Sample records for naproxen methyl ester

  1. A germination bioassay as a toxicological screening system for studying the effects of potential prodrugs of naproxen.

    PubMed

    Gonzalez-de la Parra, M; Ramos-Mundo, C; Jimenez-Estrada, M; Ponce-de Leon, C; Castillo, R; Tejeda, V; Cuevas, K G; Enriquez, R G

    1998-01-01

    A germination bioassay with radish (Raphanus sativus L.) seeds was developed as a toxicological screening system for assessing the effects of new potential prodrugs of naproxen, as an alternative to animals and animal cell toxicity screens. Both enantiomers of naproxen (6-methoxy-α-methyl-2-naphthaleneacetic acid) and naproxol (6-methoxy-β-2-naphthaleneethanol), and their racemic mixtures, inhibited the radicle growth of R. sativus at a concentration of 1mM, while only (R)-(+ )-naproxol and racemic naproxol inhibited the hypocotyl growth of R. sativus at the same concentration. Four novel combinatorial esters, naproxen naproxyl esters (6-methoxy-β-methyl-2-naphthaleneethyl 6-methoxy-α-methyl-2-naphthaleneacetate), resulting from the combinatorial chemistry of the esterification reaction between naproxen and naproxol, were synthesised and then tested in the germination bioassay, at a concentration of 0.5mM. It was found that they did not inhibit either the radicle or the hypocotyl growth of R. sativus. 1998 FRAME.

  2. Enantioselective synthesis of (S)-naproxen using immobilized lipase on chitosan beads.

    PubMed

    Gilani, Saeedeh L; Najafpour, Ghasem D; Heydarzadeh, Hamid D; Moghadamnia, Aliakbar

    2017-06-01

    S-naproxen by enantioselective hydrolysis of racemic naproxen methyl ester was produced using immobilized lipase. The lipase enzyme was immobilized on chitosan beads, activated chitosan beads by glutaraldehyde, and Amberlite XAD7. In order to find an appropriate support for the hydrolysis reaction of racemic naproxen methyl ester, the conversion and enantioselectivity for all carriers were compared. In addition, effects of the volumetric ratio of two phases in different organic solvents, addition of cosolvent and surfactant, optimum pH and temperature, reusability, and inhibitory effect of methanol were investigated. The optimum volumetric ratio of two phases was defined as 3:2 of aqueous phase to organic phase. Various water miscible and water immiscible solvents were examined. Finally, isooctane was chosen as an organic solvent, while 2-ethoxyethanol was added as a cosolvent in the organic phase of the reaction mixture. The optimum reaction conditions were determined to be 35 °C, pH 7, and 24 h. Addition of Tween-80 in the organic phase increased the accessibility of immobilized enzyme to the reactant. The optimum organic phase compositions using a volumetric ratio of 2-ethoxyethanol, isooctane and Tween-80 were 3:7 and 0.1% (v/v/v), respectively. The best conversion and enantioselectivity of immobilized enzyme using chitosan beads activated by glutaraldehyde were 0.45 and 185, respectively. © 2017 Wiley Periodicals, Inc.

  3. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 172.816... § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the methyl glucoside-coconut oil ester...

  4. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 178.3600 Section 178.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified...

  5. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  6. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  7. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  8. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  9. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  10. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  11. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  12. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  13. Kenaf methyl esters

    USDA-ARS?s Scientific Manuscript database

    Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...

  14. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  15. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  16. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  17. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  18. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  19. Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products

    NASA Astrophysics Data System (ADS)

    Chai, Ming

    Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds. Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate. The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and

  20. Improved synthetic route to methyl 1-fluoroindan-1-carboxylate (FICA Me ester) and 4-methyl derivatives.

    PubMed

    Koyanagi, Jyunichi; Kamei, Tomoyo; Ishizaki, Miyuki; Nakamura, Hiroshi; Takahashi, Tamiko

    2014-01-01

    An improved synthetic route has been developed for the preparation of methyl 1-fluoroindan-1-carboxylate (FICA Me ester) from 1-indanone. Methyl 4-methyl-1-fluoroindan-1-carboxylate (4-Me-FICA Me ester) was also prepared following the same procedure.

  1. Kapok oil methyl esters

    USDA-ARS?s Scientific Manuscript database

    The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specificati...

  2. Hydrogen bond docking site competition in methyl esters

    NASA Astrophysics Data System (ADS)

    Zhao, Hailiang; Tang, Shanshan; Du, Lin

    2017-06-01

    The Osbnd H ⋯ O hydrogen bonds in the 2,2,2-trifluoroethanol (TFE)-methyl ester complexes in the gas phase have been investigated by FTIR spectroscopy and DFT calculations. Methyl formate (MF), methyl acetate (MA), and methyl trifluoroacetate (MTFA) were chosen as the hydrogen bond acceptors. A dominant inter-molecular hydrogen bond was formed between the OH group of TFE and different docking sites in the methyl esters (carbonyl oxygen or ester oxygen). The competition of the two docking sites decides the structure and spectral properties of the complexes. On the basis of the observed red shifts of the OH-stretching transition with respect to the TFE monomer, the order of the hydrogen bond strength can be sorted as TFE-MA (119 cm- 1) > TFE-MF (93 cm- 1) > TFE-MTFA (44 cm- 1). Combining the experimental infrared spectra with the DFT calculations, the Gibbs free energies of formation were determined to be 1.5, 4.5 and 8.6 kJ mol- 1 for TFE-MA, TFE-MF and TFE-MTFA, respectively. The hydrogen bonding in the MTFA complex is much weaker than those of the TFE-MA and TFE-MF complexes due to the effect of the CF3 substitution on MTFA, while the replacement of an H atom with a CH3 group in methyl ester only slightly increases the hydrogen bond strength. Topological analysis and localized molecular orbital energy decomposition analysis was also applied to compare the interactions in the complexes.

  3. Application of ethyl esters and d3-methyl esters as internal standards for the gas chromatographic quantification of transesterified fatty acid methyl esters in food.

    PubMed

    Thurnhofer, Saskia; Vetter, Walter

    2006-05-03

    Ethyl esters (FAEE) and trideuterium-labeled methyl esters (d3-FAME) of fatty acids were prepared and investigated regarding their suitability as internal standards (IS) for the determination of fatty acids as methyl esters (FAME). On CP-Sil 88, ethyl esters of odd-numbered fatty acids eluted approximately 0.5 min after the respective FAME, and only coelutions with minor FAME were observed. Depending on the problem, one or even many FAEE can be added as IS for the quantification of FAME by both GC-FID and GC-MS. By contrast, d3-FAME coeluted with FAME on the polar GC column, and the use of the former as IS requires application of GC-MS. In the SIM mode, m/z 77 and 90 are suggested for d3-methyl esters of saturated fatty acids, whereas m/z 88 and 101 are recommended for ethyl esters of saturated fatty acids. These m/z values give either no or very low response for FAME and can thus be used for the analysis of FAME in food by GC-MS in the SIM mode. Fatty acids in sunflower oil and mozzarella cheese were quantified using five saturated FAEE as IS. Gravimetric studies showed that the transesterification procedure could be carried out without of loss of fatty acids. GC-EI/MS full scan analysis was suitable for the quantitative determination of all unsaturated fatty acids in both food samples, whereas GC-EI/MS in the SIM mode was particularly valuable for quantifying minor fatty acids. The novel GC-EI/MS/SIM method using fatty acid ethyl esters as internal standards can be used to quantify individual fatty acids only, that is, without determination of all fatty acids (the common 100% method), although this is present. This was demonstrated by the exclusive quantification of selected fatty acids including methyl-branched fatty acids, erucic acid (18:1n-9trans), and polyunsaturated fatty acids in cod liver oil and goat's milk fat.

  4. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.

    PubMed

    Sárosi, Menyhárt-Botond

    2018-06-05

    Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.

  5. Anaerobic biodegradation of methyl esters by Acetobacterium woodii and Eubacterium limosum

    USGS Publications Warehouse

    Liu, Shi; Suflita, Joseph M.

    1994-01-01

    The ability ofAcetobacterium woodii andEubacterium limosum to degrade methyl esters of acetate, propionate, butyrate, and isobutyrate was examined under growing and resting-cell conditions. Both bacteria hydrolyzed the esters to the corresponding carboxylates and methanol under either condition. Methanol was further oxidized to formate under growing but not resting conditions. Unlike the metabolism of phenylmethylethers, no H2 requirement was evident for ester biotransformation. The hydrolysis of methyl carboxylates is thermodynamically favorable under standard conditions and the mixotrophic metabolism of ester/CO2 allowed for bacterial growth. These results suggest that the degradation of methyl carboxylates may be a heretofore unrecognized nutritional option for acetogenic bacteria.

  6. Temperature-enhanced alumina HPLC method for the analysis of wax esters, sterol esters, and methyl esters.

    PubMed

    Moreau, Robert A; Kohout, Karen; Singh, Vijay

    2002-12-01

    Previous attempts at separating nonpolar lipid esters (including wax esters, sterol esters, and methyl esters) have achieved only limited success. Among the several normal-phase methods tested, a single recent report of a method employing an alumina column at 30 degrees C with a binary gradient system was the most promising. In the current study, modification of the alumina method by increasing the column temperature to 75 degrees C improved the separation of standards of wax esters and sterol esters. Elevated column temperature also enhanced the separation of FAME with differing degrees of unsaturation. Evidence was also presented to indicate that the method similarly separated phytosterol esters, based on their levels of unsaturation. With the increased interest in phytosterol- and phytostanol-ester enriched functional foods, this method should provide a technique to characterize and compare these products.

  7. Effects of high-melting methyl esters on crystallization properties of fatty acid methyl ester mixtures

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is a renewable alternative diesel fuel made from vegetable oils and animal fats. The most common form of biodiesel in the United States are fatty acid methyl esters (FAME) from soybean, canola, and used cooking oils, waste greases, and tallow. Cold flow properties of biodiesel depend on th...

  8. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    PubMed

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  9. Efficient and scalable synthesis of bardoxolone methyl (cddo-methyl ester).

    PubMed

    Fu, Liangfeng; Gribble, Gordon W

    2013-04-05

    Bardoxolone methyl (2-cyano-3,12-dioxooleane-1,9(11)-dien-28-oic acid methyl ester; CDDO-Me) (1), a synthetic oleanane triterpenoid with highly potent anti-inflammatory activity (levels below 1 nM), has completed a successful phase I clinical trial for the treatment of cancer and a successful phase II trial for the treatment of chronic kidney disease in type 2 diabetes patients. Our synthesis of bardoxolone methyl (1) proceeds in ∼50% overall yield in five steps from oleanolic acid (2), requires only one to two chromatographic purifications, and can provide gram quantities of 1.

  10. Convenient synthesis of 6-nor-9,10-dihydrolysergic acid methyl ester.

    PubMed

    Crider, A M; Grubb, R; Bachmann, K A; Rawat, A K

    1981-12-01

    6-Nor-9,10-dihydrolysergic acid methyl ester (IV) was prepared by demethylation of 9,10-dihydrolysergic acid methyl ester (II) with 2,2,2-trichloroethyl chloroformate, followed by reduction of the intermediate carbamate (III) with zinc in acetic acid. The 6-ethyl-V and 6-n-propyl-VI derivatives were prepared by alkylation of IV with the appropriate halide. All of the ergoline derivatives were evaluated for stereotyped behavior in rats, with 6-nor-6-ethyl-9,10-dihydrolysergic acid methyl ester (V) being active but much less potent than apomorphine. Compound VI was evaluated for its effect on blood pressure; at a dose of 30 mg/kg ip, it significantly lowered, diastolic pressure in normotensive rats.

  11. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  12. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuelmore » supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.« less

  13. Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko

    2017-06-09

    Two methyl esters have been examined as models for the pyrolysis of biofuels. Dilute samples (0.06 - 0.13%) of methyl acetate (CH 3COOCH 3) and methyl butanoate (CH 3CH 2CH 2COOCH 3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed micro-reactor were roughly 20 Torr and residence times through the reactors were approximately 25 - 150 µs. Reactor temperatures ofmore » 300 – 1600 K were explored. Decomposition of CH 3COOCH 3 commences at 1000 K and the initial products are (CH 2=C=O and CH 3OH). As the micro-reactor is heated to 1300 K, a mixture of (CH 2=C=O and CH 3OH, CH 3, CH 2=O, H, CO, CO 2) appears. The thermal cracking of CH 3CH 2CH 2COOCH 3 begins at 800 K with the formation of (CH 3CH 2CH=C=O, CH 3OH). By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of (CH 3CH 2CH=C=O, CH 3OH, CH 3, CH 2=O, CO, CO 2, CH 3CH=CH 2, CH 2CHCH 2, CH 2=C=CH 2, HCCCH 2, CH 2=C=C=O, CH 2=CH 2, HCΞCH, CH 2=C=O). Based on the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R CH 2-COOCH 3. The lowest energy fragmentation will be a 4-center elimination of methanol to form the ketene, RCH=C=O. At higher temperatures, concerted fragmentation to radicals will ensue to produce a mixture of species: (RCH 2 + CO 2 + CH 3) and (RCH 2 + CO + CH 2=O + H). Thermal cracking of the β C-C bond of the methyl ester will generate the radicals (R and H) as well as CH 2=C=O + CH 2=O. The thermochemistry of methyl acetate and its fragmentation products have been obtained via the Active Thermochemical Tables (ATcT) approach, resulting in

  14. CFD simulation of fatty acid methyl ester production in bubble column reactor

    NASA Astrophysics Data System (ADS)

    Salleh, N. S. Mohd; Nasir, N. F.

    2017-09-01

    Non-catalytic transesterification is one of the method that was used to produce the fatty acid methyl ester (FAME) by blowing superheated methanol bubbles continuously into the vegetable oil without using any catalyst. This research aimed to simulate the production of FAME from palm oil in a bubble column reactor. Computational Fluid Dynamic (CFD) simulation was used to predict the distribution of fatty acid methyl ester and other product in the reactor. The fluid flow and component of concentration along the reaction time was investigated and the effects of reaction temperature (523 K and 563 K) on the non-catalytic transesterification process has been examined. The study was carried out using ANSYS CFX 17.1. The finding from the study shows that increasing the temperature leads to higher amount of fatty acid methyl ester can be produced in shorter time. On the other hand, concentration of the component such as triglyceride (TG), glycerol (GL) and fatty acid methyl ester (FAME) can be known when reaching the optimum condition.

  15. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  16. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  17. New bis(alkythio) fatty acid methyl esters

    USDA-ARS?s Scientific Manuscript database

    The addition reaction of dimethyl disulfide (DMDS) to mono-unsaturated fatty acid methyl esters is well-known for analytical purposes to determine the position of double bonds by mass spectrometry. In this work, the classical iodine-catalyzed reaction is expanded to other dialkyl disulfides (RSSR), ...

  18. Processing Of Neem And Jatropha Methyl Esters -Alternative Fuels From Vegetable Oil

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.

    2017-03-01

    Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.

  19. Gastric-sparing nitric oxide-releasable 'true' prodrugs of aspirin and naproxen.

    PubMed

    Gund, Machhindra; Gaikwad, Parikshit; Borhade, Namdev; Burhan, Aslam; Desai, Dattatraya C; Sharma, Ankur; Dhiman, Mini; Patil, Mohan; Sheikh, Javed; Thakre, Gajanan; Tipparam, Santhosh G; Sharma, Somesh; Nemmani, Kumar V S; Satyam, Apparao

    2014-12-15

    Nitric oxide-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) are gaining attention as potentially gastric-sparing NSAIDs. Herein, we report a novel class of '1-(nitrooxy)ethyl ester' group-containing NSAIDS as efficient NO releasing 'true' prodrugs of aspirin and naproxen. While an aspirin prodrug exhibited comparable oral bioavailability and antiplatelet activity (i.e., TXB2 inhibition) to those of aspirin, a naproxen prodrug exhibited better bioavailability than naproxen. These promising NO-NSAIDs protected experimental rats from gastric damage. We therefore believe that these promising NO-NSAIDs could represent a new class of potentially 'Safe NSAIDs' for the treatment of arthritic pain, inflammation and cardiovascular disorders in the case of NO-aspirin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products...

  1. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products...

  2. Isolation of (S)-(+)-naproxene from Musa acuminata. Inhibitory effect of naproxene and its 7-methoxy isomer on constitutive COX-1 and inducible COX-2.

    PubMed

    Abad, T; McNaughton-Smith, G; Fletcher, W Q; Echeverri, F; Diaz-Peñate, R; Tabraue, C; Ruiz de Galarreta, C M; López-Blanco, F; Luis, J G

    2000-06-01

    The isolation and characterisation of (S)-(+)-6-methoxy-alpha-methyl-2-naphthaleneacetic acid, a well known synthetic non-steroidal anti-inflammatory drug (naproxene), from a natural source is described for the first time. We evaluated the ability of naproxene and its 7-methoxy isomer to abrogate constitutive COX-1 and inducible COX-2 activity in human A549 cells. Naproxene inhibited COX-1 (IC50 = 3.42 microM) and COX-2 (IC50 = 1.53 microM), whereas the 7-methoxy isomer had no appreciable effect on COX-1 (IC50 > 100 microM) but also abrogated the activity of COX-2 enzyme (IC50 = 14.42 microM).

  3. Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations

    NASA Astrophysics Data System (ADS)

    Veny, Harumi; Baroutian, Saeid; Aroua, Mohamed Kheireddine; Hasan, Masitah; Raman, Abdul Aziz; Sulaiman, Nik Meriam Nik

    2009-04-01

    Density data as a function of temperature have been measured for Jatropha curcas seed oil, as well as biodiesel jatropha methyl esters at temperatures from above their melting points to 90 ° C. The data obtained were used to validate the method proposed by Spencer and Danner using a modified Rackett equation. The experimental and estimated density values using the modified Rackett equation gave almost identical values with average absolute percent deviations less than 0.03% for the jatropha oil and 0.04% for the jatropha methyl esters. The Janarthanan empirical equation was also employed to predict jatropha biodiesel densities. This equation performed equally well with average absolute percent deviations within 0.05%. Two simple linear equations for densities of jatropha oil and its methyl esters are also proposed in this study.

  4. Methyl esters (biodiesel) from Pachyrhizus erosus seed oil

    USDA-ARS?s Scientific Manuscript database

    The search for additional or alternative feedstocks is one of the major areas of interest regarding biodiesel. In this paper, the fuel properties of Pachyrhizus erosus (commonly known as yam bean or Mexican potato or jicama) seed oil methyl esters were investigated by methods prescribed in biodiesel...

  5. Modeling Study of the Low-Temperature Oxidation of Large Methyl Esters from C11 to C19

    PubMed Central

    Herbinet, Olivier; Biet, Joffrey; Hakka, Mohammed Hichem; Warth, Valérie; Glaude, Pierre Alexandre; Nicolle, André; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the low temperature oxidation of large saturated methyl esters really representative of those found in biodiesel fuels has been investigated. Models have been developed for these species and then detailed kinetic mechanisms have been automatically generated using a new extended version of software EXGAS, which includes reactions specific to the chemistry of esters. A model generated for a binary mixture of n-decane and methyl palmitate was used to simulate experimental results obtained in a jet-stirred reactor for this fuel. This model predicts very well the reactivity of the fuel and the mole fraction profiles of most reaction products. This work also shows that a model for a middle size methyl ester such as methyl decanoate predicts fairly well the reactivity and the mole fractions of most species with a substantial decrease in computational time. Large n-alkanes such as n-hexadecane are also good surrogates for reproducing the reactivity of methyl esters, with an important gain in computational time, but they cannot account for the formation of specific products such as unsaturated esters or cyclic ethers with an ester function. PMID:23814504

  6. A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots.

    PubMed

    Hou, Juying; Dong, Jing; Zhu, Haishuang; Teng, Xue; Ai, Shiyun; Mang, Minglin

    2015-06-15

    In this paper, a simple and sensitive fluorescent sensor for methyl parathion is developed based on L-tyrosine methyl ester functionalized carbon dots (Tyr-CDs) and tyrosinase system. The carbon dots are obtained by simple hydrothermal reaction using citric acid as carbon resource and L-tyrosine methyl ester as modification reagent. The carbon dots are characterized by transmission electron microscope, high resolution transmission electron microscopy, X-ray diffraction spectrum, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carbon dots show strong and stable photoluminescence with a quantum yield of 3.8%. Tyrosinase can catalyze the oxidation of tyrosine methyl ester on the surface of carbon dots to corresponding quinone products, which can quench the fluorescence of carbon dots. When organophosphorus pesticides (OPs) are introduced in system, they can decrease the enzyme activity, thus decrease the fluorescence quenching rate. Methyl parathion, as a model of OPs, was detected. Experimental results show that the enzyme inhibition rate is proportional to the logarithm of the methyl parathion concentration in the range 1.0×10(-10)-1.0×10(-4) M with the detection limit (S/N=3) of 4.8×10(-11) M. This determination method shows a low detection limit, wide linear range, good selectivity and high reproducibility. This sensing system has been successfully used for the analysis of cabbage, milk and fruit juice samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  8. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  9. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    NASA Astrophysics Data System (ADS)

    Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.

    2012-05-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  10. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.

    PubMed

    Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A

    2016-03-01

    A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca

    PubMed Central

    Bruns, Hilke; Riclea, Ramona

    2011-01-01

    Summary The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM). PMID:22238549

  12. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2'-(1,2-diazenediyl)bis[2-methylbutanenitrile]- and 2,2'-(1,2-diazenediyl)bis[2-methylpropanenitrile]-initiated. 721.10326...

  13. Naproxen-induced Ca2+ movement and death in MDCK canine renal tubular cells.

    PubMed

    Cheng, H-H; Chou, C-T; Sun, T-K; Liang, W-Z; Cheng, J-S; Chang, H-T; Tseng, H-W; Kuo, C-C; Chen, F-A; Kuo, D-H; Shieh, P; Jan, C-R

    2015-11-01

    Naproxen is an anti-inflammatory drug that affects cellular calcium ion (Ca(2+)) homeostasis and viability in different cells. This study explored the effect of naproxen on [Ca(2+)](i) and viability in Madin-Darby canine kidney cells (MDCK) canine renal tubular cells. At concentrations between 50 μM and 300 μM, naproxen induced [Ca(2+)](i) rises in a concentration-dependent manner. This Ca(2+) signal was reduced partly when extracellular Ca(2+) was removed. The Ca(2+) signal was inhibited by a Ca(2+) channel blocker nifedipine but not by store-operated Ca(2+) channel inhibitors (econazole and SKF96365), a protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, and a PKC inhibitor GF109203X. In Ca(2+)-free medium, pretreatment with 2,5-di-tert-butylhydroquinone or thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+) pumps, partly inhibited naproxen-induced Ca(2+) signal. Inhibition of phospholipase C with U73122 did not alter naproxen-evoked [Ca(2+)](i) rises. At concentrations between 15 μM and 30 μM, naproxen killed cells in a concentration-dependent manner, which was not reversed by prechelating cytosolic Ca(2+) with the acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl. Annexin V/propidium iodide staining data suggest that naproxen induced apoptosis. Together, in MDCK renal tubular cells, naproxen induced [Ca(2+)](i) rises by inducing Ca(2+) release from multiple stores that included the endoplasmic reticulum and Ca(2+) entry via nifedipine-sensitive Ca(2+) channels. Naproxen induced cell death that involved apoptosis. © The Author(s) 2015.

  14. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2â²-(1,2-diazenediyl)bis[2-methylbutanenitrile]- and 2,2â²-(1,2-diazenediyl)bis[2-methylpropanenitrile]-initiated. 721.10326...

  15. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2â²-(1,2-diazenediyl)bis[2-methylbutanenitrile]- and 2,2â²-(1,2-diazenediyl)bis[2-methylpropanenitrile]-initiated. 721.10326...

  16. Biodegradation of micropollutant naproxen with a selected fungal strain and identification of metabolites.

    PubMed

    Aracagök, Y Doruk; Göker, Hakan; Cihangir, Nilüfer

    2017-05-01

    Pharmaceuticals are widely used for treating human and animal diseases. Naproxen [(S) 6-methoxy-α-methyl-2-naphthalene acetic acid] and its sodium salt are members of the α-arylpropionic acid group of nonsteroidal anti-inflammatory drugs. Due to excessive usage of naproxen, this drug has been determined even in drinking water. In this study, four fungal strains Phanerochaete chrysosporium, Funalia trogii, Aspergillus niger, and Yarrowia lipolytica were investigated in terms of naproxen removal abilities. According to LC/MS data, A. niger was found the most efficient strain with 98% removal rate. Two main by-products of fungal transformation, O-desmethylnaproxen and 7-hydroxynaproxen, were identified by using LC/MS, 1HNMR, and 13CNMR. Our results showed that O-demethylation and hydroxylation of naproxen is catalyzed by cytochrome P450 enzyme system.

  17. A 13C NMR study of the structure of four cinnamic acids and their methyl esters

    NASA Astrophysics Data System (ADS)

    Silva, A. M. S.; Alkorta, I.; Elguero, J.; Silva, V. L. M.

    2001-09-01

    The 13C NMR spectra, both in DMSO solution and in the solid state of four cinnamic acids (p-methoxy, p-hydroxy, p-methyl, p-chloro) and their corresponding methyl esters have been recorded. The two main results in the solid state are: (i) the only significant difference between acids and esters chemical shifts concerns the Cdbnd O group which, on average, appears at 173 ppm in the acids and 168 ppm in the esters; (ii) the signals of the ortho and meta carbons both in the acids and the esters are splitted. The two 'anomalies' disappear in DMSO solution. These observations can be rationalized using simple GIAO/B3LYP/6-31G∗ calculations.

  18. Novel Strategy of Using Methyl Esters as Slow Release Methanol Source during Lipase Expression by mut+ Pichia pastoris X33

    PubMed Central

    Kumari, Arti; Gupta, Rani

    2014-01-01

    One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression. PMID:25170843

  19. Single dose oral naproxen and naproxen sodium for acute postoperative pain (Review)

    PubMed Central

    Mason, L; Edwards, JE; Moore, RA; McQuay, HJ

    2014-01-01

    Background Postoperative pain is often poorly managed. Treatment options include a range of drug therapies such as non-steroidal anti-inflammatory drugs (NSAIDs) of which naproxen is one. Naproxen is used to treat a variety of painful conditions including acute postoperative pain, and is often combined with sodium to improve its solubility for oral administration. Naproxen sodium 550 mg (equivalent to 500 mg of naproxen) is considered to be an effective dose for treating postoperative pain but to date no systematic review of the effectiveness of naproxen/naproxen sodium at different doses has been published. Objectives To assess the efficacy, safety and duration of action of a single oral dose of naproxen or naproxen sodium for acute postoperative pain in adults. Search strategy We searched The Cochrane Library, MEDLINE, EMBASE and the Oxford Pain Relief Database for relevant studies. Additional studies were identified from the reference list of retrieved reports. The most recent search was undertaken in July 2004. Selection criteria Included studies were randomised, double blind, placebo-controlled trials of a single dose of orally administered naproxen or naproxen sodium in adults with moderate to severe acute postoperative pain. Data collection and analysis Pain relief or pain intensity data were extracted and converted into dichotomous information to give the number of patients with at least 50% pain relief over four to six hours. Relative risk estimates (RR) and the number-needed-to-treat (NNT) for at least 50% pain relief were then calculated. Information was sought on the percentage of patients experiencing any adverse event, and the number-needed-to-harm was derived. Time to remedication was also estimated. Main results Ten trials (996 patients) met the inclusion criteria: nine assessed naproxen sodium; one combined the results from two small trials of naproxen alone. Included studies scored well for methodological quality. Meta-analysis of six trials (500

  20. Vapor movement of the synthetic auxin herbicides, aminocyclopyrachlor and its methyl ester under laboratory and enclosed chamber environments

    USDA-ARS?s Scientific Manuscript database

    Aminocyclopyrachlor (DPX MAT28) a newly discovered synthetic auxin herbicide and its methyl ester (DPX KJM44) appear to control a number of perennial broadleaf weeds. The potential volatility of this new herbicide and its methyl ester were determined under laboratory conditions and were also compar...

  1. Zeolite/magnetite composites as catalysts on the Synthesis of Methyl Esters (MES) from cooking oil

    NASA Astrophysics Data System (ADS)

    Sriatun; Darmawan, Adi; Sriyanti; Cahyani, Wuri; Widyandari, Hendri

    2018-05-01

    The using of zeolite/magnetite composite as a catalyst for the synthesis of methyl esters (MES) of cooking oil has been performed. In this study the natural magnetite was extracted from the iron sand of Semarang marina beach and milled by high energy Milling (HEM) with ball: magnetite ratio: 1:1. The composites prepared from natural zeolite and natural magnetite with zeolite: magnetite ratio 1:1; 2:1; 3:1 and 4:1. Preparation of methyl ester was catalyzed by composite of zeolite/magnetite through transeserification reaction, it was studied on variation of catalyst concentration (w/v) 1%, 3%, 5% and 10% to feed volume. The reaction product are mixture of methyl Oleic (MES), methyl Palmitic (MES) and methyl Stearic (MES). Character product of this research include density, viscosity, acid number and iodine number has fulfilled to SNI standard 7182: 2015.

  2. Molecular Basis for Cyclooxygenase Inhibition by the Non-steroidal Anti-inflammatory Drug Naproxen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duggan, Kelsey C.; Walters, Matthew J.; Musee, Joel

    Naproxen ((S)-6-methoxy-{alpha}-methyl-2-naphthaleneacetic acid) is a powerful non-selective non-steroidal anti-inflammatory drug that is extensively used as a prescription and over-the-counter medication. Naproxen exhibits gastrointestinal toxicity, but its cardiovascular toxicity may be reduced compared with other drugs in its class. Despite the fact that naproxen has been marketed for many years, the molecular basis of its interaction with cyclooxygenase (COX) enzymes is unknown. We performed a detailed study of naproxen-COX-2 interactions using site-directed mutagenesis, structure-activity analysis, and x-ray crystallography. The results indicate that each of the pendant groups of the naphthyl scaffold are essential for COX inhibition, and only minimal substitutions aremore » tolerated. Mutation of Trp-387 to Phe significantly reduced inhibition by naproxen, a result that appears unique to this inhibitor. Substitution of S or CH2 for the O atom of the p-methoxy group yielded analogs that were not affected by the W387F substitution and that exhibited increased COX-2 selectivity relative to naproxen. Crystallization and x-ray analysis yielded structures of COX-2 complexed to naproxen and its methylthio analog at 1.7 and 2.3 {angstrom} resolution, respectively. The combination of mutagenesis, structure analysis, and x-ray crystallography provided comprehensive information on the unique interactions responsible for naproxen binding to COX-2.« less

  3. Complexes of polyadenylic acid and the methyl esters of amino acids

    NASA Technical Reports Server (NTRS)

    Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.

    1983-01-01

    A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.

  4. Oxygenated N-Acyl Alanine Methyl Esters (NAMEs) from the Marine Bacterium Roseovarius tolerans EL-164.

    PubMed

    Bruns, Hilke; Herrmann, Jennifer; Müller, Rolf; Wang, Hui; Wagner Döbler, Irene; Schulz, Stefan

    2018-01-26

    The marine bacterium Roseovarius tolerans EL-164 (Rhodobacteraceae) can produce unique N-acylalanine methyl esters (NAMEs) besides strucutrally related N-acylhomoserine lactones (AHLs), bacterial signaling compounds widespread in the Rhodobacteraceae. The structures of two unprecedented NAMEs carrying a rare terminally oxidized acyl chain are reported here. The compounds (Z)-N-16-hydroxyhexadec-9-enoyl-l-alanine methyl ester (Z9-16-OH-C16:1-NAME, 3) and (Z)-N-15-carboxypentadec-9-enoyl-l-alanine methyl ester (16COOH-C16:1-NAME, 4) were isolated, and the structures were determined by NMR and MS experiments. Both compounds were synthesized to prove assignments and to test their biological activity. Finally, non-natural, structurally related Z9-3-OH-C16:1-NAME (18) was synthesized to investigate the mass spectroscopy of structurally related NAMEs. Compound 3 showed moderate antibacterial activity against microorganisms such as Bacillus, Streptococcus, Micrococcus, or Mucor strains. In contrast to AHLs, quorum-sensing or quorum-quenching activity was not observed.

  5. Methyl Ester Production via Heterogeneous Acid-Catalyzed Simultaneous Transesterification and Esterification Reactions

    NASA Astrophysics Data System (ADS)

    Indrayanah, S.; Erwin; Marsih, I. N.; Suprapto; Murwani, I. K.

    2017-05-01

    The heterogeneous acid catalysts (MgF2 and ZnF2) have been used to catalyze the simultaneous transesterification and esterification reactions of crude palm oil (CPO) with methanol. Catalysts were synthesized by sol-gel method (combination of fluorolysis and hydrolysis). The physicochemical, structural, textural, thermal stability of the prepared catalysts was investigated by N2 adsorption-desorption, XRD, FT-IR, SEM and TG/DTG. Both MgF2 and ZnF2 have rutile structures with a different phase. The surface area of ZnF2 is smaller than that of MgF2, but the pore size and volume of ZnF2 are larger than those of MgF2. However, these materials are thermally stable. The performance of the catalysts is determined from the yield of catalysts toward the formation of methyl ester determined based on the product of methyl ester obtained from the reaction. The catalytic activity of ZnF2 is higher than MgF2 amounted to 85.21% and 26.82% with the optimum condition. The high activity of ZnF2 could be attributed to its pore diameter and pore volume but was not correlated with its surface area. The yield of methyl ester decreased along with the increase in molar ratio of methanol/CPO from 85.21 to 80.99 for ZnF2, respectively.

  6. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    PubMed

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  7. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    NASA Astrophysics Data System (ADS)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  8. Cold flow properties of fatty acid methyl esters: Additives versus diluents

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...

  9. Chemical modification of nanocellulose with canola oil fatty acid methyl ester

    Treesearch

    Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark

    2017-01-01

    Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...

  10. [Inhibition of oxidation of unsaturated fatty acid methyl esters by essential oils].

    PubMed

    Misharina, T A; Alinkina, E S; Vorobjeva, A K; Terenina, M B; Krikunova, N I

    2016-01-01

    The essential oils from 16 various spice plants were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids methyl esters isolated from linseed oil. The content of methyl oleate, methyl linoleate, and methyl linolenoate after 1, 2, and 4 months of autooxidation were used as criteria to estimate the antioxidant efficiencies of essential oils. In 4 months, 92% of the methyl linolenoate and 79% of the methyl linoleate were oxidized in a control sample of a model system. It was found that the most effective antioxidants were essential oils from clove bud, cinnamon leaves, and oregano. They inhibited autooxidation of methyl linolenoate by 76–85%. The antioxidant properties of these essential oils were due to phenols— eugenol, carvacrol, and thymol. Essential oil from coriander did not contain phenols, but it inhibited methyl linolenoate oxidation by 38%. Essential oils from thyme, savory, mace, lemon, and tea tree inhibited methyl linolenoate oxidation by 17–24%. The other essential oils had no antioxidant properties.

  11. Improvement of the physicochemical properties of Co-amorphous naproxen-indomethacin by naproxen-sodium.

    PubMed

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2017-06-30

    Improvement of the physicochemical properties of amorphous active pharmaceutical ingredients (APIs) applying the concept of co-amorphisation is a promising alternative to the use of polymer glass solutions. In co-amorphous systems, the physical stability and the dissolution rate of the involved components may be improved in comparison to the respective single amorphous phases. However, for the co-amorphous naproxen-indomethacin model system it has been reported that recrystallization could not be prevented for more than 112days regardless of the applied preparation method and blend ratio In the present study, it was thus tested if the physicochemical properties of co-amorphous naproxen-indomethacin could be optimized by incorporation of the naproxen sodium into the system. Three different co-amorphous systems in nine different molar ratios were prepared by quench-cooling: naproxen-indomethacin (NI), naproxen-sodium-naproxen-indomethacin (NSNI) and naproxen-sodium-indomethacin (NSI). The samples were analyzed by XRPD, FTIR, DSC and by intrinsic dissolution experiments to investigate the influence of naproxen-sodium on the resulting physicochemical properties of the systems. With the three systems, fully amorphous samples with single glass transition temperatures could be prepared with naproxen molar fractions up to 0.7. The NSI and NSNI systems showed up to about 40°C higher Tgs than the NI system. Furthermore, no recrystallization occurred during 270d of storage with the NSI and NSNI samples that were initially amorphous. Moreover, with the NSI system, the intrinsic dissolution rate of naproxen and indomethacin was improved by a factor of 2 compared to the unmodified NI system. In conclusion, the physical stability as well as the dissolution rate was significantly improved if partial or full exchange of naproxen by its sodium salt was performed, which may present a general optimization method to improve co-amorphous systems. Copyright © 2017 Elsevier B.V. All

  12. Preparation of fatty acid methyl esters for gas-liquid chromatography[S

    PubMed Central

    Ichihara, Ken'ichi; Fukubayashi, Yumeto

    2010-01-01

    A convenient method using commercial aqueous concentrated HCl (conc. HCl; 35%, w/w) as an acid catalyst was developed for preparation of fatty acid methyl esters (FAMEs) from sterol esters, triacylglycerols, phospholipids, and FFAs for gas-liquid chromatography (GC). An 8% (w/v) solution of HCl in methanol/water (85:15, v/v) was prepared by diluting 9.7 ml of conc. HCl with 41.5 ml of methanol. Toluene (0.2 ml), methanol (1.5 ml), and the 8% HCl solution (0.3 ml) were added sequentially to the lipid sample. The final HCl concentration was 1.2% (w/v). This solution (2 ml) was incubated at 45°C overnight or heated at 100°C for 1–1.5 h. The amount of FFA formed in the presence of water derived from conc. HCl was estimated to be <1.4%. The yields of FAMEs were >96% for the above lipid classes and were the same as or better than those obtained by saponification/methylation or by acid-catalyzed methanolysis/methylation using commercial anhydrous HCl/methanol. The method developed here could be successfully applied to fatty acid analysis of various lipid samples, including fish oils, vegetable oils, and blood lipids by GC. PMID:19759389

  13. Efficacy of Myricetin as an Antioxidant in Methyl Esters of Soybean Oil

    USDA-ARS?s Scientific Manuscript database

    The antioxidant activity of myricetin, a natural flavonol found in fruits and vegetables, was determined in soybean oil methyl esters (SME) and compared with alpha-tocopherol and tert-butylhydroquinone (TBHQ) over a 90 day period employing EN 14112, acid value, and kinematic viscosity methods. Myri...

  14. Complementary blending of meadowfoam seed oil methyl esters with biodiesel prepared from soybean and waste cooking oils to enhance fuel properties

    USDA-ARS?s Scientific Manuscript database

    The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...

  15. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2011-06-01

    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Soybean biodiesel methyl esters, free glycerin and acid number quantification by 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Coral, Natasha; Rodrigues, Elizabeth; Rumjanek, Victor; Zamian, José Roberto; da Rocha Filho, Geraldo Narciso; da Costa, Carlos Emmerson Ferreira

    2013-02-01

    Production of alternative fuels, such as biodiesel, from transesterification of vegetable oil driven by heterogeneous catalysts is a promising alternative to fossil diesel. However, achieving a successful substitution for a new renewable fuel depends on several quality parameters. (1)H NMR spectroscopy was used to determine the amount of methyl esters, free glycerin and acid number in the transesterification of soybean oil with methanol in the presence of hydrotalcite-type catalyst to produce biodiesel. Reaction parameters, such as temperature and time, were used to evaluate soybean oil methyl esters rate conversion. Temperatures of 100 to 180 °C and times of 20 to 240 min were tested on a 1 : 12 molar ratio soybean oil/methanol reaction. At 180 °C/240 min conditions, a rate of 94.5 wt% of methyl esters was obtained, where free glycerin and free fatty acids were not detected. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Naproxen sodium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002507.htm Naproxen sodium overdose To use the sharing features on this page, please enable JavaScript. Naproxen sodium is a nonsteroidal anti-inflammatory drug (NSAID) used ...

  18. Conversion of beet molasses and cheese whey into fatty acid methyl esters by the yeast Cryptococcus curvatus.

    PubMed

    Takakuwa, Naoya; Saito, Katsuichi

    2010-01-01

    Eighty-one yeast isolates from raw milk were surveyed for the production of fatty acid methyl esters (FAME). Only one species, identified as Cryptococcus curvatus, produced FAME at a detectable level. Cr. curvatus TYC-19 produced more FAME from beet molasses and cheese whey medium than other strains of the same species. In both media, the major FAME produced were linoleic and oleic acid methyl esters. Sequence analysis of the internal transcribed spacer region of ribosomal DNA indicated that TYC-19 diverged from the same species.

  19. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-01-19

    Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.

  20. Safety Assessment of Methyl Glucose Polyethers and Esters as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-11-01

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of methyl glucose polyethers and esters which function in cosmetics as skin/hair-conditioning agents, surfactants, or viscosity increasing agents. The esters included in this assessment are mono-, di-, or tricarboxyester substituted methyl glucosides, and the polyethers are mixtures of various chain lengths. The Panel reviewed available animal and clinical data, including the molecular weights, log K ow s, and other properties in making its determination of safety on these ingredients. Where there were data gaps, similarities between molecular structures, physicochemical and biological characteristics, and functions and concentrations in cosmetics allowed for extrapolation of the available toxicological data to assess the safety of the entire group. The Panel concluded that there likely would be no significant systemic exposure from cosmetic use of these ingredients, and that these ingredients are safe in cosmetic formulations in the present practices of use and concentration. © The Author(s) 2016.

  1. CHEMOPREVENTIVE EFFICACY OF NAPROXEN AND NO-NAPROXEN IN RODENT MODELS OF COLON, URINARY BLADDER, AND MAMMARY CANCERS

    PubMed Central

    Steele, Vernon E.; Rao, Chinthalapally V.; Zhang, Yuting; Patlolla, Jagan; Boring, Daniel; Kopelovich, Levy; Juliana, M. Margaret; Grubbs, Clinton J.; Lubet, Ronald A.

    2009-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been highly effective in preventing colon, urinary bladder, and skin cancer preclinically; and also in clinical trials of colon adenoma formation. However, certain NSAIDs cause gastrointestinal (GI) ulceration and may increase cardiovascular (CV) events. Naproxen appears to cause the lowest CV events of the common NSAIDs other than aspirin. NO-naproxen was tested based on the finding that adding a nitric oxide (NO) group to NSAIDs may help alleviate GI toxicity. In the azoxymethane (AOM)-induced rat colon aberrant crypt foci (ACF) model, naproxen administered at 200 and 400 ppm in the diet reduced mean ACFs in the colon by about 45–60%, respectively. NO-naproxen was likewise administered in the diet at roughly equimolar doses (300 and 600 ppm), and reduced total ACF by 20–40%, respectively. In the hydroxybutyl (butyl) nitrosamine (OH-BBN) rat urinary bladder cancer model, NO-naproxen was given at 183 ppm or 550 ppm in the diet, and naproxen at 128 ppm. The NO-naproxen groups had 77% and 73% decreases, respectively, in the development of large urinary bladder tumors, while the 128 ppm naproxen group also showed a strong decrease (69%). If treatments were started three months after OH-BBN, NO-naproxen (550 ppm) and naproxen (400 ppm) were also highly effective (86–94% decreases). In the methylnitrosourea (MNU)-induced mammary cancer model in rats, NO-naproxen and naproxen showed non-significant inhibitions (12 and 24%) at 550 and 400 ppm, respectively. These data show that both naproxen and NO-naproxen are effective agents against urinary bladder and colon, but not mammary, carcinogenesis. PMID:19892664

  2. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 2-(3-phenylbutylidene...

  3. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 2-(3-phenylbutylidene...

  4. Methyl esters (biodiesel) from Melanolepis multiglandulosa (alim) seed oil and their properties

    USDA-ARS?s Scientific Manuscript database

    Sufficient supply of feedstock oils is a major issue facing biodiesel in order to increase the still limited amounts available. In this work, the fatty acid methyl esters, also known as biodiesel, of the seed oil of Melanolepsi multiglandulosa, a member of the Euphorbiaceae family, were prepared and...

  5. Synthesis of carboxylic acids, esters, alcohols and ethers containing a tetrahydropyran ring derived from 6-methyl-5-hepten-2-one.

    PubMed

    Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2012-01-01

    3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.

  6. Progesterone up-regulates vasodilator effects of calcitonin gene-related peptide in N(G)-nitro-L-arginine methyl ester-induced hypertension.

    PubMed

    Gangula, P R; Wimalawansa, S J; Yallampalli, C

    1997-04-01

    We recently reported that calcitonin gene-related peptide can reverse the hypertension produced by N(G)-nitro-L-arginine methyl ester in pregnant rats. In the current study we investigated whether these vasodilator effects of calcitonin gene-related peptide were progesterone dependent. Calcitonin gene-related peptide or N(G)-nitro-L-arginine methyl ester was infused through osmotic minipumps, either separately or in combination, to groups of five pregnant rats from day 17 of gestation until day 8 post partum or to nonpregnant ovariectomized rats for 8 days. Progesterone was injected during days 1 to 6 post partum and for 6 days after ovariectomy. Systolic blood pressure was measured daily. Animals receiving N(G)-nitro-L-arginine methyl ester exhibited significant elevations of blood pressure during pregnancy and post partum. Coadministration of calcitonin gene-related peptide to these rats reversed the hypertension during pregnancy but not during the postpartum period. At the dose used in this study calcitonin gene-related peptide administered alone was without significant effects on blood pressure. However, it reduced both the mortality and growth restriction of the fetus associated with N(G)-nitro-L-arginine methyl ester in these animals. Calcitonin gene-related peptide reversed the hypertension in N(G)-nitro-L-arginine methyl ester-infused postpartum rats during the periods of progesterone treatment only, and these effects were lost when progesterone treatment was stopped. Neither progesterone nor calcitonin gene-related peptide alone were effective. To further confirm these observations, progesterone effects were tested in ovariectomized adult rats. Similar to the findings in postpartum rats, calcitonin gene-related peptide completely reversed the elevation in blood pressure in N(G)-nitro-L-arginine methyl ester-treated rats receiving progesterone injections. The effects of calcitonin gene-related peptide were apparent only during the progesterone treatment

  7. Methyl esters (biodiesel) from and fatty acid profile of Gliricidia sepium seed oil

    USDA-ARS?s Scientific Manuscript database

    Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel-related prop...

  8. Effects of Blending Alcohols with Poultry Fat Methyl Esters on Cold Flow Properties

    USDA-ARS?s Scientific Manuscript database

    The low temperature operability, kinematic viscosity, and acid value of poultry fat methyl esters were improved with addition of ethanol, isopropanol, and butanol in a linear fashion with increasing alcohol content. The flash point decreased and moisture content increased upon addition of alcohols t...

  9. The Produce of Methyl Ester from Crude Palm Oil (CPO) Using Heterogene Catalyst Ash of Chicken Bone (CaO) using Ethanol as Solvent

    NASA Astrophysics Data System (ADS)

    Sinaga, M. S.; Fauzi, R.; Turnip, J. R.

    2017-03-01

    Methyl Ester (methyl ester) is generally made by trans esterification using heterogeneous base catalyst. To simplify the separation, the heterogeneous catalyst is used, such as CaO, which in this case was isolated from chicken bones made by softening chicken bones and do calcination process. Some other important variables other than the selection of the catalyst is the catalyst dosage, molar ratio of ethanol to the CPO and the reaction temperature. The best result from this observe is at the molar ratio of ethanol to the CPO is 17: 1, the reaction temperature is 70 ° C and 7% catalyst (w.t) with reaction time for 7 hours at 500 rpm as a constant variable, got 90,052 % purity, so that this result does not get the standard requirements of biodiesel, because of the purity of the biodiesel standard temporary must be achieve > 96.5 %. This study aims to produce methyl ester yield with the influence of the reaction temperature, percent of catalyst and molar ratio of ethanol and CPO. The most influential variable is the temperature of the reaction that gives a significant yield difference of methyl ester produced. It’s been proven by the increasing temperature used will also significantly increase the yield of methyl ester.

  10. Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces.

    PubMed

    Lu, Y; Wang, J; Deng, Z; Wu, H; Deng, Q; Tan, H; Cao, L

    2013-09-01

    An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch. © 2013 The Society for Applied Microbiology.

  11. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the following prescribed conditions: (a) The...

  12. Fertility of male rats treated with 15(S)-15-methyl prostaglandin F2 alpha methyl ester-containing silastic implants.

    PubMed

    Kimball, F A; Frielink, R D; Porteus, S E

    1978-01-01

    Male Spraque-Dawley rats receiving implants of silicone rubber discs containing 1% or 2% 15(S)-15-methyl prostaglandin F2 alpha methyl ester (15-Me-PGF 2 alpha) or no prostaglandin were tested in successive breeding trials for potency and fertility. One week after implantation, discs containing 1% 15-Me-PGF2 alpha reduced potency and fertility, which returned 2 weeks after implantation. Animals receiving implants of the 2% discs were apparently impotent the 1st week following implantation; potency returned before full fertility returned 11 weeks after implantation.

  13. Functionalized β-cyclodextrin based potentiometric sensor for naproxen determination.

    PubMed

    Lenik, Joanna; Łyszczek, Renata

    2016-04-01

    Potentiometric sensors based on neutral β-cyclodextrins: (2-hydroxypropyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin and anionic β-cyclodextrin: (2-hydroxy-3-N,N,N-trimethylamino)propyl-β-cyclodextrin chloride for naproxen are described. Inclusion complexes of naproxen with the above-mentioned cyclodextrins were studied using IR spectroscopy. The electrode surface was made from PVC membranes doped with the appropriate β-cyclodextrin as ionophores and quaternary ammonium chlorides as positive charge additives that were dispersed in plasticizers. The optimum membrane contains heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin, o-nitrophenyloctyl ether and tetraoctyl ammonium chloride as a lipophilic salt. The electrode is characterized by a Nernstian response slope of -59.0 ± 0.5 mV decade(-1) over the linear range of 5.0 × 10(-5)-1.0 × 10(-2) mol L(-1) and the detection limit 1.0 × 10(-5) mol L(-1), as well as the response time 10s. It can be used in the pH range 6.2-8.5 for 10 months without any considerable deterioration. Incorporation of β-cyclodextrins improved the electrode selectivity towards naproxen ions from several inorganic and organic interferents and some common drug excipients due to concovalent interactions (host molecule-guest molecule). The notable advantages of the naproxen-selective electrode include its high sensitivity, high selectivity, cost-effectiveness as well as accurate and comfortable application in drug analysis and milk samples. Copyright © 2015. Published by Elsevier B.V.

  14. Degradation of cyanidin-3-rutinoside and formation of protocatechuic acid methyl ester in methanol solution by gamma irradiation.

    PubMed

    Lee, Seung Sik; Kim, Tae Hoon; Lee, Eun Mi; Lee, Min Hee; Lee, Ha Yeong; Chung, Byung Yeoup

    2014-08-01

    Anthocyanins are naturally occurring phenolic compounds having broad biological activities including anti-mutagenesis and anti-carcinogenesis. We studied the effects and the degradation mechanisms of the most common type of anthocyanins, cyanidin-3-rutinoside (cya-3-rut), by using gamma ray. Cya-3-rut in methanol (1mg/ml) was exposed to gamma-rays from 1 to 10kGy. We found that the reddish colour of cya-3-rut in methanol disappeared gradually in a dose-dependent manner and effectively disappeared (>97%) at 10kGy of gamma ray. Concomitantly, a new phenolic compound was generated and identified as a protocatechuic acid methyl ester by liquid chromatography, (1)H, and (13)C NMR. The formation of protocatechuic acid methyl ester increased with increasing irradiation and the amount of protocatechuic acid methyl ester formed by decomposition of cya-3-rut (20μg) at 10kGy of gamma ray was 1.95μg. In addition, the radical-scavenging activities were not affected by gamma irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A Comparison Study: The New Extended Shelf Life Isopropyl Ester PMR Technology versus The Traditional Methyl Ester PMR Approach

    NASA Technical Reports Server (NTRS)

    Alston, William B.; Scheiman, Daniel A.; Sivko, Gloria S.

    2005-01-01

    Polymerization of Monomeric Reactants (PMR) monomer solutions and carbon cloth prepregs of PMR II-50 and VCAP-75 were prepared using both the traditional limited shelf life methanol based PMR approach and a novel extended shelf life isopropanol based PMR approach. The methyl ester and isopropyl ester based PMR monomer solutions and PMR prepregs were aged for up to four years at freezer and room temperatures. The aging products formed were monitored using high pressure liquid chromatography (HPLC). The composite processing flow characteristics and volatile contents of the aged prepregs were also correlated versus room temperature storage time. Composite processing cycles were developed and six ply cloth laminates were fabricated with prepregs after various extended room temperature storage times. The composites were then evaluated for glass transition temperature (Tg), thermal decomposition temperature (Td), initial flexural strength (FS) and modulus (FM), long term (1000 hours at 316 C) thermal oxidative stability (TOS), and retention of FS and FM after 1000 hours aging at 316 C. The results for each ester system were comparable. Freezer storage was found to prevent the formation of aging products for both ester systems. Room temperature storage of the novel isopropyl ester system increased PMR monomer solution and PMR prepreg shelf life by at least an order of magnitude while maintaining composite properties.

  16. Correlating the cold flow and melting properties of fatty acid methyl ester (FAME) mixtures

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl ester (FAME) mixtures derived from plant oils or animal fats are used to make biodiesel, lubricants, surfactants, plasticizers, ink solvents, paint strippers and other products. Processing requires a precise knowledge of the physico-chemical properties of mixtures with diverse and ...

  17. Low-temperature phase behavior of fatty acid methyl esters by differential scanning calorimetry (DSC)

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...

  18. Gas chromatographic separation of fatty acid methyl esters on weakly polar capillary columns.

    PubMed

    Yamamoto, Kouhei; Kinoshita, Akemi; Shibahara, Akira

    2008-02-22

    It was found that weakly polar columns, routinely used in capillary GC for analyzing sterols, food additives, etc., can also be used for separating fatty acid methyl esters (FAMEs). On these columns, FAMEs elute in the order of their unsaturation. The equivalent chain-length value of methyl 22:6 is below 23.00. This means FAMEs within a carbon chain length, having up to six double bonds, elute before the next (one carbon longer) saturated FAME elutes. Peak identification is easy. Weakly polar columns are compatible in both GC and GC/MS systems.

  19. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters

    NASA Astrophysics Data System (ADS)

    Lanjekar, R. D.; Deshmukh, D.

    2018-02-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n-heptane, n-dodecane and n-tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.

  20. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters.

    PubMed

    Lanjekar, R D; Deshmukh, D

    2018-02-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n -heptane, n -dodecane and n -tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n -heptane fuel is closely following diesel spray tip penetration along with that of n -tetradecane and n -dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.

  1. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters

    PubMed Central

    Deshmukh, D.

    2018-01-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n-heptane, n-dodecane and n-tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment. PMID:29515835

  2. Analysis of Chemical Signatures of Alkaliphiles using Fatty Acid Methyl Ester Analysis

    PubMed Central

    Sreenivasulu, Basha; Paramageetham, Chinthala; Sreenivasulu, Dasari; Suman, Bukke; Umamahesh, Katike; Babu, Gundala Prasada

    2017-01-01

    Background: Fatty acids occur in nearly all living organisms as the important predominant constituents of lipids. While all fatty acids have essentially the same chemical nature, they are an extremely diverse group of compounds. Materials and Methods: To test the hypothesis, fatty acids of alkaliphiles isolates, Bacillus subtilis SVUNM4, Bacillus licheniformis SVUNM8, Bacillus methylotrohicus SVUNM9, and Paenibacillus dendritiformis SVUNM11, were characterized compared using gas chromatography-mass spectrometry (GC-MS) analysis. Results: The content of investigated ten fatty acids, 1, 2-benzenedicarboxylic acid butyl 2-methylpropyl ester, phthalic acid, isobutyl 2-pentyl ester, dibutyl phthalate, cyclotrisiloxane, hexamethyl, cyclotetrasiloxane, octamethyl, dodecamethyl, heptasiloxane 1,1,3,3,5,5,7,7,9,9,11,11,13,13-etradecamethyl, 7,15-dihydroxydehydroabietic acid, methyl ester, di (trimethylsilyl) ether, hentriacontane, 2-thiopheneacetic acid, undec-2-enyl ester, obviously varied among four species, suggesting each species has its own fatty acid pattern. Conclusions: These findings demonstrated that GC-MS-based fatty acid profiling analysis provides the reliable platform to classify these four species, which is helpful for ensuring their biotechnological interest and novel chemotaxonomic. PMID:28717333

  3. Oxidative stability and ignition quality of algae derived methyl esters containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate

    NASA Astrophysics Data System (ADS)

    Bucy, Harrison

    Microalgae is currently receiving strong consideration as a potential biofuel feedstock to help meet the advanced biofuels mandate of the 2007 Energy Independence and Security Act because of its theoretically high yield (gallons/acre/year) in comparison to current terrestrial feedstocks. Additionally, microalgae also do not compete with food and can be cultivated with wastewater on non-arable land. Microalgae lipids can be converted into a variety of biofuels including fatty acid methyl esters (e.g. FAME biodiesel), renewable diesel, renewable gasoline, or jet fuel. For microalgae derived FAME, the fuel properties will be directly related to the fatty acid composition of the lipids produced by the given microalgae strain. Several microalgae species under consideration for wide scale cultivation, such as Nannochloropsis, produce lipids with fatty acid compositions containing substantially higher quantities of long chainpolyunsaturated fatty acids (LC-PUFA) in comparison to terrestrial feedstocks. It is expected that increased levels of LC-PUFA will be problematic in terms of meeting all of the current ASTM specifications for biodiesel. For example, it is known that oxidative stability and cetane number decrease with increasing levels of LC-PUFA. However, these same LC-PUFA fatty acids, such as eicosapentaenoic acid (EPA: C20:5) and docosahexaenoic acid (DHA: C22:6) are known to have high nutritional value thereby making separation of these compounds economically attractive. Given the uncertainty in the future value of these LC-PUFA compounds and the economic viability of the separation process, the goal of this study was to examine the oxidative stability and ignition quality of algae-based FAME with varying levels of EPA and DHA removal. Oxidative stability tests were conducted at a temperature of 110°C and airflow of 10 L/h using a Metrohm 743 Rancimat with automatic induction period determination following the EN 14112 Method from the ASTM D6751 and EN 14214

  4. Thermally reversible gels based on acryloyl- L-proline methyl ester as drug delivery systems

    NASA Astrophysics Data System (ADS)

    Martellini, Flavia; Higa, Olga Z.; Takacs, Erzsebet; Safranj, Agneza; Yoshida, Masaru; Katakai, Ryoichi; Carenza, Mario

    1999-06-01

    Thermally reversible hydrogels were synthesized by radiation-induced copolymerization of acryloyl- L-proline methyl ester with hydrophilic or hydrophobic monomers. The swelling behaviour was found to be affected by a proper balance of the latter. In particular, the transition temperature of the different hydrogels shifted to higher or lower values depending on the presence of hydrophilic or hydrophobic moieties in the polymer chain, respectively. Acetaminophen, an analgesic and antipyretic drug, was entrapped into some hydrogels and a wide range of release rates was obtained according to the nature of the comonomers. A novel thermoresponsive hydrogel was also prepared by radiation polymerization of acryloyl- L-proline methyl ester in the presence of 4-acryloyloxy acetanilide, an acrylic derivative of acetaminophen. Again, the swelling curves showed an inverse function of temperature. It was shown that with this hydrogel bearing the drug covalently attached to the polymer backbone, the hydrolysis process was the rate-determining process of the drug release.

  5. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  6. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  7. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  8. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  9. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  10. Olfactory Perception of Oviposition-Deterring Fatty Acids and Their Methyl Esters by the Asian Corn Borer, Ostrinia furnacalis

    PubMed Central

    Guo, Lei; Qing Li, Guo

    2009-01-01

    Olfactory perception of myristic, palmitic, stearic and oleic acids and their corresponding methyl esters by Asian corn borer moths, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae) was investigated. It was found that mated females with both antennae amputated, in contrast to intact females and females with one antenna removed, could not discriminate between simultaneously provided control filter papers and filters treated with a blend of oviposition-deterring fatty acids. Oviposition by mated females exhibited a very marked periodicity, with all egg masses deposited during the scotophase and most egg masses laid before midnight. According to the peak and trough period of oviposition, electroantennogram (EAG) responses from both mated females and males to the four fatty acids and four methyl esters were tested within two two-hour periods from 3 to 5 hours after the start of darkness and from 1 to 3 hours after light onset, respectively. Significant EAG responses above solvent and background were elicited by all test chemicals from females, and by most of the test compounds from males. EAG values of all test chemicals from mated females were not statistically different between the two test periods except for methyl myristate. Conversely, EAG responses from mated males to myristic acid, stearic acid and their methyl esters significantly differed between the two test periods. PMID:20053122

  11. Improving the Cold Temperature Properties of Tallow-Based Methyl Ester Mixtures Using Fractionation, Blending, and Additives

    NASA Astrophysics Data System (ADS)

    Elwell, Caleb

    Beef tallow is a less common feedstock source for biodiesel than soy or canola oil, but it can have economic benefits in comparison to these traditional feedstocks. However, tallow methyl ester (TME) has the major disadvantage of poor cold temperature properties. Cloud point (CP) is an standard industry metric for evaluating the cold temperature performance of biodiesel and is directly related to the thermodynamic properties of the fuel's constituents. TME has a CP of 14.5°C compared with 2.3°C for soy methyl ester (SME) and -8.3°C for canola methyl ester (CME). In this study, three methods were evaluated to reduce the CP of TME: fractionation, blending with SME and CME, and using polymer additives. TME fractionation (i.e. removal of specific methyl ester constituents) was simulated by creating FAME mixtures to match the FAME profiles of fractionated TME. The fractionation yield was found to be highest at the eutectic point of methyl palmitate (MP) and methyl stearate (MS), which was empirically determined to be at a MP/(MP+MS) ratio of approximately 82%. Since unmodified TME has a MP/(MP+MS) ratio of 59%, initially only MS should be removed to produce a ratio closer to the eutectic point to reduce CP and maximize yield. Graphs relating yield (with 4:1 methyl stearate to methyl oleate carryover) to CP were produced to determine the economic viability of this approach. To evaluate the effect of blending TME with other methyl esters, SME and CME were blended with TME at blend ratios of 0 to 100%. Both the SME/TME and CME/TME blends exhibited decreased CPs with increasing levels of SME and CME. Although the CP of the SME/TME blends varied linearly with SME content, the CP of the CME/TME blends varied quadratically with CME content. To evaluate the potential of fuel additives to reduce the CP of TME, 11 different polymer additives were tested. Although all of these additives were specifically marketed to enhance the cold temperature properties of petroleum diesel or

  12. Synthesis and characterization of a thermo-sensitive poly( N-methyl acryloylglycine methyl ester) used as a drug release carrier

    NASA Astrophysics Data System (ADS)

    Deng, Kui-Lin; Zhong, Hai-Bin; Jiao, Yi-Suo; Fan, Ting; Qiao, Xiao; Zhang, Peng-Fei; Ren, Xiao-Bo

    2010-06-01

    In this article, poly( N-methyl acryloylglycine methyl ester) (PNMAME) was prepared as a novel thermosensitive material with a lower critical solution temperature (LCST) at around 49.5°C. The chemical structures of the monomer NMAME and PNMAME were characterized by 1H NMR and IR measurements. The LCST was investigated systematically as a function of PNMAME concentration, inorganic salt solution and pH value. The results indicated that LCST of PNMAME was obviously dependent on PNMAME concentration and pH. The LCST was increased with a decrease in pH value and PNMAME concentration. To obtain a thermo-sensitive hydrogel with the phase transition temperature close to human body temperature, the copolymerization was conducted between NMAME and N-acryloylglycine ethyl ester (NAGEE). The release behavior of caffeine was evaluated at different temperatures and contents of cross-linkers ( N, N-methylenebis(acrylamide) (NMBA)). The increase of cross-linker content led to a decrease in the release rate of caffeine due to higher crossing density in the hydrogel network. In addition, a faster release of caffeine from the hydrogel with 3% NMBA at 37°C was found in contrast to that at 18°C.

  13. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3,3â²-methyl-enebis [6...

  14. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 3,3â²-methyl-enebis [6...

  15. Esterification and transesterification of greases to fatty acid methyl esters with highly active diphanylammonium salts

    USDA-ARS?s Scientific Manuscript database

    We have conducted an investigation designed to identify alternate catalysts for the production of fatty acid methyl esters (FAME) to be used as biodiesel. Diphenylammonium sulfate (DPAS) and diphenylammonium chloride (DPA-HCl) salts were found to be highly active homogeneous catalysts for the simu...

  16. Preparation and Evaluation of Jojoba Oil Methyl Ester as Biodiesel and as Blend Components in Ultra Low Sulfur Diesel Fuel

    USDA-ARS?s Scientific Manuscript database

    The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 weight percent of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel production. A Jojoba oil methyl ester (JME) was prepared in effort to evaluate an important fuel propertie...

  17. Beyond fatty acid methyl esters: Expanding the renewable carbon profile with alkenones from Isochrysis sp.

    USDA-ARS?s Scientific Manuscript database

    In addition to characteristic fatty acid methyl esters (FAMEs), biodiesel produced from Isochrysis sp. contains a significant amount (14% dry weight) of predominantly C37 and C38 longchain alkenones. These compounds are members of a class of lipids known collectively as polyunsaturated long-chain al...

  18. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.304 Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The...

