Science.gov

Sample records for napyivyizolyuyuchomu 6h sic

  1. Atomic probe microscopy of 3C SiC films grown on 6H SiC substrates

    NASA Technical Reports Server (NTRS)

    Steckl, A. J.; Roth, M. D.; Powell, J. A.; Larkin, D. J.

    1993-01-01

    The surface of 3C SiC films grown on 6H SiC substrates has been studied by atomic probe microscopy in air. Atomic-scale images of the 3C SiC surface have been obtained by STM which confirm the 111 line type orientation of the cubic 3C layer grown on the 0001 plane type surface of the hexagonal 6H substrate. The nearest-neighbor atomic spacing for the 3C layer has been measured to be 3.29 +/- 0.2 A, which is within 7 percent of the bulk value. Shallow terraces in the 3C layer have been observed by STM to separate regions of very smooth growth in the vicinity of the 3C nucleation point from considerably rougher 3C surface regions. These terraces are oriented at right angles to the growth direction. Atomic force microscopy has been used to study etch pits present on the 6H substrate due to high temperature HCl cleaning prior to CVD growth of the 3C layer. The etch pits have hexagonal symmetry and vary in depth from 50 nm to 1 micron.

  2. Dimensional isotropy of 6H and 3C SiC under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Snead, Lance L.; Katoh, Yutai; Koyanagi, Takaaki; Terrani, Kurt; Specht, Eliot D.

    2016-04-01

    This investigation experimentally determines the as-irradiated crystal axes dimensional change of the common polytypes of SiC considered for nuclear application. Single crystal α-SiC (6H), β-SiC (3C), CVD β-SiC, and single crystal Si have been neutron irradiated near 60 °C from 2 × 1023 to 2 × 1026 n/m2 (E > 0.1 MeV), or about 0.02-20 dpa, in order to study the effect of irradiation on bulk swelling and strain along independent crystalline axes. Single crystal, powder diffractometry and density measurement have been carried out. For all neutron doses where the samples remained crystalline all SiC materials demonstrated equivalent swelling behavior. Moreover the 6H-SiC expanded isotropically. The magnitude of the swelling followed a ∼0.77 power law against dose consistent with a microstructure evolution driven by single interstitial (carbon) mobility. Extraordinarily large ∼7.8% volume expansion in SiC was observed prior to amorphization. Above ∼0.9 × 1025 n/m2 (E > 0.1 MeV) all SiC materials became amorphous with an identical swelling: a 11.7% volume expansion, lowering the density to 2.84 g/cm3. The as-amorphized density was the same at the 2 × 1025 and 2 × 1026 n/m2 (E > 0.1 MeV) dose levels.

  3. Dimensional isotropy of 6H and 3C SiC under neutron irradiation

    DOE PAGESBeta

    Snead, Lance L.; Katoh, Yutai; Koyanagi, Takaaki; Terrani, Kurt A.; Specht, Eliot D.

    2016-01-16

    This investigation experimentally determines the as-irradiated crystal axes dimensional change of the common polytypes of SiC considered for nuclear application. Single crystal α-SiC (6H), β-SiC (3C), CVD β-SiC, and single crystal Si have been neutron irradiated near 60 °C from 2 × 1023 to 2 × 1026 n/m2 (E > 0.1 MeV), or about 0.02–20 dpa, in order to study the effect of irradiation on bulk swelling and strain along independent crystalline axes. Single crystal, powder diffractometry and density measurement have been carried out. For all neutron doses where the samples remained crystalline all SiC materials demonstrated equivalent swelling behavior.more » Moreover the 6H–SiC expanded isotropically. The magnitude of the swelling followed a ~0.77 power law against dose consistent with a microstructure evolution driven by single interstitial (carbon) mobility. Extraordinarily large ~7.8% volume expansion in SiC was observed prior to amorphization. Above ~0.9 × 1025 n/m2 (E > 0.1 MeV) all SiC materials became amorphous with an identical swelling: a 11.7% volume expansion, lowering the density to 2.84 g/cm3. As a result, the as-amorphized density was the same at the 2 × 1025 and 2 × 1026 n/m2 (E > 0.1 MeV) dose levels.« less

  4. Measured Attenuation of Coplanar Waveguide on 6H, p-type SiC and High Purity Semi-Insulating 4H SiC through 800 K

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Schwartz, Zachary D.; Alterovitz, Samuel A.; Downey, Alan N.

    2004-01-01

    Wireless sensors for high temperature applications such as oil drilling and mining, automobiles, and jet engine performance monitoring require circuits built on wide bandgap semiconductors. In this paper, the characteristics of microwave transmission lines on 4H-High Purity Semi-Insulating SiC and 6H, p-type SiC is presented as a function of temperature and frequency. It is shown that the attenuation of 6H, p-type substrates is too high for microwave circuits, large leakage current will flow through the substrate, and that unusual attenuation characteristics are due to trapping in the SiC. The 4H-HPSI SiC is shown to have low attenuation and leakage currents over the entire temperature range.

  5. The electron spin resonance study of heavily nitrogen doped 6H SiC crystals

    SciTech Connect

    Savchenko, D. V.

    2015-01-28

    The magnetic and electronic properties of heavily doped n-type 6H SiC samples with a nitrogen concentration of 10{sup 19} and 4 × 10{sup 19 }cm{sup −3} were studied with electron spin resonance (ESR) at 5–150 K. The observed ESR line with a Dysonian lineshape was attributed to the conduction electrons (CE). The CE ESR (CESR) line was fitted by Lorentzian (insulating phase) (T < 40 K) and by Dysonian lineshape (metallic phase) above 40 K, demonstrating that Mott insulator-metal (IM) transition takes place at ∼40 K, accompanied by significant change in the microwave conductivity. The temperature dependence of CESR linewidth follows the linear Korringa law below 40 K, caused by the coupling of the localized electrons (LE) and CE, and is described by the exponential law above 40 K related to the direct relaxation of the LE magnetic moments via excited levels driven by the exchange interaction of LE with CE. The g-factor of the CESR line (g{sub ‖} = 2.0047(3), g{sub ⊥} = 2.0034(3)) is governed by the coupling of the LE of nitrogen donors at hexagonal and quasi-cubic sites with the CE. The sharp drop in CESR line intensity (25–30 K) was explained by the formation of antiferromagnetic ordering in the spin system close to the IM transition. The second broad ESR line overlapped with CESR signal (5–25 K) was attributed to the exchange line caused by the hopping motion of electrons between occupied and non-occupied positions of the nitrogen donors. Two mechanisms of conduction, hopping and band conduction, were distinguished in the range of T = 10–25 K and T > 50 K, respectively.

  6. N-V{sub Si}-related center in non-irradiated 6H SiC nanostructure

    SciTech Connect

    Bagraev, Nikolay; Danilovskii, Eduard; Gets, Dmitrii; Klyachkin, Leonid; Malyarenko, Anna; Kalabukhova, Ekaterina; Shanina, Bella; Savchenko, Dariya

    2014-02-21

    We present the first findings of the vacancy-related centers identified by the electron spin resonance (ESR) and electrically-detected (ED) ESR method in the non-irradiated 6H-SiC nanostructure. This planar 6H-SiC nanostructure represents the ultra-narrow p-type quantum well confined by the δ-barriers heavily doped with boron on the surface of the n-type 6H-SiC (0001) wafer. The EDESR method by measuring the only magnetoresistance of the 6H SiC nanostructure under the high frequency generation from the δ-barriers appears to allow the identification of the silicon vacancy centers as well as the triplet center with spin state S=1. The same triplet center that is characterized by the larger value of the zero-field splitting constant D and anisotropic g-factor is revealed by the ESR (X-band) method. The hyperfine (hf) lines in the ESR and EDESR spectra originating from the hf interaction with the {sup 14}N nucleus allow us to attribute this triplet center to the N-V{sub Si} defect.

  7. Nuclear Reaction Analysis of Helium Retention in 6H SiC as a function of irradiation and annealing

    NASA Astrophysics Data System (ADS)

    Bissell, L. J.; Smith, R. J.; Shutthanadan, V.; Adams, E. M.; Thevuthasan, S.; Jiang, W.; Weber, W. J.; Zhang, Y.

    2002-10-01

    Silicon carbide has been proposed as a coating material in nuclear fuel, and silicon carbide composites have been proposed as cladding material in advanced gas-cooled and light water reactors. As such, the effects of irradiation and fission gases on the performance of SiC in the reactor environment are critical in several ways. Since He serves as a fission gas, low-energy He (< 50 keV) will be colliding with coolant gas and outer surface cladding layers. As such, it is important to understand He retention in SiC under advanced reactor operating conditions. We investigated He retention in single crystal 6H SiC as a function of irradiation dose and annealing temperature using nuclear reaction analysis (NRA) via the 3He(D,alpha)1H reaction. Helium ions with 40 keV energy were implanted in the SiC to a depth of ˜360 nm at room temperature under high vacuum conditions. The samples were then transferred to another high vacuum chamber where the NRA was performed using a 1.0 MeV D+ beam. Helium retention was studied as a function of D+ irradiation dose from 5 x 10^(16) to 4 x 10^(18) D+ /cm2, and as a function of annealing temperature ranging from 300 1600 K. No significant helium loss was observed under this dosage range, and only annealing temperatures above 1400 K caused measurable loss of helium. These results will be discussed along with the details associated with the 3He(D,alpha)1H nuclear reaction.

  8. Investigations on the structural and optical properties of the swift heavy ion irradiated 6H sbnd SiC

    NASA Astrophysics Data System (ADS)

    Viswanathan, E.; Katharria, Y. S.; Selvakumar, S.; Arulchakkaravarthi, A.; Kanjilal, D.; Sivaji, K.

    2011-05-01

    Single crystal 6H sbnd SiC wafers have been irradiated with 150 MeV Ag 12+ ions with fluences ranging from 1 × 10 11 to 1 × 10 13 ions/cm 2 at 300 K. The defect accumulation as a function of fluence was studied to determine changes in structural and optical properties. The variation in the fundamental Raman modes of the crystalline 6H sbnd SiC due to irradiation has been correlated with the disorder accumulation. The creation of defect states due to irradiation in the bandgap affects the blue-green photoluminescence emission in the irradiated samples. The UV-Visible absorption studies support the existence of defect states in the bandgap which is observed by the shift in the absorption edge towards the lower energy side with increasing fluence. Time Correlated Single Photon Counting photoluminescence decay results suggest that the existing defect states are radiative, exhibiting three lifetimes when irradiated with a fluence 5 × 10 11 ions/cm 2. The total number of lifetime components was reduced for a fluence 1 × 10 13 ions/cm 2 as the defect states produced increase the non-radiative defect centres. These results suggest that the accumulation of defects due to irradiation at fluences 5 × 10 11 and 1 × 10 13 ions/cm 2 are degenerate configurations which exhibit multiple lifetimes in photoluminescence studies. It is inferred that the optically active defect states influence the transition rate of charge carriers in this device material.

  9. Measurement of N-Type 6H SiC Minority-Carrier Diffusion Lengths by Electron Bombardment of Schottky Barriers

    NASA Technical Reports Server (NTRS)

    Hubbard, S. M.; Tabib-Azar, M.; Balley, S.; Rybickid, G.; Neudeck, P.; Raffaelle, R.

    2004-01-01

    Minority-Carrier diffusion lengths of n-type 6H-SiC were measured using the electron-beam induced current (EBIC) technique. Experimental values of primary beam current, EBIC, and beam voltage were obtained for a variety of SIC samples. This data was used to calculate experimental diode efficiency vs. beam voltage curves. These curves were fit to theoretically calculated efficiency curves, and the diffusion length and metal layer thickness were extracted. The hole diffusion length in n-6H SiC ranged from 0.93 +/- 0.15 microns.

  10. Effect of Crystal Defects on Minority Carrier Diffusion Length in 6H SiC Measured Using the Electron Beam Induced Current Method

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood

    1997-01-01

    We report values of minority carrier diffusion length in n-type 6H SiC measured using a planar Electron Beam Induced Current (EBIC) method. Values of hole diffusion length in defect free regions of n-type 6H SiC, with a doping concentration of 1.7El7 1/cu cm, ranged from 1.46 microns to 0.68 microns. We next introduce a novel variation of the planar method used above. This 'planar mapping' technique measured diffusion length along a linescan creating a map of diffusion length versus position. This map is then overlaid onto the EBIC image of the corresponding linescan, allowing direct visualization of the effect of defects on minority carrier diffusion length. Measurements of the above n-type 6H SiC resulted in values of hole diffusion length ranging from 1.2 micron in defect free regions to below 0.1 gm at the center of large defects. In addition, measurements on p-type 6H SiC resulted in electron diffusion lengths ranging from 1.42 micron to 0.8 micron.

  11. Electronic Transitions of Jet-cooled SiC2, Si2Cn (n=1-3), Si3Cn (n = 1,2), and SiC6H4 between 250 and 710 nm

    NASA Astrophysics Data System (ADS)

    Steglich, M.; Maier, J. P.

    2015-03-01

    Electronic transitions of the title molecules were measured between 250 and 710 nm using a mass-resolved 1 + 1’ resonant two-photon ionization technique at a resolution of 0.1 nm. Calculations at the B3LYP/aug-cc-pVQZ level of theory support the analyses. Because of their spectral properties, SiC2, linear Si2C2, Si3C, and SiC6H4 are interesting target species for astronomical searches in the visible spectral region. Of special relevance is the Si-C2-Si chain, which features a prominent band at 516.4 nm of a strong transition (f = 0.25). This band and one from SiC6H4 at 445.3 nm were also investigated at higher resolution (0.002 nm).

  12. Theoretical and electron paramagnetic resonance studies of hyperfine interaction in nitrogen doped 4H and 6H SiC

    SciTech Connect

    Szász, K.; Gali, A.

    2014-02-21

    Motivated by recent experimental findings on the hyperfine signal of nitrogen donor (N{sub C}) in 4 H and 6 H SiC, we calculate the hyperfine tensors within the framework of density functional theory. We find that there is negligible hyperfine coupling with {sup 29}Si isotopes when N{sub C} resides at h site both in 4 H and 6 H SiC. We observe measurable hyperfine coupling to a single {sup 29}Si at k site in 4 H SiC and k{sub 1} site in 6 H SiC. Our calculations unravel that such {sup 29}Si hyperfine coupling does not occur at k{sub 2} site in 6 H SiC. Our findings are well corroborated by our new electron paramagnetic resonance studies in nitrogen doped 6 H SiC.

  13. Spontaneous detachment of a sublimation-Grown AlN layer from a SiC-6H substrate

    SciTech Connect

    Wolfson, A. A.

    2009-06-15

    Growth of thick layers and bulk crystals of AlN is a topical problem for modern science and technology. The main way to solve the problem is to use the sublimation method in which AlN is evaporated at a temperature of about 2000{sup o}C and is epitaxially deposited onto a SiC substrate. A severe difficulty in this case is that the coefficients of thermal expansion of these materials are different, which leads to bending, cracking, and pronounced stresses in the AlN layer upon cooling to room temperature. This communication considers the case of a spontaneous detachment of a crack-free AlN layer from a SiC substrate, which points to the real possibility of developing a growth technology in which their separation becomes inevitable. The following reasons for spontaneous separation of the layer and the substrate are probable: (i) formation of a thin Al layer at the interface and (ii) occurrence of the initial growth stage by the previously described scheme, according to which, the layer and substrate are atomically bound only at separate comparatively sparse areas of nucleation of the growing crystal. Upon cooling, these areas disintegrate and the layer is detached from the substrate. It is unclear so far what specific features and anomalies of the growth process give rise to this result.

  14. Growth of Defect-Free 3C-Sic on 4H- and 6H-SIC Mesas Using Step-Free Surface Heteroepitaxy

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony; Trunek, Andrew J.; Huang, Xianrong R.; Dudley, Michael

    2002-01-01

    A new growth process, herein named step-free surface heteroepitaxy, has achieved 3C-SiC films completely free of double positioning boundaries and stacking faults on 4H-SiC and 6H-SiC substrate mesas. The process is based upon the initial 2-dimensional nucleation and lateral expansion of a single island of 3C-SiC on a 4H- or 6H-SiC mesa surface that is completely free of bilayer surface steps. Our experimental results indicate that substrate-epilayer in-plane lattice mismatch (Delta/a = 0.0854% for 3C/4H) is at least partially relieved parallel to the interface in the initial bilayers of the heterofilm, producing an at least partially relaxed 3C-SiC film without dislocations that undesirably thread through the thickness of the epilayer. This result should enable realization of improved 3C-SiC devices.

  15. Calculation of positron annihilation characteristics of six main defects in 6 H -SiC and the possibility to distinguish them experimentally

    NASA Astrophysics Data System (ADS)

    Linez, F.; Makkonen, I.; Tuomisto, F.

    2016-07-01

    We have determined positron annihilation characteristics (lifetime and Doppler broadening) in six basic vacancy-type defects of 6 H -SiC and two nitrogen-vacancy complexes using ab initio calculations. The positron characteristics obtained allow us to point out which positron technique in the most adapted to identify a particular defect. They show that the coincidence Doppler broadening technique is the most relevant for observing the silicon vacancy-nitrogen complexes, VSiNC , and carbon vacancy-carbon antisite ones, VCCSi . For the other studied defects, the calculated positron characteristics are found to be too close for the defects to be easily distinguished using a single positron annihilation technique. Then it is required to use complementary techniques, positron annihilation based or other.

  16. Oxidation-Induced Deep Levels in n - and p -Type 4 H - and 6 H -SiC and Their Influence on Carrier Lifetime

    NASA Astrophysics Data System (ADS)

    Booker, I. D.; Abdalla, H.; Hassan, J.; Karhu, R.; Lilja, L.; Janzén, E.; Sveinbjörnsson, E. Ö.

    2016-07-01

    We present a complete analysis of the electron- and hole-capture and -emission processes of the deep levels ON1, ON2a, and ON2b in 4 H -SiC and their 6 H -SiC counterparts OS1a and OS1b through OS3a and OS3b, which are produced by lifetime enhancement oxidation or implantation and annealing techniques. The modeling is based on a simultaneous numerical fitting of multiple high-resolution capacitance deep-level transient spectroscopy spectra measured with different filling-pulse lengths in n - and p -type material. All defects are found to be double-donor-type positive-U two-level defects with very small hole-capture cross sections, making them recombination centers of low efficiency, in accordance with minority-carrier-lifetime measurements. Their behavior as trapping and weak recombination centers, their large concentrations resulting from the lifetime enhancement oxidations, and their high thermal stability, however, make it advisable to minimize their presence in active regions of devices, for example, the base layer of bipolar junction transistors.

  17. DEFECT SELECTIVE ETCHING OF THICK ALN LAYERS GROWN ON 6H-SIC SEEDS - A TRANSMISSION ELECTRON MICROSCOPY STUDY

    SciTech Connect

    Nyakiti, Luke; Chaudhari, Jharna; Kenik, Edward A; Lu, Peng; Edgar, J H

    2008-01-01

    In the present study, the type and densities of defects in AlN crystals grown on 6H-SiC seeds by the sublimation-recombination method were assessed. The positions of the defects in AlN were first identified by defect selective etching (DSE) in molten NaOH-KOH at 400 C for 2 minutes. Etching produced pits of three different sizes: 1.77 m, 2.35 m , and 2.86 m. The etch pits were either aligned together forming a sub-grain boundary or randomly distributed. The smaller etch pits were either isolated or associated with larger etch pits. After preparing crosssections of the pits by the focused ion beam (FIB) technique, transmission electron microscopy (TEM) was performed to determine which dislocation type (edge, mixed or screw) produced a specific etch pit sizes. Preliminary TEM bright field and dark field study using different zone axes and diffraction vectors indicates an edge dislocation with a Burgers vector 1/3[1120] is associated with the smallest etch pit size.

  18. Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO

    SciTech Connect

    Huang, Zheng; Lü, Tie-Yu; Wang, Hui-Qiong; Zheng, Jin-Cheng

    2015-09-15

    We have investigated the thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap(n-type) semiconductors SiC, GaN, and ZnO based on first-principles calculations and Boltzmann transport theory. Our results show that the thermoelectric performance increases from 3C to 6H, 4H, and 2H structures with an increase of hexagonality for SiC. However, for GaN and ZnO, their power factors show a very weak dependence on the polytype. Detailed analysis of the thermoelectric properties with respect to temperature and carrier concentration of 4H-SiC, 2H-GaN, and 2H-ZnO shows that the figure of merit of these three compounds increases with temperature, indicating the promising potential applications of these thermoelectric materials at high temperature. The significant difference of the polytype-dependent thermoelectric properties among SiC, GaN, and ZnO might be related to the competition between covalency and ionicity in these semiconductors. Our calculations may provide a new way to enhance the thermoelectric properties of wide-band-gap semiconductors through atomic structure design, especially hexagonality design for SiC.

  19. Chloride-based CVD of 3C-SiC Epitaxial Layers on On-axis 6H (0001) SiC Substrates

    NASA Astrophysics Data System (ADS)

    Leone, Stefano; Beyer, Franziska C.; Henry, Anne; Kordina, Olof; Janzén, Erik

    2010-11-01

    The growth of 3C-SiC epitaxial layers on nominally on-axis 6H-SiC Si-face substrates using the chloride-based CVD process is demonstrated. A hot-wall CVD reactor was used and HCl was added to the standard precursors (silane and ethylene). Several growth parameters were tested: temperature, in-situ surface preparation, C/Si ratio, Cl/Si ratio, and nitrogen addition. Each parameter had a very important effect on the polytype formation. In the case of 3C-SiC deposition the morphology and typology of defects could change significantly depending on the different combinations of growth conditions, including the addition of nitrogen. At a growth rate of 10 μm/h, a mirror-like surface with a single domain decorated by some parallel stripes and few epitaxial defects were obtained. The near-band gap luminescence of high quality 3C-SiC layers was characterized by very sharp lines. Microscope and AFM analysis showed a very smooth surface. A background doping in the low 1015 cm-3 range was achieved.

  20. Epitaxial growth of 6H silicon carbide in the temperature range 1320 C to 1390 C

    NASA Technical Reports Server (NTRS)

    Will, H. A.; Powell, J. A.

    1974-01-01

    High-quality epitaxial layers of 6H SiC have been grown on 6H SiC substrates with the grown direction perpendicular to the crystal c-axis. The growth was by chemical vapor deposition from methyltrichlorosilane (CH3SiCl3) in hydrogen at temperatures in the range of 1320 to 1390 C. Epitaxial layers up to 80 microns thick were grown at rates of 0.4 microns/min. Attempts at growth on the (0001) plane of 6H SiC substrates under similar conditions resulted in polycrystalline cubic SiC layers. Optical and X-ray diffraction techniques were used to characterize the grown layers.

  1. Synergistic Effects of Iodine and Silver Ions Co-Implanted in 6H-SiC

    SciTech Connect

    Kuhudzai, Remeredzai J.; Malherbe, Johan; Hlatshwayo, T. T.; van der Berg, N. G.; Devaraj, Arun; Zhu, Zihua; Nandasiri, Manjula I.

    2015-10-23

    Motivated by the aim of understanding the release of fission products through the SiC coating of fuel kernels in modern high temperature nuclear reactors, a fundamental investigation is conducted to understand the synergistic effects of implanted silver (Ag) and iodine (I) in 6H-SiC. The implantation of the individual species, as well as the co-implantation of 360 keV ions of I and Ag at room temperature in 6H-SiC and their subsequent annealing behavior has been investigated by Secondary Ion Mass Spectrometry (SIMS), Atom Probe Tomography (APT) and X-ray Photoelectron Spectroscopy (XPS). SIMS and APT measurements indicated the presence of Ag in the co-implanted samples after annealing at 1500 ºC for 30 hours in sharp contrast to the samples implanted with Ag only. In samples implanted with Ag only, complete loss of the implanted Ag was observed. However, for I only implanted samples, some iodine was retained. APT of annealed co-implanted 6H-SiC showed clear spatial association of Ag and I clusters in SiC, which can be attributed to the observed I assisted retention of Ag after annealing. Such detailed studies will be necessary to identify the fundamental mechanism of fission products migration through SiC coatings.

  2. Synergistic effects of iodine and silver ions co-implanted in 6H-SiC

    NASA Astrophysics Data System (ADS)

    Kuhudzai, R. J.; Malherbe, J. B.; Hlatshwayo, T. T.; van der Berg, N. G.; Devaraj, A.; Zhu, Z.; Nandasiri, M.

    2015-12-01

    Motivated by the aim of understanding the release of fission products through the SiC coating of fuel kernels in modern high temperature nuclear reactors, a fundamental investigation is conducted to understand the synergistic effects of implanted silver (Ag) and iodine (I) in 6H-SiC. The implantation of the individual species, as well as the co-implantation of 360 keV ions of I and Ag at room temperature in 6H-SiC and their subsequent annealing behaviour has been investigated by Secondary Ion Mass Spectrometry (SIMS), Atom Probe Tomography (APT) and X-ray Photoelectron Spectroscopy (XPS). SIMS and APT measurements indicated the presence of Ag in the co-implanted samples after annealing at 1500 °C for 30 h in sharp contrast to the samples implanted with Ag only. In samples implanted with Ag only, complete loss of the implanted Ag was observed. However, for I only implanted samples, some iodine was retained. APT of annealed co-implanted 6H-SiC showed clear spatial association of Ag and I clusters in SiC, which can be attributed to the observed I assisted retention of Ag after annealing. Such detailed studies will be necessary to identify the fundamental mechanism of fission products migration through SiC coatings.

  3. High-voltage 6H-SiC p-n junction diodes

    NASA Technical Reports Server (NTRS)

    Matus, L. G.; Powell, J. A.; Salupo, C. S.

    1991-01-01

    A chemical vapor deposition (CVD) process has been used to produce device structures of n- and p-type 6H-SiC epitaxial layers on commercially produced single-crystal 6H-SiC wafers. Mesa-style p-n junction diodes were successfully fabricated from these device structures using reactive ion etching, oxide passivation, and electrical contact metallization techniques. When tested in air, the 6H-SiC diodes displayed excellent rectification characteristics up to the highest temperature tested, 600 C. To observe avalanche breakdown of the p-n junction diodes, testing under a high-electrical-strength liquid was necessary. The avalanche breakdown voltage was 1000 V representing the highest reverse breakdown voltage to be reported for any CVD-grown SiC diode.

  4. Field emission spectroscopy of SiC

    NASA Astrophysics Data System (ADS)

    Nikiforov, K. A.; Trofimov, V. V.; Egorov, N. V.

    2016-08-01

    Experimental set up for the natural experiment and measurement model are presented to obtain the feld emission energy distribution spectrum out of silicon carbide in case of the macro-sample having a macroscopic shape of a tip. The prototype of feld emission 6H - SiC monolithic cathode is proposed for spectroscopy measurements, and characterised by current-voltage dependence at macroscale interelectrode distance.

  5. NV centers in 3 C ,4 H , and 6 H silicon carbide: A variable platform for solid-state qubits and nanosensors

    NASA Astrophysics Data System (ADS)

    von Bardeleben, H. J.; Cantin, J. L.; Csóré, A.; Gali, A.; Rauls, E.; Gerstmann, U.

    2016-09-01

    The outstanding magneto-optical properties of the nitrogen-vacancy (NV) center in diamond have stimulated the search for similar systems. We show here that NV triplet centers can also be generated in all the main SiC polytypes. We have identified by electron paramagnetic resonance spectroscopy and first-principles calculations the axial NV- pairs in 3 C ,4 H , and 6 H SiC, showing polytype and lattice site-specific magnetic and optical properties. We demonstrate very efficient room-temperature spin polarization of the ground state upon near infrared optical excitation for the NV center in 3 C SiC and axial NV centers in the hexagonal (4 H ,6 H ) polytypes; the signals of basal pairs are much lower in intensity. Axial NV centers in hexagonal SiC polytypes and thus constitute unidirectional ensembles which may be useful in nanosensing applications.

  6. Lockheed D-6H: Preliminary report

    SciTech Connect

    1997-07-31

    The assessment of the D-6H conducted at the Lockheed Martin facility was limited in its scope. The scope of the assessment was directed by the type of equipment being used and the amount of accessibility to the equipment. Due to severe time constraints--the assessment was conducted in one day--human factor interface activities were limited. This report covers aspects of the technology that were available to the assessment team. Recommendations for future evaluation of this technology are also included.

  7. VIBRATIONALLY EXCITED C{sub 6}H

    SciTech Connect

    Gottlieb, C. A.; McCarthy, M. C.; Thaddeus, P.

    2010-08-15

    Rotational spectra of the linear carbon chain radical C{sub 6}H in two low-lying excited vibrational states were observed both at millimeter wavelengths in a low-pressure glow discharge and at centimeter wavelengths in a supersonic molecular beam. Two series of harmonically related lines with rotational constants within 0.3% of the {sup 2{Pi}} ground state were assigned to the {sup 2{Sigma}} and {sup 2{Delta}} vibronic components of an excited bending vibrational level. Measurements of the intensities of the lines in the glow discharge indicate that the {sup 2{Sigma}} component lies very close to ground, but the {sup 2{Delta}} component is much higher in energy. The standard Hamiltonian for an isolated {sup 2{Delta}} state with five spectroscopic constants reproduces the observed rotational spectrum, but several high-order distortion terms in the spin-rotation interaction are needed to reproduce the spectrum of the {sup 2{Sigma}} component in C{sub 6}H and C{sub 6}D. The derived spectroscopic constants allow astronomers to calculate the rotational spectra of the {sup 2{Sigma}} and {sup 2{Delta}} states up to 260 GHz to within 0.1 km s{sup -1} or better in equivalent radial velocity.

  8. Step Free Surface Heteroepitaxy of 3C-SiC Layers on Patterned 4H/6H-SiC Mesas and Cantilevers

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony; Trunek, Andrew J.; Spry, David J.

    2003-01-01

    Most SiC devices are implemented in homoepitaxial films grown on 4H/6H-SiC wafers with surfaces 3 degrees to 8 degrees off-axis from the (0001) basal plane. This approach has not prevented many substrate crystal defects from propagating into SiC epilayers, and does not permit the realization of SiC heteropolytype devices. This presentation describes recent advances in SiC epitaxial growth that begun to overcome the above shortcomings for arrays of mesas patterned into on-axis 4H/6H-SiC wafers. First, we demonstrated that atomic-scale surface steps can be completely eliminated from 4H/6H-SiC mesas via on-axis homoepitaxial step-flow growth, forming (0001) basal plane surfaces (up to 0.4 mm x 0.4 mm) for larger than previously thought possible. Step-free surface areas were then extended by growth fo thin lateral cantilevers from the mesa tops. These lateral cantilevers enabled substrate defects to be reduced and relocated in homoepitaxial films in a manner not possible with off-axis SiC growth. Finally, growth of vastly improved 3C-SiC heterofilms was achieved on 4H/6H-SiC mesas using the recently develop step-free surface heteroepitaxy process. These epitaxial growth developments should enable improved homojunction and heterojunction silicon carbide prototype devices.

  9. Iodine assisted retainment of implanted silver in 6H-SiC at high temperatures

    NASA Astrophysics Data System (ADS)

    Hlatshwayo, T. T.; van der Berg, N. G.; Msimanga, M.; Malherbe, J. B.; Kuhudzai, R. J.

    2014-09-01

    The effect of high temperature thermal annealing on the retainment and diffusion behaviour of iodine (I) and silver (Ag) both individually and co-implanted into 6H-SiC has been investigated using RBS, RBS-C and heavy ion ERDA (Elastic Recoil Detection Analysis). Iodine and silver ions at 360 keV were both individually and co-implanted into 6H-SiC at room temperature to fluences of the order of 1 × 1016 cm-2. RBS analyses of the as-implanted samples indicated that implantation of Ag and of I and co-implantation of 131I and 109Ag at room temperature resulted in complete amorphization of 6H-SiC from the surface to a depth of about 290 nm for the co-implanted samples. Annealing at 1500 °C for 30 h (also with samples annealed at 1700 °C for 5 h) caused diffusion accompanied by some loss of both species at the surface with some iodine remaining in the iodine implanted samples. In the Ag implanted samples, the RBS spectra showed that all the Ag disappeared. SEM images showed different recrystallization behaviour for all three sets of samples, with larger faceted crystals appearing in the SiC samples containing iodine. Heavy Ion ERDA analyses showed that both 109Ag and 131I remained in the co-implanted SiC samples after annealing at 1500 °C for 30 h. Therefore, iodine assisted in the retainment of silver in SiC even at high temperature.

  10. Lateral Growth Expansion of 4H/6H-SiC m-plane Pseudo Fiber Crystals by Hot Wall CVD Epitaxy

    NASA Technical Reports Server (NTRS)

    Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Powell, J. A.; Spry, David J.; Raghothamachar, Balaji; Dudley, Michael

    2011-01-01

    Lateral expansion of small mixed polytype 4H/6H-SiC slivers were realized by hot wall chemical vapor deposition (HWCVD). Small slivers cut from m-oriented ..11..00.. SiC boule slices containing regions of 4H and 6H SiC were exposed to HWCVD conditions using standard silane/propane chemistry for a period of up to eight hours. The slivers exhibited approximately 1500 microns (1.5 mm) of total lateral expansion. Initial analysis by synchrotron white beam x-ray topography (SWBXT) confirms, that the lateral growth was homoepitaxial, matching the polytype of the respective underlying region of the seed sliver.

  11. Thermal expansion and elastic anisotropies of SiC as related to polytype structure

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1989-01-01

    The concept of the fraction of hexagonal stacking is used to describe the anisotropic thermal expansion coefficients of polytypes of SiC. The single crystal elastic anisotropy for the SiC polytype structures and the temperature dependencies of the anisotropies are examined. The anisotropic thermoelastic stress index for the 3C and 6H SiC polytypes are illustrated graphically. It is shown that this index is useful for predicting the most desirable crystal growth orientations for SiC whisker incorporation into composite matrices.

  12. Annealing of silver implanted 6H-SiC and the diffusion of the silver

    NASA Astrophysics Data System (ADS)

    Hlatshwayo, T. T.; Malherbe, J. B.; van der Berg, N. G.; Prinsloo, L. C.; Botha, A. J.; Wendler, E.; Wesch, W.

    2012-03-01

    Annealing and diffusion behavior of implanted silver in 6H-SiC has been investigated using Rutherford backscattering spectroscopy (RBS), channeling, Raman spectroscopy and scanning electron microscopy (SEM) techniques. Silver (109Ag+) ions with an energy of 360 keV were implanted in SiC to a fluence of 2 × 1016 cm-2 at room temperature (23 °C), 350 and 600 °C. After implantation the samples were annealed at temperatures up to 1400 °C. The results revealed that implantation at room temperature created an amorphous layer of about 270 nm from the surface while implantation at 350 and 600 °C retained a crystalline structure with more damage created for 350 °C implantation compared to 600 °C. Diffusion of implanted Ag accompanied by loss from the surface started at 1300 °C in the amorphous SiC with no diffusion observed in the crystalline SiC. A new model explaining this diffusion of silver accompanied silver loss is presented.

