sedimentary source with a minor underplated basaltic source in the roof of the MASH zone (˜25 km). The compositional diversity reflects both the magma sources and the degree of maturation of the MASH zone. Although having mantle-like radiogenic isotope compositions, the Ertaibei and other postcollisional granitoids show high zircon δ18O values (mostly between +6 and +9‰), indicating a negligible contribution to the CAOB crustal growth during the postcollisional period.