  19. Branched-chain dicationic ionic liquids for fatty acid methyl ester assessment by gas chromatography.

    PubMed

    Talebi, Mohsen; Patil, Rahul A; Sidisky, Leonard M; Berthod, Alain; Armstrong, Daniel W

    2017-12-06

    Twelve bis- or dicationic ionic liquids (ILs) including eight based on imidazolium, a single one based on phosphonium, and three based on pyrrolidinium cationic units were prepared with the bis(trifluoromethyl sulfonyl) imide anion. The two identical cationic moieties were attached by different alkyl spacers having three or five carbons and differing alkyl substituents attached to the spacer. The SLB-IL111 column, as the most polar commercial stationary phase known, was included in the study for comparison. Isothermal separations of a rapeseed oil fatty acid methyl ester (FAME) sample were used to study and compare the 12 IL-based column performances and selectivities. The retention times of the most retained methyl esters of lignoceric (C24:0) and erucic (C22:1) acids were used to estimate the IL polarity. The phosphonium dicationic IL column was, by far, the least polar. Imidazolium-based dicationic IL columns were the most polar. Polarity and selectivity for the FAME separation were somewhat related. The separation of a 37-FAME standard mixture allowed the investigation of selectivity variations observed on the 12 IL-based columns under temperature gradients up to 230 °C. The remarkable selectivity of the IL-based columns is demonstrated by the detailed analysis of the cis/trans C18:1 isomers of a partially hydrogenated vegetable oil sample on 30-m columns, separations competing with that done following an "official method" performed on a 100-m column. Graphical abstract Separation of fatty acid methyl esters on a 30-m 3m 2 C 5 (mpy) 2 . 2NTf 2 branched-chain dicationic IL-based column. Branched chain dicationic ILs show great selectivity for separation of cis/trans, ω-3/ω-6, and detailed analysis of cis/trans fats.

  20. An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property.

    PubMed

    Davoodbasha, MubarakAli; Edachery, Baldev; Nooruddin, Thajuddin; Lee, Sang-Yul; Kim, Jung-Wan

    2018-02-01

    Fatty acid methyl esters (FAME) derived from lipids of microalgae is known to have wide bio-functional materials including antimicrobials. FAME is an ideal super-curator and superior anti-pathogenic. The present study evaluated the efficiency of FAME extracted from microalgae Scenedesmus intermedius as an antimicrobial agent against Gram positive (Staphylococcus aureus, Streptococcus mutans, and Bacillus cereus) Gram negative (Escherichia coli and Pseudomonas aeruginosa) bacteria and Fungi (Aspergillus parasiticus and Candida albicans). The minimal inhibitory concentration (MIC) for the gram negative bacteria was determined as 12-24 μg mL -1 , whereas MIC for gram positive bacteria was 24-48 μg mL -1 . MIC for the fungi was as high as 60-192 μg mL -1 . The FAME profiles determined by gas chromatography showed 18 methyl esters. Among them, pharmacologically active FAME such as palmitic acid methyl ester (C16:0) was detected at high percentage (23.08%), which accounted for the bioactivity. FAME obtained in this study exhibited a strong antimicrobial activity at the lowest MIC than those of recent reports. This result clearly indicated that FAME of S. intermedius has a strong antimicrobial and antioxidant property and that could be used as an effective resource against microbial diseases. Copyright © 2017. Published by Elsevier Ltd.

  1. Synthesis of methyl ester sulfonate surfactant from crude palm oil as an active substance of laundry liquid detergent

    NASA Astrophysics Data System (ADS)

    Slamet, Ibadurrohman, Muhammad; Wulandari, Pangiastika Putri

    2017-11-01

    Liquid detergent with combination of MES surfactant and TiO2 nanoparticles to remove and degrade the dirt in the form of methylene blue and produce waste with the lowest surfactant residual concentration has been done. The formation of MES is carried out by esterification and transesterification of crude palm oil, sulfonation, refining, and neutralization. The photocatalyst TiO2 nanoparticles is added as an additive to improve surfactant performance in removing dirt and degrading organic compounds. MES formation is performed by varying the mole ratio of the reactants in the esterification and transesterification reactions, and the mole ratios between methyl esters and NaHSO3 during the sulfonation reaction. Variations of MES surfactant and TiO2 nanoparticles compositions were performed to obtain detergent stability. Data analysis technique in this research is characterization of methyl ester, MES surfactant, and detergent using UV-Vis spectrophotometer instrument, FTIR, GC-MS, and LC-MS. The optimum conditions in the esterification and transesterification process were each mole ratio of 1: 6 between CPO and methanol based on the highest conversion, 99%. The optimum condition of the sulfonation process is the 1: 1.5 mole ratio between methyl ester and NaHSO3 based on the lowest surface tension value, which is about 36 dyne/cm.

  2. Optimization of gas chromatographic method for the enantioseparation of arylpropionic non-steroidal anti-inflammatory drug methyl esters.

    PubMed

    Petrović, Marinko; Debeljak, Zeljko; Blazević, Nikola

    2005-09-15

    The gas chromatography (GC) method for enantioseparation of well-known non-steroidal anti-inflammatory drugs ibuprofen, fenoprofen and ketoprofen methyl esters mixture was developed. Best enantioseparation was performed on capillary column with heptakis-(2,3-di-O-methyl-6-O-t-butyldimethyl-silyl)-beta-cyclodextrin stationary phase and hydrogen used as a carrier gas. Initial temperature, program rate and carrier pressure were optimized to obtain best resolution between enantiomers.

  3. Lipid oxidation. Part 2. Oxidation products of olive oil methyl esters.

    PubMed

    Pokorný, J; Tài, P; Parízková, H; Smidrkalová, E; El-Tarras, M F; Janícek, G

    1976-01-01

    Olive oil was converted into methyl esters which were autoxidized at 60 degrees C. The composition of oxidized products was determined by the comparison of infrared spectra and NMR spectra of the original and acetylated samples, the sample reduced with potassium iodide and the acetylated reduced sample. Oxidized products were separated by preparative thin layer chromatography on silica gel and characterized by selective detection and by infrared spectrometry of the fractions. The oxidation products consisted of hydroperoxido butyl oleate, substituted hydroperoxides, mono- and disubstituted monomeric derivatives and a small amount of oligomers.

  4. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester. 721.304 Section 721.304 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.304 Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1...

  5. Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor

    PubMed Central

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076

  6. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    PubMed

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  7. Naproxen

    MedlinePlus

    ... relieve mild pain from headaches, muscle aches, arthritis, menstrual periods, the common cold, toothaches, and backaches. Naproxen is in a class of medications called NSAIDs. It works by stopping the body's production of a substance that causes pain, fever, and inflammation.

  8. Naproxen induces cell cycle arrest and apoptosis in human urinary bladder cancer cell lines and chemically induced cancers by targeting PI3-K

    PubMed Central

    Kim, Mi-Sung; Kim, Jong-Eun; Lim, Do Young; Huang, Zunnan; Chen, Hanyong; Langfald, Alyssa; Lubet, Ronald A.; Grubbs, Clinton J.; Dong, Zigang; Bode, Ann M.

    2014-01-01

    Naproxen ((S)-6-methoxy-α-methyl-2-naphthaleneacetic acid) is a potent nonsteroidal anti-inflammatory drug that inhibits both COX-1 and COX-2 and is widely used as an over-the-counter medication. Naproxen exhibits analgesic, anti-pyretic, and anti-inflammatory activities. Naproxen, as well as other NSAIDS, has been reported to be effective in the prevention of urinary bladder cancer in rodents. However, potential targets other than the COX isozymes have not been reported. We examined potential additional targets in urinary bladder cancer cells and in rat bladder cancers. Computer kinase profiling results suggested that phosphatidylinositol 3-kinase (PI3-K) is a potential target for naproxen. In vitro kinase assay data revealed that naproxen interacts with PI3-K and inhibits its kinase activity. Pull-down binding assay data confirmed that PI3-K directly binds with naproxen in vitro and ex vivo. Western blot data showed that naproxen decreased phosphorylation of Akt, and subsequently decreased Akt signaling in UM-UC-5 and UMUC-14 urinary bladder cancer cells. Furthermore, naproxen suppressed anchorage-independent cell growth and decreased cell viability by targeting PI3-K in both cell lines. Naproxen caused an accumulation of cells at the G1 phase mediated through CDK4, cyclin D1 and p21. Moreover, naproxen induced significant apoptosis, accompanied with increased levels of cleaved caspase 3, caspase 7, and poly (ADP-ribose) polymerase (PARP) in both cell types. Naproxen-induced cell death was mainly due to apoptosis in which a prominent down-regulation of Bcl-2 and up-regulation of Bax were involved. Naproxen also caused apoptosis and inhibited Akt phosphorylation in rat urinary bladder cancers induced by N-butyl-N-(4-hydroxybutyl)-nitrosamine (OH-BBN). PMID:24327721

  9. Fatty acid methyl ester profiles of bat wing surface lipids.

    PubMed

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  10. Utilization of crude karanj (Pongamia pinnata) oil as a potential feedstock for the synthesis of fatty acid methyl esters.

    PubMed

    Khayoon, M S; Olutoye, M A; Hameed, B H

    2012-05-01

    Methyl esters were synthesized from crude karanj oil (CKO) by single step esterification with methanol using sulfuric acid (H(2)SO(4)) and phosphoric acid (H(3)PO(4)) as catalysts in a homogeneous batch process. H(3)PO(4) was less active than H(2)SO(4) during the process as it presented very low ester yields (<20%) for the various molar ratios of fatty acid to alcohol studied. With H(2)SO(4) as catalyst, the yield was as high as 89.8% at 65°C after 5h. The fatty acids profile of the oil (palmitic acid: ≈ 12%; stearic acid: ≈ 8%; oleic acid: ≈ 52% and linolenic acid of 17%) and the different reactivities of the acids were responsible for the observed differences in conversion to methyl esters. The findings attained with this study might contribute to the economic utilization of a non-edible feedstock. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Liposomal Aloe vera trans-emulgel drug delivery of naproxen and nimesulide: A study

    PubMed Central

    Venkataharsha, Panuganti; Maheshwara, Ellutla; Raju, Y Prasanna; Reddy, Vayalpati Ashok; Rayadu, Bandugalla Sanjeev; Karisetty, Basappa

    2015-01-01

    Introduction: The present aim of this study was to formulate naproxen and nimesulide liposomal formulation for incorporation in Aloe vera transemulgel and to carry out in vitro and in vivo evaluation of the formulation. Material and Methods: A. vera gel was prepared and used as a gel base for formulation. Carbopol 934 is used as a gelling agent and Methyl paraben was used as a preservative for the formulation of the gel. Liposomes was formulated by using hydration method. The formulated naproxen and nimesulide liposomal formulation using A. vera trans-emul gel were evaluated for in vitro studies such as drug release, permeation study, and drug content and entrapment efficiency. Paw edema method in Wistar rats induced by carrageenan is used to study in vivo anti-inflammatory action. Result: From the in vitro studies such permeability drug release naproxen 65% (69.6), Nimesulide 65% (61.1), and commercial Nimsulide gel (60.82) at 240 min. In vivo data shows that formulated liposomal transemulgel formulation are superior in their efficacy compared to commercial and A. vera gel. The results are compared with the commercial formulations. Conclusion: From our results, it is concluded that the A. vera trans emul gel using nimesulide and naproxen liposomal formulation is stable and prepared gel base is effective for formulation with high drug release and drug content compared with commercial formulation with significant anti-inflammatory effect. PMID:25599030

  12. Massive naproxen overdose with serial serum levels.

    PubMed

    Al-Abri, Suad A; Anderson, Ilene B; Pedram, Fatehi; Colby, Jennifer M; Olson, Kent R

    2015-03-01

    Massive naproxen overdose is not commonly reported. Severe metabolic acidosis and seizure have been described, but the use of renal replacement therapy has not been studied in the context of overdose. A 28-year-old man ingested 70 g of naproxen along with an unknown amount of alcohol in a suicidal attempt. On examination in the emergency department 90 min later, he was drowsy but had normal vital signs apart from sinus tachycardia. Serum naproxen level 90 min after ingestion was 1,580 mg/L (therapeutic range 25-75 mg/L). He developed metabolic acidosis requiring renal replacement therapy using sustained low efficiency dialysis (SLED) and continuous venovenous hemofiltration (CVVH) and had recurrent seizure activity requiring intubation within 4 h from ingestion. He recovered after 48 h. Massive naproxen overdose can present with serious toxicity including seizures, altered mental status, and metabolic acidosis. Hemodialysis and renal replacement therapy may correct the acid base disturbance and provide support in cases of renal impairment in context of naproxen overdose, but further studies are needed to determine the extraction of naproxen.

  13. Preparation of fatty acid methyl esters from Osage orange (Maclura pomifera) oil and evaluation as biodiesel

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl esters were prepared in high yield by transesterification of Osage orange (Maclura pomifera) oil. Extracted using supercritical CO2, the crude oil was initially treated with mineral acid and methanol to lower its content of free fatty acids, thus rendering it amenable to homogeneou...

  14. Use of MIDI-fatty acid methyl ester analysis to monitor the transmission of Campylobacter during commercial poultry processing.

    PubMed

    Hinton, Arthur; Cason, J A; Hume, Michael E; Ingram, Kimberly D

    2004-08-01

    The presence of Campylobacter spp. on broiler carcasses and in scald water taken from a commercial poultry processing facility was monitored on a monthly basis from January through June. Campylobacter agar, Blaser, was used to enumerate Campylobacter in water samples from a multiple-tank scalder; on prescalded, picked, eviscerated, and chilled carcasses; and on processed carcasses stored at 4 degrees C for 7 or 14 days. The MIDI Sherlock microbial identification system was used to identify Campylobacter-like isolates based on the fatty acid methyl ester profile of the bacteria. The dendrogram program of the Sherlock microbial identification system was used to compare the fatty acid methyl ester profiles of the bacteria and determine the degree of relatedness between the isolates. Findings indicated that no Campylobacter were recovered from carcasses or scald tank water samples collected in January or February, but the pathogen was recovered from samples collected in March, April, May, and June. Processing generally produced a significant (P < 0.05) decrease in the number of Campylobacter recovered from broiler carcasses, and the number of Campylobacter recovered from refrigerated carcasses generally decreased during storage. Significantly (P < 0.05) fewer Campylobacter were recovered from the final tank of the multiple-tank scald system than from the first tank. MIDI similarity index values ranged from 0.104 to 0.928 based on MIDI-fatty acid methyl ester analysis of Campylobacterjejuni and Campylobacter coli isolates. Dendrograms of the fatty acid methyl ester profile of the isolates indicated that poultry flocks may introduce several strains of C. jejuni and C. coli into processing plants. Different populations of the pathogen may be carried into the processing plant by successive broiler flocks, and the same Campylobacter strain may be recovered from different poultry processing operations. However, Campylobacter apparently is unable to colonize equipment in the

  15. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    PubMed

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Direct methylation procedure for converting fatty amides to fatty acid methyl esters in feed and digesta samples.

    PubMed

    Jenkins, T C; Thies, E J; Mosley, E E

    2001-05-01

    Two direct methylation procedures often used for the analysis of total fatty acids in biological samples were evaluated for their application to samples containing fatty amides. Methylation of 5 mg of oleamide (cis-9-octadecenamide) in a one-step (methanolic HCl for 2 h at 70 degrees C) or a two-step (sodium methoxide for 10 min at 50 degrees C followed by methanolic HCl for 10 min at 80 degrees C) procedure gave 59 and 16% conversions of oleamide to oleic acid, respectively. Oleic acid recovery from oleamide was increased to 100% when the incubation in methanolic HCl was lengthened to 16 h and increased to 103% when the incubation in methoxide was modified to 24 h at 100 degrees C. However, conversion of oleamide to oleic acid in an animal feed sample was incomplete for the modified (24 h) two-step procedure but complete for the modified (16 h) one-step procedure. Unsaturated fatty amides in feed and digesta samples can be converted to fatty acid methyl esters by incubation in methanolic HCl if the time of exposure to the acid catalyst is extended from 2 to 16 h.

  17. Fatty acid methyl ester from Neurospora intermedia N-1 isolated from Indonesian red peanut cake (oncom merah).

    PubMed

    Priatni, S; Hartati, S; Dewi, P; Kardono, L B S; Singgih, M; Gusdinar, T

    2010-08-01

    The objective of this study was to identify the Fatty Acid Methyl Ester (FAME) from Neurospora intermedia N-1 that isolated from Indonesian red peanut cake (oncom). FAME profiles have been used as biochemical characters to study many different groups of organisms, such as bacteria and yeasts. FAME from N. intermedia N-1 was obtained by some stages of extraction the orange spores and fractination using a chromatotron. The pure compound (1) was characterized by 500 mHz NMR (1H and 13C), FTIR and LC-MS. Summarized data's of 1H and 13C NMR spectra of compound 1 contained 19 Carbon, 34 Hydrogen and 2 Oxygen (C19H34O2). The position of the double bonds at carbon number 8 and 12 were indicated in the HMBC spectrum (2D-NMR). LC-MS spectrum indicates molecular weight of the compound 1 as 294 which is visible by the presence of protonated molecular ion [M+H] at m/z 295. Methyl esters of long chain fatty acids was presented by a 3 band pattern of IR spectrum with bands near 1249, 1199 and 1172 cm(-1). We suggested that the structure of the pure compound 1 is methyl octadeca-8,12-dienoate. The presence methyl octadeca-8,12-dienoate in N. intermedia is the first report.

  18. Efficient and Scalable Synthesis of 4-Carboxy-Pennsylvania Green Methyl Ester: A Hydrophobic Building Block for Fluorescent Molecular Probes.

    PubMed

    Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R

    2014-01-01

    Fluorinated fluorophores are valuable tools for studies of biological systems. However, amine-reactive single-isomer derivatives of these compounds are often very expensive. To provide an inexpensive alternative, we report a practical synthesis of 4-carboxy-Pennsylvania Green methyl ester. Derivatives of this hydrophobic fluorinated fluorophore, a hybrid of the dyes Oregon Green and Tokyo Green, are often cell permeable, enabling labeling of intracellular targets and components. Moreover, the low pKa of Pennsylvania Green (4.8) confers bright fluorescence in acidic cellular compartments such as endosomes, enhancing its utility for chemical biology investigations. To improve access to the key intermediate 2,7-difluoro-3,6-dihydroxyxanthen-9-one, we subjected bis-(2,4,5-trifluorophenyl)methanone to iterative nucleophilic aromatic substitution by hydroxide on scales of > 40 g. This intermediate was used to prepare over 15 grams of pure 4-carboxy-Pennsylvania Green methyl ester in 28% overall yield without requiring chromatography. This compound can be converted into the amine reactive N -hydroxysuccinimidyl ester in essentially quantitative yield for the synthesis of a wide variety of fluorescent molecular probes.

  19. Photodynamic activity of pyropheophorbide methyl ester and pyropheophorbide a in dimethylformamide solution.

    PubMed

    Al-Omari, Saleh; Ali, Ahmad

    2009-03-01

    Comparative spectroscopic study including the photosensitizers of pyropheophorbide methyl ester (PPME) and pyropheophorbide a (PPa) was performed to study their photodynamic activity. The investigated photosensitizers in a homogeneous system of dimethylformamide (DMF) are not photostable upon irradiation. The photobleaching efficiency of PPa is higher than that of PPME. Combining these results with the data obtained by measuring the singlet oxygen quantum yield and the hydroxyl group generation, it was revealed that the photobleaching efficiency could be correlated with the singlet oxygen quantum yield and the hydroxyl group production of the photosensitizer.

  20. Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis.

    PubMed

    Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind

    2015-09-01

    Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme's application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. These promising results offer scope for further investigation and process scale up, permitting the enzyme's commercial application in a practically feasible and economically agreeable manner.

  1. Sumatriptan/Naproxen Sodium: A Review in Migraine.

    PubMed

    Syed, Yahiya Y

    2016-01-01

    Sumatriptan/naproxen sodium (Treximet®) is a fixed-dose combination of a serotonin 5-HT1B/1D receptor agonist (sumatriptan) and an NSAID (naproxen sodium), approved in the USA for the acute treatment of migraine with or without aura in adolescents and adults. In a randomized, phase 3 trial in adolescents, significantly more sumatriptan/naproxen sodium than placebo recipients were pain-free at 2 h. Similarly, in a pair of randomized phase 3 trials in adults, significantly more sumatriptan/naproxen sodium than placebo recipients had relief from migraine symptoms at 2 h, and the combination was more effective than individual components in terms of sustained (2-24 h) pain-free response rate. Sumatriptan/naproxen sodium was generally well tolerated, with ≤11 % of adolescents and ≤22 % of adults reporting treatment-related adverse events in the key clinical trials. The most common adverse reactions were nasopharyngitis, hot flushes and muscle tightness in adolescents, and dizziness, pain or pressure sensations, nausea, somnolence, dry mouth, dyspepsia and paraesthesia in adults. Based on current data, sumatriptan/naproxen sodium is a useful option for the acute treatment of migraine in adolescents and adults. The fixed-dose combination may reduce pill burden and improve adherence in some patients.

  2. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The...

  3. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The...

  4. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The...

  5. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal NG-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring.

    PubMed

    Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

    2016-11-01

    Pregnancy is a critical time for fetal programming of hypertension. Nitric oxide deficiency during pregnancy causes hypertension in adult offspring. We examined whether maternal melatonin or N-acetylcysteine therapy can prevent N G -nitro-L-arginine-methyl ester-induced fetal programming of hypertension in adult offspring. Next, we aimed to identify potential gatekeeper pathways that contribute to N G -nitro-L-arginine-methyl ester -induced programmed hypertension using the next generation RNA sequencing technology. Pregnant Sprague-Dawley rats were assigned to 4 groups: control, N G -nitro-L-arginine-methyl ester, N G -nitro-L-arginine-methyl ester +melatonin, and N G -nitro-L-arginine-methyl ester+N-acetylcysteine. Pregnant rats received N G -nitro-L-arginine-methyl ester administration at 60 mg/kg/d subcutaneously during pregnancy alone, with additional 0.01% melatonin in drinking water, or with additional 1% N-acetylcysteine in drinking water during the entire pregnancy and lactation. Male offspring (n=8/group) were killed at 12 weeks of age. N G -nitro-L-arginine-methyl ester exposure during pregnancy induced programmed hypertension in adult male offspring, which was prevented by maternal melatonin or N-acetylcysteine therapy. Protective effects of melatonin and N-acetylcysteine against N G -nitro-L-arginine-methyl ester-induced programmed hypertension were associated with an increase in hydrogen sulfide-generating enzymes and hydrogen sulfide synthesis in the kidneys. Nitric oxide inhibition by N G -nitro-L-arginine-methyl ester in pregnancy caused >2000 renal transcripts to be modified during nephrogenesis stage in 1-day-old offspring kidney. Among them, genes belong to the renin-angiotensin system, and arachidonic acid metabolism pathways were potentially involved in the N G -nitro-L-arginine-methyl ester-induced programmed hypertension. However, melatonin and N-acetylcysteine reprogrammed the renin-angiotensin system and arachidonic acid pathway

  6. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    PubMed

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  7. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    NASA Astrophysics Data System (ADS)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  8. Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis

    PubMed Central

    Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind

    2015-01-01

    Background Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. Objective The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. Materials and Methods In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. Results The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme’s application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. Conclusions These promising results offer scope for further investigation and process scale up, permitting the enzyme’s commercial application in a practically feasible and economically agreeable manner. PMID:28959298

  9. Methyl ester of [Maclura pomifera (Rafin.) Schneider] seed oil: biodiesel production and characterization.

    PubMed

    Saloua, Fatnassi; Saber, Chatti; Hedi, Zarrouk

    2010-05-01

    Oil extracted from seeds of Maclura pomifera fruits grown in Tunisia was investigated as an alternative feedstock for the production of biodiesel fuel. Biodiesel was prepared by transesterification of the crude oil with methanol in the presence of NaOH as catalyst. Maximum oil to ester conversion was 90%. The viscosity of the biodiesel oil (4.66 cSt) is similar to that of petroleum diesel (2.5-3.5 cSt). The density (0.889 g/cm(3)), kinematic viscosity (4.66 cSt), flash point (180 degrees Celsius), iodine number (125 degrees Celsius), neutralization number (0.4), pour point (-9 degrees Celsius), cloud point (-5 degrees Celsius), cetane number (48) are very similar to the values set forth by the ASTM and EN biodiesel standards for petroleum diesel (No. 2). The comparison shows that the methyl esters of M. pomifera oil could be possible diesel fuel replacements. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel

    USDA-ARS?s Scientific Manuscript database

    Hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their adaptability to marginal lands and their lipid production potentials (780-1780 L ha-1 y...

  11. Naproxen-PC: a GI safe and highly effective anti-inflammatory.

    PubMed

    Lichtenberger, L M; Romero, J J; Dial, E J; Moore, J E

    2009-02-01

    We have been developing a family of phosphatidylcholine (PC)-associated NSAIDs, which appear to have improved GI safety and therapeutic efficacy in both rodent model systems and pilot clinical trials. As naproxen has been demonstrated to be associated with the lowest cardiovascular adverse events in comparison with both COX-2 selective inhibitors and conventional NSAIDs, we have been developing a Naproxen-PC formulation for evaluation in animal models and clinical trials. We have determined that an oil-based formulation of naproxen and triple strength soy lecithin provides excellent GI protection in both: 1) an acute NSAID-induced intestinal bleeding model in rats pretreated with L-NAME that are intragastrically administered a single dose of naproxen (at a dose of 50 mg/kg) vs the equivalent dose of Naproxen-PC; and 2) a more chronic model (at a naproxen dose of 25 mg/kg BID) in rats that have pre-existing hindpaw inflammation (induced with a intradermal injection of Complete Freund's Adjuvant/CFA). Both models demonstrate the superior GI safety of Naproxen-PC vs naproxen while this novel formulation had significant anti-inflammatory efficacy to reduce hindpaw edema and the generation of PGE(2) in the collected joint synovial fluid. Naproxen-PC appears to induce significantly less GI injury and bleeding in two rodent model systems while maintaining anti-inflammatory and COX-inhibitory activity.

  12. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization[S

    PubMed Central

    Ran-Ressler, Rinat R.; Lawrence, Peter; Brenna, J. Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223–229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C3H7), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME. PMID:22021637

  13. Comparison of the postoperative analgesic effects of naproxen sodium and naproxen sodium-codeine phosphate for arthroscopic meniscus surgery.

    PubMed

    Bali, Cagla; Ergenoglu, Pinar; Ozmete, Ozlem; Akin, Sule; Ozyilkan, Nesrin Bozdogan; Cok, Oya Yalcin; Aribogan, Anis

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used to control arthroscopic pain. Addition of oral effective opioid "codeine" to NSAIDs may be more effective and decrease parenteral opioid consumption in the postoperative period. The aim of this study was to compare the efficacy and side effects of naproxen sodium and a new preparation naproxen sodium-codeine phosphate when administered preemptively for arthroscopic meniscectomy. Sixty-one patients were randomized into two groups to receive either oral naproxen sodium (Group N) or naproxen sodium-codeine phosphate (Group NC) before surgery. The surgery was carried out under general anesthesia. Intravenous meperidine was initiated by patient-controlled analgesia (PCA) for all patients. The primary outcome measure was pain score at the first postoperative hour assessed by the Visual Analogue Scale (VAS). Sedation assessed by Ramsey Sedation Scale, first demand time of PCA, postoperative meperidine consumption, side effects and hemodynamic data were also recorded. The groups were demographically comparable. Median VAS scores both at rest and on movement were significantly lower in Group NC compared with Group N, except 18(th) hour on movement (p<0.05). The median time to the first demand of PCA was shorter in Group N compared with Group NC (p<0.001). Meperidine consumption was higher in Group N compared with Group NC (p<0.001). There was no difference between groups with respect to side effects (p>0.05). The combination of naproxen sodium-codeine phosphate provided more effective analgesia than naproxen sodium and did not increase side effects. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. [Comparison of the postoperative analgesic effects of naproxen sodium and naproxen sodium-codeine phosphate for arthroscopic meniscus surgery].

    PubMed

    Bali, Cagla; Ergenoglu, Pinar; Ozmete, Ozlem; Akin, Sule; Ozyilkan, Nesrin Bozdogan; Cok, Oya Yalcin; Aribogan, Anis

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used to control arthroscopic pain. Addition of oral effective opioid "codeine" to NSAIDs may be more effective and decrease parenteral opioid consumption in the postoperative period. The aim of this study was to compare the efficacy and side effects of naproxen sodium and a new preparation naproxen sodium-codeine phosphate when administered preemptively for arthroscopic meniscectomy. Sixty-one patients were randomized into two groups to receive either oral naproxen sodium (Group N) or naproxen sodium-codeine phosphate (Group NC) before surgery. The surgery was carried out under general anesthesia. Intravenous meperidine was initiated by patient-controlled analgesia (PCA) for all patients. The primary outcome measure was pain score at the first postoperative hour assessed by the Visual Analogue Scale (VAS). Sedation assessed by Ramsey Sedation Scale, first demand time of PCA, postoperative meperidine consumption, side effects and hemodynamic data were also recorded. The groups were demographically comparable. Median VAS scores both at rest and on movement were significantly lower in Group NC compared with Group N, except 18(th) hour on movement (p<0.05). The median time to the first demand of PCA was shorter in Group N compared with Group NC (p<0.001). Meperidine consumption was higher in Group N compared with Group NC (p<0.001). There was no difference between groups with respect to side effects (p>0.05). The combination of naproxen sodium-codeine phosphate provided more effective analgesia than naproxen sodium and did not increase side effects. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  15. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wychen, Stefanie; Ramirez, Kelsey; Laurens, Lieve M. L.

    2016-01-13

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  16. Production of Fatty Acid Methyl Esters via the In Situ Transesterification of Soybean Oil in Carbon Dioxide-Expanded Methanol

    USDA-ARS?s Scientific Manuscript database

    The production of fatty acid methyl esters (FAME) by direct alkali- and acid-catalyzed in situ transesterification of soybean flakes in CO2-expanded methanol was examined at various temperatures and pressures. Attempts to synthesize FAME from soy flakes via alkaline catalysis, using sodium methoxid...

  17. Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae.

    PubMed

    Chandrasekaran, Manivachagam; Kannathasan, Krishnan; Venkatesalu, Venugopalan

    2008-01-01

    Fatty acid methyl ester (FAME) extracts of four halophytic plants, viz. Arthrocnemum indicum, Salicornia brachiata, Suaeda maritima and Suaeda monoica belonging to the family Chenopodiaceae, were prepared and their composition was analyzed by GC-MS. The FAME extracts were also screened for antibacterial and antifungal activities. The GC-MS analysis revealed the presence of more saturated fatty acids than unsaturated fatty acids. Among the fatty acids analyzed, the relative percentage of lauric acid was high in S. brachiata (61.85%). The FAME extract of S. brachiata showed the highest antibacterial and antifungal activities among the extracts tested. The other three extracts showed potent antibacterial and moderate anticandidal activities.

  18. Hydrogen sulfide releasing naproxen offers better anti-inflammatory and chondroprotective effect relative to naproxen in a rat model of zymosan induced arthritis.

    PubMed

    Dief, A E; Mostafa, D K; Sharara, G M; Zeitoun, T H

    2015-04-01

    Hydrogen sulfide (H2S) is rapidly gaining ground as a physiological mediator of inflammation, but there is no clear consensus as to its precise role in inflammation. Therefore, this study was undertaken to evaluate the effects of ATB-346 as a novel H2S-releasing naproxen compared to naproxen, as a traditional non-steroidal anti-inflammatory drug on zymosan induced mono-arthritis in rats. Male Wistar rats (n=48) were randomly assigned to four main groups: normal control, untreated arthritis, Naproxen and ATB-346 treated groups. Mono-arthritis was induced by intra-articular injection of zymosan into the knee joints. Mechanical hypernociception and joint swelling were evaluated at 6 hours and 5 days. Inflammatory cellular recruitment and adherence, tumor necrosis factor alpha, nuclear factor kappa β, total sulfide levels, and histological changes were evaluated in knee lavages, blood or joint tissues at selected time points. Zymosan injection evoked knee inflammation and pain as characterized by mechanical hypernociception, impaired gait, joint swelling with inflammatory exudation and histological changes. Treatment with ATB-346 attenuated nociceptive responses, inflammatory cellular and biochemical changes in comparison to naproxen. Only ATB-346 was able to suppress neutrophil adherence and to preserve normal articular structure. H2S releasing naproxen represents an advancement over the parent drug, naproxen. Apart from the superior anti-inflammatory and anti-noceiceptive activity, ATB-346 offered a distinguished chondroprotective effect and is almost devoid from naproxen deleterious effects on articular cartilage.

  19. Studies of the acidic components of the Colorado Green River formation oil shale-Mass spectrometric identification of the methyl esters of extractable acids.

    NASA Technical Reports Server (NTRS)

    Haug, P.; Schnoes, H. K.; Burlingame, A. L.

    1971-01-01

    Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.

  20. Fatty acid methyl ester analysis to identify sources of soil in surface water.

    PubMed

    Banowetz, Gary M; Whittaker, Gerald W; Dierksen, Karen P; Azevedo, Mark D; Kennedy, Ann C; Griffith, Stephen M; Steiner, Jeffrey J

    2006-01-01

    Efforts to improve land-use practices to prevent contamination of surface waters with soil are limited by an inability to identify the primary sources of soil present in these waters. We evaluated the utility of fatty acid methyl ester (FAME) profiles of dry reference soils for multivariate statistical classification of soils collected from surface waters adjacent to agricultural production fields and a wooded riparian zone. Trials that compared approaches to concentrate soil from surface water showed that aluminum sulfate precipitation provided comparable yields to that obtained by vacuum filtration and was more suitable for handling large numbers of samples. Fatty acid methyl ester profiles were developed from reference soils collected from contrasting land uses in different seasons to determine whether specific fatty acids would consistently serve as variables in multivariate statistical analyses to permit reliable classification of soils. We used a Bayesian method and an independent iterative process to select appropriate fatty acids and found that variable selection was strongly impacted by the season during which soil was collected. The apparent seasonal variation in the occurrence of marker fatty acids in FAME profiles from reference soils prevented preparation of a standardized set of variables. Nevertheless, accurate classification of soil in surface water was achieved utilizing fatty acid variables identified in seasonally matched reference soils. Correlation analysis of entire chromatograms and subsequent discriminant analyses utilizing a restricted number of fatty acid variables showed that FAME profiles of soils exposed to the aquatic environment still had utility for classification at least 1 wk after submersion.

  1. Enzymes Involved in Naproxen Degradation by Planococcus sp. S5.

    PubMed

    Wojcieszyńska, Danuta; Domaradzka, Dorota; Hupert-Kocurek, Katarzyna; Guzik, Urszula

    2016-01-01

    Naproxen is a one of the most popular non-steroidal anti-inflammatory drugs (NSAIDs) entering the environment as a result of high consumption. For this reason, there is an emerging need to recognize mechanisms of its degradation and enzymes engaged in this process. Planococcus sp. S5 is a gram positive strain able to degrade naproxen in monosubstrate culture (27%). However, naproxen is not a sufficient growth substrate for this strain. In the presence of benzoate, 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid or vanillic acid as growth substrates, the degradation of 21.5%, 71.71%, 14.75% and 8.16% of naproxen was observed respectively. It was shown that the activity of monooxygenase, hydroxyquinol 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxyegnase in strain S5 was induced after growth of the strain with naproxen and 4-hydroxybenzoate. Moreover, in the presence of naproxen activity of gentisate 1,2-dioxygenase, enzyme engaged in 4-hydroxybenzoate metabolism, was completely inhibited. The obtained results suggest that monooxygenase and hydroxyquinol 1,2-dioxygenase are the main enzymes in naproxen degradation by Planococcus sp. S5.

  2. Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity.

    PubMed

    Goodrum, John W; Geller, Daniel P

    2005-05-01

    Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters.

  3. Classification of bacteria by simultaneous methylation-solid phase microextraction and gas chromatography/mass spectrometry analysis of fatty acid methyl esters.

    PubMed

    Lu, Yao; Harrington, Peter B

    2010-08-01

    Direct methylation and solid-phase microextraction (SPME) were used as a sample preparation technique for classification of bacteria based on fatty acid methyl ester (FAME) profiles. Methanolic tetramethylammonium hydroxide was applied as a dual-function reagent to saponify and derivatize whole-cell bacterial fatty acids into FAMEs in one step, and SPME was used to extract the bacterial FAMEs from the headspace. Compared with traditional alkaline saponification and sample preparation using liquid-liquid extraction, the method presented in this work avoids using comparatively large amounts of inorganic and organic solvents and greatly decreases the sample preparation time as well. Characteristic gas chromatography/mass spectrometry (GC/MS) of FAME profiles was achieved for six bacterial species. The difference between Gram-positive and Gram-negative bacteria was clearly visualized with the application of principal component analysis of the GC/MS data of bacterial FAMEs. A cross-validation study using ten bootstrap Latin partitions and the fuzzy rule building expert system demonstrated 87 +/- 3% correct classification efficiency.

  4. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    PubMed Central

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M.J.

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. PMID:21915852

  5. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    PubMed

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. Copyright © 2011 Wiley Periodicals, Inc.

  6. Performance of Surfactant Methyl Ester Sulphonate solution for Oil Well Stimulation in reservoir sandstone TJ Field

    NASA Astrophysics Data System (ADS)

    Eris, F. R.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-05-01

    Asphaltene, paraffin, wax and sludge deposition, emulsion and water blocking are kinds ofprocess that results in a reduction of the fluid flow from the reservoir into formation which causes a decrease of oil wells productivity. Oil well Stimulation can be used as an alternative to solve oil well problems. Oil well stimulation technique requires applying of surfactant. Sodium Methyl Ester Sulphonate (SMES) of palm oil is an anionic surfactant derived from renewable natural resource that environmental friendly is one of potential surfactant types that can be used in oil well stimulation. This study was aimed at formulation SMES as well stimulation agent that can identify phase transitions to phase behavior in a brine-surfactant-oil system and altered the wettability of rock sandstone and limestone. Performance of SMES solution tested by thermal stability test, phase behavioral examination and rocks wettability test. The results showed that SMES solution (SMES 5% + xylene 5% in the diesel with addition of 1% NaCl at TJformation water and SMES 5% + xylene 5% in methyl ester with the addition of NaCl 1% in the TJ formation water) are surfactant that can maintain thermal stability, can mostly altered the wettability toward water-wet in sandstone reservoir, TJ Field.

  7. Microbial models of mammalian metabolism: microbial transformation of naproxen.

    PubMed

    el Sayed, K A

    2000-12-01

    Preparative-scale fermentation of S-naproxen, the known antiinflammatory, analgesic and antipyretic drug, with Cunninghamella elegans ATCC 9245 afforded S-demethylnaproxen, the known human active metabolite of naproxen, in a 90% yield. Demethylnaproxen was also detected as the major metabolite of naproxen using Cunninghamella blakesleeana ATCC 8688a. A review of the previous microbial metabolism studies using the fungi Cunninghamella species suggested that it could be a plausible in vitro predictor for mammalian metabolism.

  8. Naproxen Interferes with the Assembly of Aβ Oligomers Implicated in Alzheimer's Disease

    PubMed Central

    Kim, Seongwon; Chang, Wenling E.; Kumar, Rashmi; Klimov, Dmitri K.

    2011-01-01

    Experimental and epidemiological studies have shown that the nonsteroidal antiinflammatory drug naproxen may be useful in the treatment of Alzheimer's disease. To investigate the interactions of naproxen with Aβ dimers, which are the smallest cytotoxic aggregated Aβ peptide species, we use united atom implicit solvent model and exhaustive replica exchange molecular dynamics. We show that naproxen ligands bind to Aβ dimer and penetrate its volume interfering with the interpeptide interactions. As a result naproxen induces a destabilizing effect on Aβ dimer. By comparing the free-energy landscapes of naproxen interactions with Aβ dimers and fibrils, we conclude that this ligand has stronger antiaggregation potential against Aβ fibrils rather than against dimers. The analysis of naproxen binding energetics shows that the location of ligand binding sites in Aβ dimer is dictated by the Aβ amino acid sequence. Comparison of the in silico findings with experimental observations reveals potential limitations of naproxen as an effective therapeutic agent in the treatment of Alzheimer's disease. PMID:21504739

  9. Evaluation of peanut fatty acid methyl ester sprays, combustion, and emissions, for use in an indirect injection diesel engine

    USDA-ARS?s Scientific Manuscript database

    The paper provides an analysis of 100% peanut fatty acid methyl esters (FAMEs) and peanut FAME/ULSD#2 blends (P20, P35, and P50) in an indirect injection (IDI) diesel engine (for auxiliary power unit applications) in comparison to ultralow sulfur diesel no. 2 (ULSD#2) at various speeds and 100% load...

  10. 21 CFR 573.637 - Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...

  11. 21 CFR 573.637 - Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...

  12. 21 CFR 573.637 - Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...

  13. 21 CFR 573.637 - Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...

  14. 21 CFR 573.637 - Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...

  15. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate...

  16. Carbamazepine and naproxen: fate in wetland mesocosms planted with Scirpus validus.

    PubMed

    Zhang, Dong Qing; Hua, Tao; Gersberg, Richard M; Zhu, Junfei; Ng, Wun Jern; Tan, Soon Keat

    2013-03-01

    Scirpus validus was grown hydroponically and exposed to the pharmaceuticals, carbamazepine and naproxen at concentrations of 0.5-2.0 mg L(-1) for an exposure duration of up to 21 d. By the end of experiment, carbamazepine elimination from the nutrient solution reached to 74%, while nearly complete removal (>98%) was observed for naproxen. Photodegradation and biodegradation played only minor roles for carbamazepine elimination, while naproxen showed a high potential for both photodegradation and biodegradation. Levels of carbamazepine ranged from 3.3 to19.0 μg g(-1) (fresh weight) in the roots and 0.3-0.7 μg g(-1) (fresh weight) in the shoots, while naproxen concentrations were 0.2-2.4 μg g(-1) (fresh weight) in the roots and 0.2-2.8 μg g(-1) (fresh weight) in the shoots. Bioaccumulation factors (BAFs) for carbamazepine ranged from 5.5 to 13.0 for roots and 0.3-1.0 for shoots, and uptake by S. validus accounted for up to 22% of the total mass loss of carbamazepine in the nutrient solutions. All BAFs for naproxen were less than 4.2 and plant uptake accounted for less than 5% of the total mass loss of naproxen, implying that plant uptake was not significant in naproxen elimination. The rather limited plant uptake of naproxen was not surprising despite the fact that its log K(ow) is close to the optimal range (1.8-3.1) for maximal potential for plant uptake. Apparently, for ionizable compounds such as naproxen, the effects of pK(a) and pH partitioning might be more important than lipophilicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Intravenous lipid emulsion therapy in three cases of canine naproxen overdose.

    PubMed

    Herring, Jennifer M; McMichael, Maureen A; Corsi, Raffaella; Wurlod, Virginie

    2015-01-01

    To report a case series of canine naproxen overdoses successfully treated with intravenous lipid emulsion therapy (IVLE). Three dogs were presented for acute ingestion of naproxen and were treated with IVLE. Baseline and post treatment serum naproxen concentrations were measured. The first exposure involved ingestion of 61 mg/kg of an over-the-counter naproxen formulation in a 7-month-old male intact Labrador Retriever. Pre-IVLE toxin concentration assessed by high performance liquid chromatography (HPLC) was 73 μg/mL with a one-hour post-IVLE concentration decreasing to 30 μg/mL. The second and third exposures were 3-year-old female spayed Pembroke Welsh Corgi dogs from the same family, presented for potential ingestion of up to 207 mg/kg of a prescription strength naproxen formulation. Pre-IVLE naproxen concentration by HPLC for case 2 was 30 μg/mL with a reduction to 12 μg/mL and 7.2 μg/mL 1 and 3 hours post-IVLE treatment, respectively. For case 3, pre-IVLE naproxen concentration by HPLC was 86 μg/mL with post concentrations at 21 μg/mL one hour and 10 μg/mL 3 hours post-IVLE administration. Naproxen is a nonsteroidal anti-inflammatory drug with a long half-life and narrow margin of safety in dogs. Ingestion of > 5 mg/kg has been associated with adverse gastrointestinal effects, including ulceration. At doses > 10-25 mg/kg, acute kidney failure has been reported, and at doses > 50 mg/kg, neurologic abnormalities occur. This is the first reported use of IVLE for treatment of naproxen overdose with documented decrease in serum toxin concentrations shortly after administration. No long-standing gastrointestinal, renal, or neurologic effects occurred in these dogs. © Veterinary Emergency and Critical Care Society 2015.

  18. A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters

    PubMed Central

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca

    2015-01-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. PMID:25746986

  19. Synthesis, structural and conformational study of some esters derived from 3-methyl-3-azabicyclo[3.2.1]octan-8(α and β)-ols

    NASA Astrophysics Data System (ADS)

    Iriepa, I.; Bellanato, J.

    2014-09-01

    A series of α and β-esters bearing a 3-methyl-3-azabicyclo[3.2.1]octane moiety as well as methyl and aryl substituents were synthesized and studied by 1H and 13C NMR spectroscopies. In CDCl3 solution, at room temperature, a chair-envelope conformation for the bicycle moiety with the N-CH3 group in equatorial position with respect to the chair ring is proposed for both, α and β-esters. The chair conformation of the piperidine ring is puckered at C8 in the α-epimers and it is flattened at N3, in the β-epimers. Free rotation of the acyloxy group around the C8sbnd O bond has also been deduced. Analgesic activity of four of these substances was studied. 8β-Benzoyloxy-3-methyl-3-azabicyclo[3.2.1]octane demonstrated significant analgesic activity in the hot plate test compared to morphine. By measuring the rectal temperature in mice, results also showed a significant antipyretic activity of this compound.

  20. 40 CFR 721.8485 - 2-Propenoic acid, 2-methyl-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8485 2-Propenoic acid, 2-methyl-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester. (a) Chemical substance and...

  1. 21 CFR 73.3100 - 1,4-Bis[(2-hydroxyethyl)amino]-9,10-anthracenedione bis(2-methyl-2-propenoic)ester copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false 1,4-Bis[(2-hydroxyethyl)amino]-9,10-anthracenedione bis(2-methyl-2-propenoic)ester copolymers. 73.3100 Section 73.3100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM...

  2. [Synthesis and monolayer behaviors of 4-methyl-5-hydroxy-ethyl isothiazole stearic ester].

    PubMed

    Shen, Yu-hua; Kong, Lin; Yang, Jia-xiang; Xie, An-jian; Qian, Jia-sheng; Ouyang, Jian-ming; Xia, Bing

    2002-12-01

    4-methyl-5-hydroxy-ethyl isothiazole stearic ester (HISE) was synthesized and characterized by FTIR spectroscopy, 1H NMR and MS. The monolayer-forming ability of HISE was studied in subphases with different pH values using isotherms of surface pressure-area per molecule (pi-A). It was observed that the collapse pressure and the film-forming ability of the monolayers of HISE increased gradually as pH values ascended. Research of differentiated pi-A curves (d pi(/dA-A) indicated that there were one or two phase change points during the compressing process, and the incompressibility and the stability of HISE monolayers on alkalescent subphases were better than on acid subphases.

  3. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F. K.; He, K. B.; Ma, Y. L.; Rahn, K. A.; Zhang, Q.

    2015-11-01

    A solid-phase extraction (SPE) pretreatment procedure allowing organic acids to be separated from methyl esters in fine aerosol has been developed. The procedure first separates the organic acids from fatty acid methyl esters (FAMEs) and other nonacid organic compounds by aminopropyl-based SPE cartridge and then quantifies them by gas chromatography/mass spectrometry. The procedure prevents the fatty acids and dimethyl phthalate from being overestimated, and so allows us to accurately quantify the C4-C11 dicarboxylic acids (DCAs) and the C8-C30 monocarboxylic acids (MCAs). Results for the extraction of DCAs, MCAs, and AMAs in eluate and FAMEs in effluate by SAX and NH2 SPE cartridges exhibited that the NH2 SPE cartridge gave higher extraction efficiency than the SAX cartridge. The recoveries of analytes ranged from 67.5 to 111.3 %, and the RSD ranged from 0.7 to 10.9 %. The resulting correlations between the aliphatic acids and FAMEs suggest that the FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. Through extraction and cleanup using this procedure, 17 aromatic acids in eluate were identified and quantified by gas chromatography/tandem mass spectrometry, including five polycyclic aromatic hydrocarbon (PAH): acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH acids and the dicarboxylic and aromatic acids suggested that the first three acids and 1,8-naphthalic anhydride were secondary atmospheric photochemistry products and the last two mainly primary.

  4. Cometabolic Degradation of Naproxen by Planococcus sp. Strain S5.

    PubMed

    Domaradzka, Dorota; Guzik, Urszula; Hupert-Kocurek, Katarzyna; Wojcieszyńska, Danuta

    Naproxen is a non-steroidal anti-inflammatory drug frequently detected in the influent and effluent of sewage treatment plants. The Gram-positive strain Planococcus sp. S5 was able to remove approximately 30 % of naproxen after 35 days of incubation in monosubstrate culture. Under cometabolic conditions, with glucose or phenol as a growth substrate, the degradation efficiency of S5 increased. During 35 days of incubation, 75.14 ± 1.71 % and 86.27 ± 2.09 % of naproxen was degraded in the presence of glucose and phenol, respectively. The highest rate of naproxen degradation observed in the presence of phenol may be connected with the fact that phenol is known to induce enzymes responsible for aromatic ring cleavage. The activity of phenol monooxygenase, naphthalene monooxygenase, and hydroxyquinol 1,2-dioxygenase was indicated in Planococcus sp. S5 culture with glucose or phenol as a growth substrate. It is suggested that these enzymes may be engaged in naproxen degradation.

  5. The design of naproxen solid lipid nanoparticles to target skin layers.

    PubMed

    Akbari, Jafar; Saeedi, Majid; Morteza-Semnani, Katayoun; Rostamkalaei, Seyyed Sohrab; Asadi, Masoumeh; Asare-Addo, Kofi; Nokhodchi, Ali

    2016-09-01

    The aim of the current investigation was to produce naproxen solid lipid nanoparticles (Nap-SLNs) by the ultrasonication method to improve its skin permeation and also to investigate the influence of Hydrophilic-lipophilic balance (HLB) changes on nanoparticles properties. The properties of obtained SLNs loaded with naproxen were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). FT-IR was also used to investigate any interaction between naproxen and the excipients used at the molecular level during the preparation of the SLNs. The performance of the formulations was investigated in terms of skin permeation and also the retention of the drug by the skin. It was found that generally, with increasing the lipid concentration, the average particle size and polydispersity index (PDI) of SLNs increased from 94.257±4.852nm to 143.90±2.685nm and from 0.293±0.037 to 0.525±0.038 respectively. The results also showed that a reduction in the HLB resulted in an increase in the PDI, particle size, zeta potential and entrapment efficiency (EE%). DSC showed that the naproxen encapsulated in the SLNs was in its amorphous form. The peaks of prominent functional groups of naproxen were found in the FT-IR spectra of naproxen-SLN, which confirmed the entrapment of naproxen in the lipid matrix. FT-IR results also ruled out any chemical interaction between drug and the chemicals used in the preparation of SLNs. The amount of naproxen detected in the receptor chamber at all the sampling times for the reference formulation (naproxen solution containing all surfactants at pH 7.4) was higher than that of the Nap-SLN8 formulation. Nap-SLN8 showed an increase in the concentration of naproxen in the skin layer with less systemic absorption. This indicates that most of the drug in Nap-SLN8 remains in the skin which can reduce the side effect of systemic absorption of the drug and increases the

  6. S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen

    PubMed Central

    Bowalgaha, Kushari; Elliot, David J; Mackenzie, Peter I; Knights, Kathleen M; Swedmark, Stellan; Miners, John O

    2005-01-01

    Aims To characterize the kinetics of S-naproxen (‘naproxen’) acyl glucuronidation and desmethylnaproxen acyl and phenolic glucuronidation by human liver microsomes and identify the human UGT isoform(s) catalysing these reactions. Methods Naproxen and desmethylnaproxen glucuronidation were investigated using microsomes from six and five livers, respectively. Human recombinant UGTs were screened for activity towards naproxen and desmethylnaproxen. Where significant activity was observed, kinetic parameters were determined. Naproxen and desmethylnaproxen glucuronides were measured by separate high-performance liquid chromatography methods. Results Naproxen acyl glucuronidation by human liver microsomes followed biphasic kinetics. Mean apparent Km values (±SD, with 95% confidence interval in parentheses) for the high- and low-affinity components were 29 ± 13 µm (16, 43) and 473 ± 108 µm (359, 587), respectively. UGT 1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10 and 2B7 glucuronidated naproxen. UGT2B7 exhibited an apparent Km (72 µm) of the same order as the high-affinity human liver microsomal activity, which was inhibited by the UGT2B7 selective ‘probe’ fluconazole. Although data for desmethylnaproxen phenolic glucuronidation by human liver microsomes were generally adequately fitted to either the single- or two-enzyme Michaelis–Menten equation, model fitting was inconclusive for desmethylnaproxen acyl glucuronidation. UGT 1A1, 1A7, 1A9 and 1A10 catalysed both the phenolic and acyl glucuronidation of desmethylnaproxen, while UGT 1A3, 1A6 and 2B7 formed only the acyl glucuronide. Atypical glucuronidation kinetics were variably observed for naproxen and desmethylnaproxen glucuronidation by the recombinant UGTs. Conclusion UGT2B7 is responsible for human hepatic naproxen acyl glucuronidation, which is the primary elimination pathway for this drug. PMID:16187975

  7. Cardiovascular Safety of Celecoxib, Naproxen, or Ibuprofen for Arthritis.

    PubMed

    Nissen, Steven E; Yeomans, Neville D; Solomon, Daniel H; Lüscher, Thomas F; Libby, Peter; Husni, M Elaine; Graham, David Y; Borer, Jeffrey S; Wisniewski, Lisa M; Wolski, Katherine E; Wang, Qiuqing; Menon, Venu; Ruschitzka, Frank; Gaffney, Michael; Beckerman, Bruce; Berger, Manuela F; Bao, Weihang; Lincoff, A Michael

    2016-12-29

    The cardiovascular safety of celecoxib, as compared with nonselective nonsteroidal antiinflammatory drugs (NSAIDs), remains uncertain. Patients who required NSAIDs for osteoarthritis or rheumatoid arthritis and were at increased cardiovascular risk were randomly assigned to receive celecoxib, ibuprofen, or naproxen. The goal of the trial was to assess the noninferiority of celecoxib with regard to the primary composite outcome of cardiovascular death (including hemorrhagic death), nonfatal myocardial infarction, or nonfatal stroke. Noninferiority required a hazard ratio of 1.12 or lower, as well as an upper 97.5% confidence limit of 1.33 or lower in the intention-to-treat population and of 1.40 or lower in the on-treatment population. Gastrointestinal and renal outcomes were also adjudicated. A total of 24,081 patients were randomly assigned to the celecoxib group (mean [±SD] daily dose, 209±37 mg), the naproxen group (852±103 mg), or the ibuprofen group (2045±246 mg) for a mean treatment duration of 20.3±16.0 months and a mean follow-up period of 34.1±13.4 months. During the trial, 68.8% of the patients stopped taking the study drug, and 27.4% of the patients discontinued follow-up. In the intention-to-treat analyses, a primary outcome event occurred in 188 patients in the celecoxib group (2.3%), 201 patients in the naproxen group (2.5%), and 218 patients in the ibuprofen group (2.7%) (hazard ratio for celecoxib vs. naproxen, 0.93; 95% confidence interval [CI], 0.76 to 1.13; hazard ratio for celecoxib vs. ibuprofen, 0.85; 95% CI, 0.70 to 1.04; P<0.001 for noninferiority in both comparisons). In the on-treatment analysis, a primary outcome event occurred in 134 patients in the celecoxib group (1.7%), 144 patients in the naproxen group (1.8%), and 155 patients in the ibuprofen group (1.9%) (hazard ratio for celecoxib vs. naproxen, 0.90; 95% CI, 0.71 to 1.15; hazard ratio for celecoxib vs. ibuprofen, 0.81; 95% CI, 0.65 to 1.02; P<0.001 for noninferiority in

  8. An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarathy, S M; Thomson, M J; Pitz, W J

    2009-12-04

    Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents opposed-flow diffusion flame data for one large fatty acid methyl ester, methyl decanoate, and uses the experiments to validate an improved skeletal mechanism consisting of 648 species and 2998 reactions. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.

  9. A Lactobacillus plantarum esterase active on a broad range of phenolic esters.

    PubMed

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca; Muñoz, Rosario

    2015-05-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Non-steroidal anti-inflammatory drug naproxen destabilizes Aβ amyloid fibrils: A molecular dynamics investigation

    PubMed Central

    Takeda, Takako; Kumar, Rashmi; Raman, E. Prabhu; Klimov, Dmitri K.

    2010-01-01

    Using implicit solvent model and replica exchange molecular dynamics we examine the propensity of non-steroidal anti-inflammatory drug, naproxen, to interfere with Aβ fibril growth. We also compare the anti-aggregation propensity of naproxen with that of ibuprofen. Naproxen anti-aggregation effect is influenced by two factors. Similar to ibuprofen, naproxen destabilizes binding of incoming Aβ peptides to the fibril due to direct competition between the ligands and the peptides for the same binding location on the fibril surface (the edge). However, in contrast to ibuprofen naproxen binding also alters the conformational ensemble of Aβ monomers by promoting β-structure. The second factor weakens naproxen anti-aggregation effect. These findings appear to explain the experimental observations, according to which naproxen binds to Aβ fibril with higher affinity than ibuprofen, yet produces weaker anti-aggregation action. PMID:20979356

  11. Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages.

    PubMed

    Li, Qian; Wang, Peipei; Chen, Ling; Gao, Hongwen; Wu, Lingling

    2016-09-01

    Zebrafish (Danio rerio) embryos and larvae were selected to investigate the potential risk and aquatic toxicity of a widely used pharmaceutical, naproxen. The acute toxicity of naproxen to embryos and larvae was measured, respectively. The histopathology was investigated in the liver of zebrafish larvae after 8-day embryo-larvae exposure to naproxen. The values of 96-h LC50 were 115.2 mg/L for embryos and 147.6 mg/L for larvae, indicating that zebrafish embryos were more sensitive than larvae to naproxen exposure. Large suites of symptoms were induced in zebrafish (D. rerio) early life stages by different dosages of naproxen, including hatching inhibition, lower heart rate, and morphological abnormalities. The most sensitive sub-lethal effect caused by naproxen was pericardial edema, the 72-h EC50 values of which for embryos and larvae were 98.3 and 149.0 mg/L, respectively. In addition, naproxen-treated zebrafish larvae exhibited histopathological liver damage, including swollen hepatocytes, vacuolar degeneration, and nuclei pycnosis. The results indicated that naproxen is a potential threat to aquatic organisms.

  12. The combination of naproxen and citral reduces nociception and gastric damage in rats.

    PubMed

    Ortiz, Mario I; Ramírez-Montiel, Martha L; González-García, Martha P; Ponce-Monter, Héctor A; Castañeda-Hernández, Gilberto; Cariño-Cortés, Raquel

    2010-10-01

    It has been shown that the association of non-steroidal anti-inflammatory drugs with plant extracts can increase their antinociceptive activity, allowing the use of lower doses and, thus, limiting side effects. Therefore, the aim of this study was to examine the effects of the interaction between naproxen and citral on nociception and gastric injury in rats. Naproxen, citral, or combinations of naproxen and citral produced an antinociceptive effect. The administration of naproxen produced significant gastric damage, but this effect was not obtained with either citral or the naproxen-citral combination. The ED(50) value was estimated for the individual drugs and an isobologram was constructed. The derived theoretical ED(50) for the antinociceptive effect (423.8 mg/kg) was not significantly different from the observed experimental value (359.0 mg/kg); hence, the interaction between naproxen and citral mediating the antinociceptive effect is additive. These data suggest that the naproxen-citral combination interacts at the systemic level, produces minor gastric damage, and potentially has therapeutic advantages for the clinical treatment of inflammatory pain.

  13. Esterification Reaction of Glycerol and Palm Oil Oleic Acid Using Methyl Ester Sulfonate Acid Catalyst as Drilling Fluid Formulation

    NASA Astrophysics Data System (ADS)

    Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-02-01

    Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.

  14. ¹H NMR-based metabolic profiling of naproxen-induced toxicity in rats.

    PubMed

    Jung, Jeeyoun; Park, Minhwa; Park, Hye Jin; Shim, Sun Bo; Cho, Yang Ha; Kim, Jinho; Lee, Ho-Sub; Ryu, Do Hyun; Choi, Donwoong; Hwang, Geum-Sook

    2011-01-15

    The dose-dependent perturbations in urinary metabolite concentrations caused by naproxen toxicity were investigated using ¹H NMR spectroscopy coupled with multivariate statistical analysis. Histopathologic evaluation of naproxen-induced acute gastrointestinal damage in rats demonstrated a significant dose-dependent effect. Furthermore, principal component analysis (PCA) of ¹H NMR from rat urine revealed a dose-dependent metabolic shift between the vehicle-treated control rats and rats treated with low-dose (10 mg/kg body weight), moderate-dose (50 mg/kg), and high-dose (100 mg/kg) naproxen, coinciding with their gastric damage scores after naproxen administration. The resultant metabolic profiles demonstrate that the naproxen-induced gastric damage exhibited energy metabolism perturbations that elevated their urinary levels of citrate, cis-aconitate, creatine, and creatine phosphate. In addition, naproxen administration decreased choline level and increased betaine level, indicating that it depleted the main protective constituent of the gastric mucosa. Moreover, naproxen stimulated the decomposition of tryptophan into kynurenate, which inhibits fibroblast growth factor-1 and delays ulcer healing. These findings demonstrate that ¹H NMR-based urinary metabolic profiling can facilitate noninvasive and rapid diagnosis of drug side effects and is suitable for elucidating possible biological pathways perturbed by drug toxicity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP.

    PubMed

    Cooper, Mark S; Szeto, Daniel P; Sommers-Herivel, Greg; Topczewski, Jacek; Solnica-Krezel, Lila; Kang, Hee-Chol; Johnson, Iain; Kimelman, David

    2005-02-01

    Green fluorescent protein (GFP) technology is rapidly advancing the study of morphogenesis, by allowing researchers to specifically focus on a subset of labeled cells within the living embryo. However, when imaging GFP-labeled cells using confocal microscopy, it is often essential to simultaneously visualize all of the cells in the embryo using dual-channel fluorescence to provide an embryological context for the cells expressing GFP. Although various counterstains are available, part of their fluorescence overlaps with the GFP emission spectra, making it difficult to clearly identify the cells expressing GFP. In this study, we report that a new fluorophore, BODIPY TR methyl ester dye, serves as a versatile vital counterstain for visualizing the cellular dynamics of morphogenesis within living GFP transgenic zebrafish embryos. The fluorescence of this photostable synthetic dye is spectrally separate from GFP fluorescence, allowing dual-channel, three-dimensional (3D) and four-dimensional (4D) confocal image data sets of living specimens to be easily acquired. These image data sets can be rendered subsequently into uniquely informative 3D and 4D visualizations using computer-assisted visualization software. We discuss a variety of immediate and potential applications of BODIPY TR methyl ester dye as a vital visualization counterstain for GFP in transgenic zebrafish embryos. Copyright 2004 Wiley-Liss, Inc.

  16. Physicochemical characterization and structural evaluation of a specific 2:1 cocrystal of naproxen-nicotinamide.

    PubMed

    Ando, Shigeru; Kikuchi, Junko; Fujimura, Yuko; Ida, Yasuo; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji

    2012-09-01

    Physicochemical characterization and structural evaluation of a 2:1 naproxen-nicotinamide cocrystal were performed. The 2:1 cocrystal showed rapid naproxen dissolution and less water vapor adsorption, indicating better pharmaceutical properties of naproxen. The unique 2:1 cocrystal formation was evaluated by solid-state nuclear magnetic resonance (NMR). The assignments of all H and (13) C peaks for naproxen and the cocrystal were performed using dipolar-insensitive nuclei enhanced by polarization transfer and (1) H-(13) C cross-polarization (CP)-heteronuclear correlation (HETCOR) NMR measurements. The (13) C chemical shift revealed that two naproxen molecules and one nicotinamide molecule existed in the asymmetric unit of the cocrystal. The (1) H chemical shifts indicated that the carboxylic group of the naproxen in the cocrystal was nonionized, and the CH-π interaction between naproxens was very strong. From the (1) H-(13) C CP-HETCOR NMR spectrum with contact time of 5 ms, two different synthons, carboxylic acid-amide and carboxylic acid-pyridine ring, were found between naproxen and nicotinamide. Single-crystal X-ray analysis, which supported the solid-state NMR results, clarified the geometry and intermolecular interactions in more detail. The structure is unique among pharmaceutical cocrystals because each carboxyl group of the two naproxens formed different intermolecular synthons. Copyright © 2012 Wiley Periodicals, Inc.

  17. Poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles as sorbents for the analysis of sodium benzoate in beverages.

    PubMed

    Ji, Shilei; Li, Nan; Qi, Li; Wang, Minglin

    2017-01-01

    In this study, poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles were constructed and used as magnetic solid-phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)-based sorbents, N-methacryloyl-l-phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)-based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)-based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid-phase extraction sorbents have a great potential for the analysis of preservatives in food samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Periorbital edema associated with separate courses of ibuprofen and naproxen.