  13. Charge exchange in C^6+ + H and C^6+ + H2 collisions

    NASA Astrophysics Data System (ADS)

    Guevara-Leon, Nicolais; Saha, Bidhan; Sabin, John R.; Deumens, Erik; Ohrn, N. Y.

    2010-03-01

    In the solar wind, C^6+ ion is one of the most abundant ionic species and its interaction with comets as well as the atmosphere of planets of the solar system produces several interesting phenomena. The charge exchange reaction is one of the most relevant process as it may provide a possible explanation for the X-ray emission from these objects. Electron capture into a highly excited state of C^5+ ion usually generates radiation in the X-ray region of the spectrum. In the present work, charge exchange in C^6+ + H and C^6+ + H2 collisions are investigated theoretically using electron nuclear dynamics (END) [1] at projectile energies below the ionization threshold. For H2 the one- and two- electron charge exchange cross sections are calculated and compared with other theoretical and experimental data. Orientation effects for the collision with the hydrogen molecules will also be discussed at the conference.

  14. Suppression of Photoanodic Surface Oxidation of n-Type 6H-SiC Electrodes in Aqueous Electrolytes.

    PubMed

    Sachsenhauser, Matthias; Walczak, Karl; Hampel, Paul A; Stutzmann, Martin; Sharp, Ian D; Garrido, Jose A

    2016-02-16

    The photoelectrochemical characterization of silicon carbide (SiC) electrodes is important for enabling a wide range of potential applications for this semiconductor. However, photocorrosion of the SiC surface remains a key challenge, because this process considerably hinders the deployment of this material into functional devices. In this report, we use cyclic voltammetry to investigate the stability of n-type 6H-SiC photoelectrodes in buffered aqueous electrolytes. For measurements in pure Tris buffer, photogenerated holes accumulate at the interface under anodic polarization, resulting in the formation of a porous surface oxide layer. Two possibilities are presented to significantly enhance the stability of the SiC photoelectrodes. In the first approach, redox molecules are added to the buffer solution to kinetically facilitate hole transfer to these molecules, and in the second approach, water oxidation in the electrolyte is induced by depositing a cobalt phosphate catalyst onto the semiconductor surface. Both methods are found to effectively suppress photocorrosion of the SiC electrodes, as confirmed by atomic force microscopy and X-ray photoelectron spectroscopy measurements. The presented study provides straightforward routes to stabilize n-type SiC photoelectrodes in aqueous electrolytes, which is essential for a possible utilization of this material in the fields of photocatalysis and multimodal biosensing. PMID:26795116

  15. Infrared Reflectance and Ultrahigh Vacuum Cathodoluminescence of Aluminum Nitride-Gallium Nitride Short Period Superlattice Films and P-Type Porous 6h Silicon Carbide Layers

    NASA Astrophysics Data System (ADS)

    MacMillan, Michael F.

    The room temperature infrared reflectance of AlN -GaN short period superlattice films was measured. These superlattice films were deposited by switched atomic layer metal organic chemical vapor deposition onto GaN or AlN buffer layers deposited on basal plane sapphire substrates. The measured reflectance spectra are compared to calculated spectra generated using an effective medium theory to model the dielectric function of the superlattice. Optical properties of the individual materials comprising the samples are modeled with Lorentz oscillators using bulk input parameters. The effects of film and substrate anisotropy and off normal incidence are included in the calculation. Using this modeling technique, thickness estimates for the total superlattice film and the buffer layer are obtained. Cathodoluminescence of AlN-GaN short period superlattice films was measured at 6K, 77K and room temperature, and at several electron acceleration voltages to allow depth profiling of the samples. An ultraviolet peak located above the band gap energy of GaN is present in all samples and persists from 6K to room temperature. Using the film and buffer thicknesses determined by the reflectance measurement this ultraviolet peak is identified as originating from the superlattice layer. Preliminary results indicate that this peak is due to quantum confinement in the GaN layers. The room temperature infrared reflectance of thick p-type porous 6H SiC layers was measured. Samples were fabricated by anodization of p-type 6H SiC bulk crystals in dilute HF. Striking differences are seen between the reststrahl region reflectance of these porous layers and that of bulk 6H SiC crystals. Several effective medium models, which assume different morphologies of the component materials, 6H SiC and air, were used to model the dielectric function of porous SiC. Calculated reflectance spectra, generated using these dielectric functions, are compared to experimental porous SiC spectra, allowing us to

  16. Sleep inertia during a simulated 6-h on/6-h off fixed split duty schedule.

    PubMed

    Hilditch, Cassie J; Short, Michelle; Van Dongen, Hans P A; Centofanti, Stephanie A; Dorrian, Jillian; Kohler, Mark; Banks, Siobhan

    2016-01-01

    Sleep inertia is a safety concern for shift workers returning to work soon after waking up. Split duty schedules offer an alternative to longer shift periods, but introduce additional wake-ups and may therefore increase risk of sleep inertia. This study investigated sleep inertia across a split duty schedule. Sixteen participants (age range 21-36 years; 10 females) participated in a 9-day laboratory study with two baseline nights (10 h time in bed, [TIB]), four 24-h periods of a 6-h on/6-h off split duty schedule (5-h TIB in off period; 10-h TIB per 24 h) and two recovery nights. Two complementary rosters were evaluated, with the timing of sleep and wake alternating between the two rosters (2 am/2 pm wake-up roster versus 8 am/8 pm wake-up roster). At 2, 17, 32 and 47 min after scheduled awakening, participants completed an 8-min inertia test bout, which included a 3-min psychomotor vigilance test (PVT-B), a 3-min Digit-Symbol Substitution Task (DSST), the Karolinska Sleepiness Scale (KSS), and the Samn-Perelli Fatigue Scale (SP-Fatigue). Further testing occurred every 2 h during scheduled wakefulness. Performance was consistently degraded and subjective sleepiness/fatigue was consistently increased during the inertia testing period as compared to other testing times. Morning wake-ups (2 am and 8 am) were associated with higher levels of sleep inertia than later wake-ups (2 pm and 8 pm). These results suggest that split duty workers should recognise the potential for sleep inertia after waking, especially during the morning hours.

  17. SiC Technology

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1998-01-01

    Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.

  18. Structural and defects induced phenomena in γ-rays irradiated 6H-SiC

    NASA Astrophysics Data System (ADS)

    Sibuyi, P.; Ngom, B. D.; Kotsedi, L.; Izerrouken, M.; Madjoe, R.; Maaza

    2016-10-01

    Damages and/or defects induced by γ-rays irradiation on 6H-SiC single crystals in channeled configuration towards <006>/<0012> crystallographic directions are reported in the range of 0-1200 kGy. Atomic force microscopy, X-rays diffraction, Raman and photoluminescence investigations were used to obtain a comprehensive set of informations on the nature and population distribution of the induced defects. Primarily, there was no carbon clusterization upon γ-rays irradiation and hence no formation of others SiC polytypes. In contrast, the γ-rays irradiation has induced an increase of the surface roughness at higher doses, which indicates a structural degradation. Larger doses induced an emergence of deeper shallow traps at energies greater than 350 meV below the bandgap.

  19. Blue photoluminescence enhancement in laser-irradiated 6H-SiC at room temperature

    SciTech Connect

    Wu, Yan; Ji, Lingfei Lin, Zhenyuan; Jiang, Yijian; Zhai, Tianrui

    2014-01-27

    Blue photoluminescence (PL) of 6H-SiC irradiated by an ultraviolet laser can be observed at room temperature in dark condition. PL spectra with Gaussian fitting curve of the irradiated SiC show that blue luminescence band (∼440 nm) is more pronounced than other bands. The blue PL enhancement is the combined result of the improved shallow N-donor energy level and the unique surface state with Si nanocrystals and graphene/Si composite due to the effect of photon energy input by the short-wavelength laser irradiation. The study can provide a promising route towards the preparation of well-controlled blue photoluminescence material for light-emitting devices.

  20. Experimental demonstration of mode-selective phonon excitation of 6H-SiC by a mid-infrared laser with anti-Stokes Raman scattering spectroscopy

    SciTech Connect

    Yoshida, Kyohei; Hachiya, Kan; Okumura, Kensuke; Mishima, Kenta; Inukai, Motoharu; Torgasin, Konstantin; Omer, Mohamed; Sonobe, Taro; Zen, Heishun; Negm, Hani; Kii, Toshiteru; Masuda, Kai; Ohgaki, Hideaki

    2013-10-28

    Mode-selective phonon excitation by a mid-infrared laser (MIR-FEL) is demonstrated via anti-Stokes Raman scattering measurements of 6H-silicon carbide (SiC). Irradiation of SiC with MIR-FEL and a Nd-YAG laser at 14 K produced a peak where the Raman shift corresponds to a photon energy of 119 meV (10.4 μm). This phenomenon is induced by mode-selective phonon excitation through the irradiation of MIR-FEL, whose photon energy corresponds to the photon-absorption of a particular phonon mode.

  1. Interfacial reactions and surface analysis of W thin film on 6H-SiC

    NASA Astrophysics Data System (ADS)

    Thabethe, T. T.; Hlatshwayo, T. T.; Njoroge, E. G.; Nyawo, T. G.; Ntsoane, T. P.; Malherbe, J. B.

    2016-03-01

    Tungsten (W) thin film was deposited on bulk single crystalline 6H-SiC substrate and annealed in vacuum at temperatures ranging from 700 to 1000 °C for 1 h. The resulting solid-state reactions, phase composition and surface morphology were investigated by Rutherford backscattering spectroscopy (RBS), grazing incidence X-ray diffraction (GIXRD) and scanning electron microscopy (SEM). XRD was used to identify the phases present and to confirm the RBS results. The RBS spectra were simulated using the RUMP software in order to obtain the deposited layer thickness, composition of reaction zone and detect phase formation at the interface. RBS results showed that interaction between W and SiC started at 850 °C. The XRD analysis showed that WC and CW3 were the initial phases formed at 700 and 800 °C. The concentration of the phases was however, too low to be detected by RBS analysis. At temperatures of 900 and 1000 °C, W reacted with the SiC substrate and formed a mixed layer containing a silicide phase (WSi2) and a carbide phase (W2C). The SEM images of the as-deposited samples showed that the W thin film had a uniform surface with small grains. The W layer became heterogeneous during annealing at higher temperatures as the W granules agglomerated into island clusters at temperatures of 800 °C and higher.

  2. Bulk AlN crystal growth: self-seeding and seeding on 6H-SiC substrates

    NASA Astrophysics Data System (ADS)

    Edgar, J. H.; Liu, L.; Liu, B.; Zhuang, D.; Chaudhuri, J.; Kuball, M.; Rajasingam, S.

    2002-12-01

    The properties of bulk AlN crystals grown by sublimation recondensation and either randomly nucleated (i.e. self-seeded) or seeded on 6H-SiC substrates or compared. Self-seeding produces crystals of the highest perfection, lowest stress, and low Si and C impurity content, but the crystals grow in random crystallographic orientations. Crystals grown in boron nitride crucibles typically form thin platelets with the fastest growth occurring in the c-axis direction. Growth striations run the length of the crystals in the c-axis direction. Anisotropic etching in aqueous 45 wt% KOH solutions shows that the growth (0 0 0 1) planes exposed to the AlN source predominately have an aluminum polarity. AlN crystals seeded on 6H-SiC(0 0 0 1) have a single crystallographic orientation and the largest dimensions are perpendicular to the c-axis, determined by the size of the substrate. Cracking and voids in the AlN layer produced by differences in thermal expansion coefficients of AlN and SiC and decomposition of the SiC were ameliorated by depositing an AlN-SiC alloy layer on the SiC before growing the AlN layer. Raman spectroscopy measurements suggest the AlN and AlN-SiC alloy layer are both under tensile stress. The defect density in AlN crystals grown on composite AlN-SiC/6H-SiC substrates was 3.7×10 5 cm -2, as determined by synchrotron white beam X-ray topography.

  3. Thermal expansion and thermal expansion anisotropy of SiC polytypes

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1987-01-01

    The principal axial coefficients of thermal expansion for the (3C), (4H), and (6H) polytypes of SiC are considered to identify the structural role of the stacking layer sequence as it affects the thermal expansion. A general equation based on the fractions of cubic and hexagonal layer stacking is developed that expresses the principal axial thermal expansion coefficients of all of the SiC polytypes. It is then applied to address the thermal expansion anisotropy of the noncubic SiC structures.

  4. Interfacial transformations in the a-SiC/a-Si/6H-SiC structure caused by high-temperature (1500°C) annealing

    NASA Astrophysics Data System (ADS)

    Ivanov, P. A.; Samsonova, T. P.

    2008-07-01

    We have studied the reactions that take place at interfaces in an a-SiC/a-Si/6H-SiC sandwich structure, which was obtained by the sequential deposition of amorphous silicon (a-Si) and amorphous silicon carbide (a-SiC) onto a 6H-SiC substrate by ion sputtering in vacuum and then annealed at 1500°C (i.e., above the melting point of silicon). It is shown that the annealing leads to complete îdissipationî of the silicon film in SiC, probably as a result of the dissolution of carbon in the silicon melt and the diffusion of silicon into SiC.

  5. SEM analysis of ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Malherbe, Johan B.; van der Berg, N. G.; Botha, A. J.; Friedland, E.; Hlatshwayo, T. T.; Kuhudzai, R. J.; Wendler, E.; Wesch, W.; Chakraborty, P.; da Silveira, E. F.

    2013-11-01

    SiC is a material used in two future energy production technologies, firstly as a photovoltaic layer to harness the UV spectrum in high efficient power solar cells, and secondly as a diffusion barrier material for radioactive fission products in the fuel elements of the next generation of nuclear power plants. For both applications, there is an interest in the implantation of reactive and non-reactive ions into SiC and their effects on the properties of the SiC. In this study 360 keV Ag+, I+ and Xe+ ions were separately implanted into 6H-SiC and in polycrystalline SiC at various substrate temperatures. The implanted samples were also annealed in vacuum at temperatures ranging from 900 °C to 1600 °C for various times. In recent years, there had been significant advances in scanning electron microscopy (SEM) with the introduction of an in-lens detector combined with field emission electron guns. This allows defects in solids, such as radiation damage created by the implanted ions, to be detected with SEM. Cross-sectional SEM images of 6H-SiC wafers implanted with 360 keV Ag+ ions at room temperature and at 600 °C and then vacuum annealed at different temperatures revealed the implanted layers and their thicknesses. A similar result is shown of 360 keV I+ ions implanted at 600 °C into 6H-SiC and annealed at 1600 °C. The 6H-SiC is not amorphized but remained crystalline when implanting at 600 °C. There are differences in the microstructure of 6H-SiC implanted with silver at the two temperatures as well as with reactive iodine ions. Voids (bubbles) are created in the implanted layers into which the precipitation of silver and iodine can occur after annealing of the samples. The crystallinity of the substrate via implantation temperature caused differences in the distribution and size of the voids. Implantation of xenon ions in polycrystalline SiC at 350 °C does not amorphize the substrate as is the case with room temperature heavy ion bombardment. Subsequent

  6. Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates

    NASA Astrophysics Data System (ADS)

    Chen, Guomei; Ni, Zifeng; Xu, Laijun; Li, Qingzhong; Zhao, Yongwu

    2015-12-01

    Colloidal silica and ceria based slurries, both using KMnO4 as an oxidizer, for chemical mechanical polishing (CMP) of Si-face (0 0 0 1) 6H-SiC substrate, were investigated to obtain higher material removal rate (MRR) and ultra-smooth surface. The results indicate that there was a significant difference in the CMP performance of 6H-SiC between silica and ceria based slurries. For the ceria based slurries, a higher MRR was obtained, especially in strong acid KMnO4 environment, and the maximum MRR (1089 nm/h) and a smoother surface with an average roughness Ra of 0.11 nm was achieved using slurries containing 2 wt% colloidal ceria, 0.05 M KMnO4 at pH 2. In contrast, due to the attraction between negative charged silica particles and positive charged SiC surface below pH 5, the maximum MRR of silica based slurry was only 185 nm/h with surface roughness Ra of 0.254 nm using slurries containing 6 wt% colloidal silica, 0.05 M KMnO4 at pH 6. The polishing mechanism was discussed based on the zeta potential measurements of the abrasives and the X-ray photoelectron spectroscopy (XPS) analysis of the polished SiC surfaces.

  7. The effect of split sleep schedules (6h-on/6h-off) on neurobehavioural performance, sleep and sleepiness.

    PubMed

    Short, Michelle A; Centofanti, Stephanie; Hilditch, Cassie; Banks, Siobhan; Lushington, Kurt; Dorrian, Jillian

    2016-05-01

    Shorter, more frequent rosters, such as 6h-on/6h-off split shifts, may offer promise to sleep, subjective sleepiness and performance by limiting shift length and by offering opportunities for all workers to obtain some sleep across the biological night. However, there exists a paucity of studies that have examined these shifts using objective measures of sleep and performance. The present study examined neurobehavioural performance, sleepiness and sleep during 6h-on/6h-off split sleep schedules. Sixteen healthy adults (6 males, 26.13 y ± 4.46) participated in a 9-day laboratory study that included two baseline nights (BL, 10h time in bed (TIB), 2200 h-0800 h), 4 days on one of two types of 6h-on/6h-off split sleep schedules with 5h TIB during each 'off' period (6h early: TIB 0300 h-0800 h and 1500 h-20000 h, or 6-h late: TIB 0900 h-1400 h and 2100 h-0200 h), and two recovery nights (10h TIB per night, 2200 h-0800 h). Participants received 10h TIB per 24h in total across both shift schedules. A neurobehavioural test bout was completed every 2 h during wake, which included the Psychomotor Vigilance Task (PVT) and the Karolinska Sleepiness Scale (KSS). Linear mixed effects models were used to assess the effect of day (BL, shift days 1-4), schedule (6h early, 6h late) and trial (numbers 1-6) on PVT lapses (operationalised as the number of reaction times >500 ms), PVT total lapse time, PVT fastest 10% of reaction times and KSS. Analyses were also conducted examining the effect of day and schedule on sleep variables. Overall, PVT lapses and total lapse time did not differ significantly between baseline and shift days, however, peak response speeds were significantly slower on the first shift day when compared to baseline, but only for those in the 6h-late condition. Circadian variations were apparent in performance outcomes, with individuals in the 6h-late condition demonstrated significantly more and longer lapses and slower peak reaction times at the end of their

  8. Palladium and nickel interactions with stepped 6H-silicon carbide

    NASA Astrophysics Data System (ADS)

    Woodworth, Andrew A.

    Silicon carbide (SiC) has long been recognized as a semiconductor with potential for use in a number of demanding environments. Recent developments in the quality of bulk grown 6H-SiC (and other hexagonal poly-types) have increased interest in issues surrounding the stability of device structures that operate at temperatures in excess of 600°C. It has been observed that the performance of metal-semiconductor devices created on SiC tend to degrade when operating at these temperatures. This change in device performance has been linked to inter-diffusion and reaction at the metal-semiconductor interface. Most of these devices have been fabricated on SiC substrates with surface and sub-surface damage associated with the polishing process (standard surfaces). Recent studies have shown that high temperature hydrogen etching of these substrates removes this damage and produces surfaces with wide atomically flat terraces and nanometer scale steps (stepped surfaces). The basic question this poses is, can such improvements in substrate quality lead to improvements in device performance. The goal of this research is to better understand the interaction of metals on these stepped surfaces. To accomplish this, detailed surface studies of thermally induced Pd-SiC and Ni-SiC surface interactions have been performed on both the standard and stepped surfaces. The metal films range in thickness from the monolayer level (˜0.4 nm) to actual device dimensions (˜50 nm) and are deposited under ultrahigh vacuum conditions at ˜50°C. These films were characterized in-situ using Auger electron spectroscopy both before and after annealing at 670°C for Pd and 700°C for Ni. The Auger lineshapes provide quantitative and qualitative information on the chemistry of the reaction products. Ex-situ atomic force microscopy was used to characterize changes in surface morphology. The results of these experiments yield important insights into the nature of the transport process at the metal

  9. Identification and analysis of the human murine putative chromatin structure regulator SUPT6H and Supt6h

    SciTech Connect

    Chiang, Pei-Wen; Wang, SuQing; Hillman, J.

    1996-06-15

    We have isolated and sequenced SUPT6H and Supt6h, the human and murine homologues of the Saccharomyces cerevisiae and Caenorhabditis elegans genes SPT6 (P using 1603 aa = 6.7 e-{sup 95}) and emb-5 (P using 1603 aa = 7.0 e-{sup 288}), respectively. The human and murine SPT6 homologues are virtually identical, as they share >98% identity and >99% similarity at the protein level. The derived amino acid sequences of these two genes predict a 1603-aa protein (human) and a 1726-bp protein (mouse), respectively. There were several known features, including a highly acidic 5{prime}-region, a degenerate SH2 domain, and a leucine zipper. These features are consistent with a nuclear protein that regulates transcription, whose extreme conservation underscores the likely importance of this gene in mammalian development. Expression of human and murine SPT6 homologues was analyzed by Northern blotting, which revealed a 7.0-kb transcript that was expressed constitutively. The SPT6 homologue was mapped to chromosome 17q11.2 in human by somatic cell hybrid analysis and in situ hybridization. These data indicate that SUPT6H and Supt6h are functionally analogous to SPT6 and emb-5 and may therefore regulate transcription through establishment or maintenance of chromatin structure. 23 refs., 3 figs.

  10. Micro-Raman and micro-transmission imaging of epitaxial graphene grown on the Si and C faces of 6H-SiC

    PubMed Central

    2011-01-01

    Micro-Raman and micro-transmission imaging experiments have been done on epitaxial graphene grown on the C- and Si-faces of on-axis 6H-SiC substrates. On the C-face it is shown that the SiC sublimation process results in the growth of long and isolated graphene ribbons (up to 600 μm) that are strain-relaxed and lightly p-type doped. In this case, combining the results of micro-Raman spectroscopy with micro-transmission measurements, we were able to ascertain that uniform monolayer ribbons were grown and found also Bernal stacked and misoriented bilayer ribbons. On the Si-face, the situation is completely different. A full graphene coverage of the SiC surface is achieved but anisotropic growth still occurs, because of the step-bunched SiC surface reconstruction. While in the middle of reconstructed terraces thin graphene stacks (up to 5 layers) are grown, thicker graphene stripes appear at step edges. In both the cases, the strong interaction between the graphene layers and the underlying SiC substrate induces a high compressive thermal strain and n-type doping. PMID:21801347

  11. High-Field Fast-Risetime Pulse Failures in 4H- and 6H-SiC pn Junction Diodes

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Fazi, Christian

    1996-01-01

    We report the observation of anomalous reverse breakdown behavior in moderately doped (2-3 x 10(exp 17 cm(exp -3)) small-area micropipe-free 4H- and 6H-SiC pn junction diodes. When measured with a curve tracer, the diodes consistently exhibited very low reverse leakage currents and sharp repeatable breakdown knees in the range of 140-150 V. However, when subjected to single-shot reverse bias pulses (200 ns pulsewidth, 1 ns risetime), the diodes failed catastrophically at pulse voltages of less than 100 V. We propose a possible mechanism for this anomalous reduction in pulsed breakdown voltage relative to dc breakdown voltage. This instability must be removed so that SiC high-field devices can operate with the same high reliability as silicon power devices.

  12. Microwave annealing of ion implanted 6H-SiC

    SciTech Connect

    Gardner, J.A.; Rao, M.V.; Tian, Y.L.; Holland, O.W.; Kelner, G.; Freitas, J.A. Jr.; Ahmad, I.

    1996-05-01

    Microwave rapid thermal annealing has been utilized to remove the lattice damage caused by nitrogen (N) ion-implantation as well as to activate the dopant in 6H-SiC. Samples were annealed at temperatures as high as 1,400 C, for 10 min. Van der Pauw Hall measurements indicate an implant activation of 36%, which is similar to the value obtained for the conventional furnace annealing at 1,600 C. Good lattice quality restoration was observed in the Rutherford backscattering and photoluminescence spectra.

  13. Interaction of Ni90Ti10 alloy thin film with 6H-SiC single crystal

    NASA Astrophysics Data System (ADS)

    Levit, M.; Grimberg, I.; Weiss, B.-Z.

    1996-07-01

    Interfacial reactions, phase formation, microstructure, and composition, as functions of heat treatments (400-800 °C) were investigated in Ni90Ti10 alloy thin film coevaporated on an n-type 6H-SiC (0001) single-crystal substrate. The study was carried out with the aid of Auger electron spectroscopy, x-ray diffraction, and analytical transmission electron microscopy. The interaction was found to begin at 450 °C. Ni and C are the dominant diffusing species. The reaction zone is divided into three layers. In the first layer, adjacent to the SiC substrate, the presence of Ni-rich silicide, Ni2Si, and C precipitates, was observed. The second layer is composed mainly of TiC, while the third consists of Ni2Si. This composite structure, consisting of the silicide as a low resistivity ohmic contact, and of the carbide as a diffusion barrier, promises high-temperature stability crucial to ohmic contact development for SiC technology. Factors controlling phase formation in the Ni-Ti/SiC system are discussed.

  14. Ion implantation induced swelling in 6H-SiC

    SciTech Connect

    Nipoti, R.; Albertazzi, E.; Bianconi, M.; Lotti, R.; Lulli, G.; Cervera, M.; Carnera, A.

    1997-06-01

    Ion implantation induced surface expansion (swelling) of 6H-SiC was investigated through the measurement of the step height between implanted and unimplanted areas. The samples were irradiated at room temperature with 500 keV Al{sup +} ions in the dose range 1.25{times}10{sup 14}{endash}3{times}10{sup 15}ionscm{sup {minus}2}. Swelling was related to dose and the area density of ion-induced damage measured by Rutherford backscattering channeling technique. The observed trend is consistent with the hypothesis that the volume expansion of the ion damaged crystal is proportional to the area density of displaced atoms, plus an additional relaxation occurring at the onset of the crystalline to amorphous transition. {copyright} {ital 1997 American Institute of Physics.}

  15. Trisodium citrate, Na3(C6H5O7)

    PubMed Central

    Rammohan, Alagappa; Kaduk, James A.

    2016-01-01

    The crystal structure of anhydrous tris­odium citrate, Na3(C6H5O7), has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory (DFT). There are two independent five-coordinate Na+ and one six-coordinate Na+ cations in the asymmetric unit. The [NaO5] and [NaO6] polyhedra share edges and corners to form a three-dimensional framework. There are channels parallel to the a and b axes in which the remainder of the citrate anions reside. The only hydrogen bonds are an intra­molecular one between the hy­droxy group and one of the terminal carboxyl­ate O atoms and an intermolecular one between a methylene group and the hydroxyl O atom. PMID:27308044

  16. Frustrated quantum magnetism in the 6H-perovskites

    NASA Astrophysics Data System (ADS)

    Quilliam, Jeffrey

    I will review the recent state of research on the 6H-perovskites, Ba3MA2O9, a large class of materials that can accommodate many different magnetic ions on ostensibly triangular lattices. This class of materials has given rise to several important discoveries in recent years, including quantum spin liquids, a quantum spin-orbital liquid and the first perfectly triangular spin-1/2 antiferromagnet. Many of these materials also provide an interesting interplay of magnetic, orbital and charge degrees of freedom. Others suffer from high levels of site disorder, which leads to interesting physics, at least in the case of the spin-orbital liquid candidate Ba3CuSb2O9. I will primarily discuss our recent work on the materials Ba3MSb2O9, where M = Cu, Ni and Co using the techniques of nuclear magnetic resonance (NMR), muon spin rotation (μSR) and ultrasound velocity measurements.

  17. Diffusion of helium in SiC and implications for retention of cosmogenic He

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.; Trappisch, R.; Thomas, J. B.; Chaussende, D.

    2016-11-01

    Diffusion of helium has been characterized in silicon carbide of cubic and hexagonal (4H and 6H) forms. Polished sections of SiC were implanted with 3He at 100 keV at a dose of 1 × 1015/cm2. The implanted SiC samples were sealed under vacuum in silica glass ampoules, and annealed in 1-atm furnaces. 3He distributions following all experiments were measured with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For He diffusion in cubic SiC and 4H hexagonal SiC we obtain the following Arrhenius relations: Dcubic = 1.83 ×10-6 exp (- 254 ± 10kJmol-1 /RT)m2s-1 . D4H = 4.78 ×10-7 exp (- 255 ± 29kJmol-1 /RT)m2s-1 . While He diffusion is considerably slower in SiC than in many silicate phases, He retentivity may be limited under some conditions. For example, helium will be lost from SiC grains over much shorter timescales than potential survival times of SiC presolar grains in the solar nebula. When exposed to impact heating followed by slow cooling, nearly complete loss of He from SiC grains near the site of impact will occur within several hours to a few days. For SiC grains at greater distance from impact sites, He would be better retained, depending on the rapidity of cooling. At tens of km away from a large impactor, where peak T would be ∼800 K, SiC grains would lose about 50% of their He if the grains cooled within a few thousand years, and 5% if they cooled within a few tens of years. At greater distances where heating is more modest (500 K and lower), SiC grains would be quite retentive of He even for cases of very slow cooling. Helium would also be retained in cases of impact heating followed by very rapid cooling. For these short heating pulses, 10 μm diameter SiC grains would retain more than 50% of their He for peak heating temperatures of 2173, 1973 and 1773 K for durations of 3, 10 and 60 s, respectively.

  18. Site-Competition Epitaxy for N-Type and P-Type Dopant Control in CVD Sic Epilayers

    NASA Technical Reports Server (NTRS)

    Larkin, D. J.

    1995-01-01

    The use of site-competition epitaxy, which is based on intentional variation of the Si/C ratio during epitaxy, has now been reproduced in numerous national and international laboratories. However, previous reports have only considered dopant incorporation control for epitaxy on the Si-face 6H-SiC(OOO1) substrates. Presented in this paper is the extension of this technique for control of phosphorous incorporation and also a comparison of controlled doping on C-face 6H-SiC(OOO1) versus Si-face 6H-SiC(OOO1) substrates for aluminum, boron, nitrogen, and phosphorous.

  19. Effect of thermal annealing and neutron irradiation in 6H-SiC implanted with silver at 350 °C and 600 °C

    NASA Astrophysics Data System (ADS)

    Hlatshwayo, T. T.; Malherbe, J. B.; van der Berg, N. G.; Botha, A. J.; Chakraborty, P.

    2012-02-01

    The effect of thermal annealing and neutron irradiation in 6H-SiC implanted with silver at 350 °C and 600 °C have been investigated using Rutherford backscattering spectrometry (RBS), Rutherford backscattering spectrometry in channeling mode (RBS-C) and scanning electron spectroscopy (SEM). Implantation at 600 °C and 350 °C caused the 6H-SiC to retain crystallinity. The 600 °C samples had less distortions compared to 350 °C implanted samples. Annealing of the radiation damage created during implantation is also reported. No diffusion of silver was detected after thermal annealing but a shift of the silver peak toward the surface due to thermal etching was observed. The amount of etched SiC has also been estimated by comparing the peak position before and after annealing. Similarly no diffusion was observed after low dose neutron irradiation of the samples.

  20. Near-surface recrystallization of the amorphous implanted layer of ion implanted 6H-SiC

    NASA Astrophysics Data System (ADS)

    Kuhudzai, R. J.; van der Berg, N. G.; Malherbe, J. B.; Hlatshwayo, T. T.; Theron, C. C.; Buys, A. V.; Botha, A. J.; Wendler, E.; Wesch, W.

    2014-08-01

    The recrystallization and subsequent crystal growth during annealing of amorphous surface layers on 6H-SiC produced by ion implantation is investigated. Amorphous surface layers were produced by ion implantation of 360 keV ions of iodine, silver, xenon, cesium and strontium into single crystalline 6H-silicon carbide samples. The ion fluence for all the implantations were in the order of 1016 cm-2. Vacuum annealing of the damaged silicon carbide samples was then performed. The microstructure of SiC surfaces before and after annealing was investigated using a high resolution field emission scanning electron microscope (SEM). SEM analysis was complimented by Atomic Force Microscopy (AFM). SEM images acquired by an in-lens detector using an accelerating voltage of 2 kV show nano-crystallites developed for all implanted samples after annealing. Larger and more faceted crystallites along with elongated thin crystallites were observed for iodine and xenon implanted 6H-SiC. Crystallites formed on surfaces implanted with strontium and cesium were smaller and less faceted. Strontium, silver and cesium implanted samples also exhibited more cavities on the surface. AFM was used to evaluate the effect of annealing on the surface roughness. For all the amorphous surfaces which were essentially featureless, the root mean square (rms) roughness was approximately 1 nm. The roughness increased to approximately 17 nm for the iodine implanted sample after annealing with the surface roughness below this value for all the other samples. AFM also showed that the largest crystals grew to heights of about 17, 20, 45, 50 and 65 nm for Sr, Cs, Ag, Xe and I implanted samples after annealing at 1200 °C for 5 h respectively. SEM images and AFM analysis suggest that iodine is more effective in promoting crystal growth during the annealing of bombardment-induced amorphous SiC layers than the rest of the ions we implanted. In samples of silicon carbide co-implanted with iodine and silver, few

  1. Electron paramagnetic resonance and theoretical studies of Nb in 4H- and 6H-SiC

    NASA Astrophysics Data System (ADS)

    Tien Son, Nguyen; Thang Trinh, Xuan; Gällström, Andreas; Leone, Stefano; Kordina, Olof; Janzén, Erik; Szász, Krisztián; Ivády, Viktor; Gali, Adam

    2012-10-01

    High purity silicon carbide (SiC) materials are of interest from high-power high temperature applications across recent photo-voltaic cells to hosting solid state quantum bits, where the tight control of electrically, optically, and magnetically active point defects is pivotal in these areas. 4H- and 6H-SiC substrates are grown at high temperatures and the incorporation of transition metal impurities is common. In unintentionally Nb-doped 4H- and 6H-SiC substrates grown by high-temperature chemical vapor deposition, an electron paramagnetic resonance (EPR) spectrum with C1h symmetry and a clear hyperfine (hf) structure consisting of ten equal intensity hf lines was observed. The hf structure can be identified as due to the interaction between the electron spin S = 1/2 and the nuclear spin of 93Nb. Additional hf structures due to the interaction with three Si neighbors were also detected. In 4H-SiC, a considerable spin density of ˜37.4% was found on three Si neighbors, suggesting the defect to be a complex between Nb and a nearby carbon vacancy (VC). Calculations of the 93Nb and 29Si hf constants of the neutral Nb on Si site, NbSi0, and the Nb-vacancy defect, NbSiVC0, support previous reported results that Nb preferentially forms an asymmetric split-vacancy (ASV) defect. In both 4H- and 6H-SiC, only one Nb-related EPR spectrum has been observed, supporting the prediction from calculations that the hexagonal-hexagonal defect configuration of the ASV complex is more stable than others.

  2. Characterization of paramagnetic defect centers in three polytypes of dry heat treated, oxidized SiC

    NASA Astrophysics Data System (ADS)

    Macfarlane, P. J.; Zvanut, M. E.

    2000-10-01

    This work describes the characterization of defect centers in 3C-SiC, 4H-SiC, and 6H-SiC. The different SiC crystal structures are examined with electron paramagnetic resonance after thermal oxidation, and after dry (<1 ppm H2O) N2 or O2 heat treatment. The centers are described by g values that range from 2.0025 to 2.0029, which are typical of C dangling bonds. Because the centers are activated in ambients that eliminate H2O and are passivated in ambients that contain H2O, it is suggested that the centers are C dangling bonds created during the dry heat treatment when hydrogen or a hydrogenous species releases from C bonds. The activation characteristics for the centers is the same for both 6H and 3C polytypes; however, centers in the 6H-SiC samples are passivated at lower temperatures than the centers in the 3C-SiC samples. The passivation behavior is attributed to differences in the hydrogen diffusion rates in these materials rather than significant differences in the chemistry of the centers. Etching studies conducted with hydrofluoric acid indicate that the centers are not located in the SiO2, but are located in the SiC at a distance of, at most, 200 nm from the SiO2/SiC interface.

  3. Single-crystal growth of aluminum nitride on 6H-SiC substrates by an open-system sublimation method

    NASA Astrophysics Data System (ADS)

    Kamata, Hiroyuki; Naoe, Kunihiro; Sanada, Kazuo; Ichinose, Noboru

    2009-02-01

    Single-crystalline aluminum nitride (AlN) has successfully been grown on 6H-SiC (0 0 0 1) substrates by sublimation using an open-system crucible at 2273 K within 30 h. The thickness of the AlN single-crystal layer is about 1 mm. The dislocation density in the vicinity of the crystal surface has been calculated to be less than 10 7 cm -2 from transmission electron microscopy observation and etch pit density measurement of the crystal. Single-crystal growth of AlN has been carried out by varying supersaturation of Al vapor and employing on- and off-axis SiC substrates. Supersaturation of Al vapor has critically influenced the crystalline quality and morphology, while it has not affected the growth rate so much. Thus, precise control of supersaturation is a key to ensuring the quality of AlN single crystals. The quality of the crystals grown on off-axis SiC substrates is superior to that grown on on-axis SiC substrates. Moreover, the quality has been improved as the thickness of the crystals has increased.

  4. Pendeo-epitaxial growth and characterization of GaN and related materials on 6H-SiC(0001) and Si(111) substrates

    SciTech Connect

    Davis, R.F.; Gehrke, T.; Linthicum, K.J.; Zheleva, T.S.; Rajagopal, P.; Zorman, C.A.; Mehregany, M.

    2000-07-01

    Discrete and coalesced monocrystalline GaN and Al{sub x}Ga{sub 1{minus}x}N layers grown via Pendeo-epitaxy (PE) [1] originated from side walls of GaN seed structures containing SiN{sub x} top masks have been grown via organometallic vapor phase deposition on GaN/AlN/6H-SiC(0001) and GaN(0001)/AlN(0001)/3C-SiC(111)/Si(111) substrates. Scanning and transmission electron microscopies were used to evaluate the external microstructures and the distribution of dislocations, respectively. The dislocation densities in the PE grown films was reduced by at least five orders of magnitude relative to the initial GaN seed layers. Tilting in the coalesced GaN epilayers was observed via X-ray diffraction. A tilt of 0.2{degree} was confined to areas of mask overgrowth; however, no tilting was observed in the material suspended above the SiC substrate. The strong, low-temperature PL band-edge peak at 3.45 eV with a FWHM of 17 meV was comparable to that observed in PE GaN films grown on 6H-SiC(0001). The band-edge in the GaN grown on AlN(0001)/SiC(111)Si(111) substrates was shifted to a lower energy by 10 meV, indicative of a greater tensile stress.

  5. Study of Erosive Wear Behaviour on SIC/SIC Composites

    NASA Astrophysics Data System (ADS)

    Suh, Min-Soo

    In the field of aerospace propulsion system, erosive wear on continuous silicon carbide (SiC) fibre-reinforced SiC (SiC/SiC) composites is of significant issue to achieve high energy efficiency. This paper proposes a crucial factor and a design guideline of SiC/SiC composites for higher erosion performance regarding cost effectiveness. Fabrication and evaluation of impacts and wear on SiC/SiC composites are successfully carried out. Erosive wear behaviours of the CVI and the LPS composites evidently show that the crucial fabrication factor against solid particle erosion (SPE). Erosive wear mechanisms on various SiC/SiC composites are determined based on the analysis of erosive wear behaviour. Designing guideline for the SiC/SiC composites for pursuit of high erosion performance is also proposed as focusing on the followings; volume fraction of matrix, strength of the matrix, bonding strength, and PyC interface.

  6. Study of defect structures in 6H-SiC a/m-plane pseudofiber crystals grown by hot-wall CVD epitaxy

    SciTech Connect

    Goue, Ouloide Y.; Raghothamachar, Balaji; Yang, Yu; Guo, Jianqiu; Dudley, Michael; Kisslinger, Kim; Trunek, Andrew J.; Neudeck, Philip G.; Spry, David J.; Woodworth, Andrew A.

    2015-11-25

    Structural perfection of silicon carbide (SiC) single crystals is essential to achieve high-performance power devices. A new bulk growth process for SiC proposed by researchers at NASA Glenn Research Center, called large tapered crystal (LTC) growth, based on axial fiber growth followed by lateral expansion, could produce SiC boules with potentially as few as one threading screw dislocation per wafer. In this study, the lateral expansion aspect of LTC growth is addressed through analysis of lateral growth of 6H-SiC a/m-plane seed crystals by hot-wall chemical vapor deposition. Preliminary synchrotron white-beam x-ray topography (SWBXT) indicates that the as-grown boules match the polytype structure of the underlying seed and have a faceted hexagonal morphology with a strain-free surface marked by steps. SWBXT Laue diffraction patterns of transverse and axial slices of the boules reveal streaks suggesting the existence of stacking faults/polytypes, and this is confirmed by micro-Raman spectroscopy. Transmission x-ray topography of both transverse and axial slices reveals inhomogeneous strains at the seed–epilayer interface and linear features propagating from the seed along the growth direction. Micro-Raman mapping of an axial slice reveals that the seed contains high stacking disorder, while contrast extinction analysis (g·b and g·b×l) of the linear features reveals that these are mostly edge-type basal plane dislocations. Further high-resolution transmission electron microscopy investigation of the seed–homoepilayer interface also reveals nanobands of different SiC polytypes. A model for their formation mechanism is proposed. Lastly, the implication of these results for improving the LTC growth process is addressed.

  7. Study of Defect Structures in 6H-SiC a/ m-Plane Pseudofiber Crystals Grown by Hot-Wall CVD Epitaxy

    NASA Astrophysics Data System (ADS)

    Goue, Ouloide Y.; Raghothamachar, Balaji; Yang, Yu; Guo, Jianqiu; Dudley, Michael; Kisslinger, Kim; Trunek, Andrew J.; Neudeck, Philip G.; Spry, David J.; Woodworth, Andrew A.

    2016-04-01

    Structural perfection of silicon carbide (SiC) single crystals is essential to achieve high-performance power devices. A new bulk growth process for SiC proposed by researchers at NASA Glenn Research Center, called large tapered crystal (LTC) growth, based on axial fiber growth followed by lateral expansion, could produce SiC boules with potentially as few as one threading screw dislocation per wafer. In this study, the lateral expansion aspect of LTC growth is addressed through analysis of lateral growth of 6H-SiC a/ m-plane seed crystals by hot-wall chemical vapor deposition. Preliminary synchrotron white-beam x-ray topography (SWBXT) indicates that the as-grown boules match the polytype structure of the underlying seed and have a faceted hexagonal morphology with a strain-free surface marked by steps. SWBXT Laue diffraction patterns of transverse and axial slices of the boules reveal streaks suggesting the existence of stacking faults/polytypes, and this is confirmed by micro-Raman spectroscopy. Transmission x-ray topography of both transverse and axial slices reveals inhomogeneous strains at the seed-epilayer interface and linear features propagating from the seed along the growth direction. Micro-Raman mapping of an axial slice reveals that the seed contains high stacking disorder, while contrast extinction analysis (g· b and g· b× l) of the linear features reveals that these are mostly edge-type basal plane dislocations. Further high-resolution transmission electron microscopy investigation of the seed-homoepilayer interface also reveals nanobands of different SiC polytypes. A model for their formation mechanism is proposed. Finally, the implication of these results for improving the LTC growth process is addressed.

  8. Study of defect structures in 6H-SiC a/m-plane pseudofiber crystals grown by hot-wall CVD epitaxy

    DOE PAGESBeta

    Goue, Ouloide Y.; Raghothamachar, Balaji; Yang, Yu; Guo, Jianqiu; Dudley, Michael; Kisslinger, Kim; Trunek, Andrew J.; Neudeck, Philip G.; Spry, David J.; Woodworth, Andrew A.

    2015-11-25

    Structural perfection of silicon carbide (SiC) single crystals is essential to achieve high-performance power devices. A new bulk growth process for SiC proposed by researchers at NASA Glenn Research Center, called large tapered crystal (LTC) growth, based on axial fiber growth followed by lateral expansion, could produce SiC boules with potentially as few as one threading screw dislocation per wafer. In this study, the lateral expansion aspect of LTC growth is addressed through analysis of lateral growth of 6H-SiC a/m-plane seed crystals by hot-wall chemical vapor deposition. Preliminary synchrotron white-beam x-ray topography (SWBXT) indicates that the as-grown boules match themore » polytype structure of the underlying seed and have a faceted hexagonal morphology with a strain-free surface marked by steps. SWBXT Laue diffraction patterns of transverse and axial slices of the boules reveal streaks suggesting the existence of stacking faults/polytypes, and this is confirmed by micro-Raman spectroscopy. Transmission x-ray topography of both transverse and axial slices reveals inhomogeneous strains at the seed–epilayer interface and linear features propagating from the seed along the growth direction. Micro-Raman mapping of an axial slice reveals that the seed contains high stacking disorder, while contrast extinction analysis (g·b and g·b×l) of the linear features reveals that these are mostly edge-type basal plane dislocations. Further high-resolution transmission electron microscopy investigation of the seed–homoepilayer interface also reveals nanobands of different SiC polytypes. A model for their formation mechanism is proposed. Lastly, the implication of these results for improving the LTC growth process is addressed.« less

  9. Aluminum Nitride-Silicon Carbide Alloy Crystals Grown on SiC Substrates by Sublimation

    SciTech Connect

    Gu, Z; Du, Li; Edgar, J H; Payzant, E Andrew; Walker, Larry R; Liu, R; Engelhard, M H

    2005-01-01

    AlN-SiC alloy crystals, with a thickness greater than 500μm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8 or 3.68 ) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlNSiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). Xray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 10^6cm-2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.

  10. Aluminum Nitride-Silicon Carbide Alloy Crystals Grown on SiC Substrates by Sublimation

    SciTech Connect

    Gu, Zheng; Du, L; Edgar, James H.; Payzant, Edward A.; Walker, L. R.; Liu, R.; Engelhard, Mark H.

    2005-12-20

    AlN-SiC alloy crystals, with a thickness greater than 500 m, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8? or 3.68?) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlN-SiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 106 cm-2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.

  11. F6H8 as an Intraoperative Tool and F6H8/Silicone Oil as a Postoperative Tamponade in Inferior Retinal Detachment with Inferior PVR

    PubMed Central

    Tosi, Gian Marco; Bacci, Tommaso; Romeo, Napoleone; Balestrazzi, Angelo; Martone, Gianluca; Caporossi, Tomaso

    2014-01-01

    Purpose. To evaluate the effectiveness and safety of perfluorohexyloctane (F6H8) for intraoperative flattening of the retina and of F6H8/silicone oil (SO) 1000 cSt as a postoperative tamponade for inferior retinal detachment with inferior proliferative vitreoretinopathy. Methods. This is a retrospective review of 22 patients who underwent pars plana vitrectomy using F6H8 as an intraoperative tool to flatten the retina. At the end of the surgery a direct partial exchange between F6H8 and SO 1000 cSt was performed, tamponing the eye with different ratios of F6H8/SO (70/30, 60/40, 50/50, 40/30, and 30/70). Anatomical and functional results and complications were evaluated over the follow-up period (mean 22.63 months). Results. F6H8 was efficacious for intraoperative flattening of the retina. Twenty-one of the 22 patients achieved a complete retinal reattachment. Postoperative visual acuity (VA) ranged from light perception to 20/70, with 72% of patients obtaining VA better than 20/400. No emulsification/inflammation was observed whatever the ratio of F6H8/SO used. With higher ratios of F6H8/SO (70/30 and 60/40) cloudiness of the tamponade was observed. A transparent mixture was present with all the other ratios. Conclusions. The surgical technique adopted is very simple and safe. The optimal F6H8/SO ratio seems to be between 50/50 and 30/70. PMID:24672710

  12. Tip induced mechanical deformation of epitaxial graphene grown on reconstructed 6H-SiC(0001) surface during scanning tunneling and atomic force microscopy studies.

    PubMed

    Meza, José Antonio Morán; Lubin, Christophe; Thoyer, François; Cousty, Jacques

    2015-01-26

    The structural and mechanical properties of an epitaxial graphene (EG) monolayer thermally grown on top of a 6H-SiC(0001) surface were studied by combined dynamic scanning tunneling microscopy (STM) and frequency modulation atomic force microscopy (FM-AFM). Experimental STM, dynamic STM and AFM images of EG on 6H-SiC(0001) show a lattice with a 1.9 nm period corresponding to the (6 × 6) quasi-cell of the SiC surface. The corrugation amplitude of this (6 × 6) quasi-cell, measured from AFM topographies, increases with the setpoint value of the frequency shift Δf (15-20 Hz, repulsive interaction). Excitation variations map obtained simultaneously with the AFM topography shows that larger dissipation values are measured in between the topographical bumps of the (6 × 6) quasi-cell. These results demonstrate that the AFM tip deforms the graphene monolayer. During recording in dynamic STM mode, a frequency shift (Δf) map is obtained in which Δf values range from 41 to 47 Hz (repulsive interaction). As a result, we deduced that the STM tip, also, provokes local mechanical distortions of the graphene monolayer. The origin of these tip-induced distortions is discussed in terms of electronic and mechanical properties of EG on 6H-SiC(0001).

  13. Structural and surface topography analysis of AlN single crystals grown on 6H-SiC substrates

    NASA Astrophysics Data System (ADS)

    Sumathi, R. R.; Barz, R. U.; Straubinger, T.; Gille, P.

    2012-12-01

    Bulk AlN single crystals (3 mm thick and 1 in. diameter) were hetero-epitaxially grown on (0001) 6H-SiC substrates by the sublimation method. Double-crystal x-ray diffraction and micro-Raman results confirm the good crystallinity as well as structural homogeneity of the grown crystals. The presence of low-angle grain boundaries was observed by x-ray diffraction rocking curve analysis and also supported by defect-selective etching analysis. The estimated defect density of the 3 mm thick crystals is about (5-8)×105 cm-2. 3D-microstructures with different morphology were observed on the as-grown crystal surfaces and were interpreted to be originated from screw dislocations. These screw dislocations are decorated by carbon impurities as evidenced by micro-Raman spectroscopic measurements. SiC incorporation in the grown crystals was found to be fairly low with 4 mol% at 2 mm distance from the interface and varies slightly between different sub-grains.

  14. Deep Reactive Ion Etching (DRIE) of High Aspect Ratio SiC Microstructures using a Time-Multiplexed Etch-Passivate Process

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.; Beheim, Glenn M.

    2006-01-01

    High aspect ratio silicon carbide (SiC) microstructures are needed for microengines and other harsh environment micro-electro-mechanical systems (MEMS). Previously, deep reactive ion etching (DRIE) of low aspect ratio (AR less than or = 1) deep (greater than 100 micron) trenches in SiC has been reported. However, existing DRIE processes for SiC are not well-suited for definition of high aspect ratio features because such simple etch-only processes provide insufficient control over sidewall roughness and slope. Therefore, we have investigated the use of a time-multiplexed etch-passivate (TMEP) process, which alternates etching with polymer passivation of the etch sidewalls. An optimized TMEP process was used to etch high aspect ratio (AR greater than 5) deep (less than 100 micron) trenches in 6H-SiC. Power MEMS structures (micro turbine blades) in 6H-SiC were also fabricated.

  15. Direct growth of freestanding GaN on C-face SiC by HVPE

    PubMed Central

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-01-01

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra. PMID:26034939

  16. Direct growth of freestanding GaN on C-face SiC by HVPE.

    PubMed

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-06-02

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra.

  17. Photoelectrochemical etching of silicon carbide (SiC) and its characterization

    NASA Technical Reports Server (NTRS)

    Collins, D. M.; Harris, G. L.; Wongchotigul, K.

    1995-01-01

    Silicon carbide (SiC) is an attractive semiconductor material for high speed, high density, and high temperature device applications due to its wide bandgap (2.2-3.2 eV), high thermal conductivity, and high breakdown electric field (4 x 10(exp 6) V/cm). An instrumental process in the fabrication of semiconductor devices is the ability to etch in a highly controlled and selective manner for direct patterning techniques. A novel technique in etching using electrochemistry is described. This procedure involves the ultraviolet (UV) lamp-assisted photoelectrochemical etching of n-type 3C- and 6H-SiC to enhance the processing capability of device structures in SiC. While under UV illumination, the samples are anodically biased in an HF based aqueous solution since SiC has photoconductive properties. In order for this method to be effective, the UV light must be able to enhance the production of holes in the SiC during the etching process thus providing larger currents with light from the photocurrents generated than those currents with no light. Otherwise dark methods would be used as in the case of p-type 3C-SiC. Experiments have shown that the I/V characteristics of the SiC-electrolyte interface reveal a minimum etch voltage of 3 V and 4 V for n- and p-type 3C-SiC, respectively. Hence it is possible for etch-stops to occur. Etch rates calculated have been as high as 0.67 micrometer/min for p-type, 1.4 micrometer/min for n-type, and 1.1 micrometer/min for pn layer. On n-type 3C- SiC, an oxide formation is present where after etching a yellowish layer corresponds to a low Si/C ratio and a white layer corresponds to a high Si/C ratio. P-type 3C-SiC shows a grayish layer. Additionally, n-type 6H-SiC shows a brown layer with a minimum etch voltage of 3 V.

  18. Reactive sintering of SiC

    NASA Technical Reports Server (NTRS)

    Kim, Y. W.; Lee, J. G.

    1984-01-01

    Investigation of the sintering processes involved in the sintering of SiC revealed a connection between the types and quantities of sintering additives or catalysts and densification, initial shrinkage, and weight loss of the sintered SiC material. By sintering processes, is meant the methods of mass transport, namely solid vapor transport and grain boundary diffusion.

  19. The correlation of epitaxial graphene properties and morphology of SiC (0001)

    SciTech Connect

    Guo, Y.; Guo, L. W. E-mail: xlchen@iphy.ac.cn; Huang, J.; Jia, Y. P.; Lin, J. J.; Lu, W.; Li, Z. L.; Yang, R.; Chen, X. L. E-mail: xlchen@iphy.ac.cn

    2014-01-28

    The electronic properties of epitaxial graphene (EG) on SiC (0001) depend sensitively on the surface morphology of SiC substrate. Here, 2–3 layers of graphene were grown on on-axis 6H-SiC with different step densities realized through controlling growth temperature and ambient pressure. We show that epitaxial graphene on SiC (0001) with low step density and straight step edge possesses fewer point defects laying mostly on step edges and higher carrier mobility. A relationship between step density and EG mobility is established. The linear scan of Raman spectra combined with the atomic force microscopy morphology images revealed that the Raman fingerprint peaks are nearly the same on terraces, but shift significantly while cross step edges, suggesting the graphene is not homogeneous in strain and carrier concentration over terraces and step edges of substrates. Thus, control morphology of epitaxial graphene on SiC (0001) is a simple and effective method to pursue optimal route for high quality graphene and will be helpful to prepare wafer sized graphene for device applications.

  20. Morphology and electronic properties of metal organic molecular beam epitaxy grown ZnO on hydrogen passivated 6H-SiC(0001)a)

    NASA Astrophysics Data System (ADS)

    Andres, Stefan; Pettenkofer, Christian; Speck, Florian; Seyller, Thomas

    2008-05-01

    Thin ZnO films were grown on hydrogen passivated 6H-SiC(0001) substrates by metal organic molecular beam epitaxy. The initial growth as well as the electronic properties of the growing interface were monitored by low electron diffraction and photoelectron spectroscopy (PES). From the PES intensities of the substrate and ZnO film a layered Frank-van-der-Merwe-like growth mode could be observed within the first 10nm. The ZnO films grow preferentially in (0001) direction and show a pronounced facetting in the {101¯2} direction. The experimentally determined band alignment reveals band offsets of ΔEVBM≈1.6eV and ΔECBM≈1.2eV between the valence and conduction bands, respectively. With growing ZnO thickness a band bending of about -0.51eV is observed in the SiC substrate.

  1. Residue-free reactive ion etching of 3C-SiC and 6H-SiC in fluorinated mixture plasmas

    SciTech Connect

    Yih, P.H.; Steckl, A.J.

    1995-08-01

    The authors report on residue-free reactive ion etching (RIE) of 3C-SiC and 6H-SiC in mixtures of fluorinated gases consisting of a primary (CHF{sub 3}) and a secondary gas (CF{sub 4}, NF{sub 3}, and SF{sub 6}). The corresponding etch rate, etched surface morphology, anisotropic profile, and process reproducibility are obtained at different levels of CHF{sub 3}. The advantage of this approach is to eliminate gas additives (H{sub 2} and O{sub 2}) while maintaining the residue-free RIE and high process portability. The effect of SiC doping concentration and dopant type on obtaining residue-free RIE is reported along with the effects of plasma pressure and RF power. Etching mechanisms, plasma chemistry, and optimized etching conditions are also discussed.

  2. Enhanced quality of epitaxial AlN thin films on 6H-SiC by ultra-high-vacuum ion-assisted reactive dc magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Tungasmita, S.; Birch, J.; Persson, P. O. A.˚.; Järrendahl, K.; Hultman, L.

    2000-01-01

    Epitaxial AlN thin films have been grown on 6H-SiC substrates by ultra-high-vacuum (UHV) ion-assisted reactive dc magnetron sputtering. The low-energy ion-assisted growth (Ei=17-27 eV) results in an increasing surface mobility, promoting domain-boundary annihilation and epitaxial growth. Domain widths increased from 42 to 135 nm and strained-layer epitaxy was observed in this energy range. For Ei>52 eV, an amorphous interfacial layer of AlN was formed on the SiC, which inhibited epitaxial growth. Using UHV condition and very pure nitrogen sputtering gas yielded reduced impurity levels in the films (O: 3.5×1018cm-3). Analysis techniques used in this study are in situ reflection high-energy electron diffraction, secondary-ion-mass spectroscopy, atomic-force microscopy, x-ray diffraction, and cross-section high-resolution electron microscopy.

  3. The first potential energy surfaces for the C6H--H2 and C6H--He collisional systems and their corresponding inelastic cross sections

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Dumouchel, Fabien; Lique, François; Dawes, Richard

    2016-07-01

    Molecular anions have recently been detected in the interstellar and circumstellar media. Accurate modeling of their abundance requires calculations of collisional data with the most abundant species that are usually He atoms and H2 molecules. In this paper, we focus on the collisional excitation of the first observed molecular anion, C6H-, by He and H2. Theoretical calculations of collisional cross sections rely generally on ab initio interaction potential energy surfaces (PESs). Hence, we present here the first PESs for the C6H--H2 and C6H--He van der Waals systems. The ab initio energy data for the surfaces were computed at the explicitly correlated coupled cluster with single, double, and scaled perturbative triple excitations level of theory. The method of interpolating moving least squares was used to construct 4D and 2D analytical PESs from these data. Both surfaces are characterized by deep wells and large anisotropies. Analytical models of the PESs were used in scattering calculations to obtain cross sections for low-lying rotational transitions. As could have been anticipated, important differences exist between the He and H2 cross sections. Conversely, no significant differences exist between the collisions of C6H- with the two species of H2 (para- and ortho-H2). We expect that these new data will help in accurately determining the abundance of the C6H- anions in space.

  4. Spin centres in SiC for all-optical nanoscale quantum sensing under ambient conditions

    NASA Astrophysics Data System (ADS)

    Anisimov, A. N.; Babunts, R. A.; Kidalov, S. V.; Mokhov, E. N.; Soltamov, V. A.; Baranov, P. G.

    2016-07-01

    Level anticrossing (LAC) spectroscopy was demonstrated on a family of uniaxially oriented spin colour centres with S = 3/2 in the ground and excited states in hexagonal 4H-, 6H- and rhombic 15R- SiC polytypes. It was shown that these centres exhibit unique characteristics such as optical spin alignment up to the temperatures of 250 ◦C. A sharp variation of the IR photoluminescence intensity in the vicinity of LAC with the record contrast was observed, which can be used for a purely all-optical sensing of the magnetic field and temperature without applying radiofrequency field. A distinctive feature of the LAC signal is weak dependence on the direction of the magnetic field that allows one to monitor the LAC signals in the nonoriented systems, such as powder of SiC nanocrystals.

  5. Deep ultra violet and visible Raman spectroscopy studies of ion implanted 6H-SiC: Recrytallisation behaviour and thermal decomposition/thermal etching of the near surface region

    NASA Astrophysics Data System (ADS)

    Kuhudzai, R. J.; Malherbe, J. B.; van der Berg, N. G.; Hlatshwayo, T. T.; Odutemowo, O.; Prinsloo, L. C.; Buys, A. V.; Erasmus, R.; Wendler, E.

    2015-12-01

    The recystallisation behaviour and thermal decomposition of the near surface amorphised region of 6H-SiC have been investigated by Raman spectroscopy. 360 keV ions of iodine and silver were implanted at room temperature into wafers of 6H-SiC resulting in the amorphisation of the near surface region. Vacuum annealing of the samples was performed at 1200 °C for 5 h and then sequentially from 1200 to 1600 °C in steps of 100 °C for 30 h at each annealing temperature. Raman spectroscopy was performed using two laser wavelength excitation regimes, the 514 nm laser (visible region) and the 244 nm laser (deep ultraviolet region, DUV). Measurements in the visible region for samples annealed at 1200 °C for 5 h showed that the characteristic 6H-SiC peaks, namely, the Transverse Optical (TO) and Longitudinal Optical (LO) are similar to the virgin samples, albeit with lower intensity due to some retained defects upon recystallisation of the SiC surface region. The similarities between the virgin spectra and the annealed sample were due to the deep penetration of the 514 nm laser into 6H-SiC resulting in the signal from the bulk undamaged 6H-SiC contributing to the overall spectra. However, DUV laser excitation, which only probes the near surface region, shows that after annealing the peaks are broader and asymmetrical compared to the virgin samples. DUV Raman spectra of samples annealed at 1600 °C indicate that SiC has completely decomposed and the top surface layer is now covered by a carbon layer. However the deeper penetrating laser in the visible region showed that the extent of decomposition at 1600 °C was greater for the silver implanted samples than for the iodine implanted samples.

  6. Irradiation effects in 6H-SiC induced by neutron and heavy ions: Raman spectroscopy and high-resolution XRD analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofei; Zhou, Wei; Feng, Qijie; Zheng, Jian; Liu, Xiankun; Tang, Bin; Li, Jiangbo; Xue, Jianming; Peng, Shuming

    2016-09-01

    Irradiation effects of neutron and 3 MeV C+, Si+ in 6H-SiC were investigated by Raman spectroscopy and high-resolution XRD. The total disorder values of neutron irradiated SiC agree well with that of samples irradiated by ions at the same doses respectively. On the other hand, high-resolution XRD results shows that the lattice strain rate caused by neutron irradiation is 6.8%/dpa, while it is only 2.6%/dpa and 4.2%/dpa for Si+ and C+ irradiations respectively. Our results illustrate that the total disorder in neutron irradiated SiC can be accurately simulated by MeV Si+ or C+ irradiations at the same dose, but for the lattice strain and strain-related properties like surface hardness, the depth profile of irradiation damages induced by energetic ions must be considered. This research will contribute to a better understanding of the difference in irradiation effects between neutron and heavy ions.

  7. Volumetric Properties of the Mixture Benzene C6H6 + C6H10O Cyclohexanone (VMSD1511, LB4829_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Benzene C6H6 + C6H10O Cyclohexanone (VMSD1511, LB4829_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  8. Volumetric Properties of the Mixture Benzene C6H6 + C6H10O Cyclohexanone (VMSD1111, LB4819_V0029

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Benzene C6H6 + C6H10O Cyclohexanone (VMSD1111, LB4819_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  9. Vapor-Liquid Equilibrium in the Mixture Cyclohexanone C6H10O + C6H12O Cyclohexanol (EVLM1111, LB5657_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture Cyclohexanone C6H10O + C6H12O Cyclohexanol (EVLM1111, LB5657_E)' providing data from direct measurement of pressure at variable mole fraction in liquid phase and constant temperature.

  10. Volumetric Properties of the Mixture Benzene C6H6 + C6H10O Cyclohexanone (VMSD1212, LB4824_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Benzene C6H6 + C6H10O Cyclohexanone (VMSD1212, LB4824_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  11. Heat of Mixing and Solution of Cyclohexanone C6H10O + C6H12O Cyclohexanol (HMSD1121, LB4187_H)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Heat of Mixing and Solution of Cyclohexanone C6H10O + C6H12O Cyclohexanol (HMSD1121, LB4187_H)' providing data from direct calorimetric measurement of molar excess enthalpy at variable mole fraction and constant pressure and temperature.

  12. Photoluminescence of etched SiC nanowires

    NASA Astrophysics Data System (ADS)

    Stewart, Polite D., Jr.; Rich, Ryan; Zerda, T. W.

    2010-10-01

    SiC nanowires were produced from carbon nanotubes and nanosize silicon powder in a tube furnace at temperatures between 1100^oC and 1350^oC. SiC nanowires had average diameter of 30 nm and very narrow size distribution. The compound possesses a high melting point, high thermal conductivity, and excellent wear resistance. The surface of the SiC nanowires after formation is covered by an amorphous layer. The composition of that layer is not fully understood, but it is believed that in addition to amorphous SiC it contains various carbon and silicon compounds, and SiO2. The objective of the research was to modify the surface structure of these SiC nanowires. Modification of the surface was done using the wet etching method. The etched nanowires were then analyzed using Fourier Transform Infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and photoluminescence (PL). FTIR and TEM analysis provided valid proof that the SiC nanowires were successfully etched. Also, the PL results showed that the SiC nanowire core did possess a fluorescent signal.

  13. Refractory Oxide Coatings on Sic Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Jacobson, Nathan S.; Miller, Robert A.

    1994-01-01

    Silicon carbide with a refractory oxide coating is potentially a very attractive ceramic system. It offers the desirable mechanical and physical properties of SiC and the environmental durability of a refractory oxide. The development of a thermal shock resistant plasma-sprayed mullite coating on SiC is discussed. The durability of the mullite/SiC in oxidizing, reducing, and molten salt environments is discussed. In general, this system exhibits better behavior than uncoated SiC. Areas for further developments are discussed.

  14. Near-Interface Defects in SiO2/SiC MOS Devices

    NASA Astrophysics Data System (ADS)

    Basile, A. F.; Mooney, P. M.

    2012-02-01

    The implementation of SiO2/SiC MOSFETS for high power applications has been hindered by the high density of near-interface states. We have developed a method to distinguish both the energy and spatial distribution of defect states near insulator-semiconductor interfaces through a comparison of the thermal emission energy extracted from constant capacitance transient spectroscopy (CCDLTS) measurements and the interface Fermi energy (FP). The dependence of FP on trap filling voltage at the CCDLTS peak temperature is determined from temperature-dependent 1MHz C-V curves. Capture by tunneling into oxide traps is detected in 4H- and 6H-SiC capacitors fabricated by oxidation followed by NO-annealing, with the difference in thermal emission energies consistent with the conduction band offsets of the two polytypes at the SiO2/SiC interface. Comparison with results from first principles calculations suggests that the observed oxide traps are CO=CO and interstitial Si [1]. SiC defects having energies close to the SiC conduction band are suggested to be carbon di-interstitial defects, (C2)i, introduced during standard oxidation [1]. Well-known traps introduced in SiC by ion-implantation are observed in 4H-SiC MOS capacitors fabricated by N-implantation followed by standard oxidation, thus validating this new method [2]. *A.F. Basile, et al., J. Appl. Phys. 109, 064514 (2011) *A.F. Basile, et al., J. Appl. Phys. 109, 114505 (2011).

  15. Growth of Si thin film on 6H-SiC(0001)

    NASA Astrophysics Data System (ADS)

    Wu, Hsin-Ju; Hoang, M. Tien; Li, Yuntao; First, Phillip N.

    2015-03-01

    Graphene is much studied for its unusual electronic properties. Other carbon group elements such as silicon (Si) and germanium (Ge) also are predicted to have stable 2D phases for which the electronic structure and properties could be still more interesting. Silicon carbide, already an excellent insulating substrate for epitaxial graphene, could potentially play a similar role for silicene. Commonalities in the substrate and processing may lead to the integration of carbon and silicon technologies. Here, we use surface analysis techniques (LEED, AES, STM) to investigate the formation of 2D Si on SiC(0001), under low pressures of silane or silicon. Similar methods allow control of surface graphene growth by compensating Si desorption from SiC. Among several Si-rich reconstructions, we find a single stable hexagonal phase, at a coverage close to twice the Si density predicted for silicene, and with a unit cell consistent with a commensurate layer of silicene or silicane. For a graphitized SiC starting surface, silane is shown to etch graphene, reforming SiC. Work supported in part by NSF (DMR-1106131, DMR-0820382 [MRSEC]).