    PubMed

    Balas, Morad; Plakogiannis, Roda; Sinnett, Mark

    2010-06-01

    A case of periorbital edema associated with separate courses of ibuprofen and naproxen is reported. An 80-year-old African- American woman with a history of osteoarthritis and hypertension came to the clinic. Her medication regimen included fosinopril sodium 40 mg daily, which she began two years prior. She had no known drug allergies and denied consuming any over-the-counter medications or herbal substances and reported a negative atopic status. She had seen her primary care provider several days prior and reported pain in the hands, fingers, and ankles, which would escalate in the morning and progressively lessen during the course of the day. Her physician prescribed naproxen 375 mg every eight hours as needed. After ingesting two doses of naproxen, she developed itching, swelling, and erythema around the left eye that became progressively worse and spread to the right eye. She contacted her primary care physician, who instructed her to discontinue the naproxen, and the reaction resolved within three days. The patient was maintained on acetaminophen for the arthritic pain with no issues. Approximately three months prior, ibuprofen 600 mg every eight hours as needed was prescribed for the same pain. She stated that after ingesting two doses of ibuprofen, she experienced a reaction similar to that recently experienced with naproxen. At that time, she was instructed to discontinue the ibuprofen, and her symptoms resolved. An elderly woman developed periorbital edema after taking ibuprofen on one occasion and naproxen on another.

  19. The Myotoxic Effects of Microencapsulated Naproxen and Carrier Polymer After Intramuscular Injection in Rats

    DTIC Science & Technology

    1996-10-10

    THE MYOTOXIC EFFECTS OF MICROENCAPSULATED NAPROXEN AND CARRIER POLYMER AFTER INTRAMUSCULAR INJECTION IN RATS A Masters Thesis By Kevin J. Bohan... Microencapsulated Naproxen and Carrier Polymer After Intramuscular Injection in Rats" beyond brief excerpts is with the pennission of the copyright...naproxen to be microencapsulated (MEC) for parenteral use. Intramuscular MEC naproxen could provide greater pain relief than ketoralac with a longer

  20. Clinical Pharmacology and Cardiovascular Safety of Naproxen.

    PubMed

    Angiolillo, Dominick J; Weisman, Steven M

    2017-04-01

    The voluntary withdrawal of Vioxx (rofecoxib) from the market in 2004, as well as the 2005 and 2014 US FDA Advisory Committee meetings about non-steroidal anti-inflammatory drugs (NSAIDs) and cardiovascular risk, have raised questions surrounding the use of NSAIDs in at-risk populations. This paper discusses the cardiovascular safety profile of naproxen in the context of the NSAID class. The balance of evidence suggests that cardiovascular risk correlates with cyclooxygenase (COX)-2 selectivity, and the low COX-2 selectivity of naproxen results in a lower cardiovascular risk than that of other NSAIDs. The over-the-counter (OTC) use of naproxen is expected to pose minimal cardiovascular risk; however, the benefit-risk ratio and appropriate use should be considered at an individual patient level, particularly to assess underlying conditions that may increase the risk of events. Likewise, regulatory authorities should revisit label information periodically to ensure labeling reflects the current understanding of benefits and risks.

  1. Electron Affinity of Phenyl-C61-Butyric Acid Methyl Ester (PCBM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Bryon W.; Whitaker, James B.; Wang, Xue B.

    2013-07-25

    The gas-phase electron affinity (EA) of phenyl-C61-butyric acid methyl ester (PCBM), one of the best-performing electron acceptors in organic photovoltaic devices, is measured by lowtemperature photoelectron spectroscopy for the first time. The obtained value of 2.63(1) eV is only ca. 0.05 eV lower than that of C60 (2.68(1) eV), compared to a 0.09 V difference in their E1/2 values measured in this work by cyclic voltammetry. Literature E(LUMO) values for PCBM that are typically estimated from cyclic voltammetry, and commonly used as a quantitative measure of acceptor properties, are dispersed over a wide range between -4.3 and -3.62 eV; themore » reasons for such a huge discrepancy are analyzed here, and the protocol for reliable and consistent estimations of relative fullerene-based acceptor strength in solution is proposed.« less

  2. Serum concentrations of salicylate and naproxen during concurrent therapy in patients with rheumatoid arthritis.

    PubMed

    Furst, D E; Sarkissian, E; Blocka, K; Cassell, S; Dromgoole, S; Harris, E R; Hirschberg, J M; Josephson, N; Paulus, H E

    1987-10-01

    The kinetic interaction between salicylate and naproxen was investigated in 25 rheumatoid arthritis patients. Kinetic interactions were tested in serum after patients had been on each drug regimen for 1 month. Salicylate decreased serum naproxen concentration from 89.5 mg/liter to 65.9 mg/liter (P less than 0.001) and increased serum naproxen clearance by 56%. Naproxen had minimal effect on serum salicylate concentrations.

  3. Identification of Cytokines and Signaling Proteins Differentially Regulated by Sumatriptan/Naproxen

    PubMed Central

    Vause, Carrie V; Durham, Paul L

    2011-01-01

    Summary Objectives The goal of this study was to use protein array analysis to investigate temporal regulation of stimulated cytokine expression in trigeminal ganglia and spinal trigeminal nuclei in response to cotreatment of sumatriptan and naproxen sodium or individual drug. Background Activation of neurons and glia in trigeminal ganglia and spinal trigeminal nuclei leads to increased levels of cytokines that promote peripheral and central sensitization, which are key events in migraine pathology. While recent clinical studies have provided evidence that a combination of sumatriptan and naproxen sodium is more efficacious in treating migraine than either drug alone, it is not well understood why the combination therapy is superior to monotherapy. Methods Male Sprague Dawley rats were left untreated (control), injected with capsaicin, or pre-treated with sumatriptan/naproxen, sumatriptan, or naproxen for 1 hour prior to capsaicin. Trigeminal ganglia and spinal trigeminal nuclei were isolated 2 and 24 hours after capsaicin or drug treatment and levels of 90 proteins were determined using a RayBio® Label-Based Rat Antibody Array. Results Capsaicin stimulated a >3-fold increase in expression of the majority of cytokines in trigeminal ganglia at 2 hours that was sustained at 24 hours. Significantly, treatment with sumatriptan/naproxen almost completely abolished the stimulatory effects of capsaicin at 2 and 24 hours. Capsaicin stimulated >3-fold expression of more proteins in spinal trigeminal nuclei at 24 hours when compared to 2 hours. Similarly, sumatriptan/naproxen abolished capsaicin stimulation of proteins in spinal trigeminal nuclei at 2 hours and greatly suppressed protein expression 24 hours post capsaicin injection. Interestingly, treatment with sumatriptan alone suppressed expression of different cytokines in trigeminal ganglia and spinal trigeminal nuclei than repressed by naproxen sodium. Conclusion We found that the combination of sumatriptan/naproxen

  4. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    NASA Astrophysics Data System (ADS)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  5. Synthesis of fatty acid methyl ester from used vegetable cooking oil by solid reusable Mg 1-x Zn 1+x O2 catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2011-02-01

    Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Synergistic effect of the interaction between naproxen and citral on inflammation in rats.

    PubMed

    Ortiz, Mario I; González-García, Martha P; Ponce-Monter, Héctor A; Castañeda-Hernández, Gilberto; Aguilar-Robles, Paulina

    2010-12-15

    The combination of non-steroidal anti-inflammatory drugs with herbs having analgesic effects can increase their antinociceptive activity and limit their side effects. The aim of the present study was to examine the effects on inflammation and gastric injury in rats resulting from the interaction between naproxen and citral. Naproxen, citral, or fixed-dose naproxen-citral combinations were administered orally and their anti-inflammation (carrageenan-induced paw edema) and gastric damage were assessed in rats. The pharmacological interaction type was evaluated by the isobolographic analysis. Naproxen, citral, or combinations of naproxen and citral produced anti-inflammatory effects. The sole administration of naproxen produced significant gastric damage, but this effect was not obtained with either citral or combinations. ED(30) values were estimated for the individual drugs, and isobolograms were constructed. The derived theoretical ED(30) for the anti-inflammatory effect was 504.4 mg/kg; this was significantly higher than the observed experimental value (190.6 mg/kg). These results indicate that a synergistic interaction underlies the anti-inflammatory effect. The data suggests that the naproxen-citral combination can interact and to produce minor gastric damage and may have therapeutic advantages for the clinical treatment of inflammation. Copyright © 2010 Elsevier GmbH. All rights reserved.

  7. A microfluidic device for the automated derivatization of free fatty acids to fatty acid methyl esters.

    PubMed

    Duong, Cindy T; Roper, Michael G

    2012-02-21

    Free fatty acid (FFA) compositions are examined in feedstock for biodiesel production, as source-specific markers in soil, and because of their role in cellular signaling. However, sample preparation of FFAs for gas chromatography-mass spectrometry (GC-MS) analysis can be time and labor intensive. Therefore, to increase sample preparation throughput, a glass microfluidic device was developed to automate derivatization of FFAs to fatty acid methyl esters (FAMEs). FFAs were delivered to one input of the device and methanolic-HCl was delivered to a second input. FAME products were produced as the reagents traversed a 29 μL reaction channel held at 55 °C. A Design of Experiment protocol was used to determine the combination of derivatization time (T(der)) and ratio of methanolic-HCl:FFA (R(der)) that maximized the derivatization efficiencies of tridecanoic acid and stearic acid to their methyl ester forms. The combination of T(der) = 0.8 min and R(der) = 4.9 that produced optimal derivatization conditions for both FFAs within a 5 min total sample preparation time was determined. This combination of T(der) and R(der) was used to derivatize 12 FFAs with a range of derivatization efficiencies from 18% to 93% with efficiencies of 61% for tridecanoic acid and 84% for stearic acid. As compared to a conventional macroscale derivatization of FFA to FAME, the microfluidic device decreased the volume of methanolic-HCl and FFA by 20- and 1300-fold, respectively. The developed microfluidic device can be used for automated preparation of FAMEs to analyze the FFA compositions of volume-limited samples.

  8. Double-blind multicentre UK hospital studies of isoxicam vs naproxen

    PubMed Central

    Cardoe, N.; Hart, F. Dudley

    1986-01-01

    1 Two multicentre, parallel group, randomised, double-blind, double-dummy comparison studies were conducted between isoxicam in the usual dose of 200 mg once daily and naproxen 500 mg twice daily. 2 The drugs were administered for 4 weeks to 230 patients suffering from osteoarthritis of the hip and/or knee in the first trial and to 249 patients suffering from rheumatoid arthritis in the second. 3 The studies compared treatments for both safety and overall effectiveness in the relief of pain. 4 In the osteoarthritis trial, overall pain was reduced by both drugs after 2 weeks of therapy but only isoxicam produced further improvement after 4 weeks. 5 Isoxicam produced reductions comparable to those produced by naproxen in pain on standing from the sitting position, pain on walking, and pain on movement of the affected joint, after 2 and 4 weeks. 6 After 4 weeks, isoxicam given once daily in the morning was significantly more effective than naproxen given in the morning and the evening in relieving not only total pain as assessed by a visual analogue scale but, as importantly, night pain. 7 Compared to naproxen therapy, isoxicam therapy was associated with significantly more patients whose disease state was improved at 2 weeks, as assessed by physicians. 8 In the rheumatoid arthritis trial, isoxicam was equally as effective as naproxen in reducing joint tenderness, joint swelling, and pain; at 4 weeks there was a trend in favour of isoxicam in reduction of joint swelling and pain. 9 Isoxicam reduced morning stiffness significantly more than naproxen after 4 weeks; this trend was apparent at 2 weeks. 10 Patients thought that isoxicam was more effective than naproxen, to a significant difference. 11 In both trials, the two drugs were well tolerated and had similar side effects profiles, with the majority of adverse experiences being associated with the digestive system; no side effect was severe. PMID:3620277

  9. Evaluation of the effect of naproxen on the pharmacokinetics and pharmacodynamics of apixaban

    PubMed Central

    Frost, Charles; Shenker, Andrew; Gandhi, Mohit D; Pursley, Janice; Barrett, Yu Chen; Wang, Jessie; Zhang, Donglu; Byon, Wonkyung; Boyd, Rebecca A; LaCreta, Frank

    2014-01-01

    Aim To assess pharmacokinetic and pharmacodynamic interactions between naproxen (a non-steroidal anti-inflammatory drug) and apixaban (an oral, selective, direct factor-Xa inhibitor). Method In this randomized, three period, two sequence study, 21 healthy subjects received a single oral dose of apixaban 10 mg, naproxen 500 mg or co-administration of both. Blood samples were collected for determination of apixaban and naproxen pharmacokinetics and pharmacodynamics (anti-Xa activity, international normalized ratio [INR] and arachidonic acid–induced platelet aggregation [AAI-PA]). Adverse events, bleeding time and routine safety assessments were also evaluated. Results Apixaban had no effect on naproxen pharmacokinetics. However, following co-administration, apixaban AUC(0,∞), AUC(0,t) and Cmax were 54% (geometric mean ratio 1.537; 90% confidence interval (CI) 1.394, 1.694), 55% (1.549; 90% CI 1.400, 1.713) and 61% (1.611; 90% CI 1.417, 1.831) higher, respectively. Mean (standard deviation [SD]) anti-Xa activity at 3 h post-dose was approximately 60% higher following co-administration compared with apixaban alone, 4.4 [1.0] vs. 2.7 [0.7] IU ml−1, consistent with the apixaban concentration increase following co-administration. INR was within the normal reference range after all treatments. AAI-PA was reduced by approximately 80% with naproxen. Co-administration had no impact beyond that of naproxen. Mean [SD] bleeding time was higher following co-administration (9.1 [4.1] min) compared with either agent alone (5.8 [2.3] and 6.9 [2.6] min for apixaban and naproxen, respectively). Conclusion Co-administration of naproxen with apixaban results in higher apixaban exposure and appears to occur through increased apixaban bioavailability. The effects on anti-Xa activity, INR and inhibition of AAI-PA observed in this study were consistent with the individual pharmacologic effects of apixaban and naproxen. PMID:24697979

  10. Evaluation of the effect of naproxen on the pharmacokinetics and pharmacodynamics of apixaban.

    PubMed

    Frost, Charles; Shenker, Andrew; Gandhi, Mohit D; Pursley, Janice; Barrett, Yu Chen; Wang, Jessie; Zhang, Donglu; Byon, Wonkyung; Boyd, Rebecca A; LaCreta, Frank

    2014-10-01

    To assess pharmacokinetic and pharmacodynamic interactions between naproxen (a non-steroidal anti-inflammatory drug) and apixaban (an oral, selective, direct factor-Xa inhibitor). In this randomized, three period, two sequence study, 21 healthy subjects received a single oral dose of apixaban 10 mg, naproxen 500 mg or co-administration of both. Blood samples were collected for determination of apixaban and naproxen pharmacokinetics and pharmacodynamics (anti-Xa activity, international normalized ratio [INR] and arachidonic acid-induced platelet aggregation [AAI-PA]). Adverse events, bleeding time and routine safety assessments were also evaluated. Apixaban had no effect on naproxen pharmacokinetics. However, following co-administration, apixaban AUC(0,∞), AUC(0,t) and Cmax were 54% (geometric mean ratio 1.537; 90% confidence interval (CI) 1.394, 1.694), 55% (1.549; 90% CI 1.400, 1.713) and 61% (1.611; 90% CI 1.417, 1.831) higher, respectively. Mean (standard deviation [SD]) anti-Xa activity at 3 h post-dose was approximately 60% higher following co-administration compared with apixaban alone, 4.4 [1.0] vs. 2.7 [0.7] IU ml(-1) , consistent with the apixaban concentration increase following co-administration. INR was within the normal reference range after all treatments. AAI-PA was reduced by approximately 80% with naproxen. Co-administration had no impact beyond that of naproxen. Mean [SD] bleeding time was higher following co-administration (9.1 [4.1] min) compared with either agent alone (5.8 [2.3] and 6.9 [2.6] min for apixaban and naproxen, respectively). Co-administration of naproxen with apixaban results in higher apixaban exposure and appears to occur through increased apixaban bioavailability. The effects on anti-Xa activity, INR and inhibition of AAI-PA observed in this study were consistent with the individual pharmacologic effects of apixaban and naproxen. © 2014 The British Pharmacological Society.

  11. Kinetics and thermodynamics of oxidation mediated reaction in L-cysteine and its methyl and ethyl esters in dimethyl sulfoxide-d6 by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, Ryan J.; Singh, Jaideep; Krishnan, V. V.

    2017-03-01

    L-Cysteine (L-Cys), L-Cysteine methyl ester (L-CysME) or L-Cysteine ethyl ester (L-CysEE), when dissolved in dimethyl sulfoxide, undergoes an oxidation process. This process is slow enough and leads to nuclear magnetic resonance (NMR) spectral changes that could be monitored in real time. The oxidation mediated transition is modeled as a pseudo-first order kinetics and the thermodynamic parameters are estimated using the Eyring's formulation. L-Cysteine and their esters are often used as biological models due to the remarkable thiol group that can be found in different oxidation states. This oxidation mediated transition is due to the combination of thiol oxidation to a disulfide followed by solvent-induced effects may be relevant in designing cysteine-based molecular models.

  12. Photoelectron spectroscopy of a series of acetate and propionate esters

    NASA Astrophysics Data System (ADS)

    Śmiałek, Małgorzata A.; Guthmuller, Julien; MacDonald, Michael A.; Zuin, Lucia; Delwiche, Jacques; Hubin-Franskin, Marie-Jeanne; Lesniewski, Tadeusz; Mason, Nigel J.; Limão-Vieira, Paulo

    2017-10-01

    The electronic state and photoionization spectroscopy of a series of acetate esters: methyl acetate, isopropyl acetate, butyl acetate and pentyl acetate as well as two propionates: methyl propionate and ethyl propionate, have been determined using vacuum-ultraviolet photoelectron spectroscopy. These experimental investigations are complemented by ab initio calculations. The measured first adiabatic and vertical ionization energies were determined as: 10.21 and 10.45 eV for methyl acetate, 9.99 and 10.22 eV for isopropyl acetate, 10.07 and 10.26 eV for butyl acetate, 10.01 and 10.22 eV for pentyl acetate, 10.16 and 10.36 eV for methyl propionate and 9.99 and 10.18 eV for ethyl propionate. For the four smaller esters vibrational transitions were calculated and compared with those identified in the photoelectron spectrum, revealing the most distinctive ones to be a Csbnd O stretch combined with a Cdbnd O stretch. The ionization energies of methyl and ethyl esters as well as for a series of formates and acetates were compared showing a clear dependence of the value of the ionization energy on the size of the molecule with very little influence of its conformation.

  13. Naproxen conjugated mPEG-PCL micelles for dual triggered drug delivery.

    PubMed

    Karami, Zahra; Sadighian, Somayeh; Rostamizadeh, Kobra; Parsa, Maliheh; Rezaee, Saeed

    2016-04-01

    A conjugate of the NSAIDs drug, naproxen, with diblock methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) copolymer was synthesized by the reaction of copolymer with naproxen in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. The naproxen conjugated copolymers were characterized with different techniques including (1)HNMR, FTIR, and DSC. The naproxen conjugated mPEG-PCL copolymers were self-assembled into micelles in aqueous solution. The TEM analysis revealed that the micelles had the average size of about 80 nm. The release behavior of conjugated copolymer was investigated in two different media with the pH values of 7.4 and 5.2. In vitro release study showed that the drug release rate was dependant on pH as it was higher at lower pH compared to neutral pH. Another feature of the conjugated micelles was a more sustained release profile compared to the conjugated copolymer. The kinetic of the drug release from naproxen conjugated micelles under different values of pH was also investigated by different kinetic models such as first-order, Makoid-Banakar, Weibull, Logistic, and Gompertz. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester by Carica papaya lipase in water-saturated organic solvents.

    PubMed

    Ng, I-Son; Tsai, Shau-Wei

    2005-01-05

    For the first time, the Carica papaya lipase (CPL) stored in crude papain is explored as a potential enantioselective biocatalyst for obtaining chiral acids from their racemic thioesters. Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester in water-saturated organic solvents is employed as a model system for studying the effects of temperature and solvents on lipase activity and enantioselectivity. An optimal temperature of 60 degrees C, based on the initial rate of (S)-thioester and a high enantiomeric ratio (i.e., E-value defined as the ratio of initial rates for both substrates) of >100 at 45 degrees C in isooctane, is obtained. Kinetic analysis, considering product inhibition and enzyme deactivation, is also performed, showing agreement between the experimental and best-fit conversions for (S)-thioester. A comparison of the kinetic and thermodynamic behaviors of CPL and Candida rugosa lipase (CRL) in isooctane and cyclohexane indicates that both lipases are very similar in terms of thermodynamic parameters DeltaDeltaH and DeltaDeltaS, initial rate of (S)-substrate, and E-value when (R,S)-naproxen 2,2,2-trifluoroethyl thioester or ester is employed as substrate. (c) 2004 Wiley Periodicals, Inc.

  15. Preparation of polyol esters based on vegetable and animal fats.

    PubMed

    Gryglewicz, S; Piechocki, W; Gryglewicz, G

    2003-03-01

    The possibility of using some natural fats: rapeseed oil, olive oil and lard, as starting material for the preparation of neopentyl glycol (NPG) and trimethylol propane (TMP) esters is reported. The syntheses of final products were performed by alcoholysis of fatty acid methyl esters, obtained from natural fats studied, with the appropriate polyhydric alcohol using calcium methoxide as a catalyst. The basic physicochemical properties of the NPG and TMP esters synthesized were the following: viscosity at 40 degrees C in the range of 13.5-37.6 cSt, pour point between -10.5 and -17.5 degrees C and very high viscosity indices, higher than 200. Generally, the esters of neopentyl alcohols were characterized by higher stability in thermo-oxidative conditions in comparison to native triglycerides. Due to the low content of polyunsaturated acids, the olive oil based esters showed the highest thermo-oxidative resistance. Also, methyl esters of fatty acids of lard would constitute a good raw material for the synthesis of lubricating oils, provided that their saturated acids content was lowered. This permits synthesis of NPG and TMP esters with a lower pour point (below -10 degrees C) than natural lard (+33 degrees C).

  16. Preparation and In vitro Evaluation of Naproxen Suppositories

    PubMed Central

    Hargoli, S.; Farid, J.; Azarmi, S. H.; Ghanbarzadeh, S.; Zakeri-Milani, P.

    2013-01-01

    The aim of this work was to develop the best formulations for naproxen suppositories. The effects of different bases and surfactants on the physicochemical characteristics of the suppositories were determined by several tests such as weight variation, melting point, assay, hardness, and release rate. All formulations met the standard criteria for tested physicochemical parameters; weight variation (97-112%), content uniformity (97-105%), melting point (4.66-8.7 min) and hardness tests (>5400 g). Based on release rate studies, hydrophilic, and lipophilic bases without surfactants were not suitable bases for naproxen suppository. Amongst the formulations containing surfactants only Witepsol H15 with 0.5% w/w of Tween 80 and Witepsol W35 with 0.5% of cetylpyridinium chloride were suitable and released nearly complete drug during 30 and 60 min, respectively. This study demonstrates the effects of incorporation of known agents on the in vitro release characteristics of naproxen suppository. PMID:24019561

  17. Selective time-resolved binding of copper(II) by pyropheophorbide-a methyl ester.

    PubMed

    Ghosh, Indrajit; Saleh, Na'il; Nau, Werner M

    2010-05-01

    The complexation behavior of pyropheophorbide-a methyl ester (PPME) with transition metal ions as well as other biologically relevant metal ions has been investigated in water-DMF (2 : 1 v/v) solution. PPME was found to selectively complex Cu(2+) ions, which leads to a distinct change in its absorption spectrum as well as efficient fluorescence quenching. The degree of fluorescence quenching by Cu(2+) depended on concentration and time. Upon addition of Cu(2+), the fluorescence showed a time-resolved decay on the time scale of minutes to hours, with the decay rate being dependent on the cation concentration. Fitting according to a bimolecular reaction rate law provided a rate constant of 650 +/- 90 M(-1) s(-1) at 298 K for metallochlorin formation. The potential implications of Cu(2+) binding for the use of PPME in photodynamic therapy are discussed, along with its use as a fluorescent sensor for detection of micromolar concentrations of Cu(2+).

  18. Electronic properties of electron-doped [6,6]-phenyl-C61-butyric acid methyl ester and silylmethylfullerene

    NASA Astrophysics Data System (ADS)

    Furutani, Sho; Okada, Susumu

    2017-06-01

    Electronic properties of electron-doped chemically decorated C60 fullerenes, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and silylmethylfullerene (SIMEF), by a planar electrode were studied using density functional theory combined with the effective screening medium method to simulate the heterointerface between the chemically decorated C60 and cationic counter materials. We find that the distribution of accumulated electrons and induced electric field depend on the molecular arrangement with respect to the external electric field of the electrode. We also show that the quantum capacitance of the molecule is sensitive to molecular arrangement owing to the asymmetric distribution of the accumulated electrons.

  19. Comparison of in vitro and in vivo phototoxicity tests with S-(-)-10,11-dihydroxyfarnesic acid methyl ester produced by Beauveria bassiana KACC46831.

    PubMed

    Kim, Min-A; Son, Hyeong-U; Yoon, Cheol-Sik; Nam, Sung-Hee; Choi, Young-Cheol; Lee, Sang-Han

    2014-09-01

    Beauveria bassiana is a fungi that is well-known for demonstrating a resistance to environmental change. To confirm whether S-(-)-10,11-dihydroxyfarnesic acid methyl ester (DHFAME) produced by Beauveria bassiana KACC46831 causes phototoxicity when used for cosmetic purposes due to its anti-tyrosinase activity, we conducted in vitro and in vivo phototoxicity tests. There were no significant changes or damage observed in the compound-treated group with regards to skin phototoxicity, while 8-methoxypsoralen, which served as a positive control, induced toxic effects. The in vitro 3T3 neutral red uptake assay, an alternative assessment, was used for further confirmation of the phototoxicity. The results showed that DHFAME did not exhibit phototoxicity at the designated concentrations, with or without UV irradiation in the 3T3 cells. These results indicated that the methyl ester produced by Beauveria bassiana KACC46831 does not induce phototoxicity in the skin. Therefore, the results of the present study indicate that DHFAME shows potential for use as a cosmetic ingredient that does not cause skin phototoxicity.

  20. A library synthesis of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-09-06

    As a result of a hit-to-lead program using a technique of solution-phase parallel synthesis, a highly potent (2,4-dimethoxyphenyl)-[6-(3-fluorophenyl)-4-hydroxy-3-methylbenzofuran-2-yl]methanone (15b) was synthesized as an optimized derivative of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which was discovered as a screening hit from small-molecule libraries and exhibited selective cytotoxicity against a tumorigenic cell line.

  1. Tandem mass spectrometric analysis of aspergillus niger pectin methylesterase: mode of action on fully methyl-esterified oligogalacturonates.

    PubMed

    Kester, H C; Benen, J A; Visser, J; Warren, M E; Orlando, R; Bergmann, C; Magaud, D; Anker, D; Doutheau, A

    2000-03-01

    The substrate specificity and the mode of action of Aspergillus niger pectin methylesterase (PME) was determined using both fully methyl-esterified oligogalacturonates with degrees of polymerization (DP) 2-6 and chemically synthesized monomethyl trigalacturonates. The enzymic activity on the different substrates and a preliminary characterization of the reaction products were performed by using high-performance anion-exchange chromatography at neutral pH. Electrospray ionization tandem MS (ESI-MS/MS) was used to localize the methyl esters on the (18)O-labelled reaction products during the course of the enzymic reaction. A. niger PME is able to hydrolyse the methyl esters of fully methyl-esterified oligogalacturonates with DP 2, and preferentially hydrolyses the methyl esters located on the internal galacturonate residues, followed by hydrolysis of the methyl esters towards the reducing end. This PME is unable to hydrolyse the methyl ester of the galacturonate moiety at the non-reducing end.

  2. Supra-Additive Interaction of Docosahexaenoic Acid and Naproxen and Gastric Safety on the Formalin Test in Rats.

    PubMed

    Arroyo-Lira, Arlette Guadalupe; Rodríguez-Ramos, Fernando; Ortiz, Mario I; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2017-11-01

    Preclinical Research The aim of this work was to evaluate the effect of docosahexaenoic acid (DHA) on the pharmacokinetics and pharmacodynamics-nociception-of naproxen in rats, as well as to determine the gastric safety resulting from this combination versus naproxen alone. Female Wistar rats were orally administered DHA, naproxen or the DHA-naproxen mixture at fixed-ratio combination of 1:3. The antinociceptive effect was evaluated using the formalin test. The gastric injury was determined 3 h after naproxen administration. An isobolographic analysis was performed to characterize the antinociceptive interaction between DHA and naproxen. To determine the possibility of pharmacokinetic interactions, the oral bioavailability of naproxen was evaluated in presence and absence of oral DHA. The experimental effective dose ED 30 values (Zexp) were decreased from theoretical additive dose values (Zadd; P < 0.05). The isobolographic analysis showed that the combination exhibited supra-additive interaction. The oral administration of DHA increased the pharmacokinetic parameter AUC 0- t of naproxen (P < 0.05). Furthermore, the gastric damage induced by naproxen was abolished when this drug was combined with DHA. These data suggest that oral administration of DHA-naproxen combination induces gastric safety and supra-additive antinociceptive effect in the formalin test so that this combination could be useful to management of inflammatory pain. Drug Dev Res 78 : 332-339, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Determination of fatty acid methyl esters derived from algae Scenedesmus dimorphus biomass by GC-MS with one-step esterification of free fatty acids and transesterification of glycerolipids.

    PubMed

    Avula, Satya Girish Chandra; Belovich, Joanne M; Xu, Yan

    2017-05-01

    Algae can synthesize, accumulate and store large amounts of lipids in its cells, which holds immense potential as a renewable source of biodiesel. In this work, we have developed and validated a GC-MS method for quantitation of fatty acids and glycerolipids in forms of fatty acid methyl esters derived from algae biomass. Algae Scenedesmus dimorphus dry mass was pulverized by mortar and pestle, then extracted by the modified Folch method and fractionated into free fatty acids and glycerolipids on aminopropyl solid-phase extraction cartridges. Fatty acid methyl esters were produced by an optimized one-step esterification of fatty acids and transesterification of glycerolipids with boron trichloride/methanol. The matrix effect, recoveries and stability of fatty acids and glycerolipids in algal matrix were first evaluated by spiking stable isotopes of pentadecanoic-2,2-d 2 acid and glyceryl tri(hexadecanoate-2,2-d 2 ) as surrogate analytes and tridecanoic-2,2-d 2 acid as internal standard into algal matrix prior to sample extraction. Later, the method was validated in terms of lower limits of quantitation, linear calibration ranges, intra- and inter-assay precision and accuracy using tridecanoic-2,2-d 2 acid as internal standard. The method developed has been applied to the quantitation of fatty acid methyl esters from free fatty acid and glycerolipid fractions of algae Scenedesmus dimorphus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Structural studies of bovine, equine, and leporine serum albumin complexes with naproxen.

    PubMed

    Bujacz, Anna; Zielinski, Kamil; Sekula, Bartosz

    2014-09-01

    Serum albumin, a protein naturally abundant in blood plasma, shows remarkable ligand binding properties of numerous endogenous and exogenous compounds. Most of serum albumin binding sites are able to interact with more than one class of ligands. Determining the protein-ligand interactions among mammalian serum albumins is essential for understanding the complexity of this transporter. We present three crystal structures of serum albumins in complexes with naproxen (NPS): bovine (BSA-NPS), equine (ESA-NPS), and leporine (LSA-NPS) determined to 2.58 Å (C2), 2.42 Å (P61), and 2.73 Å (P2₁2₁2₁) resolutions, respectively. A comparison of the structurally investigated complexes with the analogous complex of human serum albumin (HSA-NPS) revealed surprising differences in the number and distribution of naproxen binding sites. Bovine and leporine serum albumins possess three NPS binding sites, but ESA has only two. All three complexes of albumins studied here have two common naproxen locations, but BSA and LSA differ in the third NPS binding site. None of these binding sites coincides with the naproxen location in the HSA-NPS complex, which was obtained in the presence of other ligands besides naproxen. Even small differences in sequences of serum albumins from various species, especially in the area of the binding pockets, influence the affinity and the binding mode of naproxen to this transport protein. © 2014 Wiley Periodicals, Inc.

  5. A direct and fast method to monitor lipid oxidation progress in model fatty acid methyl esters by high-performance size-exclusion chromatography.

    PubMed

    Márquez-Ruiz, G; Holgado, F; García-Martínez, M C; Dobarganes, M C

    2007-09-21

    A new method based on high-performance size-exclusion chromatography (HPSEC) is proposed to quantitate primary and secondary oxidation compounds in model fatty acid methyl esters (FAMEs). The method consists on simply injecting an aliquot sample in HPSEC, without preliminary isolation procedures neither addition of standard internal. Four groups of compounds can be quantified, namely, unoxidised FAME, oxidised FAME monomers including hydroperoxides, FAME dimers and FAME polymers. Results showed high repeatability and sensitivity, and substantial advantages versus determination of residual substrate by gas-liquid chromatography. Applicability of the method is shown through selected data obtained by numerous oxidation experiments on pure FAME, mainly methyl linoleate, at ambient and moderate temperatures.

  6. NO-naproxen modulates inflammation, nociception and downregulates T cell response in rat Freund's adjuvant arthritis

    PubMed Central

    Cicala, Carla; Ianaro, Angela; Fiorucci, Stefano; Calignano, Antonio; Bucci, Mariarosaria; Gerli, Roberto; Santucci, Luca; Wallace, John L; Cirino, Giuseppe

    2000-01-01

    Anti-inflammatory non steroidal drugs releasing NO (NO-NSAIDs) are a new class of anti-inflammatory drugs to which has been added an NO-releasing moiety. These compounds have been shown to retain the anti-inflammatory, analgesic and antipyretic activity of the parent compound but to be devoid of gastrointestinal (GI) toxicity.Freund's adjuvant (FA) arthritis was induced in rats by a single intraplantar injection into the right hindpaw of 100 μl of mycobacterium butirricum (6 mg ml−1). The effect of equimolar doses of naproxen (1, 3 and 10 mg kg−1) and NO-naproxen (1.5, 4.5 and 16 mg kg−1) was evaluated using two dosage regimen protocols: (i) preventive, starting oral administration of the drugs at the time of induction of arthritis and for the following 21 days (day 1–21); (ii) therapeutic, starting oral administration of the drugs 7 days after adjuvant injection and for the following 14 days (day 7–21).Hindpaw swelling (days 3, 7, 11, 14, 17, 21) and nociception (days 15 and 21) were measured. On day 22 rats were sacrificed, draining lymph nodes were removed and T cells isolated. In vitro proliferation of T cells following stimulation with concanavalin A (0.5–5 μg ml−1) was measured using a tritiated thymidine incorporation assay. IL-2 receptor expression on T cells was measured by FACS analysis.Naproxen and NO-naproxen showed similar activity in reducing oedema formation in the non-injected (controlateral) hindpaw. Both drugs showed anti-nociceptive effect. NO-naproxen was anti-nociceptive at a dose of 4.5 mg kg−1 while naproxen showed the same extent of inhibition only at a dose of 10 mg kg−1.T cells were isolated and characterized by FACS analysis. Stimulation of isolated T cells with concanavallin A in vitro caused a significant increase in thymidine uptake. NO-naproxen at a dose of 4.5 mg kg−1 inhibited T cell proliferation to the same extent as 10 mg kg−1 of naproxen.Inhibition of T cell proliferation

  7. Effective anodic oxidation of naproxen by platinum nanoparticles coated FTO glass.

    PubMed

    Chin, Ching-Ju Monica; Chen, Tsan-Yao; Lee, Menshan; Chang, Chiung-Fen; Liu, Yu-Ting; Kuo, Yu-Tsun

    2014-07-30

    This study investigated applications of the electrochemical anodic oxidation process with Pt-FTO and Pt/MWCNTs-FTO glasses as anodes on the treatment of one of the most important emerging contaminants, naproxen. The anodes used in this study have been synthesized using commercial FTO, MWCNTs and Pt nanoparticles (PtNP). XRD patterns of Pt nanoparticles coated on FTO and MWCNTs revealed that MWCNTs can prevent the surface of PtNPs from sintering and thus provide a greater reaction sites density to interact with naproxen, which have also been confirmed by higher degradation and mineralization efficiencies in the Pt/MWCNTs-FTO system. Results from the CV analysis showed that the Pt-FTO and Pt/MWCNTs-FTO electrodes possessed dual functions of decreasing activation energy and interactions between hydroxyl radicals to effectively degrade naproxen. The lower the solution pH value, the better the degradation efficiency. The existence of humic acid indeed inhibited the degradation ability of naproxen due to the competitions in the multiple-component system. The electrochemical degradation processes were controlled by diffusion mechanism and two major intermediates of 2-acetyl-6-methoxynaphthalene and 2-(6-Hydroxy-2-naphthyl)propanoic acid were identified. This study has successfully demonstrated new, easy, flexible and effective anodic materials which can be feasibly applied to the electrochemical oxidation of naproxen. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Modeling the Concentrations and Efficiencies for the Interacting Species of Pyropheophorbide Methyl Ester-Copper Association

    NASA Astrophysics Data System (ADS)

    Al-Omari, S.

    2013-07-01

    The interaction between pyropheophorbide methyl ester (PPME) and Cu2+ was investigated using UV-vis and fluorescence spectrscopy. Study of the binding interaction between PPME and Cu2+ could contribute to understanding of its pharmacokinetics and pharmacodynamics. Parameters of the static and dynamic fluorescence quenching of PPME-Cu2+ association were calculated at different temperatures. For binding site of 1:1 at 299 K, the static binding constant (kS), the static isosbestic concentration (CS{ iso}), the dynamic binding constant (kD), and the dynamic isosbestic concentration (CD{ iso }) are, respectively, 61 M-1, 0.0164 M, 75 M-1, and 0.0133 M. The concentrations and efficiencies of the intermediates species were modeled. Satisfactory correspondence between the experimental and calculated results was found.

  9. Solubility of Naproxen in Polyethylene Glycol 200 + Water Mixtures at Various Temperatures

    PubMed Central

    Panahi-Azar, Vahid; Soltanpour, Shahla; Martinez, Fleming; Jouyban, Abolghasem

    2015-01-01

    The solubility of naproxen in binary mixtures of polyethylene glycol 200 (PEG 200) + water at the temperature range from 298.0 K to 318.0 K were reported. The combinations of Jouyban-Acree model + van’t Hoff and Jouyban-Acree model + partial solubility parameters were used to predict the solubility of naproxen in PEG 200 + water mixtures at different temperatures. Combination of Jouyban-Acree model with van’t Hoff equation can be used to predict solubility in PEG 200 + water with only four solubility data in mono-solvents. The obtained solubility calculation errors vary from ~ 17 % up to 35 % depend on the number of required input data. Non-linear enthalpy-entropy compensation was found for naproxen in the investigated solvent system and the Jouyban−Acree model provides reasonably accurate mathematical descriptions of the thermodynamic data of naproxen in the investigated binary solvent systems. PMID:26664370

  10. Synergism between Naproxen and Rutin in a Mouse Model of Visceral Pain.

    PubMed

    Alonso-Castro, Angel Josabad; Rangel-Velázquez, Joceline Estefanía; Isiordia-Espinoza, Mario A; Villanueva-Solís, Luis Enrique; Aragon-Martinez, Othoniel H; Zapata-Morales, Juan Ramón

    2017-08-01

    Preclinical Research The aim of the present study was to evaluate the antinociceptive interaction between naproxen and the glycoside flavonoid, rutin in the acetic acid-induced writhing test in mice. Naproxen (5, 20, 50, and 100 mg/kg p.o.) or rutin (10, 25, 50, and 100mg/kg p.o.) were administered 60 min before the intraperitoneal administration with acetic acid. The dose-response curve of each individual compound and the experimental effective dose 50 (ED 50 ) value were obtained to determinate different proportions of the combinations between the two compounds (naproxen-rutin 1:1, 3:1, and 3:1) in the writhing test. The results indicated a synergistic antinociceptive interaction between two drugs with different mechanism of action, naproxen and rutin in all the combinations. Drug Dev Res 78 : 184-188, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Structure-based design of novel naproxen derivatives targeting monomeric nucleoprotein of Influenza A virus

    PubMed Central

    Tarus, Bogdan; Bertrand, Hélène; Zedda, Gloria; Di Primo, Carmelo; Quideau, Stéphane; Slama-Schwok, Anny

    2015-01-01

    The nucleoprotein (NP) binds the viral RNA genome as oligomers assembled with the polymerase in a ribonucleoprotein complex required for transcription and replication of influenza A virus. Novel antiviral candidates targeting the nucleoprotein either induced higher order oligomers or reduced NP oligomerization by targeting the oligomerization loop and blocking its insertion into adjacent nucleoprotein subunit. In this study, we used a different structure-based approach to stabilize monomers of the nucleoprotein by drugs binding in its RNA-binding groove. We recently identified naproxen as a drug competing with RNA binding to NP with antiinflammatory and antiviral effects against influenza A virus. Here, we designed novel derivatives of naproxen by fragment extension for improved binding to NP. Molecular dynamics simulations suggested that among these derivatives, naproxen A and C0 were most promising. Their chemical synthesis is described. Both derivatives markedly stabilized NP monomer against thermal denaturation. Naproxen C0 bound tighter to NP than naproxen at a binding site predicted by MD simulations and shown by competition experiments using wt NP or single-point mutants as determined by surface plasmon resonance. MD simulations suggested that impeded oligomerization and stabilization of monomeric NP is likely to be achieved by drugs binding in the RNA grove and inducing close to their binding site conformational changes of key residues hosting the oligomerization loop as observed for the naproxen derivatives. Naproxen C0 is a potential antiviral candidate blocking influenza nucleoprotein function. PMID:25333630

  12. Structure-based design of novel naproxen derivatives targeting monomeric nucleoprotein of Influenza A virus.

    PubMed

    Tarus, Bogdan; Bertrand, Hélène; Zedda, Gloria; Di Primo, Carmelo; Quideau, Stéphane; Slama-Schwok, Anny

    2015-09-01

    The nucleoprotein (NP) binds the viral RNA genome as oligomers assembled with the polymerase in a ribonucleoprotein complex required for transcription and replication of influenza A virus. Novel antiviral candidates targeting the nucleoprotein either induced higher order oligomers or reduced NP oligomerization by targeting the oligomerization loop and blocking its insertion into adjacent nucleoprotein subunit. In this study, we used a different structure-based approach to stabilize monomers of the nucleoprotein by drugs binding in its RNA-binding groove. We recently identified naproxen as a drug competing with RNA binding to NP with antiinflammatory and antiviral effects against influenza A virus. Here, we designed novel derivatives of naproxen by fragment extension for improved binding to NP. Molecular dynamics simulations suggested that among these derivatives, naproxen A and C0 were most promising. Their chemical synthesis is described. Both derivatives markedly stabilized NP monomer against thermal denaturation. Naproxen C0 bound tighter to NP than naproxen at a binding site predicted by MD simulations and shown by competition experiments using wt NP or single-point mutants as determined by surface plasmon resonance. MD simulations suggested that impeded oligomerization and stabilization of monomeric NP is likely to be achieved by drugs binding in the RNA grove and inducing close to their binding site conformational changes of key residues hosting the oligomerization loop as observed for the naproxen derivatives. Naproxen C0 is a potential antiviral candidate blocking influenza nucleoprotein function.

  13. Sensitization of meningeal nociceptors: inhibition by naproxen

    PubMed Central

    Levy, Dan; Zhang, Xi-Chun; Jakubowski, Moshe; Burstein, Rami

    2009-01-01

    Migraine attacks associated with throbbing (manifestation of peripheral sensitization) and cutaneous allodynia (manifestation of central sensitization) are readily terminated by intravenous administration of a non-selective cyclooxygenase (COX) inhibitor. Evidence that sensitization of rat central trigeminovascular neurons was also terminated in vivo by non-selective COX inhibition has led us to propose that COX inhibitors may act centrally in the dorsal horn. In the present study, we examined whether COX inhibition can also suppress peripheral sensitization in meningeal nociceptors. Using single-unit recording in the trigeminal ganglion in vivo, we found that intravenous infusion of naproxen, a non-selective COX inhibitor, reversed measures of sensitization induced in meningeal nociceptors by prior exposure of the dura to inflammatory soup (IS): ongoing activity of Aδ- and C-units and their response magnitude to mechanical stimulation of the dura, which were enhanced after IS, returned to baseline after naproxen infusion. Topical application of naproxen or the selective COX-2 inhibitor N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) onto the dural receptive field of Aδ- and C-unit nociceptors also reversed the neuronal hyper-responsiveness to mechanical stimulation of the dura. The findings suggest that local COX activity in the dura could mediate the peripheral sensitization that underlies migraine headache. PMID:18333963

  14. Sonocatalytic removal of naproxen by synthesized zinc oxide nanoparticles on montmorillonite.

    PubMed

    Karaca, Melike; Kıranşan, Murat; Karaca, Semra; Khataee, Alireza; Karimi, Atefeh

    2016-07-01

    ZnO/MMT nanocomposite as sonocatalyst was prepared by immobilizing synthesized ZnO on the montmorillonite surface. The characteristics of as-prepared nanocomposite were studied by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) techniques. The synthesized samples were used as a catalyst for sonocatalytic degradation of naproxen. ZnO/MMT catalyst in the presence of ultrasound irradiation was more effective compared to pure ZnO nanoparticles and MMT particles in the sonocatalysis of naproxen. The effect of different operational parameters on the sonocatalytic degradation of naproxen including initial drug concentration, sonocatalyst dosage, solution pH, ultrasonic power and the presence of organic and inorganic scavengers were evaluated. It was found that the presence of the scavengers suppressed the sonocatalytic degradation efficiency. The reusability of the nanocomposite was examined in several consecutive runs, and the degradation efficiency decreased only 2% after 5 repeated runs. The main intermediates of naproxen degradation were determined by gas chromatography-mass spectrometry (GC-Mass). Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Roles of functional groups of naproxen in its sorption to kaolinite.

    PubMed

    Yu, Chenglong; Bi, Erping

    2015-11-01

    The sorption of acidic anti-inflammatory drugs to soils is important for evaluating their fate and transformations in the water-soil environment. However, roles of functional groups of ionisable drugs onto mineral surfaces have not been sufficiently studied. In this study, batch experiments of naproxen (NPX, anti-inflammatory drug) and two kinds of competitors to kaolinite were studied. The Kd of naproxen to kaolinite is 1.30-1.62 L kg(-1). The n-π electron donor-acceptor (n-π EDA) interaction between diaromatic ring of naproxen (π-electron acceptors) and the siloxane oxygens (n-donors) of kaolinite is the dominant sorption mechanism. The carboxyl group of naproxen can contribute to the overall sorption. A conception model was put forward to elucidate to sorption mechanisms, in which the contribution of n-π EDA and hydrogen bond to overall sorption was quantified. These sorption mechanisms can be helpful for estimating the fate and mobility of acid pharmaceuticals in soil-water environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Separation of the fatty acids in menhaden oil as methyl esters with a highly polar ionic liquid gas chromatographic column and identification by time of flight mass spectrometry.

    PubMed

    Fardin-Kia, Ali Reza; Delmonte, Pierluigi; Kramer, John K G; Jahreis, Gerhard; Kuhnt, Katrin; Santercole, Viviana; Rader, Jeanne I

    2013-12-01

    The fatty acids contained in marine oils or products are traditionally analyzed by gas chromatography using capillary columns coated with polyethylene glycol phases. Recent reports indicate that 100 % cyanopropyl siloxane phases should also be used when the analyzed samples contain trans fatty acids. We investigated the separation of the fatty acid methyl esters prepared from menhaden oil using the more polar SLB-IL111 (200 m × 0.25 mm) ionic liquid capillary column and the chromatographic conditions previously optimized for the separation of the complex mixture of fatty acid methyl esters prepared from milk fat. Identifications of fatty acids were achieved by applying Ag(+)-HPLC fractionation and GC-TOF/MS analysis in CI(+) mode with isobutane as the ionization reagent. Calculation of equivalent chain lengths confirmed the assignment of double bond positions. This methodology allowed the identification of 125 fatty acids in menhaden oil, including isoprenoid and furanoid fatty acids, and the novel 7-methyl-6-hexadecenoic and 7-methyl-6-octadecenoic fatty acids. The chromatographic conditions applied in this study showed the potential of separating in a single 90-min analysis, among others, the short chain and trans fatty acids contained in dairy products, and the polyunsaturated fatty acids contained in marine products.

  17. Fourth-order derivative spectrophotometric method for simultaneous determination of pseudoephedrine and naproxen in pharmaceutical dosage forms

    PubMed Central

    Souri, Effat; Mosafer, Amir; Tehrani, Maliheh Barazandeh

    2016-01-01

    Combination dosage forms of naproxen sodium and pseudoephedrine hydrochloride are used for symptomatic treatment of cold and sinus disorders. In this study, fourth-order derivative spectrophotometric method was used for simultaneous determination of naproxen sodium and pseudoephedrine hydrochloride. The method was linear over the range of 2-28 μg/ml for pseudoephedrine hydrochloride and 4-200 μg/ml for naproxen sodium. The within-day and between-day coefficient of variation values were less than 5.8% and 2.5% for pseudoephedrine hydrochloride and naproxen sodium, respectively. The application of the proposed method for simultaneous determination of naproxen and pseudoephedrine in dosage forms was demonstrated without any special pretreatment. PMID:27168748

  18. Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites

    NASA Astrophysics Data System (ADS)

    Lioudakis, Emmanouil; Othonos, Andreas; Alexandrou, Ioannis; Hayashi, Yasuhiko

    2007-10-01

    In this work, we present the evolution of optical constants as a function of [6,6]-phenylC61-butyric acid methyl ester (PCBM) concentration for conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites. The PCBM concentration of the utilized samples varies from 1to50wt%. The dielectric functions for all these composites reveal electronic structural changes as a result of the addition of PCBM. We have deconvoluted the contribution of the substrate using a two-layer Fabry-Pérot structural model. The extracted optical properties contain crucial absorption peaks of singlet exciton states and vibronic sidebands for poly(3-hexylthiophene) (P3HT) conjugated polymer as well as two PCBM-related states at higher energies. With the addition of PCBM, we have observed a limit of 20wt% PCBM beyond which two discrete energy levels (3.64 and 4.67eV) appear in the spectrum. For the highest concentration composite, the results suggest that the interchain interactions provide a small excitonic contribution in the absorption spectrum at energies where the conjugated polymer absorbs (1.85-2.7eV) and a strong rise of PCBM states (3.64 and 4.67eV) which are responsible for the subsequent exciton dissociation. In addition, the energy gap between the higher occupied molecular orbitals and the lower unoccupied molecular orbitals of the highest concentration composite (50wt%) is 1.85eV. The tuning of the optical properties of P3HT with the addition of PCBM shows that ellipsometry can be used to monitor layer concentration toward optimization of plastic solar cells.

  19. Comparison of the efficacy and safety of nonprescription doses of naproxen and naproxen sodium with ibuprofen, acetaminophen, and placebo in the treatment of primary dysmenorrhea: a pooled analysis of five studies.

    PubMed

    Milsom, Ian; Minic, Milos; Dawood, M Yusoff; Akin, Mark D; Spann, June; Niland, Nona F; Squire, R Anne

    2002-09-01

    Dysmenorrhea is the most common menstrual complaint in young women, with a prevalence as high as 90%. It is responsible for substantial repeated short-term absenteeism from school and work in young women. Effective treatments are available, including nonsteroidal anti-inflammatory drugs (NSAIDs). In many countries, a variety of NSAIDs have become available as over-the-counter (OTC) drugs. The goal of this study was to compare the efficacy and safety of OTC doses of naproxen (400 mg) and naproxen/naproxen sodium (200/220 mg) with acetaminophen (1000 mg), ibuprofen (200 mg), and placebo in the treatment of primary dysmenorrhea. A pooled analysis of 5 trials was performed. Efficacy was assessed by pain relief, relief of other dysmenorrheic symptoms, time to backup medication or remedication, and treatment preference. Tolerability was assessed by recording adverse events (AEs). A total of 443 women were enrolled in the combined studies. Naproxen 400 mg provided greater pain relief than acetaminophen and placebo within 30 minutes of administration (P < 0.01 and P < 0.05, respectively). Furthermore, naproxen 400 mg and 200 mg provided greater pain relief than both acetaminophen (P < 0.01 and P < 0.05, respectively) and ibuprofen (P < 0.001 and P < 0.01, respectively) at 6 hours after administration. Both doses of naproxen had higher scores than placebo for symptom relief and drug preference (all P < 0.001). The AEs and their frequency were similar among the treatment groups. No serious AEs were reported. When administered at OTC doses, naproxen was effective in the relief of pain and other symptoms of primary dysmenorrhea and had a good safety profile in the population studied.

  20. Chemical composition and antimicrobial activity of fatty acid methyl ester of Quercus leucotrichophora fruits.

    PubMed

    Sati, Ankita; Sati, Sushil Chandra; Sati, Nitin; Sati, O P

    2017-03-01

    Natural fats and dietary oils are chief source of fatty acids and are well known to have antimicrobial activities against various microbes. The chemical composition and antimicrobial activities of fatty acids from fruits of white Oak (Quercus leucotrichophora) are yet unexplored and therefore the present study for the first time determines the fatty acid composition, and the antibacterial and antifungal activities of fatty acid methyl esters (FAME) of the white Oak plant found along the Himalayan region of Uttarakhand, India. The GCMS analysis revealed the presence of higher amount of saturated fatty acids than unsaturated fatty acids. FAME extract of fruits of Q. leucotrichophora demonstrated better antibacterial activity against Gram-positive bacteria than the Gram-negative bacteria. The present studies clearly establish the potential of the fruits of Q. leucotrichophora for use in soap, cosmetics and pharmaceutical industries.

  1. Toxicity of naproxen sodium and its mixture with tramadol hydrochloride on fish early life stages.

    PubMed

    Sehonova, Pavla; Plhalova, Lucie; Blahova, Jana; Doubkova, Veronika; Prokes, Miroslav; Tichy, Frantisek; Fiorino, Emma; Faggio, Caterina; Svobodova, Zdenka

    2017-12-01

    Pharmaceuticals occur in water bodies as a consequence of their incomplete removal during waste water treatment processes. The occurence of pharmaceuticals in surface waters as well as their possible impact on aquatic vertebrates have received considerable attention in recent years. However, there is still a lack of informations on the chronic effects of widely used drugs as well as their possible mixture toxicity on non-target aquatic vertebrates as well as their possible mixture toxicity. The aim of this study was to assess the effects of naproxen sodium on early life stages of fish and evaluate its mixture toxicity with tramadol hydrochloride, which was assessed in our earlier study as a single substance. Two embryo-larval toxicity tests with common carp (Cyprinus carpio) were performed according to the OECD guideline 210 (Fish, Early-life Stage Toxicity Test) in order to assess the subchronic toxicity of naproxen sodium and tramadol hydrochlorid-naproxen sodium mixture at the concentrations of 10; 50; 100 and 200 μg/L. These experiments were conducted for 32 days. The subchronic exposure to naproxen sodium and naproxen sodium and tramadol hydrochloride mixture had a strong effect on the early life stages of common carp. Hatching, developmental rate, morphology, histopathology and, in the case of the naproxen sodium and tramadol hydrochloride mixture, mortality were influenced. The bioindicators of oxidative stress were also influenced. The LOEC was determined at 10 μg/L for both naproxen sodium and naproxen sodium and tramadol hydrochloride mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Thielavin B methyl ester: a cytotoxic benzoate trimer from an unidentified fungus (MSX 55526) from the Order Sordariales.

    PubMed

    Ayers, Sloan; Ehrmann, Brandie M; Adcock, Audrey F; Kroll, David J; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H

    2011-11-02

    As part of our ongoing investigation of filamentous fungi for anticancer leads, an active fungal extract was identified from the Mycosynthetix library (MSX 55526; from the Order Sordariales). Bioactivity-directed fractionation yielded the known ergosterol peroxide (2) and 5α,8α-epidioxyergosta-6,9(11),22-trien-3β-ol(3), and a new benzoate trimer, termed thielavin B methyl ester (1). The structure elucidation of 1 was facilitated by the use of HRMS coupled to an APPI (atmospheric pressure photoionization) source. Compound 1 proved to be moderately active against a panel of three cancer cell lines.

  3. Pyrogenic transformation of Nannochloropsis oceanica into fatty acid methyl esters without oil extraction for estimating total lipid content.

    PubMed

    Kim, Jieun; Jung, Jong-Min; Lee, Jechan; Kim, Ki-Hyun; Choi, Tae O; Kim, Jae-Kon; Jeon, Young Jae; Kwon, Eilhann E

    2016-07-01

    This study fundamentally investigated the pseudo-catalytic transesterification of dried Nannochloropsis oceanica into fatty acid methyl esters (FAMEs) without oil extraction, which was achieved in less than 5min via a thermo-chemical pathway. This study presented that the pseudo-catalytic transesterification reaction was achieved in the presence of silica and that its main driving force was identified as temperature: pores in silica provided the numerous reaction space like a micro-reactor, where the heterogeneous reaction was developed. The introduced FAME derivatization showed an extraordinarily high tolerance of impurities (i.e., pyrolytic products and various extractives). This study also explored the thermal cracking of FAMEs derived from N. oceanica: the thermal cracking of saturated FAMEs was invulnerable at temperatures lower than 400°C. Lastly, this study reported that N. oceanica contained 14.4wt.% of dried N. oceanica and that the introduced methylation technique could be applicable to many research fields sharing the transesterification platform. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Supported phosphate and carbonate salts for heterogeneous catalysis of triglycerides to fatty acid methyl esters

    NASA Astrophysics Data System (ADS)

    Britton, Stephanie Lynne

    Fatty acid methyl esters made from vegetable oil, or biodiesel, have been identified as a substitute for diesel derived from crude oil. Biodiesel is currently made using a homogeneous base catalyst to perform the transesterification of triglycerides with methanol to generate fatty acid methyl esters (FAME). The use of a homogeneous catalyst necessitates additional purification of the product and byproducts before sale, and the catalyst is consumed and discarded. The development of a heterogeneous basic catalyst for the production of FAME is desirable. Tribasic phosphate salts and dibasic carbonate salts are active for the production of FAME but generally operate as homogeneous catalysts. Supporting these phosphate and carbonate salts on mesoporous MCM-41, microporous silica gel, and nonporous a-alumina proved successful to greater or lesser degrees depending on the identity of the support and pretreatment of the support. Although these salts were supported and were active for the production of FAME from canola oil, they proved to be operating as homogeneous catalysts due to leaching of the active species off the surface of the support. Further investigation of the active species present in the tribasic phosphate catalysts identified the active support as orthophosphate, and NMR studies revealed the phosphorus to be present as orthophosphate and diphosphate in varying proportions in each catalyst. Evaluation of the acid-washing support pretreatment process revealed that the exposure of the support to acid plays a large role in the development of activity on the surface of the catalyst, but manipulation of these parameters did not prevent leaching of the active site off the surface of the catalyst. Alternate methods of support pretreatment were no more effective in preventing leaching. Tribasic phosphate supported on silica gel is not effective as a heterogeneous catalyst for FAME production from triglycerides because of the lack of stability of the phosphate on the

  5. Alteration of plasma prednisolone levels by indomethacin and naproxen.

    PubMed Central

    Rae, S A; Williams, I A; English, J; Baylis, E M

    1982-01-01

    Eleven patients with stable rheumatoid disease (RD) who were receiving regular corticosteroid therapy (CS) were investigated to discover the effect on plasma prednisolone levels of additional therapy with the non-steroidal anti-inflammatory (NSAI) drugs, indomethacin and naproxen. There was a highly significant (P less than 0.001) increase in free prednisolone levels after concurrent therapy with either indomethacin or naproxen for 2 weeks. Total prednisolone levels were unchanged. These results could provide an explanation for clinical reports that these two NSAI drugs possess a steroid-sparing effect. PMID:7126420

  6. Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: insight studies.

    PubMed

    Carvalho, Ana P; Malcata, F Xavier

    2005-06-29

    Assays for fatty acid composition in biological materials are commonly carried out by gas chromatography, after conversion of the lipid material into the corresponding methyl esters (FAME) via suitable derivatization reactions. Quantitative derivatization depends on the type of catalyst and processing conditions employed, as well as the solubility of said sample in the reaction medium. Most literature pertinent to derivatization has focused on differential comparison between alternative methods; although useful to find out the best method for a particular sample, additional studies on factors that may affect each step of FAME preparation are urged. In this work, the influence of various parameters in each step of derivatization reactions was studied, using both cod liver oil and microalgal biomass as model systems. The accuracies of said methodologies were tested via comparison with the AOCS standard method, whereas their reproducibility was assessed by analysis of variance of (replicated) data. Alkaline catalysts generated lower levels of long-chain unsaturated FAME than acidic ones. Among these, acetyl chloride and BF(3) were statistically equivalent to each other. The standard method, which involves alkaline treatment of samples before acidic methylation with BF(3), provided equivalent results when compared with acidic methylation with BF(3) alone. Polarity of the reaction medium was found to be of the utmost importance in the process: intermediate values of polarity [e.g., obtained by a 1:1 (v/v) mixture of methanol with diethyl ether or toluene] provided amounts of extracted polyunsaturated fatty acids statistically higher than those obtained via the standard method.

  7. Constituents of Mediterranean Spices Counteracting Vascular Smooth Muscle Cell Proliferation: Identification and Characterization of Rosmarinic Acid Methyl Ester as a Novel Inhibitor.

    PubMed

    Liu, Rongxia; Heiss, Elke H; Waltenberger, Birgit; Blažević, Tina; Schachner, Daniel; Jiang, Baohong; Krystof, Vladimir; Liu, Wanhui; Schwaiger, Stefan; Peña-Rodríguez, Luis M; Breuss, Johannes M; Stuppner, Hermann; Dirsch, Verena M; Atanasov, Atanas G

    2018-04-01

    Aberrant vascular smooth muscle cell (VSMC) proliferation is involved in atherosclerotic plaque formation and restenosis. Mediterranean spices have been reported to confer cardioprotection, but their direct influence on VSMCs has largely not been investigated. This study aims at examining rosmarinic acid (RA) and 11 related constituents for inhibition of VSMC proliferation in vitro, and at characterizing the most promising compound for their mode of action and influence on neointima formation in vivo. RA, rosmarinic acid methyl ester (RAME), and caffeic acid methyl ester inhibit VSMC proliferation in a resazurin conversion assay with IC 50 s of 5.79, 3.12, and 6.78 µm, respectively. RAME significantly reduced neointima formation in vivo in a mouse femoral artery cuff model. Accordingly, RAME leads to an accumulation of VSMCs in the G 0 /G 1 cell-cycle phase, as indicated by blunted retinoblastoma protein phosphorylation upon mitogen stimulation and inhibition of cyclin-dependent kinase 2 in vitro. RAME represses PDGF-induced VSMC proliferation in vitro and reduces neointima formation in vivo. These results recommend RAME as an interesting compound with VSMC-inhibiting potential. Future metabolism and pharmacokinetics studies might help to further evaluate the potential relevance of RAME and other spice-derived polyphenolics for vasoprotection. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chiral recognition of naproxen enantiomers based on fluorescence quenching of bovine serum albumin-stabilized gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Jafari, Marzieh; Tashkhourian, Javad; Absalan, Ghodratollah

    2017-10-01

    A simple, fast and green method for chiral recognition of S- and R-naproxen has been introduced. The method was based on quenching of the fluorescence intensity of bovine serum albumin-stabilized gold nanoclusters in the presence of naproxen enantiomers. The quenching intensity in the presence of S-naproxen was higher than R-naproxen when phosphate buffer solution at pH 7.0 was used. The chiral recognition occurred due to steric effect between bovine serum albumin conformation and naproxen enantiomers. Two linear determination range were established as 7.4 × 10-7-9.1 × 10-6 and 9.1 × 10-6-3.1 × 10-5 mol L-1 for both enantiomers and detection limits of 7.4 × 10-8 mol L- 1 and 9.5 × 10-8 mol L-1 were obtained for S- and R-naproxen, respectively. The developed method showed good repeatability and reproducibility for the analysis of a synthetic sample. To make the procedure applicable to biological samples, the removal of heavy metals from the sample is suggested before any analytical attempt.

  9. Naproxen or Estradiol for Bleeding and Spotting with the Levonorgestrel Intrauterine System: A Randomized Controlled Trial

    PubMed Central

    MADDEN, Tessa; PROEHL, Sarah; ALLSWORTH, Jenifer E.; SECURA, Gina M.; PEIPERT, Jeffrey F.

    2011-01-01

    Objective To evaluate whether oral naproxen or transdermal estradiol decreases bleeding and spotting in women initiating the levonorgestrel-releasing intrauterine system (LNG-IUS). Study Design We conducted a randomized controlled trial of naproxen, estradiol, or placebo administered over the first 12 weeks of LNG-IUS use. Participants completed a written bleeding diary. We imputed missing values and performed an intention-to-treat analysis. Results There were 129 women randomized to naproxen (n=42), estradiol (n=44), or placebo (n=43). The naproxen group was more likely to be in the lowest quartile of bleeding and spotting days compared to placebo, 42.9% versus 16.3% (p=0.03). In the multivariable analysis, the naproxen group had a 10% reduction in bleeding and spotting days (RRadj 0.90, 95%CI 0.84–0.97) compared to placebo. More frequent bleeding and spotting was observed in the estradiol group (RRadj 1.25, 95%CI 1.17–1.34). Conclusions Administration of naproxen resulted in a reduction in bleeding and spotting days compared to placebo. (150 words) PMID:22055339

  10. Amphiphilic naproxen prodrugs: differential scanning calorimetry study on their interaction with phospholipid bilayers.