  16. SiC nanowires: A photocatalytic nanomaterial

    SciTech Connect

    Zhou Weimin; Yan Lijun; Wang Ying; Zhang Yafei

    2006-07-03

    Single-crystal {beta}-SiC nanowires coated with amorphous SiO{sub 2} were synthesized by a simple thermal evaporation technique. The photocatalytic activity of the SiC nanowires was characterized by measuring the photodegradation rate of acetaldehyde catalyzed by SiC as a function of UV irradiation time. It exhibited excellent photocatalytic activity, leading to the efficient decomposition of acetaldehyde by irradiation with UV light. The progress of the photocatalytic reaction can be monitored by the evolution of one of the products, CO{sub 2}. It has been observed that the as-synthesized SiC nanowires (with the SiO{sub 2} coating) have higher catalytic activity than the HF-etched, oxide-free SiC nanowires.

  17. Structural Characterization of Lateral-grown 6H-SiC am-plane Seed Crystals by Hot Wall CVD Epitaxy

    NASA Technical Reports Server (NTRS)

    Goue, Ouloide Yannick; Raghothamachar, Balaji; Dudley, Michael; Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Spry, David J.

    2014-01-01

    The performance of commercially available silicon carbide (SiC) power devices is limited due to inherently high density of screw dislocations (SD), which are necessary for maintaining polytype during boule growth and commercially viable growth rates. The NASA Glenn Research Center (GRC) has recently proposed a new bulk growth process based on axial fiber growth (parallel to the c-axis) followed by lateral expansion (perpendicular to the c-axis) for producing multi-faceted m-plane SiC boules that can potentially produce wafers with as few as one SD per wafer. In order to implement this novel growth technique, the lateral homoepitaxial growth expansion of a SiC fiber without introducing a significant number of additional defects is critical. Lateral expansion is being investigated by hot wall chemical vapor deposition (HWCVD) growth of 6H-SiC am-plane seed crystals (0.8mm x 0.5mm x 15mm) designed to replicate axially grown SiC single crystal fibers. The post-growth crystals exhibit hexagonal morphology with approximately 1500 m (1.5 mm) of total lateral expansion. Preliminary analysis by synchrotron white beam x-ray topography (SWBXT) confirms that the growth was homoepitaxial, matching the polytype of the respective underlying region of the seed crystal. Axial and transverse sections from the as grown crystal samples were characterized in detail by a combination of SWBXT, transmission electron microscopy (TEM) and Raman spectroscopy to map defect types and distribution. X-ray diffraction analysis indicates the seed crystal contained stacking disorders and this appears to have been reproduced in the lateral growth sections. Analysis of the relative intensity for folded transverse acoustic (FTA) and optical (FTO) modes on the Raman spectra indicate the existence of stacking faults. Further, the density of stacking faults is higher in the seed than in the grown crystal. Bundles of dislocations are observed propagating from the seed in m-axis lateral directions

  18. Development of Sic Gas Sensor Systems

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Okojie, R. S.; Beheim, G. M.; Thomas, V.; Chen, L.; Lukco, D.; Liu, C. C.; Ward, B.; Makel, D.

    2002-01-01

    Silicon carbide (SiC) based gas sensors have significant potential to address the gas sensing needs of aerospace applications such as emission monitoring, fuel leak detection, and fire detection. However, in order to reach that potential, a range of technical challenges must be overcome. These challenges go beyond the development of the basic sensor itself and include the need for viable enabling technologies to make a complete gas sensor system: electrical contacts, packaging, and transfer of information from the sensor to the outside world. This paper reviews the status at NASA Glenn Research Center of SiC Schottky diode gas sensor development as well as that of enabling technologies supporting SiC gas sensor system implementation. A vision of a complete high temperature microfabricated SiC gas sensor system is proposed. In the long-term, it is believed that improvements in the SiC semiconductor material itself could have a dramatic effect on the performance of SiC gas sensor systems.

  19. Direct ab initio study of the C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 reactions

    NASA Astrophysics Data System (ADS)

    Mai, Tam V.-T.; Ratkiewicz, Artur; Duong, Minh v.; Huynh, Lam K.

    2016-02-01

    A kinetic study of the reactions C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 was carried out in the temperature range of 300-2500 K using high levels of electronic structure theory, namely, CCSD(T)/CBS//BH&HLYP/cc-pVDZ, and canonical variational transition state theory (CVT) with corrections for small curvature tunneling (SCT) and hindered internal rotation (HIR) treatments. It is found that variational effect is not important and both SCT and HIR corrections noticeably affect the rate constants. Being in good agreement with literature data, the calculated results provide solid basis information for the investigation of the polyaromatic hydrocarbon (PAH) + alkyl radical reaction, an important class in combustion and soot formation.

  20. Improved Method of Manufacturing SiC Devices

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.

    2005-01-01

    . However, in MUSiC one cannot exploit the superior sensing, thermomechanical, and electrical properties of single-crystal 6H-SiC or 4H-SiC. As a complement to MUSiC, the CLASSiC five-mask process can be utilized to fabricate multiple devices in bulk single-crystal SiC of any polytype. The five-mask process makes fabrication less complex because it eliminates the need for large-area deposition and removal of sacrificial material. Other innovations in CLASSiC pertain to selective etching of indium tin oxide and aluminum in connection with multilayer metallization. One major characteristic of bulk micromachined microelectromechanical devices is the presence of three-dimensional (3D) structures. Any 3D recesses that already exist at a given step in a fabrication process usually make it difficult to apply a planar coat of photoresist for metallization and other subsequent process steps. To overcome this difficulty, the CLASSiC process includes a reversal of part of the conventional flow: Metallization is performed before the recesses are etched.

  1. A Search for ortho-benzyne (o-C6H4) in CRL 618

    NASA Astrophysics Data System (ADS)

    Weaver, Susanna L. Widicus; Remijan, Anthony J.; McMahon, Robert J.; McCall, Benjamin J.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAHs) have been proposed as potential carriers of the unidentified infrared bands (UIRs) and the diffuse interstellar bands (DIBs). PAHs are not likely to form by gas-phase or solid-state interstellar chemistry, but rather might be produced in the outflows of carbon-rich evolved stars. PAHs could form from acetylene addition to the phenyl radical (C6H5), which is closely chemically related to benzene (C6H6) and ortho-benzyne (o-C6H4). To date, circumstellar chemical models have been limited to only a partial treatment of benzene-related chemistry, and so the expected abundances of these species are uncertain. A detection of benzene has been reported in the envelope of the proto-planetary nebula (PPN) CRL 618, but no other benzene-related species has been detected in this or any other source. The spectrum of o-C6H4 is significantly simpler and stronger than that of C6H5, and so we conducted deep Ku-, K-, and Q-band searches for o-C6H4 with the Green Bank Telescope. No transitions were detected, but an upper limit on the column density of 8.4 × 1013 cm-2 has been determined. This limit can be used to constrain chemical models of PPNe, and this study illustrates the need for complete revision of these models to include the full set of benzene-related chemistry.

  2. Global reaction route mapping of isomerization pathways of exotic C{sub 6}H molecular species

    SciTech Connect

    Vikas, E-mail: qlabspu@yahoo.com; Kaur, Gurpreet

    2013-12-14

    C{sub 6}H radical is known to exist in the astrophysical environment in linear form; however, it may originate from nonlinear isomeric forms. Potential energy surface of C{sub 6}H is explored to search isomers of C{sub 6}H and transition states connecting them. This work reports first-ever identification of reaction pathways for isomerization of C{sub 6}H. The reaction route search is performed through global reaction route mapping method, which utilizes an uphill walking technique based on an anharmonic downward distortion following approach to search intermediates and transition states. The computations performed at the CASSCF/aug-cc-pVTZ, CCSD(T)/6-311++G(d,p)//DFT/B3LYP/6-311++G(d,p), and DFT/B3LYP/aug-cc-pVTZ levels of the theory identified 14 isomers (including 8 new isomeric forms of C{sub 6}H) and 28 transition states. Most of the identified isomers are found to have significant multireference character. The kinetic stability and natural bond orbital analysis of the identified isomers is also investigated. The isomeric forms are further characterized using spectral analysis involving rotational constants, vibrational frequencies, and Raman scattering activities as well as analyzing the effect of isotopic substitution of hydrogen on the spectral features. This study proposes that the linear-C{sub 6}H can readily isomerize to a six-member ring isomer.

  3. Cryogenic Performance of Trex SiC Mirror

    NASA Technical Reports Server (NTRS)

    Foss, Colby; Kane, Dave; Bray, Donald; Hadaway, James

    2005-01-01

    Low cost, high performance lightweight Silicon Carbide (Sic) mirrors provide an alternative to Beryllium mirrors. A Trex Enterprises 0.25m diameter lightweight Sic mirror using its patented Chemical Vapor Composites (CVC) technology was evaluated for its optical performance. CVC Sic is chemically pure, thermally stable, and mechanically stiff. CVC technology yields higher growth rate than that of CVD Sic. NASA has funded lightweight optical materials technology development efforts involving Sic mirrors for future space based telescope programs. As part of these efforts, a Trex Sic was measured interferometrically from room temperature to 30 degrees Kelvin. This paper will discuss the test goals, the test instrumentation, test results, and lessons learned.

  4. Bulk Micromachined 6H-SiC High-g Piezoresistive Accelerometer Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.

    2002-01-01

    High-g accelerometers are needed in certain applications, such as in the study and analysis of high-g impact landings and projectiles. Also, these accelerometers must survive the high electromagnetic fields associated with the all-electric vehicle technology needed for aerospace applications. The choice of SiC is largely due to its excellent thermomechanical properties over conventional silicon-based accelerometers, whose material properties inhibit applicability in high electromagnetic radiation and high temperatures (>150 C) unless more complex and sometimes costly packaging schemes are adopted. This work was the outcome of a NASA Glenn Research Center summer internship program, in collaboration with Cornell University and the Munitions Directorate of the U.S. Air Force in Eglin, Florida. It aimed to provide the enabling technology infrastructure (modeling, fabrication, and validation) for the implementation of SiC accelerometers designed specifically for harsh environments.

  5. Biomorphous SiC ceramics prepared from cork oak as precursor

    NASA Astrophysics Data System (ADS)

    Yukhymchuk, V. O.; Kiselov, V. S.; Valakh, M. Ya.; Tryus, M. P.; Skoryk, M. A.; Rozhin, A. G.; Kulinich, S. A.; Belyaev, A. E.

    2016-04-01

    Porous ceramic materials of SiC were synthesized from carbon matrices obtained via pyrolysis of natural cork as precursor. We propose a method for the fabrication of complex-shaped porous ceramic hardware consisting of separate parts prepared from natural cork. It is demonstrated that the thickness of the carbon-matrix walls can be increased through their impregnation with Bakelite phenolic glue solution followed by pyrolysis. This decreases the material's porosity and can be used as a way to modify its mechanical and thermal characteristics. Both the carbon matrices (resulted from the pyrolysis step) and the resultant SiC ceramics are shown to be pseudomorphous to the structure of initial cork. Depending on the synthesis temperature, 3C-SiC, 6H-SiC, or a mixture of these polytypes, could be obtained. By varying the mass ratio of initial carbon and silicon components, stoichiometric SiC or SiC:С:Si, SiC:С, and SiC:Si ceramics could be produced. The structure, as well as chemical and phase composition of the prepared materials were studied by means of Raman spectroscopy and scanning electron microscopy.

  6. Biomorphous SiC ceramics prepared from cork oak as precursor

    NASA Astrophysics Data System (ADS)

    Yukhymchuk, V. O.; Kiselov, V. S.; Valakh, M. Ya.; Tryus, M. P.; Skoryk, M. A.; Rozhin, A. G.; Kulinich, S. A.; Belyaev, A. E.

    2016-04-01

    Porous ceramic materials of SiC were synthesized from carbon matrices obtained via pyrolysis of natural cork as precursor. We propose a method for the fabrication of complex-shaped porous ceramic hardware consisting of separate parts prepared from natural cork. It is demonstrated that the thickness of the carbon-matrix walls can be increased through their impregnation with Bakelite phenolic glue solution followed by pyrolysis. This decreases the material's porosity and can be used as a way to modify its mechanical and thermal characteristics. Both the carbon matrices (resulted from the pyrolysis step) and the resultant SiC ceramics are shown to be pseudomorphous to the structure of initial cork. Depending on the synthesis temperature, 3C-SiC, 6H-SiC, or a mixture of these polytypes, could be obtained. By varying the mass ratio of initial carbon and silicon components, stoichiometric SiC or SiC:C:Si, SiC:C, and SiC:Si ceramics could be produced. The structure, as well as chemical and phase composition of the prepared materials were studied by means of Raman spectroscopy and scanning electron microscopy.

  7. Seeded growth of AlN on SiC substrates and defect characterization

    NASA Astrophysics Data System (ADS)

    Lu, P.; Edgar, J. H.; Cao, C.; Hohn, K.; Dalmau, R.; Schlesser, R.; Sitar, Z.

    2008-05-01

    In this study, seeded sublimation growth of aluminum nitride (AlN) on SiC substrates was investigated. Large diameter (15-20 mm) and thick (1-2 mm) AlN layers were demonstrated on Si-face, 3.5° off-axis 6H-SiC (0 0 0 1). A c-axis growth rate of 15-20 μm/h was achieved at 1830 °C, and the surface morphology was highly textured: step features were formed with a single facet on the top of the layer. High-resolution X-ray diffraction (HRXRD), X-ray photoelectron spectroscopy (XPS), and molten KOH/NaOH etching were employed to characterize the AlN layers. The AlN crystals grew highly orientated along the c-axis, however, the impurities of Si (3-6 at%) and C (5.9-8 at%) from the SiC changed the lattice constants of AlN and shifted the AlN (0 0 .2) 2 θ value from pure AlN toward SiC. All the growth surfaces had Al-polarity and the dislocation density decreased from 10 8 to 10 6 cm -2 as the film thickness increased from 30 μm to 2 mm.

  8. Oxidation behaviour of SiC coatings

    NASA Astrophysics Data System (ADS)

    Mergia, K.; Lafatzis, D.; Moutis, N.; Speliotis, T.; Apostolopoulos, G.; Cousin, F.

    2008-08-01

    Amorphous silicon carbide (SiC) films were deposited on silicon substrates by radio-frequency magnetron sputtering. The films were oxidized in air in the temperature range 400-900 °C and for times from 1 to 16 h. Neutron reflectivity measurements provided information on the thickness, density and roughness of the SiC and on the formed SiO2 layers. Fourier transform infrared spectroscopy was used to determine the bond structure of the formed SiO2 and changes in the bonding of SiC after exposure at the oxidation temperature. The surface morphology of the oxidized films was characterized by atomic force microscopy measurements. The oxidation kinetics is initially fast and as the SiO2 layer is formed it slows down. The SiC consumption varies linearly with time at all oxidation temperatures. Exposure of the SiC at the oxidation temperature affects its density and to some degree its bond structure, while the formed SiO2 has density and bond structure as that formed by oxidation of Si under the same conditions.

  9. Multiphoton ionization studies of clusters of immiscible liquids. II. C6H6- (H2O)n, n=3-8 and (C6H6)2- (H2O)1,2

    NASA Astrophysics Data System (ADS)

    Garrett, Aaron W.; Zwier, Timothy S.

    1992-03-01

    Resonant two-photon ionization (R2PI) time-of-flight mass spectroscopy is used to record S0-S1 spectra of the neutral complexes C6H6-(H2O)n with n=3-8 and (C6H6)2-(H2O)1,2. Due to limitations imposed by the size of these clusters, a number of vibronic level arguments are used to constrain the gross features of the geometries of these clusters. Among the spectral clues provided by the data are the frequency shifts of the transitions, their van der Waals structure, the fragmentation of the photoionized clusters, and the complexation-induced origin intensity and 610 splitting. In the 1:3 cluster, simple arguments are made based on the known structures of the 1:1 and 1:2 clusters which lead to the conclusion that all three water molecules reside on the same side of the benzene ring. Three structures for the 1:3 cluster are proposed which are consistent with the available data. Of these, only one is also consistent with the remarkable similarity of the 1:4 and 1:5 spectra to those of the 1:3 cluster. This structure involves a cyclic water trimer in which one of the water molecules is near the sixfold axis in a π hydrogen-bonded configuration. This structure is then expanded in the 1:4 and 1:5 clusters to incorporate the fourth and fifth water molecules in cyclic structures which place the additional water molecules far from the benzene ring without disturbing the interaction of the other water molecules with the benzene ring. For 1:n clusters with n≥6, subtle and then significant changes are observed in the spectra which indicate changes in the way the water cluster interacts with the benzene ring. This development occurs at precisely the water cluster size which calculations predict that cagelike water cluster structures will begin to compete and eventually be favored over large cyclic structures. Finally, cursory scans of the 2:1 cluster show that this cluster also fragments efficiently upon photoionization by loss of a single water molecule and that it possesses a

  10. Fully self-consistent calculations of momentum distributions of annihilating electron-positron pairs in SiC

    NASA Astrophysics Data System (ADS)

    Wiktor, Julia; Jomard, Gérald; Torrent, Marc; Barthe, Marie-France; Bertolus, Marjorie

    2016-05-01

    We performed calculations of momentum distributions of annihilating electron-positron pairs in various fully relaxed vacancy defects in SiC. We used self-consistent two-component density functional theory schemes to find the electronic and positronic densities and wave functions in the considered systems. Using the one-dimensional momentum distributions (Doppler-broadened annihilation radiation line shapes) we calculated the line-shape parameters S and W . We emphasize the effect of the experimental resolution and the choice of the integration ranges for the S and W parameters on the distributions of the points corresponding to different defects in the S (W ) plot. We performed calculation for two polytypes of SiC, 3 C , and 6 H and showed that for silicon vacancies and clusters containing this defect there were no significant differences between the Doppler spectra. The results of the Doppler spectra calculations were compared with experimental data obtained for n -type 6 H -SiC samples irradiated with 4-MeV Au ions. We observed a good general agreement between the measured and calculated points.

  11. Solute embrittlement of SiC

    NASA Astrophysics Data System (ADS)

    Enrique, Raúl A.; Van der Ven, Anton

    2014-09-01

    The energies and stresses associated with the decohesion of β-SiC in the presence of mobile Pd and Ag impurities are studied from first principles. Density functional theory calculations are parameterized with a generalized cohesive zone model and are analyzed within a thermodynamic framework that accounts for realistic boundary conditions in the presence of mobile impurities. We find that Pd impurities will embrittle SiC when Pd is in equilibrium with metallic Pd precipitates. Our thermodynamic analysis predicts that Pd embrittles SiC by substantially reducing the maximum stress of decohesion as a result of a phase transition between decohering planes involving an influx of Pd atoms. The methods presented in this work can be applied to study the thermodynamics of decohesion of SiC in other aggressive environments containing oxygen and water, for example, and yield environment dependent cohesive zone models for use in continuum approaches to study crack propagation and fracture.

  12. Solute embrittlement of SiC

    SciTech Connect

    Enrique, Raúl A.; Van der Ven, Anton

    2014-09-21

    The energies and stresses associated with the decohesion of β-SiC in the presence of mobile Pd and Ag impurities are studied from first principles. Density functional theory calculations are parameterized with a generalized cohesive zone model and are analyzed within a thermodynamic framework that accounts for realistic boundary conditions in the presence of mobile impurities. We find that Pd impurities will embrittle SiC when Pd is in equilibrium with metallic Pd precipitates. Our thermodynamic analysis predicts that Pd embrittles SiC by substantially reducing the maximum stress of decohesion as a result of a phase transition between decohering planes involving an influx of Pd atoms. The methods presented in this work can be applied to study the thermodynamics of decohesion of SiC in other aggressive environments containing oxygen and water, for example, and yield environment dependent cohesive zone models for use in continuum approaches to study crack propagation and fracture.

  13. SiC for Space Optics

    NASA Astrophysics Data System (ADS)

    Wellman, John

    2012-01-01

    This paper describes SiC mirrors that are large, ultra-lightweight, and actively controlled, for use in space telescopes. "Advanced Hybrid Mirrors” (AHMs) utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. They use replication techniques for high optical quality as well as rapid, low cost manufacturing. AHMs up to 1.35m in size have been made and tested, demonstrating wavefront error to better than the visible diffraction limit. AHMs can be fabricated at production rates after the first unit delivery as fast as 48 day intervals. "Superpolished Si/SiC Active Mirrors” (SSAMs) are similar to AHMs but the SiC mirror substrates have a layer of Si deposited on them to enable direct superpolishing. SSAMs can be much larger, can operate over a wider temperature range, and are better suited to UV astronomy. To make SSAMs larger than 1.8 m, multiple substrates can be joined together, using brazing techniques. Using wavefront sensing and control technology to command the embedded solid-state actuators, final mirror figure will be set after launch. This gives the active SiC mirror the ability to correct nearly any optical error, occurring anywhere in the optical system. As a result, active SiC mirrors can be made to relaxed figure requirements, enabling optical replication, or speeding up polishing, while assuring excellent final performance. Active SiC mirrors will reduce cost, risk and schedule for future astrophysics missions. Their high control authority allows relaxation of fabrication and assembly tolerances from optical to mechanical levels, speeding I & T. They enable rapid system testing to within required performance levels, even in 1 G, lowering mission risk. They are lighter weight and more durable than glass mirrors.

  14. Numerical modelling and simulation of non-uniformly doped channel 6H-silicon carbide MOSFET

    NASA Astrophysics Data System (ADS)

    Kaushik, Navneet; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2004-03-01

    An improved model for the non-uniformly doped channel 6H-SiC MOSFET incorporating the incomplete ionization of the dopant impurities using the Fermi-Dirac statistics is developed. The charge-sheet approach is used to evaluate the surface potential, quasi-fermi level, drain current and transconductance for all regions of operation, i.e. subthreshold, linear and saturation. Results so obtained are matched well with the simulated data for two different doping profiles. The improved model will be suitable for CAD (computer aided design) applications to predict the behaviour of the 6H-SiC MOSFET prior to actual device fabrication.

  15. Sublimation in Growth of Aluminum Nitride-silicon carbide Alloy Crystals on SiC (001) substrates

    SciTech Connect

    Gu, Z; Edgar, J H; Payzant, E Andrew; Meyer III, Harry M; Walker, Larry R; Sarua, A; Kuball, M

    2005-06-01

    Thick (up to 1 mm) AlN-SiC alloy crystals were grown on off-axis Si-face 6H-SiC (0001) substrates by the sublimation-recondensation method from a mixture of AlN and SiC powders at 1860-1990 C in a N2 atmosphere. The color of the crystals changed from clear to dark green with increasing growth temperature. Raman spectroscopy and x-ray diffraction (XRD) confirmed an AlN-SiC alloy was formed with the wurtzite structure and good homogeneity. Three broad peaks were detected in the Raman spectra, with one of those related to an AlN-like and another one to a SiC-like mode, both shifted relative to their usual positions in the binary compounds, and the third with possible contributions from both AlN and SiC. Scanning Auger microanalysis (SAM) and electron probe microanalysis (EPMA) demonstrated the alloy crystals had an approximate composition of (AlN)0.75(SiC)0.25 with a stoichiometric ratio of Al:N and Si:C. The substrate misorientation ensured a two-dimensional growth mode confirmed by scanning electron microscopy (SEM).

  16. Examples of conditional SIC-POVMs

    NASA Astrophysics Data System (ADS)

    Ohno, Hiromichi; Petz, Dénes

    2015-10-01

    The state of a quantum system is a density matrix with several parameters. The concern herein is how to recover the parameters. Several possibilities exist for the optimal recovery method, and we consider some special cases. We assume that a few parameters are known and that the others are to be recovered. The optimal positive-operator-valued measure (POVM) for recovering unknown parameters with an additional condition is called a conditional symmetric informationally complete POVM (SIC-POVM). In this paper, we study the existence or nonexistence of conditional SIC-POVMs. We provide a necessary condition for existence and some examples.

  17. Microwave joining of SiC

    SciTech Connect

    Silberglitt, R.; Ahmad, I.; Tian, Y.L.

    1997-04-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on identification of the most effective joining methods for scale-up to large tube assemblies, including joining using SiC produced in situ from chemical precursors. During FY 1996, a new microwave applicator was designed, fabricated and tested that provides the capability for vacuum baking of the specimens and insulation and for processing under inert environment. This applicator was used to join continuous fiber-reinforced (CFCC) SiC/SiC composites using a polymer precursor to form a SiC interlayer in situ.

  18. Si-adatom kinetics in defect mediated growth of multilayer epitaxial graphene films on 6H-SiC

    NASA Astrophysics Data System (ADS)

    Shetu, Shamaita S.; Omar, S. U.; Daniels, K. M.; Daas, B.; Andrews, J.; Ma, S.; Sudarshan, T. S.; Chandrashekhar, M. V. S.

    2013-10-01

    We present a quantitative study on the growth of multilayer epitaxial graphene (EG) by solid-state decomposition of SiC on polar (c-plane Si and C-face) and non-polar (a and m planes) 6H-SiC faces, with distinctly different defect profiles. The growth rates are slower than expected from a mechanism that involves Si loss from an open and free surface, and much faster than expected for the nucleation of a defect-free EG layer, implying that defects in the EG play a critical role in determining the growth kinetics. We show that a Deal-Grove growth model, which assumes vertical diffusion of Si through these defects as the limiting factor for EG growth, is unsuitable for describing multilayer growth. Instead, we introduce a lateral "adatom" diffusion mechanism for Si out-diffusion, based on a modified Burton, Cabrera, and Frank model. In this model, defects in epitaxial graphene serve as sinks for Si desorption loss, taking the place of reactive sites, such as step edges for nucleation and growth of crystals produced with external precursors. This analysis shows that the surface diffusion of Si atoms to the grain boundaries of EG limits the growth on c-plane C-face and non-polar faces, rather than the purely vertical diffusion of Si through the grain boundaries described in the Deal-Grove model. However, for Si-face c-plane growth, diffusion of Si to the defects, as well as desorption of Si at the grain boundaries are both relevant, leading to a different temperature trend compared with the other faces. This distinct qualitative difference is ascribed to point-defects in Si-face growth, as contrasted with line defects/grain boundaries on the other faces. The size of the EG grains correlates with the surface diffusion length extracted from this model. The longer a Si adatom diffuses, the higher the quality of the grown EG film, an insight that provides valuable information on Si adatom kinetics for optimizing EG growth. We discuss the applicability of this model to

  19. Silicon vacancy-related centers in non-irradiated 6H-SiC nanostructure

    SciTech Connect

    Bagraev, N. T. Danilovskii, E. Yu.; Gets, D. S.; Kalabukhova, E. N.; Klyachkin, L. E.; Koudryavtsev, A. A.; Malyarenko, A. M.; Mashkov, V. A.; Savchenko, D. V.; Shanina, B. D.

    2015-05-15

    We present the first findings of the silicon vacancy related centers identified in the non-irradiated 6H-SiC nanostructure using the electron spin resonance (ESR) and electrically-detected (ED) ESR technique. This planar 6H-SiC nanostructure represents the ultra-narrow p-type quantum well confined by the δ-barriers heavily doped with boron on the surface of the n-type 6H-SiC(0001) wafer. The new EDESR technique by measuring the only magnetoresistance of the 6H-SiC nanostructure under the high frequency generation from the δ-barriers appears to allow the identification of the isolated silicon vacancy centers as well as the triplet center with spin state S = 1. The same triplet center that is characterized by the large value of the zero-field splitting constant D and anisotropic g-factor is revealed by the ESR (X-band) method. The hyperfine (HF) lines in the ESR and EDESR spectra originating from the HF interaction with the {sup 14}N nucleus seem to attribute this triplet center to the N-V{sub Si} defect.

  20. Serotype-related enterotoxigenicity in Escherichia coli O6.H16 and O148.H28.

    PubMed

    Scotland, S M; Gross, R J; Rowe, B

    1977-12-01

    The ability of certain Escherichia coli strains to produce enterotoxin is determined by transmissible plasmids. It is therefore possible that any E. coli strain might be able to acquire such a plasmid and that the correlation between enterotoxigenicity and serotype might be random. However, recent studies show that the enterotoxigenic strains so far describe belong to a restricted range of serotypes. Enterotoxigenic strains of E. coli O6.H16 and E. coli O148.H28 have been associated with outbreaks of diarrhoea in several countries, therefor strains of E. coli belonging to these serotypes were selected for further study. Twenty-three strains of E. coli O6.H16 and 14 strains of E. coli O148.H28 were examined; 20 strains of E. coli O6.H16 and all 14 strains of E. coli O148.H28 were enterotoxigenic but strains of E. coli O6 wit flagellar antigens other than H16 and strains of E. coli O148 wit flagellar antigens other than H28 were not enterotoxigenic. The examination of single colony subcultures derived from the E. coli O6.H16 strains showed that in some strains loss of enterotoxigenicity had occurred in a proportional of colonies.

  1. Stability and isomerization reactions of phenyl cation C6H5+ isomers

    NASA Astrophysics Data System (ADS)

    Shi, Dandan; Yang, Xue; Zhang, Xiaomei; Shan, Shimin; Xu, Haifeng; Yan, Bing

    2016-03-01

    As a key polyatomic molecular cation that plays a pivotal role in growth of the polycyclic aromatic hydrocarbons, phenyl cation C6H5+ exhibits various isomers and isomerization reactions. Investigation on the structure and stability of the isomers as well as the isomerization is important for better understanding the chemical reactions involving C6H5+ cations. In this work, we have performed a theoretical study on the stability and isomerization reactions of C6H5+ isomers at density functional theory B3LYP/6-311G (d, p) level. We have obtained a total of 60 isomers of C6H5+ cations, most of which are reported for the first time. The geometries, vibrational frequencies, thermodynamic properties and stability of 28 out of 60 isomers have been summarized in detail. Different ring-to-ring and ring-to-chain isomerization pathways, which are connected via 28 transition states, have been investigated using the intrinsic reaction coordinate method. The results show that the isomerization reactions occur via hydrogen migration followed by bond-breaking and reconstruction.

  2. Microstructural and superconducting properties of C6H6 added bulk MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Babaoğlu, Meral G.; Safran, Serap; Çiçek, Özlem; Ağıl, Hasan; Ertekin, Ercan; Hossain, Md. Shahriar A.; Yanmaz, Ekrem; Gencer, Ali

    2012-10-01

    The effect of aromatic hydrocarbon (benzene, C6H6) addition on lattice parameters, microstructure, critical temperature (Tc), critical current density (Jc) of bulk MgB2 has been studied. In this work only 2 mol% C6H6 addition was found to be very effective in increasing the Jc values, while resulting in slight reduction of the Tc. Jc values of 2 mol% C6H6 added MgB2 bulks reached to 1.83×106 A/cm2 at 15 K and 0 T. Microstructural analyses suggest that Jc enhancement is associated with the substitution of carbon with boron and which also results in the smaller MgB2 grain size. The change in the lattice parameters or the lattice disorder is claimed as a cause of the slight reduction in the Tc by carbon addition. We note that our results show the advantages of C6H6 addition include homogeneous mixing of precursor powders, avoidance of expansive nanoadditives, production of highly reactive C, and significant enhancement in Jc of MgB2, compared to un-doped samples.

  3. Defect-induced magnetism in neutron irradiated 6H-SiC single crystals.

    PubMed

    Liu, Yu; Wang, Gang; Wang, Shunchong; Yang, Jianhui; Chen, Liang; Qin, Xiubo; Song, Bo; Wang, Baoyi; Chen, Xiaolong

    2011-02-25

    Defect-induced magnetism is firstly observed in neutron irradiated SiC single crystals. We demonstrated that the intentionally created defects dominated by divacancies (V(Si)V(C)) are responsible for the observed magnetism. First-principles calculations revealed that defect states favor the formation of local moments and the extended tails of defect wave functions make long-range spin couplings possible. Our results confirm the existence of defect-induced magnetism, implying the possibility of tuning the magnetism of wide band-gap semiconductors by defect engineering.

  4. Universal Converter Using SiC

    SciTech Connect

    Dallas Marckx; Brian Ratliff; Amit Jain; Matthew Jones

    2007-01-01

    The grantee designed a high power (over 1MW) inverter for use in renewable and distributed energy systems, such as PV cells, fuel cells, variable speed wind turbines, micro turbines, variable speed gensets and various energy storage methods. The inverter uses 10,000V SiC power devices which enable the use of a straight-forward topology for medium voltage (4,160VAC) without the need to cascade devices or topologies as is done in all commercial, 4,160VAC inverters today. The use of medium voltage reduces the current by nearly an order of magnitude in all current carrying components of the energy system, thus reducing size and cost. The use of SiC not only enables medium voltage, but also the use of higher temperatures and switching frequencies, further reducing size and cost. In this project, the grantee addressed several technical issues that stand in the way of success. The two primary issues addressed are the determination of real heat losses in candidate SiC devices at elevated temperature and the development of high temperature packaging for SiC devices.

  5. Passive SiC irradiation temperature monitor

    SciTech Connect

    Youngblood, G.E.

    1996-04-01

    A new, improved passive irradiation temperature monitoring method was examined after an irradiation test at 627{degrees}C. The method is based on the analysis of thermal diffusivity changes during postirradiation annealing of polycrystalline SiC. Based on results from this test, several advantages for using this new method rather than a method based on length or lattice parameter changes are given.

  6. Microwave joining of SiC

    SciTech Connect

    Silberglitt, R.; Ahmad, I.; Black, W.M.

    1995-05-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on optimization of time-temperature profiles, production of SiC from chemical precursors, and design of new applicators for joining of long tubes.

  7. Development of SiC Large Tapered Crystal Growth

    NASA Technical Reports Server (NTRS)

    Neudeck, Phil

    2010-01-01

    Majority of very large potential benefits of wide band gap semiconductor power electronics have NOT been realized due in large part to high cost and high defect density of commercial wafers. Despite 20 years of development, present SiC wafer growth approach is yet to deliver majority of SiC's inherent performance and cost benefits to power systems. Commercial SiC power devices are significantly de-rated in order to function reliably due to the adverse effects of SiC crystal dislocation defects (thousands per sq cm) in the SiC wafer.

  8. Hidden Superlattice in Tl2(SC6H4S) and Tl2(SeC6H4Se) Solved from Powder X-ray Diffraction

    SciTech Connect

    K Stone; D Turner; M Singh; T Vaid; P Stephens

    2011-12-31

    The crystal structures of the isostructural title compounds poly[({mu}-benzene-1,4-dithiolato)dithallium], Tl{sub 2}(SC{sub 6}H{sub 4}S), and poly[({mu}-benzene-1,4-diselenolato)dithallium], Tl{sub 2}(SeC{sub 6}H{sub 4}Se), were solved by simulated annealing from high-resolution synchrotron X-ray powder diffraction. Rietveld refinements of an initial structure with one formula unit per triclinic cell gave satisfactory agreement with the data, but led to a structure with impossibly close non-bonded contacts. A disordered model was proposed to alleviate this problem, but an alternative supercell structure leads to slightly improved agreement with the data. The isostructural superlattice structures were confirmed for both compounds through additional data collection, with substantially better counting statistics, which revealed the presence of very weak superlattice peaks not previously seen. Overall, each structure contains Tl-S or Tl-Se two-dimensional networks, connected by phenylene bridges. The sulfur (or selenium) coordination sphere around each thallium is a highly distorted square pyramid or a 'see-saw' shape, depending upon how many Tl-S or Tl-Se interactions are considered to be bonds. In addition, the two compounds contain pairs of Tl{sup I} ions that interact through a closed-shell 'thallophilic' interaction: in the sulfur compound there are two inequivalent pairs of Tl atoms with Tl-Tl distances of 3.49 and 3.58 {angstrom}, while in the selenium compound those Tl-Tl interactions are at 3.54 and 3.63 {angstrom}.

  9. Synthesis and characterization of SiC and SiC/Si3N4 composite nano powders from waste material.

    PubMed

    Zawrah, M F; Zayed, M A; Ali, Moustafa R K

    2012-08-15

    In the present work, nano silicon carbide has been prepared by pyrolysis of rice-husk ashes as starting materials. Three rice-husk ash samples having different features were used. The first was coarse-grained rice husk ash (fired husk as is), the second was fine rice husk ash (hand-ground), while the third was ball milled one. Effect of ball milling of the starting ashes for 6h on the formation of nano SiC was investigated and compared with those prepared without milling. The particle sizes of the prepared SiC materials were affected by the milling process. The particle sizes of the obtained nano SiC from ball milled staring materials were smaller than those prepared without milling. The pyrolysis conditions, i.e. the temperature and atmosphere were optimized. The optimum firing temperature to obtain well crystalline nano SiC was 1550°C. The effect of pyrolysis atmosphere, i.e. argon, vacuum and nitrogen was also demonstrated. The pyrolysis in argon exhibited lower efficiency on the formation of SiC than vacuum; while the pyrolysis in nitrogen atmosphere led to formation of SiC/Si(3)N(4) nanocomposite.

  10. Low-temperature transport properties of multigraphene films grown on the SiC surface by sublimation

    SciTech Connect

    Lebedev, A. A. Agrinskaya, N. V.; Lebedev, S. P.; Mynbaeva, M. G.; Petrov, V. N.; Smirnov, A. N.; Strel'chuk, A. M.; Titkov, A. N.; Shamshur, D. V.

    2011-05-15

    Multigraphene films grown by sublimation on the surface of a semi-insulating 6H-SiC substrate have been studied. It is shown that pregrowth annealing of the substrate in a quasiclosed growth cell improves the structural quality of a multigraphene film. Ohmic contacts to the film have been fabricated, and the Hall effect has been studied at low temperatures. It is found that a 2D electron gas exists in the films. It is concluded that the conductivity of the film is determined by defects existing within the graphene layer or at the interface between the graphene film and a SiC substrate.

  11. Electrical Characterization of p-type 3C-SiC Epilayers Grown on n-type 6H-SiC by means of Sublimation Epitaxy

    NASA Astrophysics Data System (ADS)

    Tsirimpis, A.; Krieger, M.; Pensl, G.; Beshkova, M.; Syväjärvi, M.; Yakimova, R.

    2010-11-01

    Epitaxial p-type 3C-SiC layers have been grown on 6H-SiC substrates by means of the sublimation epitaxy method. The growth process was conducted at a source temperature of 2000° C under vacuum conditions (<10-5 mbar). The source material was polycrystalline sintered SiC. The p-type doping was achieved by adding an AlN source. Two samples have been sequentially grown using the same source. Schottky contacts have been prepared and the samples have been characterized by means of current-voltage (I-V) measurements, capacitance-voltage (C-V) analysis, deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS). The results show that boron has been incorporated during the growth. The boron related D-center was found in the DLTS spectra taken on several contacts on both samples. Furthermore, the samples reveal an inhomogeneous distribution of extended defects, which are electrically active and visible in the DLTS spectra.

  12. Solid state and solution study of some phosphoramidate derivatives containing the P(O)NHC(O) bifunctional group: crystal structures of CCl(2)HC(O)NHP(O)(NCH(3)(CH(2)C(6)H(5)))(2), p-ClC(6)H(4)C(O)NHP(O)(NCH(3)(CH(2)C(6)H(5)))(2), CCl(2)HC(O)NHP(O)(N(CH(2)C(6)H(5))(2))(2) and p-BrC(6)H(4)C(O)NHP(O)(N(CH(2)C(6)H(5))(2))(2).

    PubMed

    Dehghanpour, Saeed; Welter, Richard; Barry, Aliou Hamady; Tabasi, Farzaneh

    2010-04-01

    Synthetic methods for several novel phosphoramidate compounds containing the P(O)NHC(O) bifunctional group were developed. These compounds with the general formula R(1)C(O)NHP(O)(N(R(2))(CH(2)C(6)H(5)))(2), where R(1)=CCl(2)H, p-ClC(6)H(4), p-BrC(6)H(4), o-FC(6)H(4) and R(2)=hydrogen, methyl, benzyl, were characterized by several spectroscopic methods and analytical techniques. The effects of phosphorus substituents on the rotation rate around the P-N(amine) bond were also investigated. (1)H NMR study of the synthesized compounds demonstrated that the presence of bulky groups attached to the phosphorus center and electron withdrawing groups in the amide moiety lead to large chemical-shift non-equivalence (Deltadelta(H)) of diastereotopic methylene protons. The crystal structures of CCl(2)HC(O)NHP(O)(NCH(3)(CH(2)C(6)H(5)))(2), p-ClC(6)H(4)C(O)NHP(O)(NCH(3)(CH(2)C(6)H(5)))(2), CCl(2)HC(O)NHP(O)(N(CH(2)C(6)H(5))(2))(2) and p-BrC(6)H(4)C(O)NHP(O)(N(CH(2)C(6)H(5))(2))(2) were determined by X-ray crystallography using single crystals. The coordination around the phosphorus center in these compounds is best described as distorted tetrahedral and the P(O) and C(O) groups are anti with respect to each other. In the compound Br-C(6)H(4)C(O)NHP(O)(N(CH(2)C(6)H(5))(2))(2) (with two independent molecules in the unit cell), two conformers are connected to each other via two different N-H...O hydrogen bonds forming a non-centrosymmetric dimer. In the crystalline lattice of other compounds, the molecules form centrosymmetric dimers via pairs of same N-H...O hydrogen bonds. The structure of CCl(2)HC(O)NHP(O)(N(CH(2)C(6)H(5))(2))(2) reveals an unusual intramolecular interaction between the oxygen of C=O group and amine nitrogen.

  13. Si6H12/Polymer Inks for Electrospinning a-Si Nanowire Lithium Ion Battery Anodes

    SciTech Connect

    Schulz, Douglas L.; Hoey, Justin; Smith, Jeremiah; Elangovan, Arumugasamy; Wu, Xiangfa; Akhatov, Iskander; Payne, Scott; Moore, Jayma; Boudjouk, Philip; Pederson, Larry; Xiao, Jie; Zhang, Jiguang

    2010-08-04

    Amorphous silicon nanowires 'a-SiNWs' have been prepared by electrospinning a liquid silane-based precursor. Cyclohexasilane 'Si6H12' was admixed with poly-methyl methacrylate (PMMA) in toluene giving an ink that was electrospun into the Si6H12/PPMA wires with diameters of 50-2000 nm. Raman spectroscopy revealed that thermal treatment at 350 C transforms this deposit into a-SiNWs. These materials were coated with a thin carbon layer and then tested as half-cells where a reasonable plateau in electrochemical cycling was observed after an initial capacity fade. Additionally, porous a-SiNWs were realized when the thermally decomposable binder polypropylene carbonate/polycyclohexene carbonate was used as the polymer carrier.

  14. Tuning Chelation by the Surfactant-Like Peptide A6H Using Predetermined pH Values

    PubMed Central

    2013-01-01

    We examine the self-assembly of a peptide A6H comprising a hexa-alanine sequence A6 with a histidine (H) “head group”, which chelates Zn2+ cations. We study the self-assembly of A6H and binding of Zn2+ ions in ZnCl2 solutions, under acidic and neutral conditions. A6H self-assembles into nanotapes held together by a β-sheet structure in acidic aqueous solutions. By dissolving A6H in acidic ZnCl2 solutions, the carbonyl oxygen atoms in A6H chelate the Zn2+ ions and allow for β-sheet formation at lower concentrations, consequently reducing the onset concentration for nanotape formation. A6H mixed with water or ZnCl2 solutions under neutral conditions produces short sheets or pseudocrystalline tapes, respectively. The imidazole ring of A6H chelates Zn2+ ions in neutral solutions. The internal structure of nanosheets and pseudocrystalline sheets in neutral solutions is similar to the internal structure of A6H nanotapes in acidic solutions. Our results show that it is possible to induce dramatic changes in the self-assembly and chelation sites of A6H by changing the pH of the solution. However, it is likely that the amphiphilic nature of A6H determines the internal structure of the self-assembled aggregates independent from changes in chelation. PMID:24369761

  15. The low frequency dynamics of supercooled LiBr, 6H2O

    NASA Astrophysics Data System (ADS)

    Bove, L.; Dreyfus, C.; Polian, A.; Bonello, B.; Malfanti, I.; Taschin, A.; Torre, R.; Pick, R. M.

    2011-01-01

    We present results of a series of experiments performed on LiBr, 6H20 from room temperature down to 172 K ≈ 1.2Tg. These ultrasound, Brillouin and depolarized light scattering, and transient grating experiments show that, above 215 K, this solution behaves like supercooled water: its zero frequency sound velocity C0 continuously decreases with decreasing temperature, and the reorientational dynamics of the water molecules can be directly detected at some temperatures of this domain. Conversely, below 215 K, a new regime sets in, where the apparent C0 is practically temperature independent and where a β, Arrenhius like, relaxation process coexists with the usual, Vogel-Fulcher like, α relaxation process of the supercooled liquid. These results are similar to those recently obtained in LiCl, 6H2O. The onset of the new regime is possibly due to an increase of the interaction of the water molecules with a neighboring Li+ ion when lowering the temperature. We also compare our results with published dielectric data on water solutions of glass forming polyalcohols. Some of them present a low temperature splitting of their relaxation time similar to what is found in LiBr, 6H2O.

  16. Density functional study of adenine tetrads with N6-H6...N3 hydrogen bonds.

    PubMed

    Meyer, Michael; Sühnel, Jürgen

    2008-05-01

    The structure and energy of A-tetrads with N6-H6...N3 H-bonds was studied using B3LYP and BH&H density functional theory. The planar A-tetrad with C(4h) symmetry is more stable than the nonplanar structures at C4 and S4 symmetry. This structure corresponds to a local energy minimum. The energies of the structures with N6-H6...N1 and N6-H6...N7 H-bonds studied previously are of similar magnitude. Structures of A-tetrad complexes with sodium and potassium were most stable at S4 symmetry, and similarly, sandwich complexes consisting of two tetrads and a single cation were most stable at S8 symmetry. Relative energies of sandwich complexes with different symmetries obtained with the B3LYP and BH&H methods were quite different. BH&H overestimates the interaction energies between hydrogen-bonded neighbor bases relative to B3LYP. PMID:18380490

  17. A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia.

    PubMed

    Kohl, Susanne; Coppieters, Frauke; Meire, Françoise; Schaich, Simone; Roosing, Susanne; Brennenstuhl, Christina; Bolz, Sylvia; van Genderen, Maria M; Riemslag, Frans C C; Lukowski, Robert; den Hollander, Anneke I; Cremers, Frans P M; De Baere, Elfride; Hoyng, Carel B; Wissinger, Bernd

    2012-09-01

    Achromatopsia (ACHM) is an autosomal-recessive retinal dystrophy characterized by color blindness, photophobia, nystagmus, and severely reduced visual acuity. Its prevalence has been estimated to about 1 in 30,000 individuals. Four genes, GNAT2, PDE6C, CNGA3, and CNGB3, have been implicated in ACHM, and all encode functional components of the phototransduction cascade in cone photoreceptors. Applying a functional-candidate-gene approach that focused on screening additional genes involved in this process in a cohort of 611 index cases with ACHM or other cone photoreceptor disorders, we detected a homozygous single base change (c.35C>G) resulting in a nonsense mutation (p.Ser12(∗)) in PDE6H, encoding the inhibitory γ subunit of the cone photoreceptor cyclic guanosine monophosphate phosphodiesterase. The c.35C>G mutation was present in three individuals from two independent families with a clinical diagnosis of incomplete ACHM and preserved short-wavelength-sensitive cone function. Moreover, we show through immunohistochemical colocalization studies in mouse retina that Pde6h is evenly present in all retinal cone photoreceptors, a fact that had been under debate in the past. These findings add PDE6H to the set of genes involved in autosomal-recessive cone disorders and demonstrate the importance of the inhibitory γ subunit in cone phototransduction. PMID:22901948

  18. 6H-SiC microdisk torsional resonators in a "smart-cut" technology

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Wang, Zenghui; Lee, Jaesung; Ladhane, Kalyan; Young, Darrin J.; Feng, Philip X.-L.

    2014-03-01

    We report on experimental demonstration of high frequency torsional resonators based on microdisk structures enabled by a "smart-cut" 6H-silicon carbide (6H-SiC) technology. Circular microdisks axially supported by pairs of thin tethers, with diameters of ˜5-15 μm, exhibit torsional-mode micromechanical resonances with frequency of ˜1-60 MHz, and quality (Q) factors up to 1280 at room temperature in moderate vacuum (˜10 mTorr). Measured intrinsic thermomechanical vibrations of a microdisk with diameter d ≈ 15.9 μm (and triangular cross-section tethers with width wT ≈ 1.5 μm, length LT ≈ 2 μm, and thickness tT ≈ 0.4 μm) demonstrate a torque resolution of ST1/2 ≈ 3.7 × 10-20 (N m)/√Hz, a force sensitivity of SF1/2 ≈ 5.7fN/√Hz, and an angular displacement sensitivity of Sθ1/2 ≈ 4.0 × 10-8 rad/√Hz. By examining devices with varying disk size, different tether shape, width, and length, and by combining experimental data and theoretical calculations, we depict the scaling pathways for ultrasensitive torsional resonant sensors based on this smart-cut 6H-SiC platform.

  19. Electronic transitions of C6H4+ isomers: neon matrix and theoretical studies.

    PubMed

    Fulara, Jan; Nagy, Adam; Filipkowski, Karol; Thimmakondu, Venkatesan S; Stanton, John F; Maier, John P

    2013-12-19

    Three open-chain isomers of C6H4(+) and two cyclic ones were detected following mass-selective trapping in 6 K neon matrixes. The open-chain cations 5-hexene-1,3-diyne (CH2═CH-CC-CC-H)(+) and cis- (cis-HCC-CH═CH-CCH)(+) and trans-3-hexene-1,5-diyne (trans-HCC-CH═CH-CCH)(+), possess two absorption systems commencing at 609 and 373, 622 and 385, and 585 and 373 nm, respectively. They are assigned to the 1 (2)A" and 2 (2)A" ← X (2)A", 1(2)A2 and 2 (2)A2 ← X (2)B1, and 1 (2)Bg and 2 (2)B(g) ← X (2)A(u) electronic transitions of these cations. Two overlapping systems are detected at around 420 nm and tentatively assigned to the 1 (2)A" ← X (2)A" electronic transitions of propargyl cyclopropene and 2 (2)B1 ← X (2)A2 of o-benzyne cation structures. The assignment of the electronic transitions is based on theoretical vertical excitation energies calculated with CASPT2 and EOMEE-CCSDT methods for 12 isomers of C6H4(+). These have been carried out at the geometries optimized using several ab initio methods. Adiabatic excitation energies were calculated for the five identified isomers of C6H4(+).

  20. Surface modification of SiC mirror by IARE method

    NASA Astrophysics Data System (ADS)

    Shen, Zhenfeng; Gao, Jinsong

    2011-02-01

    A method to prepare high quality SiC coating at low temperature using large aperture E-beam evaporation PVD equipment with ion assistance was developed for the surface modification of SiC mirror for space projects .This method was called Ion Assisted Reactive Evaporation (IARE). The modified SiC coating was prepared using CH4 and Si with Kaufman ion source by IARE at 300°C and it had met the requirements of applications. The SiC coating prepared by this method was amorphous. It was dense, homogeneous and easy to be polished. The surface modification of a SiC mirror was carried out using SiC coating by this method and achieved a fine surface modification effect. The surface roughness (rms) of the SiC substrate was reduced to 0.862nm, the scattering coefficient was reduced to 2.79% and the reflectance coated with Ag film was improved simultaneously after the surface modification. The effect of surface modification using SiC coating was close to that of using Si coating. It can be drawn that this technological method to preparation SiC coating for the surface modification of SiC mirror is reasonable and effective.

  1. Surface modification of SiC mirror by IARE method

    NASA Astrophysics Data System (ADS)

    Shen, Zhenfeng; Gao, Jinsong

    2010-10-01

    A method to prepare high quality SiC coating at low temperature using large aperture E-beam evaporation PVD equipment with ion assistance was developed for the surface modification of SiC mirror for space projects .This method was called Ion Assisted Reactive Evaporation (IARE). The modified SiC coating was prepared using CH4 and Si with Kaufman ion source by IARE at 300°C and it had met the requirements of applications. The SiC coating prepared by this method was amorphous. It was dense, homogeneous and easy to be polished. The surface modification of a SiC mirror was carried out using SiC coating by this method and achieved a fine surface modification effect. The surface roughness (rms) of the SiC substrate was reduced to 0.862nm, the scattering coefficient was reduced to 2.79% and the reflectance coated with Ag film was improved simultaneously after the surface modification. The effect of surface modification using SiC coating was close to that of using Si coating. It can be drawn that this technological method to preparation SiC coating for the surface modification of SiC mirror is reasonable and effective.

  2. Defect structures and growth mechanisms of boron arsenide epilayers grown on 6H-silicon carbide and 15R-silicon carbide substrates

    NASA Astrophysics Data System (ADS)

    Chen, Hui

    B12As2 possesses the extraordinary properties, such as wide bandgap of 3.47eV and unique 'self heal' ability from electron irradiation damage, which make it attractive for the applications in space electronics, high temperature semiconductors and in particular, beta cells, devices capable of producing electrical energy by coupling a radioactive beta emitter to a semiconductor junction. Due to the absence of native substrates, B12As2 has been grown on substrates with compatible structural parameters via chemical vapor deposition. To date, growth on Si with (100), (110) and (111) orientation and (0001) 6H-SiC has been attempted. However, structural variants, including rotational and translational variants, have been observed in the epilayers and are expected to have a detrimental effect on device performance which has severely hindered progress of this material to date. In addition, none of the earlier reports provide a detailed atomic level study of defect structures in the films and growth mechanisms remain obscure. The focus of this thesis is to study defect structures in B12As2 films grown on different SiC substrates using synchrotron x-ray topography, high resolution transmission microscopy as well as other characterization techniques. The goals of the studies are to understand the generations of the defects present in B12As 2 films and their growth mechanisms so as to develop strategies to reduce defect densities and obtain better film quality for future device fabrication. The following detailed studies have been carried out: (1) The microstructures in B12As2 epitaxial layers grown on on-axis c-plane (0001) 6H-SiC substrates were analyzed in detail. Synchrotron white beam X-ray topography (SWBXT) and scanning electron microscopy (SEM) revealed a mosaic structure consisting of a solid solution of twin and matrix epilayer domains. The epitaxial relationship was determined to be (0001)B12As2<112¯0> B12As2||(0001)6H-SiC<112¯0>6H-SiC. B 12As2 twinned domains were

  3. Point Defects in SiC

    NASA Astrophysics Data System (ADS)

    Zvanut, Mary Ellen

    2004-03-01

    Production of high frequency, high power electronic devices using wide bandgap semiconductors has spurred renewed interest in point defects in SiC. Recent electron paramagnetic resonance (EPR) spectroscopy studies focus on centers in as-grown high purity semi-insulating substrates because intrinsic defects are thought to compensate unavoidable shallow centers, thus creating the high resistivity required. The EPR studies address the chemical/structural composition of the defects, the defect level (energy with respect to a band edge with which the defect can accept or release an electron) and thermal stability. Thus far, the positively charged carbon vacancy, the Si vacancy, a carbon-vacancy/carbon antisite pair, and several as yet-unidentified centers have been observed in as-grown electronic-grade 4H-SiC [1-3]. The talk will review the types of defects recently identified in SiC and discuss their possible relationship to compensation. The photo-induced EPR experiments used to determine defect levels will be discussed, with a particular focus on the carbon vacancy. The use of high frequency EPR to resolve the many different types of centers in SiC will also be covered. Finally, the presentation will review the thermal stability of the intrinsic defects detected in as-grown 4H SiC. 1. M. E. Zvanut and V. V. Konovalov, Appl. Phys. Lett. 80, 410 (2002). 2. N.T. Son, Z. Zolnai, and E. Janzen, Phys. Rev. B64, 2452xx (2003). 3. W.E. Carlos, E.R. Glaser, and B.V. Shanabrook, in Proceedings of the 22nd conference on Defects in Semiconductors, Aarhus, Denmark, July 2003.

  4. Ultralight, Strong, Three-Dimensional SiC Structures.

    PubMed

    Chabi, Sakineh; Rocha, Victoria G; García-Tuñón, Esther; Ferraro, Claudio; Saiz, Eduardo; Xia, Yongde; Zhu, Yanqiu

    2016-02-23

    Ultralight and strong three-dimensional (3D) silicon carbide (SiC) structures have been generated by the carbothermal reduction of SiO with a graphene foam (GF). The resulting SiC foams have an average height of 2 mm and density ranging between 9 and 17 mg cm(-3). They are the lightest reported SiC structures. They consist of hollow struts made from ultrathin SiC flakes and long 1D SiC nanowires growing from the trusses, edges, and defect sites between layers. AFM results revealed an average flake thickness of 2-3 nm and lateral size of 2 μm. In-situ compression tests in the scanning electron microscope (SEM) show that, compared with most of the existing lightweight foams, the present 3D SiC exhibited superior compression strengths and significant recovery after compression strains of about 70%. PMID:26580985

  5. SiC nanowires synthesized from graphene and silicon vapors

    NASA Astrophysics Data System (ADS)

    Weichenpei, Luo; Gong-yi, Li; Zengyong, Chu; Tianjiao, Hu; Xiaodong, Li; Xuefei, Zhang

    2016-04-01

    The preparation of silicon carbide (SiC) nanowires is basically important for its potential applications in nanodevices, nanocomposites, etc. In the present work, a simple route was reported to synthesize SiC nanowires by heating commercial graphene with silicon vapors and no catalyst. Characterization by scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, electron energy scattering, X-ray diffraction, and Raman dispersive spectrum demonstrates the products are composed of β-SiC crystal. The SiC nanowires have the average diameter of about 50 nm and length of tens of micrometers. The vapor-solid mechanism was employed to interpret the SiC nanowires growth. Gaseous SiO which was produced by the reaction of Si powders with its surface oxidation reacted with the solid graphene to form SiC crystal nuclei. And SiC crystal nuclei would act as active sites for further growing into nanowires.

  6. Fast Risetime Reverse Bias Pulse Failures in SiC PN Junction Diodes

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Fazi, Christian; Parsons, James D.

    1996-01-01

    SiC-based high temperature power devices are being developed for aerospace systems which will require high reliability. One behavior crucial to power device reliability. To date, it has necessarily been assumed to date is that the breakdown behavior of SiC pn junctions will be similar to highly reliable silicon-based pn junctions. Challenging this assumption, we report the observation of anomalous unreliable reverse breakdown behavior in moderately doped (2-3 x 10(exp 17) cm(exp -3)) small-area 4H- and 6H-SiC pn junction diodes at temperatures ranging from 298 K (25 C) to 873 K (600 C). We propose a mechanism in which carrier emission from un-ionized dopants and deep level defects leads to this unstable behavior. The fundamental instability mechanism is applicable to all wide bandgap semiconductors whose dopants are significantly un-ionized at typical device operating temperatures.

  7. Si growth at graphene surfaces on 6H-SiC(0001) substrates

    NASA Astrophysics Data System (ADS)

    Sone, Junki; Yamagami, Tsuyoshi; Nakatsuji, Kan; Hirayama, Hiroyuki

    2016-03-01

    We studied the growth of Si at the surface of epitaxial graphene on 6H-SiC(0001). Characteristic flower-like islands with a thickness of 2 to 3 nm nucleated during the growth from 290 to 420 K. The islands became featureless in growth at higher temperatures. The growth was predominantly governed by diffusion-limited aggregation. The diffusion energy was evaluated to be 0.21 eV from the temperature-dependent decrease in the density of the islands.

  8. On the calculation of the vibrational frequencies of C6H4

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W.; Ricca, Alessandra

    2013-04-01

    DFT and CCSD(T) frequencies are compared with experiment for ortho-benzyne (C6H4). Four bands are found to be in disagreement with experiment at the DFT level. Surprisingly the CCSD(T) method only brings the triple bond stretch into agreement with experiment, but leaves a sizable difference with experiment for the other three bands. The results for three isotopologues suggests that all of the differences cannot be attributed to resonances. Additional experimental work on ortho-benzyne appears warranted.

  9. Multihormonal regulation of thyroglobulin production by the OVNIS 6H thyroid cell line.

    PubMed

    Aouani, A; Hovsépian, S; Fayet, G

    1988-02-01

    The hormonal regulation of thyroglobulin production has been studied using a clone of the ovine thyroid cell line: OVNIS 6H. 3 among the 6 hormones proposed for serum replacement are required for an optimal thyroglobulin production; insulin, hydrocortisone and thyrotropin. Insulin alone stimulates thyroglobulin production. The presence of insulin is also required to observe hydrocortisone and TSH stimulations. Newborn calf serum inhibits thyroglobulin production. The best conditions for optimal thyroglobulin expression and TSH responsiveness are obtained in serum-free medium supplemented with 5 micrograms/ml insulin, 100 nM hydrocortisone and 1 mU/ml TSH. PMID:3286455

  10. SiC Power MOSFET with Improved Gate Dielectric

    SciTech Connect

    Sbrockey, Nick M; Tompa, Gary S; Spencer, Michael G; Chandrashekhar, Chandra MVS

    2010-08-23

    In this STTR program, Structured Materials Industries (SMI), and Cornell University are developing novel gate oxide technology, as a critical enabler for silicon carbide (SiC) devices. SiC is a wide bandgap semiconductor material, with many unique properties. SiC devices are ideally suited for high-power, highvoltage, high-frequency, high-temperature and radiation resistant applications. The DOE has expressed interest in developing SiC devices for use in extreme environments, in high energy physics applications and in power generation. The development of transistors based on the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) structure will be critical to these applications.

  11. Paralinear Oxidation of CVD SiC in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Hann, Raiford E., Jr.

    1997-01-01

    The oxidation kinetics of CVD SiC were monitored by thermogravimetric analysis (TGA) in a 50% H2O/50% O2 gas mixture flowing at 4.4 cm/s for temperatures between 1200 and 1400 C. Paralinear weight change kinetics were observed as the water vapor oxidized the SiC and simultaneously volatilized the silica scale. The long-term degradation rate of SiC is determined by the volatility of the silica scale. Rapid SiC surface recession rates were estimated from these data for actual aircraft engine combustor conditions.

  12. Corrosion pitting of SiC by molten salts

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Smialek, J. L.

    1986-01-01

    The corrosion of SiC by thin films of Na2CO3 and Na2SO4 at 1000 C is characterized by a severe pitting attack of the SiC substrate. A range of different Si and SiC substrates were examined to isolate the factors critical to pitting. Two types of pitting attack are identified: attack at structural discontinuities and a crater-like attack. The crater-like pits are correlated with bubble formation during oxidation of the SiC. It appears that bubbles create unprotected regions, which are susceptible to enhanced attack and, hence, pit formation.

  13. Silicon vacancy center in 4 H -SiC: Electronic structure and spin-photon interfaces

    NASA Astrophysics Data System (ADS)

    Soykal, Ö. O.; Dev, Pratibha; Economou, Sophia E.

    2016-02-01

    Defects in silicon carbide are of intense and increasing interest for quantum-based applications due to this material's properties and technological maturity. We calculate the multiparticle symmetry-adapted wave functions of the negatively charged silicon vacancy defect in hexagonal silicon carbide via use of group theory and density functional theory and find the effects of spin-orbit and spin-spin interactions on these states. Although we focused on VSi- in 4 H -SiC because of its unique fine structure due to the odd number of active electrons, our methods can be easily applied to other defect centers of different polytypes, especially to the 6 H -SiC. Based on these results, we identify the mechanism that polarizes the spin under optical drive, obtain the ordering of its dark doublet states, point out a path for electric field or strain sensing, and find the theoretical value of its ground-state zero-field splitting to be 68 MHz, in good agreement with experiment. Moreover, we present two distinct protocols of a spin-photon interface based on this defect. Our results pave the way toward quantum information and quantum metrology applications with silicon carbide.

  14. Gas-phase synthesis of the benzyl radical (C(6)H(5)CH(2)).

    PubMed

    Dangi, Beni B; Parker, Dorian S N; Yang, Tao; Kaiser, Ralf I; Mebel, Alexander M

    2014-04-25

    Dicarbon (C2 ), the simplest bare carbon molecule, is ubiquitous in the interstellar medium and in combustion flames. A gas-phase synthesis is presented of the benzyl radical (C6 H5 CH2 ) by the crossed molecular beam reaction of dicarbon, C2 (X(1) Σg (+) , a(3) Πu ), with 2-methyl-1,3-butadiene (isoprene; C5 H8 ; X(1) A') accessing the triplet and singlet C7 H8 potential energy surfaces (PESs) under single collision conditions. The experimental data combined with ab initio and statistical calculations reveal the underlying reaction mechanism and chemical dynamics. On the singlet and triplet surfaces, the reactions involve indirect scattering dynamics and are initiated by the barrierless addition of dicarbon to the carbon-carbon double bond of the 2-methyl-1,3-butadiene molecule. These initial addition complexes rearrange via multiple isomerization steps, leading eventually to the formation of C7 H7 radical species through atomic hydrogen elimination. The benzyl radical (C6 H5 CH2 ), the thermodynamically most stable C7 H7 isomer, is determined as the major product.

  15. 6H-SiC Transistor Integrated Circuits Demonstrating Prolonged Operation at 500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu; Chang, Carl W.; Beheim, Glenn M.; Okojie, Robert S.; Evans, Laura J.; Meredith, Roger; Ferrier, Terry; Krasowski, Michael J.; Prokop, Norman F.

    2008-01-01

    The NASA Glenn Research Center is developing very high temperature semiconductor integrated circuits (ICs) for use in the hot sections of aircraft engines and for Venus exploration where ambient temperatures are well above the approximately 300 degrees Centigrade effective limit of silicon-on-insulator IC technology. In order for beneficial technology insertion to occur, such transistor ICs must be capable of prolonged operation in such harsh environments. This paper reports on the fabrication and long-term 500 degrees Centigrade operation of 6H-SiC integrated circuits based on epitaxial 6H-SiC junction field effect transistors (JFETs). Simple analog amplifier and digital logic gate ICs have now demonstrated thousands of hours of continuous 500 degrees Centigrade operation in oxidizing air atmosphere with minimal changes in relevant electrical parameters. Electrical characterization and modeling of transistors and circuits at temperatures from 24 degrees Centigrade to 500 degrees Centigrade is also described. Desired analog and digital IC functionality spanning this temperature range was demonstrated without changing the input signals or power supply voltages.

  16. 40 CFR 721.5560 - Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6-oxide. 721.5560 Section 721... Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6... identified as formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with...

  17. 40 CFR 721.5560 - Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6-oxide. 721.5560 Section 721... Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6... identified as formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with...

  18. 40 CFR 721.5560 - Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6-oxide. 721.5560 Section 721... Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6... identified as formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with...

  19. 40 CFR 721.5560 - Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6-oxide. 721.5560 Section 721... Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6... identified as formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with...

  20. 40 CFR 721.5560 - Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6-oxide. 721.5560 Section 721... Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6... identified as formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with...

  1. Growth optimization and applicability of thick on-axis SiC layers using sublimation epitaxy in vacuum

    NASA Astrophysics Data System (ADS)

    Jokubavicius, Valdas; Sun, Jianwu; Liu, Xinyu; Yazdi, Gholamreza; Ivanov, Ivan. G.; Yakimova, Rositsa; Syväjärvi, Mikael

    2016-08-01

    We demonstrate growth of thick SiC layers (100-200 μm) on nominally on-axis hexagonal substrates using sublimation epitaxy in vacuum (10-5 mbar) at temperatures varying from 1700 to 1975 °C with growth rates up to 270 μm/h and 70 μm/h for 6H- and 4H-SiC, respectively. The stability of hexagonal polytypes are related to process growth parameters and temperature profile which can be engineered using different thermal insulation materials and adjustment of the induction coil position with respect to the graphite crucible. We show that there exists a range of growth rates for which single-hexagonal polytype free of foreign polytype inclusions can be maintained. Further on, foreign polytypes like 3C-SiC can be stabilized by moving out of the process window. The applicability of on-axis growth is demonstrated by growing a 200 μm thick homoepitaxial 6H-SiC layer co-doped with nitrogen and boron in a range of 1018 cm-3 at a growth rate of about 270 μm/h. Such layers are of interest as a near UV to visible light converters in a monolithic white light emitting diode concept, where subsequent nitride-stack growth benefits from the on-axis orientation of the SiC layer.

  2. Microstructural development to toughen SiC

    SciTech Connect

    Moberlychan, W.J.; Cannon, R.M.; Chan, L.H.; Cao, J.J.; Gilbert, C.J.; Ritchie, R.O.; De Jonghe, L.C.