    PubMed

    Giuffrida, Maria Chiara; Pignatello, Rosario; Castelli, Francesco; Sarpietro, Maria Grazia

    2017-09-01

    Naproxen, a nonsteroid anti-inflammatory drug studied for Alzheimer's disease, was conjugated with lipoamino acids (LAA) directly or through a diethylamine (EDA) spacer to improve the drug lipophilicity and the interaction with phospholipid bilayers. The interaction of naproxen and its prodrugs with biomembrane models consisting of dimyristoylphosphatidylcholine multilamellar vesicles was studied by differential scanning calorimetry. The transfer of prodrugs from a lipophilic carrier to a biomembrane model was also studied. Naproxen conjugation to lipoamino acids improves its interaction with biomembrane models and affects the transfer from a lipophilic carrier to biomembrane model. LAA portion may localize between the phospholipid chains; the entity of the interaction depends not only on the presence of the spacer but also on the LAA chain length. Variation of LAA portion can modulate the naproxen prodrugs affinity towards the biological membrane as well as towards the lipophilic carrier. © 2017 Royal Pharmaceutical Society.

  11. Amonia gas: an improved reagent for chemical ionization mass spectrometry of bile acid methyl ester acetates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMark, B.R.; Klein, P.D.

    1981-01-01

    The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M + NH/sub 4//sup +/) in the mass spectrum of any of the derivatives. Minor ions in the ammonia spectra also allow selective detection of 3-keto compounds and can indicate unsaturation or double bond conjugation in the molecule. The significance of thesemore » studies for the detection and quantitation of bile acids is discussed. 2 tables.« less

  12. Synthesis, biological evaluation, and 3D QSAR study of 2-methyl-4-oxo-3-oxetanylcarbamic acid esters as N-acylethanolamine acid amidase (NAAA) inhibitors.

    PubMed

    Ponzano, Stefano; Berteotti, Anna; Petracca, Rita; Vitale, Romina; Mengatto, Luisa; Bandiera, Tiziano; Cavalli, Andrea; Piomelli, Daniele; Bertozzi, Fabio; Bottegoni, Giovanni

    2014-12-11

    N-(2-Oxo-3-oxetanyl)carbamic acid esters have recently been reported to be noncompetitive inhibitors of the N-acylethanolamine acid amidase (NAAA) potentially useful for the treatment of pain and inflammation. In the present study, we further explored the structure-activity relationships of the carbamic acid ester side chain of 2-methyl-4-oxo-3-oxetanylcarbamic acid ester derivatives. Additional favorable features in the design of potent NAAA inhibitors have been found together with the identification of a single digit nanomolar inhibitor. In addition, we devised a 3D QSAR using the atomic property field method. The model turned out to be able to account for the structural variability and was prospectively validated by designing, synthesizing, and testing novel inhibitors. The fairly good agreement between predictions and experimental potency values points to this 3D QSAR model as the first example of quantitative structure-activity relationships in the field of NAAA inhibitors.

  13. Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity.

    PubMed

    Ding, Tengda; Lin, Kunde; Yang, Bo; Yang, Mengting; Li, Juying; Li, Wenying; Gan, Jay

    2017-08-01

    Naproxen is one of the most prevalent pharmaceuticals and of great environment concern. Information about bioremediation of naproxen by algae remains limited and no study has been reported on the degradation mechanism and the toxicity of NPX on algae. In this study, both Cymbella sp. and Scenedesmus quadricauda showed complete growth inhibition (100%) at 100mgL -1 within 24h. Biochemical characteristics including chlorophyll a, carotenoid contents and enzyme activities for these two microalgae were affected by NPX at relatively high concentrations after 4d of exposure. Degradation of naproxen was accelerated by both algae species. Cymbella sp. showed a more satisfactive effect in the bioremediation of NPX with higher removal efficiency. A total of 12 metabolites were identified by LC-MS/MS and the degradation pathways of naproxen in two algae were proposed. Hydroxylation, decarboxylation, demethylation, tyrosine conjunction and glucuronidation contributed to naproxen transformation in algal cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Development of Self Emulsifying Formulations of Poorly Soluble Naproxen for Enhanced Drug Delivery.

    PubMed

    Penjuri, Subhash C B; Saritha, Damineni; Ravouru, Nagaraju; Poreddy, Srikanth R

    2016-01-01

    The objective of this investigation was to develop a self emulsifying drug delivery system (SEDDS) of naproxen, a poorly water soluble drug, which could improve its solubility and oral bioavailability. The recent patents on SEDDS of abiraterone acetate (WO2014/009434 A1) and tamoxifen (WO2013/0080083) helped in selecting the naproxen and excipients. Phase diagrams were constructed and the formulations were taken from the micro emulsion region. Formulations were subjected to thermodynamic stability, dispersibility and precipitation tests for optimization. Physico chemical characterization was carried out by FTIR and DSC studies. The selected SEDDS consisted of IPM+labrafac lipophile WL 1349, tween 80, PEG 400 and naproxen. The optimized formulation has globule size- 187.6 nm, zeta potential- -9.81 mv, viscosity- 1.772 cps and infinite dilution ability. In vitro drug release was 98.21% and was found to be significantly different from the marketed product and plain drug. After oral administration in rats the SEDDS of naproxen showed anti inflammatory activity (69.82%) which was much improved as compared to the marketed formulation. The Cmax, AUC0t of naproxen was boosted with SEDDS to 133.63 g/ml and 698.29 hr. g/ml respectively. The optimized formulation was found to be stable for 6 months during stability studies conducted according to the ICH Q1A (R2) guidelines. Thus this developed self emulsifying drug delivery system may be a useful tool to enhance the solubility of oral poorly water soluble drug naproxen. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. 40 CFR 721.10271 - 3′H-Cyclopropa[1,9][5,6]fullerene-C60-Ih-3′-butanoic acid, 3′-phenyl-, methyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10271 3′H-Cyclopropa[1,9][5,6]fullerene-C60-Ih-3′-butanoic acid, 3′-phenyl-, methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 3′H-Cyclopropa[1,9][5,6...

  16. 40 CFR 721.10271 - 3′H-Cyclopropa[1,9][5,6]fullerene-C60-Ih-3′-butanoic acid, 3′-phenyl-, methyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10271 3′H-Cyclopropa[1,9][5,6]fullerene-C60-Ih-3′-butanoic acid, 3′-phenyl-, methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 3′H-Cyclopropa[1,9][5,6...

  17. Ecotoxicity of naproxen and its phototransformation products.

    PubMed

    Isidori, Marina; Lavorgna, Margherita; Nardelli, Angela; Parrella, Alfredo; Previtera, Lucio; Rubino, Maria

    2005-09-15

    The occurrence of pharmaceuticals in the environment is of great concern and only few data are available about the adverse effects of such molecules and their derivatives on non-target aquatic organisms. This study was designed to assess the toxic potential of Naproxen, a nonsteroidal anti-inflammatory, Naproxen Na, its freely water soluble sodium salt and their photoproducts in the aquatic environment. Bioassays were performed on algae, rotifers and microcrustaceans to assess acute and chronic toxicity. Furthermore, possible genotoxic effects of photoderivatives were investigated using SOS chromotest and Ames fluctuation test. The results showed that photoproducts were more toxic than the parent compounds both for acute and chronic values, while genotoxic and mutagenic effects were not found. These findings suggested the opportunity to consider derivatives in ecotoxicology assessment of drugs.

  18. Hydrolysis of Synthetic Esters by the Antibacterial Agent in Serum

    PubMed Central

    Yotis, William W.

    1966-01-01

    Yotis, William W. (Loyola University, Chicago, Ill.). Hydrolysis of synthetic esters by the antibacterial agent in serum. J. Bacteriol. 91:488–493. 1966.—An antistaphylococcal serum agent was assayed colorimetrically, manometrically, and titrimetrically for esterase activity. p-Nitrophenol acetate, triacetin, l-lysine methyl and ethyl ester, and norleucine methyl ester were hydrolyzed by the antistaphylococcal agent. Acetylcholine and benzoylcholine esters, triolein, tristearin, and p-tosylarginine methyl ester were not attacked by this agent. With p-nitrophenol acetate as substrate, optimal activity occurred at pH 7.4. Incubation at 60 C for 30 min reduced drastically the esterase activity of the antistaphylococcal agent, and incubation at 75 C for 30 min abolished the esterase activity of this agent. Almost complete inhibition of esterase activity was observed with 0.001 m HgCl2, ZnSO4, and ethylenediaminetetraacetic acid (EDTA). EDTA inhibition could be reversed by the addition of CaCl2, but not MgCl2. Cysteine reversed the inhibition of HgCl2. NaF, atoxyl, diisopropyl fluorophosphate, quinine, and physostigmine did not influence the esterase activity of the antibacterial agent. The demonstration of esterase activity of both the antistaphylococcal agent and coagulase may shed further light on the reported ability of coagulase to neutralize the antistaphylococcal activity of this agent, or the prevention of absorption of the agent on the staphylococcal cell surface. In addition, the colorimetric procedure described in this report may be a convenient tool in assaying the potency of the antistaphylococcal agent. Images PMID:4956776

  19. Optimized Carbonate and Ester-Based Li-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2008-01-01

    To maintain high conductivity in low temperatures, electrolyte co-solvents have been designed to have a high dielectric constant, low viscosity, adequate coordination behavior, and appropriate liquid ranges and salt solubilities. Electrolytes that contain ester-based co-solvents in large proportion (greater than 50 percent) and ethylene carbonate (EC) in small proportion (less than 20 percent) improve low-temperature performance in MCMB carbon-LiNiCoO2 lithium-ion cells. These co-solvents have been demonstrated to enhance performance, especially at temperatures down to 70 C. Low-viscosity, ester-based co-solvents were incorporated into multi-component electrolytes of the following composition: 1.0 M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (1:1:8 volume percent) [where X = methyl butyrate (MB), ethyl butyrate EB, methyl propionate (MP), or ethyl valerate (EV)]. These electrolyte formulations result in improved low-temperature performance of lithium-ion cells, with dramatic results at temperatures below 40 C.

  20. 21 CFR 520.1468 - Naproxen granules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1468 Naproxen granules. (a... musculoskeletal system of the horse. (2)(i) For oral maintenance therapy following initial intravenous dosage...

  1. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarilymore » at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.« less

  2. Brief Report: Course of Active Inflammatory and Fatty Lesions in Patients With Early Axial Spondyloarthritis Treated With Infliximab Plus Naproxen as Compared to Naproxen Alone: Results From the Infliximab As First Line Therapy in Patients with Early Active Axial Spondyloarthritis Trial.

    PubMed

    Poddubnyy, Denis; Listing, Joachim; Sieper, Joachim

    2016-08-01

    To investigate the course of active inflammatory and fatty lesions seen on magnetic resonance imaging (MRI) in patients with early axial spondyloarthritis (SpA) treated with the tumor necrosis factor (TNF) inhibitor infliximab added to naproxen as compared to those treated with naproxen alone. A total of 158 patients with active axial SpA were randomized (2:1) to receive 28 weeks of treatment with either infliximab 5 mg/kg plus naproxen 1,000 mg/day or placebo plus naproxen 1,000 mg/day. MRI of the sacroiliac (SI) joints and of the spine was performed at baseline and week 28. Images were scored for active inflammation and for fatty lesions. After 28 weeks, there was a significant reduction of inflammation in the spine and in the SI joints in both treatment groups, which was, however, more prominent in the infliximab plus naproxen group (mean ± SD spine osteitis change score -2.9 ± 5.1, versus -2.0 ± 4.2 in the placebo plus naproxen group [P < 0.001]; SI joint osteitis change score -4.3 ± 5.2 in the infliximab plus naproxen group versus -3.9 ± 3.7 in the placebo plus naproxen group [P = 0.003]). Similarly, there was a significant increase in the fatty lesion score after 28 weeks in both groups; this change did not, however, differ significantly between groups (spine fatty lesion change score 0.8 ± 1.7 in the infliximab plus naproxen group versus 1.0 ± 1.8 in the placebo plus naproxen group [P = 0.72]; SI joint fatty lesion change score 1.7 ± 2.7 in the infliximab plus naproxen group versus 1.4 ± 2.6 in the placebo plus naproxen group [P = 0.86]). These findings indicate that effective antiinflammatory treatment of axial SpA is associated with an increase in fatty lesion scores, independent of concomitant treatment with or without anti-TNF. © 2016, American College of Rheumatology.

  3. Effects of 15(S)-15-methyl prostaglandin F2 alpha methyl ester-containing silastic discs in male rats.

    PubMed

    Kimball, F A; Frielink, R D; Porteus, S E

    1978-01-01

    Silicone rubber discs containing 15(S)-15-methyl prostaglandin F2 alpha ester (15-Me-PGF2 alpha) in the matrix were implanted in the left side of the scrotums of Sprague-Dawley rats. The effect of 1% and 2% drug concentration was examined for 10, 20, or 28 days and compared with the effects of Silastic discs containing no prostaglandin. The discs containing prostaglandin reduced mean testicular and accessory gland weights. Histologically the testes and epididymides showed decreased or absent spermatogenic elements and hypertrophy of the interstitial cell masses in comparison with other cells. Implanted prostaglandin significantly depressed serum testosterone, luteinizing hormone, and follicle-stimulating hormone (FSH) concentrations when 15-Me-PGF2 alpha plasma concentrations exceeded 2 ng/ml. Hormone concentrations returned to control values as drug concentrations declined. FSH concentrations significantly exceeded control values 10 and 20 days after implantation, when prostaglandin concentration was nondetectable. The acute suppression of all three hormones suggest that 15-Me-PGF2 alpha either may act directly on the tests to suppress testosterone production or may suppress testosterone production or may suppress gonadotropin secretion, resulting in depressed testosterone output.

  4. Removal of carbamazepine and naproxen by immobilized Phanerochaete chrysosporium under non-sterile condition.

    PubMed

    Li, Xueqing; de Toledo, Renata Alves; Wang, Shengpeng; Shim, Hojae

    2015-03-25

    This study explored the utilization of a white-rot fungus (WRF), Phanerochaete chrysosporium, immobilized in wood chips, to remove carbamazepine and naproxen under non-sterile condition. The removal efficiencies for both pharmaceutically active compounds (PhACs) in artificially contaminated water were improved by 4% for naproxen and 30% for carbamazepine in seven days, compared to without wood chips. Although adsorption was crucial at the early stage, bioremoval was found to be the main removal mechanism for both PhACs. The extracellular enzymes played important roles in the naproxen removal, while the intracellular enzyme system was responsible for the carbamazepine removal. The increased of intracellular enzyme activity through the immobilization of WRF cells may contribute to the significantly enhanced removal efficiency for carbamazepine. In addition, the removal of naproxen or carbamazepine slightly increased when both compounds coexisted, compared to the system where the two pharmaceuticals existed separately. Based on the batch experimental results, a fixed-bed bioreactor packed with a mixture of WRF mycelia pellets and wood chips was developed and operated with the intermittent feeding and continuous aerating mode for 28 days under non-sterile condition, with naproxen and carbamazepine spiked into the influent at 1.0 mg L(-1). Almost complete removal of naproxen and 60-80% removal of carbamazepine were obtained in the first two weeks. However, the removal efficiencies for both compounds suddenly dropped to as low as less than 20% by the 14th day, possibly due to the contamination by other microorganisms in the reactor. After the addition of 8.25% sodium hypochlorite at the ratio of 1:100 (v/v) into the influent tank on both Day 20 and Day 25, a rapid recovery (higher than 95%) was achieved in the naproxen removal, by effectively inhibiting contamination in the reactor. In comparison, the same rebounding phenomenon was not observed for carbamazepine and this

  5. Effect of Aspirin Coadministration on the Safety of Celecoxib, Naproxen, or Ibuprofen.

    PubMed

    Reed, Grant W; Abdallah, Mouin S; Shao, Mingyuan; Wolski, Kathy; Wisniewski, Lisa; Yeomans, Neville; Lüscher, Thomas F; Borer, Jeffrey S; Graham, David Y; Husni, M Elaine; Solomon, Daniel H; Libby, Peter; Menon, Venu; Lincoff, A Michael; Nissen, Steven E

    2018-04-24

    The safety of nonsteroidal anti-inflammatory drug (NSAID) and aspirin coadministration is uncertain. The aim of this study was to compare the safety of combining NSAIDs with low-dose aspirin. This analysis of the PRECISION (Prospective Randomized Evaluation of Celecoxib Integrated Safety Versus Ibuprofen or Naproxen) trial included 23,953 patients with osteoarthritis or rheumatoid arthritis at increased cardiovascular risk randomized to celecoxib, ibuprofen, or naproxen. The on-treatment population was used for this study. Outcomes included composite major adverse cardiovascular events, noncardiovascular death, gastrointestinal or renal events, and components of the composite. Cox proportional hazards models compared outcomes among NSAIDs stratified by aspirin use following propensity score adjustment. Kaplan-Meier analysis was used to compare the cumulative probability of events. When taken without aspirin, naproxen or ibuprofen had greater risk for the primary composite endpoint compared with celecoxib (hazard ratio [HR]: 1.52; 95% confidence interval [CI]: 1.22 to 1.90, p <0.001; and HR: 1.81; 95% CI: 1.46 to 2.26; p <0.001, respectively). Compared with celecoxib, ibuprofen had more major adverse cardiovascular events (p < 0.05), and both ibuprofen and naproxen had more gastrointestinal (p < 0.001) and renal (p < 0.05) events. Taken with aspirin, ibuprofen had greater risk for the primary composite endpoint compared with celecoxib (HR: 1.27; 95% CI: 1.06 to 1.51; p < 0.01); this was not significantly higher with naproxen (HR: 1.18; 95% CI: 0.98 to 1.41; p = 0.08). Among patients on aspirin, major adverse cardiovascular events were similar among NSAIDs, and compared with celecoxib, ibuprofen had more gastrointestinal and renal events (p < 0.05), while naproxen had more gastrointestinal events (p < 0.05), without a difference in renal events. Similar results were seen on adjusted Kaplan-Meier analysis. Celecoxib has a more favorable overall safety

  6. 21 CFR 520.1468 - Naproxen granules.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... pain and lameness exhibited with arthritis, as well as myositis and other soft tissue diseases of the..., administer 10 milligrams naproxen per kilogram of animal body weight twice daily as top dressing in the...

  7. 21 CFR 520.1468 - Naproxen granules.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... pain and lameness exhibited with arthritis, as well as myositis and other soft tissue diseases of the..., administer 10 milligrams naproxen per kilogram of animal body weight twice daily as top dressing in the...

  8. 21 CFR 520.1468 - Naproxen granules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... pain and lameness exhibited with arthritis, as well as myositis and other soft tissue diseases of the..., administer 10 milligrams naproxen per kilogram of animal body weight twice daily as top dressing in the...

  9. 21 CFR 520.1468 - Naproxen granules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... pain and lameness exhibited with arthritis, as well as myositis and other soft tissue diseases of the..., administer 10 milligrams naproxen per kilogram of animal body weight twice daily as top dressing in the...

  10. Solvation of Esters and Ketones in Supercritical CO2.

    PubMed

    Kajiya, Daisuke; Imanishi, Masayoshi; Saitow, Ken-ichi

    2016-02-04

    Vibrational Raman spectra for the C═O stretching modes of three esters with different functional groups (methyl, a single phenyl, and two phenyl groups) were measured in supercritical carbon dioxide (scCO2). The results were compared with Raman spectra for three ketones involving the same functional groups, measured at the same thermodynamic states in scCO2. The peak frequencies of the Raman spectra of these six solute molecules were analyzed by decomposition into the attractive and repulsive energy components, based on the perturbed hard-sphere theory. For all solute molecules, the attractive energy is greater than the repulsive energy. In particular, a significant difference in the attractive energies of the ester-CO2 and ketone-CO2 systems was observed when the methyl group is attached to the ester or ketone. This difference was significantly reduced in the solute systems with a single phenyl group and was completely absent in those with two phenyl groups. The optimized structures among the solutes and CO2 molecules based on quantum chemical calculations indicate that greater attractive energy is obtained for a system where the oxygen atom of the ester is solvated by CO2 molecules.

  11. Naproxen or estradiol for bleeding and spotting with the levonorgestrel intrauterine system: a randomized controlled trial.

    PubMed

    Madden, Tessa; Proehl, Sarah; Allsworth, Jenifer E; Secura, Gina M; Peipert, Jeffrey F

    2012-02-01

    The purpose of this study was to evaluate whether oral naproxen or transdermal estradiol decreases bleeding and spotting in women who are initiating the levonorgestrel-releasing intrauterine system. We conducted a randomized controlled trial of naproxen, estradiol, or placebo that was administered over the first 12 weeks of levonorgestrel-releasing intrauterine system use. Participants completed a written bleeding diary. We imputed missing values and performed an intention-to-treat analysis. There were 129 women who were assigned randomly to naproxen (n = 42 women), estradiol (n = 44 women), or placebo (n = 43 women). The naproxen group was more likely to be in the lowest quartile of bleeding and spotting days compared with placebo (42.9% vs 16.3%; P = .03). In the multivariable analysis, the naproxen group had a 10% reduction in bleeding and spotting days (adjusted relative risk, 0.90; 95% confidence interval, 0.84-0.97) compared with placebo. More frequent bleeding and spotting was observed in the estradiol group (adjusted relative risk, 1.25; 95% confidence interval, 1.17-1.34). The administration of naproxen resulted in a reduction in bleeding and spotting days compared with placebo. Copyright © 2012 Mosby, Inc. All rights reserved.

  12. Sumatriptan plus naproxen for the treatment of acute migraine attacks in adults.

    PubMed

    Law, Simon; Derry, Sheena; Moore, R Andrew

    2016-04-20

    This is an updated version of the original Cochrane review published in October 2013 on 'Sumatriptan plus naproxen for acute migraine attacks in adults'.Migraine is a common disabling condition and a burden for the individual, health services, and society. It affects two to three times more women than men, and is most common in the age range 30 to 50 years. Effective abortive treatments include the triptan and non-steroidal anti-inflammatory classes of drugs. These drugs have different mechanisms of action and combining them may provide better relief. Sumatriptan plus naproxen is now available in combination form for the acute treatment of migraine. To determine the efficacy and tolerability of sumatriptan plus naproxen, administered together as separate tablets or taken as a fixed-dose combination tablet, compared with placebo and other active interventions in the treatment of acute migraine attacks in adults. For this update we searched the Cochrane Central Register of Controlled Trials (CENTRAL) via The Cochrane Register of Studies Online (CRSO) to 28 October 2015, MEDLINE (via Ovid) from 1946 to 28 October 2015, and EMBASE (via Ovid) from 1974 to 28 October 2015, and two online databases (www.gsk-clinicalstudyregister.com and www.clinicaltrials.gov). We also searched the reference lists of included studies and relevant reviews. We included randomised, double-blind, placebo- or active-controlled studies, with at least 10 participants per treatment arm, using sumatriptan plus naproxen to treat a migraine headache episode. Two review authors independently assessed trial quality and extracted data. We used numbers of participants achieving each outcome to calculate risk ratio and numbers needed to treat for an additional beneficial outcome (NNT) or for an additional harmful outcome (NNH) compared with placebo or a different active treatment. For this update we identified one new study (43 participants), but it did not contribute any data for analysis. The review

  13. Enteric protection of naproxen in a fixed-dose combination product produced by hot-melt co-extrusion.

    PubMed

    Vynckier, A-K; De Beer, M; Monteyne, T; Voorspoels, J; De Beer, T; Remon, J P; Vervaet, C

    2015-08-01

    In this study hot-melt co-extrusion is used as processing technique to manufacture a fixed-dose combination product providing enteric protection to naproxen incorporated in the core and immediate release to esomeprazole magnesium embedded in the coat. The plasticizing effect of naproxen and triethyl citrate (TEC) was tested on the enteric polymers investigated (Eudragit(®) L100-55, HPMC-AS-LF and HPMCP-HP-50). Core matrix formulations containing HPMC-AS-LF, TEC and a naproxen load of 15, 30 and 50% were processed and characterized. The in vitro naproxen release in 0.1N HCl was prevented for 2h for all formulations. The physicochemical state of the drug in the extrudates was determined and a stability study was performed. Intermolecular interactions between naproxen and polymer were identified using attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopy. When esomeprazole magnesium was formulated in a polyethylene oxide 100K:polyethylene glycol 4K (1:1) matrix, separated from the naproxen-containing layer, the formulation could be easily processed and complete in vitro drug release was observed after 45 min. When co-extruding the core/coat dosage form it was observed that a third layer of polymer, separating the naproxen loaded enteric formulation in the core from the coat, is required to prevent degradation of the acid-labile esomeprazole magnesium at the core/coat interface. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling.

    PubMed

    Bitterlich, A; Laabs, C; Krautstrunk, I; Dengler, M; Juhnke, M; Grandeury, A; Bunjes, H; Kwade, A

    2015-05-01

    The production of nanosuspensions has proved to be an effective method for overcoming bioavailability challenges of poorly water soluble drugs. Wet milling in stirred media mills and planetary ball mills has become an established top-down-method for producing such drug nanosuspensions. The quality of the resulting nanosuspension is determined by the stability against agglomeration on the one hand, and the process parameters of the mill on the other hand. In order to understand the occurring dependencies, a detailed screening study, not only on adequate stabilizers, but also on their optimum concentration was carried out for the active pharmaceutical ingredient (API) naproxen in a planetary ball mill. The type and concentration of the stabilizer had a pronounced influence on the minimum particle size obtained. With the best formulation the influence of the relevant process parameters on product quality was investigated to determine the grinding limit of naproxen. Besides the well known phenomenon of particle agglomeration, actual naproxen crystal growth and morphology alterations occurred during the process which has not been observed before. It was shown that, by adjusting the process parameters, those effects could be reduced or eliminated. Thus, besides real grinding and agglomeration a process parameter dependent ripening of the naproxen particles was identified to be a concurrent effect during the naproxen fine grinding process. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies.

    PubMed

    Masood, Athar; Stark, Ken D; Salem, Norman

    2005-10-01

    Conventional sample preparation for fatty acid analysis is a complicated, multiple-step process, and gas chromatography (GC) analysis alone can require >1 h per sample to resolve fatty acid methyl esters (FAMEs). Fast GC analysis was adapted to human plasma FAME analysis using a modified polyethylene glycol column with smaller internal diameters, thinner stationary phase films, increased carrier gas linear velocity, and faster temperature ramping. Our results indicated that fast GC analyses were comparable to conventional GC in peak resolution. A conventional transesterification method based on Lepage and Roy was simplified to a one-step method with the elimination of the neutralization and centrifugation steps. A robotics-amenable method was also developed, with lower methylation temperatures and in an open-tube format using multiple reagent additions. The simplified methods produced results that were quantitatively similar and with similar coefficients of variation as compared with the original Lepage and Roy method. The present streamlined methodology is suitable for the direct fatty acid analysis of human plasma, is appropriate for research studies, and will facilitate large clinical trials and make possible population studies.

  16. Intraparticle diffusion limitations in the hydrogenation of monounsaturated edible oils and their fatty acid methyl esters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonker, G.H.; Veldsink, J.W.; Beenackers, A.A.C.M.

    1998-12-01

    Intraparticle diffusion limitation in the hydrogenation and isomerization of fatty acid methyl esters (FAMEs) and edible oils (triacylglycerol, TAG) in porous nickel catalyst was investigated both under reactive and under inert conditions. Under reactive conditions, the diffusion coefficients were determined from the best fits of the model simulations applying the intrinsic reacting kinetics of monounsaturated FAME hydrogenation to experiments under diffusion limited conditions. Due to the absence of reaction (hydrogenation of double bonds), the obtained effective H{sub z} diffusion coefficient (D{sub e}) with the HPLC technique is volume averaged and thereby determined by the larger intercrystalline pores (<30% of themore » total pore volume) only. Moreover, D{sub e} measured under reaction conditions reflected the influence of the micropores, resulting in a 10-fold lower value.« less

  17. The impact of electrolyte on the adsorption of the anionic surfactant methyl ester sulfonate at the air-solution interface: Surface multilayer formation.

    PubMed

    Xu, H; Thomas, R K; Penfold, J; Li, P X; Ma, K; Welbourne, R J L; Roberts, D W; Petkov, J T

    2018-02-15

    The methyl ester sulfonates represent a promising group of anionic surfactants which have the potential for improved performance and biocompatibility in a range of applications. Their solution properties, in particular their tolerance to hard water, suggests that surface ordering may occur in the presence of multi-valent counterion. Understanding their adsorption properties in a range of different circumstances is key to the exploitation of their potential. Neutron reflectivity and surface tension have been used to characterise the adsorption at the air-aqueous solution interface of the anionic surfactant sodium tetradecanoic 2-sulfo 1-methyl ester, C 14 MES, in the absence of electrolyte and in the presence of mono, di, and tri-valent counterions, Na + , Ca 2+ , and Al 3+ . In particular the emphasis has been on exploring the tendency to form layered structures at the interface. In the absence of electrolyte and in the presence of NaCl and CaCl 2 and AlCl 3 at low concentrations monolayer adsorption is observed, and the addition of electrolyte results in enhanced adsorption. In the presence of NaCl and CaCl 2 only monolayer adsorption is observed. However at higher AlCl 3 concentrations surface multilayer formation is observed, in which the number of bilayers at the surface depends upon the surfactant and AlCl 3 concentrations. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. 5-Hydroxyferulic acid methyl ester isolated from wasabi leaves inhibits 3T3-L1 adipocyte differentiation.

    PubMed

    Misawa, Naoki; Hosoya, Takahiro; Yoshida, Shuhei; Sugimoto, Osamu; Yamada-Kato, Tomoe; Kumazawa, Shigenori

    2018-02-26

    To investigate the compounds present in wasabi leaves (Wasabia japonica Matsumura) that inhibit the adipocyte differentiation, activity-guided fractionation was performed on these leaves. 5-Hydroxyferulic acid methyl ester (1: 5-HFA ester), one of the phenylpropanoids, was isolated from wasabi leaves as a compound that inhibits the adipocyte differentiation. Compound 1 suppressed the intracellular lipid accumulation of 3T3-L1 cells without significant cytotoxicity. Gene expression analysis revealed that 1 suppressed the mRNA expression of 2 master regulators of adipocyte differentiation, PPARγ and C/EBPα. Furthermore, 1 downregulated the expression of adipogenesis-related genes, GLUT4, LPL, SREBP-1c, ACC, and FAS. Protein expression analysis revealed that 1 suppressed PPARγ protein expression. Moreover, to investigate the relationship between the structure and activity of inhibiting the adipocyte differentiation, we synthesized 12 kinds of phenylpropanoid analog. Comparison of the activity among 1 and its analogs suggested that the compound containing the substructure that possess a common functional group at the ortho position such as a catechol group exhibits the activity of inhibiting the adipocyte differentiation. Taken together, our findings suggest that 1 from wasabi leaves inhibits adipocyte differentiation via the downregulation of PPARγ. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Flow injection chemiluminescence determination of loxoprofen and naproxen with the acidic permanganate-sulfite system.

    PubMed

    Wang, Li-Juan; Tang, Yu-Hai; Liu, Yang-Hao

    2011-02-01

    A novel flow injection chemiluminescence (CL) method for the determination of loxoprofen and naproxen was proposed based on the CL system of KMnO 4 , and Na 2 SO 3 in acid media. The CL intensity of KMnO 4 -Na 2 SO 3 was greatly enhaneed in the presence of loxoprofen and naproxen. The mechanism of the CL reaction was studied by the kinetic proecss and UV-vis absorption and the conditions were optimized. Under optimized conditions, the CL intensity was linear with loxoprofen and naproxen concentration in the range of 7.0 × 10 -8 - 1.0 × 10 -5 g/mL and 2.0 × 10 -7 - 4.0 × 10 -6 g/mL with the detection limit of 2.0 × 10 -8 g/mL and 3.0 × 10 -8 g/mL (S/N = 3), respectively. Thc relative standard deviations were 2.39% and 1.37% for 5.0 × 10 -7 g/mL naproxen and 5.0 × 10 -7 g/mL loxoprofen ( n = 10), respectively. The proposed method was satisfactorily applied to thc determination of loxoprofen and naproxen in pharmaceutical preparations.

  20. Fixed Drug Eruption Due to Selective Hypersensitivity to Naproxen with Tolerance to other Propionic Acid NSAIDs.

    PubMed

    Noguerado-Mellado, Blanca; Gamboa, Abdonias R; Perez-Ezquerra, Patricia R; Cabeza, Cristina M; Fernandez, Roberto P; De Barrio Fernandez, Manuel

    2016-01-01

    Naproxen is a non-steroidal anti-inflammatory drug (NSAID), belonging to propionic acid group, and its chemical structure is a 6-metoxi-metil-2-naftalenoacetic acid. Fixed drug eruptions (FDE) have been rarely reported. A 38-year-old woman referred that after 2 hours of taking 2 tablets of naproxen for a headache, she developed several edematous and dusky-red macules, one on right forearm and the other two in both thighs and she was diagnosed with FDE probably due to naproxen. We performed patch testing (PT) (Nonweven Patch Test Strips Curatest® Lohman & Rauscher International, Rangsdorf, Germany), with ibuprofen (5% Petrolatum), ketoprofen (2.5% Petrolatum), naproxen and nabumetone (both 10% in DMSO) on the residual lesion of the forearm with naproxen and in both thighs with ibuprofen, ketoprofen and nabumetone. Readings at day 1 (D1) and day 2 (D2) showed negative results to ibuprofen, ketoprofen and nabumetone, but were positive to naproxen in D1. A single blind oral challenge test (SBOCT) with other propionic acid derivates were performed in order to check for crossreactivity between them: ibuprofen, ketoprofen and nabumetone were administered and all drugs were well tolerated. In our patient PT confirmed the diagnosis and allowed us to study the cross-reactivity between NSAIDs of the same group, and confirmed by SBOCT. Cross-reactivity between propionic acid derivatives was studied. This is a case of hypersensitivity to naproxen with good tolerance to other propionic acids NSAIDs (ibuprofen and ketoprofen) and nabumetone, confirmed by PT and SBOCT. Some relavent patents for fixed drug eruption are discussed.

  1. Degradation of naproxen by UV, VUV photolysis and their combination.

    PubMed

    Arany, Eszter; Szabó, Rita Katalin; Apáti, László; Alapi, Tünde; Ilisz, István; Mazellier, Patrick; Dombi, András; Gajda-Schrantz, Krisztina

    2013-11-15

    Naproxen is a widely used nonsteroidal anti-inflammatory drug. Recently, this medicine was detected both in natural waters (up to 1.5 μg L(-1)) and in sewage treatment plant effluents (up to 5.2 μg L(-1)). Moreover, naproxen is only partly eliminated by classical processes used in sewage treatment plants. Therefore, its degradation is of utmost interest. Advanced oxidation processes proved to be the most suitable methods for the elimination of persistent organic contaminants. In this work ultraviolet (UV, 254 nm), vacuum ultraviolet photolysis (VUV, 172 nm) and their combination (UV/VUV, 254/185 nm) were investigated. The efficiency of the methods increased in the following order: UV < VUV < UV/VUV photolysis. However, VUV irradiation was found to mineralize the contaminant molecule most effectively. The chemical structures of three out of four aromatic by-products and of some aliphatic carboxylic acids were presumed. The effects of dissolved O2 and the initial concentration of naproxen on the degradation were also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Development and validation of an LC-ESI-MS/MS method for the simultaneous quantification of naproxen and sumatriptan in human plasma: application to a pharmacokinetic study.

    PubMed

    Brêtas, Juliana Machado; César, Isabela Costa; Brêtas, Camila Machado; Teixeira, Leonardo de Souza; Bellorio, Karini Bruno; Mundim, Iram Moreira; Pianetti, Gerson Antônio

    2016-06-01

    A sensitive and fast liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method was developed and validated for the simultaneous quantification of naproxen and sumatriptan in human plasma. A simple liquid-liquid extraction procedure, with a mixture of ethyl acetate, methyl tert-butyl ether, and dichloromethane (4:3:3, v/v), was used for the cleanup of plasma. Naratriptan and aceclofenac were employed as internal standards. The analyses were carried out using an ACE C18 column (50 × 4.6 mm i.d.; particle size 5 μm) and a mobile phase consisting of 2 mM aqueous ammonium acetate with 0.025 % formic acid and methanol (38:62, v/v). A triple-quadrupole mass spectrometer equipped with an electrospray source in the positive mode was set up in the selective reaction monitoring mode to detect the ion transitions m/z 231.67 → m/z 185.07, m/z 296.70 → m/z 157.30, m/z 354.80 → m/z 215.00, and m/z 336.80 → m/z 97.94 for naproxen, sumatriptan, aceclofenac, and naratriptan, respectively. The method was validated and proved to be linear, accurate, precise, and selective over the ranges of 2.5-130 μg mL(-1) for naproxen and 1-50 ng mL(-1) for sumatriptan. The validated method was successfully applied to a pharmacokinetic study with simultaneous administration of naproxen sodium and sumatriptan succinate tablet formulations in healthy volunteers.

  3. Structure-Based Discovery of the Novel Antiviral Properties of Naproxen against the Nucleoprotein of Influenza A Virus

    PubMed Central

    Lejal, Nathalie; Tarus, Bogdan; Bouguyon, Edwige; Chenavas, Sylvie; Bertho, Nicolas; Delmas, Bernard; Ruigrok, Rob W. H.; Di Primo, Carmelo

    2013-01-01

    The nucleoprotein (NP) binds the viral RNA genome and associates with the polymerase in a ribonucleoprotein complex (RNP) required for transcription and replication of influenza A virus. NP has no cellular counterpart, and the NP sequence is highly conserved, which led to considering NP a hot target in the search for antivirals. We report here that monomeric nucleoprotein can be inhibited by a small molecule binding in its RNA binding groove, resulting in a novel antiviral against influenza A virus. We identified naproxen, an anti-inflammatory drug that targeted the nucleoprotein to inhibit NP-RNA association required for NP function, by virtual screening. Further docking and molecular dynamics (MD) simulations identified in the RNA groove two NP-naproxen complexes of similar levels of interaction energy. The predicted naproxen binding sites were tested using the Y148A, R152A, R355A, and R361A proteins carrying single-point mutations. Surface plasmon resonance, fluorescence, and other in vitro experiments supported the notion that naproxen binds at a site identified by MD simulations and showed that naproxen competed with RNA binding to wild-type (WT) NP and protected active monomers of the nucleoprotein against proteolytic cleavage. Naproxen protected Madin-Darby canine kidney (MDCK) cells against viral challenges with the H1N1 and H3N2 viral strains and was much more effective than other cyclooxygenase inhibitors in decreasing viral titers of MDCK cells. In a mouse model of intranasal infection, naproxen treatment decreased the viral titers in mice lungs. In conclusion, naproxen is a promising lead compound for novel antivirals against influenza A virus that targets the nucleoprotein in its RNA binding groove. PMID:23459490

  4. Nonselective inhibition of prostaglandin-endoperoxide synthase by naproxen ameliorates hepatic injury in animals with acute or chronic liver injury

    PubMed Central

    Bahde, Ralf; Kapoor, Sorabh; Gupta, Sanjeev

    2014-01-01

    The rising prevalence of hepatic injury due to toxins, metabolites, viruses, etc., necessitates development of further mechanisms for protecting the liver and for treating acute or chronic liver diseases. To examine whether inhibition of inflammation directed by cyclo-oxygenase pathways, we performed animal studies with naproxen, which inhibits prostaglandin-endoperoxide synthases 1 and 2 and is in extensive clinical use. We administered carbon tetrachloride to induce acute liver injury and ligated the common bile duct to induce chronic liver injury in adult rats. These experimental manipulations produced abnormalities in liver tests, tissue necrosis, compensatory hepatocyte or biliary proliferation, and onset of fibrosis, particularly after bile duct ligation. After carbon tetrachloride-induced acute injury, naproxen decreased liver test abnormalities, tissue necrosis and compensatory hepatocellular proliferation. After bile duct ligation-induced chronic injury, naproxen decreased liver test abnormalities, tissue injury and compensatory biliary hyperplasia. Moreover, after bile duct ligation, naproxen-treated rats showed more periductular oval liver cells, which have been classified as hepatic progenitor cells. In naproxen-treated rats, we found greater expression in hepatic stellate cells and mononuclear cells of cytoprotective factors, such as vascular endothelial growth factor. The ability of naproxen to induce expression of vascular endothelial growth factor was verified in cell culture studies with CFSC-8B clone of rat hepatic stellate cells. Whereas assays for carbon tetrachloride toxicity using cultured primary hepatocytes established that naproxen was not directly cytoprotective, we found conditioned medium containing vascular endothelial growth factor from naproxen-treated CFSC-8B cells protected hepatocytes from carbon tetrachloride toxicity. Therefore, naproxen was capable of ameliorating toxic liver injury, which involved naproxen-induced release of

  5. Comparative Studies on Performance Characteristics of CI Engine Fuelled with Neem Methyl Ester and Mahua Methyl Ester and Its Respective Blends with Diesel Fuel.

    PubMed

    Ragit, S S; Mohapatra, S K; Kundu, K

    2014-01-01

    In the present investigation, neem and mahua methyl ester were prepared by transesterification using potassium hydroxide as a catalyst and tested in 4-stroke single cylinder water cooled diesel engine. Tests were carried out at constant speed of 1500 rev/min at different brake mean effective pressures. A series of tests were conducted which worked at different brake mean effective pressures, OkPa, 1kPa, 2kPa, 3kPa, 4kPa, 5kPa, 6kPa and 6.5kPa. The performance and exhaust emission characteristics of the diesel engine were analyzed and compared with diesel fuel. Results showed that BTE of NME was comparable with diesel and it was noted that the BTE of N0100 is 63.11% higher than that of diesel at part load whereas it reduces 11.2% with diesel fuel at full load. In case of full load, NME showed decreasing trend with diesel fuel. BTE of diesel was 15.37% and 36.89% at part load and full load respectively. The observation indicated that BTE for MME 100 was slightly higher than diesel at part loads. The specific fuel consumption (SFC) was more for almost all blends at all loads, compared to diesel. At part load, the EGT of MME and its blends were showing similar trend to diesel fuel and at full load, the exhaust gas temperature of MME and blends were higher than diesel. Based on this study, NME could be a substitute for diesel fuel in diesel engine.

  6. Thermomyces lanuginosus lipase-catalyzed synthesis of natural flavor esters in a continuous flow microreactor.

    PubMed

    Gumel, Ahmad Mohammed; Annuar, M S M

    2016-06-01

    Enzymatic catalysis is considered to be among the most environmental friendly processes for the synthesis of fine chemicals. In this study, lipase from Thermomyces lanuginosus (Lecitase Ultra™) was used to catalyze the synthesis of flavor esters, i.e., methyl butanoate and methyl benzoate by esterification of the acids with methanol in a microfluidic system. Maximum reaction rates of 195 and 115 mM min -1 corresponding to catalytic efficiencies (k cat /K M ) of 0.30 and 0.24 min -1  mM -1 as well as yield conversion of 54 and 41 % were observed in methyl butanoate and methyl benzoate synthesis, respectively. Catalytic turnover (k cat ) was higher for methyl butanoate synthesis. Rate of synthesis and yield decreased with increasing flow rates. For both esters, increase in microfluidic flow rate resulted in increased advective transport over molecular diffusion and reaction rate, thus lower conversion. In microfluidic synthesis using T. lanuginosus lipase, the following reaction conditions were 40 °C, flow rate 0.1 mL min -1 , and 123 U g -1 enzyme loading found to be the optimum operating limits. The work demonstrated the application of enzyme(s) in a microreactor system for the synthesis of industrially important esters.

  7. Photodynamic effects of pyropheophorbide-a methyl ester in nasopharyngeal carcinoma cells.

    PubMed

    Xu, Chuan Shan; Leung, Albert Wing Nang

    2006-08-01

    Nasopharyngeal carcinoma (NPC) is one of the most common cancers, and exploring novel therapeutic modalities will improve the clinical outcomes. It has been confirmed that photodynamic therapy can efficiently deactivate malignant cells. The aim of the present study was to explore the photodynamic effects of pyropheophorbide-a methyl ester (MPPa) in CNE2 nasopharyngeal carcinoma cells. CNE2 cells were subjected to photodynamic therapy with MPPa, in which the drug concentration was 0.25 to 4 microM and light energy 1 to 8 J/cm(2). Photodynamic toxicity was investigated 24 h after treatment. Apoptosis was determined using flow cytometry with annexin V-FITC and propidum iodine staining and with nuclear staining with Hoechst 33258. The mitochondrial membrane potential (DeltaPsim) was evaluated by Rhodamine 123 assay. There was no dark cytotoxicity of MPPa in the CNE2 cells at doses of 0.25-4 microM, and MPPa resulted in dose- and light-dependent phototoxicity. The apoptotic rate 8 h after PDT with MPPa (2 microM) increased to 16.43% under a light energy of 2 J/cm(2). Mitochondrial membrane potential (DeltaPsim) collapsed when the CNE2 cells were exposed to 2 microM MPPa for 20 h and then 2 J/cm(2) irradiation. Photodynamic therapy with MPPa significantly enhanced apoptosis and the collapse of DeltaPsim. This can be developed for treating nasopharyngeal carcinoma.

  8. Naproxen Attenuates Sensitization of Depressive-Like Behavior and Fever during Maternal Separation

    PubMed Central

    Hennessy, Michael B.; Stafford, Nathan P.; Yusko-Osborne, Brittany; Schiml, Patricia A.; Xanthos, Evan D.; Deak, Terrence

    2014-01-01

    Early life stress can increase susceptibility for later development of depressive illness though a process thought to involve inflammatory mediators. Isolated guinea pig pups exhibit a passive, depressive-like behavioral response and fever that appear mediated by proinflammatory activity, and which sensitize with repeated separations. Treatment with an anti-inflammatory can attenuate the behavioral response during the initial separation and separation the following day. Here we used the cyclooxygenase inhibitor naproxen to examine the role of prostaglandins in mediating the depressive-like behavior and core body temperature of young guinea pigs during an initial separation, separation the next day, and separation 10 days after the first. The passive, depressive-like behavior as well as fever sensitized with repeated separation. Three days of injection with 14 mg/kg of naproxen prior to the initial separation reduced depressive-like behavior during all three separations. A 28 mg/kg dose of naproxen, however, had minimal effect on behavior. Fever during the early separations was moderated by naproxen, but only at the higher dose. These results suggest a role of prostaglandins in the behavioral and febrile response to maternal separation, and particularly in the sensitization of depressive-like behavior following repeated separation. PMID:25449392

  9. Vapor Pressure of Methyl Salicylate and n-Hexadecane

    DTIC Science & Technology

    2014-01-01

    VAPOR PRESSURE OF METHYL SALICYLATE AND N-HEXADECANE ECBC-TR-1184 David E. Tevault Leonard C. Buettner...REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2000-Dec 2001 4. TITLE AND SUBTITLE Vapor Pressure of Methyl Salicylate and n-Hexadecane 5a...ABSTRACT Vapor pressure data are reported for O-hydroxybenzoic acid, methyl ester, more commonly known as methyl salicylate (MeS), and n-hexadecane in

  10. Flow injection chemiluminescence determination of loxoprofen and naproxen with the acidic permanganate-sulfite system

    PubMed Central

    Wang, Li-Juan; Tang, Yu-Hai; Liu, Yang-Hao

    2012-01-01

    A novel flow injection chemiluminescence (CL) method for the determination of loxoprofen and naproxen was proposed based on the CL system of KMnO4, and Na2SO3 in acid media. The CL intensity of KMnO4-Na2SO3 was greatly enhaneed in the presence of loxoprofen and naproxen. The mechanism of the CL reaction was studied by the kinetic proecss and UV-vis absorption and the conditions were optimized. Under optimized conditions, the CL intensity was linear with loxoprofen and naproxen concentration in the range of 7.0 × 10−8 – 1.0 × 10−5 g/mL and 2.0 × 10−7 – 4.0 × 10−6 g/mL with the detection limit of 2.0 × 10−8 g/mL and 3.0 × 10−8 g/mL (S/N = 3), respectively. Thc relative standard deviations were 2.39% and 1.37% for 5.0 × 10−7 g/mL naproxen and 5.0 × 10−7 g/mL loxoprofen (n = 10), respectively. The proposed method was satisfactorily applied to thc determination of loxoprofen and naproxen in pharmaceutical preparations. PMID:29403682

  11. Sorption of the pharmaceuticals carbamazepine and naproxen to dissolved organic matter: role of structural fractions.

    PubMed

    Maoz, Adi; Chefetz, Benny

    2010-02-01

    Pharmaceutical compounds and dissolved organic matter (DOM) are co-introduced into the environment by irrigation with reclaimed wastewater and/or application of biosolids. In this study, we evaluate the role and mechanism of interaction of the pharmaceuticals naproxen and carbamazepine with structural fractions of biosolids-derived DOM. Sorption interactions were estimated from dialysis-bag experiments at different pHs. Sorption of naproxen and carbamazepine by the hydrophobic acid fraction exhibited strong pH-dependence. With both pharmaceuticals, the highest sorption coefficients (K(DOC)) were at pH 4. With the hydrophobic neutral fraction, pH affected only naproxen sorption (decreasing with increasing pH). Among the hydrophilic DOM fractions, the hydrophilic acid fraction exhibited the highest K(DOC) value for carbamazepine, probably due to their bipolar character. In the hydrophilic acid fraction-naproxen system, significant anionic repulsion was observed with increasing pH. The hydrophilic base fraction contains positively charged functional groups. Therefore with increasing ionization of naproxen (with increasing pH), K(DOC) to this fraction increased. The hydrophilic neutral fraction exhibited the lowest K(DOC) with both studied pharmaceuticals. The K(DOC) value of carbamazepine with the bulk DOM sample was higher than the calculated K(DOC) value based on sorption by the individual isolated fractions. The opposite trend was observed with naproxen at pH 8: the calculated K(DOC) value was higher than the value obtained for the bulk DOM. These results demonstrate that DOM fractions interact with each other and do not act as separate sorption domains. (c) 2009 Elsevier Ltd. All rights reserved.

  12. A Molecular docking study to predict enantioseparation of some chiral carboxylic acid derivatives by methyl-β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Nurhidayah, E. S.; Ivansyah, A. L.; Martoprawiro, M. A.; Zulfikar, M. A.

    2018-05-01

    A molecular docking study, using molecular mechanics calculations with Arguslab, was used to help predict the enantioseparation of some guest molecules of chiral carboxylic acid derivatives by heptakis-2,6-di-O-methyl-β-cyclodextrin (DIMEB) and heptakis-2,3,6-tri-O-methyl-β-cyclodextrin (TRIMEB) as host molecules. The small differences in the binding free energy values (ΔΔG) obtained from Arguslab did not indicate any significant enantioseparation. From the molecular docking simulation results, it is predicted that in the case of DIMEB as host molecule, R-enantiomer of Etodolac, Fenoprofen, Indoprofen, Ketorolac, and Naproxen will be eluted first than S-enantiomer; However, S-enantiomer of Carprofen, Flurbiprofen, Ketoprofen, Pirprofen, Proglumide, Sulindac, Surprofen, and Zaltoprofen will be eluted first than R-enantiomer by DIMEB as host molecule. When TRIMEB is used as a host molecule, R-enantiomer of Carprofen, Flurbiprofen, Indoprofen, Ketoprofen, Naproxen, Pirprofen, and Surprofen will be eluted first than S-enantiomer; However, S-enantiomer of Etodolac, Fenoprofen, Ketorolac, Proglumide, Sulindac and Zaltoprofen will be eluted first than R-enantiomer by TRIMEB as host molecule.

  13. Low doses of tizanidine synergize the anti-nociceptive and anti-inflammatory effects of ketorolac or naproxen while reducing of side effects.

    PubMed

    Patiño-Camacho, Selene I; Déciga Campos, Myrna; Beltrán-Villalobos, Karla; Castro-Vidal, Dalia A; Montiel-Ruiz, Rosa M; Flores-Murrieta, Francisco J

    2017-06-15

    The aim of the present study was to determine whether tizanidine, an alpha2-adrenoceptor agonist, is able to increase the anti-inflammatory and anti-nociceptive effects of naproxen and ketorolac with a low incidence of gastric injury and spontaneous activity in rats. The anti-inflammatory effect was assayed in a carrageenan test, and oral administration of tizanidine (ED 40 =0.94±0.2mg/kg), naproxen (ED 40 =3.18±0.4mg/kg), and ketorolac (ED 40 =16.4±1.9mg/kg) showed a dose-dependent effect on inflammation. The anti-nociceptive effect was assayed in the formalin test, and administration of tizanidine (ED 40 =0.39±0.06mg/kg, p.o.), naproxen (ED 40 =33.9±3.9mg/kg, p.o.) or ketorolac (ED 40 =6.49±1mg/kg, p.o.) each showed a dose-dependent anti-nociceptive effect. The effects of combinations of tizanidine/naproxen and tizanidine/ketorolac were determined considering their ED 40 at a rate of 1:1. Additionally, the tizanidine/naproxen and tizanidine/ketorolac combinations showed anti-inflammatory and anti-nociceptive effects. The tizanidine/ketorolac combination was more potent than tizanidine/naproxen, in both inflammatory (interaction index=0.03 tizanidine/ketorolac and 0.07 tizanidine/naproxen) and nociceptive (interaction index=0.005 tizanidine/ketorolac and 0.01 tizanidine/naproxen) processes. In both cases, tizanidine improved naproxen and ketorolac gastrointestinal tolerability by 50%. Furthermore, co-administration of tizanidine with naproxen or ketorolac did not modify the spontaneous activity in the same way as individual tizanidine administration. Considering that tizanidine increases the anti-inflammatory and anti-nociceptive effects of naproxen or ketorolac, with an increase in gastric tolerability, tizanidine could provide therapeutic advantages in the clinical treatment of inflammation and pain. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Apoptosis triggered by pyropheophorbide-α methyl ester-mediated photodynamic therapy in a giant cell tumor in bone

    NASA Astrophysics Data System (ADS)

    Li, K.-T.; Zhang, J.; Duan, Q.-Q.; Bi, Y.; Bai, D.-Q.; Ou, Y.-S.

    2014-06-01

    A giant cell tumor in bone is the common primary bone tumor with aggressive features, occurring mainly in young adults. Photodynamic therapy is a new therapeutic technique for tumors. In this study, we investigated the effects of Pyropheophorbide-α methyl ester (MPPa)-mediated photodynamic therapy on the proliferation of giant cell tumor cells and its mechanism of action. Cell proliferation was evaluated using an MTT assay. Cellular apoptosis was detected by Hoechst nuclear staining, and flow cytometric assay. Mitochondrial membrane potential changes and cytochrome c, caspase-9, caspase-3, and Bcl-2 expression was assessed. Finally, we found that MPPa-mediated photodynamic therapy could effectively suppress the proliferation of human giant cell tumor cells and induce apoptosis. The mitochondrial pathway was involved in the MPPa-photodynamic therapy-induced apoptosis.

  15. Protective Effect of 4-(3,4-Dihydroxyphenyl)-3-Buten-2-One from Phellinus linteus on Naproxen-Induced Gastric Antral Ulcers in Rats.

    PubMed

    Kim, Jeong-Hwan; Kwon, Hyun Ju; Kim, Byung Woo

    2016-05-28

    The present study investigated the protective effect of naturally purified 4-(3,4- dihydroxyphenyl)-3-buten-2-one (DHP) from Phellinus linteus against naproxen-induced gastric antral ulcers in rats. To verify the protective effect of DHP on naproxen-induced gastric antral ulcers, various doses (1, 5, and 10 μg/kg) of DHP were pretreated for 3 days, and then gastric damage was caused by 80 mg/kg naproxen applied for 3 days. DHP prevented naproxen-induced gastric antral ulcers in a dose-dependent manner. In particular, 10 μg/kg DHP showed the best protective effect against naproxen-induced gastric antral ulcers. Moreover, DHP significantly attenuated the naproxen-induced lipid peroxide level in gastric mucosa and increased the activities of radical scavenging enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, in a dose-dependent manner. A histological examination clearly demonstrated that the gastric antral ulcer induced by naproxen nearly disappeared after the pretreatment of DHP. These results suggest that DHP can inhibit naproxen-induced gastric antral ulcers through prevention of lipid peroxidation and activation of radical scavenging enzymes.

  16. Photodegradation of naproxen and its photoproducts in aqueous solution at 254 nm: a kinetic investigation.

    PubMed

    Marotta, Raffaele; Spasiano, Danilo; Di Somma, Ilaria; Andreozzi, Roberto

    2013-01-01

    The kinetics of photodegradation of the non steroidal anti-inflammatory drug naproxen (+)-S-2-(6-methoxynaphthalen-2-yl)propanoic acid, an emerging organic pollutant, was studied in aqueous solutions under deaerated and aerated conditions. The photolysis experiments were carried out under monochromatic irradiation (λ = 254 nm) at pH = 7.0 and T = 25 °C. Simplified reaction schemes of photodegradation of naproxen are proposed in absence and in presence of oxygen respectively. The schemes take into account the photolysis of naproxen and its photoproducts and the reactions of the measured species with oxygen dissolved in the liquid bulk. According to these schemes, two kinetic models were developed which correlate the experimental data, for runs performed in absence and in presence of oxygen, with a fair accuracy and allowed to estimate the best values for the unknown kinetic parameters. The calculated quantum yield of direct photolysis of naproxen under deaerated media is in good agreement with the one previously reported. Under aerated conditions, the generation of singlet oxygen has also been taken into account. The obtained results, under the adopted conditions, indicated a marked influence of dissolved oxygen on the photodegradation rates of naproxen and the relative distribution of the major reaction intermediates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Efficacy of single-dose, extended-release naproxen sodium 660 mg in postsurgical dental pain: two double-blind, randomized, placebo-controlled trials.

    PubMed

    Laurora, Irene; An, Robert

    2016-01-01

    To evaluate the efficacy of a novel formulation of extended-release/immediate-release (ER) naproxen sodium over 24 h in a dental pain model. Two randomized, double-blind, placebo-controlled trials in moderate to severe pain after extraction of one or two impacted third molars (at least one partial mandibular bony impaction). Treatment comprised oral ER naproxen sodium 660 mg (single dose), placebo (both studies) or immediate-release (IR) naproxen sodium 220 mg tid (study 2). Primary efficacy endpoint: 24-h summed pain intensity difference (SPID). Secondary variables included total pain relief (TOTPAR), use of rescue medication. All treatment-emergent adverse events were recorded. NCT00720057 (study 1), NCT01389284 (study 2). Primary efficacy analyses: pain intensity was significantly lower over 24 h with ER naproxen sodium vs. placebo (p < 0.001), with significant relief from 15 min (study 2). In study 2, ER naproxen sodium was non-inferior to IR naproxen sodium, reducing pain intensity to a comparable extent over 24 h. TOTPAR was significantly greater with ER and IR naproxen sodium vs. placebo at all time points, with generally comparable differences between active treatments. Significantly more placebo patients required rescue medication vs. ER and IR naproxen sodium from 2-24 h post-dose. Once daily ER naproxen sodium was generally safe and well tolerated, with a similar safety profile to IR naproxen sodium tid. The studies were single dose, with limited ability to assess efficacy or safety of multiple doses over time. As the imputed pain score meant that estimated treatment differences may have been biased in favor of ER naproxen sodium, a post hoc analysis evaluated the robustness of the results for pain relief. A single dose of ER naproxen sodium 660 mg significantly reduced moderate to severe dental pain vs. placebo and was comparable to IR naproxen sodium 220 mg tid. Significant pain relief was experienced from 15 min and sustained

  18. Determination of physiochemical properties of palm oil methyl ester catalyzed by waste cockle shells

    NASA Astrophysics Data System (ADS)

    Nasir, Nurul Fitriah; Latif, Noradila Abdul; Bakar, Sharifah Adzila Syed Abu; Rahman, Mohd Nasrull Abdul; Selamat, Siti Norhidayah; Nasharudin, Nurul Nadirah

    2017-04-01

    Waste cockle shell can be used as a source of calcium oxide (CaO) in catalyzing a transesterification reaction to produce biodiesel or fatty acid methyl ester (FAME). This aim of this paper is to determine the physicochemical properties of (FAME) which utilize waste cockle shells in the transesterification reaction process. In this study, the catalyst was prepared using high temperature furnace (700°C) for 4 h. The molar ratio of methanol to oil was fixed at 9:1 and the reaction temperature and catalyst concentration were varied from 65 -70 °C, and 10-30 wt. %, respectively for transesterification reaction. The reaction time was also fixed at 3 h. The analyzed physicochemical properties were density, viscosity, flash point and net heat of combustion. The results obtained from the analysis found that reaction temperature 65°C with 30% of catalyst concentration has produced the physical properties of FAME that comply the biodiesel standards. The results suggest that reaction temperature and catalyst concentration have influence on the value of physicochemical properties of FAME produced.

  19. Utilization of rapeseed pellet from fatty acid methyl esters production as an energy source.

    PubMed

    Ciunel, Krzysztof; Klugmann-Radziemska, Ewa

    2014-01-01

    Rapeseed pellet - crushed seed residue from oil extraction is a by-product of fatty acid methyl esters production process. As other types of biomass, it can either be burned directly in furnaces or processed to increase its energetic value. Biomass is renewable, abundant and has domestic usage; the sources ofbiomass can help the world reduce its dependence on petroleum products, fossil coal and natural gas. Energetically effective utilization of rapeseed pellet could substantially improve the economic balance of an individual household in which biodiesel for fulfilling the producer's own energetic demand is obtained. In this article, the experimental results of combusting rapeseed pellet in a calorimeter, combustion in a boiler heater and the analysis of the emissions level of different pollutants in exhaust fumes during different stages of biomass boiler operation are presented. It has been proved that the pellet, a by-product of biodiesel production, is not only a valuable substitute of animal fodder, but also an excellent renewable and environmentally friendly energy source, viable for use in household tap water heating installations.

  20. Synergistic Skin Penetration Enhancer and Nanoemulsion Formulations Promote the Human Epidermal Permeation of Caffeine and Naproxen.

    PubMed

    Abd, Eman; Namjoshi, Sarika; Mohammed, Yousuf H; Roberts, Michael S; Grice, Jeffrey E

    2016-01-01

    We examined the extent of skin permeation enhancement of the hydrophilic drug caffeine and lipophilic drug naproxen applied in nanoemulsions incorporating skin penetration enhancers. Infinite doses of fully characterized oil-in-water nanoemulsions containing the skin penetration enhancers oleic acid or eucalyptol as oil phases and caffeine (3%) or naproxen (2%) were applied to human epidermal membranes in Franz diffusion cells, along with aqueous control solutions. Caffeine and naproxen fluxes were determined over 8 h. Solute solubility in the formulations and in the stratum corneum (SC), as well as the uptake of product components into the SC were measured. The nanoemulsions significantly enhanced the skin penetration of caffeine and naproxen, compared to aqueous control solutions. Caffeine maximum flux enhancement was associated with a synergistic increase in both caffeine SC solubility and skin diffusivity, whereas a formulation-increased solubility in the SC was the dominant determinant for increased naproxen fluxes. Enhancements in SC solubility were related to the uptake of the formulation excipients containing the active compounds into the SC. Enhanced skin penetration in these systems is largely driven by uptake of formulation excipients containing the active compounds into the SC with impacts on SC solubility and diffusivity.

  1. Experimental and theoretical studies of the molecular structure of 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl ester

    NASA Astrophysics Data System (ADS)

    Acar, Betül; Yilmaz, Ibrahim; Çalışkan, Nezihe; Cukurovali, Alaaddin

    2017-07-01

    In this work, the title molecule, 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl ester (C30H34N2O2S1), was synthesized and characterized by FT-IR spectroscopy and single crystal X-ray diffraction. The compound crystallizes in the triclinic space group P21/c. with Z = 4, a = 14.1988(6), b = 19.0893(5), c = 10.1325(4) Å, V = 2674.56(17) A3. The optimized structure parameters of the studied molecule was determined theoretically using HF/6-31G(d) and B3LYP/6-31G(d) methods for ground state, and compared with previously reported experimental findings. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental frequencies obtained by FT-IR spectra. The electronic properties, such as HOMO and LUMO energies, and molecular electrostatic potential (MEP) are also performed.

  2. The use of fatty acid methyl esters as biomarkers to determine aerobic, facultatively aerobic and anaerobic communities in wastewater treatment systems.

    PubMed

    Quezada, Maribel; Buitrón, Germán; Moreno-Andrade, Iván; Moreno, Gloria; López-Marín, Luz M

    2007-01-01

    The use of fatty acid methyl esters (FAME) as biomarkers to identify groups of microorganisms was studied. A database was constructed using previously published results that identify FAME biomarkers for aerobic, anaerobic and facultatively aerobic bacteria. FAME profiles obtained from pure cultures were utilized to confirm the predicted presence of biomarkers. Principal component analysis demonstrated that the FAME profiles can be used to determine the incidence of these bacterial groups. The presence of aerobic, anaerobic and facultatively aerobic bacteria in the communities, in four bioreactors being used to treat different wastewaters, was investigated by applying FAME biomarkers.

  3. Elucidation of the naproxen sodium adsorption onto activated carbon prepared from waste apricot: kinetic, equilibrium and thermodynamic characterization.