    1996-12-31

    SiC offers a promise for high strength applications at high temperature; however, poor fracture resistance has inhibited its utility. Recent developments to control microstructure during hot pressing have improved fracture toughness > 3 fold, while also improving strength 50% above that of a commercial SiC, Hexoloy. This ABC-SiC (designated for the Al, B, and C additives) utilizes liquid phase sintering to obtain full densification at 1,650 C, and to induce the {beta}-3C to {alpha}-4H phase transformation below 1,900 C. Interlocking, plate-like, {alpha} grains, coupled with a thin ({approximately}1 nm) amorphous layer, provide for tortuous intergranular fracture and high toughness. This study focuses on the developing microstructure; how the {alpha}-4H polytype grow as a stacking modification of the {beta}-3C grains, and how amorphous grain boundaries and crystalline triple point phases develop and interact with the crack geometry. HR-TEM and Image-Filtered EELS characterize the amorphous grain boundaries. Field Emission-SEM, EDS and Auger Electron Spectroscopy characterize the fracture morphology and the chemistry of grain boundaries and triple points. Electron Diffraction and HR-TEM depict an epitaxial relationship between triple point phases (Al{sub 8}B{sub 4}C{sub 7} and Al{sub 4}O{sub 4}C) and matrix {alpha}-SiC grains, the development of which affects the mechanical toughening. The transformation to toughen SiC is compared to the well-studied transformation processing in Si{sub 3}N{sub 4}. A distinct advantage is the interlocked nature of the plate-like grains, which causes strong elastic bridging behind the crack tip.

  3. Electronic and Interfacial Properties of PD/6H-SiC Schottky Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Bansal, Gaurav; Petit, Jeremy B.; Knight, Dak; Liu, Chung-Chiun; Wu, Qinghai

    1996-01-01

    Pd/SiC Schottky diodes detect hydrogen and hydrocarbons with high sensitivity. Variation of the diode temperature from 100 C to 200 C shows that the diode sensitivity to propylene is temperature dependent. Long-term heat treating at 425 C up to 140 hours is carried out to determine the effect of extended heat treating on the diode properties and gas sensitivity. The heat treating significantly affects the diode's capacitive characteristics, but the diode's current carrying characteristics are much more stable with a large response to hydrogen. Scanning Electron Microscopy and X-ray Spectrometry studies of the Pd surface after the heating show cluster formation and background regions with grain structure observed in both regions. The Pd and Si concentrations vary between grains. Auger Electron Spectroscopy depth profiles revealed that the heat treating promoted interdiffusion and reaction between the Pd and SiC dw broadened the interface region. This work shows that Pd/SiC Schottky diodes have significant potential as high temperature gas sensors, but stabilization of the structure is necessary to insure their repeatability in long-term, high temperature applications.

  4. SiC reinforced aluminide composites

    NASA Technical Reports Server (NTRS)

    Brindley, Pamela K.

    1987-01-01

    The tensile properties of SiC fiber, Ti3Al+Nb and SiC/Ti3Al+Nb composite have been determined from 300 to 1365 K. The composite results compared favorably to rule-of-mixtures (ROM) predictions in the intermediate temperature regime of 475 to 700 K. Deviations from ROM are discussed. Composite tensile results were compared on a strength/density basis to wrought superalloys and found to be superior. Fiber-matrix compatibility was characterized for the composite at 1250 and 1365 K for 1 to 100 hours.

  5. Homoepitaxial and Heteroepitaxial Growth on Step-Free SiC Mesas

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony

    2004-01-01

    This article describes the initial discovery and development of new approaches to SiC homoepitaxial and heteroepitaxial growth. These approaches are based upon the previously unanticipated ability to effectively supress two-dimensional nucleation of 3C-SiC on large basal plane terraces that form between growth steps when epitaxy is carried out on 4H- and 6H-SiC nearly on-axis substrates. After subdividing the growth surface into mesa regions, pure stepflow homoeptixay with no terrace nucleation was then used to grow all existing surface steps off the edges of screw-dislocation-free mesas, leaving behind perfectly on-axis (0001) basal plane mesa surfaces completely free of atomic-scale steps. Step-free mesa surfaces as large as 0.4 mm x 0.4 mm were experimentally realized, with the yield and size of step-free mesas being initally limited by substrate screw dislocations. Continued epitaxial growth following step-free surface formation leads to the formation of thin lateral cantilevers that extend the step-free surface area from the top edge of the mesa sidewalls. By selecting a proper pre-growth mesa shape and crystallographic orientation, the rate of cantilever growth can be greatly enhanced in a web growth process that has been used to (1) enlarge step-free surface areas and (2) overgrow and laterally relocate micropipes and screw dislocations. A new growth process, named step-free surface heteroepitaxy, has been developed to achieve 3C-SiC films on 4H- and 6H-SiC substrate mesas completely free of double positioning boundary and stacking fault defects. The process is based upon the controlled terrace nucleation and lateral expansion of a single island of 3C-SiC across a step-free mesa surface. Experimental results indicate that substrateepilayer lattice mismatch is at least partially relieved parallel to the interface without dislocations that undesirably thread through the thickness of the epilayer. These results should enable realization of improved SiC

  6. Study on Λ6H hypernucleus by the (π-, K+) reaction at J-PARC

    NASA Astrophysics Data System (ADS)

    Sugimura, H.; Agnello, M.; Ahn, J. K.; Ajimura, S.; Akazawa, Y.; Amano, N.; Aoki, K.; Bhang, H. C.; Endo, M.; Evtoukhovitch, P.; Feliciello, A.; Fujioka, H.; Fukuda, T.; Hasegawa, S.; Hayakawa, S.; Honda, R.; Hosomi, K.; Hwang, S. H.; Ichikawa, Y.; Igarashi, Y.; Imai, K.; Ishibashi, N.; Iwasaki, R.; Joo, C. W.; Kiuchi, R.; Lee, J. K.; Lee, J. Y.; Matsuda, K.; Matsumoto, Y.; Matsuoka, K.; Miwa, K.; Mizoi, Y.; Moritsu, M.; Nagae, T.; Nagamiya, S.; Nakagawa, M.; Naruki, M.; Noumi, H.; Ota, R.; Roy, B. J.; Saha, P. K.; Sakaguchi, A.; Sako, H.; Samanta, C.; Samoilov, V.; Sasaki, Y.; Sato, S.; Sekimoto, M.; Shimizu, Y.; Shiozaki, T.; Shirotori, K.; Soyama, T.; Takahashi, T.; Takahashi, T. N.; Tamura, H.; Tanabe, K.; Tanaka, T.; Tanida, K.; Tokiyasu, A. O.; Tsamalaidze, Z.; Ukai, M.; Yamamoto, T. O.; Yamamoto, Y.; Yang, S. B.; Yoshida, K.

    2014-03-01

    We carried out an experiment to produce the neutron-rich hypernucleus Λ6H via the (π-, K+) reaction on 6Li target at the pion beam momentum of 1.2 GeV/c (J-PARC E10). In order to calibrate the scale of the missing-mass or of the Λ binding energy of the hypernucleus, we also measured the 12C(π+, K+) Λ12C, p(π-, K+)Σ- and p(π+, K+)Σ+reactions. The experiment was performed at the J-PARC Hadron Hall K1.8 beam line in December 2012 and January 2013. The overall collected data sample corresponds to an integrated beam intensity of 1.65 × 1012 pions.

  7. Band gap states of V and Cr in 6H-silicon carbide

    NASA Astrophysics Data System (ADS)

    Achtziger, N.; Grillenberger, J.; Witthuhn, W.

    Band gap states of Ti, V and Cr in n-type 6H-SiC were investigated by radiotracer deep level transient spectroscopy (DLTS). Doping with the radioactive isotopes 48V and 51Cr was done by recoil implantation followed by annealing (1600 K). Repeated DLTS measurements during the elemental transmutation of these isotopes to 48Ti and 51V respectively revealed the corresponding concentration changes of band gap states. Thus, three levels were identified in the band gap: a Cr level at 0.54 eV and two V levels at 0.71 and 0.75 eV below the conduction band edge. There are no deep levels of Ti in the upper part of the band gap.

  8. A theoretical study of isomeric C 6H 4Br - ions

    NASA Astrophysics Data System (ADS)

    Morgon, Nelson H.; Custodio, Rogério; Riveros, JoséM.

    1995-03-01

    The structural stability of bromide o-benzyne complexes was studied. A new procedure was applied to adapt a basis set to be used with the Hay and Wadt pseudopotential for the Br atom. Calculations at the MP2, MP3 and MP4 levels established two stable structural isomers for the C 6H 4Br - ion: (a) a bromphenide anion and (b) an isomer with a loose hydrogen-bonded bromide-benzyne complex where the Br - ion is straddling the ortho and meta hydrogen of the ring. At the MP4 level the barrier between the two isomers is below the typical energies associated with the loose complexes formed as intermediates in ion/molecule reactions.

  9. "Un-annealed and Annealed Pd Ultra-Thin Film on SiC Characterized by Scanning Probe Microscopy and X-ray Photoelectron Spectroscopy"

    NASA Technical Reports Server (NTRS)

    Lu, W. J.; Shi, D. T.; Elshot, K.; Bryant, E.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.

    1998-01-01

    Pd/SiC has been used as a hydrogen and a hydrocarbon gas sensor operated at high temperature. UHV (Ultra High Vacuum)-Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) techniques were applied to study the relationship between the morphology and chemical compositions for Pd ultra-thin films on SiC (less than 30 angstroms) at different annealing temperatures. Pd ultra-thin film on 6H-SiC was prepared by the RF sputtering method. The morphology from UHV-STM and AFM shows that the Pd thin film was well deposited on SiC substrate, and the Pd was partially aggregated to round shaped participates at an annealing temperature of 300 C. At 400 C, the amount of surface participates decreases, and some strap shape participates appear. From XPS, Pd2Si was formed on the surface after annealing at 300 C, and all Pd reacted with SiC to form Pd2Si after annealing at 400 C. The intensity of the XPS Pd peak decreases enormously at 400 C. The Pd film diffused into SiC, and the Schottky barrier height has almost no changes. The work shows the Pd sicilides/SiC have the same electronic properties with Pd/SiC, and explains why the Pd/SiC sensor still responds to hydrogen at high operating temperatures.

  10. Porous silicon carbide (SiC) semiconductor device

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    A semiconductor device employs at least one layer of semiconducting porous silicon carbide (SiC). The porous SiC layer has a monocrystalline structure wherein the pore sizes, shapes, and spacing are determined by the processing conditions. In one embodiment, the semiconductor device is a p-n junction diode in which a layer of n-type SiC is positioned on a p-type layer of SiC, with the p-type layer positioned on a layer of silicon dioxide. Because of the UV luminescent properties of the semiconducting porous SiC layer, it may also be utilized for other devices such as LEDs and optoelectronic devices.

  11. Raman characterization and stress analysis of AlN grown on SiC by sublimation

    NASA Astrophysics Data System (ADS)

    Liu, L.; Liu, B.; Edgar, J. H.; Rajasingam, S.; Kuball, M.

    2002-11-01

    The stress distribution in bulk AlN crystals seeded on 6H-SiC was theoretically modeled and also determined experimentally from Raman peak positions. The full width at half maximum of the AlN Raman peaks showed the crystal quality improved as its thickness increased. The theoretical frequency shifts of the E1 (transverse optical) mode calculated from model-predicted stress were in good agreement with experimental values taken along the edges of crystal samples. The stress was linearly distributed along the depth of the samples, and changed from compressive at the growing surface to tensile at the interface between AlN and SiC for thickness range of several hundred micrometers. Large tensile stresses, up to 0.6 GPa, were detected in the AlN at the interface. The effects of growth temperature and sample thickness were investigated. It is predicted that the AlN on 6H-SiC must be at least 2 mm thick to prevent it from cracking while cooling down the sample from a growth temperature of 2000 degC.

  12. Processing of sintered alpha SiC

    NASA Technical Reports Server (NTRS)

    Storm, R. S.

    1984-01-01

    Processing methods of sintered alpha SiC for engine applications are developed in a cost effective manner, using a submicron sized powder blended with sintering aids (boron and carbon). The processes for forming a green powder compact, such as dry pressing, cold isostatic pressing and green machining, slip casting, aqueous extrusion, plastic extrusion, and injection molding, are described. Dry pressing is the simplest route to component fabrication, and is carried out at approximately 10,000 psi pressure, while in the cold isostatic method the pressure could go as high as 20,000 psi. Surfactants are added to control settling rates and casting characteristics in the slip casting. The aqueous extrusion process is accomplished by a hydraulic ram forcing the aqueous mixture through a die. The plastic forming processes of extrusion and injection molding offer the potential of greater diversity in shape capacity. The physical properties of sintered alpha SiC (hardness, Young's modulus, shear modulus, and thermal diffusivity) are extensively tested. Corrosion resistance test results of silicon carbide are included.

  13. Interface-structure of the Si/SiC heterojunction grown on 6H-SiC

    SciTech Connect

    Li, L. B.; Chen, Z. M.; Zang, Y.

    2015-01-07

    The Si/SiC heterojunctions were prepared on 6H-SiC (0001) C-face by low-pressure chemical vapour deposition at 850 ∼ 1050 °C. Transmission electron microscopy and selected area electron diffraction were employed to investigate the interface-structure of Si/SiC heterojunctions. The Si/6H-SiC heterostructure of large lattice-mismatch follows domain matching epitaxy mode, which releases most of the lattice-mismatch strain, and the coherent Si epilayers can be grown on 6H-SiC. Si(1-11)/6H-SiC(0001) heterostructure is obtained at 900 °C, and the in-plane orientation relationship of Si/6H-SiC heterostructure is (1–11)[1-1-2]{sub Si}//(0001)[-2110]{sub 6H-SiC}. The Si(1-11)/6H-SiC(0001) interface has the same 4:5 Si-to-SiC matching mode with a residual lattice-mismatch of 0.26% along both the Si[1-1-2] and Si[110] orientations. When the growth temperature increases up to 1000 °C, the 〈220〉 preferential orientation of the Si film appears. SAED patterns at the Si/6H-SiC interface show that the in-plane orientation relationship is (-220)[001]{sub Si}//(0001)[2-1-10]{sub 6H-SiC}. Along Si[110] orientation, the Si-to-SiC matching mode is still 4:5; along the vertical orientation Si[001], the Si-to-SiC mode change to approximate 1:2 and the residual mismatch is 1.84% correspondingly. The number of the atoms in one matching-period decreases with increasing residual lattice-mismatch in domain matching epitaxy and vice versa. The Si film grows epitaxially but with misfit dislocations at the interface between the Si film and the 6H-SiC substrate. And the misfit dislocation density of the Si(1-11)/6H-SiC(0001) and Si(-220)/6H-SiC(0001) obtained by experimental observations is as low as 0.487 × 10{sup 14 }cm{sup −2} and 1.217 × 10{sup 14 }cm{sup −2}, respectively, which is much smaller than the theoretical calculation results.

  14. Electrical characterization of 6H crystalline silicon carbide. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Lempner, Stephen E.

    1994-01-01

    Crystalline silicon carbide (SiC) substrates and epilayers, undoped as well as n- and p-doped, have been electrically characterized by performing Hall effect and resistivity measurements (van der Pauw) over the temperature range of approximately 85 K to 650 K (200 K to 500 K for p-type sample). By fitting the measured temperature dependent carrier concentration data to the single activation energy theoretical model: (1) the activation energy for the nitrogen donor ranged from 0.078 eV to 0.101 eV for a doping concentration range of 10(exp 17) cm(exp -3) to 10(exp 18) cm(exp -3) and (2) the activation energy for the aluminum acceptor was 0.252 eV for a doping concentration of 4.6 x 10(exp 18) cm(exp -3). By fitting the measured temperature dependent carrier concentration data to the double activation energy level theoretical model for the nitrogen donor: (1) the activation energy for the hexagonal site was 0.056 eV and 0.093 eV corresponding to doping concentrations of 3.33 x 10 (exp 17) cm(exp -3) and 1.6 x 10(exp 18) cm(exp -3) and (2) the activation energy for the cubic site was 0.113 and 0.126 eV corresponding to doping concentrations of 4.2 x 10(exp 17) cm(exp -3) and 5.4 x 10(exp 18) cm(exp -3).

  15. Comparative study of 3C-SiC layers sublimation-grown on a 6H-SiC substrate

    SciTech Connect

    Shustov, D. B.; Lebedev, A. A. Lebedev, S. P.; Nelson, D. K.; Sitnikova, A. A.; Zamoryanskaya, M. V.

    2013-09-15

    n-3C-SiC/n-6H-SiC heterostructures grown by vacuum sublimation on CREE commercial 6H-SiC substrates are studied. Transmission electron microscopy (TEM) demonstrated that a transitional layer of varying thickness, composed of a mixture of 3C- and 6H-SiC polytypes, is formed on the substrate. A 3C polytype layer was obtained on the interlayer. Cathodoluminescence study of the surface of the film demonstrated that defects in the form of inclusions of another phase (6H-polytype), stacking faults, and twin boundaries (separating domains of cubic modification, grown in various orientations) are found on the surface and in the surface layer with a thickness on the order of 100 {mu}m. Varying the growth conditions changes the concentration of various types of defects.

  16. Long-Term Characterization of 6H-SiC Transistor Integrated Circuit Technology Operating at 500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu; Chang, Carl W.; Beheim, Glenn M.; Okojie, Robert S.; Evans, Laura J.; Meredith Roger D.; Ferrier, Terry L.; Krasowski, Michael J.; Prokop, Norman F.

    2008-01-01

    NASA has been developing very high temperature semiconductor integrated circuits for use in the hot sections of aircraft engines and for Venus exploration. This paper reports on long-term 500 C electrical operation of prototype 6H-SiC integrated circuits based on epitaxial 6H-SiC junction field effect transistors (JFETs). As of this writing, some devices have surpassed 4000 hours of continuous 500 C electrical operation in oxidizing air atmosphere with minimal change in relevant electrical parameters.

  17. Investigation of the transition layer in 3C-SiC/6H-SiC heterostructures

    SciTech Connect

    Lebedev, A. A.; Zamorianskaya, M. V.; Davydov, S. Yu.; Kirilenko, D. A.; Lebedev, S. P. Sorokin, L. M.; Shustov, D. B.; Scheglov, M. P.

    2013-11-15

    Transmission electron microscopy and the cathodoluminescence method are used to study the transition region in 3C-SiC/6H-SiC heterostructures. It is shown that this region is, as a rule, constituted by alternating 3C-SiC and 6H-SiC layers with the possible inclusion of other silicon carbide polytypes. An assumption is made that this structure of the transition region can be explained in terms of the model of spinodal decomposition.

  18. Active Oxidation of SiC

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers,Dwight L.; Harder, Bryan J.

    2011-01-01

    The high temperature oxidation of silicon carbide occurs in either a passive or active mode, depending on temperature and oxygen potential. Passive oxidation forms a protective oxide film which limits attack of the SiC:SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g.) Active oxidation forms a volatile oxide and leads to extensive attack of the SiC: SiC(s) + O2(g) = SiO(g) + CO(g). The transition points and rates of active oxidation are a major issue. Previous studies are reviewed and the leading theories of passive/active transitions summarized. Comparisons are made to the active/passive transitions in pure Si, which are relatively well-understood. Critical questions remain about the difference between the active-to-passive transition and passive-to-active transition. For Si, Wagner [2] points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO2 equilibria and the passive-to-active transition is governed by the decomposition of the SiO2 film. This suggests a significant oxygen potential difference between these two transitions and our experiments confirm this. For Si, the initial stages of active oxidation are characterized by the formation of SiO(g) and further oxidation to SiO2(s) as micron-sized rods, with a distinctive morphology. SiC shows significant differences. The active-to-passive and the passive-to-active transitions are close. The SiO2 rods only appear as the passive film breaks down. These differences are explained in terms of the reactions at the SiC/SiO2 interface. In order to understand the breakdown of the passive film, pre-oxidation experiments are conducted. These involve forming dense protective scales of 0.5, 1, and 2 microns and then subjecting the samples with these scales to a known active oxidation environment. Microstructural studies show that SiC/SiO2 interfacial reactions lead to a breakdown of the scale with a distinct morphology.

  19. 6H-Indolo[2,3-b]quinoxalines: DNA and protein interacting scaffold for pharmacological activities.

    PubMed

    Moorthy, N S Hari Narayana; Manivannan, E; Karthikeyan, C; Trivedi, Piyush

    2013-08-01

    6H-Indolo[2,3-b]quinoxaline, a planar fused heterocyclic compound exhibits a wide variety of pharmacological activities. The mechanism of pharmacological action exerted by these compounds is predominantly DNA intercalation. The thermal stability of the intercalated complex (DNA and 6H-indolo[2,3-b]quinoxaline derivatives) is an important parameter for the elucidation of anticancer, antiviral and other activities. This thermal stability of the 6H-indolo[2,3- b]quinoxaline-DNA complex depends on the type of substituents and side chains attached to the 6H-indolo[2,3- b]quinoxaline nucleus and also the orientation of the side chain towards the GC rich minor groove of the DNA. Highly active 6H-indolo[2,3-b]quinoxaline derivatives such as NCA0424, B-220 and 9-OH-B-220 have shown good binding affinity to DNA as evident from high thermal stability of compound-DNA complex. Interestingly, these compounds possessed poor inhibitory activity on topoisomerase II enzyme but have significant MDR modulating activity. This review establishes '6H-indolo[2,3-b]quinoxaline' as a valuable template for design and development of novel molecules with different biological activities.

  20. Measurement of Thermal Conductivity of Anisotropic SiC Crystal

    NASA Astrophysics Data System (ADS)

    Su, Guo-Ping; Zheng, Xing-Hua; Qiu, Lin; Tang, Da-Wei; Zhu, Jie

    2013-12-01

    Silicon carbide (SiC) crystals with excellent heat conduction and thermal stability can be widely used in microelectronic devices and integrated circuits. It is important for the study of a functional type SiC material to have accurate thermal-conductivity and thermal-diffusivity values of SiC crystal. A 3 ω technique is employed to determine the anisotropic thermal conductivity of SiC crystal. Three micrometal probes with different widths are deposited by chemical-vapor deposition on the surface of SiC crystal. Each micrometal probe is used as a heater, and also as a thermometer. The temperature fluctuation signals of a micrometal probe represent heat conduction in different directions in the specimen. Thermal conductivities both in the cross-plane and in-plane directions of SiC crystal are achieved through fitted values. The results indicate that thermal conductivities in three different directions of SiC crystal can be characterized using the metal heater construction.

  1. Inelastic X-ray scattering from 6H-SiC

    SciTech Connect

    Macrander, A.T.; Blasdell, B.; Montano, P.A. |; Kao, C.C.

    1995-07-01

    The authors have studied electronic excitations in 6H-SiC using inelastic x-ray scattering. Inelastic scattering spectra were measured at momentum transfers ranging from 0.47 {angstrom}{sup {minus}1} to 2.00 {angstrom}{sup {minus}1} along the c-axis in the hexagonal lattice, i.e. , along [00{center_dot}1], and from 0.67 {angstrom}{sup {minus}1} to 2.00 {angstrom}{sup {minus}1} along the a-axis, i.e., alone, [10{center_dot}0]. Comparison of the two sets of data reveals an orientation dependence of the spectra, except for a characteristic peak at 22--23 eV that occurs for both directions at low Q. This peak has also been observed in electron energy loss spectroscopy studies and is identified as a bulk plasmon. The orientation dependence of the other spectral features is indicative of band structure effects. These data were obtained using a Ge(444) analyzer in a near backscattering geometry.

  2. Large area graphene growth on 6H-SiC(0001)

    NASA Astrophysics Data System (ADS)

    Johansson, L. I.; Virojanadara, C.; Syväjärvi, M.; Yakimova, R.; Zakharov, A. A.; Balasubramanian, T.

    2009-03-01

    Large area graphene growth on commercial Si-face on-axis 6H-SiC(0001) is demonstrated in this work. Samples were produced in a prototype of an inductively heated furnace. The growth was carried out in strongly isothermal conditions at a temperature of 2000 C and at an ambient argon pressure of 1 atm. The quality and thickness of the graphene layers grown, using this ex situ method, were investigated using PES, ARPES), LEED as well as LEEM, PEEM micro-LEED and micro-PES at specifically defined small areas. Our results show that single layer graphene is formed over quite large areas on the sample but that two different domains can exist on some parts. A comparison with an in situ graphene sample, prepared by resistive heating to 1275 C, was made. The results then obtained were similar to earlier findings [1-2] and showed that the size of the graphene flakes were very small compared to those obtained on the samples prepared with our ex situ method. [3pt] [1]. T. Ohta, F. El Gabaly, A. Bostwick, J.L. McChesney, K.V. Emtsev, A.K. Schmid, Th. Seyller, K. Horn, E. Rotenberg, New. J. Phys. 10 023034 (2008).[0pt] [2]. J.B. Hannon and R. M. Tromp, Phys. Rev. B 77 241404 (2008).

  3. Damage Accumulation and Annealing in 6H-SiC Irradiated with Si+

    SciTech Connect

    Jiang, Weilin; Weber, William J.; Thevuthasan, Suntharampillai; McCready, David E.

    1998-10-01

    Damage accumulation and annealing in 6H-silicon carbide (alpha-SiC) single crystals have been studied in situ using 2.0 MeV HeRBS in a <0001>-axial channeling geometry (RBS/C). The damage was induced by 550 keV Si ion implantation (30 degrees off normal) at a temperature of -110 degrees C, and the damage recovery was investigated by subsequent isochromal annealing (20 min) over the temperature range from -110 degrees C to 900 degrees C. At ion fluences below 7.5 X 10 13 Si/cm (0.04 dpa in the damage peak), only point defects appear to be created. Furthermore, the defects on the Si sublattice can be completely recovered by thermal annealing at room temperature (RT), and recovery of defects on the C sublattice is suggested. At higher fluences of 6.6 x 10 15 Si/cm (-90 degrees C), an amorphous layer is created from the surface to a depth of 0.6 mu-m. Because of recovery processes at the buried crystalline-amorphous interface, the apparent thickness of this amorphous layer decreases slightly (<10%) with increasing temperature over the range from -90 degrees C to 600 degrees C.

  4. Epitaxial growth of graphene on 6H-silicon carbide substrate by simulated annealing method.

    PubMed

    Yoon, T L; Lim, T L; Min, T K; Hung, S H; Jakse, N; Lai, S K

    2013-11-28

    We grew graphene epitaxially on 6H-SiC(0001) substrate by the simulated annealing method. The mechanisms that govern the growth process were investigated by testing two empirical potentials, namely, the widely used Tersoff potential [J. Tersoff, Phys. Rev. B 39, 5566 (1989)] and its more refined version published years later by Erhart and Albe [Phys. Rev. B 71, 035211 (2005)]. Upon contrasting the results obtained by these two potentials, we found that the potential proposed by Erhart and Albe is generally more physical and realistic, since the annealing temperature at which the graphene structure just coming into view at approximately 1200 K is unambiguously predicted and close to the experimentally observed pit formation at 1298 K within which the graphene nucleates. We evaluated the reasonableness of our layers of graphene by calculating carbon-carbon (i) average bond-length, (ii) binding energy, and (iii) pair correlation function. Also, we compared with related experiments the various distance of separation parameters between the overlaid layers of graphene and substrate surface. PMID:24289364

  5. Electrical properties of epitaxial 3C- and 6H-SiC p-n junction diodes produced side-by-side on 6H-SiC substrates

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Larkin, David J.; Starr, Jonathan E.; Powell, J. Anthony; Salupo, Carl S.; Matus, Lawrence G.

    1994-01-01

    3C-SiC (beta-SiC) and 6H-SiC p-n junction diodes have been fabricated in regions of both 3C-SiC and 6H-SiC epitaxial layers which were grown side-by-side on low-tilt-angle 6H-SiC substrates via a chemical vapor deposition (CVD) process. Several runs of diodes exhibiting state-of-the-art electrical characteristics were produced, and performance characteristics were measured and compared as a function of doping, temperature, and polytype. The first 3C-SiC diodes which rectify to reverse voltages in excess of 300 V were characterized, representing a six-fold blocking voltage improvement over experimental 3C-SiC diodes produced by previous techniques. When placed under sufficient forward bias, the 3C-SiC diodes emit significantly bright green-yellow light while the 6H-SiC diodes emit in the blue-violet. The 6H-SiC p-n junction diodes represent the first reported high-quality 6H-SiC devices to be grown by CVD on very low-tilt-angle (less than 0.5 deg off the (0001) silicon face) 6H substrates. The reverse leakage current of a 200 micron diameter circular device at 1100 V reverse bias was less than 20 nA at room temperature, and excellent rectification characteristics were demonstrated at the peak characterization temperature of 400 C.

  6. Compatibility of SiC and SiC Composites with Molten Lead

    SciTech Connect

    H Tunison

    2006-03-07

    The choice of structural material candidates to contain Lead at 1000 C are limited in number. Silicon carbide composites comprise one choice of possible containment materials. Short term screening studies (120 hours) were undertaken to study the behavior of Silicon Carbide, Silicon Nitride, elemental Silicon and various Silicon Carbide fiber composites focusing mainly on melt infiltrated composites. Isothermal experiments at 1000 C utilized graphite fixtures to contain the Lead and material specimens under a low oxygen partial pressure environment. The corrosion weight loss values (grams/cm{sup 2} Hr) obtained for each of the pure materials showed SiC (monolithic CVD or Hexoloy) to have the best materials compatibility with Lead at this temperature. Increased weight loss values were observed for pure Silicon Nitride and elemental Silicon. For the SiC fiber composite samples those prepared using a SiC matrix material performed better than Si{sub 3}N{sub 4} as a matrix material. Composites prepared using a silicon melt infiltration process showed larger corrosion weight loss values due to the solubility of silicon in lead at these temperatures. When excess silicon was removed from these composite samples the corrosion performance for these material improved. These screening studies were used to guide future long term exposure (both isothermal and non-isothermal) experiments and Silicon Carbide composite fabrication work.

  7. Vitreous joining of SiC fiber reinforced SiC composites

    SciTech Connect

    Coon, D.N. . Dept. of Mechanical Engineering)

    1989-12-01

    Glass in the MgO--Li{sub 2}O--Al{sub 2}O{sub 3}--SiO{sub 2} system were developed to as brazing materials to join SiC fiber reinforced SiC composites. These glass materials will melt and flow at temperatures ranging from 1000{degree}C to 1200{degree}C, and are chemically compatible with SiC. The glass transition temperature and melting temperature can be altered by adjusting the MgO:Li{sub 2}O ratio. The glasses exhibited viscous deformation at their glass transition temperatures, 490{degree}C to 725{degree}C. The glasses were devitrified to develop crystalline phases based on {beta}{prime}-spodumene, {beta}{prime}-eucryptite, or a {beta}{prime}-spodumene-{beta}{prime}-eucryptite solid solution. Glass-ceramics, prepared by thermal treatment, exhibited no viscous deformation to temperature as high as 785{degree}C, and exhibited improved strength as the test temperature was increased. Joints were prepared by painting the composite surface with a slurry of the glass powder suspended in water. Joining temperature, joining time, glass composition, amount of joining glass, and post-joining heat treatments were the variables examined. Larger quantities of joining glass and shorter joining times were observed to improve joint strength. The addition of niobium oxide to the glass also improved joint strength. The niobium oxide also stabilizes the glass/composite interface at temperatures less than 1200{degree}C.

  8. THERMAL CONDUCTIVITY OF SIC AND C FIBERS

    SciTech Connect

    Youngblood, Gerald E.; Senor, David J.; Kowbel, W.; Webb, J.; Kohyama, Akira

    2000-09-01

    Several rod-shaped specimens with uniaxially packed fibers (Hi-Nicalon, Hi-Nicalon Type S, Tyranno SA and Amoco K1100 types) and a pre-ceramic polymer matrix have been fabricated. By using appropriate analytic models, the bare fiber thermal conductivity (Kf) and the interface thermal conductance (h) will be determined as a function of temperature up to 1000?C before and after irradiation for samples cut from these rods. Initial results are: (1) for unirradiated Hi-Nicalon SiC fiber, Kf varied from 4.3 up to 5.9 W/mK for the 27-1000?C range, (2) for unirradiated K1100 graphite fiber, Kf varied from 576 down to 242 W/mK for the 27-1000?C range, and (3) h = 43 W/cm2K at 27?C as a typical fiber/matrix interface conductance.

  9. SSG SiC Optical Systems in Space

    NASA Technical Reports Server (NTRS)

    Robichaud, Joseph; Keys, Andrew S. (Technical Monitor)

    2002-01-01

    Silicon Carbide (SiC) materials provide a number of benefits for space based optical systems. SSG Precision Optronics has extensive experience in the areas of design, fabrication, integration, and test of SiC optical systems. This expertise has been applied to produce a number of SiC-based instruments, including the Miniature Infrared Camera and Spectrometer (MICAS) and Advanced Land Imager (ALI) optical systems which have flown as part of NASA's New Millennium program. Our presentation will provide an overview of SSG's experience in the development of these SiC flight systems.

  10. Insights into Hydrocarbon Chain and Aromatic Ring Formation in the Interstellar Medium: Computational Study of the Isomers of C4H3+ C6H3+ and C6H5+ and Their Formation Pathways

    NASA Astrophysics Data System (ADS)

    Peverati, Roberto; Bera, Partha P.; Lee, Timothy J.; Head-Gordon, Martin

    2016-10-01

    Small hydrocarbons such as acetylene is present in circumstellar envelopes of carbon-rich stars, but the processes that yield larger molecules, and eventually polycyclic aromatic hydrocarbons (PAHs), remain poorly understood. To gain additional insight into the early steps of such processes, electronic structure calculations were performed on the potential energy surfaces of {{{C}}}4{{{{H}}}3}+, {{{C}}}6{{{{H}}}3}+ and {{{C}}}6{{{{H}}}5}+. The results establish reactive pathways from acetylene and its ion to formation of the first aromatic ring. We characterize the stable isomers, their spectroscopic properties, and many of the transition structures that represent barriers to isomerization. The pathways to stabilized {{{C}}}4{{{{H}}}3}+ and {{{C}}}6{{{{H}}}3}+ are most likely to arise from unimolecular decomposition of hot {{{C}}}4{{{{H}}}4}+ and {{{C}}}6{{{{H}}}4}+ by H atom elimination. By contrast, we found an ion-molecule pathway to {{{C}}}6{{{{H}}}5}+ to be very stable to fragmentation and elimination reactions even without collisional stabilization. This aromatic species is a good nucleation center for the growth of larger PAHs in interstellar conditions.