    PubMed

    Onal, Y; Akmil-Başar, C; Sarici-Ozdemir, C

    2007-09-30

    In this study, activated carbon (WA11Zn5) was prepared from waste apricot, which is waste in apricot plants in Malatya, by chemical activation with ZnCl(2). BET surface area of activated carbon is determined as 1060 m(2)/g. The ability of WA11Zn5, to remove naproxen sodium from effluent solutions by adsorption has been studied. Equilibrium isotherms for the adsorption of naproxen sodium on activated carbon were measured experimentally. Results were analyzed by the Langmiur, Freundlich equation using linearized correlation coefficient at 298 K. The characteristic parameters for each isotherm have been determined. Langmiur equation is found to best represent the equilibrium data for naproxen sodium-WA11Zn5 systems. The monolayer adsorption capacity of WA11Zn5 for naproxen sodium was found to be 106.38 mg/g at 298 K. The process was favorable and spontaneous. The kinetics of adsorption of naproxen sodium have been discussed using three kinetic models, i.e., the pseudo first-order model, the pseudo second-order model, the intraparticle diffusion model. Kinetic parameters and correlation coefficients were determined. It was shown that the pseudo second-order kinetic equation could describe the adsorption kinetics for naproxen sodium onto WA11Zn5. The thermodynamic parameters, such as DeltaG degrees , DeltaS degrees and DeltaH degrees, were calculated. The thermodynamics of naproxen sodium-WA11Zn5 system indicates endothermic process.

  4. Pharmacological Evaluation of Naproxen Metal Complexes on Antinociceptive, Anxiolytic, CNS Depressant, and Hypoglycemic Properties

    PubMed Central

    Das, Narhari; Abdur Rahman, S. M.

    2016-01-01

    Purpose. The present study was designed to investigate the antinociceptive, anxiolytic, CNS depressant, and hypoglycemic effects of the naproxen metal complexes. Methods. The antinociceptive activity was evaluated by acetic acid-induced writhing method and radiant heat tail-flick method while anxiolytic activity was evaluated by elevated plus maze model. The CNS depressant activity of naproxen metal complexes was assessed using phenobarbitone-induced sleeping time test and the hypoglycemic test was performed using oral glucose tolerance test. Results. Metal complexes significantly (P < 0.001) reduced the number of abdominal muscle contractions induced by 0.7% acetic acid solution in a dose dependent manner. At the dose of 25 mg/kg body weight p.o. copper, cobalt, and zinc complexes exhibited higher antinociceptive activity having 59.15%, 60.56%, and 57.75% of writhing inhibition, respectively, than the parent ligand naproxen (54.93%). In tail-flick test, at both doses of 25 and 50 mg/kg, the copper, cobalt, silver, and zinc complexes showed higher antinociceptive activity after 90 minutes than the parent drug naproxen. In elevated plus maze (EPM) model the cobalt and zinc complexes of naproxen showed significant anxiolytic effects in dose dependent manner, while the copper, cobalt, and zinc complexes showed significant CNS depressant and hypoglycemic activity. Conclusion. The present study demonstrated that copper, cobalt, and zinc complexes possess higher antinociceptive, anxiolytic, CNS depressant, and hypoglycemic properties than the parent ligand. PMID:27478435

  5. Arylhydrazone derivatives of naproxen as new analgesic and anti-inflammatory agents: Design, synthesis and molecular docking studies.

    PubMed

    Azizian, Homa; Mousavi, Zahra; Faraji, Hamidreza; Tajik, Mohammad; Bagherzadeh, Kowsar; Bayat, Peyman; Shafiee, Abbas; Almasirad, Ali

    2016-06-01

    A series of new arylidenehydrazone derivatives of naproxen were synthesized and evaluated for their analgesic and anti-inflammatory activities. Some of the synthesized analogues showed comparable activities when compared against naproxen for their analgesic and anti-inflammatory properties. 2-(6-methoxy-2-naphthyl)-N'-[(pyridine-4-yl)methylene]propanoic acid hydrazide 4j was found to be the most active analgesic agent. 2-(6-methoxy-2-naphthyl)-N'-[4-nitrobenzylidene]propanoic acid hydrazide 4g showed highest anti-inflammatory activity in comparison to the naproxen. Molecular modeling study of the synthesized compounds suggested that the designed molecules were well located and bound to the COX-1 and COX-2 active sites. Compound 4g showed the highest selectivity for COX-2 (RCOX-2/COX-1=1.94) and higher affinity rather than naproxen in COX-2 active site (RCOX-2/naproxen=1.28). Moreover, the structural analyses confirmed that the E-ap rotamer is the preferred structure for the arylidenehydrazone derivatives. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A Strategy for Nonmigrating Plasticized PVC Modified with Mannich base of Waste Cooking Oil Methyl Ester.

    PubMed

    Jia, Puyou; Zhang, Meng; Hu, Lihong; Song, Fei; Feng, Guodong; Zhou, Yonghong

    2018-01-25

    The waste cooking oil (WCO) production from the catering industry and food processing industry causes serious environmental, economic and social problems. However, WCO can be used for the preparation of fine chemicals such as internal plasticizer. With this aim, this work is focused on preparing internal plasticizer by using WCO and determining technical viability of non-migration poly (vinyl chloride) (PVC) materials. The mannich base of waste cooking oil methyl ester (WCOME) was synthesized from WCO via esterification, interesterification and mannich reaction, which was used to produce self-plasticization PVC materials as an internal plasticizer. The results showed that the PVC was plasticized effectively. Self-plasticization PVC films showed no migration in n-hexane, but 15.7% of dioctyl phthalate (DOP) leached from DOP/PVC(50/50) system into n-hexane. These findings transformed the traditional plastic processing technology and obtained cleaner production of no migration plasticizer from WCO.

  7. Fabrication of One-Dimensional Zigzag [6,6]-PhenylC61-Butyric Acid Methyl Ester Nanoribbons from Two-Dimensional Nanosheets (Open Access: Author’s Final)

    DTIC Science & Technology

    2015-09-18

    a derivative is the [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), a C60 fullerene with a chemically bonded functional group. The addition of the...functional group, on the other hand, decreases the fullerene symmetry and conse- quently affects its crystallization.8 Although growth of crystalline C60...possibility to tune the grown structures to different morphologies.8 One-dimensional fullerene (C60) struc- tures, namely, nanorods and nanoribbons, are of

  8. Comparison of the analgesic effects of oral tramadol and naproxen sodium on pain relief during IUD insertion.

    PubMed

    Karabayirli, Safinaz; Ayrim, Aylin Aker; Muslu, Bunyamin

    2012-01-01

    To compare the analgesic efficacy of oral tramadol and naproxen sodium on pain during insertion of an intrauterine device (IUD). Randomized, double-blinded, clinical trial (Canadian Task Force classification I). University-affiliated hospital. Single-center. One hundred three patients scheduled for insertion of an IUD. Patients were randomly assigned to receive oral tramadol 50 mg capsules (n = 35) or naproxen sodium 550 mg tablets (n = 34) or placebo (n = 34) 1 hour before insertion of the IUD. After insertion of the IUD, pain intensity was evaluated using a visual analog scale (VAS, 0-10). Adverse effects, patient satisfaction with the medication, and preference for using it during future insertions were also recorded. The VAS scores were significantly different during IUD insertion among the 3 groups (p = .001). Pain scores in the tramadol group were significantly lower than in the naproxen group (p = .003), and the scores in the naproxen group was significantly lower than in the control group (p = .001). Patient satisfaction with the medication and preference for its future use were significantly lower in the control group than in the other 2 groups (p = .001). Prophylactic analgesia using 50 mg tramadol and 550 mg naproxen, delivered orally, can be used to relieve pain during IUD insertion. However, tramadol capsules were found to be more effective than naproxen tablets. Copyright © 2012 AAGL. Published by Elsevier Inc. All rights reserved.

  9. The impact of cold storage and ethylene on volatile ester production and aroma perception in 'Hort16A' kiwifruit.

    PubMed

    Günther, Catrin S; Marsh, Ken B; Winz, Robert A; Harker, Roger F; Wohlers, Mark W; White, Anne; Goddard, Matthew R

    2015-02-15

    Fruit esters are regarded as key volatiles for fruit aroma. In this study, the effects of cold storage on volatile ester levels of 'Hort16A' (Actinidia chinensis Planch. var chinensis) kiwifruit were examined and the changes in aroma perception investigated. Cold storage (1.5°C) for two or four months of fruit matched for firmness and soluble solids concentration resulted in a significant reduction in aroma-related esters such as methyl/ethyl propanoate, methyl/ethyl butanoate and methyl/ethyl hexanoate. Levels of these esters, however, were restored by ethylene treatment (100ppm, 24h) before ripening. A sensory panel found that "tropical" and "fruit candy" aroma was stronger and "green" odour notes less intensively perceived in kiwifruit which were ethylene-treated after cold storage compared to untreated fruit. The key findings presented in this study may lead to further work on the ethylene pathway, and innovative storage and marketing solutions for current and novel fruit cultivars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effect of Naproxen Prophylaxis on Heterotopic Ossification Following Hip Arthroscopy: A Double-Blind Randomized Placebo-Controlled Trial.

    PubMed

    Beckmann, James T; Wylie, James D; Potter, Michael Q; Maak, Travis G; Greene, Thomas H; Aoki, Stephen K

    2015-12-16

    Heterotopic ossification (HO) is a known complication of hip arthroscopy. Our objective was to determine the effect of postoperative naproxen therapy on the development of HO following arthroscopic surgery for femoroacetabular impingement. Between August 2011 and April 2013, 108 eligible patients were enrolled and randomized to take naproxen or a placebo for three weeks postoperatively. Radiographs were made at routine follow-up visits for one year following surgery. The primary outcome measure was the development of HO, as classified with the Brooker criteria and two-dimensional measurements on radiographs made at least seventy-five days postoperatively (average, 322 days). The primary analysis, performed with a Fisher exact test, compared the proportion of subjects with HO between the treatment and control groups. A single a priori interim analysis was planned at the midpoint of the study. Our data safety and monitoring board stopped this study when the interim analysis showed that the stopping criterion had been met for demonstration of efficacy of the naproxen intervention. The prevalence of HO was 46% (twenty-two of the forty-eight in the final analysis) in the placebo group versus 4% (two of forty-eight) in the naproxen group (p < 0.001). Medication compliance was 69% overall, but it did not differ between the naproxen and placebo groups. Minor adverse reactions to the study medications were reported in 42% of the patients taking naproxen versus 35% of those taking the placebo (p = 0.45). In this trial, prophylaxis with naproxen was effective in reducing the prevalence of HO without medication-related morbidity. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  11. Sonodynamic action of pyropheophorbide-a methyl ester in liver cancer cells.

    PubMed

    Xu, Jing; Xia, Xinshu; Wang, Xinna; Xu, Chuanshan; Wang, Ping; Xiang, Junyan; Jiang, Yuan; Leung, Albert Wingnang

    2010-07-01

    This study aimed to investigate the sonodynamic action of pyropheophorbide-a methyl ester (MPPa) in liver cancer cells to explore a novel therapeutic modality. H22 cells were chosen as model cells to investigate the sonodynamic action of MPPa on liver cancer. The MPPa concentration was kept constant at 2 micromol/L, and the cells were subjected to ultrasound exposure at an intensity of 0.97 W/cm(2). Cytotoxicity was investigated 24 hours after ultrasound exposure. Apoptosis was evaluated using flow cytometry with annexin V-fluorescein isothiocyanate and propidium iodine staining and nuclear staining with Hoechst 33258. Reactive oxygen species (ROS) were analyzed using flow cytometry with 2,7-dichlorodihydrofluorescein diacetate staining. No significant dark cytotoxicity of MPPa was shown in the H22 cells at the concentration of 2 micromol/L. The cell death rate induced by ultrasound treatment was significantly higher in the presence of MPPa than in the absence of it (P < .05). Flow cytometry showed that the sonodynamic action of MPPa significantly increased the early and late apoptotic rates of the H22 cells. Nuclear condensation and an ROS increase were found after sonodynamic treatment. Our findings showed that MPPa-mediated sonodynamic action significantly enhanced death of H22 cells and the ROS level, suggesting that MPPa is a novel sonosensitizer and the sonodynamic action of MPPa might be a potential therapeutic modality in the management of liver cancer.

  12. Naproxen Sodium for Pain Control With Intrauterine Device Insertion: A Randomized Controlled Trial.

    PubMed

    Ngo, Lynn L; Braaten, Kari P; Eichen, Eva; Fortin, Jennifer; Maurer, Rie; Goldberg, Alisa B

    2016-12-01

    To evaluate whether 550 mg oral naproxen sodium given 1 hour before intrauterine device (IUD) insertion is effective for pain relief as compared with placebo. This was a randomized, double-blind, placebo-controlled trial. The primary outcome was pain with IUD insertion measured on a 100-mm visual analog scale (VAS). Our sample size was calculated to detect a 15-mm difference in VAS scores with 80% power (α=0.05). Secondary outcomes included pain with tenaculum placement, uterine sounding, and 5 and 15 minutes postinsertion. A total of 118 women were enrolled and analyzed (58 in the naproxen sodium arm, 60 in the placebo arm, 97% nulliparous) between May 11, 2015, and March 25, 2016. There were no differences in baseline demographics or reproductive characteristics between arms. There were no differences in median VAS pain scores for the primary outcome of pain with IUD insertion between the naproxen sodium arm compared with the placebo arm (69 compared with 66 mm, P=.89). There were no differences in the secondary outcomes of median VAS pain scores with tenaculum placement (37 compared with 32 mm, P=.97) or uterine sounding (60 compared with 58 mm, P=.66). However, median pain scores postprocedure were lower in the naproxen arm as compared with the placebo arm: 17 compared with 26 mm (P=.01) at 5 minutes and 13 compared with 24 mm (P=.01) at 15 minutes postinsertion. Oral naproxen sodium does not reduce pain with IUD insertion but does reduce pain after insertion and should be considered as a premedication. ClinicalTrials.gov, http://clinicaltrials.gov, NCT02388191.

  13. Distinct enantiomeric signals of ibuprofen and naproxen in treated wastewater and sewer overflow.

    PubMed

    Khan, Stuart J; Wang, Lili; Hashim, Nor H; McDonald, James A

    2014-11-01

    Ibuprofen and naproxen are commonly used members of a class of pharmaceuticals known as 2-arylpropionic acids (2-APAs). Both are chiral chemicals and can exist as either of two (R)- and (S)-enantiomers. Enantioselective analyses of effluents from municipal wastewater treatment plants (WWTPs) and from untreated sewage overflow reveal distinctly different enantiomeric fractions for both pharmaceuticals. The (S)-enantiomers of both were dominant in untreated sewage overflow, but the relative proportions of the (R)-enantiomers were shown to be increased in WWTP effluents. (R)-naproxen was below method detection limits (<1 ng.L(-1)) in sewage overflow, but measurable at higher concentrations in WWTP effluents. Accordingly, enantiomeric fractions (EF) for naproxen were consistently 1.0 in sewage overflow, but ranged from 0.7–0.9 in WWTP effluents. Ibuprofen EF ranged from 0.6–0.8 in sewage overflow and receiving waters, and was 0.5 in two WWTP effluents. Strong evidence is provided to indicate that chiral inversion of (S)-2-APAs to produce (R)-2-APAs may occur during wastewater treatment processes. It is concluded that this characterization of the enantiomeric fractions for ibuprofen and naproxen in particular effluents could facilitate the distinction of treated and untreated sources of pharmaceutical contamination in surface waters.

  14. Removal of acetaminophen and naproxen by combined coagulation and adsorption using biochar: influence of combined sewer overflow components.

    PubMed

    Jung, Chanil; Oh, Jeill; Yoon, Yeomin

    2015-07-01

    The combined coagulation and adsorption of targeted acetaminophen and naproxen using activated biochar and aluminum sulfate were studied under various synthetic "combined sewer overflow" (CSO) conditions. The biochar demonstrated better adsorption performance for both acetaminophen and naproxen (removal, 94.1 and 97.7%, respectively) than that of commercially available powdered activated carbon (removal, 81.6 and 94.1%, respectively) due to superior carbonaceous structure and surface properties examined by nuclear magnetic resonance analysis. The adsorption of naproxen was more favorable, occupying active adsorption sites on the adsorbents by naproxen due to its higher adsorption affinity compared to acetaminophen. Three classified CSO components (i.e., representing hydrophobic organics, hydrophilic organics, and inorganics) played different roles in the adsorption of both adsorbates, resulted in inhibition by humic acid complexation or metal ligands and negative electrostatic repulsion under adsorption and coagulation combined system. Adsorption alone with biochar was determined to be the most effective adsorptive condition for the removal of both acetaminophen and naproxen under various CSO conditions, while both coagulation alone and combined adsorption and coagulation failed to remove the acetaminophen and naproxen adequately due to an increase in ionic strength in the presence of spiked aluminum species derived from the coagulant.

  15. New antiinflammatory sucrose esters in the natural sticky coating of tomatillo (Physalis philadelphica), an important culinary fruit.

    PubMed

    Zhang, Chuan-Rui; Khan, Wajid; Bakht, Jehan; Nair, Muraleedharan G

    2016-04-01

    Tomatillo is a popular culinary fruit. The sticky material on its surface, consumed as part of the fruit, has never been investigated. Chemical characterization of sticky material on tomatillo fruits yielded five new sucrose esters, as confirmed by spectroscopic methods. The solvent extract of the sticky material from the whole fresh fruit and pure isolates showed antiinflammatory activity as confirmed by in vitro cyclooxygenase enzymes inhibitory assays. Five sucrose esters isolated at 100 μg/mL (153.8, 138.8, 136.2, 141.6 and 138.8 μM, respectively) inhibited cyclooxygenase-1 and -2 enzymes by 50%. The cyclooxygenase enzyme inhibitory activity of extract and isolates at 100 μg/mL was similar to non-steroidal antiinflammatory drugs aspirin, ibuprofen and naproxen, used as positive controls in the assay at 108, 12 and 15 μg/mL (600, 60 and 60 μM), respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 40 CFR 721.10273 - 3′H-Cyclopropa[7,22][5,6]fullerene-C70-D5h(6)-3′-butanoic acid, 3′-phenyl-, methyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10273 3′H-Cyclopropa[7,22][5,6]fullerene-C70-D5h(6)-3′-butanoic acid, 3′-phenyl-, methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as 3′H-Cyclopropa[7,22][5,6...

  17. 40 CFR 721.10272 - 3′H-Cyclopropa[8,25][5,6]fullerene-C70-D5h(6)-3′-butanoic acid, 3′-phenyl-,methyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10272 3′H-Cyclopropa[8,25][5,6]fullerene-C70-D5h(6)-3′-butanoic acid, 3′-phenyl-,methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as 3′H-Cyclopropa[8,25][5,6...

  18. 40 CFR 721.10272 - 3′H-Cyclopropa[8,25][5,6]fullerene-C70-D5h(6)-3′-butanoic acid, 3′-phenyl-,methyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10272 3′H-Cyclopropa[8,25][5,6]fullerene-C70-D5h(6)-3′-butanoic acid, 3′-phenyl-,methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as 3′H-Cyclopropa[8,25][5,6...

  19. 40 CFR 721.10273 - 3′H-Cyclopropa[7,22][5,6]fullerene-C70-D5h(6)-3′-butanoic acid, 3′-phenyl-, methyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10273 3′H-Cyclopropa[7,22][5,6]fullerene-C70-D5h(6)-3′-butanoic acid, 3′-phenyl-, methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as 3′H-Cyclopropa[7,22][5,6...

  20. Photodynamic therapy with pyropheophorbide-a methyl ester in human lung carcinoma cancer cell: efficacy, localization and apoptosis.

    PubMed

    Sun, X; Leung, W N

    2002-06-01

    Pyropheophorbide-a methyl ester (MPPa) is a semisynthetic photosensitizer derived from chlorophyll a. The absorption peak of MPPa in organic solvent and in cells was at 667 and 674 nm, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay showed that MPPa had no dark cytotoxicity. In vitro photodynamic activity was extensively evaluated using a human lung carcinoma cancer cell line (NCI-h446). MPPa exhibited no genotoxicity, as assayed by single-cell gel electrophoresis. Using confocal laser scanning microscopy and organelle-specific fluorescent probes, MPPa was found to localize in the intracellular membrane system, namely the endoplasmic reticulum, Golgi apparatus, lysosomes and mitochondria, in the NCI-h446 cells. Furthermore, nuclear staining and DNA gel electrophoresis revealed that DNA condensation and fragmentation occurred post-photodynamic therapy, indicating the cell death was in the apoptotic mode.

  1. Experimental and modeling study of the thermal decomposition of methyl decanoate

    PubMed Central

    Herbinet, Olivier; Glaude, Pierre-Alexandre; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The experimental study of the thermal decomposition of methyl decanoate was performed in a jet-stirred reactor at temperatures ranging from 773 to 1123 K, at residence times between 1 and 4 s, at a pressure of 800 Torr (106.6 kPa) and at high dilution in helium (fuel inlet mole fraction of 0.0218). Species leaving the reactor were analyzed by gas chromatography. Main reaction products were hydrogen, carbon oxides, small hydrocarbons from C1 to C3, large 1-olefins from 1-butene to 1-nonene, and unsaturated esters with one double bond at the end of the alkyl chain from methyl-2-propenoate to methyl-8-nonenoate. At the highest temperatures, the formation of polyunsaturated species was observed: 1,3-butadiene, 1,3-cyclopentadiene, benzene, toluene, indene, and naphthalene. These results were compared with previous ones about the pyrolysis of n-dodecane, an n-alkane of similar size. The reactivity of both molecules was found to be very close. The alkane produces more olefins while the ester yields unsaturated oxygenated compounds. A detailed kinetic model for the thermal decomposition of methyl decanoate has been generated using the version of software EXGAS which was updated to take into account the specific chemistry involved in the oxidation of methyl esters. This model contains 324 species and 3231 reactions. It provided a very good prediction of the experimental data obtained in jet-stirred reactor. The formation of the major products was analyzed. The kinetic analysis showed that the retro-ene reactions of intermediate unsaturated methyl esters are of importance in low reactivity systems. PMID:23710078

  2. Indomethacin-5-fluorouracil-methyl ester dry emulsion: a potential oral delivery system for 5-fluorouracil.

    PubMed

    Wang, Jing; Hu, Yanchen; Li, Ling; Jiang, Tongying; Wang, Siling; Mo, Fengkui

    2010-06-01

    To produce a combined effect of indomethacin (IDM) and 5-fluorouracil (5FU) for cancer therapy, the side effects of IDM on the gastrointestinal (GI) tract were reduced and the oral adsorption of 5FU was improved. Indomethacin-5-fluorouracil-methyl ester (IFM) dry emulsion was prepared and evaluated as a potential oral delivery system for 5FU. IFM was synthesized by formation of an ester between IDM and 5FU intermediate and then characterized by structure, melting point, solubility, apparent partition coefficient, and incubation with GI tract contents and plasma. Gum acacia and sodium carboxymethyl cellulose (CMC-Na) were applied as the adsorbent and solid carrier to prepare IFM dry emulsion. IFM dry emulsion was then characterized by reconstitution in water and in situ intestinal perfusion experiment. Physicochemical properties of the new synthesized compound confirmed the formation of IFM. Incubation of IFM in the contents of the GI tract and plasma revealed that IFM was not relatively stable in GI contents during the time period of transit through the GI tract, whereas it was very unstable in plasma and released 5FU rapidly. The IFM dry emulsion could be easily reconstituted in water, and the mean particle size was 2.416 microm. The absorption rate constant (K) for IFM with concentration of 2, 5, and 10 microg/mL in the in situ perfusion experiment were 0.473, 0.423, and 0.433/h, respectively, demonstrating passive diffusion of IFM across the biological membranes. This study indicates that the IFM dry emulsion may represent a potentially useful oral delivery system for 5FU.

  3. Pharmacokinetic profile of extended-release versus immediate-release oral naproxen sodium after single and multiple dosing under fed and fasting conditions: two randomized, open-label trials.

    PubMed

    Laurora, Irene; Wang, Yuan

    2016-10-01

    Extended-release (ER) naproxen sodium provides pain relief for up to 24 hours with a single dose (660 mg/day). Its pharmacokinetic profile after single and multiple dosing was compared to immediate release (IR) naproxen sodium in two randomized, open-label, crossover studies, under fasting and fed conditions. Eligible healthy subjects were randomized to ER naproxen sodium 660-mg tablet once daily or IR naproxen sodium 220-mg tablet twice daily (440 mg initially, followed by 220 mg 12 hours later). Primary variables: pharmacokinetic parameters after singleday administration (day 1) and at steady state after multiple-day administration (day 6). Total exposure was comparable for both treatments under fasting and fed conditions. After fasting: peak naproxen concentrations were slightly lower with ER naproxen sodium than with IR naproxen sodium but were reached at a similar time. Fed conditions: mean peak concentrations were comparable but reached after a longer time with ER vs. IR naproxen sodium. ER naproxen sodium was well tolerated, with a similar safety profile to IR naproxen sodium. The total exposure of ER naproxen sodium (660 mg) is comparable to IR naproxen sodium (220 mg) when administered at the maximum over the counter (OTC) dose of 660-mg daily dose on a single day and over multiple days. The rate of absorption is delayed under fed conditions.

  4. Carbodithioic acid esters of fluoxetine, a novel class of dual-function spermicides.

    PubMed

    Kiran Kumar, S T V S; Kumar, Lalit; Sharma, Vishnu L; Jain, Ashish; Jain, Rajeev K; Maikhuri, Jagdamba P; Kumar, Manish; Shukla, Praveen K; Gupta, Gopal

    2008-10-01

    Carbodithioic acid esters of fluoxetine have been prepared by replacing the methylamino function in aminopropane chain with carbodithioic acid ester group and by adding various S-2-hydroxypropyl ester of dialkyl carbodithioic acid at 3-methylamino group. Some of these compounds showed spermicidal, antifungal and anti-Trichomonas activities. The study revealed that incorporation of carbodithioic acid residue directly into fluoxetine structure leads to compounds with better antifungal and anti-Trichomonas activities, and N-methyl-[3-phenyl-3-(4-trifluoromethyl-phenoxy)-propyl]carbodithioic acid S-(2-pyrrolidino-ethyl) ester (14) has shown better profile than both fluoxetine and nonoxynol-9. Further lead optimization may yield a potent dual-function spermicide.

  5. Enhancement effect on the chemiluminescence of acridinium esters under neutral conditions.

    PubMed

    Nakazono, Manabu; Nanbu, Shinkoh

    2018-03-01

    Enhancement effect on the chemiluminescence of acridinium ester derivatives under neutral conditions was investigated. Additions of phenols did not enhance the chemiluminescence intensities of acridinium ester derivatives in the presence of horseradish peroxidase and hydrogen peroxide. Additions of cetyltrimethylammonium bromide apparently enhanced the chemiluminescence intensities of phenyl 10-methyl-10λ 4 -acridine-9-carboxylate derivatives with electron-withdrawing groups at the 4-position of the phenyl group. In particular, the chemiluminescence intensity of 4-(trifluoromethyl)phenyl 10-methyl-10λ 4 -acridine-9-carboxylate trifluoromethanesulfonate salt was 5.5 times stronger in the presence of cetyltrimethylammonium bromide than in its absence at pH 7. The chemiluminescence intensity of 3,4-dicyano-phenyl 10-methyl-10λ 4 -acridine-9-carboxylate trifluoromethanesulfonate salt was 46 times stronger in the presence of cetyltrimethylammonium bromide at pH 7 than in its absence at pH 10. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Naproxen Microparticulate Systems Prepared Using In Situ Crystallisation and Freeze-Drying Techniques.

    PubMed

    Solaiman, Amanda; Tatari, Adam Keenan; Elkordy, Amal Ali

    2017-07-01

    Poor drug solubility and dissolution rate remain to be one of the major problems facing pharmaceutical scientists, with approximately 40% of drugs in the industry categorised as practically insoluble or poorly water soluble. This in turn can lead to serious delivery challenges and poor bioavailability. The aim of this research was to investigate the effects of the surfactants, poloxamer 407 (P407) and caprol® PGE 860 (CAP), at various concentrations (0.1, 0.5, 1 and 3% w/v) on the enhancement of the dissolution properties of poorly water-soluble drug, naproxen, using in situ micronisation by solvent change method and freeze-drying. The extent at which freeze-drying influences the dissolution rate of naproxen microcrystals is investigated in this study by comparison with desiccant-drying. All formulations were evaluated and characterised using particle size analysis and morphology, in vitro dissolution studies, differential scanning calorimetry (DSC), and Fourier transform infra-red (FT-IR) spectroscopy. An increase in poloxamer 407 concentration in freeze-dried formulations led to enhancement of drug dissolution compared to desiccator-dried formulations, naproxen/caprol® PGE 860 formulations and untreated drug. DSC and FT-IR results show no significant chemical interactions between drug and poloxamer 407, with only very small changes to drug crystallinity. On the other hand, caprol® PGE 860 showed some interactions with drug components, alterations to the crystal lattice of naproxen, and poor dissolution profiles using both drying methods, making it a poor choice of excipient.

  7. Polycyclic aromatic hydrocarbon removal from contaminated soils using fatty acid methyl esters.

    PubMed

    Gong, Zongqiang; Wang, Xiaoguang; Tu, Ying; Wu, Jinbao; Sun, Yifei; Li, Peng

    2010-03-01

    In this study, solubilization of PAHs from a manufactured gas plant (MGP) soil and two artificially spiked soils using fatty acid methyl esters (FAME) was investigated. PAH removals from both the MGP and the spiked soils by FAME, methanol, soybean oil, hydroxypropyl-beta-cyclodextrin, Triton X-100, and Tween 80 were compared. The effect of FAME:MGP soil ratios on PAH removals was also investigated. Results showed that the FAME mixture synthesized by our lab was more efficient than the cyclodextrin and the two surfactants used for PAH removal from the spiked soils with individual PAH concentrations of 200 and 400 mg kg(-1). However, the difference among three PAH removals by the FAME, soybean oil and methanol was not quite pronounced. The FAME synthesized and market biodiesel exhibited better performance for PAH removals (46% and 35% of total PAH) from the weathered contaminated MGP soil when compared with the other agents (0-31%). Individual PAH removals from the weathered MGP soil were much lower than those from the spiked soils. The percentages of total PAH removals from the MGP soil were 59%, 46%, and 51% for the FAME:MGP soil ratios of 1:2, 1:1, and 2:1, respectively. These results showed that the FAME could be a more attractive alternative to conventional surfactants in ex situ washing of PAH-contaminated soils. 2010 Elsevier Ltd. All rights reserved.

  8. Environmental effect of antioxidant additives on exhaust emission reduction in compression ignition engine fuelled with Annona methyl ester.

    PubMed

    Senthil, R; Silambarasan, R

    2015-01-01

    The aim of the present study is to analyse the effect of antioxidant l-ascorbic acid on engine performance and emissions of a diesel engine fuelled with methyl ester of Annona oil (MEAO). The antioxidant is mixed in various concentrations (100-400 mg) with MEAO. Result shows that the antioxidant additive mixture (MEAO+LA200) is effective in control of nitrogen oxides (NOx) and hydrocarbon (HC) emission of MEAO-fuelled engine without doing any engine modification. In this study by using MEAO, the NOx emission is reduced by about 23.38% at full load while compared with neat diesel fuel. Likewise there is a reduction in carbon monoxide, smoke, and HC by about 48%, 28.57% and 29.71% at full load condition compared with neat diesel fuel.

  9. Enthalpies of Dissolution of Crystalline Naproxen Sodium in Water and Potassium Hydroxide Aqueous Solutions at 298 K

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Bychkova, S. A.; Volkov, A. V.; Skvortsov, I. A.

    2018-03-01

    The enthalpies of dissolution of crystalline naproxen sodium in water and aqueous solutions of KOH at 298.15 K are measured by direct calorimetric means in a wide range of concentrations. The acid-base properties of naproxen sodium at ionic strength I 0 and I = 0.1 (KNO3) and a temperature of 298.15 K are studied by spectrophotometric means. The concentration and thermodynamic dissociation constants are determined. The standard enthalpies of the formation of naproxen sodium and the products of its dissociation in aqueous solution are calculated.

  10. Ester carbonyl vibration as a sensitive probe of protein local electric field.

    PubMed

    Pazos, Ileana M; Ghosh, Ayanjeet; Tucker, Matthew J; Gai, Feng

    2014-06-10

    The ability to quantify the local electrostatic environment of proteins and protein/peptide assemblies is key to gaining a microscopic understanding of many biological interactions and processes. Herein, we show that the ester carbonyl stretching vibration of two non-natural amino acids, L-aspartic acid 4-methyl ester and L-glutamic acid 5-methyl ester, is a convenient and sensitive probe in this regard, since its frequency correlates linearly with the local electrostatic field for both hydrogen-bonding and non-hydrogen-bonding environments. We expect that the resultant frequency-electric-field map will find use in various applications. Furthermore, we show that, when situated in a non-hydrogen-bonding environment, this probe can also be used to measure the local dielectric constant (ε). For example, its application to amyloid fibrils formed by Aβ(16-22) revealed that the interior of such β-sheet assemblies has an ε value of approximately 5.6. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Soluble lipase-catalyzed synthesis of methyl esters using a blend of edible and nonedible raw materials.

    PubMed

    Wancura, João H C; Rosset, Daniela V; Brondani, Michel; Mazutti, Marcio A; Oliveira, J Vladimir; Tres, Marcus V; Jahn, Sérgio L

    2018-04-26

    This work investigates the use of blends of edible and nonedible raw materials as an alternative feedstock to fatty acid methyl esters (FAME) production through enzymatic catalysis. As biocatalyst, liquid lipase from Thermomyces lanuginosus (Callera™ Trans L), was used. Under reaction conditions of 35 °C, methanol to feedstock molar ratio of 4.5:1 and 1.45% of catalyst load, the best process performance was reached using 9% of water concentration in the medium-yield of 79.9% after 480 min of reaction. In terms of use of tallow mixed with soybean oil, the best yield was obtained when 100% of tallow was used in the process-84.6% after 480 min of reaction-behavior that was associated with the degree of unsaturation of the feedstock, something by that time, not addressed in papers of the area. The results show that tallow can be used as an alternative to FAME production, catalyzed by soluble lipase.

  12. Comparison of GC stationary phases for the separation of fatty acid methyl esters in biodiesel fuels.

    PubMed

    Goding, Julian C; Ragon, Dorisanne Y; O'Connor, Jack B; Boehm, Sarah J; Hupp, Amber M

    2013-07-01

    The fatty acid methyl ester (FAME) content of biodiesel fuels has traditionally been determined using gas chromatography with a polar stationary phase. In this study, a direct comparison of the separation of FAMEs present in various biodiesel samples on three polar stationary phases and one moderately polar stationary phase (with comparable column dimensions) was performed. Retention on each column was based on solubility in and polarity of the phase. Quantitative metrics describing the resolution of important FAME pairs indicate high resolution on all polar columns, yet the best resolution, particularly of geometric isomers, is achieved on the cyanopropyl column. In addition, the separation of four C18 monounsaturated isomers was optimized and the elution order determined on each column. FAME composition of various biodiesel fuel types was determined on each column to illustrate (1) chemical differences in biodiesels produced from different feedstocks and (2) chemical similarities in biodiesels of the same feedstock type produced in different locations and harvest seasons.

  13. Quantification and characterisation of fatty acid methyl esters in microalgae: Comparison of pretreatment and purification methods.

    PubMed

    Lage, Sandra; Gentili, Francesco G

    2018-06-01

    A systematic qualitative and quantitative analysis of fatty acid methyl esters (FAMEs) is crucial for microalgae species selection for biodiesel production. The aim of this study is to identify the best method to assess microalgae FAMEs composition and content. A single-step method, was tested with and without purification steps-that is, separation of lipid classes by thin-layer chromatography (TLC) or solid-phase extraction (SPE). The efficiency of a direct transesterification method was also evaluated. Additionally, the yield of the FAMEs and the profiles of the microalgae samples with different pretreatments (boiled in isopropanol, freezing, oven-dried and freeze-dried) were compared. The application of a purification step after lipid extraction proved to be essential for an accurate FAMEs characterisation. The purification methods, which included TLC and SPE, provided superior results compared to not purifying the samples. Freeze-dried microalgae produced the lowest FAMEs yield. However, FAMEs profiles were generally equivalent among the pretreatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Equivalent chain lengths of all C4-C23 saturated monomethyl branched fatty acid methyl esters on methylsilicone OV-1 stationary phase.

    PubMed

    Kubinec, Róbert; Blaško, Jaroslav; Górová, Renáta; Addová, Gabriela; Ostrovský, Ivan; Amann, Anton; Soják, Ladislav

    2011-04-01

    Isomer mixtures of monomethyl branched saturated C7-C23 fatty acid methyl esters (FAME) were prepared by performing a methylene insertion reaction to the straight chain FAME and this study model was completed by using commercially available standards of C4-C7 FAME. The equivalent chain lengths (ECL) of all 220 C4-C23 monomethyl branched FAME on OV-1 stationary phase were measured, achieving an average repeatability of ±0.0004 ECL units. The monomethyl branched FAME was identified by GC on the basis of regularity of the fractional chain lengths (FCL) dependence on the number of carbon atoms (C(z)) of individual homologous series of methyl 2-, 3-, …, 21-FAME. The prediction of retention of the first homologues, having the new position of methyl group beginning at higher carbon atoms number, and analogously for the second, third, fourth, and other members of the homologous series, allowed the dependence FCL=f(C(z)) for the first and subsequent members of beginning homologous of monomethyl derivatives of FAME. The identification was confirmed by mass spectrometry. All of the methyl isomers of FAME, which could not be completely separated by gas chromatography due to having a methyl group in surroundings of the middle of the carbon chain, were resolved by mass spectrometry using deconvolution in a SIM-mode. Measured gas chromatographic and mass spectrometric data were applied for identification of the monomethyl branched saturated FAME in tongue coating. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Studying of crystal growth and overall crystallization of naproxen from binary mixtures.

    PubMed

    Kaminska, E; Madejczyk, O; Tarnacka, M; Jurkiewicz, K; Kaminski, K; Paluch, M

    2017-04-01

    Broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC) were applied to investigate the molecular dynamics and phase transitions in binary mixtures composed of naproxen (NAP) and acetylated saccharides: maltose (acMAL) and sucrose (acSUC). Moreover, the application of BDS method and optical microscopy enabled us to study both crystallization kinetics and crystal growth of naproxen from the solid dispersions with the highest content of modified carbohydrates (1:5wt ratio). It was found that the activation barriers of crystallization estimated from dielectric measurements are completely different for both studied herein mixtures. Much higher E a (=205kJ/mol) was obtained for NAP-acMAL solid dispersion. It is probably due to simultaneous crystallization of both components of the mixture. On the other hand, lower value of E a in the case of NAP-acSUC solid dispersion (81kJ/mol) indicated, that naproxen is the only crystallizing compound. This hypothesis was confirmed by X-ray diffraction studies. We also suggested that specific intermolecular dipole-dipole interactions between active substance and excipient may be an alternative explanation for the difference between activation barrier obtained for NAP-acMAL and NAP-acSUC binary mixtures. Furthermore, optical measurements showed that the activation energy for crystal growth of naproxen increases in binary mixtures. They also revealed that both excipients: acMAL and acSUC move the temperature of the maximum of crystal growth towards lower temperatures. Interestingly, this maximum occurs for nearly the same structural relaxation time, which is a good approximation of viscosity, for all samples. Finally, it was also noticed that although naproxen crystallizes to the same polymorphic form in both systems, there are some differences in morphology of obtained crystals. Thus, the observed behavior may have a significant impact on the bioavailability and dissolution rate of API produced in that way

  16. Critical aggregates concentration of fatty esters present in biodiesel determined by turbidity and fluorescence.

    PubMed

    Froehner, Sandro; Sánez, Juan; Dombroski, Luiz Fernando; Gracioto, Maria Paula

    2017-09-01

    Biodiesel for combustible engine is available as mixture of fossil diesel and fatty esters obtained by transesterification of vegetable oils. The use of biodiesel reduces the amount of SO x , mainly. However, it was already observed that biodiesel has a different behavior in environment in cases of accidental spill and groundwater contamination. It was noticed that the biodegradation of hydrocarbons (cyclic and aliphatic) in the presence of biodiesel are speeded, although the mechanism is still unclear. Considering the chemical structure of fatty esters, it was investigated the formation of aggregates in water solution by fatty esters present in commercial biodiesel. In Brazil, biodiesel is composed by 95% of fossil diesel and 5% of fatty esters mixture. In this work, fatty esters were treated as neutral surfactant, i.e., it was treated as a molecule with polar and non-polar part. Turbidity and fluorescence were used to determine the critical aggregates concentration (CAC). Water solutions containing fatty esters were examined exploiting changes in turbidity and fluorescence intensity of pyrene. Abrupt changes were attributed to aggregates formation, following the same behavior of traditional amphiphilic compounds. It was determined the CAC for ethyl palmitate, ethyl stearate, ethyl oleate, and ethyl linoleate. The values of CAC for fatty esters varied from 1.91 to 4.27 μmol/L, while CAC for the mixture of esters (biodiesel) was 2.01 for methyl esters and 1.19 for ethyl esters, both prepared using soybean oil. The aggregates formation was also determined by fluorescence measurements considering the changes in intensity of peaks I and III of pyrene. Pyrene senses the changes in environment polarity. The values found of CAC by fluorescence for individual ethyl esters varied from 1.85 to 3.21 μmol/L, while mixtures of ethyl esters was 2.23 and 2.07 μmol/L for mixture of methyl esters. The results clearly showed that fatty esters form aggregates and might be

  17. In vitro antifungal activity of fatty acid methyl esters of the seeds of Annona cornifolia A.St.-Hil. (Annonaceae) against pathogenic fungus Paracoccidioides brasiliensis.

    PubMed

    Lima, Luciana Alves Rodrigues dos Santos; Johann, Susana; Cisalpino, Patrícia Silva; Pimenta, Lúcia Pinheiro Santos; Boaventura, Maria Amélia Diamantino

    2011-01-01

    Fatty acids are abundant in vegetable oils. They are known to have antibacterial and antifungal properties. Antifungal susceptibility was evaluated by broth microdilution assay following CLSI (formerly the NCCLS) guidelines against 16 fungal strains of clinical interest. In this work, fatty acid methyl esters (FAME) was able to inhibit 12 clinical strains of the pathogenic fungus Paracoccidioides brasiliensis and were also active in the bioautographic assay against Cladosporium sphaerospermum. FAME was a more potent antifungal than trimethoprim-sulfamethoxazole against P. brasiliensis under the experimental conditions tested.

  18. Oxidizing action of purine N-oxide esters.

    PubMed

    Stöhrer, G; Salemnick, G

    1975-01-01

    A technique involving O-acetylation of purine N-oxide derivatives in buffered aqueous solutions has permitted studies of the reactivity of many compounds for which the O-acetyl derivatives are not otherwise available. The oxidizing properties of a variety of N-acetoxypurines have been measured through their ability to oxidize iodide ion ot iodine, a reaction which is representative of a more general oxidizing ability. Those esters that oxidize iodide ion also catalyze the autoxidation of sulfite, a property characteristic of radicals. The same esters also oxidize cysteine to cysteic acid and tryptophan, tyrosine, and uric acid to yet uncharacterized products. Their oxidizing reactivity was compared with the ability of the same esters to react as electrophiles in another assay that measured the rate of formation of pyridine substitution products. The sulfate ester of 3-hydroxyxanthine has been synthesized. Its reactivity is qualitatively the same as that of 3-acetoxyxanthine but proceeds at a higher rate. Syntheses of S-(8-xanthyl)-N-acetylcysteine, 8-(2-hydroxyethylthio)xanthine, and 1-methyl-8-mehtylmercaptoguanine are also described.

  19. Glucuronoyl esterases are active on polymeric substrate, methyl esterified glucuronoxylan

    USDA-ARS?s Scientific Manuscript database

    Alkali extracted beechwood glucuronoxylan methyl ester prepared by esterification of 4-O-methyl-D-glucuronic acid side residues by methanol was found to serve as substrate of microbial glucuronoyl esterases from Ruminococcus flavefaciens, Schizophyllum commune and Trichoderma reesei. The enzymatic d...

  20. Effect of anthocyanins on expression of matrix metalloproteinase-2 in naproxen-induced gastric ulcers.

    PubMed

    Kim, Sun-Joong; Park, Young Sam; Paik, Hyun-Dong; Chang, Hyo Ihl

    2011-12-01

    Non-steroidal anti-inflammatory drugs cause gastric ulceration through a number of mechanisms including inhibition of PG synthesis, generation of reactive oxygen species (ROS) and induction of apoptosis. Recently, matrix metalloproteinases (MMP) have been suggested to play a crucial role in these mechanisms. The present study investigated the protective effect of anthocyanins isolated from black rice bran (Heugjinjubyeo) against naproxen-induced gastric mucosal injury in rats. The oral administration of anthocyanins (5, 25 or 50 mg/kg body weight) showed significant protection against naproxen (80 mg/kg body weight)-induced gastric ulcer and inhibited lipid peroxidation in the gastric mucosa. In addition, pretreatment with anthocyanins resulted in a significant increase in the activities of radical-scavenging enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Also biochemical and zymographic analyses suggested that the administration of anthocyanins gives a significant protection against naproxen-induced gastric antral ulcer through scavenging ROS and regulation of matrix metalloproteinase-2 (MMP-2) activity. The results of intracellular radical activation show that anthocyanins suppress the generation of intracellular ROS and attenuate the suppression of MMP-2 activity by naproxen. These results suggest that anthocyanins extracted from black rice may offer potential remedy of gastric antral ulceration.

  1. Analysis of acute naproxen administration on memory in young adults: A randomized, double-blind, placebo-controlled study.

    PubMed

    Wilson, Jack H; Criss, Amy H; Spangler, Sean A; Walukevich, Katherine; Hewett, Sandra

    2017-10-01

    Nonsteroidal anti-inflammatory drugs work by non-selectively inhibiting cyclooxygenase enzymes. Evidence indicates that metabolites of the cyclooxygenase pathway play a critical role in the process of learning and memory. We evaluated whether acute naproxen treatment impairs short-term working memory, episodic memory, or semantic memory in a young, healthy adult population. Participants received a single dose of placebo or naproxen (750 mg) in random order separated by 7-10 days. Two hours following administration, participants completed five memory tasks. The administration of acute high-dose naproxen had no effect on memory in healthy young adults.

  2. Improving the drug release of Naproxen Sodium tablets by preparing granules and tablets with a preferred mixing ratio of hydrates.

    PubMed

    Bär, David; Debus, Heiko; Grune, Christian; Tosch, Stephan; Fischer, Wolfgang; Mäder, Karsten; Imming, Peter

    2017-12-01

    Naproxen is a typical and well-known analgesic classified as non-steroidal anti-inflammatory drug (NSAID) and is commercialized as tablets or liquid-filled capsules. Naproxen is typically used asa sodium salt because of its better processability compared to Naproxen free acid. This entails hygroscopicity and gives rise to the existence of four different hydrates, which show polymorphic and pseudopolymorphic properties. Solid dosage forms containing Naproxen Sodium often have to be processed in an applicable dosage form by granulation and tablet compression. During granulation, Naproxen Sodium will be in contact with water and is exposed to the drop and rise in temperature and to mechanical stress. The result could be a mixture of different hydrates of Naproxen Sodium. This study showed that a modified designed fluid bed granulation was not affected by differences in the mixing ratio of hydrates when using different water contents after spraying and at the end with the finished granules. Here, X-ray diffraction combined with Rietveld refinement was used to analyze the ratio of the hydrates and its identity. All granulation batches showed a large amount of Naproxen Sodium Monohydrate (>87%) and no differences could be observed during tablet compression. Quantities of other hydrates were negligibly small. Furthermore, this study also demonstrated the influence of tablet compression by transforming the hydrates of the granules. In addition to Naproxen Sodium Monohydrate, a large quantity of amorphous structures has also been found. Rietveld evaluation combined with the preliminary studies of the raw hydrates provided conclusions on the drug release of the tablets containing hydrates of Naproxen Sodium which were influenced by tablet compression. Fast drug release was obtained when a maximum water content of about 21% was used after spraying during granulation, independently of the final water content of the finished granules. A maximum water content of less than 21

  3. Efficacy and safety of intravenous tanezumab for the symptomatic treatment of osteoarthritis: 2 randomized controlled trials versus naproxen.

    PubMed

    Ekman, Evan F; Gimbel, Joseph S; Bello, Alfonso E; Smith, Michael D; Keller, David S; Annis, Karen M; Brown, Mark T; West, Christine R; Verburg, Kenneth M

    2014-11-01

    Two studies evaluated efficacy and safety of tanezumab versus naproxen for treatment of knee or hip osteoarthritis (OA). Randomized controlled studies [NCT00830063 (Study 1015, n=828) and NCT00863304 (Study 1018, n=840)] of subjects with hip or knee OA compared intravenous tanezumab (5 mg or 10 mg) to placebo and naproxen (500 mg twice daily). Coprimary outcomes were Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) Pain, WOMAC Physical Function (0-10 numerical rating scale), and patient's global assessment of OA at Week 16. In both studies, tanezumab reduced pain versus placebo [least squares mean differences, 95% CI, tanezumab 5 mg: -1.21 (-1.72, -0.70); -1.13 (-1.65, -0.62); tanezumab 10 mg: -0.91 (-1.42, -0.40); -0.80 (-1.32, -0.29)], and improved function and global scores. Tanezumab 5 mg produced greater pain reduction [-0.76 (-1.28, -0.25); -0.69 (-1.21, -0.17)], and favorable functional and global outcomes versus naproxen. Pain reductions with tanezumab 10 mg versus naproxen did not reach significance, unlike functional (both studies) and global (1 study) outcomes; thus, tanezumab 10 mg was not superior to naproxen, and predefined statistical testing procedures were not met, allowing for conclusion of superiority of tanezumab 5 mg over naproxen despite replicated favorable coprimary outcomes. Tanezumab was associated with greater incidence of peripheral sensory adverse events (paresthesia, hyperesthesia, hypoesthesia, burning sensation), pain in extremity, peripheral edema, and arthralgia. Overall frequency and discontinuations as a result of adverse events were similar to placebo and naproxen. Tanezumab provides efficacious treatment of knee or hip OA and may have therapeutic utility in patients with OA who experience inadequate analgesia with nonsteroidal antiinflammatory drugs.

  4. Occurrence of 7-methyl-7-hexadecenoic acid, the corresponding alcohol, 7-methyl-6-hexadecenoic acid, and 5-methyl-4hexadecenoic acid in sperm whale oils.

    PubMed

    Pascal, J C; Ackman, R G

    1975-08-01

    Two sperm whale oils from the northern hemisphere and two from the southern hemisphere were fractionated. Triglyceride and wax esters were examined for fatty acids and alcohols with monoethylenic unsaturation bearing a methyl branch on an ethylenic carbon. The 7-methyl-7-hexadecenoic acid (0.37-1.37%) was accompanied by the corresponding alcohol (0.28-0.72%), but these materials were not accompanied by shorter chain homologues. The 7-methyl-6-hexadecenoic acid was relatively less important (0.23-0.68%), but was accompanied by 5-methyl-4-hexadecenoic acid (0.10-0.39%), and a partially identified C13 compound. Chromatographic properties on silver nitrate impregnated silicic acid TLC and on three GLC liquid phases are reported.

  5. An examination of the thermodynamics of fusion, vaporization, and sublimation of ibuprofen and naproxen by correlation gas chromatography.

    PubMed

    Maxwell, Rachel; Chickos, James

    2012-02-01

    The vaporization enthalpies of (S)-ibuprofen and (S)-naproxen measured by correlation gas chromatography at T = 298.15 K are reported and compared with literature values. Adjustment of the fusion enthalpies of (RS)- and (S)-ibuprofen and (S)-naproxen to T = 298.15 K and combined with the vaporization enthalpy of the (S)-enantiomer of both ibuprofen and naproxen also at T = 298.15 K resulted in the sublimation enthalpies of both (S)-enantiomers. On the assumption that the vaporization enthalpy of the racemic form of ibuprofen is within the experimental uncertainty of the chiral form, the sublimation enthalpy of racemic ibuprofen was also evaluated. The vaporization and sublimation enthalpies compare favorably to the most of the literature values for the racemic form of ibuprofen but differ from the value reported for chiral ibuprofen. The literature values of (S)-naproxen are somewhat smaller than the values measured in this work. The following vaporization enthalpies were measured for (S)-ibuprofen and (S)-naproxen, respectively: ΔH(vap) (298.15 K), 106.0 ± 5.5, 132.2 ± 5.0 kJ·mol(-1) . Sublimation enthalpies of 122.7 ± 5.6 and 155.2 ± 7.1 kJ·mol(-1) were calculated for the (S)-enantiomers of ibuprofen and naproxen and a value of 128.9 ± 5.8 kJ·mol(-1) was estimated for the racemic form of ibuprofen. Copyright © 2011 Wiley Periodicals, Inc.

  6. Towards Solvation of a Chiral Alpha-Hydroxy Ester: Broadband Chirp and Narrow Band Cavity Fouirier Transform Microwave Spectroscopy of Methyl Lactate-Water Clusters

    NASA Astrophysics Data System (ADS)

    Thomas, Javix; Sukhorukov, Oleksandr; Jaeger, Wolfgang; Xu, Yunjie

    2013-06-01

    Methyl lactate (ML), a chiral alpha-hydroxy ester, has attracted much attention as a prototype system in studies of chirality transfer,[1] solvation effects on chiroptical signatures,[2] and chirality recognition.[3] It has multiple functional groups which can serve both as a hydrogen donor and acceptor. By applying rotational spectroscopy and high level ab initio calculations, we examine the delicate competition between inter- and intramolecular hydrogen-bonding in the ML-water clusters. Broadband rotational spectra obtained with a chirp Fourier transform microwave (FTMW) spectrometer, reveal that the insertion conformations are the most favourable ones in the binary and ternary solvated complexes. In the insertion conformations, the water molecule(s) inserts itself (themselves) into the existing intramolecular hydrogen-bonded ring formed between the alcoholic hydroxyl group and the oxygen of the carbonyl group of ML. The final frequency measurements have been carried out using a cavity based FTMW instrument where internal rotation splittings due to the ester methyl group have also been detected. A number of insertion conformers with subtle structural differences for both the binary and ternary complexes have been identified theoretically. The interconversion dynamics of these conformers and the identification of the most favorable conformers will be discussed. 1. C. Merten, Y. Xu, Angew. Chem. Int. Ed., 2013, 52, 2073 -2076. 2. M. Losada, Y. Xu, Phys. Chem. Chem. Phys., 2007, 9, 3127-3135; Y. Liu, G. Yang, M. Losada, Y. Xu, J. Chem. Phys., 2010, 132, 234513/1-11. 3. A. Zehnacker, M. Suhm, Angew. Chem. Int. Ed. 2008, 47, 6970 - 6992.

  7. Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen.

    PubMed

    Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana

    2015-01-01

    Comparative evaluation of liquid and solid self-microemulsifying drug delivery systems (SMEDDS) as promising approaches for solubility enhancement. The aim of this work was to develop, characterize, and evaluate a solid SMEDDS prepared via spray-drying of a liquid SMEDDS based on Gelucire® 44/14 to improve the solubility and dissolution rate of naproxen. Various oils and co-surfactants in combination with Gelucire® 44/14 were evaluated during excipient selection study, solubility testing, and construction of (pseudo)ternary diagrams. The selected system was further evaluated for naproxen solubility, self-microemulsification ability, and in vitro dissolution of naproxen. In addition, its transformation into a solid SMEDDS by spray-drying using maltodextrin as a solid carrier was performed. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to evaluate the physical characteristics of the solid SMEDDS obtained. The selected formulation of SMEDDS was comprised of Miglyol 812®, Peceol™, Gelucire® 44/14, and Solutol® HS 15. The liquid and solid SMEDDS formed a microemulsion after dilution with comparable average droplet size and exhibited uniform droplet size distribution. In the solid SMEDDS, liquid SMEDDS was adsorbed onto the surface of maltodextrin and formed smooth granular particles with the encapsulated drug predominantly in a dissolved state and partially in an amorphous state. Overall, incorporation of naproxen in SMEDDS, either liquid or solid, resulted in improved solubility and dissolution rate compared to pure naproxen. This study indicates that a liquid and solid SMEDDS is a strategy for solubility enhancement in the future development of orally delivered dosage forms.

  8. Three new fatty acid esters from the mushroom Boletus pseudocalopus.

    PubMed

    Kim, Ki Hyun; Choi, Sang Un; Lee, Kang Ro

    2012-06-01

    A bioassay-guided fractionation and chemical investigation of a MeOH extract of the Korean wild mushroom Boletus pseudocalopus resulted in the identification of three new fatty acid esters, named calopusins A-C (1-3), along with two known fatty acid methyl esters (4-5). These new compounds are structurally unique fatty acid esters with a 2,3-butanediol moiety. Their structures were elucidated through 1D- and 2D-NMR spectroscopic data and GC-MS analysis as well as a modified Mosher's method. The new compounds 1-3 showed significant inhibitory activity against the proliferation of the tested cancer cell lines with IC(50) values in the range 2.77-12.51 μM.

  9. Naproxen Induces Type X Collagen Expression in Human Bone-Marrow-Derived Mesenchymal Stem Cells Through the Upregulation of 5-Lipoxygenase

    PubMed Central

    Alaseem, Abdulrahman M.; Madiraju, Padma; Aldebeyan, Sultan A.; Noorwali, Hussain; Antoniou, John

    2015-01-01

    Several studies have shown that type X collagen (COL X), a marker of late-stage chondrocyte hypertrophy, is expressed in mesenchymal stem cells (MSCs) from osteoarthritis (OA) patients. We recently found that Naproxen, but not other nonsteroidal anti-inflammatory drugs (NSAIDs) (Ibuprofen, Celebrex, Diclofenac), can induce type X collagen gene (COL10A1) expression in bone-marrow-derived MSCs from healthy and OA donors. In this study we determined the effect of Naproxen on COL X protein expression and investigated the intracellular signaling pathways that mediate Naproxen-induced COL10A1 expression in normal and OA hMSCs. MSCs of OA patients were isolated from aspirates from the intramedullary canal of donors (50–80 years of age) undergoing hip replacement surgery for OA and were treated with or without Naproxen (100 μg/mL). Protein expression and phosphorylation were determined by immunoblotting using specific antibodies (COL X, p38 mitogen-activated protein kinase [p38], phosphorylated-p38, c-Jun N-terminal kinase [JNK], phosphorylated-JNK, extracellular signal-regulated kinase [ERK], and phosphorylated-ERK). Real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the expression of COL10A1 and Runt-related transcription factor 2 gene (Runx2). Our results show that Naproxen significantly stimulated COL X protein expression after 72 h of exposure both in normal and OA hMSCs. The basal phosphorylation of mitogen-activated protein kinases (MAPKs) (ERK, JNK, and p38) in OA hMSCs was significantly higher than in normal. Naproxen significantly increased the MAPK phosphorylation in normal and OA hMSCs. NSAID cellular effects include cyclooxygenase, 5-lipoxygenase, and p38 MAPK signaling pathways. To investigate the involvement of these pathways in the Naproxen-induced COL10A1 expression, we incubated normal and OA hMSCs with Naproxen with and without inhibitors of ERK (U0126), JNK (BI-78D3), p38 (SB203580), and 5-lipoxygenase

  10. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion.

    PubMed

    Willats, W G; Orfila, C; Limberg, G; Buchholt, H C; van Alebeek, G J; Voragen, A G; Marcus, S E; Christensen, T M; Mikkelsen, J D; Murray, B S; Knox, J P

    2001-06-01

    Homogalacturonan (HG) is a multifunctional pectic polysaccharide of the primary cell wall matrix of all land plants. HG is thought to be deposited in cell walls in a highly methyl-esterified form but can be subsequently de-esterified by wall-based pectin methyl esterases (PMEs) that have the capacity to remove methyl ester groups from HG. Plant PMEs typically occur in multigene families/isoforms, but the precise details of the functions of PMEs are far from clear. Most are thought to act in a processive or blockwise fashion resulting in domains of contiguous de-esterified galacturonic acid residues. Such de-esterified blocks of HG can be cross-linked by calcium resulting in gel formation and can contribute to intercellular adhesion. We demonstrate that, in addition to blockwise de-esterification, HG with a non-blockwise distribution of methyl esters is also an abundant feature of HG in primary plant cell walls. A partially methyl-esterified epitope of HG that is generated in greatest abundance by non-blockwise de-esterification is spatially regulated within the cell wall matrix and occurs at points of cell separation at intercellular spaces in parenchymatous tissues of pea and other angiosperms. Analysis of the properties of calcium-mediated gels formed from pectins containing HG domains with differing degrees and patterns of methyl-esterification indicated that HG with a non-blockwise pattern of methyl ester group distribution is likely to contribute distinct mechanical and porosity properties to the cell wall matrix. These findings have important implications for our understanding of both the action of pectin methyl esterases on matrix properties and mechanisms of intercellular adhesion and its loss in plants.

  11. Suppository naproxen reduces incidence and severity of post-endoscopic retrograde cholangiopancreatography pancreatitis: Randomized controlled trial.

    PubMed

    Mansour-Ghanaei, Fariborz; Joukar, Farahnaz; Taherzadeh, Zahra; Sokhanvar, Homayoon; Hasandokht, Tolou

    2016-06-07

    To determine the efficacy of rectally administered naproxen for the prevention of post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP). This double-blind randomized control trial conducted from January 2013 to April 2014 at the Gastrointestinal and Liver Diseases Research Center in Rasht, Iran. A total of 324 patients were selected from candidates for diagnostic or therapeutic ERCP by using the simple sampling method. Patients received a single dose of Naproxen (500 mg; n = 162) or a placebo (n = 162) per rectum immediately before ERCP. The overall incidence of PEP, incidence of mild to severe PEP, serum amylase levels and adverse effects were measured. The primary outcome measure was the development of pancreatitis onset of pain in the upper abdomen and elevation of the serum amylase level to > 3 × the upper normal limit (60-100 IU/L) within 24 h after ERCP. The severity of PEP was classified according to the duration of therapeutic intervention for PEP: mild, 2-3 d; moderate 4-10 d; and severe, > 10 d and/or necessitated surgical or intensive treatment, or contributed to death. PEP occurred in 12% (40/324) of participants, and was significantly more frequent in the placebo group compared to the naproxen group (P < 0.01). Of the participants, 25.9% (84/324) developed hyperamylasemia within 2 h of procedure completion, among whom only 35 cases belonged to the naproxen group (P < 0.01). The incidence of PEP was significantly higher in female sex, in patients receiving pancreatic duct injection, more than 3 times pancreatic duct cannulations, and ERCP duration more than 40 min (Ps < 0.01). There were no statistically significant differences between the groups regarding the procedures or factors that might increase the risk of PEP, sphincterotomy, precut requirement, biliary duct injection and number of pancreatic duct cannulations. In the subgroup of patients with pancreatic duct injection, the rate of pancreatitis in the naproxen group was

  12. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity.

    PubMed

    Ieda, Naoya; Yamada, Sota; Kawaguchi, Mitsuyasu; Miyata, Naoki; Nakagawa, Hidehiko

    2016-06-15

    Histone deacetylases (HDACs) are involved in epigenetic control of the expression of various genes by catalyzing deacetylation of ε-acetylated lysine residues. Here, we report the design, synthesis and evaluation of the (7-diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid (AC-SAHA) as a caged HDAC inhibitor, which releases the known pan-HDAC inhibitor SAHA upon cleavage of the photolabile (7-diethylaminocoumarin-4-yl)methyl protecting group in response to photoirradiation. A key advantage of AC-SAHA is that the caged derivative itself shows essentially no HDAC-inhibitory activity. Upon photoirradiation, AC-SAHA decomposes to SAHA and a 7-diethylaminocoumarin derivative, together with some minor products. We confirmed that AC-SAHA inhibits HDAC in response to photoirradiation in vitro by means of chemiluminescence assay. AC-SAHA also showed photoinduced inhibition of proliferation of human colon cancer cell line HCT116, as determined by MTT assay. Thus, AC-SAHA should be a useful tool for spatiotemporally controlled inhibition of HDAC activity, as well as a candidate chemotherapeutic reagent for human colon cancer. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Preparation and recrystallization behavior of spray-dried co-amorphous naproxen-indomethacin.

    PubMed

    Beyer, Andreas; Radi, Lydia; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2016-07-01

    To improve the dissolution properties and the physical stability of amorphous active pharmaceutical ingredients, small molecule stabilizing agents may be added to prepare co-amorphous systems. The objective of the study was to investigate if spray-drying allows the preparation of co-amorphous drug-drug systems such as naproxen-indomethacin and to examine the influence of the process conditions on the resulting initial sample crystallinity and the recrystallization behavior of the drug(s). For this purpose, the process parameters inlet temperature and pump feed rate were varied according to a 2(2) factorial design and the obtained samples were analyzed with X-ray powder diffractometry and Fourier-transformed infrared spectroscopy. Evaluation of the data revealed that the preparation of fully amorphous samples could be achieved depending on the process conditions. The resulting recrystallization behavior of the samples, such as the total recrystallization rate, the individual recrystallization rates of naproxen and indomethacin as well as the polymorphic form of indomethacin that was formed were influenced by these process conditions. For initially amorphous samples, it was found that naproxen and indomethacin recrystallized almost simultaneously, which supports the theory of formation of drug-drug heterodimers in the co-amorphous phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparison of rectal indomethacin, diclofenac, and naproxen for the prevention of post endoscopic retrograde cholangiopancreatography pancreatitis.