  11. Unique Properties of Human β-Defensin 6 (hBD6) and Glycosaminoglycan Complex

    PubMed Central

    De Paula, Viviane S.; Pomin, Vitor H.; Valente, Ana Paula

    2014-01-01

    Defensins are components of the innate immune system that promote the directional migration and activation of dendritic cells, thereby modulating the adaptive immune response. Because matrix glycosaminoglycan (GAG) is known to be important for these functions, we characterized the structural features of human β-defensin 6 (hBD6) and GAG interaction using a combination of structural and in silico analyses. Our results showed that GAG model compounds, a pentasaccharide (fondaparinux, FX) and an octasaccharide heparin derivative (dp8) bind to the α-helix and in the loops between the β2 and β3 strands, inducing the formation of a ternary complex with a 2:1 hBD6:FX stoichiometry. Competition experiments indicated an overlap of GAG and chemokine receptor CCR2 binding sites. An NMR-derived model of the ternary complex revealed that FX interacts with hBD6 along the dimerization interface, primarily contacting the α-helices and β2-β3 loops from each monomer. We further demonstrated that high-pressure NMR spectroscopy could capture an intermediate stage of hBD6-FX interaction, exhibiting features of a cooperative binding mechanism. Collectively, these data suggest a “sandwich-like” model in which two hBD6 molecules bind a single FX chain and provide novel structural insights into how defensin orchestrates leukocyte recruitment through GAG binding and G protein-coupled receptor activation. Despite the similarity to chemokines and hBD2, our data indicate different properties for the hBD6-GAG complex. This work adds significant information to the currently limited data available for the molecular structures and dynamics of defensin carbohydrate binding. PMID:24970887

  12. Development of SiC Large Tapered Crystal Growth

    NASA Technical Reports Server (NTRS)

    Neudeck, Phil

    2011-01-01

    Research Focus Area: Power Electronics, Temperature Tolerant Devices. Demonstrate initial feasibility of totally new "Large Tapered Crystal" (LTC) process for growing vastly improved large-diameter wide-band gap wafers. Addresses Targets: The goal of this research is to experimentally investigate and demonstrate feasibility of the key unproven LTC growth processes in SiC. Laser-assisted growth of long SiC fiber seeds. Radial epitaxial growth enlargement of seeds into large SiC boules. Uniqueness and Impacts open a new technology path to large-diameter SiC and GaN wafers with 1000-fold defect density improvement at 2-4 fold lower cost. Leapfrog improvement in wide band gap power device capability and cost.

  13. An Extension of SIC Predictions to the Wiener Coactive Model.

    PubMed

    Houpt, Joseph W; Townsend, James T

    2011-06-01

    The survivor interaction contrasts (SIC) is a powerful measure for distinguishing among candidate models of human information processing. One class of models to which SIC analysis can apply are the coactive, or channel summation, models of human information processing. In general, parametric forms of coactive models assume that responses are made based on the first passage time across a fixed threshold of a sum of stochastic processes. Previous work has shown that that the SIC for a coactive model based on the sum of Poisson processes has a distinctive down-up-down form, with an early negative region that is smaller than the later positive region. In this note, we demonstrate that a coactive process based on the sum of two Wiener processes has the same SIC form.

  14. Thermal Characterization of SiC Amorphous Thin Films

    NASA Astrophysics Data System (ADS)

    Jeong, Taehee; Zhu, Jian-Gang; Mao, Sining; Pan, Tao; Tang, Yun Jun

    2012-06-01

    The cross-plane thermal conductivity of SiC amorphous films was measured employing the transient thermoreflectance technique. The SiC films were deposited on silicon substrates by RF magnetron sputtering at room temperature. The thickness of the films was varied in the range from 100 nm to 2500 nm to analyze the size effect. The results found that the thermal conductivity of the SiC thin films is significantly smaller than that of the SiC material in bulk form. The small thermal conductivity stems from the structural disorder of the films, which was confirmed by high-resolution transmission electron microscopy and X-ray diffraction. In addition, the contribution of the thermal boundary resistance to the thermal conductivity of the films is discussed.

  15. Observations of Ag diffusion in ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Hunter, Jerry L.; Giordani, Andrew J.; Allen, Todd R.

    2015-06-01

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500-1625 °C, were investigated by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  16. Observations of Ag diffusion in ion implanted SiC

    SciTech Connect

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Jerry L. Hunter, Jr.; Giordani, Andrew J.; Allen, Todd R.

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  17. Microwave joining of SiC ceramics and composites

    SciTech Connect

    Ahmad, I.; Silberglitt, R.; Tian, Y.L.; Katz, J.D.

    1997-04-01

    Potential applications of SiC include components for advanced turbine engines, tube assemblies for radiant burners and petrochemical processing and heat exchangers for high efficiency electric power generation systems. Reliable methods for joining SiC are required in order to cost-effectively fabricate components for these applications from commercially available shapes and sizes. This manuscript reports the results of microwave joining experiments performed using two different types of SiC materials. The first were on reaction bonded SiC, and produced joints with fracture toughness equal to or greater than that of the base material over an extended range of joining temperatures. The second were on continuous fiber-reinforced SiC/SiC composite materials, which were successfully joined with a commercial active brazing alloy, as well as by using a polymer precursor.

  18. Synthesis of micro-sized interconnected Si-C composites

    DOEpatents

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0

  19. UV-induced SiC nanowire sensors

    NASA Astrophysics Data System (ADS)

    Peng, Gang; Zhou, Yingqiu; He, Yanlan; Yu, Xiaoyan; Zhang, Xue A.; Li, Gong Y.; Haick, Hossam

    2015-02-01

    Ultraviolet (UV)-induced sensors based on a single SiC nanowire (NW) were fabricated and the photoelectric properties including I-V characteristics and time response of the UV sensors were studied. SiC NWs (NWs) were prepared through pyrolyzing a polymer precursor with ferrocene as the catalyst by a CVD route. To elucidate the physical mechanism giving rise to the photoelectrical response in SiC NW sensors, three kinds of contacts between electrodes and SiC NW were prepared, i.e. Schottky contact, p-n junction contact, and Ohmic contact. The photoelectric measurements of the device with Schottky contact indicates the lowest dark current and the largest photocurrent. The results suggest that photocurrent generated at SiC NW-electrode contacts is a result of the photovoltaic effect, in which a built-in electric field accelerates photo generated charge carriers to the electronic contacts. The UV sensors based on SiC NWs could be applied in a harsh environment due to the excellent physical stability and photoelectric properties.

  20. Synthesis, structural and magnetic characterisation of the fully fluorinated compound 6H-BaFeO{sub 2}F

    SciTech Connect

    Clemens, Oliver; Wright, Adrian J.; Berry, Frank J.; Smith, Ronald I.; Slater, Peter R.

    2013-02-15

    The compound 6H-BaFeO{sub 2}F (P6{sub 3}/mmc) was synthesised by the low temperature fluorination of 6H-BaFeO{sub 3-d} using polyvinylidenedifluoride (PVDF) as a fluorination agent. Structural characterisation by XRD and NPD suggests that the local positions of the oxygen and fluorine atoms vary with no evidence for ordering on the anion sites. This compound shows antiferromagnetic ordering at room temperature with antiparallel alignment of the magnetic moments along the c-axis. The use of PVDF also allows the possibility of tuning the fluorine content in materials of composition 6H-BaFeO{sub 3-d}F{sub y} to any value of 06H-BaFeO{sub 2}F. Highlights: Black-Right-Pointing-Pointer The crystal structure of the hexagonal perovskite phase 6H-BaFeO{sub 2}F. Black-Right-Pointing-Pointer H-BaFeO{sub 2}F and 6H-BaFeO{sub 3-d}F{sub y} were prepared via low temperature fluorination using PVDF. Black-Right-Pointing-Pointer A structural investigation of the compounds BaFeO{sub 2}F is presented in detail. Black-Right-Pointing-Pointer This analysis suggests differences for the local coordination of O{sup 2-} and F{sup -} anions. Black-Right-Pointing-Pointer H-BaFeO{sub 2}F shows antiferromagnetic ordering at 300 K. Black-Right-Pointing-Pointer The magnetic moments align parallel to the a-axis.

  1. Correlation of EBIC and SWBXT Imaged Defects and Epilayer Growth Pits in 6H-SiC Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Schnable, C. M.; Tabib-Azar, M.; Neudeck, P. G.; Bailey, S. G.; Su, H. B.; Dudley, M.; Raffaelle, R. P.

    2000-01-01

    We show the first direct experimental correlation between the presence of closed core screw dislocations in 6H-SiC epilayers with recombination centers, as well as with some of the small growth pits on the epilayer surface in lightly-doped 6H-SiC Schottky diodes. At every Synchrotron White-Beam X-ray Topography (SWBXT)-identified closed core screw dislocation, an Electron Beam Induced Current (EBIC) image showed a dark spot indicating a recombination center, and Nomarski optical microscope and Atomic Force Microscope (AFM) images showed a corresponding small growth pit with a sharp apex on the surface of the epilayer.

  2. Dosimetry and pharmacokinetics of monoclonal antibody A6H with human renal cell carcinoma xenografts: single dose study.

    PubMed

    Palme, D F; Berkopec, J M; Wessels, B W; Elson, M K; Lange, P H; Vessella, R L

    1991-01-01

    Implantable miniature thermoluminescent dosimeters and conventional biodistribution analysis were used to determine the locally absorbed radiation dose delivered to three morphologically distinct human renal cell carcinoma xenografts (TK-39, TK-82 and TK-177C; N = 87) following a 50 microCi infusion of 131iodine-labeled monoclonal antibody A6H. Xenografts were clearly detected by radioimmuno-scintigraphy. Pronounced differences were noted among the three xenografts in MAb pharmacokinetics and in the locally absorbed irradiation doses which ranged from 2 to 5 cGy per injected microCi of 131iodine-labelled A6H. PMID:1917523

  3. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    NASA Astrophysics Data System (ADS)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas; Fadil, Ahmed; Syväjärvi, Mikael; Petersen, Paul Michael; Ou, Haiyan

    2016-07-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation.

  4. SPHERICAL INDENTATION OF SiC

    SciTech Connect

    Wereszczak, Andrew A; Johanns, Kurt E

    2007-01-01

    Instrumented Hertzian indentation testing was performed on several grades of SiCs and the results and preliminary interpretations are presented. The grades included hot-pressed and sintered compositions. One of the hot-pressed grades was additionally subjected to high temperature heat treatment to produce a coarsened grain microstructure to enable the examination of exaggerated grain size on indentation response. Diamond spherical indenters were used in the testing. Indentation load, indentation depth of penetration, and acoustic activity were continually measured during each indentation test. Indentation response and postmortem analysis of induced damage (e.g., ring/cone, radial and median cracking, quasi-plasticity) are compared and qualitatively as a function of grain size. For the case of SiC-N, the instrumented spherical indentation showed that yielding initiated at an average contact stress 12-13 GPa and that there was another event (i.e., a noticeable rate increase in compliance probably associated with extensive ring and radial crack formations) occurring around an estimated average contact stress of 19 GPa.

  5. /SiC Composite to Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Hernandez, X.; Jiménez, C.; Mergia, K.; Yialouris, P.; Messoloras, S.; Liedtke, V.; Wilhelmi, C.; Barcena, J.

    2014-08-01

    In view of aerospace applications, an innovative structure for joining a Ti alloy to carbon fiber reinforced silicon carbide has been developed. This is based on the perforation of the CMC material, and this procedure results in six-fold increase of the shear strength of the joint compared to the unprocessed CMC. The joint is manufactured using the active brazing technique and TiCuAg as filler metal. Sound joints without defects are produced and excellent wetting of both the composite ceramic and the metal is observed. The mechanical shear tests show that failure occurs always within the ceramic material and not at the joint. At the CMC/filler, Ti from the filler metal interacts with the SiC matrix to form carbides and silicides. In the middle of the filler region depletion of Ti and formation of Ag and Cu rich regions are observed. At the filler/Ti alloy interface, a layered structure of the filler and Ti alloy metallic elements is formed. For the perforation to have a significant effect on the improvement of the shear strength of the joint appropriate geometry is required.

  6. Improved processing of. alpha. -SiC

    SciTech Connect

    Dutta, S. )

    1988-05-01

    Improved processing techniques such as slurry pressing and hot isostatic pressing were used to minimize processing defects and to improve strength and reliability in fabricated SiC. For this purpose, compacts were fabricated by various consolidation techniques: (1) dry-pressing and sintering, (2) slurry-pressing and sintering, and (3) slurry-pressing and hot isostatic pressing. High density (>96% of theoretical) was produced by sintering at 2,150{degree} to 2,200{degree}C. By contrast, a much lower temperature (1,875{degree} to 1,900{degree}C) was required for high-density specimens by hot isostatic pressing. The isostatistically hot-pressed {alpha}-SiC exhibited an ultrafine-grained microstructure (0.3 to 3 {mu}m) compared to 1 to 17 {mu}m produced by sintering. Dry-pressing and sintering yielded an average flexure strength (4-point bend) as high as 348 MPa. On the other hand, slurry-pressing resulted in an {approx}25% improvement in strength, 348 to 428 MPa. Further, isostatic hot-pressing of slurry-pressed specimens exhibited an average strength as high as 655 MPa. This value was {approx}90% higher than the dry-pressed/sintered strength and {approx}60% higher than the slurry-pressed/sintered strength.

  7. Influence of SiC surface polarity on the wettability and reactivity in an Al/SiC system

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Wang, Yi; Ren, Lihua; Li, Shixin; Liu, Yuhua; Jiang, Qichuan

    2015-11-01

    The wetting of (0 0 0 1) 6H-SiC single crystals by molten Al was investigated using a dispensed sessile drop method in a high vacuum at 973-1173 K. The wettability and reactivity in this system are sensitive to the surface polarity of SiC. The interfacial reaction on the Si-terminated surface is rapid. The formation of a continuous Al4C3 product layer at the interface leads to an equilibrium contact angle of 56 ± 1° at 1173 K. In comparison, the interfacial reaction on the C-terminated surface is sluggish. The interface is only partially covered by discrete Al4C3 platelets even after dwelling at 1173 K for 2 h. The final wettability, however, is much better (θF = 41 ± 1°) than that of the Si-terminated surface which was covered by a dense Al4C3 layer, suggesting that the formation of Al4C3 should not always contribute to the wetting in the Al/SiC system. A plausible explanation is that the clean (i.e., deoxidized) C-terminated surface should be well wetted by molten Al in nature, owing to the strong chemical interactions between liquid Al and the surface atoms of the C-terminated SiC. It is likely that the presence of the oxide film at the surface of the molten Al drop or the SiC substrate and the rapid formation of Al4C3, which prevent the establishment of a real Al/SiC interface, conceal the intrinsic wettability of this system.

  8. SiC protective coating for photovoltaic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Lei, Xin; Kane, Sheryl; Cogan, Stuart; Lorach, Henri; Galambos, Ludwig; Huie, Philip; Mathieson, Keith; Kamins, Theodore; Harris, James; Palanker, Daniel

    2016-08-01

    Objective. To evaluate plasma-enhanced, chemically vapor deposited (PECVD) amorphous silicon carbide (α-SiC:H) as a protective coating for retinal prostheses and other implantable devices, and to study their failure mechanisms in vivo. Approach. Retinal prostheses were implanted in rats sub-retinally for up to 1 year. Degradation of implants was characterized by optical and scanning electron microscopy. Dissolution rates of SiC, SiN x and thermal SiO2 were measured in accelerated soaking tests in saline at 87 °C. Defects in SiC films were revealed and analyzed by selectively removing the materials underneath those defects. Main results. At 87 °C SiN x dissolved at 18.3 ± 0.3 nm d‑1, while SiO2 grown at high temperature (1000 °C) dissolved at 0.104 ± 0.008 nm d‑1. SiC films demonstrated the best stability, with no quantifiable change after 112 d. Defects in thin SiC films appeared primarily over complicated topography and rough surfaces. Significance. SiC coatings demonstrating no erosion in accelerated aging test for 112 d at 87 °C, equivalent to about 10 years in vivo, can offer effective protection of the implants. Photovoltaic retinal prostheses with PECVD SiC coatings exhibited effective protection from erosion during the 4 month follow-up in vivo. The optimal thickness of SiC layers is about 560 nm, as defined by anti-reflective properties and by sufficient coverage to eliminate defects.

  9. SiC protective coating for photovoltaic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Lei, Xin; Kane, Sheryl; Cogan, Stuart; Lorach, Henri; Galambos, Ludwig; Huie, Philip; Mathieson, Keith; Kamins, Theodore; Harris, James; Palanker, Daniel

    2016-08-01

    Objective. To evaluate plasma-enhanced, chemically vapor deposited (PECVD) amorphous silicon carbide (α-SiC:H) as a protective coating for retinal prostheses and other implantable devices, and to study their failure mechanisms in vivo. Approach. Retinal prostheses were implanted in rats sub-retinally for up to 1 year. Degradation of implants was characterized by optical and scanning electron microscopy. Dissolution rates of SiC, SiN x and thermal SiO2 were measured in accelerated soaking tests in saline at 87 °C. Defects in SiC films were revealed and analyzed by selectively removing the materials underneath those defects. Main results. At 87 °C SiN x dissolved at 18.3 ± 0.3 nm d-1, while SiO2 grown at high temperature (1000 °C) dissolved at 0.104 ± 0.008 nm d-1. SiC films demonstrated the best stability, with no quantifiable change after 112 d. Defects in thin SiC films appeared primarily over complicated topography and rough surfaces. Significance. SiC coatings demonstrating no erosion in accelerated aging test for 112 d at 87 °C, equivalent to about 10 years in vivo, can offer effective protection of the implants. Photovoltaic retinal prostheses with PECVD SiC coatings exhibited effective protection from erosion during the 4 month follow-up in vivo. The optimal thickness of SiC layers is about 560 nm, as defined by anti-reflective properties and by sufficient coverage to eliminate defects.

  10. Identification and transcriptional profile of multiple genes in the posterior kidney of Nile tilapia at 6h post bacterial infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the molecular mechanisms involved in response of Nile tilapia (Oreochromis niloticus) to bacterial infection, suppression subtractive cDNA hybridization technique was used to identify upregulated genes in the posterior kidney of Nile tilapia at 6h post infection with Aeromonas hydrophi...

  11. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: SiC based Si/SiC heterojunction and its rectifying characteristics

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Chen, Zhi-Ming; Li, Lian-Bi; Zhao, Shun-Feng; Lin, Tao

    2009-11-01

    The Si on SiC heterojunction is still poorly understood, although it has a number of potential applications in electronic and optoelectronic devices, for example, light-activated SiC power switches where Si may play the role of an light absorbing layer. This paper reports on Si films heteroepitaxially grown on the Si face of (0001) n-type 6H-SiC substrates and the use of B2H6 as a dopant for p-Si grown at temperatures in a range of 700-950 °C. X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) tests have demonstrated that the samples prepared at the temperatures ranged from 850 °C to 900 °C are characterized as monocrystalline silicon. The rocking XRD curves show a well symmetry with FWHM of 0.4339° Omega. Twin crystals and stacking faults observed in the epitaxial layers might be responsible for widening of the rocking curves. Dependence of the crystal structure and surface topography on growth temperature is discussed based on the experimental results. The energy band structure and rectifying characteristics of the Si/SiC heterojunctions are also preliminarily tested.

  12. SiC Homoepitaxy, Etching and Graphene Epitaxial Growth on SiC Substrates Using a Novel Fluorinated Si Precursor Gas (SiF4)

    NASA Astrophysics Data System (ADS)

    Rana, Tawhid; Chandrashekhar, M. V. S.; Daniels, Kevin; Sudarshan, Tangali

    2016-04-01

    Tetrafluorosilane (SiF4 or TFS), a novel precursor gas, has been demonstrated to perform three primary operations of silicon carbide-related processing: SiC etching, SiC epitaxial growth and graphene epitaxial growth. TFS etches SiC substrate vigorously in a H2 ambient by efficient Si removal from the surface, where SiC etch rate is a function of TFS gas concentration. In this SiC etching process, Si is removed by TFS and C is removed by H2. When propane is added to a H2 and TFS gas mixture, etching is halted and high-quality SiC epitaxy takes place in a Si droplet-free condition. TFS's ability to remove Si can also be exploited to grow epitaxial graphene in a controllable manner in an inert (Ar) ambient. Here, TFS enhances graphene growth by selective etching of Si from the SiC surface.

  13. Growth and Features of Epitaxial Graphene on SiC

    NASA Astrophysics Data System (ADS)

    Kusunoki, Michiko; Norimatsu, Wataru; Bao, Jianfeng; Morita, Koichi; Starke, Ulrich

    2015-12-01

    Recent progress of epitaxial graphene on SiC was reviewed, focusing on its growth and structural and electronic features. Homogeneous graphene can be grown on SiC(0001) on a wafer scale, however on SiC(000bar{1}) multilayer but rotationally stacked graphene with monolayer like electronic property grows. HRTEM revealed the formation mechanism and structural features of graphene on the both surfaces. The high structural and electronic quality of the grown graphene is monitored by Raman spectroscopy and magneto-transport characterization. High-resolution ARPES measurements of the electronic dispersion around the bar{K}-point retrieved the ABA and ABC stacked trilayer graphene. The measurements also directly revealed that electronic structures of graphene were manipulated by transfer doping and atomic intercalation. In particular, p- and n-doped regions on a meso-scale and the p-n junctions prepared on SiC via controlling intercalation of Ge exhibited ballistic transport and Klein tunneling, which predicted novel potentials on to epitaxial graphene on SiC.

  14. X-ray fluorescence microtomography of SiC shells

    SciTech Connect

    Ice, G.E.; Chung, J.S.; Nagedolfeizi, M.

    1997-04-01

    TRISCO coated fuel particles contain a small kernel of nuclear fuel encapsulated by alternating layers of C and SiC. The TRISCO coated fuel particle is used in an advanced fuel designed for passive containment of the radioactive isotopes. The SiC layer provides the primary barrier for radioactive elements in the kernel. The effectiveness of this barrier layer under adverse conditions is critical to containment. The authors have begun the study of SiC shells from TRISCO fuel. They are using the fluorescent microprobe beamline 10.3.1. The shells under evaluation include some which have been cycled through a simulated core melt-down. The C buffer layers and nuclear kernels of the coated fuel have been removed by laser drilling through the SiC and then exposing the particle to acid. Elements of interest include Ru, Sb, Cs, Ce and Eu. The radial distribution of these elements in the SiC shells can be attributed to diffusion of elements in the kernel during the melt-down. Other elements in the shells originate during the fabrication of the TRISCO particles.

  15. Hysteresis in the Active Oxidation of SiC

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Harder, Bryan J.; Myers, Dwight L.

    2011-01-01

    Si and SiC show both passive oxidation behavior where a protective film of SiO2 forms and active oxidation behavior where a volatile suboxide SiO(g) forms. The active-to-passive and passive-to-active oxidation transitions are explored for both Si and SiC. Si shows a dramatic difference between the P(O2) for the two transitions of 10-4 bar. The active-to-passive transition is controlled by the condition for SiO2/Si equilibrium and the passive-to-active transition is controlled by the decomposition of SiO2. In the case of SiC, the P(O2) for these transitions are much closer. The active-to-passive transition appears to be controlled by the condition for SiO2/SiC equilibrium. The passive-to-active transition appears to be controlled by the interfacial reaction of SiC and SiO2 and subsequent generation of gases at the interface which leads to scale breakdown.

  16. Deposition of hydroxyapatite on SiC nanotubes in simulated body fluid.

    PubMed

    Taguchi, Tomitsugu; Miyazaki, Toshiki; Iikubo, Satoshi; Yamaguchi, Kenji

    2014-01-01

    SiC nanotubes can become candidate reinforcement materials for dental and orthopedic implants due to their light weight and excellent mechanical properties. However, the development of bioactive SiC materials has not been reported. In this study, hydroxyapatites were found on SiC nanotubes treated with NaOH and subsequently HCl solution after soaking in simulated body fluid. On the other hand, hydroxyapatites did not deposit on as-received SiC nanotubes, the SiC nanotubes with NH4OH solution treatment and SiC bulk materials with NaOH and subsequently HCl solution treatment. Therefore, we succeeded in the development of bioactive SiC nanotubes by downsizing SiC materials to nanometer size and treating with NaOH and subsequently HCl solutions for the first time.

  17. SIC-POVMS and MUBS: Geometrical Relationships in Prime Dimension

    SciTech Connect

    Appleby, D. M.

    2009-03-10

    The paper concerns Weyl-Heisenberg covariant SIC-POVMs (symmetric informationally complete positive operator valued measures) and full sets of MUBs (mutually unbiased bases) in prime dimension. When represented as vectors in generalized Bloch space a SIC-POVM forms a d{sup 2}-1 dimensional regular simplex (d being the Hilbert space dimension). By contrast, the generalized Bloch vectors representing a full set of MUBs form d+1 mutually orthogonal d-1 dimensional regular simplices. In this paper we show that, in the Weyl-Heisenberg case, there are some simple geometrical relationships between the single SIC-POVM simplex and the d+1 MUB simplices. We go on to give geometrical interpretations of the minimum uncertainty states introduced by Wootters and Sussman, and by Appleby, Dang and Fuchs, and of the fiduciality condition given by Appleby, Dang and Fuchs.

  18. Aspects of SiC diode assembly using Ag technology

    NASA Astrophysics Data System (ADS)

    Mysliwiec, Marcin; Guziewicz, Marek; Kisiel, Ryszard

    2013-07-01

    The aim of our paper is to consider the possibility of applying pure Ag technology for assembly of SiC Schottky diode into a ceramic package able to work at temperatures up to 350°C. Ag micropowder was used for assembly SiC structure to DBC interposer of the ceramic package. Ag wire bonds as well as flip-chip technology using Ag balls were used as material for interconnection systems. The parameters of I-V characteristics were used as a quality factor to determine the Schottky diode after hermetization into ceramic package as well as after ageing in air at 350°C in comparison with characteristics of bare SiC diode.

  19. Effect of helium implantation on SiC and graphite

    NASA Astrophysics Data System (ADS)

    Guo, Hong-Yan; Ge, Chang-Chun; Xia, Min; Guo, Li-Ping; Chen, Ji-Hong; Yan, Qing-Zhi

    2015-03-01

    Effects of helium implantation on silicon carbide (SiC) and graphite were studied to reveal the possibility of SiC replacing graphite as plasma facing materials. Pressureless sintered SiC and graphite SMF-800 were implanted with He+ ions of 20 keV and 100 keV at different temperatures and different fluences. The He+ irradiation induced microstructure changes were studied by field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Project supported by the ITER-National Magnetic Confinement Fusion Program, China (Grant Nos. 2010GB109000, 2011GB108009, and 2014GB123000) and the National Natural Science Foundation of China (Grant No. 11075119).

  20. Selective epitaxial growth of graphene on SiC

    SciTech Connect

    Camara, N.; Rius, G.; Godignon, P.; Huntzinger, J.-R.; Tiberj, A.; Camassel, J.

    2008-09-22

    We present a method of selective epitaxial growth of few layers graphene (FLG) on a ''prepatterned'' silicon carbide (SiC) substrate. The methods involves, successively, the sputtering of a thin aluminium nitride (AlN) layer on top of a monocrystalline SiC substrate and, then, patterning it with e-beam lithography and wet etching. The sublimation of few atomic layers of Si from the SiC substrate occurs only through the selectively etched AlN layer. The presence of the Raman G-band at {approx}1582 cm{sup -1} in the AlN-free areas is used to validate the concept. It gives absolute evidence of selective FLG growth.

  1. Selective epitaxial growth of graphene on SiC

    NASA Astrophysics Data System (ADS)

    Camara, N.; Rius, G.; Huntzinger, J.-R.; Tiberj, A.; Mestres, N.; Godignon, P.; Camassel, J.

    2008-09-01

    We present a method of selective epitaxial growth of few layers graphene (FLG) on a "prepatterned" silicon carbide (SiC) substrate. The methods involves, successively, the sputtering of a thin aluminium nitride (AlN) layer on top of a monocrystalline SiC substrate and, then, patterning it with e-beam lithography and wet etching. The sublimation of few atomic layers of Si from the SiC substrate occurs only through the selectively etched AlN layer. The presence of the Raman G-band at ˜1582cm-1 in the AlN-free areas is used to validate the concept. It gives absolute evidence of selective FLG growth.

  2. SiC IR emitter design for thermophotovoltaic generators

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis M.; Ferguson, Luke; McCoy, Larry G.; Pernisz, Udo C.

    1996-02-01

    An improved ceramic spine disc burner/emitter for use in a thermophotovoltaic (TPV) generator is described. A columnar infrared (IR) emitter consisting of a stack of silicon carbide (SiC) spine discs provides for both high conductance for the combustion gases and efficient heat transfer from the hot combustion gases to the emitter. Herein, we describe the design, fabrication, and testing of this SiC burner as well as the characterization of the IR spectrum it emits. We note that when the SiC column is surrounded with fused silica heat shields, these heat shields suppress the emitted power beyond 4 microns. Thus, a TPV generator using GaSb photovoltaic cells covered by simple dielectric filters can convert over 30% of the emitted IR radiation to DC electric power.

  3. Advanced SiC composites for fusion applications

    SciTech Connect

    Snead, L.L.; Schwarz, O.J.

    1995-04-01

    This is a short review of the motivation for and progress in the development of ceramic matrix composites for fusion. Chemically vapor infiltrated silicon carbide (SiC) composites have been fabricated from continuous fibers of either SiC or graphite and tested for strength and thermal conductivity. Of significance is the the Hi-Nicalon{trademark} SiC based fiber composite has superior unirradiated properties as compared to the standard Nicalon grade. Based on previous results on the stability of the Hi-Nicalon fiber, this system should prove more resistant to neutron irradiation. A graphite fiber composite has been fabricated with very good mechnical properties and thermal conductivity an order of magnitude higher than typical SiC/SiC composites.

  4. Large And Highly Stable Structures Made Of SiC

    NASA Astrophysics Data System (ADS)

    Bougoin, M.; Lavenac, J.

    2012-07-01

    The Boostec® SiC material appears very attractive for manufacturing large space telescopes, thanks to its high specific stiffness and its thermal stability. Its physical properties are perfectly isotropic and it is remarkably more stable than the glass-ceramics in time and also against space radiations. This sintered SiC material has been fully qualified for application at cryogenic temperature. Thanks to its good mechanical strength and toughness, it can be used for making not only the mirrors but also the structure and the focal plane hardware of the optical instruments, thus making “all in SiC” and possibly “athermal” telescopes. The present paper describes the Boostec® SiC properties and then its manufacturing technology. Some examples of the structures of the Multi Spectral Imaging instruments of Sentinel-2 and also the very large Gaia one are further developed.

  5. Nucleation of AlN on SiC substrates by seeded sublimation growth

    NASA Astrophysics Data System (ADS)

    Lu, P.; Edgar, J. H.; Lee, R. G.; Chaudhuri, J.

    2007-03-01

    The nucleation of aluminum nitride (AlN) on silicon carbide (SiC) seed by sublimation growth was investigated. Silicon-face, 8∘ off-axis 4H-SiC (0 0 0 1) and on-axis 6H-SiC (0 0 0 1) were employed as seeds. Initial growth for 15 min and extended growth for 2 h suggested that 1850 °C was the optimum temperature of AlN crystal growth: on an 8∘ off-axis substrate, AlN grew laterally forming a continuous layer with regular "step" features; on the on-axis substrate, AlN grew vertically as well as laterally, generating an epilayer with hexagonal sub-grains of different sizes. The layer's c-lattice constant was larger than pure AlN, which was caused by the compression of the AlN film and impurities (Si, C) incorporation. Polarity sensitive and defect selective etchings were performed to examine the surface polarity and dislocation density. All the samples had an Al-polar surface and no N-polar inversion domains were observed. Threading dislocations were present regardless of the substrate misorientation. Basal plane dislocations (BPDs) were revealed only on the AlN films on the 8∘ off-axis substrates. The total dislocation density was in the order of 108 cm-2 when the film was 20- 30 μm thick.

  6. Electronic spectrum of C 6H: 2Π- X2Π in the gas-phase detected by cavity ringdown

    NASA Astrophysics Data System (ADS)

    Kotterer, Markus; Maier, John P.

    1997-02-01

    The 2Π- X2Π electronic transition of the carbon chain C 6H has been detected in the gas-phase. The radical is generated in a hollow cathode discharge of acetylene in helium, and cavity ringdown spectroscopy is used as a sensitive means to observed the band system in absorption. This is the first result aimed at locating the electronic transitions of the neutral carbon chains, of astrophysical interest, in the gas-phase. The search was based on the measurements made previously on C 6H in neon matrices. The origin band ( Ω = 3/2) in the gas phase at 18996.4 cm -1 is 142 cm -1 to the blue of the matrix value.

  7. Study on the machined depth when nanoscratching on 6H-SiC using Berkovich indenter: Modelling and experimental study

    NASA Astrophysics Data System (ADS)

    Zhang, Feihu; Meng, Binbin; Geng, Yanquan; Zhang, Yong

    2016-04-01

    In order to investigate the deformation characteristics and material removing mechanism of the single crystal silicon carbide at the nanoscale, the nanoscratching tests were conducted on the surface of 6H-SiC (0 0 0 1) by using Berkovich indenter. In this paper, a theoretical model for nanoscratching with Berkovich indenter is proposed to reveal the relationship between the applied normal load and the machined depth. The influences of the elastic recovery and the stress distribution of the material are considered in the developed theoretical model. Experimental and theoretical machined depths are compared when scratching in different directions. Results show that the effects of the elastic recovery of the material, the geometry of the tip and the stress distribution of the interface between the tip and sample have large influences on the machined depth which should be considered for this kind of hard brittle material of 6H-SiC.

  8. Conductivity compensation in p-6H-SiC in irradiation with 8-MeV protons

    SciTech Connect

    Lebedev, A. A.; Kozlovski, V. V.; Belov, S. V.; Bogdanova, E. V.; Oganesyan, G. A.

    2011-09-15

    Carrier removal rate (V{sub d}) in p-6H-SiC in its irradiation with 8-MeV protons has been studied. The p-6H-SiC samples were produced by sublimation in vacuum. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that complete compensation of samples with initial value of N{sub a} - N{sub d} Almost-Equal-To 1.5 Multiplication-Sign 10{sup 18} cm{sup -3} occurs at an irradiation dose of {approx}1.1 Multiplication-Sign 10{sup 16} cm{sup -2}. In this case, the carrier removal rate was {approx}130 cm{sup -1}.

  9. Surface birefringence of self-assembly periodic nanostructures induced on 6H-SiC surface by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Song, Juan; Dai, Ye; Tao, Wenjun; Gong, Min; Ma, Guohong; Zhao, Quanzhong; Qiu, Jianrong

    2016-02-01

    In this paper, we report the birefringence effect of surface self-assembly periodic nanostructures induced on 6H-SiC by femtosecond laser irradiation. Birefringence characteristic (e.g. cross-polarized image), measured by cross polarized microscopy, was found to be controlled by both single pulse energy and scanning velocity. Comparing birefringence measurement results of nanostructures and morphology characterization by Scanning electron microscopy, it is shown that ∼200 nm-period deep-subwavelength periodic ripples (DSWR) plays a dominating role in the birefringence effect. Raman spectra show that the change of retardance with pulse energy and scanning velocity is most possibly caused by the thickness variation of DSWR. Finally, a light attenuator based on a single layer of DSWR structure on 6H-SiC surface was constructed and tested by light source of 800 nm to have a tunable attenuating ratio of 69-100%.