    PubMed

    Mohammad Alizadeh, Amir H; Abbasinazari, Mohammad; Hatami, Behzad; Abdi, Saeed; Ahmadpour, Forozan; Dabir, Shideh; Nematollahi, Aida; Fatehi, Samira; Pourhoseingholi, Mohammad A

    2017-03-01

    NSAIDs are commonly utilized for the prevention of post endoscopic retrograde cholangiopancreatography pancreatitis (PEP). However, not much is known about the most effective drug in preventing this complication. This study aims to clarify which drug (indomethacin, diclofenac, or naproxen) is most effective for the prevention of post endoscopic retrograde cholangiopancreatography (ERCP). In a double-blind, randomized study, patients received a single rectal dose of one of the three drugs 30 min before undergoing ERCP: diclofenac (100 mg), indomethacin (100 mg), or naproxen (500 mg). The primary outcome measured was the development of pancreatitis. The levels of serum amylase, lipase, lipoxin A4, and resolvin E1 were measured before ERCP, and at 24 h after the procedure. Three hundred and seventy-two patients completed the study. The overall incidence of PEP was 8.6%, which occurred in five of the 124 (4%) patients who received diclofenac, seven of the 122 (5.8%) patients who received indomethacin, and 20 of the 126 (15.9%) patients who received naproxen. There were no significant differences in amylase and lipase levels among the three groups (P=0.183 and 0.597, respectively). Unlike patients in the naproxen group, patients in the diclofenac and indomethacin groups showed a significant increase in lipoxin A4 and resolvin E1 (P=0.001 and 0.02, respectively). Diclofenac and indomethacin patient groups had a lower incidence of PEP than the naproxen group.

  15. Characterization of the anti-inflammatory properties of NCX 429, a dual-acting compound releasing nitric oxide and naproxen.

    PubMed

    Amoruso, Angela; Fresu, Luigia Grazia; Dalli, Jesmond; Miglietta, Daniela; Bardelli, Claudio; Federici Canova, Donata; Perretti, Mauro; Brunelleschi, Sandra

    2015-04-01

    Cyclooxygenase (COX)-inhibiting nitric oxide donors (CINODs) are a new class of drugs that structurally combine a COX inhibitor with a nitric oxide (NO) donating moiety. This combination reduces potential toxicity of the non-steroidal anti-inflammatory drugs (NSAIDs) whilst maintaining the analgesic and anti-inflammatory effects. The present study was undertaken to investigate the anti-inflammatory effects of NCX 429, a naproxen-based CINOD, and to assess the additional properties of NO donation beyond those related to naproxen. We evaluated the in vitro effects of NCX 429 on oxy-radical production, phagocytosis, cytokine release, MMP-9, PPARγ expression and NF-κB activation in human monocytes/MDM and compared to naproxen. Moreover, we compared the in vivo efficacy of NCX 429 and naproxen in a murine model of peritonitis. In all the experiments performed in vitro, NCX 429 reduced the inflammatory responses with equal or higher efficacy compared to naproxen. Moreover, in in vivo experiments, NCX 429, at the lowest dose tested, was able to significantly inhibit cell influx in response to IL-1β administration although naproxen was found to be more potent than NCX 429 at reducing PGE2 in inflammatory exudates. These results demonstrate that both in vitro and in vivo--in a murine model of peritonitis--NCX 429 elicits significant anti-inflammatory activity, beyond the simple COX inhibition or pure NO release. Therefore, NO donation along with COX inhibition may represent a strategy for investigating inflammatory diseases in which pain and function are not fully resolved by analgesics/anti-inflammatory drugs. © 2015.

  16. Chiral recognition ability of an (S)-naproxen- imprinted monolith by capillary electrochromatography.

    PubMed

    Xu, Yan-Li; Liu, Zhao-Sheng; Wang, He-Fang; Yan, Chao; Gao, Ru-Yu

    2005-02-01

    The racemic naproxen was selectively recognized by capillary electrochromatography (CEC) on an (S)-naproxen-imprinted monolith, which was prepared by an in situ thermal-initiated polymerization. The recognition selectivity of a selected monolith strictly relied on the CEC conditions involved. The factors that influence the imprinting selectivity as well as the electroosmotic flow (EOF), including the applied voltage, organic solvent, salt concentration and pH value of the buffer, column temperature, and surfactant modifiers were systematically studied. Once the column was prepared, the experiment results showed that the successful chiral recognition was dependent on CEC variables. For example: the recognition could be observed in acetonitrile and ethanol electrolytes, while methanol and dimethyl sulfoxide (DMSO) electrolytes had no chiral recognition ability. The buffer with pH values of 2.6 or 3.0 at a higher salt concentration had chiral recognition ability. Column temperatures of 25-35 degrees C were optimal. Three surfactants, sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and polyoxyethylene sorbitan monolaurate (Tween 20), can improve the recognition. Baseline resolution was obtained under optimized conditions and the column efficiency of the later eluent (S)-naproxen was 90 000 plates/m.

  17. Naproxen effects on brain response to painful pressure stimulation in patients with knee osteoarthritis: a double-blind, randomized, placebo-controlled, single-dose study.

    PubMed

    Giménez, Mónica; Pujol, Jesús; Ali, Zahid; López-Solà, Marina; Contreras-Rodríguez, Oren; Deus, Joan; Ortiz, Héctor; Soriano-Mas, Carles; Llorente-Onaindia, Jone; Monfort, Jordi

    2014-11-01

    The aim of our study was to investigate the effects of naproxen, an antiinflammatory analgesic drug, on brain response to painful stimulation on the affected knee in chronic osteoarthritis (OA) using functional magnetic resonance imaging (fMRI) in a double-blind, placebo-controlled study. A sample of 25 patients with knee OA received naproxen (500 mg), placebo, or no treatment in 3 separate sessions in a randomized manner. Pressure stimulation was applied to the medial articular interline of the knee during the fMRI pain sequence. We evaluated subjective pain ratings at every session and their association with brain responses to pain. An fMRI control paradigm was included to discard global brain vascular effects of naproxen. We found brain activation reductions under naproxen compared to no treatment in different cortical and subcortical core pain processing regions (p≤0.001). Compared to placebo, naproxen triggered an attenuation of amygdala activation (p=0.001). Placebo extended its attenuation effects beyond the classical pain processing network (p≤0.001). Subjective pain scores during the fMRI painful task differed between naproxen and no treatment (p=0.037). Activation attenuation under naproxen in different regions (i.e., ventral brain, cingulate gyrus) was accompanied by an improvement in the subjective pain complaints (p≤0.002). Naproxen effectively reduces pain-related brain responses involving different regions and the attenuation is related to subjective pain changes. Our current work yields further support to the utility of fMRI to objectify the acute analgesic effects of a single naproxen dose in patients affected by knee OA. The trial was registered at the EuropeanClinicalTrials Database, "EudraCT Number 2008-004501-33".

  18. Simultaneous quantification of naproxcinod and its active metabolite naproxen in rat plasma using LC-MS/MS: application to a pharmacokinetic study.

    PubMed

    Shi, Xiaowei; Shang, Weiding; Wang, Shuang; Xue, Na; Hao, Yanxia; Wang, Yabo; Sun, Mengmeng; Du, Yumin; Cao, Deying; Zhang, Kai; Shi, Qingwen

    2015-01-26

    In this study, a liquid chromatography-tandem mass spectrometry method was developed and validated to simultaneously determine naproxcinod and naproxen concentrations in rat plasma for the first time. Plasma samples were prepared by simple one-step extraction with methanol for protein precipitation using only 50 μL plasma. Separation was performed on a Synergi Fusion-RP C18 column with a run time of 4 min. Naproxcinod, naproxen and internal standard concentrations were detected in the positive ion mode using multiple reaction monitoring (MRM) of the transitions at m/z 348.2→302.2, 231.1→185.1 and 271.2→203.1, respectively. The calibration curves were linear, with all correlation coefficients being ≥0.9952, in the range of 1.00-400 ng/mL for naproxcinod and 20.0-8000 ng/mL for naproxen. Their accuracy was in the range of -8.1% to 8.7%, and the intra- and inter-day variations were ≤4.53%. The mean extraction recovery of all analytes was more than 93.1% efficient. Stability testing showed that naproxcinod and naproxen remained stable during the whole analytical procedure. After validation, the method was successfully applied to a pharmacokinetic study of naproxcinod and naproxen in rats. The AUC0-∞ of naproxen was 74.6 times larger than that of naproxcinod, which indicated that naproxcinod was rapidly metabolized into naproxen in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. L-Leucyl-L-Leucine Methyl Ester Treatment of Canine Marrow and Peripheral Blood Cells: Inhibition of Proliferative Responses with Maintenance of the Capacity for Autologous Marrow Engraftment

    DTIC Science & Technology

    1988-11-01

    Copyright 0 198 by The Winiams & Wilkins Co. Printed in U.S.A. L-LEUCYL-L-LEUCINE METHYL ESTER TREATMENT OF CANINE MARROW AND PERIPHERAL BLOOD CELLS...Reearch CeThs eatetle, Washington 9%104 tInaiyuba on o canine UMrrowt and peripher hi Recently, Thiele and Lipsky have described adipeptide nionon clear...that marrow iincubation with Leu-Leu. Leu-Leu-OMe is a feasible method to deplete canine marrows of aloreactive and cytotoxic T cells prior to OMe

  20. The Rotational Spectrum and Conformational Structures of Methyl Valerate

    NASA Astrophysics Data System (ADS)

    Nguyen, Ha Vinh Lam; Stahl, Wolfgang

    2015-06-01

    Methyl valerate, C4H9COOCH3, belongs to the class of fruit esters, which play an important role in nature as odorants of different fruits, flowers, and wines. A sufficient explanation for the structure-odor relation of is not available. It is known that predicting the odor of a substance is not possible by knowing only its chemical formula. A typical example is the blueberry- or pine apple-like odor of ethyl isovalerate while its isomers ethyl valerate and isoamyl acetate smell like green apple and banana, respectively. Obviously, not only the composition but also the molecular structures are not negligible by determining the odor of a substance. Gas phase structures of fruit esters are thus important for a first step towards the determination of structure-odor relation since the sense of smell starts from gas phase molecules. For this purpose, a combination of microwave spectroscopy and quantum chemical calculations (QCCs) is an excellent tool. Small esters often have sufficient vapor pressure to be transferred easily in the gas phase for a rotational study but already contain a large number of atoms which makes them too big for classical structure determination by isotopic substitution and requires nowadays a comparison with the structures optimized by QCCs. On the other hand, the results from QCCs have to be validated by the experimental values. About the internal dynamics, the methoxy methyl group -COOCH3 of methyl acetate shows internal rotation with a barrier of 424.581(56) wn. A similar barrier height of 429.324(23) wn was found in methyl propionate, where the acetyl group is extended to the propionyl group. The investigation on methyl valerate fits well in this series of methyl alkynoates. In this talk, the structure of the most energetic favorable conformer as well as the internal rotation shown by the methoxy methyl group will be reported. It could be confirmed that the internal rotation barrier of the methoxy methyl group remains by longer alkyl chain.

  1. Prevention of chemically induced urinary bladder cancers by naproxen: protocols to reduce gastric toxicity in humans do not alter preventive efficacy.

    PubMed

    Lubet, Ronald A; Scheiman, James M; Bode, Ann; White, Jonathan; Minasian, Lori; Juliana, M Margaret; Boring, Daniel L; Steele, Vernon E; Grubbs, Clinton J

    2015-04-01

    The COX inhibitors (NSAID/Coxibs) are a major focus for the chemoprevention of cancer. The COX-2-specific inhibitors have progressed to clinical trials and have shown preventive efficacy in colon and skin cancers. However, they have significant adverse cardiovascular effects. Certain NSAIDs (e.g., naproxen) have a good cardiac profile, but can cause gastric toxicity. The present study examined protocols to reduce this toxicity of naproxen. Female Fischer-344 rats were treated weekly with the urinary bladder-specific carcinogen hydroxybutyl(butyl)nitrosamine (OH-BBN) for 8 weeks. Rats were dosed daily with NPX (40 mg/kg body weight/day, gavage) or with the proton pump inhibitor omeprazole (4.0 mg/kg body weight/day) either singly or in combination beginning 2 weeks after the final OH-BBN. OH-BBN-treated rats, 96% developed urinary bladder cancers. While omeprazole alone was ineffective (97% cancers), naproxen alone or combined with omeprazole-prevented cancers, yielding 27 and 35% cancers, respectively. In a separate study, OH-BBN -: treated rats were administered naproxen: (A) daily, (B) 1 week daily naproxen/1week vehicle, (C) 3 weeks daily naproxen/3 week vehicle, or (D) daily vehicle beginning 2 weeks after last OH-BBN treatment. In the intermittent dosing study, protocol A, B, C, and D resulted in palpable cancers in 27%, 22%, 19%, and 96% of rats (P < 0.01). Short-term naproxen treatment increased apoptosis, but did not alter proliferation in the urinary bladder cancers. Two different protocols that should decrease the gastric toxicity of NSAIDs in humans did not alter chemopreventive efficacy. This should encourage the use of NSAIDs (e.g., naproxen) in clinical prevention trials. ©2015 American Association for Cancer Research.

  2. Simultaneous production of fatty acid methyl esters and diglycerides by four recombinant Candida rugosa lipase's isozymes.

    PubMed

    Chang, Shu-Wei; Huang, Myron; Hsieh, Yu-Hsun; Luo, Ying-Ting; Wu, Tsung-Ta; Tsai, Chia-Wen; Chen, Chin-Shuh; Shaw, Jei-Fu

    2014-07-15

    In this study, the catalytic efficiency of four recombinant CRL (Candida rugosa lipase) isozymes (LIP1-LIP4) towards the production of fatty acid methyl ester (FAME) was compared and evaluated as an alternative green method for industrial applications. The results indicated that the recombinant C. rugosa LIP1 enzyme exhibited the highest catalytic efficiency for FAME production compared to the recombinant C. rugosa LIP2-LIP4 enzymes. The optimal conditions were as follows: pH 7.0, methanol/soybean oil molar ratio: 3/1, enzyme amount: 2U (1.6 μL), reaction temperature: 20°C, 22 h of reaction time, and 3 times of methanol addition (1 mol/6h), and resulted in 61.5 ± 1.5 wt.% of FAME conversion. The reaction product contained also 10 wt.% of DAG with a ratio of 1,3-DAG to 1,2-DAG of approximately 4:6, and can be potentially used in industrial applications as a food emulsifier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Microorganism gram-type differentiation based on pyrolysis-mass spectrometry of bacterial Fatty Acid methyl ester extracts.

    PubMed

    Basile, F; Voorhees, K J; Hadfield, T L

    1995-04-01

    Curie-point pyrolysis (Py)-mass spectrometry has been used to differentiate 19 microorganisms by Gram type on the basis of the methyl esters of their fatty acid distribution. The mass spectra of gram-negative microorganisms were characterized by the presence of palmitoleic acid (C(inf16:1)) and oleic acid (C(inf18:1)), as well as a higher abundance of palmitic acid (C(inf16:0)) than pentadecanoic acid (C(inf15:0)). For gram-positive microorganisms, a signal of branched C(inf15:0) (isoC(inf15:0) and/or anteisoC(inf15:0)) more intense than that of palmitic acid was observed in the mass spectra. Principal components analysis of these mass spectral data segregated the microorganisms investigated in this study into three discrete clusters that correlated to their gram reactions and pathogenicities. Further tandem mass spectrometric analysis demonstrated that the nature of the C(inf15:0) fatty acid isomer (branched or normal) present in the mass spectrum of each microorganism was important for achieving the classification into three clusters.

  4. Photophysics and morphology of poly (3-dodecylthienylenevinylene)-[6,6]-phenyl-C{sub 61}-butyric acid methyl ester composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafalce, E.; Toglia, P.; Jiang, X.

    2012-05-21

    A series of low band gap poly(3-dodecylthienylenevinylene) (PTV) with controlled morphological order have been synthesized and blended with the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) for organic photovoltaic devices. Two polymers with the most and least side chain regioregularity were chosen in this work, namely the PTV010 and PTV55, respectively. Using photoluminescence, photo-induced absorption spectroscopy, and atomic force microscopy, we find no direct evidence of photoinduced charge transfer between the two constituents, independent of the bulk-heterojunction morphology of the film, although the possibility of formation of P{sup +}/C{sub 60}{sup -} charge transfer complex was not completely ruled out.more » The large exciton binding energy (E{sub b} = 0.6 eV) in PTV inhibits the photoinduced electron transfer from PTV to PCBM. In addition, excitons formed on polymer chains suffer ultrafast (« less

  5. Stereocontrolled reduction of alpha- and beta-keto esters with micro green algae, Chlorella strains.

    PubMed

    Ishihara, K; Yamaguchi, H; Adachi, N; Hamada, H; Nakajima, N

    2000-10-01

    The stereocontrolled reduction of alpha- and beta-keto esters using micro green algae was accomplished by a combination of the cultivation method and the introduction of an additive. The reduction of ethyl pyruvate and ethyl benzoylformate by the photoautotrophically cultivated Chlorella sorokiniana gave the corresponding alcohol in high e.e. (>99% e.e. (S) and >99% e.e. (R), respectively). In the presence of glucose as an additive, the reduction of ethyl 3-methyl-2-oxobutanoate by the heterotrophically cultivated C. sorokiniana afforded the corresponding (R)-alcohol. On the other hand, the reduction in the presence of ethyl propionate gave the (S)-alcohol. Ethyl 2-methyl-3-oxobutanoate was reduced in the presence of glycerol by the photoautotrophically cultivated C. sorokiniana or the heterotrophically cultivated C. sorokiniana to the corresponding syn-(2R,3S)-hydroxy ester with high diastereo- and enantiomeric excess (e.e.). Some additives altered the stereochemical course in the reduction of alpha- and beta-keto esters.

  6. Sonodynamic action of pyropheophorbide-a methyl ester induces mitochondrial damage in liver cancer cells.

    PubMed

    Xu, Jing; Xia, Xinshu; Leung, Albert Wingnang; Xiang, Junyan; Jiang, Yuan; Yu, Heping; Bai, Dingqun; Li, Xiaohong; Xu, Chuanshan

    2011-05-01

    Sonodynamic therapy with pyropheophorbide-a methyl ester (MPPa) presents a promising aspect in treating liver cancer. The present study aims to investigate the mitochondrial damage of liver cancer cells induced by MPPa-mediated sonodynamic action. Mouse hepatoma cell line H(22) cells were incubated with MPPa (2 μM) for 20 h and then exposed to ultrasound with an intensity of 0.97 W/cm(2) for 8 s. Cytotoxicity was investigated 24h after sonodynamic action using MTT assay and light microscopy. Mitochondrial membrane potential (ΔΨm) was analyzed using flow cytometry with rhodamine 123 staining and ultrastructural changes were observed using transmission electron microscopy (TEM). The cytotoxicity of MPPa-mediated SDT on H(22) cell line was 73.00±3.42%, greater than ultrasound treatment alone (28.12±5.19%) significantly while MPPa treatment alone had no significant effect on H(22) cells. Moreover, after MPPa-mediated SDT cancer cells showed swollen mitochondria under TEM and a significant collapse of mitochondrial membrane potential. Our findings demonstrated that MPPa-mediated SDT could remarkably induce cell death of H(22) cells, and highlighted that mitochondrial damage might be an important cause of cell death induced by MPPa-mediated SDT. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Factors influencing naproxen metabolite interference in total bilirubin assays.

    PubMed

    Saifee, Nabiha Huq; Ranjitkar, Pratistha; Greene, Dina N

    2016-04-01

    The factors influencing naproxen metabolite O-desmethylnaproxen (ODMN) positive interference in diazo-based Jendrassik and Grof (JG) total bilirubin (Tbil) assays and lack of interference in direct bilirubin (Dbil) assays have not been resolved. The objective of this study was to understand the conditions causing this interference pattern. Pooled normal and ultra-filtered plasma samples spiked with ODMN and naproxen were measured on the Beckman Coulter DxC and AU instruments. Absorbance spectra were obtained for ODMN mixed with Dbil reagent at original and adjusted pH. Absorbance spectra were also obtained for ODMN and bilirubin samples mixed with Tbil assay reagents. ODMN produces a positive interference in the DxC JG Tbil assays, but not the AU Tbil or Dbil assays or the DxC Dbil assay. Neutralizing the acidic pH of AU and DxC Dbil reagents allows ODMN to react with diazo salts. ODMN samples mixed with DxC and AU Tbil reagents produce broad peaks from 450 to 560nm and 400 to 540nm, respectively. The DxC JG Tbil assay monitors a change in absorbance at 520nm close to peak absorbance wavelength of diazo-reacted ODMN, whereas the AU Tbil assay monitors a change in absorbance at 570/660nm, beyond the peak absorbance wavelengths of diazo-reacted ODMN. The acidic pH of diazo-based Dbil assay reagents inhibits the reaction of ODMN with diazo salts. The AU JG Tbil assay is a reliable method to measure Tbil in the setting of naproxen overdose. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  8. Potential grape-derived contributions to volatile ester concentrations in wine.

    PubMed

    Boss, Paul K; Pearce, Anthony D; Zhao, Yanjia; Nicholson, Emily L; Dennis, Eric G; Jeffery, David W

    2015-04-29

    Grape composition affects wine flavour and aroma not only through varietal compounds, but also by influencing the production of volatile compounds by yeast. C9 and C12 compounds that potentially influence ethyl ester synthesis during fermentation were studied using a model grape juice medium. It was shown that the addition of free fatty acids, their methyl esters or acyl-carnitine and acyl-amino acid conjugates can increase ethyl ester production in fermentations. The stimulation of ethyl ester production above that of the control was apparent when lower concentrations of the C9 compounds were added to the model musts compared to the C12 compounds. Four amino acids, which are involved in CoA biosynthesis, were also added to model grape juice medium in the absence of pantothenate to test their ability to influence ethyl and acetate ester production. β-Alanine was the only one shown to increase the production of ethyl esters, free fatty acids and acetate esters. The addition of 1 mg∙L(-1) β-alanine was enough to stimulate production of these compounds and addition of up to 100 mg∙L(-1) β-alanine had no greater effect. The endogenous concentrations of β-alanine in fifty Cabernet Sauvignon grape samples exceeded the 1 mg∙L(-1) required for the stimulatory effect on ethyl and acetate ester production observed in this study.

  9. Fatty acid methyl esters are detectable in the plasma and their presence correlates with liver dysfunction.

    PubMed

    Aleryani, Samir Lutf; Cluette-Brown, Joanne E; Khan, Zia A; Hasaba, Hasan; Lopez de Heredia, Luis; Laposata, Michael

    2005-09-01

    Methanol is a component of certain alcoholic beverages and is also an endogenously formed product. On this basis, we have proposed that methanol may promote synthesis of fatty acid methyl esters (FAMEs) in the same way that ethanol promotes fatty acid ethyl ester (FAEE) synthesis. We tested the hypothesis that FAMEs appear in the blood after ethanol intake. Patient plasma samples obtained from our laboratory (n=78) were grouped according to blood ethanol concentrations (intoxicated, blood ethanol >800 mg/l) and non-intoxicated. These samples were further subdivided into groups based on whether the patient had normal or abnormal liver function tests (abnormal, defined as > or =1 abnormality of plasma alanine and aspartate aminotransferase, albumin, total bilirubin, and alkaline phosphatase). A separate set of plasma samples were also divided into normal and abnormal groups based on pancreatic function tests (amylase and lipase). There were no patients with detectable ethanol in this group. Patients with abnormalities in pancreatic function tests were included upon recognition of endogenously produced FAMEs by patients with liver function test abnormalities. FAMEs were extracted from plasma and individual species of FAMEs quantified by gas chromatography-mass spectrometry (GC/MS). Increased concentrations of FAME were found in patient samples with evidence of liver dysfunction, regardless of whether or not they were intoxicated (n=21, p=0.01). No significant differences in plasma FAME concentrations were found between patients with normal (n=15) versus abnormal pancreatic function tests (n=22, p=0.72). The presence of FAMEs in human plasma may be related to the existence of liver disease, and not to blood ethanol concentrations or pancreatic dysfunction. The metabolic pathways associated with FAME production in patients with impaired liver function remain to be identified.

  10. In vitro evaluation of dendrimer prodrugs for oral drug delivery.

    PubMed

    Najlah, Mohammad; Freeman, Sally; Attwood, David; D'Emanuele, Antony

    2007-05-04

    Dendrimer-based prodrugs were used to enhance the transepithelial permeability of naproxen, a low solubility model drug. The stability of the dendrimer-naproxen link was assessed. Naproxen was conjugated to G0 polyamidoamine (PAMAM) dendrimers either by an amide bond or an ester bond. The stability of G0 prodrugs was evaluated in 80% human plasma and 50% rat liver homogenate. The cytotoxicity of conjugates towards Caco-2 cells was determined and the transport of the conjugates across Caco-2 monolayers (37 degrees C) was reported. In addition, one lauroyl chain (L) was attached to the surface group of G0 PAMAM dendrimer of the diethylene glycol ester conjugate (G0-deg-NAP) to enhance permeability. The lactic ester conjugate, G0-lact-NAP, hydrolyzed slowly in 80% human plasma and in 50% rat liver homogenate (t(1/2)=180 min). G0-deg-NAP was hydrolyzed more rapidly in 80% human plasma (t(1/2)=51 min) and was rapidly cleaved in 50% liver homogenate (t(1/2)=4.7 min). The conjugates were non-toxic when exposed to Caco-2 cells for 3h. Permeability studies showed a significant enhancement in the transport of naproxen when conjugated to dendrimers; L-G0-deg-NAP yielding the highest permeability. Dendrimer-based prodrugs with appropriate linkers have potential as carriers for the oral delivery of low solubility drugs such as naproxen.

  11. Naproxen sodium decreases prostaglandins secretion from cultured human endometrial stromal cells modulating metabolizing enzymes mRNA expression.

    PubMed

    Carrarelli, Patrizia; Funghi, Lucia; Bruni, Simone; Luisi, Stefano; Arcuri, Felice; Petraglia, Felice

    2016-01-01

    Dysmenorrhea, defined as painful cramps occurring immediately before or during the menstrual period, is a common symptom of different gynecological diseases. An acute uterine inflammatory response driven by prostaglandins (PGs) is responsible for painful symptoms. Progesterone withdrawal is responsible for activation of cyclooxygenase (COX-2) enzyme and decrease of hydroxyprostaglandin dehydrogenase (HPDG) with consequent increased secretion of PGs secretion, inducing uterine contractility and pain. The most widely used drugs for the treatment of pelvic pain associated with menstrual cycle are non steroidal anti-inflammatory drugs (NSAIDs). The uterine site of action of these drugs is still not defined and the present study evaluated the effect of naproxen sodium in cultured human endometrial stromal cells (HESC) collected from healthy women. PGE2 release was measured by ELISA; COX-2 and HPDG mRNA expression were assessed by qRT-PCR. Naproxen sodium did not affect HESC vitality. Naproxen sodium significantly decreased PGE2 secretion (p < 0.01) and COX-2 mRNA expression (p < 0.01). TNF-α induced PGE2 release was reduced in presence of naproxen sodium (p < 0.05), in association with decreased COX-2 and increased HPDG mRNAs expression. Naproxen sodium decreases endometrial PGE2 release induced by inflammatory stimulus acting on endometrial COX-2 and HPDG expression, suggesting endometrial synthesis of prostaglandins as a possible target for reduction of uterine inflammatory mechanism in dysmenorrhea.

  12. LFER and CoMFA studies on optical resolution of alpha-alkyl alpha-aryloxy acetic acid methyl esters on DACH-DNB chiral stationary phase.

    PubMed

    Carotti, A; Altomare, C; Cellamare, S; Monforte, A; Bettoni, G; Loiodice, F; Tangari, N; Tortorella, V

    1995-04-01

    The HPLC resolution of a series of racemic alpha-substituted alpha-aryloxy acetic acid methyl esters I on a pi-acid N,N'-(3,5-dinitrobenzoyl)-trans-1,2-diaminocyclohexane as chiral selector was modelled by linear free energy-related (LFER) equations and comparative molecular field analysis (CoMFA). Our results indicate that the retention process mainly depends on solute lipophilicity and steric properties, whereas enantioselectivity is primarily influenced by electrostatic and steric interactions. CoMFA provided additional information with respect to the LFER study, allowed the mixing of different subsets of I and led to a quantitative 3D model of steric and electrostatic factors responsible for chiral recognition.

  13. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging.

    PubMed

    Østergaard, Jesper; Jensen, Henrik; Larsen, Susan W; Larsen, Claus; Lenke, Jim

    2014-11-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved. Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Separation of fatty acid methyl esters by GC-online hydrogenation × GC.

    PubMed

    Delmonte, Pierluigi; Fardin-Kia, Ali Reza; Rader, Jeanne I

    2013-02-05

    The separation of fatty acid methyl esters (FAME) provided by a 200 m × 0.25 mm SLB-IL111 capillary column is enhanced by adding a second dimension of separation ((2)D) in a GC × GC design. Rather than employing two GC columns of different polarities or using different elution temperatures, the separation in the two-dimensional space is achieved by altering the chemical structure of selected analytes between the two dimensions of separation. A capillary tube coated with palladium is added between the first dimension of separation ((1)D) column and the cryogenic modulator, providing the reduction of unsaturated FAMEs to their fully saturated forms. The (2)D separation is achieved using a 2.5 m × 0.10 mm SLB-IL111 capillary column and separates FAMEs based solely on their carbon skeleton. The two-dimensional separation can be easily interpreted based on the principle that all the saturated FAMEs lie on a straight diagonal line bisecting the separation plane, while the FAMEs with the same carbon skeleton but differing in the number, geometric configuration or position of double bonds lie on lines parallel to the (1)D time axis. This technique allows the separation of trans fatty acids (FAs) and polyunsaturated FAs (PUFAs) in a single experiment and eliminates the overlap between PUFAs with different chain lengths. To our knowledge, this the first example of GC × GC in which a chemical change is instituted between the two dimensions to alter the relative retentions of components and identify unsaturated FAMEs.

  15. Clinical pharmacokinetic drug interaction studies of gabapentin enacarbil, a novel transported prodrug of gabapentin, with naproxen and cimetidine

    PubMed Central

    Lal, Ritu; Sukbuntherng, Juthamas; Luo, Wendy; Vicente, Virna; Blumenthal, Robin; Ho, Judy; Cundy, Kenneth C

    2010-01-01

    AIM Gabapentin enacarbil, a transported prodrug of gabapentin, provides sustained, dose-proportional exposure to gabapentin. Unlike gabapentin, the prodrug is absorbed throughout the intestinal tract by high-capacity nutrient transporters, including mono-carboxylate transporter-1 (MCT-1). Once absorbed, gabapentin enacarbil is rapidly hydrolyzed to gabapentin, which is subsequently excreted by renal elimination via organic cation transporters (OCT2). To examine the potential for drug–drug interactions at these two transporters, the pharmacokinetics of gabapentin enacarbil were evaluated in healthy adults after administration alone or in combination with either naproxen (an MCT-1 substrate) or cimetidine (an OCT2 substrate). METHODS Subjects (n= 12 in each study) received doses of study drug until steady state was achieved; 1200 mg gabapentin enacarbil each day, followed by either naproxen (500 mg twice daily) or cimetidine (400 mg four times daily) followed by the combination. RESULTS When gabapentin enacarbil was co-administered with naproxen, gabapentin Css,max increased by, on average, 8% and AUC by, on average, 13%. When gabapentin enacarbil was co-administered with cimetidine, gabapentin AUCss increased by 24% and renal clearance of gabapentin decreased. Co-administration with gabapentin enacarbil did not affect naproxen or cimetidine exposure. Gabapentin enacarbil was generally well tolerated. CONCLUSIONS No gabapentin enacarbil dose adjustment is needed with co-administration of naproxen or cimetidine. PMID:20573085

  16. Targeting mitochondria: Esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis.

    PubMed

    Wolfram, Ratna Kancana; Heller, Lucie; Csuk, René

    2018-05-25

    Triterpenoic acids, ursolic acid (1), oleanolic acid (2), glycyrrhetinic acid (3) and betulinic acid (4) were converted into their corresponding methyl 5-8 and benzyl esters 9-12 or benzyl amides 21-24. These derivatives served as starting materials for the synthesis of pink colored rhodamine B derivatives 25-36 which were screened for cytotoxicity in colorimetric SRB assays. All of the compounds were cytotoxic for a variety of human tumor cell lines. The activity of the benzyl ester derivatives 29-32 was lower than the cytotoxicity of the methyl esters 25-28. The benzyl amides 33-36 were the most cytotoxic compounds of this series. The most potential compound was a glycyrrhetinic acid rhodamine B benzyl amide 35. This compound showed activity against the different cancer cell lines in a two-digit to low three-digit nano-molar range. Staining experiments combined with fluorescence microscopy showed that this compound triggered apoptosis in A2780 ovarian carcinoma cells and acted as a mitocan. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. A Sulfated-Polysaccharide Fraction from Seaweed Gracilaria birdiae Prevents Naproxen-Induced Gastrointestinal Damage in Rats

    PubMed Central

    Silva, Renan O.; Santana, Ana Paula M.; Carvalho, Nathalia S.; Bezerra, Talita S.; Oliveira, Camila B.; Damasceno, Samara R. B.; Chaves, Luciano S.; Freitas, Ana Lúcia P.; Soares, Pedro M. G.; Souza, Marcellus H. L. P.; Barbosa, André Luiz R.; Medeiros, Jand-Venes R.

    2012-01-01

    Red seaweeds synthesize a great variety of sulfated galactans. Sulfated polysaccharides (PLSs) from seaweed are comprised of substances with pharmaceutical and biomedical potential. The aim of the present study was to evaluate the protective effect of the PLS fraction extracted from the seaweed Gracilaria birdiae in rats with naproxen-induced gastrointestinal damage. Male Wistar rats were pretreated with 0.5% carboxymethylcellulose (control group—vehicle) or PLS (10, 30, and 90 mg/kg, p.o.) twice daily (at 09:00 and 21:00) for 2 days. After 1 h, naproxen (80 mg/kg, p.o.) was administered. The rats were killed on day two, 4 h after naproxen treatment. The stomachs were promptly excised, opened along the greater curvature, and measured using digital calipers. Furthermore, the guts of the animals were removed, and a 5-cm portion of the small intestine (jejunum and ileum) was used for the evaluation of macroscopic scores. Samples of the stomach and the small intestine were used for histological evaluation, morphometric analysis and in assays for glutathione (GSH) levels, malonyldialdehyde (MDA) concentration, and myeloperoxidase (MPO) activity. PLS treatment reduced the macroscopic and microscopic naproxen-induced gastrointestinal damage in a dose-dependent manner. Our results suggest that the PLS fraction has a protective effect against gastrointestinal damage through mechanisms that involve the inhibition of inflammatory cell infiltration and lipid peroxidation. PMID:23342384

  18. A sulfated-polysaccharide fraction from seaweed Gracilaria birdiae prevents naproxen-induced gastrointestinal damage in rats.

    PubMed

    Silva, Renan O; Santana, Ana Paula M; Carvalho, Nathalia S; Bezerra, Talita S; Oliveira, Camila B; Damasceno, Samara R B; Chaves, Luciano S; Freitas, Ana Lúcia P; Soares, Pedro M G; Souza, Marcellus H L P; Barbosa, André Luiz R; Medeiros, Jand-Venes R

    2012-12-01

    Red seaweeds synthesize a great variety of sulfated galactans. Sulfated polysaccharides (PLSs) from seaweed are comprised of substances with pharmaceutical and biomedical potential. The aim of the present study was to evaluate the protective effect of the PLS fraction extracted from the seaweed Gracilaria birdiae in rats with naproxen-induced gastrointestinal damage. Male Wistar rats were pretreated with 0.5% carboxymethylcellulose (control group-vehicle) or PLS (10, 30, and 90 mg/kg, p.o.) twice daily (at 09:00 and 21:00) for 2 days. After 1 h, naproxen (80 mg/kg, p.o.) was administered. The rats were killed on day two, 4 h after naproxen treatment. The stomachs were promptly excised, opened along the greater curvature, and measured using digital calipers. Furthermore, the guts of the animals were removed, and a 5-cm portion of the small intestine (jejunum and ileum) was used for the evaluation of macroscopic scores. Samples of the stomach and the small intestine were used for histological evaluation, morphometric analysis and in assays for glutathione (GSH) levels, malonyldialdehyde (MDA) concentration, and myeloperoxidase (MPO) activity. PLS treatment reduced the macroscopic and microscopic naproxen-induced gastrointestinal damage in a dose-dependent manner. Our results suggest that the PLS fraction has a protective effect against gastrointestinal damage through mechanisms that involve the inhibition of inflammatory cell infiltration and lipid peroxidation.

  19. Encapsulation of Naproxen in Lipid-Based Matrix Microspheres: Characterization and Release Kinetics

    PubMed Central

    Bhoyar, PK; Morani, DO; Biyani, DM; Umekar, MJ; Mahure, JG; Amgaonkar, YM

    2011-01-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix. PMID:21731354

  20. Encapsulation of naproxen in lipid-based matrix microspheres: characterization and release kinetics.

    PubMed

    Bhoyar, P K; Morani, D O; Biyani, D M; Umekar, M J; Mahure, J G; Amgaonkar, Y M

    2011-04-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix.

  1. Methyl chloride and methyl bromide emissions from baking: an unrecognized anthropogenic source.

    PubMed

    Thornton, Brett F; Horst, Axel; Carrizo, Daniel; Holmstrand, Henry

    2016-05-01

    Methyl chloride and methyl bromide (CH3Cl and CH3Br) are the largest natural sources of chlorine and bromine, respectively, to the stratosphere, where they contribute to ozone depletion. We report the anthropogenic production of CH3Cl and CH3Br during breadbaking, and suggest this production is an abiotic process involving the methyl ester functional groups in pectin and lignin structural polymers of plant cells. Wide variations in baking styles allow only rough estimates of this flux of methyl halides on a global basis. A simple model suggests that CH3Br emissions from breadbaking likely peaked circa 1990 at approximately 200tonnes per year (about 0.3% of industrial production), prior to restrictions on the dough conditioner potassium bromate. In contrast, CH3Cl emissions from breadbaking may be of similar magnitude as acknowledged present-day CH3Cl industrial emissions. Because the mechanisms involve functional groups and compounds widely found in plant materials, this type of methyl halide production may occur in other cooking techniques as well. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Randomised clinical trial: gastrointestinal events in arthritis patients treated with celecoxib, ibuprofen or naproxen in the PRECISION trial.

    PubMed

    Yeomans, N D; Graham, D Y; Husni, M E; Solomon, D H; Stevens, T; Vargo, J; Wang, Q; Wisniewski, L M; Wolski, K E; Borer, J S; Libby, P; Lincoff, A M; Lüscher, T F; Bao, W; Walker, C; Nissen, S E

    2018-06-01

    To evaluate GI safety of celecoxib compared with 2 nonselective (ns) NSAIDs, as a secondary objective of a large trial examining multiorgan safety. This randomised, double-blind controlled trial analysed 24 081 patients. Osteoarthritis or rheumatoid arthritis patients, needing ongoing NSAID treatment, were randomised to receive celecoxib 100-200 mg b.d., ibuprofen 600-800 mg t.d.s. or naproxen 375-500 mg b.d. plus esomeprazole, and low-dose aspirin or corticosteroids if already prescribed. Clinically significant GI events (CSGIE-bleeding, obstruction, perforation events from stomach downwards or symptomatic ulcers) and iron deficiency anaemia (IDA) were adjudicated blindly. Mean treatment and follow-up durations were 20.3 and 34.1 months. While on treatment or 30 days after, CSGIE occurred in 0.34%, 0.74% and 0.66% taking celecoxib, ibuprofen and naproxen. Hazard ratios (HR) were 0.43 (95% CI 0.27-0.68, P = 0.0003) celecoxib vs ibuprofen and 0.51 (0.32-0.81, P = 0.004) vs naproxen. There was also less IDA on celecoxib: HR 0.43 (0.27-0.68, P = 0.0003) vs ibuprofen; 0.40 (0.25-0.62, P < 0.0001) vs naproxen. Even taken with low-dose aspirin, fewer CSGIE occurred on celecoxib than ibuprofen (HR 0.52 [0.29-0.94], P = 0.03), and less IDA vs naproxen (0.42 [0.23-0.77, P = 0.005]). Corticosteroid use increased total GI events and CSGIE. H. pylori serological status had no influence. Arthritis patients taking NSAIDs plus esomeprazole have infrequent clinically significant gastrointestinal events. Co-prescribed with esomeprazole, celecoxib has better overall GI safety than ibuprofen or naproxen at these doses, despite treatment with low-dose aspirin or corticosteroids. © 2018 John Wiley & Sons Ltd.

  3. Integrated multidimensional and comprehensive 2D GC analysis of fatty acid methyl esters.

    PubMed

    Zeng, Annie Xu; Chin, Sung-Tong; Marriott, Philip J

    2013-03-01

    Fatty acid methyl ester (FAME) profiling in complex fish oil and milk fat samples was studied using integrated comprehensive 2D GC (GC × GC) and multidimensional GC (MDGC). Using GC × GC, FAME compounds--cis- and trans-isomers, and essential fatty acid isomers--ranging from C18 to C22 in fish oil and C18 in milk fat were clearly displayed in contour plot format according to structural properties and patterns, further identified based on authentic standards. Incompletely resolved regions were subjected to MDGC, with Cn (n = 18, 20) zones transferred to a (2)D column. Elution behavior of C18 FAME on various (2)D column phases (ionic liquids IL111, IL100, IL76, and modified PEG) was evaluated. Individual isolated Cn zones demonstrated about four-fold increased peak capacities. The IL100 provided superior separation, good peak shape, and utilization of elution space. For milk fat-derived FAME, the (2)D chromatogram revealed at least three peaks corresponding to C18:1, more than six peaks for cis/trans-C18:2 isomers, and two peaks for C18:3. More than 17 peaks were obtained for the C20 region of fish oil-derived FAMEs using MDGC, compared with ten peaks using GC × GC. The MDGC strategy is useful for improved FAME isomer separation and confirmation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Structure and physicochemical characterization of a naproxen-picolinamide cocrystal.

    PubMed

    Kerr, Hannah E; Softley, Lorna K; Suresh, Kuthuru; Hodgkinson, Paul; Evans, Ivana Radosavljevic

    2017-03-01

    Naproxen (NPX) is a nonsteroidal anti-inflammatory drug with pain- and fever-relieving properties, currently marketed in the sodium salt form to overcome solubility problems; however, alternative solutions for improving its solubility across all pH values are desirable. NPX is suitable for cocrystal formation, with hydrogen-bonding possibilities via the COOH group. The crystal structure is presented of a 1:1 cocrystal of NPX with picolinamide as a coformer [systematic name: (S)-2-(6-methoxynaphthalen-2-yl)propanoic acid-pyridine-2-carboxamide (1/1), C 14 H 14 O 3 ·C 6 H 6 N 2 O]. The pharmaceutically relevant physical properties were investigated and the intrinsic dissolution rate was found to be essentially the same as that of commercial naproxen. An NMR crystallography approach was used to investigate the H-atom positions in the two crystallographically unique COOH-CONH hydrogen-bonded dimers. 1 H solid-state NMR distinguished the two carboxyl protons, despite the very similar crystallographic environments. The nature of the hydrogen bonding was confirmed by solid-state NMR and density functional theory calculations.

  5. Triphenyltin derivatives of sulfanylcarboxylic esters.

    PubMed

    Casas, José S; Couce, María D; Sánchez, Agustín; Seoane, Rafael; Sordo, José; Perez-Estévez, Antonio; Vázquez-López, Ezequiel

    2018-03-01

    The reaction of 3-(aryl)-2-sulfanylpropenoic acids [H 2 xspa; x: p=3-phenyl-, f=3-(2-furyl)-, t=3-(2-thienyl)-] with methanol or ethanol gave the corresponding methyl (Hxspme) or ethyl (Hxspee) esters. The reaction of these esters (HL) with triphenyltin(IV) hydroxide gave compounds of the type [SnPh 3 L], which were isolated and characterized as solids by elemental analysis, IR spectroscopy and mass spectrometry and in solution by multinuclear ( 1 H, 13 C and 119 Sn) NMR spectroscopy. The structures of [SnPh 3 (pspme)], [SnPh 3 (fspme)] and [SnPh 3 (fspee)] were determined by X-ray diffractometry and the antimicrobial activity against E. coli, S. aureus, B. subtilis, P. aeruginosa, Resistant P. aeruginosa (a strain resistant to 'carbapenem'), and C. albicans was tested and the in vitro cytotoxic activity against the HeLa-229, A2780 and A2780cis cell lines was determined for all compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Studies on the in vitro and in vivo hydrolysis and intramolecular aminolysis of L-aspartyl-l-phenylalanine methyl ester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouvette, R.E.

    The disposition and metabolism of L-aspartyl-L-(/sup 14/C-phenyl) alanine methyl ester (/sup 14/C-APM) was studied in male Sprague-Dawley rats after a single intragastric injection. Plasma levels of /sup 14/C-activity increased slowly within the first four hours after a 5 ..mu..Ci dose. Within 2 hours after injection 90% of the /sup 14/C-activity observed in the plasma was incorporated into precipitated proteins. HPLC analysis of the deproteinated plasma showed the /sup 14/C-activity present to be in the form of phenylalanine Disposition studies of /sup 14/C-APM 4 hours after a single intragastric dose showed the highest organs of /sup 14/C-accumulation to be the blood,more » liver, stomach, and small intestine. The molecular form of the /sup 14/C-activity in the tissues was not determined.« less

  7. Identification and Synthesis of Branched Wax-type Esters, Novel Surface Lipids from the Spider Argyrodes elevatus (Araneae: Theridiidae).

    PubMed

    Chinta, Satya Prabhakar; Goller, Stephan; Uhl, Gabriele; Schulz, Stefan

    2016-09-01

    The analysis of cuticular extracts from the kleptoparasitic spider Argyrodes elevatus revealed the presence of unusual esters, new for arthropods. These novel compounds proved to be methyl-branched long-chain fatty acid esters with methyl branches located either close or remote from the internally located ester group. The GC/MS analysis of the prosoma lipid blend from the male cuticle contained one major component, undecyl 2-methyltridecanoate (1). In contrast, four major wax-type esters, 2-methylundecyl 2,8-dimethylundecanoate (2), 2,8-dimethylundecyl 2,8-dimethylundecanoate (3), heptadecyl 4-methylheptanoate (4), and 14-methylheptadecyl 4-methylheptanoate (5), were identified in the lipid blend of female prosomata. Structure assignments were based on mass spectra, gas chromatographic retention indices, and microderivatization. Unambiguous proof of postulated structures was ensured by an independent synthesis of all five esters. Preferentially, odd-numbered carbon chains pointed to a distinct biosynthetic pathway, different from that of common fatty acids, because one or two C 3 starter units are incorporated during the biosynthesis of all acid and alcohol building blocks present in the five esters. The striking sexual dimorphism together with the unique biosynthesis points to a function of the esters in chemical communication of the spiders, although no behavioral data are currently available to test this assumption. © 2016 Wiley-VHCA AG, Zürich.

  8. Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing.

    PubMed

    Kadisch, Marvin; Schmid, Andreas; Bühler, Bruno

    2017-03-01

    Fatty acid methyl esters (FAMEs) originating from plant oils are most interesting renewable feedstocks for biofuels and bio-based materials. FAMEs can also be produced and/or functionalized by engineered microbes to give access to, e.g., polymer building blocks. Yet, they are often subject to hydrolysis yielding free fatty acids, which typically are degraded by microbes. We identified BioH as the key enzyme responsible for the hydrolysis of medium-chain length FAME derivatives in different E. coli K-12 strains. E. coli ΔbioH strains showed up to 22-fold reduced FAME hydrolysis rates in comparison with respective wild-type strains. Knockout strains showed, beside the expected biotin auxotrophy, unchanged growth behavior and biocatalytic activity. Thus, high specific rates (~80 U g CDW -1 ) for terminal FAME oxyfunctionalization catalyzed by a recombinant alkane monooxygenase could be combined with reduced hydrolysis. Biotransformations in process-relevant two-liquid phase systems profited from reduced fatty acid accumulation and/or reduced substrate loss via free fatty acid metabolization. The BioH knockout strategy was beneficial in all tested strains, although its effect was found to differ according to specific strain properties, such as FAME hydrolysis and FFA degradation activities. BioH or functional analogs can be found in virtually all microorganisms, making bioH deletion a broadly applicable strategy for efficient microbial bioprocessing involving FAMEs.

  9. Multispectroscopic investigation of the interaction of BSA and DNA with the anticancer drug, N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid methyl ester

    NASA Astrophysics Data System (ADS)

    Rajina, S. R.; Sudhi, Geethu; Austin, P.; Praveen, S. G.; Xavier, T. S.; Kenny, Peter T. M.; Binoy, J.

    2018-05-01

    The interaction of a drug with DNA and BSA play a great role in studying anti cancer activity and drug transport properties, which can be effectively, investigated using vibrational spectroscopy, UV visible spectroscopy and Fluorescence spectroscopy. The present work reports the structural features of N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid Methyl ester (FNGABME) based on FTIR and FTRaman spectroscopy. The absorption and fluorescence spectroscopic methods were used to study the efficiency of the interaction of the compound FNGABME with BSA and DNA and also molecular docking were performed computationally to validate the results which shows that the title compound may exhibit inhibitory activity against the cancer cells.

  10. Curcumin Blocks Naproxen-Induced Gastric Antral Ulcerations through Inhibition of Lipid Peroxidation and Activation of Enzymatic Scavengers in Rats.

    PubMed

    Kim, Jeong-Hwan; Jin, Soojung; Kwon, Hyun Ju; Kim, Byung Woo

    2016-08-28

    Curcumin is a polyphenol derived from the plant Curcuma longa, which is used for the treatment of diseases associated with oxidative stress and inflammation. The present study was undertaken to determine the protective effect of curcumin against naproxen-induced gastric antral ulcerations in rats. Different doses (10, 50, and 100 mg/kg) of curcumin or vehicle (curcumin, 0 mg/kg) were pretreated for 3 days by oral gavage, and then gastric mucosal lesions were caused by 80 mg/kg naproxen applied for 3 days. Curcumin significantly inhibited the naproxen-induced gastric antral ulcer area and lipid peroxidation in a dose-dependent manner. In addition, curcumin markedly increased activities of radical scavenging enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase in a dose-dependent manner. Specifically, 100 mg/kg curcumin completely protected the gastric mucosa against the loss in the enzyme, resulting in a drastic increase of activities of radical scavenging enzymes up to more than the level of untreated normal rats. Histological examination obviously showed that curcumin prevents naproxen-induced gastric antral ulceration as a result of direct protection of the gastric mucosa. These results suggest that curcumin blocks naproxen-induced gastric antral ulcerations through prevention of lipid peroxidation and activation of radical scavenging enzymes, and it may offer a potential remedy of gastric antral ulcerations.

  11. Rebamipide does not protect against naproxen-induced gastric damage: a randomized double-blind controlled trial.

    PubMed

    Gagliano-Jucá, Thiago; Moreno, Ronilson A; Zaminelli, Tiago; Napolitano, Mauro; Magalhães, Antônio Frederico N; Carvalhaes, Aloísio; Trevisan, Miriam S; Wallace, John L; De Nucci, Gilberto

    2016-06-04

    Rebamipide is a gastroprotective agent with promising results against gastric damage induced by non-steroidal anti-inflammatory drugs. The present study evaluated if rebamipide protects against naproxen-induced gastric damage in healthy volunteers. Changes in gastric PGE2 tissue concentration were also evaluated. After a preliminary endoscopy to rule out previous gastric macroscopic damage, twenty-four healthy volunteers of both sexes were divided into 2 groups. One group received sodium naproxen 550 mg b.i.d. plus placebo for 7 days, while the other group received sodium naproxen 550 mg b.i.d. plus rebamipide 100 mg b.i.d. At the end of treatment, a new endoscopy was performed. Gastric macroscopic damage was evaluated by the Cryer score and by the modified Lanza score. The primary outcome measure of the trial was the macroscopic damage observed in each treatment group at the end of treatment. Biopsies were collected at both endoscopies for PGE2 quantification and histopathological analysis (secondary outcomes). Tissue PGE2 was quantified by ELISA. The randomization sequence was generated using 3 blocks of 8 subjects each. Volunteers and endoscopists were blind to whether they were receiving rebamipide or placebo. All recruited volunteers completed the trial. Sodium naproxen induced gastric damage in both groups. At the end of the study, median Cryer score was 4 in both groups (Difference = 0; 95%CI = -1 to 0; p = 0.728). In the placebo group, the mean tissue PGE2 concentration was 1005 ± 129 pg/mL before treatment and 241 ± 41 pg/mL after treatment (p < 0.001). In the rebamipide group, the mean tissue PGE2 concentration was 999 ± 109 pg/mL before treatment, and 168 ± 13 pg/mL after treatment (p < 0.001). There was no difference in mean tissue PGE2 between the two groups (difference = 5; 95%CI from -334.870 to 345.650; p = 0.975). No significant change was observed at the histopathological evaluation, despite

  12. Features of the adsorption of naproxen enantiomers on weak chiral anion-exchangers in nonlinear chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asnin, Leonid; Kaczmarski, Krzysztof; Guiochon, Georges A

    The retention mechanism of the enantiomers of naproxen on a Pirkle-type chiral stationary phase (CSP) was studied. This CSP is made of a porous silica grafted with quinidine carbamate. It can interact with the weak organic electrolyte naproxen either by adsorbing it or by ion-exchange. Using frontal chromatography, we explored the adsorption equilibrium under such experimental conditions that naproxen dissociates or cannot dissociate. Under conditions preventing ionic dissociation, the adsorption isotherms were measured, the adsorption energy distributions determined, and the chromatographic profiles calculated. Three different types of the adsorption sites were found for both enantiomers. The density and the bindingmore » energy of these sites depend on the nature of the organic modifier. Different solute species, anions, neutral molecules, solvent-ion associates, and solute dimers can coexist in solution, giving rise to different forms of adsorption. This study showed the unexpected occurrence of secondary steps in the breakthrough profiles of S-naproxen in the adsorption mode at high concentrations. Being enantioselective, this phenomenon was assumed to result from the association of solute molecules involving a chiral selector moiety. A multisite Langmuir adsorption model was used to calculate band profiles. Although this model accounts excellently for the experimental adsorption isotherms, it does not explain all the features of the breakthrough profiles. A comparison between the calculated and experimental profiles allowed useful conclusions concerning the effects of the adsorbate-adsorbate and adsorbate-solvent interactions on the adsorption mechanism.« less

  13. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L.

    PubMed

    Chandrasekaran, M; Senthilkumar, A; Venkatesalu, V

    2011-07-01

    The fatty acid methyl esters (FAME extract) from Sesuvium (S.) portulacastrum was studied for its fatty acid composition and antimicrobial activity against human pathogenic microorganisms. The gas chromatographic analysis of FAME extract revealed the presence of palmitic acid with the highest relative percentage (31.18%), followed by oleic acid (21.15%), linolenic acid (14.18%) linoleic acid (10.63%), myristic acid (6.91%) and behenic acid (2.42%). The saturated fatty acids were higher than the unsaturated fatty acids. FAME extract showed the highest antibacterial and anticandidal activities and moderate antifungal activity against the tested microorganisms. The highest mean zone of inhibition (16.3 mm) and the lowest MIC (0.25 mg/ml) and MBC (0.5 mg/ml) values were recorded against Bacillus subtilis. The lowest mean zone of inhibition (8.8 mm) and the highest MIC (8 mg/ml) and MFC (16 mg/ml) values were recorded against Aspergillus fumigatus and Aspergillus niger. The results of the present study justify the use of S. portulacastrum in traditional medicine and the FAME extract can be used as a potential antimicrobial agent against the tested human pathogenic microorganisms.

  14. Synthesis of methyl esters from relevant palm products in near-critical methanol with modified-zirconia catalysts.

    PubMed

    Laosiripojana, N; Kiatkittipong, W; Sutthisripok, W; Assabumrungrat, S

    2010-11-01

    The transesterification and esterification of palm products i.e. crude palm oil (CPO), refined palm oil (RPO) and palm fatty acid distillate (PFAD) under near-critical methanol in the presence of synthesized SO(4)-ZrO(2), WO(3)-ZrO(2) and TiO(2)-ZrO(2) (with various sulfur- and tungsten loadings, Ti/Zr ratios, and calcination temperatures) were studied. Among them, the reaction of RPO with 20%WO(3)-ZrO(2) (calcined at 800 degrees C) enhanced the highest fatty acid methyl ester (FAME) yield with greatest stability after several reaction cycles; furthermore, it required shorter time, lower temperature and less amount of methanol compared to the reactions without catalyst. These benefits were related to the high acid-site density and tetragonal phase formation of synthesized WO(3)-ZrO(2). For further improvement, the addition of toluene as co-solvent considerably reduced the requirement of methanol to maximize FAME yield, while the addition of molecular sieve along with catalyst significantly increased FAME yield from PFAD and CPO due to the inhibition of hydrolysis reaction. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Two Double-Blind, Multicenter, Randomized, Placebo-Controlled, Single-Dose Studies of Sumatriptan/Naproxen Sodium in the Acute Treatment of Migraine: Function, Productivity, and Satisfaction Outcomes

    PubMed Central

    Landy, Stephen; DeRossett, Sarah E.; Rapoport, Alan; Rothrock, John; Ames, Michael H.; McDonald, Susan A.; Burch, Steven P.

    2007-01-01

    Objective To describe return to normal function, productivity, and satisfaction of patients with moderate or severe migraine attacks treated with combined sumatriptan/naproxen sodium, sumatriptan alone, naproxen sodium alone, or placebo. Patients, design, and setting Patients in 2 identical, US, phase 3, randomized, double-blind, parallel-group, placebo-controlled, single-dose, multicenter studies treated a single moderate or severe migraine attack with sumatriptan/naproxen sodium (85 mg sumatriptan formulated with RT Technology and 500 mg naproxen sodium in a single-tablet formulation), sumatriptan, naproxen sodium, or placebo. Main outcome measures Ability to function (not impaired, mildly impaired, severely impaired, or required bed rest) was collected in diary cards completed immediately prior to treatment, every 30 minutes for the first 2 hours, and hourly from 2 to 24 hours while awake. Patients completed the Productivity Assessment Questionnaire (PAQ) 24 hours after study drug administration. The Patient Perception of Migraine Questionnaire (PPMQ) was administered at screening and 24 hours post treatment to capture patient satisfaction. Results Compared with the other groups, the sumatriptan/naproxen sodium group reported significantly higher levels of normal or mildly impaired functioning as early as 2 and 4 hours after dosing. They also demonstrated greater reductions in workplace productivity loss compared with placebo in both studies, and were consistently more satisfied with their treatment compared with patients in other treatment groups and compared with their usual medications. Conclusions Treatment with sumatriptan/naproxen sodium allowed significantly more subjects to return to normal or mildly impaired functioning more quickly, and sumatriptan/naproxen sodium patients were significantly more satisfied with their treatment compared with other treatment groups. Overall productivity loss was significantly reduced following use of sumatriptan/naproxen

  16. Experimental analysis on thermally coated diesel engine with neem oil methyl ester and its blends

    NASA Astrophysics Data System (ADS)

    Karthickeyan, V.

    2018-07-01

    Depletion of fossil fuel has created a threat to the nation's energy policy, which in turn led to the development of new source renewable of energy. Biodiesel was considered as the most promising alternative to the traditional fossil fuel. In the present study, raw neem oil was considered as a principle source for the production of biodiesel and converted into Neem Oil Methyl Ester (NOME) using two stage transesterification process. The chemical compositions of NOME was analysed using Fourier Transform Infra-Red Spectroscopy (FTIR) and Gas Chromatography- Mass Spectrometry (GC-MS). Baseline readings were recorded with diesel, 25NOME (25% NOME with 75% diesel) and 50NOME (50% NOME with 50% diesel) in a direct injection, four stroke, water cooled diesel engine. Thermal Barrier Coating (TBC) was considered as a better technique for emission reduction in direct injection diesel engine. In the present study, Partially Stabilized Zirconia (PSZ) was used as a TBC material to coat the combustion chamber components like cylinder head, piston head and intake and exhaust valves. In coated engine, 25NOME showed better brake thermal efficiency and declined brake specific fuel consumption than 50NOME. Decreased exhaust emissions like CO, HC and smoke were observed with 25NOME in coated engine except NOx.

  17. Experimental analysis on thermally coated diesel engine with neem oil methyl ester and its blends

    NASA Astrophysics Data System (ADS)

    Karthickeyan, V.

    2018-01-01

    Depletion of fossil fuel has created a threat to the nation's energy policy, which in turn led to the development of new source renewable of energy. Biodiesel was considered as the most promising alternative to the traditional fossil fuel. In the present study, raw neem oil was considered as a principle source for the production of biodiesel and converted into Neem Oil Methyl Ester (NOME) using two stage transesterification process. The chemical compositions of NOME was analysed using Fourier Transform Infra-Red Spectroscopy (FTIR) and Gas Chromatography- Mass Spectrometry (GC-MS). Baseline readings were recorded with diesel, 25NOME (25% NOME with 75% diesel) and 50NOME (50% NOME with 50% diesel) in a direct injection, four stroke, water cooled diesel engine. Thermal Barrier Coating (TBC) was considered as a better technique for emission reduction in direct injection diesel engine. In the present study, Partially Stabilized Zirconia (PSZ) was used as a TBC material to coat the combustion chamber components like cylinder head, piston head and intake and exhaust valves. In coated engine, 25NOME showed better brake thermal efficiency and declined brake specific fuel consumption than 50NOME. Decreased exhaust emissions like CO, HC and smoke were observed with 25NOME in coated engine except NOx. [Figure not available: see fulltext.

  18. Broadband gain in poly(3-hexylthiophene):phenyl-C{sub 61}-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melancon, Justin M.; Živanović, Sandra R., E-mail: sz@latech.edu

    2014-10-20

    Substantial broadband photoconductive gain has been realized for organic, thin-film photodetectors with a poly(3-hexylthiophene):phenyl-C{sub 61}-butyric-acid-methyl-ester (P3HT:PCBM) active layer at low bias voltages. External quantum efficiencies upwards of 1500% were achieved when a semicontinuous gold layer was introduced at the anode interface. Significant gain was also observed in the sub-band gap, near infrared region where the external quantum efficiency approached 100% despite the lack of a sensitizer. The gain response was highly dependent on the thickness of the active layer of the photodetector with the best results achieved with the thinnest devices. The gain is the result of the injection ofmore » secondary electrons due to hole charge trapping at the semicontinuous gold layer.« less

  19. Diatomite-supported Pd-M (M=Cu, Co, Ni) bimetal nanocatalysts for selective hydrogenation of long-chain aliphatic esters.

    PubMed

    Huang, Changliang; Zhang, Hongye; Zhao, Yanfei; Chen, Sha; Liu, Zhimin

    2012-11-15

    Diatomite supported Pd-M (M=Cu, Co, Ni) bimetal nanocatalysts with various metal compositions were prepared and characterized by means of X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was demonstrated that the metal nanoparticles were uniformly distributed on the support, and their size was centered around 8 nm with a relatively narrow size distribution. The catalysts were used to catalyze hydrogenation of long-chain aliphatic esters, including methyl palmitate, methyl stearate, and methyl laurate. It was indicated that the all diatomite-supported Pd-based bimetal catalysts were active to the selective hydrogenation of long-chain esters to corresponding alcohols at 270°C, originated from the synergistic effect between the metal particles and the diatomite support. For the selective hydrogenation of methyl palmitate, Pd-Cu/diatomite with metal loading of 1% and Pd/Cu=3 displayed the highest performance, giving a 1-hexadecanol yield of 82.9% at the substrate conversion of 98.8%. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Comparison of the effect of naproxen, etodolac and diclofenac on postoperative sequels following third molar surgery: A randomised, double-blind, crossover study

    PubMed Central

    Akbulut, Nihat; Atakan, Cemal; Çölok, Gülümser

    2014-01-01

    Objectives: To compare the three non-steroidal anti-inflammatory agents (NSAIDs) diclofenac potassium, etodolac and naproxen sodium in relation to pain, swelling and trismus following impacted third molar surgery. Study Design: The study was a randomized and a double-blinded study which included 42 healthy young individuals with impacted third molars and bone retention. Patients were randomly assigned to 3 groups (n: 14) to which diclofenac potassium, naproxen sodium and etodolac were administered orally an hour before the operation. Impacted third molars were surgically extracted with local anaesthesia. Visual analog scales (VAS) were used to assess the pain in the 6th, 12th hours and on the 1st, 2nd, 3rd, 5th, and 7th days postoperatively. Swelling was evaluated using ultrasound (US) and mouth opening (trismus) was measured with a composing stick pre and post operatively on the 2nd and 7th days respectively. Results: Regarding pain alleviation, diclofenac potassium was better than naproxen sodium and naproxen sodium was better than etodolac but these differences were not statistically significant. US measurements showed that the swelling on postoperative 2nd day was significantly lowest with diclofenac potassium as compared to others (p= 0.027) while naproxen sodium and etodolac acted similarly (p=0.747). No difference was noted regarding trismus in any of the groups. Conclusions: NSAIDs (diclofenac, naproxen and etodolac) are somehow similarly effective for controlling pain and trismus following extraction of mandibular third molars but diclofenac potassium surpasses others in reduction of swelling. Key words:Diclofenac potassium, naproxen sodium, etodolac, impacted third molar surgery, pain, swelling, trismus. PMID:24316711

  1. Removal of naproxen and bezafibrate by activated sludge under aerobic conditions: kinetics and effect of substrates.

    PubMed

    Tang, Ying; Li, Xiao-Ming; Xu, Zhen-Cheng; Guo, Qing-Wei; Hong, Cheng-Yang; Bing, Yong-Xin

    2014-01-01

    Naproxen and bezafibrate fall into the category of pharmaceuticals that have been widely detected in the aquatic environment, and one of the major sources is the effluent discharge from wastewater treatment plants. This study investigated the sorption and degradation kinetics of naproxen and bezafibrate in the presence of activated sludge under aerobic conditions. Experimental results indicated that the adsorption of pharmaceuticals by activated sludge was rapid, and the relative adsorbabilities of the two-target compounds were based on their log Kow and pKa values. The adsorption data could be well interpreted by the pseudo-second-order kinetic model. The degradation process could be described by the pseudo-first-order kinetic model, whereas the pseudo-second-order kinetics were also well suited to describe the degradation process of the selected compounds at low concentrations. Bezafibrate was more easily degraded by activated sludge compared with naproxen. The spiked concentration of the two-target compounds was negatively correlated with k1 and k2s , indicating that the substrate inhibition effect occurred at the range of studied concentrations. Chemical oxygen demand (COD) did not associate with naproxen degradation; thus, COD is not an alternative method that could be applied to investigate natural organic matter's impact on degradation of pharmaceuticals by activated sludge. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  2. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response

    USDA-ARS?s Scientific Manuscript database

    The known members of the plant methyl esterase (MES) family catalyze hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid, and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated V...

  3. Fatty acid alkyl esters as solvents: An evaluation of the kauri-butanol value. Comparison to hydrocarbons, dimethyl diesters and other oxygenates

    USDA-ARS?s Scientific Manuscript database

    Esters, most commonly methyl esters, of vegetable oils or animal fats or other lipid feedstocks have found increasing use as an alternative diesel fuel known as biodiesel. However, biodiesel also has good solvent properties, a feature rendered additionally attractive by its biodegradability, low tox...

  4. Fatty Acid Methyl Ester (FAME) Succession in Different Substrates as Affected by the Co-Application of Three Pesticides.

    PubMed

    Cardinali, Alessandra; Pizzeghello, Diego; Zanin, Giuseppe

    2015-01-01

    In intensive agriculture areas the use of pesticides can alter soil properties and microbial community structure with the risk of reducing soil quality. In this study the fatty acid methyl esters (FAMEs) evolution has been studied in a factorial lab experiment combining five substrates (a soil, two aged composts and their mixtures) treated with a co-application of three pesticides (azoxystrobin, chlorotoluron and epoxiconazole), with two extraction methods, and two incubation times (0 and 58 days). FAMEs extraction followed the microbial identification system (MIDI) and ester-linked method (EL). The pesticides showed high persistence, as revealed by half-life (t1/2) values ranging from 168 to 298 days, which confirms their recalcitrance to degradation. However, t1/2 values were affected by substrate and compost age down to 8 days for chlorotoluron in S and up to 453 days for epoxiconazole in 12M. Fifty-six FAMEs were detected. Analysis of variance (ANOVA) showed that the EL method detected a higher number of FAMEs and unique FAMEs than the MIDI one, whereas principal component analysis (PCA) highlighted that the monosaturated 18:1ω9c and cyclopropane 19:0ω10c/19ω6 were the most significant FAMEs grouping by extraction method. The cyclopropyl to monoenoic acids ratio evidenced higher stress conditions when pesticides were applied to compost and compost+soil than solely soil, as well as with final time. Overall, FAMEs profiles showed the importance of the extraction method for both substrate and incubation time, the t1/2 values highlighted the effectiveness of solely soil and the less mature compost in reducing the persistence of pesticides.

  5. Mucosal healing effect of mesalazine granules in naproxen-induced small bowel enteropathy

    PubMed Central

    Rácz, István; Szalai, Milán; Kovács, Valéria; Regőczi, Henriett; Kiss, Gyöngyi; Horváth, Zoltán

    2013-01-01

    AIM: To investigate the effect of mesalazine granules on small intestinal injury induced by naproxen using capsule endoscopy (CE). METHODS: This was a single center, non-randomized, open-label, uncontrolled pilot study, using the PillCam SB CE system with RAPID 5 software. The Lewis Index Score (LIS) for small bowel injury was investigated to evaluate the severity of mucosal injury. Arthropathy patients with at least one month history of daily naproxen use of 1000 mg and proton pump inhibitor co-therapy were screened. Patients with a minimum LIS of 135 were eligible to enter the 4-wk treatment phase of the study. During this treatment period, 3 × 1000 mg/d mesalazine granules were added to ongoing therapies of 1000 mg/d naproxen and 20 mg/d omeprazole. At the end of the 4-wk combined treatment period, a second small bowel CE was performed to re-evaluate the enteropathy according to the LIS results. The primary objective of this study was to assess the mucosal changes after 4 wk of mesalazine treatment. RESULTS: A total of 18 patients (16 females), ranging in age from 46 to 78 years (mean age 60.3 years) were screened, all had been taking 1000 mg/d naproxen for at least one month. Eight patients were excluded from the mesalazine therapeutic phase of the study for the following reasons: the screening CE showed normal small bowel mucosa or only insignificant damages (LIS < 135) in five patients, the screening esophagogastroduodenoscopy revealed gastric ulcer in one patient, capsule technical failure and incomplete CE due to poor small bowel cleanliness in two patients. Ten patients (9 female, mean age 56.2 years) whose initial LIS reached mild and moderate-to-severe enteropathy grades (between 135 and 790 and ≥ 790) entered the 4-wk therapeutic phase and a repeat CE was performed. When comparing the change in LIS from baseline to end of treatment in all patients, a marked decrease was seen (mean LIS: 1236.4 ± 821.9 vs 925.2 ± 543.4, P = 0.271). Moreover, a

  6. Naproxcinod shows significant advantages over naproxen in the mdx model of Duchenne Muscular Dystrophy.

    PubMed

    Miglietta, Daniela; De Palma, Clara; Sciorati, Clara; Vergani, Barbara; Pisa, Viviana; Villa, Antonello; Ongini, Ennio; Clementi, Emilio

    2015-08-22

    In dystrophin-deficient muscles of Duchenne Muscular Dystrophy (DMD) patients and the mdx mouse model, nitric oxide (NO) signalling is impaired. Previous studies have shown that NO-donating drugs are beneficial in dystrophic mouse models. Recently, a long-term treatment (9 months) of mdx mice with naproxcinod, an NO-donating naproxen, has shown a significant improvement of the dystrophic phenotype with beneficial effects present throughout the disease progression. It remains however to be clearly dissected out which specific effects are due to the NO component compared with the anti-inflammatory activity associated with naproxen. Understanding the contribution of NO vs the anti-inflammatory effect is important, in view of the potential therapeutic perspective, and this is the final aim of this study. Five-week-old mdx mice received either naproxcinod (30 mg/kg) or the equimolar dose of naproxen (20 mg/kg) in the diet for 6 months. Control mdx mice were used as reference. Treatments (or vehicle for control groups) were administered daily in the diet. For the first 3 months the study was performed in sedentary animals, then all mice were subjected to exercise until the sixth month. Skeletal muscle force was assessed by measuring whole body tension in sedentary animals as well as in exercised mice and resistance to fatigue was measured after 3 months of running exercise. At the end of 6 months of treatment, animals were sacrificed for histological analysis and measurement of naproxen levels in blood and skeletal muscle. Naproxcinod significantly ameliorated skeletal muscle force and resistance to fatigue in sedentary as well as in exercised mice, reduced inflammatory infiltrates and fibrosis deposition in both cardiac and diaphragm muscles. Conversely, the equimolar dose of naproxen showed no effects on fibrosis and improved muscle function only in sedentary mice, while the beneficial effects in exercised mice were lost demonstrating a limited and short

  7. Modelling of pain intensity and informative dropout in a dental pain model after naproxcinod, naproxen and placebo administration

    PubMed Central

    Björnsson, Marcus A; Simonsson, Ulrika S H

    2011-01-01

    AIMS To describe pain intensity (PI) measured on a visual analogue scale (VAS) and dropout due to request for rescue medication after administration of naproxcinod, naproxen or placebo in 242 patients after wisdom tooth removal. METHODS Non-linear mixed effects modelling was used to describe the plasma concentrations of naproxen, either formed from naproxcinod or from naproxen itself, and their relationship to PI and dropout. Goodness of fit was assessed by simultaneous simulations of PI and dropout. RESULTS Baseline PI for the typical patient was 52.7 mm. The PI was influenced by placebo effects, using an exponential model, and by naproxen concentrations using a sigmoid Emax model. Typical maximal placebo effect was a decrease in PI by 20.2%, with an onset rate constant of 0.237 h−1. EC50 was 0.135 µmol l−1. A Weibull time-to-event model was used for the dropout, where the hazard was dependent on the predicted PI and by the PI at baseline. Since the dropout was not at random, it was necessary to include the simulated dropout in visual predictive checks (VPC) of PI. CONCLUSIONS This model describes the relationship between drug effects, PI and the likelihood of dropout after naproxcinod, naproxen and placebo administration. The model provides an opportunity to describe the effects of other doses or formulations, after dental extraction. VPC created by simultaneous simulations of PI and dropout provides a good way of assessing the goodness of fit when there is informative dropout. PMID:21272053

  8. Kinetics of the hydrolysis of N-benzoyl-l-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolyses

    PubMed Central

    Wharton, Christopher W.; Cornish-Bowden, Athel; Brocklehurst, Keith; Crook, Eric M.

    1974-01-01

    1. N-Benzoyl-l-serine methyl ester was synthesized and evaluated as a substrate for bromelain (EC 3.4.22.4) and for papain (EC 3.4.22.2). 2. For the bromelain-catalysed hydrolysis at pH7.0, plots of [S0]/vi (initial substrate concn./initial velocity) versus [S0] are markedly curved, concave downwards. 3. Analysis by lattice nomography of a modifier kinetic mechanism in which the modifier is substrate reveals that concave-down [S0]/vi versus [S0] plots can arise when the ratio of the rate constants that characterize the breakdown of the binary (ES) and ternary (SES) complexes is either less than or greater than 1. In the latter case, there are severe restrictions on the values that may be taken by the ratio of the dissociation constants of the productive and non-productive binary complexes. 4. Concave-down [S0]/vi versus [S0] plots cannot arise from compulsory substrate activation. 5. Computational methods, based on function minimization, for determination of the apparent parameters that characterize a non-compulsory substrate-activated catalysis are described. 6. In an attempt to interpret the catalysis by bromelain of the hydrolysis of N-benzoyl-l-serine methyl ester in terms of substrate activation, the general substrate-activation model was simplified to one in which only one binary ES complex (that which gives rise directly to products) can form. 7. In terms of this model, the bromelain-catalysed hydrolysis of N-benzoyl-l-serine methyl ester at pH7.0, I=0.1 and 25°C is characterized by Km1 (the dissociation constant of ES)=1.22±0.73mm, k (the rate constant for the breakdown of ES to E+products, P)=1.57×10−2±0.32×10−2s−1, Ka2 (the dissociation constant that characterizes the breakdown of SES to ES and S)=0.38±0.06m, and k′ (the rate constant for the breakdown of SES to E+P+S)=0.45±0.04s−1. 8. These parameters are compared with those in the literature that characterize the bromelain-catalysed hydrolysis of α-N-benzoyl-l-arginine ethyl ester and

  9. Bioconcentration of haloxyfop-methyl in bluegill (Lepomis macrochirus Rafinesque)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, P.G.; Lutenske, N.E.

    1990-01-01

    Bluegill (Lepomis macrochirus Rafinesque) were exposed to a {sup 14}C haloxyfop-methyl (methyl 2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoate) concentration averaging 0.29 {mu}g/L under flow-through conditions for 28 days. At the end of 28 days, the fish were transferred to clean water for a 4-day flow-through clearance period. Bluegill were found to rapidly absorb the ester from water which was then biotransformed at an extremely fast rate within the fish, such that essentially no haloxyfop-methyl was detected in the fish. The estimated bioconcentration factor for haloxyfop-methyl in whole fish was <17, based upon the detection limit for the ester in fish (0.005 {mu}g/g) and the averagemore » concentration of haloxyfop-methyl in exposure water (0.29 {mu}g/L). The principal component of the {sup 14}C residue within whole fish was haloxyfop acid (2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoic acid) which accounted for an average of about 60% of the total radioactivity. The high rate of biotransformation of the parent compound within the fish demonstrates the importance of basing the bioconcentration factor upon the actual concentration of parent material within the organism rather than the total radioactive residue levels for bioconcentration studies with radiolabeled compounds.« less

  10. Metabolism of captopril carboxyl ester derivatives for percutaneous absorption.

    PubMed

    Gullick, Darren R; Ingram, Matthew J; Pugh, W John; Cox, Paul A; Gard, Paul; Smart, John D; Moss, Gary P

    2009-02-01

    To determine the metabolism of captopril n-carboxyl derivatives and how this may impact on their use as transdermal prodrugs. The pharmacological activity of the ester derivatives was also characterised in order to compare the angiotensin converting enzyme inhibitory potency of the derivatives compared with the parent drug, captopril. The metabolism rates of the ester derivatives were determined in vitro (using porcine liver esterase and porcine ear skin) and in silico (using molecular modelling to investigate the potential to predict metabolism). Relatively slow pseudo first-order metabolism of the prodrugs was observed, with the ethyl ester displaying the highest rate of metabolism. A strong relationship was established between in-vitro methods, while in-silico methods support the use of in-vitro methods and highlight the potential of in-silico techniques to predict metabolism. All the prodrugs behaved as angiotensin converting enzyme inhibitors, with the methyl ester displaying optimum inhibition. In-vitro porcine liver esterase metabolism rates inform in-vitro skin rates well, and in-silico interaction energies relate well to both. Thus, in-silico methods may be developed that include interaction energies to predict metabolism rates.

  11. Efficacy and safety of flavocoxid, a novel therapeutic, compared with naproxen: a randomized multicenter controlled trial in subjects with osteoarthritis of the knee.

    PubMed

    Levy, Robert M; Khokhlov, Alexander; Kopenkin, Sergey; Bart, Boris; Ermolova, Tatiana; Kantemirova, Raiasa; Mazurov, Vadim; Bell, Marjorie; Caldron, Paul; Pillai, Lakshmi; Burnett, Bruce P

    2010-10-01

    Flavocoxid is a novel flavonoid-based "dual inhibitor" of the 5-lipoxygenase (5-LOX) enzyme and the cyclooxygenase (COX) enzymes. This study was designed to compare the effectiveness and safety of flavocoxid to naproxen in subjects with moderate to severe osteoarthritis (OA) of the knee. In this randomized, multicenter, double-blind study, 220 subjects were assigned to receive either flavocoxid (500 mg twice daily) or naproxen (500 mg twice daily) for 12 weeks. The trial was structured to show noninferiority of flavocoxid to naproxen. Primary outcome measures included the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and subscales and a timed walk. More than 90% of the subjects in both groups noted significant reduction in the signs and symptoms of knee OA. There were no statistically significant differences in efficacy between the flavocoxid and naproxen groups when the entire intent-to-treat population was analyzed. The flavocoxid group had significantly fewer upper gastrointestinal (UGI) and renal (edema) adverse events (AEs) as well as a strong trend toward fewer respiratory AEs. Flavocoxid, a first-in-class flavonoid-based therapeutic that inhibits COX-1 and COX-2 as well as 5-LOX, was as effective as naproxen in managing the signs and symptoms of OA of the knee. Flavocoxid demonstrated better UGI, renal (edema), and respiratory safety profiles than naproxen.

  12. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters.

    PubMed

    Tixier, Céline; Singer, Heinz P; Oellers, Sjef; Müller, Stephan R

    2003-03-15

    Although various single-concentration measurements of pharmaceuticals are available in the literature, detailed information on the variation over time of the concentration and the load in wastewater effluents and rivers and on the fate of these compounds in the aquatic environment are lacking. We measured the concentrations of six pharmaceuticals, carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen, in the effluents of three wastewater treatment plants (WWTPs), in two rivers and in the water column of Lake Greifensee (Switzerland) over a time period of three months. In WWTP effluents, the concentrations reached 0.95 microg/L for carbamazepine, 0.06 microg/L for clofibric acid, 0.99 microg/L for diclofenac, 1.3 microg/L for ibuprofen, 0.18 microg/L for ketoprofen, and 2.6 microg/L for naproxen. The relative importance in terms of loads was carbamazepine, followed by diclofenac, naproxen, ibuprofen, clofibric acid, and ketoprofen. An overall removal rate of all these pharmaceuticals was estimated in surface waters, under real-world conditions (in a lake), using field measurements and modeling. Carbamazepine and clofibric acid were fairly persistent. Phototransformation was identified as the main elimination process of diclofenac in the lake water during the study period. With a relatively high sorption coefficient to particles, ibuprofen might be eliminated by sedimentation. For ketoprofen and naproxen, biodegradation and phototransformation might be elimination processes. For the first time, quantitative data regarding removal rates were determined in surface waters under real-world conditions. All these findings are important data for a risk assessment of these compounds in surface waters.

  13. Improving the performance and emission characteristics of a single cylinder diesel engine having reentrant combustion chamber using diesel and Jatropha methyl esters.

    PubMed

    Premnath, S; Devaradjane, G

    2015-11-01

    The emissions from the Compression ignition (CI) engines introduce toxicity to the atmosphere. The undesirable carbon deposits from these engines are realized in the nearby static or dynamic systems such as vehicles, inhabitants, etc. The objective of this research work is to improve the performance and emission characteristics of a diesel engine in the modified re-entrant combustion chamber using a diesel and Jatropha methyl ester blend (J20) at three different injection pressures. From the literature, it is revealed that the shape of the combustion chamber and the fuel injection pressure have an impact on the performance and emission parameters of the CI engine. In this work, a re-entrant combustion chamber with three different fuel injection pressures (200, 220 and 240bars) has been used in the place of the conventional hemispherical combustion chamber for diesel and J20. From the experimental results, it is found that the re-entrant chamber improves the brake thermal efficiency of diesel and J20 in all the tested conditions. It is also found that the 20% blend of Jatropha methyl ester showed 4% improvement in the brake thermal efficiency in the re-entrant chamber at the maximum injection pressure. Environmental safety directly relates to the reduction in the undesirable effects on both living and non-living things. Currently environmental pollution is of major concern. Even with the stringent emission norms new methods are required to reduce the harmful effects from automobiles. The toxicity of carbon monoxide (CO) is well known. In the re-entrant combustion chamber, the amount of CO emission is reduced by 26% when compared with the conventional fuel operation of the engine. Moreover, the amount of smoke is reduced by 24% and hydrocarbons (HC) emission by 24%. Thus, the modified re-entrant combustion chamber reduces harmful pollutants such as unburned HC and CO as well as toxic smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Mixed-Salt/Ester Electrolytes for Low-Temperature Li+ Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2006-01-01

    Electrolytes comprising, variously, LiPF6 or LiPF6 plus LiBF4 dissolved at various concentrations in mixtures of alkyl carbonates and alkyl esters have been found to afford improved low-temperature performance in rechargeable lithium-ion electrochemical cells. These and other electrolytes have been investigated in a continuing effort to extend the lower limit of operating temperatures of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles, the most recent being Ester-Based Electrolytes for Low-Temperature Li-Ion Cells (NPO-41097), NASA Tech Briefs, Vol. 29, No. 12 (December 2005), page 59. The ingredients of the solvent mixtures include ethylene carbonate (EC), ethyl methyl carbonate (EMC), methyl butyrate (MB), and methyl propionate (MP). The electrolytes were placed in Li-ion cells containing carbon anodes and LiNi0.8Co0.2O2 cathodes, and the electrical performances of the cells were measured over a range of temperatures down to 60 C. The electrolytes that yielded the best low-temperature performances were found to consist, variously, of 1.0 M LiPF6 + 0.4 M LiBF4 or 1.4 LiPF6 in 1EC + 1EMC + 8MP or 1EC + 1EMC + 8MB, where the concentrations of the salts are given in molar units and the proportions of the solvents are by relative volume.

  15. Molecular view of the structural reorganization of water in DPPC multilamellar membranes induced by L-cysteine methyl ester

    NASA Astrophysics Data System (ADS)

    Arias, Juan Marcelo; Tuttolomondo, María Eugenia; Díaz, Sonia Beatriz; Altabef, Aida Ben

    2018-03-01

    In order to study the interaction between L-cysteine methyl ester (CM) and multilamellar vesicles (MLV's) of DPPC, an extensive study was made by various techniques such as Infrared and Raman spectroscopy and Differential Scanning Calorimetry (DSC). Our results revealed by the different techniques used that CM interacts with the DPPC in the region of the polar head, specifying with the phosphate groups, replacing water molecules of hydration by modifying the hydration of the polar head. By Infrared spectroscopy and DSC we observed an increase in the main transition temperature (Tm) and a gradual loss of the pre-transition (Tp) with the increase of the molar ratio CM:DPPC. Of the analyzed, we can conclude that the interaction of CM with DPPC alters the degree of hydration of the membrane altering properties of the same as the transition temperature. Moreover, the results of the thiol site behavior in CM interacting in the CM/DPPC complex will be reveal the possibility of unknown functional roles of the lipidic components of the membrane.

  16. Apoptosis and expression of cytokines triggered by pyropheophorbide-a methyl ester-mediated photodynamic therapy in nasopharyngeal carcinoma cells.

    PubMed

    Li, K M; Sun, X; Koon, H K; Leung, W N; Fung, M C; Wong, R N S; Lung, Maria L; Chang, C K; Mak, N K

    2006-12-01

    The photodynamic properties of pyropheophorbide-a methyl ester (MPPa), a semi-synthetic photosensitizer derived from chlorophyll a, were evaluated in a human nasopharyngeal carcinoma HONE-1 cell line. MPPa was non-toxic to the HONE-1. At the concentrations of 0.5-2μM, MPPa-mediated a drug dose-dependent photocytotoxicity in the HONE-1 cells. Confocal microscopy revealed a subcellular localization of MPPa in mitochondria and the Golgi apparatus. MPPa PDT-induced apoptosis was associated with the collapse of mitochondrial membrane potential, release of cytochrome c, the up-regulation of endoplasmic reticulum (ER) stress proteins (calnexin, Grp 94 and Grp78), and the activation of caspases-3 and -9. The photocytotoxicity was reduced by the corresponding specific caspase inhibitors. MPPa PDT-treated HONE-1 cells also up-regulated the gene expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and beta-chemokines (MIP-1β, MPIF-1, and MPIF-2). These results suggest that the MPPa may be developed as a chlorophyll-based photosensitizer for the treatment of nasopharyngeal carcinoma.

  17. Effect of thermal barrier coating with various blends of pumpkin seed oil methyl ester in DI diesel engine

    NASA Astrophysics Data System (ADS)

    Karthickeyan, V.; Balamurugan, P.

    2017-10-01

    The rise in oil prices, dependency on fossil fuels, degradation of non-renewable energy resources and global warming strives to find a low-carbon content alternative fuel to the conventional fuel. In the present work, Partially Stabilized Zirconia (PSZ) was used as a thermal barrier coating in piston head, cylinder head and intake and exhaust valves using plasma spray technique, which provided a rise in combustion chamber temperature. With the present study, the effects of thermal barrier coating on the blends of Pumpkin Seed Oil Methyl Ester (PSOME) were observed in both the coated and uncoated engine. Performance and emission characteristics of the PSOME in coated and uncoated engines were observed and compared. Increased thermal efficiency and reduced fuel consumption were observed for B25 and diesel in coated and uncoated engine. On comparing with the other biodiesel samples, B25 exhibited lower HC, NOx and smoke emissions in thermally coated engine than uncoated engine. After 100 h of operation, no anamolies were found in the thermally coated components except minor cracks were identified in the edges of the piston head.

  18. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent.

    PubMed

    Kojima, Seiji; Du, Dongning; Sato, Masayasu; Park, Enoch Y

    2004-01-01

    Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.

  19. Synthesis of fatty acid methyl ester from palm oil (Elaeis guineensis) with Ky(MgCa)2xO3 as heterogeneous catalyst.

    PubMed

    Olutoye, M A; Lee, S C; Hameed, B H

    2011-12-01

    Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Retention behaviour of polyunsaturated fatty acid methyl esters on porous graphitic carbon.

    PubMed

    Gaudin, Karen; Hanai, Toshihiko; Chaminade, Pierre; Baillet, Arlette

    2007-07-20

    Retention with porous graphitic carbon was investigated with 25 structures of fatty acid methyl esters (FAMEs) with two different mobile phases: CH(3)CN:CHCl(3) 60:40 (v/v) and CH(3)OH:CHCl(3) 60:40 (v/v) with both 0.1% triethylamine (TEA) and an equimolar amount of HCOOH. Preliminary results showed that the use of TEA/HCOOH led to the response increase of saturated FAMEs with evaporative light scattering detection. No increase was observed for unsaturated one. These modifiers may slightly reduce the retention of FAMEs but did not significantly modify the separation factor with porous graphitic carbon. Thermodynamic parameters were calculated for each structure using Van't Hoff plot measured over the temperature range from 10 to 50 degrees C, with the both mobile phase conditions. All the studied compounds were found linked by the same retention mechanism on porous graphitic carbon. Quantitative in silico analysis of the retention using a molecular mechanics calculation demonstrated a good correlation between the retention factors and the molecular interaction energy values (r>0.93). Especially the Van der Waals energy was predominant, and the contribution of electrostatic energy was negligible for the quantitative analysis of the retention. The results indicate that Van der Waals force, hydrophobic interaction, is predominant for the retention of FAMEs on this packing material. The relative retention for highly unsaturated homologues can be changed by the selection of the weak solvent CH(3)CN or CH(3)OH. Then isomers differing only in the position of the carbon double bond on the alkyl chain can be separated and their behaviour is summarised as the closer the carbon double bonds to the FAME polar head, the more the retention decreases. Finally, the more important the number of carbon double bonds in the alkyl chain is, the smaller the retention is.

  1. Use of DMPC and DSPC lipids for verapamil and naproxen permeability studies by PAMPA.

    PubMed

    Alvarez-Figueroa, M J; Contreras-Garrido, B C; Soto-Arriaza, M A

    2015-04-01

    Verapamil and naproxen Parallel Artificial Membrane Permeability Assay (PAMPA) permeability was studied using lipids not yet reported for this model in order to facilitate the quantification of drug permeability. These lipids are 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and an equimolar mixture of DMPC/DSPC, both in the absence and in the presence of 33.3 mol% of cholesterol. PAMPA drug permeability using the lipids mentioned above was compared with lecithin-PC. The results show that verapamil permeability depends on the kind of lipid used, in the order DMPC > DMPC/DSPC > DSPC. The permeability of the drugs was between 1.3 and 3.5-times larger than those obtained in lecithin-PC for all the concentrations of the drug used. Naproxen shows similar permeability than verapamil; however, the permeability increased with respect to lecithin-PC only when DMPC and DMPC/DSPC were used. This behavior could be explained by a difference between the drug net charge at pH 7.4. On the other hand, in the presence of cholesterol, verapamil permeability increases in all lipid systems; however, the relative verapamil permeability respect to lecithin-PC did not show any significant increase. This result is likely due to the promoting effect of cholesterol, which is not able to compensate for the large increase in verapamil permeability observed in lecithin-PC. With respect to naproxen, its permeability value and relative permeability respect lecithin-PC not always increased in the presence of cholesterol. This result is probably attributed to the negative charge of naproxen rather than its molecular weight. The lipid systems studied have an advantage in drug permeability quantification, which is mainly related to the charge of the molecule and not to its molecular weight or to cholesterol used as an absorption promoter.

  2. Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate Esters)

    DTIC Science & Technology

    2014-10-01

    Distribution A: Approved for public release; distribution is unlimited. 1 Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate...when analogous networks containing a single methyl group ortho- to each aryl- cyanurate linkage were prepared by reduction and acid-catalyzed coupling...of salicylic acid followed by treatment with cyanogen bromide and subsequent cyclotrimerization. The differences in water uptake were observed

  3. Fatty acid methyl ester (FAME) technology for monitoring biological foaming in activated sludge: full scale plant verification.

    PubMed

    Lee, J W; Cha, D K; Kim, I; Son, A; Ahn, K H

    2008-02-01

    Fatty acid methyl ester (FAME) technology was evaluated as a monitoring tool for quantification of Gordonia amarae in activated sludge systems. The fatty acid, 19:1 alcohol, which was identified as a unique fatty acid in G. amarae was not only confirmed to be present in foaming plant samples, but the quantity of the signature peak correlated closely with the degree of foaming. Foaming potential experiment provided a range of critical foaming levels that corresponded to G. amarae population. This range of critical Gordonia levels was correlated to the threshold signature FAME amount. Six full-scale wastewater treatment plants were selected based on a survey to participate in our full-scale study to evaluate the potential application of the FAME technique as the Gordonia monitoring tool. Greater amounts of signature FAME were extracted from the mixed liquor samples obtained from treatment plants experiencing Gordonia foaming problems. The amounts of signature FAME correlated well with the conventional filamentous counting technique. These results demonstrated that the relative abundance of the signature FAMEs can be used to quantitatively monitor the abundance of foam-causing microorganism in activated sludge.

  4. Mechanism of falcipain-2 inhibition by α,β-unsaturated benzo[1,4]diazepin-2-one methyl ester

    NASA Astrophysics Data System (ADS)

    Grazioso, Giovanni; Legnani, Laura; Toma, Lucio; Ettari, Roberta; Micale, Nicola; De Micheli, Carlo

    2012-09-01

    Falcipain-2 (FP-2) is a papain-family cysteine protease of Plasmodium falciparum whose primary function is to degrade the host red cell hemoglobin, within the food vacuole, in order to provide free amino acids for parasite protein synthesis. Additionally it promotes host cell rupture by cleaving the skeletal proteins of the erythrocyte membrane. Therefore, the inhibition of FP-2 represents a promising target in the search of novel anti-malarial drugs. A potent FP-2 inhibitor, characterized by the presence in its structure of the 1,4-benzodiazepine scaffold and an α,β-unsaturated methyl ester moiety capable to react with the Cys42 thiol group located in the active site of FP-2, has been recently reported in literature. In order to study in depth the inhibition mechanism triggered by this interesting compound, we carried out, through ONIOM hybrid calculations, a computational investigation of the processes occurring when the inhibitor targets the enzyme and eventually leads to an irreversible covalent Michael adduct. Each step of the reaction mechanism has been accurately characterized and a detailed description of each possible intermediate and transition state along the pathway has been reported.

  5. Rapid identification of fatty acid methyl esters using a multidimensional gas chromatography-mass spectrometry database.

    PubMed

    Härtig, Claus

    2008-01-04

    A multidimensional approach for the identification of fatty acid methyl esters (FAME) based on GC/MS analysis is described. Mass spectra and retention data of more than 130 FAME from various sources (chain lengths in the range from 4 to 24 carbon atoms) were collected in a database. Hints for the interpretation of FAME mass spectra are given and relevant diagnostic marker ions are deduced indicating specific groups of fatty acids. To verify the identity of single species and to ensure an optimized chromatographic resolution, the database was compiled with retention data libraries acquired on columns of different polarity (HP-5, DB-23, and HP-88). For a combined use of mass spectra and retention data standardized methods of measurement for each of these columns are required. Such master methods were developed and always applied under the conditions of retention time locking (RTL) which allowed an excellent reproducibility and comparability of absolute retention times. Moreover, as a relative retention index system, equivalent chain lengths (ECL) of FAME were determined by linear interpolation. To compare and to predict ECL values by means of structural features, fractional chain lengths (FCL) were calculated and fitted as well. As shown in an example, the use of retention data and mass spectral information together in a database search leads to an improved and reliable identification of FAME (including positional and geometrical isomers) without further derivatizations.

  6. Fatty Acid Methyl Ester (FAME) Succession in Different Substrates as Affected by the Co-Application of Three Pesticides

    PubMed Central

    Cardinali, Alessandra; Pizzeghello, Diego; Zanin, Giuseppe

    2015-01-01

    Introduction In intensive agriculture areas the use of pesticides can alter soil properties and microbial community structure with the risk of reducing soil quality. Materials and Methods In this study the fatty acid methyl esters (FAMEs) evolution has been studied in a factorial lab experiment combining five substrates (a soil, two aged composts and their mixtures) treated with a co-application of three pesticides (azoxystrobin, chlorotoluron and epoxiconazole), with two extraction methods, and two incubation times (0 and 58 days). FAMEs extraction followed the microbial identification system (MIDI) and ester-linked method (EL). Results and Discussion The pesticides showed high persistence, as revealed by half-life (t1/2) values ranging from 168 to 298 days, which confirms their recalcitrance to degradation. However, t1/2 values were affected by substrate and compost age down to 8 days for chlorotoluron in S and up to 453 days for epoxiconazole in 12M. Fifty-six FAMEs were detected. Analysis of variance (ANOVA) showed that the EL method detected a higher number of FAMEs and unique FAMEs than the MIDI one, whereas principal component analysis (PCA) highlighted that the monosaturated 18:1ω9c and cyclopropane 19:0ω10c/19ω6 were the most significant FAMEs grouping by extraction method. The cyclopropyl to monoenoic acids ratio evidenced higher stress conditions when pesticides were applied to compost and compost+soil than solely soil, as well as with final time. Conclusion Overall, FAMEs profiles showed the importance of the extraction method for both substrate and incubation time, the t1/2 values highlighted the effectiveness of solely soil and the less mature compost in reducing the persistence of pesticides. PMID:26694029

  7. Determining the fatty acid composition in plasma and tissues as fatty acid methyl esters using gas chromatography – a comparison of different derivatization and extraction procedures.

    PubMed

    Ostermann, Annika I; Müller, Maike; Willenberg, Ina; Schebb, Nils Helge

    2014-12-01

    Analysis of the fatty acid (FA) composition in biological samples is commonly carried out using gas liquid chromatography (GC) after transesterification to volatile FA methyl esters (FAME). We compared the efficacy of six frequently used protocols for derivatization of different lipid classes as well as for plasma and tissue samples. Transesterification with trimethylsulfonium hydroxide (TMSH) led to insufficient derivatization efficacies for polyunsaturated FAs (PUFA, <50%). Derivatization in presence of potassium hydroxide (KOH) failed at derivatizing free FAs (FFAs). Boron trifluoride (BF3) 7% in hexane/MeOH (1:1) was insufficient for the transesterification of cholesterol ester (CE) as well as triacylglycerols (TGs). In contrast, methanolic hydrochloric acid (HCl) as well as a combination of BF3 with methanolic sodium hydroxide (NaOH+BF3) were suitable for the derivatization of FFAs, polar lipids, TGs, and CEs (derivatization rate >80% for all tested lipids). Regarding plasma samples, all methods led to an overall similar relative FA pattern. However, significant differences were observed, for example, for the relative amount of EPA+DHA (n3-index). Absolute FA plasma concentrations differed considerably among the methods, with low yields for KOH and BF3. We also demonstrate that lipid extraction with tert-butyl methyl ether/methanol (MTBE/MeOH) is as efficient as the classical method according to Bligh and Dyer, making it possible to replace (environmentally) toxic chloroform.We conclude that HCl-catalyzed derivatization in combination with MeOH/MTBE extraction is the most appropriate among the methods tested for the analysis of FA concentrations and FA pattern in small biological samples. A detailed protocol for the analysis of plasma and tissues is included in this article.

  8. Improvement of the surface hydrophilic properties of naproxen particles with addition of hydroxypropylmethyl cellulose and sodium dodecyl sulphate: In vitro and in vivo studies.

    PubMed

    García-Herrero, Víctor; Torrado, Carlos; García-Rodríguez, Juan José; López-Sánchez, Alicia; Torrado, Susana; Torrado-Santiago, Santiago

    2017-08-30

    In this study, a new surface-modified naproxen was developed to enhance brain concentration in acute migraine treatment. Fast-dissolving naproxen granules were made by mixing hydroxypropylmethylcellulose (HPMC) sodium dodecyl sulphate (SDS) and sodium croscarmellose with micronized naproxen particles. The aim of this study was to evaluate the effect of adding proportions of SDS to the HPMC film caused changes in the polymer chains of the HPMC, producing a new hydrophilic HPMC-SDS structure. These formulations with different HPMC/SDS ratios were characterised using electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC). SDS 10% (w/w) produced a highly hydrophilic HPMC-SDS structure on the surface of the naproxen microparticles. The fast dissolution granules (SF-10%) showed a significant improvement in the dissolution rate of naproxen. Pharmacokinetic studies were conducted with mice, showing an improvement of Cmax (1.38 and 1.41-fold) and AUC0-2h (30% and 10% higher) for plasma and brain samples compared to the reference naproxen suspension. The faster Tmax ratio for SF-10% may be related to increased hydration in the gastrointestinal environment, enabling the drug to permeate the gastrointestinal hydration layer more easily due to the presence of the hydrophilic HPMC-SDS structure in the formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. [Preparation of poly(methyl acrylate) microfluidic chips surface-modified by hyperbranched polyamide ester and their application in the separation of biomolecules].

    PubMed

    Liu, Bing; Lin, Donge; Xu, Lin; Lei, Yanhui; Bo, Qianglong; Shou, Chongqi

    2012-05-01

    The surface of poly (methyl acrylate) (PMMA) microfluidic chips were modified using hyperbranched polyamide ester via chemical bonding. The contact angles of the modified chips were measured. The surface morphology was observed by scanning electron microscope (SEM) and stereo microscope. The results showed that the surface of the modified chips was coated by a dense, uniform, continuous, hydrophilic layer of hyperbranched polyamide ester. The hydrophilic of the chip surface was markedly improved. The contact angle of the chips modified decreased from 89.9 degrees to 29.5 degrees. The electro osmotic flow (EOF) in the modified microchannel was lower than that in the unmodified microchannel. Adenosine and L-lysine were detected and separated via the modified PMMA microfluidic chips. Compared with unmodified chips, the modified chips successfully separated the two biomolecules. The detection peaks were clear and sharp. The separation efficiencies of adenosine and L-lysine were 8.44 x 10(4) plates/m and 9.82 x 10(4) plates/m respectively, and the resolutions (Rs) was 5.31. The column efficiencies and resolutions of the modified chips were much higher than those of the unmodified chips. It was also observed that the modified chips possessed good reproducibility of migration time. This research may provide a new and effective method to improve the hydrophilicity of the PMMA surface and the application of PMMA microfluidic chips in the determination of trace biomolecules.

  10. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    PubMed

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Synthesis and odor evaluation of five new sulfur-containing ester flavor compounds from 4-ethyloctanoic acid.

    PubMed

    Liu, Yuping; Chen, Haitao; Yin, Decai; Sun, Baoguo

    2010-07-29

    Five sulfur-containing flavor compounds were synthesized for the first time by the reaction of 4-ethyloctanoyl chloride with sulfur-containing alcohols or mercaptans. The synthesized compounds are 3-(methylthio)propyl 4-ethyloctanoate, 2-methyl-3-tetrahydro-furanthiol 4-ethyloctanoate, 4-methyl-5-thiazoleethanol 4-ethyloctanoate, 2-furan-methanethiol 4-ethyloctanoate and 2-methyl-3-furanthiol 4-ethyloctanoate. These five synthetic sulfur-containing ester flavor compounds all have meaty odor and might be used in foods if approved for this purpose in the future.

  12. Intricate Conformational Tunneling in Carbonic Acid Monomethyl Ester.

    PubMed

    Linden, Michael M; Wagner, J Philipp; Bernhardt, Bastian; Bartlett, Marcus A; Allen, Wesley D; Schreiner, Peter R

    2018-04-05

    Disentangling internal and external effects is a key requirement for understanding conformational tunneling processes. Here we report the s- trans/ s- cis tunneling rotamerization of carbonic acid monomethyl ester (1) under matrix isolation conditions and make comparisons to its parent carbonic acid (3). The observed tunneling rate of 1 is temperature-independent in the 3-20 K range and accelerates when using argon instead of neon as the matrix material. The methyl group increases the effective half life (τ eff ) of the energetically disfavored s- trans-conformer from 3-5 h for 3 to 11-13 h for 1. Methyl group deuteration slows the rotamerization further (τ eff ≈ 35 h). CCSD(T)/cc-pVQZ//MP2/aug-cc-pVTZ computations of the tunneling probability suggest that the rate should be almost unaffected by methyl substitution or its deuteration. Thus the observed relative rates are puzzling, and they disagree with previous explanations involving fast vibrational relaxation after the tunneling event facilitated by the alkyl rotor.

  13. Comparison of oral oxycodone and naproxen in soft tissue injury pain control: a double-blind randomized clinical trial.

    PubMed

    Fathi, Marzieh; Zare, Mohammad Amin; Bahmani, Hamid Reza; Zehtabchi, Shahriar

    2015-09-01

    This randomized clinical trial compares the efficacy and safety of oral oxycodone (an oral opioid) with naproxen (a nonsteroidal anti-inflammatory drug) in acute pain control in patients with soft tissue injury. It also evaluates the need for additional doses of analgesics in the first 24 hours of discharge from emergency department (ED). Adult (>18 years old) patients with soft tissue injuries were enrolled in a teaching urban ED. Subjects were randomly allocated to receive a single dose of oral oxycodone (5 mg) or oral naproxen (250 mg). Pain scores and drugs' adverse effects were assessed before, 30 minutes, and 60 minutes after medication. efficacy in pain control (reduction in pain scale >2 points) and safety (rate of side effects). The need for additional pain medication after discharge was assessed by follow-up phone call 24 hours after discharge. A total of 150 patients were enrolled. Pain scores were similar in oxycodone vs naproxen groups before (6.21 ± 0.9 in vs 6.0 ± 1.0), 30 minutes (4.5 ± 1.4 vs 4.4 ± 1.2), and 60 minutes (2.5 ± 1.3 in vs 2.6 ± 1.3) after medication, respectively. Twelve (16.0%) patients in oral oxycodone group and 5 (6.6%) patients in naproxen group needed more analgesics in first 24 hours after ED discharge. Adverse effects were more common in oxycodone group (statistically significant difference). The most common adverse effects in oxycodone group were nausea, (13.3%); vomiting, (8.0%); dizziness, (5.3%); drowsiness, 3 (4.0%); and pruritis, (2.7%). Oral oxycodone is as effective as naproxen in soft tissue injury pain control but has a less favorable safety profile. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The Risk of Major NSAID Toxicity with Celecoxib, Ibuprofen, or Naproxen: A Secondary Analysis of the PRECISION Trial.

    PubMed

    Solomon, Daniel H; Husni, M Elaine; Libby, Peter A; Yeomans, Neville D; Lincoff, A Michael; Lϋscher, Thomas F; Menon, Venu; Brennan, Danielle M; Wisniewski, Lisa M; Nissen, Steven E; Borer, Jeffrey S

    2017-12-01

    The relative safety of long-term use of nonsteroidal anti-inflammatory drugs is unclear. Patients and providers are interested in an integrated view of risk . We examined the risk of major nonsteroidal anti-inflammatory drug toxicity in the PRECISION trial. We conducted a post hoc analysis of a double-blind, randomized, controlled, multicenter trial enrolling 24,081 patients with osteoarthritis or rheumatoid arthritis at moderate or high cardiovascular risk. Patients were randomized to receive celecoxib 100 to 200 mg twice daily, ibuprofen 600 to 800 mg thrice daily, or naproxen 375 to 500 mg twice daily. All patients were provided with a proton pump inhibitor. The outcome was major nonsteroidal anti-inflammatory drug toxicity, including time to first occurrence of major adverse cardiovascular events, important gastrointestinal events, renal events, and all-cause mortality. During follow-up, 4.1% of subjects sustained any major toxicity in the celecoxib arm, 4.8% in the naproxen arm, and 5.3% in the ibuprofen arm. Analyses adjusted for aspirin use and geographic region found that subjects in the naproxen arm had a 20% (95% CI 4-39) higher risk of major toxicity than celecoxib users and that 38% (95% CI 19-59) higher risk. These risks translate into numbers needed to harm of 135 (95% CI, 72-971) for naproxen and 82 (95% CI, 53-173) for ibuprofen, both compared with celecoxib. Among patients with symptomatic arthritis who had moderate to high risk of cardiovascular events, approximately 1 in 20 experienced a major toxicity over 1 to 2 years. Patients using naproxen or ibuprofen experienced significantly higher risk of major toxicity than those using celecoxib. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A randomized, clinical trial to assess the relative efficacy and tolerability of two doses of etoricoxib versus naproxen in patients with ankylosing spondylitis.

    PubMed

    Balazcs, Eva; Sieper, Joachim; Bickham, Kara; Mehta, Anish; Frontera, Nancy; Stryszak, Paul; Popmihajlov, Zoran; Peloso, Paul M

    2016-10-13

    This study evaluated two doses of etoricoxib (60 and 90 mg) vs. naproxen 1000 mg in subjects with ankylosing spondylitis (AS). This was a 2-part, double-blind, active comparator-controlled non-inferiority study in subjects ≥18 years of age with AS. In Part I, subjects were randomized to naproxen 1000 mg; etoricoxib 60 mg, and 90 mg. In Part II, naproxen and etoricoxib 90 mg subjects continued on the same treatment; subjects on etoricoxib 60 mg either continued on 60 mg or escalated to 90 mg. Part I (6 weeks) assessed the efficacy of A) etoricoxib 60 mg vs. naproxen and B) 90 mg vs. naproxen according to the time-weighted average change from baseline in Spinal Pain Intensity (SPI; 0-100 mm VAS) (primary endpoint). The non-inferiority margin was set at 8 mm for SPI. In Part II (20 weeks) we evaluated the potential benefit of increasing from 60 to 90 mg (predefined minimum clinically important difference = 6 mm in SPI) for inadequate responders (<50 % improvement from baseline in SPI) on etoricoxib 60 mg in Part I. In total, 1015 subjects were randomized to receive etoricoxib 60 mg (N = 702), etoricoxib 90 mg (N = 156), and naproxen 1000 mg (N = 157); 70.9 % were male and the mean age was 45.2 years. There were 919 subjects who completed Part I and all continued to Part II. In Part I, SPI change was non-inferior for both etoricoxib doses vs. naproxen. In both Part I and II, the incidence of adverse events (AEs), drug-related AEs, and serious adverse events (SAEs) were similar between the 3 treatment groups. Both doses of etoricoxib were non-inferior to naproxen. All treatments were well tolerated. Etoricoxib 60 and 90 mg effectively control pain in patients with AS, with 60 mg once daily as the lowest effective dose for most patients. Clinical Trials Registry # NCT01208207 . Registered on 22 September 2010.

  16. Brucine diol-copper-catalyzed asymmetric synthesis of endo-pyrrolidines: the mechanistic dichotomy of imino esters.

    PubMed

    Li, Jian-Yuan; Kim, Hun Young; Oh, Kyungsoo

    2015-03-06

    Enantio- and diastereodivergent approaches to pyrrolidines are described by using catalyst- and substrate-controlled reaction pathways. A concerted endo-selective [3 + 2]-cycloaddition pathway is developed for the reaction of methyl imino ester, whereas endo-pyrrolidines with an opposite absolute stereochemical outcome are prepared by using the stepwise reaction pathway of tert-butyl imino ester. The development of catalyst- and substrate-controlled stereodivergent approaches highlights the inherent substrate-catalyst interactions in the [3 + 2]-cycloaddition reactions of metalated azomethine ylides.

  17. Investigation of major and trace element distribution in the extraction-transesterification process of fatty acid methyl esters from microalgae Chlorella sp.

    PubMed

    Soares, Bruno M; Vieira, Augusto A; Lemões, Juliana S; Santos, Clarissa M M; Mesko, Márcia F; Primel, Ednei G; Montes D'Oca, Marcelo G; Duarte, Fábio A

    2012-04-01

    This work reports, for the first time, the determination of major and trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Sn, Sr, Ti, Tl, U, V, and Zn) in the fractions of the synthesis of fatty acid methyl esters (FAMEs). These include fresh microalgae, residual biomass, lipid fraction, crude FAMEs, insoluble fraction and purified FAMEs from microalgae Chlorella sp. A microwave-assisted digestion procedure in closed vessels was applied for sample digestion and subsequent element determination by inductively coupled plasma-based techniques. The proposed method was suitable for the multielement determination in FAMEs and its fractions obtained from microalgae. The element concentration was compared with results found in the literature and a careful discussion about the use of residual biomass for different applications was performed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Bioactive Steroids with Methyl Ester Group in the Side Chain from a Reef Soft Coral Sinularia brassica Cultured in a Tank.

    PubMed

    Huang, Chiung-Yao; Su, Jui-Hsin; Liaw, Chih-Chuang; Sung, Ping-Jyun; Chiang, Pei-Lun; Hwang, Tsong-Long; Dai, Chang-Feng; Sheu, Jyh-Horng

    2017-09-01

    A c ontinuing chemical investigation of the ethyl acetate (EtOAc) extract of a reef soft coral Sinularia brassica , which was cultured in a tank, afforded four new steroids with methyl ester groups, sinubrasones A-D (1-4) for the first time. In particular, 1 possesses a β-D-xylopyranose. The structures of the new compounds were elucidated on the basis of spectroscopic analyses. The cytotoxicities of compounds 1-4 against the proliferation of a limited panel of cancer cell lines were assayed. The anti-inflammatory activities of these new compounds 1-4 were also evaluated by measuring their ability to suppress superoxide anion generation and elastase release in N -formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced human neutrophils. Compounds 2 and 3 were shown to exhibit significant cytotoxicity, and compounds 3 and 4 were also found to display attracting anti-inflammatory activities.

  19. Role of humic substances in the photodegradation of naproxen under simulated sunlight.

    PubMed

    Chen, Yong; Liu, Lu; Su, Jing; Liang, Jianfeng; Wu, Bo; Zuo, Jiaolan; Zuo, Yuegang

    2017-11-01

    Humic substances (HS) including humic acid (HA) and fulvic acid (FA) are ubiquitous in the natural waters. Although numerous studies documented their role in photodegradation of organic pollutants, the competitive effects of photosensitization and light-screening of HS on the photodegradation of pollutants are not yet clear. In this work, the role of HS in the photodegradation of the pharmaceutical naproxen (NP) was studied under simulated sunlight. The direct photodegradation quantum yield of NP in deionized water was 2.1 × 10 -2 , and the apparent quantum yields for photosensitized degradation of NP in the presence of FA and HA were 2.3 × 10 -4 and 2.6 × 10 -5 , respectively. Both direct and photosensitized photodegradation decreased with increasing pH, consistent with the trend of singlet oxygen ( 1 O 2 ) reaction rate constants of NP. HA inhibited the photodegradation of naproxen thoroughly. In contrast, FA accelerated the photodegradation of NP at lower substrate concentration and light intensity, and vice versa. Direct photodegradation of NP declined sharply with spectral radiation attenuation of UV region, when HS-mediated photosensitization predominantly accounted for the photodegradation. The direct photodegradation was ascribed to decomposition of excited triplet state of naproxen ( 3 NP ∗ ) and self-sensitization effect involving 1 O 2 . The FA-mediated photodegradation was mainly attributed to 1 O 2 oxidation in aerated solution. These findings are important for assessing the competitive effects of humic substances on the photodegradation of pollutants under various conditions in natural waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effects of the non-steroidal anti-inflammatory drug(NSAID) naproxen on gene expression of antioxidant enzymes in zebrafish (Danio rerio).

    PubMed

    Stancová, V; Ziková, A; Svobodová, Z; Kloas, W

    2015-09-01

    The aim of this study was to investigate the effects of naproxen on the gene expression of antioxidant enzymes in adult zebrafish. Surprisingly, after 2 weeks exposure no significant effect on the mRNA expression of the target genes was found in the liver. However, mRNA levels of three genes were altered significantly in the intestine. The expression of Ucp-2 decreased at the environmental concentration of 1μg/L while mRNA expression of GST p2 increased at the concentration of 100μg/L. The mRNA level for the antioxidant enzyme CAT was up-regulated significantly at both the concentrations used. Exposure to naproxen caused only moderate effects on the expression of antioxidant genes in the intestine rather than in the liver, which demonstrates that the intestine is more sensitive to waterborne naproxen exposure than the liver. Interestingly, the adverse side effects of NSAIDs occur in the gastrointestinal tract of humans. To our knowledge, this is the first study that has focused on transcriptional effects of naproxen on zebrafish. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Interaction of amphotericin B and its low toxic derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester, with fungal, mammalian and bacterial cells measured by the energy transfer method.

    PubMed

    Szlinder-Richert, Joanna; Cybulska, Barbara; Grzybowska, Jolanta; Bolard, Jacques; Borowski, Edward

    2004-04-01

    Amphotericin B (AMB) derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester (MFAME) retains the broad antifungal spectrum and potency of the parent antibiotic, whereas its toxicity towards mammalian cells is reduced by about two orders of magnitude. The purpose of this work was to find out whether the differences observed in the toxicity of MFAME and native AMB are due to the differential drugs affinity to fungal and mammalian cell membranes. Comparative studies on AMB and MFAME biological activity and their affinity to fungal, mammalian and bacterial cells were performed. The interaction of AMB and MFAME with cells have been studied by fluorescence method based on the energy transfer between membrane fluorescent probe (donor) and the polyenic chromophore of the antibiotic (acceptor) simultaneously present in the cell membrane. The amount of the antibiotic bound to cells was indicated by the extent of fluorescence quenching of 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) or 1,6-diphenyl-1,3,5-hexatriene (DPH) by polyenic chromophore of the antibiotic. The results obtained indicate that binding extent and characteristics for both antibiotics are comparable in the three types of cells studied. Dramatically lower toxicity of MFAME as compared to AMB towards mammalian cells is not related to the antibiotic-cell affinity, but rather to different consequences of these interactions for cells, reflected in membrane permeabilization. MFAME is definitely less effective than parent AMB in the permeabilizing species formation in mammalian cell membrane.

  2. ESR study of electron reactions with esters and triglycerides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevilla, M.D.; Morehouse, K.M.; Swarts, S.

    1981-04-02

    Reactions which occurred after electron attachment at 77K to a number of small carboxylic acid esters and triglycerides in an aqueous glass are reported. Most ester anions are found to decay on warming to form alkyl radicals by ..beta.. scission: RC(O/sup -/)OR' ..-->.. RCO/sub 2//sup -/ + R'.. The alkyl radical (R'.) produced by annealing is found to abstract hydrogen from the parent ester at an ..cap alpha..-carbon site, R'.+ R''CH/sub 2/CO/sub 2/R' ..-->.. R''CHCO/sub 2/R', or in the case of ethyl formate from the formate hydrogen, CH/sub 3/CH/sub 2/.+ HCO/sub 2/C/sub 2/H/sub 5/ ..-->.. C/sub 2/H/sub 6/ +.CO/sub 2/C/submore » 2/H/sub 5/. Results found for the methyl formate anion suggest hydrogen abstraction by the anion itself may compete with alkyl radical formation. The anion of the triglyceride triacetin is found to undergo an analogous mechanism to the ester anions producing the propane diol diester radical, .CH/sub 2/CH(Ac)CH/sub 2/(Ac), Ac = acetate. This species subsequently abstracts hydrogen from the parent compound to produce the ..cap alpha..-carbon radical, .CH/sub 2/CO/sub 2/R. Results found after annealing the tripropionin radical anion give evidence for abstraction from the ..cap alpha.. carbon in the propionate side groups producing CH/sub 3/CHCO/sub 2/R. Studies of a ..gamma..-irradiated ester (ethyl myristate) and two triglycerides (tripalmitin and tristearin) yield results which suggest that the mechanism of ester anion decay found in aqueous glasses applies to ..gamma..-irradiated neat long-chain esters and triglycerides. Results found in this work are compared to the results of product analysis.« less

  3. Gas chromatographic-mass spectrometric determination of alkylphosphonic acids from aqueous samples by ion-pair solid-phase extraction on activated charcoal and methylation.

    PubMed

    Vijaya Saradhi, U V R; Prabhakar, S; Jagadeshwar Reddy, T; Murty, M R V S

    2007-07-20

    In the present paper, we report an improved ion-pair solid-phase extraction (IP-SPE) method for the analysis of alkylphosphonic acids, namely, methyl, ethyl and propylphosphonic acids, present in the aqueous sample. The aqueous sample was mixed with an ion-pair reagent, phenyltrimethylammonium hydroxide (PTMAH) and passed through activated charcoal SPE cartridge. The retained chemicals in the cartridge were extracted with methanol and analysed by gas chromatography-mass spectrometry (GC-MS) under the electron impact ionization (EI) mode. The analytes were converted to their methyl esters by pyrolytic methylation in the hot GC injection port. The recoveries of alkylphosphonic acids were above 95% and the minimum detection limits were as low as 10 ng/mL. The recovery of the test chemicals was tested with solvents, dichloromethane, n-hexane, ethyl acetate, acetone, acetonitrile and methanol. The chemicals could be efficiently extracted by the hydrophilic solvents. The method did not work at the highly acidic pH (when acidified with dilute HCl) but worked well from pH 4.0 to 14.0. The present method was also tested with other tetra-(methyl, ethyl, propyl and n-butyl)ammonium hydroxides. The test chemicals were not converted to their methyl and ethyl esters with tetramethyl and tetraethylammonium hydroxides, whereas they were converted to their corresponding propyl and n-butyl esters with tetrapropyl and tetra(n-butyl)ammonium hydroxides. The method was also applied to two highly cross-linked polymeric sorbents DSC-6S and Oasis HLB. The recovery of the chemicals on these sorbents was observed to be poor. Methylation using phenyltrimethylammonium hydroxide is non-hazardous and advantageous over methylation using diazomethane. The method was applied to the analysis of aqueous samples given in one of the official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons and all the spiked chemicals were identified as methyl esters.

  4. Efficacy of naproxen with or without esomeprazole for pain and inflammation in patients after bilateral third molar extractions: A double blinded crossover study

    PubMed Central

    Weckwerth, Giovana M.; Simoneti, Luis F.; Zupelari-Gonçalves, Paulo; Calvo, Adriana M.; Brozoski, Daniel T.; Dionísio, Thiago J.; Torres, Elza A.; Lauris, José-Roberto P.; Faria, Flávio-Augusto C.

    2017-01-01

    Background Using a double-blinded randomized crossover design, this study aimed to evaluate acute postoperative pain management, swelling and trismus in 46 volunteers undergoing extractions of the two lower third molars, in similar positions, at two different appointments who consumed a tablet of either NE (naproxen 500 mg + esomepraz ole 20 mg) or only naproxen (500 mg) every 12 hours for 4 days. Material and Methods Parameters were analyzed: self-reported pain intensity using a visual analog scale (VAS) pre- and postoperative mouth opening; incidence, type and severity of adverse reactions; total quantity consumed of rescue medication; and pre- and postoperative swelling. Results Female volunteers reported significantly more postoperative pain at 1, 1.5, 2, 3 and 4hrs after surgery while also taking their first rescue medication at a time significantly earlier when consuming NE when compared to naproxen (3.7hrs and 6.7hrs). Conversely, no differences were found between each drug group in males. Conclusions In conclusion, throughout the entire study, pain was mild after using either drug in both men and women with pain scores on average well below 40mm (VAS), although in women naproxen improved acute postoperative pain management when compared to NE. Key words:Oral surgery, third molar, pain, naproxen, esomeprazole, NSAIDs. PMID:27918744

  5. Lipid profiling of the soybean pathogen Phytophthora sojae using Fatty Acid Methyl Esters (FAMEs).

    PubMed

    Yousef, Lina Fayez; Wojno, Michal; Dick, Warren A; Dick, Richard P

    2012-05-01

    Phytophthora sojae is a destructive soilborne pathogen of soybean, but currently there is no rapid or commercially available testing for its infestation level in soil. For growers, such information would greatly improve their ability to make management decisions to minimize disease damage to soybean crops. Fatty acid profiling of P. sojae holds potential for determining the prevalence of this pathogen in soil. In this study, the Fatty Acid Methyl Ester (FAME) profile of P. sojae was determined in pure culture, and the profile was subsequently evaluated for its potential use in detecting the pathogen in soil. The predominant fatty acids in the FAME profile of P. sojae are the unsaturated 18C fatty acids (18:1ω9 and 18:2ω6) followed by the saturated and unsaturated 16C fatty acids (16:0 and 16:1ω7). FAME analysis of P. sojae zoospores showed two additional long-chain saturated fatty acids (20:0 and 22:0) that were not detected in the mycelium of this organism. Addition of a known number of zoospores of P. sojae to soil demonstrated that fatty acids such as 18:1ω9, 18:2ω6, 20:1ω9, 20:4ω6, and 22:1ω9 could be detected and quantified against the background levels of fatty acids present in soil. These results show the potential for using selected FAMEs of P. sojae as a marker for detecting this pathogen in soybean fields. Copyright © 2012 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. A new, direct analytical method using LC-MS/MS for fatty acid esters of 3-chloro-1,2-propanediol (3-MCPD esters) in edible oils.

    PubMed

    Yamazaki, K; Ogiso, M; Isagawa, S; Urushiyama, T; Ukena, T; Kibune, N

    2013-01-01

    A new, direct analytical method for the determination of 3-chloro-1,2-propanediol fatty acid esters (3-MCPD esters) was developed. The targeted 3-MCPD esters included five types of monoester and 25 [corrected] types of diester. Samples (oils and fats) were dissolved in a mixture of tert-butyl methyl ether and ethyl acetate (4:1), purified using two solid-phase extraction (SPE) cartridges (C(18) and silica), then analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Five monoesters and five diesters with the same fatty acid group could be separated and quantified. Pairs of 3-MCPD diesters carrying the same two different fatty acid groups, but at reversed positions (sn-1 and sn-2), could not be separated and so were expressed as a sum of both compounds. The limits of quantification (LOQs) were estimated to be between 0.02 to 0.08 mg kg(-1), depending on the types of 3-MCPD ester. Repeatability expressed as relative standard deviation (RSD(r)%) varied from 5.5% to 25.5%. The new method was shown to be applicable to various commercial edible oils and showed levels of 3-MCPD esters varying from 0.58 to 25.35 mg kg(-1). The levels of mono- and diesters ranged from 0.10 to 0.69 mg kg(-1) and from 0.06 to 16 mg kg(-1), respectively.

  7. Diazepam Is No Better Than Placebo When Added to Naproxen for Acute Low Back Pain.

    PubMed

    Friedman, Benjamin W; Irizarry, Eddie; Solorzano, Clemencia; Khankel, Nauman; Zapata, Jennifer; Zias, Eleftheria; Gallagher, E John

    2017-08-01

    Low back pain causes more than 2.5 million visits to US emergency departments (EDs) annually. Low back pain patients are often treated with nonsteroidal anti-inflammatory drugs and benzodiazepines. The former is an evidence-based intervention, whereas the efficacy of the latter has not been established. We compare pain and functional outcomes 1 week and 3 months after ED discharge among patients randomized to a 1-week course of naproxen+diazepam versus naproxen+placebo. This was a randomized, double-blind, comparative efficacy clinical trial conducted in an urban health care system. Patients presenting with acute, nontraumatic, nonradicular low back pain of no more than a duration of 2 weeks were eligible for enrollment immediately before discharge from an ED if they had a score greater than 5 on the Roland-Morris Disability Questionnaire, a validated 24-item inventory of functional impairment caused by low back pain. Higher scores on the questionnaire indicate greater functional disability. The primary outcome in the trial was improvement in the score between ED discharge and 1 week later. Secondary outcomes included pain intensity 1 week and 3 months after ED discharge, as measured on a 4-point descriptive scale (severe, moderate, mild, and none). All patients were given 20 tablets of naproxen 500 mg, to be taken twice a day as needed for low back pain. Additionally, patients were randomized to receive either 28 tablets of diazepam 5 mg or identical placebo, to be received as 1 or 2 tablets every 12 hours as needed for low back pain. All patients received a standardized 10-minute low back pain educational session before discharge. Using a between-group mean difference of 5 Roland-Morris Disability Questionnaire points, a previously validated threshold for clinical significance, we calculated the need for at least 100 patients with primary outcome data. Enrollment began in June 2015 and continued for 9 months. Five hundred forty-five patients were screened for

  8. Crystal structure of azilsartan methyl ester ethyl acetate hemisolvate.

    PubMed

    Li, Zhengyi; Liu, Rong; Zhu, Meilan; Chen, Liang; Sun, Xiaoqiang

    2015-02-01

    The title compound, C26H22N4O5 (systematic name: methyl 2-eth-oxy-1-{4-[2-(5-oxo-4,5-di-hydro-1,2,4-oxa-diazol-3-yl)phenyl]benz-yl}-1H-1,3-benzo-diazole-7-carboxyl-ate ethyl acetate hemisolvate), was obtained via cyclization of methyl (Z)-2-eth-oxy-1-{(2'-(N'-hy-droxy-carbamimido-yl)-[1,1'-biphen-yl]-4-yl)meth-yl}-1H-benzo[d]imidazole-7-carboxyl-ate with diphen-yl carbonate. There are two independent mol-ecules (A and B) with different conformations and an ethyl acetate solvent mol-ecule in the asymmetric unit. In mol-ecule A, the dihedral angle between the benzene ring and its attached oxa-diazole ring is 59.36 (17); the dihedral angle between the benzene rings is 43.89 (15) and that between the benzene ring and its attached imidazole ring system is 80.06 (11)°. The corres-ponding dihedral angles in mol-ecule B are 58.45 (18), 50.73 (16) and 85.37 (10)°, respectively. The C-O-C-Cm (m = meth-yl) torsion angles for the eth-oxy side chains attached to the imidazole rings in mol-ecules A and B are 93.9 (3) and -174.6 (3)°, respectively. In the crystal, the components are linked by N-H⋯N and C-H⋯O hydrogen bonds, generating a three-dimensional network. Aromatic π-π stacking inter-actions [shortest centroid-centroid separation = 3.536 (3)Å] are also observed.

  9. Rapid screening of fatty acid alkyl esters in olive oils by time domain reflectometry.

    PubMed

    Berardinelli, Annachiara; Ragni, Luigi; Bendini, Alessandra; Valli, Enrico; Conte, Lanfranco; Guarnieri, Adriano; Toschi, Tullia Gallina

    2013-11-20

    The main aim of the present research is to assess the possibility of quickly screening fatty acid alkyl esters (FAAE) in olive oils using time domain reflectometry (TDR) and partial least-squares (PLS) multivariate statistical analysis. Eighteen virgin olive oil samples with fatty acid alkyl ester contents and fatty acid ethyl ester/methyl ester ratios (FAEE/FAME) ranging from 3 to 100 mg kg(-1) and from 0.3 to 2.6, respectively, were submitted to tests with time domain resolution of 1 ps. The results obtained in test set validation demonstrated that this new and fast analytical approach is able to predict FAME, FAEE, and FAME + FAEE contents with R(2) values of 0.905, 0.923, and 0.927, respectively. Further measurements on mixtures between olive oil and FAAE standards confirmed that the prediction is based on a direct influence of fatty acid alkyl esters on the TDR signal. The suggested technique appeared potentially suitable for monitoring one of the most important quality attribute of the olive oil in the extraction process.

  10. Reductive Etherification of Fatty Acids or Esters with Alcohols using Molecular Hydrogen.

    PubMed

    Erb, Benjamin; Risto, Eugen; Wendling, Timo; Gooßen, Lukas J

    2016-06-22

    In the presence of a catalyst system consisting of a ruthenium/triphos complex and the Brønsted acid trifluoromethanesulfonimide, mixtures of fatty acids and aliphatic alcohols are converted into the corresponding ethers at 70 bar H2 . The protocol allows the sustainable one-step synthesis of valuable long-chain ether fragrances, lubricants, and surfactants from renewable sources. The reaction protocol is extended to various fatty acids and esters both in pure form and as mixtures, for example, tall oil acids or rapeseed methyl ester (RME). Even the mixed triglyceride rapeseed oil was converted in one step. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Relief of Menstrual Symptoms and Migraine with a Single-Tablet Formulation of Sumatriptan and Naproxen Sodium

    PubMed Central

    Ballard, Jeanne; Diamond, Michael P.; Mannix, Lisa K.; Derosier, Frederick J.; Lener, Shelly E.; Krishen, Alok; McDonald, Susan A.

    2014-01-01

    Abstract Background: Dysmenorrhea and menstrual migraine may share a common pathogenic pathway. Both appear to be mediated, in part, by an excess of prostaglandin production that occurs during menstruation. Methods: Data were pooled from two replicate randomized controlled trials of 621 adult menstrual migraineurs with dysmenorrhea who treated migraine with sumatriptan-naproxen or placebo. Along with headache symptoms, nonpain menstrual symptoms (bloating, fatigue, and irritability) and menstrual pain symptoms (abdominal and back pain) were recorded at the time periods of 30 minutes and 1, 2, 4, and 4–24 hours. Relief of menstrual symptoms was compared using a Cochran-Mantel-Haenszel test. Logistic regression was used to determine the odds of a headache response with increasing numbers of moderate to severe dymenorrheic symptoms. Results: Sumatriptan-naproxen was superior to placebo for relief of tiredness, irritability, and abdominal pain at the time periods of 2, 4, and 4–24 hours (p≤0.023); back pain at the time periods of 4 and 4–24 hours (p≤0.023); and bloating at 4–24 hours endpoint (p=0.01). The odds ratios (ORs) of attaining migraine pain freedom for 2 hours and for sustained 2–24 hours decreased as moderate to severe dysmenorrhea symptoms increased with sumatriptan-naproxen versus placebo. Conclusions: Treatment with sumatriptan-naproxen may provide relief of menstrual symptoms and migraine in female migraineurs with dysmenorrhea. The presence of moderate to severe dysmenorrhea symptoms is associated with decreased response rates for menstrual migraine, suggesting that the co-occurrence of these disorders may negatively impact the results of migraine-abortive therapy. PMID:24579886

  12. An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester

    NASA Astrophysics Data System (ADS)

    Sudrajad, Agung; Ali, Ismail; Samo, Khalid; Faturachman, Danny

    2012-09-01

    Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

  13. Induction of cell death by pyropheophorbide-α methyl ester-mediated photodynamic therapy in lung cancer A549 cells.

    PubMed

    Tu, Ping-Hua; Huang, Wen-Jun; Wu, Zhan-Ling; Peng, Qing-Zhen; Xie, Zhi-Bin; Bao, Ji; Zhong, Ming-Hua

    2017-03-01

    Pyropheophorbide-α methyl ester (MPPa) was a promising photosensitizer with stable chemical structure, strong absorption, higher tissue selectivity and longer activation wavelengths. The present study investigated the effect of MPPa-mediated photodynamic treatment on lung cancer A549 cells as well as the underlying mechanisms. Cell Counting Kit-8 was employed for cell viability assessment. Reactive oxygen species levels were determined by fluorescence microscopy and flow cytometry. Cell morphology was evaluated by Hoechst staining and transmission electron microscopy. Mitochondrial membrane potential, cellular apoptosis and cell cycle distribution were evaluated flow-cytometrically. The protein levels of apoptotic effectors were examined by Western blot. We found that the photocytotoxicity of MPPa showed both drug- and light- dose dependent characteristics in A549 cells. Additionally, MPPa-PDT caused cell apoptosis by reducing mitochondrial membrane potential, increasing reactive oxygen species (ROS) production, inducing caspase-9/caspase-3 signaling activation as well as cell cycle arrest at G 0 /G 1 phase. These results suggested that MPPa-PDT mainly kills cells by apoptotic mechanisms, with overt curative effects, indicating that MPPa should be considered a potent photosensitizer for lung carcinoma treatment. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  14. [Simultaneous determination of cocaine and its metabolite ecgonine methyl ester in human blood using microwave extraction-gas chromatography].

    PubMed

    Wang, Xiaobo; Ye, Nengsheng; Wang, Jifen; Gu, Xuexin

    2010-07-01

    A method was developed for the simultaneous determination of cocaine (COC) and its metabolite ecgonine methyl ester (EME) in human blood using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID). The blood sample was prepared by microwave extraction (MWE). The optimal parameters of MWE were as follows: 6 mL of chloroform-isopropanol (9: 1, v/v) mixture as extraction solvent, the pH value of the sample was adjusted at 10.0 with 0.05 mol/L Na2CO3-NaHCO3 buffer, the extraction was performed at 40 degrees C for 6 min. The COC and EME in the extract were qualified using GC-MS and quantitated using GC-FID. The average recoveries of COC and EME were from 79.91% to 99.85%, the relative standard deviations were less than 3.10%, and the limits of detection (LOD) were 60 and 40 mg/L, respectively. In the method COC and EME were detected without derivatization. The method is rapid, accurate and sensitive, and can be used for the simultaneous determination of COC and EME in blood samples.

  15. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells.

    PubMed

    Huang, Qiu; Ou, Yun-Sheng; Tao, Yong; Yin, Hang; Tu, Ping-Hua

    2016-06-01

    Pyropheophorbide-α methyl ester (MPPa) was a second-generation photosensitizer with many potential applications. Here, we explored the impact of MPPa-mediated photodynamic therapy (MPPa-PDT) on the apoptosis and autophagy of human osteosarcoma (MG-63) cells as well as the relationships between apoptosis and autophagy of the cells, and investigated the related molecular mechanisms. We found that MPPa-PDT demonstrated the ability to inhibit MG-63 cell viability in an MPPa concentration- and light dose-dependent manner, and to induce apoptosis via the mitochondrial apoptosis pathway. Additionally, MPPa-PDT could also induce autophagy of MG-63 cell. Meanwhile, the ROS scavenger N-acetyl-L-cysteine (NAC) and the Jnk inhibitor SP600125 were found to inhibit the MPPa-PDT-induced autophagy, and NAC could also inhibit Jnk phosphorylation. Furthermore, pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine showed the potential in reducing the apoptosis rate induced by MPPa-PDT in MG-63 cells. Our results indicated that the mitochondrial pathway was involved in MPPa-PDT-induced apoptosis of MG-63 cells. Meanwhile the ROS-Jnk signaling pathway was involved in MPPa-PDT-induced autophagy, which further promoted the apoptosis in MG-63 cells.

  16. Model-based analysis of thromboxane B₂ and prostaglandin E₂ as biomarkers in the safety evaluation of naproxen.

    PubMed

    Sahota, Tarjinder; Sanderson, Ian; Danhof, Meindert; Della Pasqua, Oscar

    2014-08-01

    The assessment of safety in traditional toxicology protocols relies on evidence arising from observed adverse events (AEs) in animals and on establishing their correlation with different measures of drug exposure (e.g., Cmax and AUC). Such correlations, however, ignore the role of biomarkers, which can provide further insight into the underlying pharmacological mechanisms. Here we use naproxen as a paradigm drug to explore the feasibility of a biomarker-guided approach for the prediction of AEs in humans. A standard toxicology protocol was set up for the evaluation of effects of naproxen in rat, in which four doses were tested (7.5, 15, 40 and 80 mg/kg). In addition to sparse blood sampling for the assessment of exposure, thromboxane B₂ and prostaglandin E₂ were also collected in satellite groups. Nonlinear mixed effects modelling was used to evaluate the predictive performance of the approach. A one-compartmental model with first order absorption was found to best describe the pharmacokinetics of naproxen. A nonlinear relationship between dose and bioavailability was observed which leads to a less than proportional increase in naproxen concentrations with increasing doses. The pharmacodynamics of TXB₂ and PGE₂ was described by direct inhibition models with maximum pharmacological effects achieved at doses >7.5 mg/kg. The predicted PKPD relationship in humans was within 10-fold of the values previously published. Moreover, our results indicate that biomarkers can be used to assess interspecies differences in PKPD and extrapolated data from animals to humans. Biomarker sampling should be used systematically in general toxicity studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Fast and accurate preparation fatty acid methyl esters by microwave-assisted derivatization in the yeast Saccharomyces cerevisiae.

    PubMed

    Khoomrung, Sakda; Chumnanpuen, Pramote; Jansa-ard, Suwanee; Nookaew, Intawat; Nielsen, Jens

    2012-06-01

    We present a fast and accurate method for preparation of fatty acid methyl esters (FAMEs) using microwave-assisted derivatization of fatty acids present in yeast samples. The esterification of free/bound fatty acids to FAMEs was completed within 5 min, which is 24 times faster than with conventional heating methods. The developed method was validated in two ways: (1) through comparison with a conventional method (hot plate) and (2) through validation with the standard reference material (SRM) 3275-2 omega-3 and omega-6 fatty acids in fish oil (from the Nation Institute of Standards and Technology, USA). There were no significant differences (P>0.05) in yields of FAMEs with both validations. By performing a simple modification of closed-vessel microwave heating, it was possible to carry out the esterification in Pyrex glass tubes kept inside the closed vessel. Hereby, we are able to increase the number of sample preparations to several hundred samples per day as the time for preparation of reused vessels was eliminated. Pretreated cell disruption steps are not required, since the direct FAME preparation provides equally quantitative results. The new microwave-assisted derivatization method facilitates the preparation of FAMEs directly from yeast cells, but the method is likely to also be applicable for other biological samples.

  18. Antioxidant (A-tocopherol acetate) effect on oxidation stability and NOx emission reduction in methyl ester of Annona oil operated diesel engine

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-05-01

    There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.

  19. Anhydroecgonine methyl ester, a cocaine pyrolysis product, may contribute to cocaine behavioral sensitization.

    PubMed

    Garcia, Raphael Caio Tamborelli; Torres, Larissa Helena; Balestrin, Natália Trigo; Andrioli, Tatiana Costa; Flório, Jorge Camilo; de Oliveira, Carolina Dizioli Rodrigues; da Costa, José Luiz; Yonamine, Mauricio; Sandoval, Maria Regina Lopes; Camarini, Rosana; Marcourakis, Tania

    2017-02-01

    Crack cocaine has a high potential to induce cocaine addiction and its smoke contains cocaine's pyrolysis product anhydroecgonine methyl ester (AEME), a partial agonist at M 1 - and M 3 -muscarinic acetylcholine receptor and an antagonist at the remaining subtypes. No reports have assessed AEME's role in addiction. Adult male Wistar rats were intraperitoneally administered with saline, 3mg/kg AEME, 15mg/kg cocaine, or a cocaine-AEME combination on every other day during a period of 9 days. After a 7-days withdrawal period, a challenge injection of the respective drugs was performed on the 17th day. The locomotor activity was evaluated on days 1, 3, 5, 7, 9 and 17, as well as dopamine levels (9th day) and dopaminergic receptors proteins (D 1 R and D 2 R on the 17th day) in the caudate-putamen (CPu) and nucleus accumbens (NAc). AEME was not able to induce the expression of behavioral sensitization, but it substantially potentiates cocaine-effects, with cocaine-AEME combination presenting higher expression than cocaine alone. An increase in the dopamine levels in the CPu in all non-saline groups was observed, with the highest levels in the cocaine-AEME group. There was a decrease in D 1 R protein level in this brain region only for cocaine and cocaine-AEME groups. In the NAc, an increase in the dopamine levels was only observed for cocaine and cocaine-AEME groups, with no changes in both D 1 R and D 2 R protein levels. These behavioral and neurochemical data indicate that AEME alone does not elicit behavioral sensitization but it significantly potentiates cocaine effects when co-administered, resulting in dopamine increase in CPu and NAc, brain regions where dopamine release is mediated by cholinergic activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Preemptive Use of Naproxen on Tooth Sensitivity Caused by In-Office Bleaching: A Triple-Blind, Crossover, Randomized Clinical Trial.

    PubMed

    Fernandes, M T; Vaez, S C; Lima, C M; Nahsan, F P; Loguércio, A D; Faria-E-Silva, A L

    A triple-blind, randomized, crossover clinical trial evaluated prior use of nonsteroidal anti-inflammatory naproxen on sensitivity reported by patients undergoing in-office tooth bleaching. Fifty patients were subjected to two sessions of in-office tooth bleaching with 35% hydrogen peroxide in a single application of 40 minutes for two sessions, with an interval of seven days between applications. One hour prior to the procedure, each patient randomly received a single dose of naproxen (500 mg) or placebo. The patient's sensitivity level was evaluated during and immediately after the bleaching using two scales (verbal and visual analog); the verbal scale only was repeated after 24 hours. The effectiveness of the bleaching procedures was evaluated with the Bleachedguide scale. Relative risk to sensitivity was calculated and adjusted by session, while comparison of overall risk was performed by the McNemar test. Data on the sensitivity level for both scales and shade were subjected to the Friedman, Wilcoxon, and Mann-Whitney tests (α=0.05). The use of naproxen only decreased the absolute risk and intensity of tooth sensitivity reported immediately after the second session. On the other hand, no measurable effect was observed during or 24 hours after either session. The sequence of drug administration did not affect the bleaching effectiveness. Preemptive use of naproxen only reduced tooth sensitivity reported by patients immediately after the second session of bleaching.

  1. Comparison of the pharmacokinetics and tolerability of HCP1004 (a fixed-dose combination of naproxen and esomeprazole strontium) and VIMOVO® (a marketed fixed-dose combination of naproxen and esomeprazole magnesium) in healthy volunteers

    PubMed Central

    Choi, YoonJung; Han, HyeKyung; Shin, Dongseong; Lim, Kyoung Soo; Yu, Kyung-Sang

    2015-01-01

    Background HCP1004 is a newly developed fixed-dose combination of naproxen (500 mg) and esomeprazole strontium (20 mg) that is used in the treatment of rheumatic diseases and can reduce the risk of nonsteroidal anti-inflammatory drug-associated ulcers. The aim of this study was to evaluate the pharmacokinetics (PK) and safety of HCP1004 compared to VIMOVO® (a marketed fixed-dose combination of naproxen and esomeprazole magnesium). Subjects and methods An open-label, randomized, two-treatment, two-sequence crossover, single-dose clinical study was conducted in 70 healthy volunteers. In each period, a reference (VIMOVO®) or test (HCP1004) drug was administered orally, and serial blood samples for PK analysis were collected up to 72 hours after dosing. To evaluate the PK profiles, the maximum plasma concentration (Cmax) and the area under the concentration–time curve from 0 to the last measurable time (AUC0−t) were estimated using a noncompartmental method. Safety profiles were evaluated throughout the study. Results Sixty-six of the 70 subjects completed the study. The Cmax (mean ± standard deviation) and AUC0−t (mean ± standard deviation) for naproxen in HCP1004 were 61.67±15.16 µg/mL and 1,206.52±166.46 h·µg/mL, respectively; in VIMOVO®; these values were 61.85±14.54 µg/mL and 1,211.44±170.01 h·µg/mL, respectively. The Cmax and AUC0−t for esomeprazole in HCP1004 were 658.21±510.91 ng/mL and 1,109.11±1,111.59 h·ng/mL, respectively; for VIMOVO®, these values were 595.09±364.23 ng/mL and 1,015.12±952.98 h·ng/mL, respectively. The geometric mean ratios and 90% confidence intervals (CIs) (HCP1004 to VIMOVO®) of the Cmax and AUC0−t of naproxen were 0.99 (0.94–1.06) and 1.00 (0.98–1.01), respectively. For esomeprazole, the geometric mean ratios (90% CI) for the Cmax and AUC0−t were 0.99 (0.82–1.18) and 1.04 (0.91–1.18), respectively. The overall results of the safety assessment showed no clinically significant issues for either

  2. Comparison of the pharmacokinetics and tolerability of HCP1004 (a fixed-dose combination of naproxen and esomeprazole strontium) and VIMOVO® (a marketed fixed-dose combination of naproxen and esomeprazole magnesium) in healthy volunteers.

    PubMed

    Choi, YoonJung; Han, HyeKyung; Shin, Dongseong; Lim, Kyoung Soo; Yu, Kyung-Sang

    2015-01-01

    HCP1004 is a newly developed fixed-dose combination of naproxen (500 mg) and esomeprazole strontium (20 mg) that is used in the treatment of rheumatic diseases and can reduce the risk of nonsteroidal anti-inflammatory drug-associated ulcers. The aim of this study was to evaluate the pharmacokinetics (PK) and safety of HCP1004 compared to VIMOVO(®) (a marketed fixed-dose combination of naproxen and esomeprazole magnesium). An open-label, randomized, two-treatment, two-sequence crossover, single-dose clinical study was conducted in 70 healthy volunteers. In each period, a reference (VIMOVO(®)) or test (HCP1004) drug was administered orally, and serial blood samples for PK analysis were collected up to 72 hours after dosing. To evaluate the PK profiles, the maximum plasma concentration (Cmax) and the area under the concentration-time curve from 0 to the last measurable time (AUC0-t) were estimated using a noncompartmental method. Safety profiles were evaluated throughout the study. Sixty-six of the 70 subjects completed the study. The Cmax (mean ± standard deviation) and AUC0-t (mean ± standard deviation) for naproxen in HCP1004 were 61.67 ± 15.16 µg/mL and 1,206.52 ± 166.46 h · µg/mL, respectively; in VIMOVO(®); these values were 61.85 ± 14.54 µg/mL and 1,211.44 ± 170.01 h · µg/mL, respectively. The Cmax and AUC0-t for esomeprazole in HCP1004 were 658.21 ± 510.91 ng/mL and 1,109.11 ± 1,111.59 h · ng/mL, respectively; for VIMOVO(®), these values were 595.09 ± 364.23 ng/mL and 1,015.12 ± 952.98 h · ng/mL, respectively. The geometric mean ratios and 90% confidence intervals (CIs) (HCP1004 to VIMOVO(®)) of the Cmax and AUC0-t of naproxen were 0.99 (0.94-1.06) and 1.00 (0.98-1.01), respectively. For esomeprazole, the geometric mean ratios (90% CI) for the Cmax and AUC0-t were 0.99 (0.82-1.18) and 1.04 (0.91-1.18), respectively. The overall results of the safety assessment showed no clinically significant issues for either treatment. The PK of HCP

  3. The Influence of Hydrophilic Interactions on the Sorption and Mobility of Naproxen at Environmentally-Relevant Concentrations

    NASA Astrophysics Data System (ADS)

    Muller, K.; Ramsburg, C. A.

    2011-12-01

    Managed underground storage of reclaimed wastewater is currently one viable option for meeting increasing demands on water resources, yet the attenuation of many emerging contaminants within the subsurface environment is not well understood. Pharmaceuticals are of particular concern due to the rapid increase in development and use of these compounds, observations of incomplete removal during wastewater treatment, and emerging concerns over ecosystem effects. Assessment of the subsurface attenuation of pharmaceuticals is difficult because the compounds are polar, pH-active, and present at low-concentration (ng/L). Predictions of sorption that only consider hydrophobic interactions with soil organic matter may not fully describe the extent to which reversible sequestration influences pharmaceutical attenuation. In fact, hydrophilic interactions (i.e. ion exchange, cation-induced sorption, hydrogen bonding, etc) may represent important contributions to total sorption, especially when aqueous solutes are present at low concentration. Here we assess the sorption of naproxen - an acidic pharmaceutical - to three subsurface materials using equilibrium batch experiments and 1-d column experiments. Subsurface materials evaluated include Ottawa sand (quartz with negligible organic carbon and negligible iron oxide), Aplite sand (quartz and feldspar with negligible organic carbon, 0.2% wt iron oxide), and a Hinckley series silty-sand (quartz and feldspar with 0.95% wt organic carbon, and 0.4% wt iron oxides). Sorption of naproxen to the Ottawa sand was negligible and did not result in measurable retardation when naproxen was introduced to the porous medium at a concentration of 275 ng/L. Batch experiments suggest that Aplite sand offers quantifiable interaction (52% of the mass introduced is associated with the solid phase when the aqueous concentration is 1000 ng/L and the solid to liquid ratio is 1.4:1 v/v); however, column data are indicative of markedly less interaction

  4. Structure, function and carcinogenicity of metabolites of methylated and non-methylated polycyclic aromatic hydrocarbons: a comprehensive review.

    PubMed

    Flesher, James W; Lehner, Andreas F

    2016-01-01

    The Unified Theory of PAH Carcinogenicity accommodates the activities of methylated and non-methylated polycyclic aromatic hydrocarbons (PAHs) and states that substitution of methyl groups on meso-methyl substituted PAHs with hydroxy, acetoxy, chloride, bromide or sulfuric acid ester groups imparts potent cancer producing properties. It incorporates specific predictions from past researchers on the mechanism of carcinogenesis by methyl-substituted hydrocarbons, including (1) requirement for metabolism to an ArCH2X type structure where X is a good leaving group and (2) biological substitution of a meso-methyl group at the most reactive center in non-methylated hydrocarbons. The Theory incorporates strong inferences of Fieser: (1) The mechanism of carcinogenesis involves a specific metabolic substitution of a hydrocarbon at its most reactive center and (2) Metabolic elimination of a carcinogen is a detoxifying process competitive with that of carcinogenesis and occurring by a different mechanism. According to this outlook, chemical or biochemical substitution of a methyl group at the reactive meso-position of non-methylated hydrocarbons is the first step in the mechanism of carcinogenesis for most, if not all, PAHs and the most potent metabolites of PAHs are to be found among the meso methyl-substituted hydrocarbons. Some PAHs and their known or potential metabolites and closely related compounds have been tested in rats for production of sarcomas at the site of subcutaneous injection and the results strongly support the specific predictions of the Unified Theory.

  5. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities

    USGS Publications Warehouse

    Kidd, Haack S.; Garchow, H.; Odelson, D.A.; Forney, L.J.; Klug, M.J.

    1994-01-01

    We determined the accuracy and reproducibility of whole-community fatty acid methyl ester (FAME) analysis with two model bacterial communities differing in composition by using the Microbial ID, Inc. (MIDI), system. The biomass, taxonomic structure, and expected MIDI-FAME profiles under a variety of environmental conditions were known for these model communities a priori. Not all members of each community could be detected in the composite profile because of lack of fatty acid 'signatures' in some isolates or because of variations (approximately fivefold) in fatty acid yield across taxa. MIDI- FAME profiles of replicate subsamples of a given community were similar in terms of fatty acid yield per unit of community dry weight and relative proportions of specific fatty acids. Principal-components analysis (PCA) of MIDI-FAME profiles resulted in a clear separation of the two different communities and a clustering of replicates of each community from two separate experiments on the first PCA axis. The first PCA axis accounted for 57.1% of the variance in the data and was correlated with fatty acids that varied significantly between communities and reflected the underlying community taxonomic structure. On the basis of our data, community fatty acid profiles can be used to assess the relative similarities and differences of microbial communities that differ in taxonomic composition. However, detailed interpretation of community fatty acid profiles in terms of biomass or community taxonomic composition must be viewed with caution until our knowledge of the quantitative and qualitative distribution of fatty acids over a wide variety of taxa and the effects of growth conditions on fatty acid profiles is more extensive.

  6. Two-Carbon Homologation of Ketones to 3-Methyl Unsaturated Aldehydes

    USDA-ARS?s Scientific Manuscript database

    The usual scheme of two-carbon homologation of ketones to 3-methyl unsaturated aldehydes by Horner-Wadsworth-Emmons condensations with phosphonate esters, such as triethyl-2-phosphonoacetate, involves three steps. The phosphonate condensation step results in extension of the carbon chain by two carb...

  7. Melt extrusion vs. spray drying: The effect of processing methods on crystalline content of naproxen-povidone formulations.

    PubMed

    Haser, Abbe; Cao, Tu; Lubach, Joe; Listro, Tony; Acquarulo, Larry; Zhang, Feng

    2017-05-01

    Our hypothesis is that melt extrusion is a more suitable processing method than spray drying to prepare amorphous solid dispersions of drugs with a high crystallization tendency. Naproxen-povidone K25 was used as the model system in this study. Naproxen-povidone K25 solid dispersions at 30% and 60% drug loadings were characterized by modulated DSC, powder X-ray diffraction, FT-IR, and solid-state 13 C NMR to identify phase separation and drug recrystallization during processing and storage. At 30% drug loading, hydrogen bond (H-bond) sites of povidone K25 were not saturated and the glass transition (T g ) temperature of the formulation was higher. As a result, both melt-extruded and spray-dried materials were amorphous initially and remained so after storage at 40°C. At 60% drug loading, H-bond sites were saturated, and T g was low. We were not able to prepare amorphous materials. The initial crystallinity of the formulations was 0.4%±0.2% and 5.6%±0.6%, and increased to 2.7%±0.3% and 21.6%±1.0% for melt-extruded and spray-dried materials, respectively. Spray-dried material was more susceptible to re-crystallization during processing, due to the high diffusivity of naproxen molecules in the formulation matrix and lack of kinetic stabilization from polymer solution. A larger number of crystalline nucleation sites and high surface area made the spray-dried material more susceptible to recrystallization during storage. This study demonstrated the unique advantages of melt extrusion over spray drying for the preparation of amorphous solid dispersions of naproxen at high drug level. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis and characterization of a novel long-alkyl-chain ester-substituted benzimidazole gelator and its octan-1-ol solvate.

    PubMed

    Geiger, H Cristina; Zick, Patricia L; Roberts, William R; Geiger, David K

    2017-04-01

    The synthesis of a novel benzimidazole derivative with a long-chain-ester substituent, namely methyl 8-[4-(1H-benzimidazol-2-yl)phenoxy]octanoate, (3), is reported. Ester (3) shows evidence of aggregation in solution and weak gelation ability with toluene. The octan-1-ol solvate, methyl 8-[4-(1H-benzimidazol-2-yl)phenoxy]octanoate octan-1-ol monosolvate, C 22 H 26 N 2 O 3 ·C 8 H 18 O, (4), exhibits a four-molecule hydrogen-bonded motif in the solid state, with N-H...O hydrogen bonds between benzimidazole molecules and O-H...N hydrogen bonds between the octan-1-ol solvent molecules and the benzimidazole unit. The alkyl chains of the ester and the octan-1-ol molecules are in unfolded conformations. The phenylene ring is canted by 10.27 (6)° from the plane of the benzimidazole ring system. H...C contacts make up 20.7% of the Hirshfeld surface coverage. Weak C-H...π interactions involving the benzimidazole alkyl chain and three aromatic rings are observed.

  9. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    PubMed

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  10. Theoretical and kinetic study of the hydrogen atom abstraction reactions of esters with H(O.)2 radicals.

    PubMed

    Mendes, Jorge; Zhou, Chong-Wen; Curran, Henry J

    2013-12-27

    This work details an ab initio and chemical kinetic study of the hydrogen atom abstraction reactions by the hydroperoxyl radical (HȮ2) on the following esters: methyl ethanoate, methyl propanoate, methyl butanoate, methyl pentanoate, methyl isobutyrate, ethyl ethanoate, propyl ethanoate, and isopropyl ethanoate. Geometry optimizations and frequency calculations of all of the species involved, as well as the hindrance potential descriptions for reactants and transition states, have been performed with the Møller-Plesset (MP2) method using the 6-311G(d,p) basis set. A validation of all of the connections between transition states and local minima was performed by intrinsic reaction coordinate calculations. Electronic energies for all of the species are reported at the CCSD(T)/cc-pVTZ level of theory in kcal mol(-1) with the zero-point energy corrections. The CCSD(T)/CBS (extrapolated from CCSD(T)/cc-pVXZ, in which X = D, T, Q) was used for the reactions of methyl ethanoate + HȮ2 radicals as a benchmark in the electronic energy calculations. High-pressure limit rate constants, in the temperature range 500-2000 K, have been calculated for all of the reaction channels using conventional transition state theory with asymmetric Eckart tunneling corrections. The 1-D hindered rotor approximation has been used for the low frequency torsional modes in both reactants and transition states. The calculated individual and total rate constants are reported for all of the reaction channels in each reaction system. A branching ratio analysis for each reaction site has also been investigated for all of the esters studied in this work.

  11. Selective inhibition by aspirin and naproxen of mainstream cigarette smoke-induced genotoxicity and lung tumors in female mice.

    PubMed

    Balansky, Roumen; Ganchev, Gancho; Iltcheva, Marietta; Micale, Rosanna T; La Maestra, Sebastiano; D'Oria, Chiara; Steele, Vernon E; De Flora, Silvio

    2016-05-01

    The role of nonsteroidal anti-inflammatory drugs (NSAIDs) in smoke-related lung carcinogenesis is still controversial. We have developed and validated a murine model for evaluating the tumorigenicity of mainstream cigarette smoke (MCS) and its modulation by chemopreventive agents. In the present study, the protective effects of the nonselective cyclooxygenase inhibitors aspirin and naproxen were investigated by using a total of 277 Swiss H neonatal mice of both genders. Groups of mice were exposed whole-body to MCS during the first 4 months of life, followed by an additional 3.5 months in filtered air in order to allow a better growth of tumors. Aspirin (1600 mg/kg diet) and naproxen (320 mg/kg diet) were given after weanling until the end of the experiment. After 4 months of exposure, MCS significantly enhanced the frequency of micronucleated normochromatic erythrocytes in the peripheral blood of mice, and naproxen prevented such systemic genotoxic damage in female mice. After 7.5 months, exposure of mice to MCS resulted in the formation of lung tumors, both benign and malignant, and in several other histopathological lesions detectable both in the respiratory tract and in the urinary tract. Aspirin and, even more sharply, naproxen significantly inhibited the formation of lung tumors in MCS-exposed mice, but this protective effect selectively occurred in female mice only. These results lend support to the views that estrogens are involved in smoke-related pulmonary carcinogenesis and that NSAIDs have antiestrogenic properties. The two NSAIDs proved to be safe and efficacious in the experimental model used.

  12. Preliminary studies on LED-activated pyropheophorbide-α methyl ester killing cisplatin-resistant ovarian carcinoma cells

    NASA Astrophysics Data System (ADS)

    Tan, Yong; Xu, Chuan Shan; Xia, Xin Shu; Yu, He Ping; Bai, Ding Qun; He, Yong; Xu, Jing; Wang, Ping; Wang, Xin Na; Leung, Albert Wing Nang

    2009-05-01

    In the present study, a novel LED source was applied for activating pyropheophorbids-a methyl ester (MPPa) in cisplatin-resistant ovarian cell line COC1/DDP cells. MPPa concentration was 2 μM and light energy from 0.125-8 J/cm2. Cytotoxicity was investigated 24 h using MTT reduction assay and light microscopy after treatment. Cellular ultrastructure was observed using transmission electron microscopy (TEM) and nuclear chromatin by fluorescent microscope with Hoechst33258 staining. MTT reduction assay showed that the cytotoxicity of LED-activated MPPa in the COC1/DDP cells increased along with the light dose of LED source and LED-activated MPPa resulted in light-dependent cytotoxicity. The observations from light microscopy reinforced the above results. TEM showed that necrotic cells with the disruption of karyotheca, karyorrhexis, and karyolysis of nucleus and apoptotic cells, especially the apoptotic body, can be seen post LED-activated MPPa. Hoechst33258 staining showed that condensation of chromatin and nuclear fragmentations could be found in many treated cells and some of them formed the structure of apoptotic bodies when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm2 irradiation of LED source. The findings demonstrated that the novel LED source could efficiently activated MPPa and LED-activated MPPa could significantly kill cisplatin-resistant ovarian cell line COC1/DDP cells through two major pathways including necrosis and apoptosis, suggesting that LED is a novel and efficient light source and LED-activated MPPa might be potential therapeutic modality for treating cisplatin-resistant ovarian carcinoma.

  13. On the inapplicability of electron-hopping models for the organic semiconductor Phenyl-C61-butyric Acid Methyl Ester (PCBM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajdos, Fruzsina; Oberhofer, Harald; Dupuis, Michel

    2013-03-21

    Phenyl-C61-butyric Acid Methyl Ester (PCBM) is one of the most popular semiconductors in organic photovoltaic cells, but the electron transport mechanism in the microcrystalline domains of this material as well as its preferred packing structure remains unclear. Here we use density functional theory to calculate electronic coupling matrix elements, reorganization energies and activation energies for available experimental and model crystal structures. We find that the picture of an excess electron hopping from one fullerene to another does not apply for any of the crystalline phases, rendering traditional rate equations inappropriate. We also find that the cohesive energy increases in themore » order body-centred-cubic < hexagonal < simple cubic < monoclinic < triclinic, independently on the type of dispersion correction used. Our results indicate that the electron-ion dynamics needs to be solved explicitly in order to obtain a realistic description of charge transfer in this material. M.D. was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences. PNNL is a multiprogram national laboratory operated for DOE by Battelle.« less

  14. Oxidation of Peptides by Methyl(trifluoromethyl)dioxirane: the Protecting Group Matters

    PubMed Central

    Rella, Maria Rosaria; Williard, Paul G.

    2011-01-01

    Representative Boc protected and acetyl protected peptide methyl esters bearing alkyl side chains undergo effective oxidation using methyl(trifluoromethyl)dioxirane (1b) under mild conditions. We observe a protecting group dependency in the chemoselectivity displayed by the dioxirane 1b. N-hydroxylation occurs in the case of the Boc protected peptides, side chain hydroxylation takes place in the case of acetyl protected peptides. Both are attractive transformations since they yield derivatized peptides that serve as valuable synthons. PMID:17221970

  15. Isolation and screening of heterocystous cyanobacterial strains for biodiesel production by evaluating the fuel properties from fatty acid methyl ester (FAME) profiles.

    PubMed

    Anahas, Antonyraj Matharasi Perianaika; Muralitharan, Gangatharan

    2015-05-01

    This study reports on the biodiesel quality parameters of eleven heterocystous cyanobacterial strains based on fatty acid methyl esters (FAME) profiles. The biomass productivity of the tested cyanobacterial strains ranged from 9.33 to 20.67 mg L(-1) d(-1) while the lipid productivity varied between 0.65 and 2.358 mg L(-1) d(-1). The highest biomass and lipid productivity was observed for Calothrix sp. MBDU 013 but its lipid content is only 11.221 in terms of percent dry weight, next to the Anabaena sphaerica MBDU 105, whose lipid content is high. To identify the most competent isolate, a multi-criteria decision analyses (MCDA) was performed by including the key chemical and physical parameters of biodiesel calculated from FAME profiles. The isolate A.sphaerica MBDU 105 is the most promising biodiesel feed stock based on decision vector through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Impact of fatty ester composition on low temperature properties of biodiesel-petroleum diesel blends

    USDA-ARS?s Scientific Manuscript database

    Several biodiesel fuels along with neat fatty acid methyl esters (FAMEs) commonly encountered in biodiesel were blended with ultra-low sulfur diesel (ULSD) fuel at low blend levels permitted by ASTM D975 (B1-B5) and cold flow properties such as cloud point (CP), cold filter plugging point (CFPP), an...

  17. Chromatographic efficiency of polar capillary columns applied for the analysis of fatty acid methyl esters by gas chromatography.

    PubMed

    Waktola, Habtewold D; Mjøs, Svein A

    2018-04-01

    The chromatographic efficiency that could be achieved in temperature-programmed gas chromatography was compared for four capillary columns that are typically applied for analysis of fatty acid methyl esters (FAME). Three different carrier gases, hydrogen, helium and nitrogen, were applied. For each experiment, the carrier gas velocities and the temperature rates were varied with a full 9 × 3 design, with nine levels on the carrier gas velocity and temperature rates of 1, 2 or 3°C/min. Response surface methodology was used to create models of chromatographic efficiency as a function of temperature rate and carrier gas velocity. The chromatographic efficiency was defined as the inverse of peak widths measured in retention index units. The final results were standardized so that the efficiencies that could be achieved within a certain time frame, defined by the retention time of the last compound in the chromatogram, could be compared. The results show that there were clear differences in the efficiencies that could be achieved with the different columns and that the efficiency decreased with increasing polarity of the stationary phase. The differences can be explained by higher resistance to mass transfer in the stationary phase in the most polar columns. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of Turbulence on the Combustion Properties of Partially Premixed Flames of Canola Methyl Ester and Diesel Blends

    DOE PAGES

    Dhamale, N.; Parthasarathy, R. N.; Gollahalli, S. R.

    2011-01-01

    Canola methyl ester (CME) is a biofuel that is a renewable alternative energy resource and is produced by the transesterification of canola oil. The objective of this study was to document the effects of turbulence on the combustion characteristics of blends of CME and No 2 diesel fuel in a partially-premixed flame environment. The experiments were conducted with mixtures of pre-vaporized fuel and air at an initial equivalence ratio of 7 and three burner exit Reynolds numbers, 2700, 3600, and 4500. Three blends with 25, 50, and 75% volume concentration of CME were studied. The soot volume fraction was highestmore » for the pure diesel flames and did not change significantly with Reynolds number due to the mutually compensating effects of increased carbon input rate and increased air entrainment as the Reynolds number was increased. The global NOx emission index was highest and the CO emission index was the lowest for the pure CME flame, and varied non-monotonically with biofuel content in the blend The mean temperature and the NOx concentration at three-quarter flame height were generally correlated, indicating that the thermal mechanism of NOx formation was dominant in the turbulent biofuel flames also.« less

  19. Effects of Temperature and Humidity History on Brittleness of α-Sulfonated Fatty Acid Methyl Ester Salt Crystals.

    PubMed

    Watanabe, Hideaki; Morigaki, Atsunori; Kaneko, Yukihiro; Tobori, Norio; Aramaki, Kenji

    2016-01-01

    α-Sulfonated fatty acid methyl ester salts (MES), which were made from vegetable sources, are attractive candidates for eco-friendly washing detergents because they have various special features like excellent detergency, favorable biodegradability, and high stability against enzymes. To overcome some disadvantages of powder-type detergents like caking, sorting, and dusting, we studied how temperature and humidity history, as a model for long-term storage conditions, can affect crystalline structures and reduce the brittleness of MES powder. We characterized the crystalline structure of MES grains using small-angle X-ray scattering, wide-angle X-ray scattering, differential scanning calorimetry, and Fourier transform infrared spectroscopy measurements and determined the yield values, which measure the brittleness of MES grains, in shear stress using dynamic viscoelasticity measurements. This study confirmed that MES crystals form three pseudo-polymorphs via thermal or humidity conditioning: metastable crystals (αsubcell), anhydrous crystals (β subcell), and dihydrate crystals (β' subcell). Further, we found that the yield value increases upon phase transition from the β subcell to the β' subcell and from the β' subcell to the αsubcell. Therefore, controlling the thermal and humidity conditioning of MES grains is an effective way to decrease the brittleness of MES powders and can be used to overcome the above mentioned disadvantages of powder-type detergents in the absence of co-surfactants.

  20. AVOIDING PITFALLS IN THE DETERMINATION OF HALOCARBOXYLIC ACIDS: THE PHOTOCHEMISTRY OF METHYLATION

    EPA Science Inventory

    Haloethanoic (haloacetic) acids are formed during chlorination of drinking water and are regulated by the Environmental Protection Agency (EPA). These compounds are normally quantified by gas chromatography with electron capture detection (GC-ECD) ad the methyl esters. EPA Meth...

  1. Efficacy of naproxen with or without esomeprazole for pain and inflammation in patients after bilateral third molar extractions: A double blinded crossover study.

    PubMed

    Weckwerth, G-M; Simoneti, L-F; Zupelari-Gonçalves, P; Calvo, A-M; Brozoski, D-T; Dionísio, T-J; Torres, E-A; Lauris, J-R-P; Faria, F-A-C; Santos, C-F

    2017-01-01

    Using a double-blinded randomized crossover design, this study aimed to evaluate acute postoperative pain management, swelling and trismus in 46 volunteers undergoing extractions of the two lower third molars, in similar positions, at two different appointments who consumed a tablet of either NE (naproxen 500 mg + esomepraz ole 20 mg) or only naproxen (500 mg) every 12 hours for 4 days. Parameters were analyzed: self-reported pain intensity using a visual analog scale (VAS) pre- and postoperative mouth opening; incidence, type and severity of adverse reactions; total quantity consumed of rescue medication; and pre- and postoperative swelling. Female volunteers reported significantly more postoperative pain at 1, 1.5, 2, 3 and 4hrs after surgery while also taking their first rescue medication at a time significantly earlier when consuming NE when compared to naproxen (3.7hrs and 6.7hrs). Conversely, no differences were found between each drug group in males. In conclusion, throughout the entire study, pain was mild after using either drug in both men and women with pain scores on average well below 40mm (VAS), although in women naproxen improved acute postoperative pain management when compared to NE.

  2. Cerium-doped -Ni(OH)2 hexagon nanosheets: an effective photocatalyst for degradation of the emerging water pollutant naproxen.

    PubMed

    Regmi, Chhabilal; Maya-Flores, Etel; Lee, Soo Wohn; Rodríguez-González, Vicente

    2018-06-21

    Nickel hydroxide β-Ni(OH)2 hexagonal nanosheets were synthetized via a hydrothermal exfoliation process. The practical microwave assisted hydrothermal method facilitated obtain layered nickel 3D nanoplates with cerium functionalization in 5h. The as-produced nanostructures were characterized by XRD, XPS, FESEM, FT-IR, PL, UV-vis, and BET techniques. The hydroxilated structures are nano-thick hexagonal plates having sides with 28 nm in length and 5 nm of average thickness. UV and PL irradiation was used to study the photoactive properties in the degradation of a pharmaceutical emerging pollutant, naproxen. UV-vis spectroscopy and high-performance liquid chromatography (HPLC) monitoring indicated that the Ni(OH)2-Ce nanostructures are an effective photocatalyst for naproxen degradation including 40 % of mineralization of this highly recalcitrant drug. The photocatalyst showed stability for two consecutive cycles, preserving its photoactive and structural characteristics. Ce3+ doped nanoplates and surface functionalized Ce4+ act as charge separators and scavenging agents for the enhanced photodegradation of naproxen. © 2018 IOP Publishing Ltd.

  3. Low-molecular-weight poly(alpha-methyl beta,L-malate) of microbial origin: synthesis and crystallization.

    PubMed

    Fernández, Carlos E; Mancera, Manuel; Holler, Eggehard; Bou, Jordi J; Galbis, Juan A; Muñoz-Guerra, Sebastián

    2005-02-23

    Low-molecular-weight poly(alpha-methyl beta,L-malate) made of approximately 25-30 units was prepared from microbial poly(beta,L-malic acid) by treatment with diazomethane. The thermal characterization of the polymalate methyl ester was carried out and its crystalline structure was preliminary examined. Its ability to crystallize both from solution and from the melt was comparatively evaluated.

  4. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    PubMed

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  5. Ionic liquid phases with comprehensive two-dimensional gas chromatography of fatty acid methyl esters.

    PubMed

    Pojjanapornpun, Siriluck; Nolvachai, Yada; Aryusuk, Kornkanok; Kulsing, Chadin; Krisnangkura, Kanit; Marriott, Philip J

    2018-02-17

    New generation inert ionic liquid (iIL) GC columns IL60i, IL76i and IL111i, comprising phosphonium or imidazolium cationic species, were investigated for separation of fatty acid methyl esters (FAME). In general, the iIL phases provide comparable retention times to their corresponding conventional columns, with only minor selectivity differences. The average tailing factors and peak widths were noticeably improved (reduced) for IL60i and IL76i, while they were slightly improved for IL111i. Inert IL phase columns were coupled with conventional IL columns in comprehensive two-dimensional GC (GC × GC) with a solid-state modulator which offers variable modulation temperature (T M ), programmable T M during analysis and trapping stationary phase material during the trap/release (modulation) process, independent of oven T and column sets. Although IL phases are classified as polar, relative polarity of the two phases comprising individual GC × GC column sets permits combination of less-polar IL/polar IL and polar IL/less-polar IL column sets; it was observed that a polar/less-polar column set provided better separation of FAME. A higher first dimension ( 1 D) phase polarity combined with a lower 2 D phase polarity, for instance 1 D IL111i with 2 D IL59 gave the best result; the greater difference in 1 D/ 2 D phase polarity results in increasing occupancy of peak area in the 2D space. The IL111i/IL59 column set was selected for analysis of fatty acids in fat and oil products (butter, margarine, fish oil and canola oil). Compared with the conventional IL111, IL111i showed reduced column bleed which makes this more suited to GC × GC analysis of FAME. The proposed method offers a fast profiling approach with good repeatability of analysis of FAME.

  6. Determination of selected fate and aquatic toxicity characteristics of acrylic acid and a series of acrylic esters.

    PubMed

    Staples, C A; Murphy, S R; McLaughlin, J E; Leung, H W; Cascieri, T C; Farr, C H

    2000-01-01

    Acrylic acid, methyl acrylate, ethyl acrylate, and butyl acrylate are commercially important and widely used materials. This paper reports the results of a series of fate and aquatic toxicity studies. The mobility in soil of acrylic acid and its esters ranged from 'medium' to 'very high'. Calculated bioconcentration factors ranged from 1 to 37, suggesting a low bioconcentration potential. Acrylic acid and methyl acrylate showed limited biodegradability in the five day biochemical oxygen demand (BOD5) test, while ethyl acrylate and butyl acrylate were degraded easily (77% and 56%, respectively). Using the OECD method 301D 28-d closed bottle test, degradability for acrylic acid was 81% at 28 days, while the acrylic esters ranged from 57% to 60%. Acrylic acid degraded rapidly to carbon dioxide in soil (t1/2 < 1 day). Toxicity tests were conducted using freshwater and marine fish, invertebrates, and algae. Acrylic acid effect concentrations for fish and invertebrates ranged from 27 to 236 mg/l. Effect concentrations (LC50 or EC50) for fish and invertebrates using methyl acrylate, ethyl acrylate, and butyl acrylate ranged from 1.1 to 8.2 mg/l. The chronic MATC for acrylic acid with Daphnia magna was 27 mg/l based on length and young produced per adult reproduction day and for ethyl acrylate was 0.29 mg/l based on both the reproductive and growth endpoints. Overall these studies show that acrylic acid and the acrylic esters studied can rapidly biodegrade, have a low potential for persistence or bioaccumulation in the environment, and have low to moderate toxicity.

  7. Validated HPLC-UV method for determination of naproxen in human plasma with proven selectivity against ibuprofen and paracetamol.

    PubMed

    Filist, Monika; Szlaska, Iwona; Kaza, Michał; Pawiński, Tomasz

    2016-06-01

    Estimating the influence of interfering compounds present in the biological matrix on the determination of an analyte is one of the most important tasks during bioanalytical method development and validation. Interferences from endogenous components and, if necessary, from major metabolites as well as possible co-administered medications should be evaluated during a selectivity test. This paper describes a simple, rapid and cost-effective HPLC-UV method for the determination of naproxen in human plasma in the presence of two other analgesics, ibuprofen and paracetamol. Sample preparation is based on a simple liquid-liquid extraction procedure with a short, 5 s mixing time. Fenoprofen, which is characterized by a similar structure and properties to naproxen, was first used as the internal standard. The calibration curve is linear in the concentration range of 0.5-80.0 µg/mL, which is suitable for pharmacokinetic studies following a single 220 mg oral dose of naproxen sodium. The method was fully validated according to international guidelines and was successfully applied in a bioequivalence study in humans. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic Aspergillus

    PubMed Central

    Abdelillah, Amrouche; Houcine, Benmehdi; Halima, Dalile; Meriem, Chabane sari; Imane, Zaaboub; Eddine, Smahi Djamal; Abdallah, Moussaoui; Daoudi, Chabane sari

    2013-01-01

    Objective The aim of this study was to evaluate the antifungal activity of the major fraction of fatty acids methyl esters (FAMEs) isolated from Linum usitatissimum L. seeds oil collected from Bechar department (Algeria). Methods The assessment of antifungal activity was carried out in terms of percentage of radial growth on solid medium (potatoes dextrose agar PDA) and biomass growth inhibition on liquid medium (potatoes dextrose broth PDB) against two fungi. Results The FAMEs was found to be effective in inhibiting the radial mycelial growth of Aspergillus flavus more than Aspergillus ochraceus on all tested concentrations. The highest antifungal index was found to be (54.19%) compared to Aspergillus ochraceus (40.48%). The results of the antifungal activity of the FAMEs inhibition of biomass on liquid medium gave no discounted results, but this does not exclude the antifungal activity. Conclusions We can assume that the observed antifungal potency may be due to the abundance of linoleic and α-linolenic acids in linseed oil which appears to be promising to treat fungal infections, storage fungi and food spoilage in food industry field. PMID:23730556

  9. Flavocoxid is as effective as naproxen for managing the signs and symptoms of osteoarthritis of the knee in humans: a short-term randomized, double-blind pilot study.

    PubMed

    Levy, Robert M; Saikovsky, Roman; Shmidt, Evgeniya; Khokhlov, Alexander; Burnett, Bruce P

    2009-05-01

    Flavocoxid (Limbrel), a proprietary mixture of flavonoid molecules (baicalin and catechin), was tested against a traditional nonsteroidal anti-inflammatory drug, naproxen, for the management of the signs and symptoms of moderate osteoarthritis (OA) in humans. Discomfort and global disease activity were used as the primary end points, and safety assessments were also taken for both treatments as a secondary endpoint. In this double-blind study, 103 subjects were randomly assigned to receive either flavocoxid [500 mg twice daily (BID)] or naproxen (500 mg BID) in a 1-month onset of action trial. Outcome measures included the short Western Ontario and McMaster University Osteoarthritis Index, subject Visual Analogue Scale for discomfort and global response, and investigator Visual Analogue Scale for global response and fecal occult blood. Both flavocoxid and naproxen showed significant reduction in the signs and symptoms of knee OA (P < or = .001). There were no statistically detectable differences between the flavocoxid and naproxen groups with respect to any of the outcome variables. Similarly, there were no statistically detectable differences between the groups with respect to any adverse event, although there was a trend toward a higher incidence of edema and nonspecific musculoskeletal discomfort in the naproxen group. In this short-term pilot study, flavocoxid was as effective as naproxen in controlling the signs and symptoms of OA of the knee and would present a safe and effective option for those individuals on traditional nonsteroidal anti-inflammatory drugs or cyclooxygenase-2 inhibitors. A low incidence of adverse events was reported for both groups.

  10. Combination of atorvastatin with sulindac or naproxen profoundly inhibits colonic adenocarcinomas by suppressing the p65/β-catenin/cyclin D1 signaling pathway in rats

    PubMed Central

    Suh, Nanjoo; Reddy, Bandaru S.; DeCastro, Andrew; Paul, Shiby; Lee, Hong Jin; Smolarek, Amanda K.; So, Jae Young; Simi, Barbara; Wang, Chung Xiou; Janakiram, Naveena B.; Steele, Vernon; Rao, Chinthalapally V.

    2011-01-01

    Evidence supports the protective role of non-steroidal anti-inflammatory drugs (NSAIDs) and statins against colon cancer. Experiments were designed to evaluate the efficacies atorvastatin and NSAIDs administered individually and in combination against colon tumor formation. F344 rats were fed AIN-76A diet and colon tumors were induced with azoxymethane (AOM). One week after the second AOM-treatment groups of rats were fed diets containing atorvastatin (200 ppm), sulindac (100 ppm) or naproxen (150 ppm), or their combinations with low-dose atorvastatin (100 ppm) for 45 weeks. Administration of atorvastatin at 200 ppm significantly suppressed both adenocarcinoma incidence (52% reduction, p=0.005) and multiplicity (58% reduction, p=0.008). Most importantly, colon tumor multiplicities were profoundly decreased (80–85% reduction, p<0.0001) when given low-dose atorvastatin with either sulindac or naproxen. Also, a significant inhibition of colon tumor incidence was observed when given a low-dose atorvastatin with either sulindac (p=0.001) or naproxen (p =0.0005). Proliferation markers, proliferating cell nuclear antigen, cyclin D1 and β-catenin in tumors of rats exposed to sulindac, naproxen, atorvastatin, and/or combinations showed a significant suppression. Importantly, colon adenocarcinomas from atorvastatin and NSAIDs fed animals showed reduced key inflammatory markers, inducible nitric oxide synthase and cyclooxygenase-2, phospho-p65, as well as inflammatory cytokines, TNF-α, IL-1β, and IL-4. Overall, this is the first report on the combination treatment using low-dose atorvastatin with either low dose sulindac or naproxen, which greatly suppress the colon adenocarcinoma incidence and multiplicity. Our results suggest that low-dose atorvastatin with sulindac or naproxen might potentially be useful combinations for colon cancer prevention in humans. PMID:21764859

  11. Investigation on the emission quality, performance and combustion characteristics of the compression ignition engine fueled with environmental friendly corn oil methyl ester - Diesel blends.

    PubMed

    Nagaraja, S; Soorya Prakash, K; Sudhakaran, R; Sathish Kumar, M

    2016-12-01

    This paper deals with emission quality of diesel engine based on eco toxicological studies with different methods of environmental standard toxicity tests satisfy the Bharath and European emission norms. Based on the emission norms, Corn Oil Methyl Ester (COME) with diesel is tested in a compression ignition engine and the performance and combustion characteristics are discussed. The corn oil was esterified and the property of corn oil methyl ester was within the limits specified in ASTM D 6751-03. The COME was blended together with diesel in different proportion percentages along with B20, B40, B60, B80, and B100. The emission and performance tests for various blends of COME was carried out using single cylinder, four stroke diesel engine, and compared with the performance obtained with 100% diesel (D100). The results give clear information that COME has low exhaust emissions and increase in performance compared to D100 without any modifications. It gives better performance, which is nearer to the obtained results of D100. Specific Fuel Consumption (SFC) of B100 at the full load condition is found to be 4% lower than that of (D100). The maximum Brake Thermal Efficiency (BTE) of B100 is found to be 8.5% higher than that of the D100 at full load. Also, the maximum BTE of part load for different blends is varied from 5.9% to 7.45% which is higher than D100. The exhaust gas emissions like Carbon Monoxide (CO), Carbon Dioxide (CO 2 ), Hydro Carbon (HC) and Nitrogen Oxide (NO x ) are found to be 2.3 to 18.8% lower compared to D100 for part as well as full load. The heat release rate of biodiesel and it blends are found to 16% to 35% lower as compared to D100 for part load, where as for full load it is 21% lower than D100. The results showed that the test of emissions norms are well within the limits of Bharath VI and European VI and it leads to less pollution, less effect on green eco system and potential substitute to fossil fuels. Copyright © 2016 Elsevier Inc. All

  12. High performance liquid chromatography with photo diode array for separation and analysis of naproxen and esomeprazole in presence of their chiral impurities: Enantiomeric purity determination in tablets.

    PubMed

    Ragab, Marwa A A; El-Kimary, Eman I

    2017-05-12

    A stereoselective high performance liquid chromatographic method with diode array detection (HPLC-DAD) was introduced for S-naproxen and esomeprazole determination in tablets. The separation was achieved on a Kromasil Cellucoat chiral column using a mobile phase consisting of hexane: isopropanol: trifluoroacetic acid (TFA) (90:9.9:0.1 v/v/v). The proposed system was found to be suitable for the enantioseparation of naproxen and omeprazole biologically active isomers. After optimization of the chromatographic conditions, resolution values of 3.84 and 2.17 could be obtained for naproxen and omeprazole isomers, respectively. The method was fully validated for the determination of S-isomers of each drug in their dosage form. Also, the enentiomeric purity was determined in commercial tablet containing S-naproxen and esomeprazole. The enantiomeric purity was calculated for each drug and the chiral impurities (R-isomers) could be determined at 1% level. The method was validated and good results with respect to linearity, precision, accuracy, selectivity and robustness were obtained. The limits of detection (LOD) and quantification (LOQ) were 2.00, 6.50 and 0.10, 0.35μgmL -1 for S-naproxen and esomeprazole, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Simultaneous enzymatic synthesis of FAME and triacetyl glycerol from triglycerides and methyl acetate.

    PubMed

    Usai, E M; Gualdi, E; Solinas, V; Battistel, E

    2010-10-01

    In the presence of methyl acetate triglycerides such as vegetable oils are transformed simultaneously into the corresponding fatty acid methyl esters and triacetyl glycerol (triacetin). The reaction, catalyzed by lipases, was studied as a function of some critical parameters, such as type of catalyst, enzyme hydration and immobilization support. The aim of the work was to achieve a conversion of the triglyceride as high as possible and to maximize the yield of the triacetin, the reaction end point. It was found that by using the immobilized lipase from Candida antarctica yields as high as 80% of both fatty acid esters and triacetin could be achieved. These results were obtained by carefully controlling the amount of water present in the reaction medium and the hydration level of the enzyme macromolecule. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Chemical Kinetic Influences of Alkyl Chain Structure on the High Pressure and Temperature Oxidation of a Representative Unsaturated Biodiesel: Methyl Nonenoate.

    PubMed

    Fridlyand, Aleksandr; Goldsborough, S Scott; Brezinsky, Kenneth

    2015-07-16

    The high pressure and temperature oxidation of methyl trans-2-nonenoate, methyl trans-3-nonenoate, 1-octene, and trans-2-octene are investigated experimentally to probe the influence of the double bond position on the chemical kinetics of long esters and alkenes. Single pulse shock tube experiments are performed in the ranges p = 3.8-6.2 MPa and T = 850-1500 K, with an average reaction time of 2 ms. Gas chromatographic measurements indicate increased reactivity for trans-2-octene compared to 1-octene, whereas both methyl nonenoate isomers have reactivities similar to that of 1-octene. A difference in the yield of stable intermediates is observed for the octenes when compared to the methyl nonenoates. Chemical kinetic models are developed with the aid of the Reaction Mechanism Generator to interpret the experimental results. The models are created using two different base chemistry submodels to investigate the influence of the foundational chemistry (i.e., C0-C4), whereas Monte Carlo simulations are performed to examine the quality of agreement with the experimental results. Significant uncertainties are found in the chemistry of unsaturated esters with the double bonds located close to the ester groups. This work highlights the importance of the foundational chemistry in predictive chemical kinetics of biodiesel combustion at engine relevant conditions.

  15. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.

    PubMed

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2013-02-01

    The noncatalytic transformation of the crude lipid of Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) via a thermo-chemical process was mainly investigated in this work. The crude lipid of C. vulgaris was recovered by means of solvent extraction from C. vulgaris cultivated in a raceway pond. The conventional catalyzed transesterification of crude lipid of C. vulgaris is notably inhibited by the impurities contained in the crude lipid of C. vulgaris. These impurities are inevitably derived from the solvent extraction process for C. vulgaris. However, this work presents the noncatalytic transesterification of microalgal lipid into FAME, which could be an alternative option. For example, the noncatalytic transformation of microalgal lipid into FAME provides evidence that the esterification of free fatty acids (FFAs) and the transesterification of triglycerides can be combined into a single step less susceptible to the impurities and with a high conversion efficiency (∼97%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability

    NASA Astrophysics Data System (ADS)

    Vasaturo, Michele; Fiengo, Lorenzo; de Tommasi, Nunziatina; Sabatino, Lina; Ziccardi, Pamela; Colantuoni, Vittorio; Bruno, Maurizio; Cerchia, Carmen; Novellino, Ettore; Lupo, Angelo; Lavecchia, Antonio; Piaz, Fabrizio Dal

    2017-01-01

    Proteomics based approaches are emerging as useful tools to identify the targets of bioactive compounds and elucidate their molecular mechanisms of action. Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1). We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the β-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments. 1 displayed partial agonism of PPARγ in cell-based transactivation assays and was found to inhibit the AKT pathway, as well as its downstream targets. Consistently, a selective PPARγ antagonist (GW9662) greatly reduced the anti-proliferative and pro-apoptotic effects of 1, providing the molecular basis of its action. Collectively, we identified 1 as a novel PPARγ partial agonist and elucidated its mode of action, paving the way for therapeutic strategies aimed at tailoring novel PPARγ ligands with reduced undesired harmful side effects.

  17. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    NASA Astrophysics Data System (ADS)

    Lazzerini, Giovanni Mattia; Paternò, Giuseppe Maria; Tregnago, Giulia; Treat, Neil; Stingelin, Natalie; Yacoot, Andrew; Cacialli, Franco

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of "molecular terraces" whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  18. A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability

    PubMed Central

    Vasaturo, Michele; Fiengo, Lorenzo; De Tommasi, Nunziatina; Sabatino, Lina; Ziccardi, Pamela; Colantuoni, Vittorio; Bruno, Maurizio; Cerchia, Carmen; Novellino, Ettore; Lupo, Angelo; Lavecchia, Antonio; Piaz, Fabrizio Dal

    2017-01-01

    Proteomics based approaches are emerging as useful tools to identify the targets of bioactive compounds and elucidate their molecular mechanisms of action. Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1). We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the β-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments. 1 displayed partial agonism of PPARγ in cell-based transactivation assays and was found to inhibit the AKT pathway, as well as its downstream targets. Consistently, a selective PPARγ antagonist (GW9662) greatly reduced the anti-proliferative and pro-apoptotic effects of 1, providing the molecular basis of its action. Collectively, we identified 1 as a novel PPARγ partial agonist and elucidated its mode of action, paving the way for therapeutic strategies aimed at tailoring novel PPARγ ligands with reduced undesired harmful side effects. PMID:28117438

  19. A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability.

    PubMed

    Vasaturo, Michele; Fiengo, Lorenzo; De Tommasi, Nunziatina; Sabatino, Lina; Ziccardi, Pamela; Colantuoni, Vittorio; Bruno, Maurizio; Cerchia, Carmen; Novellino, Ettore; Lupo, Angelo; Lavecchia, Antonio; Piaz, Fabrizio Dal

    2017-01-24

    Proteomics based approaches are emerging as useful tools to identify the targets of bioactive compounds and elucidate their molecular mechanisms of action. Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1). We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the β-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments. 1 displayed partial agonism of PPARγ in cell-based transactivation assays and was found to inhibit the AKT pathway, as well as its downstream targets. Consistently, a selective PPARγ antagonist (GW9662) greatly reduced the anti-proliferative and pro-apoptotic effects of 1, providing the molecular basis of its action. Collectively, we identified 1 as a novel PPARγ partial agonist and elucidated its mode of action, paving the way for therapeutic strategies aimed at tailoring novel PPARγ ligands with reduced undesired harmful side effects.

  20. Determination of ibuprofen, naproxen and diclofenac in aqueous samples using a multi-template molecularly imprinted polymer as selective adsorbent for solid-phase extraction.

    PubMed

    Madikizela, Lawrence Mzukisi; Chimuka, Luke

    2016-09-05

    This study describes the application of multi-template molecularly imprinted polymer (MIP) as selective sorbent in the solid-phase extraction (SPE) of naproxen, ibuprofen and diclofenac from wastewater and river water. MIP was synthesized at 70°C by employing naproxen, ibuprofen and diclofenac as multi-templates, ethylene glycol dimethacrylate, 2-vinyl pyridine and toluene as cross-linker, functional monomer and porogen, respectively. Wastewater and river water samples (pH 2.5) were percolated through SPE cartridge packed with 50mg of the MIP. The cartridge was washed with 2mL of methanol-water 10:90% (v:v) prior to elution with 2mL of acetic acid-acetonitrile 20:80% (v:v). Quantification of eluted compounds was performed with high performance liquid chromatography equipped with photo diode array detection. The detection limits were 0.15, 1.00 and 0.63μgL(-1) for naproxen, ibuprofen and diclofenac, respectively. Recoveries for naproxen, ibuprofen and diclofenac in deionized water spiked at 5 and 50μgL(-1) were greater than 80%. Ibuprofen was the most frequently detected compound with maximum concentrations of 221, 67.9 and 11.4μgL(-1) in wastewater influent, effluent and river water, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.