  10. Volumetric Properties of the Mixture Hexane C6H14 + C8H16 Cyclooctane (VMSD1242, LB3843_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Hexane C6H14 + C8H16 Cyclooctane (VMSD1242, LB3843_V)' providing data by calculation of molar excess volume from density measurements at variable pressure and constant temperature and mole fraction.

  11. Volumetric Properties of the Mixture Hexane C6H14 + C8H16 Cyclooctane (VMSD1141, LB3786_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Hexane C6H14 + C8H16 Cyclooctane (VMSD1141, LB3786_V)' providing data from direct measurement of mass density at variable pressure and constant temperature and mole fraction.

  12. Development of CVD Mullite Coatings for SiC Fibers

    SciTech Connect

    Sarin, V.K.; Varadarajan, S.

    2000-03-15

    A process for depositing CVD mullite coatings on SiC fibers for enhanced oxidation and corrosion, and/or act as an interfacial protective barrier has been developed. Process optimization via systematic investigation of system parameters yielded uniform crystalline mullite coatings on SiC fibers. Structural characterization has allowed for tailoring of coating structure and therefore properties. High temperature oxidation/corrosion testing of the optimized coatings has shown that the coatings remain adherent and protective for extended periods. However, preliminary tests of coated fibers showed considerable degradation in tensile strength.

  13. Spin effects in thermoelectric phenomena in SiC nanoribbons.

    PubMed

    Zberecki, K; Swirkowicz, R; Wierzbicki, M; Barnaś, J

    2015-01-21

    Using ab initio methods we calculate the thermoelectric and spin thermoelectric properties of zigzag SiC nanoribbons, asymmetrically terminated with hydrogen. Such nanoribbons display a ferromagnetic ground state, with edge magnetic moments oriented in parallel. Both thermopower and spin thermopower have been determined as a function of chemical potential and temperature. To find the thermoelectric efficiency, the total heat conductance has been calculated, i.e. the electronic and phonon contributions. Numerical results for SiC nanoribbons are compared with those for graphene and silicene ones.

  14. Ly6h regulates trafficking of alpha7 nicotinic acetylcholine receptors and nicotine-induced potentiation of glutamatergic signaling.

    PubMed

    Puddifoot, Clare A; Wu, Meilin; Sung, Rou-Jia; Joiner, William J

    2015-02-25

    α7 nAChRs are expressed widely throughout the brain, where they are important for synaptic signaling, gene transcription, and plastic changes that regulate sensory processing, cognition, and neural responses to chronic nicotine exposure. However, the mechanisms by which α7 nAChRs are regulated are poorly understood. Here we show that trafficking of α7-subunits is controlled by endogenous membrane-associated prototoxins in the Ly6 family. In particular, we find that Ly6h reduces cell-surface expression and calcium signaling by α7 nAChRs. We detect Ly6h in several rat brain regions, including the hippocampus, where we find it is both necessary and sufficient to limit the magnitude of α7-mediated currents. Consistent with such a regulatory function, knockdown of Ly6h in rat hippocampal pyramidal neurons enhances nicotine-induced potentiation of glutamatergic mEPSC amplitude, which is known to be mediated by α7 signaling. Collectively our data suggest a novel cellular role for Ly6 proteins in regulating nAChRs, which may be relevant to plastic changes in the nervous system including rewiring of glutamatergic circuitry during nicotine addiction. PMID:25716842

  15. Laser-induced fluorescence of cyclohexadienyl (c-C6H7) radical in the gas phase.

    PubMed

    Imamura, Takashi; Zhang, Weijun; Horiuchi, Hiroaki; Hiratsuka, Hiroshi; Kudo, Takako; Obi, Kinichi

    2004-10-01

    A laser-induced fluorescence spectrum was observed in the 500-560 nm region when a mixture of 1,4-cyclohexadiene and oxalyl chloride was photolyzed at 193 nm. The observed excitation spectrum was assigned to the A (2)A(2)<--X (2)B(1) transition of the cyclohexadienyl radical c-C6H7, produced by abstraction of a hydrogen atom from 1,4-cyclohexadiene by Cl atoms. The origin of the A<--X transition of c-C(6)H(7) was at 18 207 cm(-1). From measurements of the dispersed fluorescence spectra and ab initio calculations, the frequencies of several vibrational modes in both the ground and excited states of c-C(6)H(7) were determined: nu(5)(C-H in-plane bend)=1571, nu(8)(C-H in-plane bend)=1174, nu(10)(C-C-C in-plane bend)=981, nu(12)(C-C-C in-plane bend)=559, nu(16)(C-C-C out-of-plane bend)=375, and nu(33)(C-C-C in-plane bend)=600 cm(-1) for the ground state and nu(8)=1118, nu(10)=967, nu(12)=502, nu(16)=172, and nu(33)=536 cm(-1) for the excited states.

  16. 3d electron transitions in Co- and Ni-doped MgSO3·6H2O

    NASA Astrophysics Data System (ADS)

    Petkova, P.; Bunzarov, Zh; Iliev, I.; Dimov, T.; Tzoukrovsky, Y.

    2012-05-01

    Absorption spectra of magnesium sulfite hexahydrate (MgSO3·6H2O), doped with Co and Ni, have been studied in the spectral region 1.46-3.1 eV. Investigations have been carried out with linear polarized light E||c, E⊥c (c is the optical axis of MgSO3·6H2O) that propagates in the (1210) direction. The Co structure manifests in the spectral region 2.06-3.1 eV and the Ni structures manifest in the spectral region 1.46-2.26 eV. The peculiarities of the Jahn-Teller effect and spin-orbit interaction with respect to the impurity ions in the crystal lattice of MgSO3·6H2O are analyzed and discussed. The electron transitions in Co2+ and Ni2+ ions are determined for E||c, E⊥c. The crystal field parameter Dq and Racah parameters B and C are also calculated.

  17. Anion Photoelectron Spectroscopic Studies of the NbC4H4-, NbC6H6- and NbC6H4- Products of Flow Tube Reactions of Niobium with Butadiene

    NASA Astrophysics Data System (ADS)

    Baudhuin, Melissa A.; Boopalachandran, Praveenkumar; Schnepper, D. Alex; Leopold, Doreen; Miller, Stephen R.

    2014-06-01

    We report mass spectra, 488 nm anion photoelectron spectra, and density functional theory (DFT) calculations of organometallic complexes produced by flow tube reactions of niobium with butadiene (C4H6), and compare these results with those obtained upon reactions with ethylene (C2H4). In the C4H6 experiments, NbC4H4- is the most abundant product anion, indicating loss of H2 upon reaction with Nb. DFT analysis of the vibrationally-resolved photoelectron spectrum indicates that the 3A^' anion incorporates a five-membered Nb-C4 ring in which the Nb atom lies outside the C4 plane. The electron affinity of the corresponding neutral molecule (2A^') is measured to be 0.997 ± 0.006 eV. Upon reaction with C2H4, at least one additional isomer of NbC4H4- is produced, giving rise to broad spectral features at higher electron binding energies. Reactions with C4H6 also yield relatively small amounts of the NbC6H6- and NbC6H4- product anions, indicating C-C bond activation in addition to dehydrogenation. The former anion displays the 3A1, C6v Nb-benzene π-complex structure previously observed upon reaction with C2H4. The NbC6H4- anion produced upon reaction with C4H6 yields at least two vibrationally-resolved photodetachment transitions. DFT calculations performed to date suggest that the lower electron binding energy transition, which indicates an electron affinity of 1.110 ± 0.008 eV for the corresponding neutral complex, is due to the 4B2 ← 3B2 detachment from a planar, C2v Nb-benzyne anion.

  18. -SiC nanocomposite coatings synthesized by co-electrodeposition

    NASA Astrophysics Data System (ADS)

    Masoudi, Mehran; Hashim, Mansor; Kamari, Halimah Mohamed

    2014-08-01

    In the present work, Ni-Al2O3, Ni-SiC and novel Ni-Al2O3-SiC metal matrix composite (MMC) coatings were electrodeposited onto pure copper samples using a modified Watt's nickel electroplating bath containing nano alumina and silicon carbide particles with an average particle size of 50 nm. The composition, crystalline structure and surface morphology of the deposits were characterized by X-ray diffractometry (XRD), energy-dispersive X-ray spectroscopy (EDS) and field emission scanning electron microscopy (FESEM). The results indicated that Ni-Al2O3-SiC hybrid composite films with an acceptable homogeneity and granular structure having 9.2 and 7.7 % vol. Al2O3 and SiC nanoparticles, respectively were developed successfully. The nanoparticles incorporated in the nickel layer effectively increased the micro hardness and wear resistance owing to dispersion and grain-refinement strengthening, changing the nickel matrix morphology as well as the texture and preferred grain growth direction from <100> to the close-packed <111>. The oxidation resistance of the Ni-Al2O3-SiC hybrid composite coatings was measured to be approximately 41 % greater than the unreinforced Ni deposit and almost 30 % better than the Ni-Al2O3 composite coatings.

  19. Performance of bulk SiC radiation detectors

    NASA Astrophysics Data System (ADS)

    Cunningham, W.; Gouldwell, A.; Lamb, G.; Scott, J.; Mathieson, K.; Roy, P.; Bates, R.; Thornton, P.; Smith, K. M.; Cusco, R.; Glaser, M.; Rahman, M.

    2002-07-01

    SiC is a wide-gap material with excellent electrical and physical properties that may make it an important material for some future electronic devices. The most important possible applications of SiC are in hostile environments, such as in car/jet engines, within nuclear reactors, or in outer space. Another area where the material properties, most notably radiation hardness, would be valuable is in the inner tracking detectors of particle physics experiments. Here, we describe the performance of SiC diodes irradiated in the 24 GeV proton beam at CERN. Schottky measurements have been used to probe the irradiated material for changes in I- V characteristics. Other methods, borrowed from III-V research, used to study the irradiated surface include atomic force microscope scans and Raman spectroscopy. These have been used to observe the damage to the materials surface and internal lattice structure. We have also characterised the detection capabilities of bulk semi-insulating SiC for α radiation. By measuring the charge collection efficiency (CCE) for variations in bias voltage, CCE values up to 100% have been measured.

  20. Saturn V Stage I (S-IC) Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Become familiar with the Saturn V Stage I (S-IC) major structural components: Forward Skirt, Oxidizer Tank, Intertank, Fuel Tank, and Thrust Structure. b) Gain a general understanding of the Stage I subsystems: Fuel, Oxidizer, Instrumentation, Flight Control, Environmental Control, Electrical, Control Pressure, and Ordinance.

  1. Observations of Ag diffusion in ion implanted SiC

    DOE PAGESBeta

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Jerry L. Hunter, Jr.; Giordani, Andrew J.; Allen, Todd R.

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less

  2. First principle identification of SiC monolayer as an efficient catalyst for CO oxidation

    SciTech Connect

    Sinthika, S. E-mail: sinthika90@gmail.com; Thapa, Ranjit E-mail: sinthika90@gmail.com; Reddy, C. Prakash

    2015-06-24

    Using density functional theory, we investigated the electronic properties of SiC monolayer and tested its catalytic activity toward CO oxidation. The planar nature of a SiC monolayer is found to stable and is a high band gap semiconductor. CO interacts physically with SiC surface, whereas O{sub 2} is adsorbed with moderate binding. CO oxidation on SiC monolayer prefers the Eley Rideal mechanism over the Langmuir Hinshelwood mechanism, with an easily surmountable activation barrier during CO{sub 2} formation. Overall metal free SiC monolayer can be used as efficient catalyst for CO oxidation.

  3. PhySIC: a veto supertree method with desirable properties.

    PubMed

    Ranwez, Vincent; Berry, Vincent; Criscuolo, Alexis; Fabre, Pierre-Henri; Guillemot, Sylvain; Scornavacca, Celine; Douzery, Emmanuel J P

    2007-10-01

    This paper focuses on veto supertree methods; i.e., methods that aim at producing a conservative synthesis of the relationships agreed upon by all source trees. We propose desirable properties that a supertree should satisfy in this framework, namely the non-contradiction property (PC) and the induction property (PI). The former requires that the supertree does not contain relationships that contradict one or a combination of the source topologies, whereas the latter requires that all topological information contained in the supertree is present in a source tree or collectively induced by several source trees. We provide simple examples to illustrate their relevance and that allow a comparison with previously advocated properties. We show that these properties can be checked in polynomial time for any given rooted supertree. Moreover, we introduce the PhySIC method (PHYlogenetic Signal with Induction and non-Contradiction). For k input trees spanning a set of n taxa, this method produces a supertree that satisfies the above-mentioned properties in O(kn(3) + n(4)) computing time. The polytomies of the produced supertree are also tagged by labels indicating areas of conflict as well as those with insufficient overlap. As a whole, PhySIC enables the user to quickly summarize consensual information of a set of trees and localize groups of taxa for which the data require consolidation. Lastly, we illustrate the behaviour of PhySIC on primate data sets of various sizes, and propose a supertree covering 95% of all primate extant genera. The PhySIC algorithm is available at http://atgc.lirmm.fr/cgi-bin/PhySIC. PMID:17918032

  4. Construction Progress of S-IC Test Stand Towers

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken April 17, 1963, gives a look at the four tower legs of the S-IC test stand at their completed height.

  5. Construction Progress of the S-IC Test Stand Tower

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken from ground level on May 7, 1963, gives a close look at one of the four towers legs of the S-IC test stand nearing its completed height.

  6. Construction Progress of the S-IC Test Stand Towers

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken April 4, 1963, gives a close up look at the ever-growing four towers of the S-IC Test Stand.

  7. Improved BN Coatings on SiC Fibers in SiC Matrices

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Bhatt, Ramakrishna; Yun, Hee-Mann; DiCarlo, James A.

    2004-01-01

    Modifications of BN-based coatings that are used as interfacial layers between the fibers and matrices of SiCfiber/SiC-matrix composite materials have been investigated to improve the thermomechanical properties of these materials. Such interfacial coating layers, which are also known as interphases (not to be confused with interphase in the biological sense), contribute to strength and fracture toughness of a fiber/matrix composite material by providing for limited amounts of fiber/matrix debonding and sliding to absorb some of the energy that would otherwise contribute to the propagation of cracks. Heretofore, the debonding and sliding have been of a type called inside debonding because they have taken place predominantly on the inside surfaces of the BN layers that is, at the interfaces between the SiC fibers and the interphases. The modifications cause the debonding and sliding to include more of a type, called outside debonding, that takes place at the outside surfaces of the BN layers that is, at the interfaces between the interphases and the matrix (see figure). One of the expected advantages of outside debonding is that unlike in inside debonding, the interphases would remain on the crack-bridging fibers. The interphases thus remaining should afford additional protection against oxidation at high temperature and should delay undesired fiber/fiber fusion and embrittlement of the composite material. A secondary benefit of outside debonding is that the interphase/matrix interfaces could be made more compliant than are the fiber/interphase interfaces, which necessarily incorporate the roughness of the SiC fibers. By properly engineering BN interphase layers to favor outside debonding, it should be possible, not only to delay embrittlement at intermediate temperatures, but also to reduce the effective interfacial shear strength and increase the failure strain and toughness of the composite material. Two techniques have been proposed and partially experimentally

  8. Influence of defects in SiC (0001) on epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Guo, Li-Wei; Lu, Wei; Huang, Jiao; Jia, Yu-Ping; Sun, Wei; Li, Zhi-Lin; Wang, Yi-Fei

    2014-08-01

    Defects in silicon carbide (SiC) substrate are crucial to the properties of the epitaxial graphene (EG) grown on it. Here we report the effect of defects in SiC on the crystalline quality of EGs through comparative studies of the characteristics of the EGs grown on SiC (0001) substrates with different defect densities. It is found that EGs on high quality SiC possess regular steps on the surface of the SiC and there is no discernible D peak in its Raman spectrum. Conversely, the EG on the SiC with a high density of defects has a strong D peak, irregular stepped morphology and poor uniformity in graphene layer numbers. It is the defects in the SiC that are responsible for the irregular stepped morphology and lead to the small domain size in the EG.

  9. Ft-Ir Measurements of Cold Cross Sections of Benzene (C_6H_6) for Cassini/cirs

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Brown, Linda; Toon, Geoffrey C.

    2014-06-01

    Titan's stratosphere is abundant in hydrocarbons (CxHy) producing highly complicated and crowded features in the spectra of Cassini/CIRS. Among these, benzene (C_6H_6) is the heaviest hydrocarbon ever seen in the Titan and cold planets. For this reason, a series of pure and N_2-broadened C6H6 spectra were recorded in the 640 to 1540 wn region at gas temperatures down to 231 K using a Fourier transform spectrometer (Bruker IFS-125HR) at the Jet Propulsion Laboratory. We report temperature dependent absorption cross sections for three strong fundamental bands (νb{4}, νb{14}, νb{13}). We also derived pseudo-line parameters, which include mean intensities and effective lower state energies on a 0.005 wn frequency grid, obtained by fitting all the laboratory spectra simultaneously. For the pseudoline generation, details can be found in a JPL MK-IV website, http://mark4sun.jpl.nasa.gov/data/spec/Pseudo). The resulting pseudolines of the strong bands reproduce observed cross sections to within ˜3 %. These new results are compared to earlier work, including the C6H6+N2 spectra recorded at PNNL. S. W. Sharpe, et al., Appl Spectrosc 58, 1452-1461 (2004); C. P. Rinsland, et al. JQSRT, 109, 2511-2522 (2008). Research described in this paper was performed at the Jet Propulsion Laboratory and California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  10. Promoting scopolamine biosynthesis in transgenic Atropa belladonna plants with pmt and h6h overexpression under field conditions.

    PubMed

    Xia, Ke; Liu, Xiaoqiang; Zhang, Qiaozhuo; Qiang, Wei; Guo, Jianjun; Lan, Xiaozhong; Chen, Min; Liao, Zhihua

    2016-09-01

    Atropa belladonna is one of the most important plant sources for producing pharmaceutical tropane alkaloids (TAs). T1 progeny of transgenic A. belladonna, in which putrescine N-methyltransferase (EC. 2.1.1.53) from Nicotiana tabacum (NtPMT) and hyoscyamine 6β-hydroxylase (EC. 1.14.11.14) from Hyoscyamus niger (HnH6H) were overexpressed, were established to investigate TA biosynthesis and distribution in ripe fruits, leaves, stems, primary roots and secondary roots under field conditions. Both NtPMT and HnH6H were detected at the transcriptional level in transgenic plants, whereas they were not detected in wild-type plants. The transgenes did not influence the root-specific expression patterns of endogenous TA biosynthetic genes in A. belladonna. All four endogenous TA biosynthetic genes (AbPMT, AbTRI, AbCYP80F1 and AbH6H) had the highest/exclusive expression levels in secondary roots, suggesting that TAs were mainly synthesized in secondary roots. T1 progeny of transgenic A. belladonna showed an impressive scopolamine-rich chemotype that greatly improved the pharmaceutical value of A. belladonna. The higher efficiency of hyoscyamine conversion was found in aerial than in underground parts. In aerial parts of transgenic plants, hyoscyamine was totally converted to downstream alkaloids, especially scopolamine. Hyoscyamine, anisodamine and scopolamine were detected in underground parts, but scopolamine and anisodamine were more abundant than hyoscyamine. The exclusively higher levels of anisodamine in roots suggested that it might be difficult for its translocation from root to aerial organs. T1 progeny of transgenic A. belladonna, which produces scopolamine at very high levels (2.94-5.13 mg g(-1)) in field conditions, can provide more valuable plant materials for scopolamine production. PMID:27135818

  11. Synthesis, structural characterization, electrical properties and antioxidant activity of [p-(NH3)C6H4NH3]3P6O18·6H2O

    NASA Astrophysics Data System (ADS)

    Fezai, Ramzi; Mezni, Ali; Kahlaoui, Messaoud; Rzaigui, Mohamed

    2016-09-01

    Single crystals of a novel organic cyclohexaphosphate, [p-(NH3)C6H4NH3]3P6O18.6H2O, have been prepared in aqueous solution. Its crystal structure can be described by a three-dimensional framework where the P6O186- rings are interconnected by hydrogen bonds to form anionic layers between which organic cations are located. Hydrogen bonding network connecting the different components is given. The thermal stability and spectroscopic properties of this material are given too. Its DC and AC electrical conductivities, modulus analysis and dielectric constants have been investigated. The AC conductivity is found to obey the universal power law. The DC electrical conductivity indicates a semiconductor behavior. The kind of the observed conduction is protonic by translocation. X-rays structural and electrical results are correlated. This compound has also been screened for its antioxidant activity, determined in vitro, using 1,1-diphenyl-2-picrylhydrazyl, reducing power, hydroxyl scavenging ability and ferrous ion chelating (FIC) methods and with ascorbic acid as reference.

  12. Volumetric Properties of the Mixture Hexane C6H14 + C8H16 Cyclooctane (VMSD1342, LB3815_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Hexane C6H14 + C8H16 Cyclooctane (VMSD1342, LB3815_V)' providing data by calculation of isothermal compressibility from direct measurements of mass densities at variable pressure and constant temperature and mole fraction.

  13. Study of Electrical Properties in SHI Irradiated 6H-SiC Crystals using Low Temperature Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Viswanathan, E.; Murugaraj, R.; Selvakumar, S.; Kanjilal, D.; Sivaji, K.

    2011-07-01

    In the present work, low temperature impedance measurements were made on the pristine and Ag12+ ions irradiated 6H-SiC samples. The conductivity properties were studied at low temperature. The activation energies were calculated from the Arrhenius plot of d.c conductivity and impedance relaxation time. The activation energy was comparatively higher for the irradiated samples and found to be electronic conduction. From the study we observe the lower conductivity values exhibited for 300 K irradiated sample due to severe damage than the 80 K irradiated sample. The damage production mechanism and the change in electrical properties are discussed.

  14. Volumetric Properties of the Mixture Hexane C6H14 + C14H30 Tetradecane (VMSD1241, LB3873_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Hexane C6H14 + C14H30 Tetradecane (VMSD1241, LB3873_V)' providing data from direct high-pressure dilatometric measurements of molar excess volume at variable pressure and constant temperature and mole fraction.

  15. Comparative calculations of electron transport properties in 6H-SiC using three and five valley models

    NASA Astrophysics Data System (ADS)

    Talha, Nora; Bouazza, Benyounes; Guen Bouazza, Ahlam; Kadoun, Abd-Ed-Daim

    2016-07-01

    Steady-state electron properties are investigated in 6H-SiC at various temperatures, using Monte Carlo simulation where the band structure model is a major part when dealing with high fields. The aim of this work is to optimize the number of valleys involved in the simulation program in order to obtain accurate results while improving the calculation efficiency. For high fields, a five valley model was found to be more accurate than a three valley model and as efficient as the full band method though much less computer time-consuming.

  16. [Cloning and expression of the key enzyme hyoscyamine 6 beta-hydroxylase gene (DaH6H) in scopolamine biosynthesis of Datura arborea].

    PubMed

    Qiang, Wei; Hou, Yan-ling; Li, Xiao; Xia, Ke; Liao, Zhi-hua

    2015-10-01

    Hyoscyamine 6 beta-hydroxylase (H6H) is the last rate-limiting enzyme directly catalyzing the formation of scopolamine in tropane alkaloids (TAs) biosynthesis pathway. It is the primary target gene in the genetic modification of TAs metabolic pathway. Full-length cDNA and gDNA sequences of a novel H6H gene were cloned from Datura arborea (DaH6H, GenBank accession numbers for cDNA and gDNA are KR006981 and KR006983, respectively). Nucleotide sequence analysis reveals an open reading frame of 1375 bp encoding 347 amino acids in the cDNA of DaH6H, while the gDNA of DaH6H contains four exons and three introns, with the highest similarity to the gDNA of H6H from D. stramonium. DaH6H also exhibited the most identity of 90.5% with DsH6H in amino acids and harbored conserved 2-oxoglutarate binding motif and two iron binding motifs. The expression level of DaH6H was highest in the mature leaf, followed by the secondary root, and with no expression in the primary root based on qPCR analysis. Its expression was inhibited by MeJA. DaH6H was expressed in E. coli and a 39 kD recombinant protein was detected in SDS-PAGE. Comparison of the contents of scopolamine and hyoscyamine in various TAs-producing plants revealed that D. arborea was one of the rare scopolamine predominant plants. Cloning of DaH6H gene will allow more research in the molecular regulatory mechanism of TAs biosynthesis in distinct plants and provide a new candidate gene for scopolamine metabolic engineering.

  17. Targeted ablation of the Pde6h gene in mice reveals cross-species differences in cone and rod phototransduction protein isoform inventory.

    PubMed

    Brennenstuhl, Christina; Tanimoto, Naoyuki; Burkard, Markus; Wagner, Rebecca; Bolz, Sylvia; Trifunovic, Dragana; Kabagema-Bilan, Clement; Paquet-Durand, Francois; Beck, Susanne C; Huber, Gesine; Seeliger, Mathias W; Ruth, Peter; Wissinger, Bernd; Lukowski, Robert

    2015-04-17

    Phosphodiesterase-6 (PDE6) is a multisubunit enzyme that plays a key role in the visual transduction cascade in rod and cone photoreceptors. Each type of photoreceptor utilizes discrete catalytic and inhibitory PDE6 subunits to fulfill its physiological tasks, i.e. the degradation of cyclic guanosine-3',5'-monophosphate at specifically tuned rates and kinetics. Recently, the human PDE6H gene was identified as a novel locus for autosomal recessive (incomplete) color blindness. However, the three different classes of cones were not affected to the same extent. Short wave cone function was more preserved than middle and long wave cone function indicating that some basic regulation of the PDE6 multisubunit enzyme was maintained albeit by a unknown mechanism. To study normal and disease-related functions of cone Pde6h in vivo, we generated Pde6h knock-out (Pde6h(-/-)) mice. Expression of PDE6H in murine eyes was restricted to both outer segments and synaptic terminals of short and long/middle cone photoreceptors, whereas Pde6h(-/-) retinae remained PDE6H-negative. Combined in vivo assessment of retinal morphology with histomorphological analyses revealed a normal overall integrity of the retinal organization and an unaltered distribution of the different cone photoreceptor subtypes upon Pde6h ablation. In contrast to human patients, our electroretinographic examinations of Pde6h(-/-) mice suggest no defects in cone/rod-driven retinal signaling and therefore preserved visual functions. To this end, we were able to demonstrate the presence of rod PDE6G in cones indicating functional substitution of PDE6. The disparities between human and murine phenotypes caused by mutant Pde6h/PDE6H suggest species-to-species differences in the vulnerability of biochemical and neurosensory pathways of the visual signal transduction system. PMID:25739440

  18. [Cloning and expression of the key enzyme hyoscyamine 6 beta-hydroxylase gene (DaH6H) in scopolamine biosynthesis of Datura arborea].

    PubMed

    Qiang, Wei; Hou, Yan-ling; Li, Xiao; Xia, Ke; Liao, Zhi-hua

    2015-10-01

    Hyoscyamine 6 beta-hydroxylase (H6H) is the last rate-limiting enzyme directly catalyzing the formation of scopolamine in tropane alkaloids (TAs) biosynthesis pathway. It is the primary target gene in the genetic modification of TAs metabolic pathway. Full-length cDNA and gDNA sequences of a novel H6H gene were cloned from Datura arborea (DaH6H, GenBank accession numbers for cDNA and gDNA are KR006981 and KR006983, respectively). Nucleotide sequence analysis reveals an open reading frame of 1375 bp encoding 347 amino acids in the cDNA of DaH6H, while the gDNA of DaH6H contains four exons and three introns, with the highest similarity to the gDNA of H6H from D. stramonium. DaH6H also exhibited the most identity of 90.5% with DsH6H in amino acids and harbored conserved 2-oxoglutarate binding motif and two iron binding motifs. The expression level of DaH6H was highest in the mature leaf, followed by the secondary root, and with no expression in the primary root based on qPCR analysis. Its expression was inhibited by MeJA. DaH6H was expressed in E. coli and a 39 kD recombinant protein was detected in SDS-PAGE. Comparison of the contents of scopolamine and hyoscyamine in various TAs-producing plants revealed that D. arborea was one of the rare scopolamine predominant plants. Cloning of DaH6H gene will allow more research in the molecular regulatory mechanism of TAs biosynthesis in distinct plants and provide a new candidate gene for scopolamine metabolic engineering. PMID:26837185

  19. Oxygen Impurities and Defects in Epitaxial Layer SiC and SiC Wafer Characterized by Room and Low Temperatures FTIR

    NASA Technical Reports Server (NTRS)

    Lu, W. J.; Collins, W. E.; Shi, D. T.; Tung, Y. S.; Larkin, D. J.

    1998-01-01

    SiC as a highly promising semiconducting material has received increasing attention in the last decade. The impurities such as oxygen and hydrogen have a great effect in electronic properties of semiconducting materials. In this study, the FTIR spectra were measured at room temperature (25 C) and low temperature (-70 C) for an n-type SiC substrate, a p-type epitaxial layer SiC, and patterned Ta on a p-type epitaxial layer SiC sample. The oxygen related IR peaks were measured for all three samples at room and low temperatures. The peak at 1105 cm(exp -1) is the result of a substitutional carbon and a interstitial oxygen in SiC. The concentration of the impurity oxygen increases in the SiC epitaxial layer during the CVD and electron beam processes. For the n-type SiC substrate, this peak does not appear. The peak at 905 cm(exp -1) exists in the IR spectra only for two epitaxial layer on p-type SiC substrate samples. This peak is related to oxygen vacancy centers in SiC, which are introduced in the CVD epitaxial growth process. At low temperature, the peak at 1105 cm(exp -1) shifts down and the peak at 905 cm(exp -1) shifts up for the epitaxial layer SiC samples. It can be explained that, at low temperatures, the stress increases due to the distorted bonds. The study shows that FTIR is a very effective method to evaluate low concentration impurities in SiC.

  20. Solid State Reaction and Operational Stability of Ruthenium Schottky Contact-on-6H-SiC Under Argon Annealing

    NASA Astrophysics Data System (ADS)

    Munthali, Kinnock V.; Theron, Chris; Auret, F. Danie; Coelho, Sergio M. M.; Njoroge, Eric

    2015-10-01

    Thin films of ruthenium-on-6-hexagonal silicon carbide (6H-SiC) were analysed by Rutherford backscattering spectroscopy (RBS) at various annealing temperatures. Some thin film samples were also analysed by scanning electron microscope (SEM). RBS analysis indicated minimal element diffusion, and formation of ruthenium oxide after annealing at 500°C. Large-scale diffusion of ruthenium (Ru) was observed to commence at 700°C. The SEM images indicated that the as-deposited Ru was disorderly and amorphous. Annealing of the thin film improved the grain quality of Ru. The fabricated Ru-6H-SiC Schottky barrier diodes (SBD) with nickel ohmic contacts showed excellent rectifying behaviour and linear capacitance-voltage characteristics up to an annealing temperature of 900°C. The SBDs degraded after annealing at 1000°C. The degradation of the SBDs is attributed to the inter-diffusion of Ru and Si at the Schottky-substrate interface.

  1. Long-Term Observation of Triplex Surgery for Cataract after Phakic 6H Implantation for Super High Myopia

    PubMed Central

    Liu, Xin; Wang, Xiaoying; Lu, Yi; Zheng, Tianyu; Zhou, Xingtao

    2016-01-01

    Purpose. To analyze the safety, effectiveness, and stability of triplex surgery for phakic 6H anterior chamber phakic intraocular lens explantation and phacoemulsification with in-the-bag IOL implantation for super high myopia in long-term observations. Methods. This retrospective case series evaluated 16 eyes of 10 patients who underwent triplex surgery. Best corrected visual acuity (BCVA), endothelial cell density (ECD), and associated adverse events were evaluated. Results. The mean follow-up time after the triplex surgery was 46 ± 14 months. The mean logMAR BCVA was significantly improved after triplex surgery (P = 0.047). One eye developed endophthalmitis five days postoperatively and underwent pars plana vitrectomy (PPV). Five eyes with preoperative severe endothelial cell loss developed corneal decompensation and underwent keratoplasty at a mean time of 9.4 ± 2.6 months after the triplex surgery. One eye had graft failure and underwent a second keratoplasty. The eye developed rhegmatogenous retinal detachment and underwent PPV with silicone oil 18 months later. ECD before the triplex surgery was not significantly different compared with that at last follow-up (P = 0.495) apart from these five eyes. Three eyes (18.8%) developed posterior capsule opacification. Conclusions. Triplex surgery was safe and effective for phakic 6H related complicated cataracts. Early extraction before severe ECD loss is recommended. PMID:27190642

  2. Vibrational spectra and dispersion analysis of K2Ni(SeO4)2·6H2O Tutton salt single crystal doped with K2Ni(SO4)2·6H2O

    NASA Astrophysics Data System (ADS)

    Ivanovski, Vladimir; Mayerhöfer, Thomas G.

    2013-10-01

    Dispersion analysis of the polarized IR reflectance spectra of K2Ni(SeO4)2·6H2O doped with K2Ni(SO4)2·6H2O has been performed. Vibrational parameters like oscillator strength, attenuation constant and frequency of the transversal phonons for the modes of Au symmetry type plus the orientation of the transition dipole moments for the modes of Bu symmetry type in the ac crystal plane have been obtained. The spectra-structure correlation of the H2O stretching vibrations show that bands appearing in the spectra for polarization of the external radiation oriented along the b axis are mainly due to the H2O stretching vibrations of one of the three crystallographically distinct sets of water molecules. The orientation of the transition dipoles of stretching vibrations of the selenate ion differ from the characteristic spectra of the sulfate analog in that no mutually perpendicular transition dipoles are found in the ac crystal plane. Water librational bands masked with the bands of the ν4(SO42-) mode in the sulfate analog have now been unveiled and assigned. The ratio between the oscillator strength and the attenuation constant appears to be a helpful tool in the assignment of the sulfate stretching vibrations and water librations. The vibrational and orientational characteristics of the ν4(SeO42-) modes were obtained. Тhe ν3(SO42-) frequency region of the isomorphously isolated SO42- ion in the K2Ni(SeO4)2·6H2O matrix was investigated in some detail. Contrary to the expected three, four bands can be identified. Three of them were assigned to ν3(SO42-) based on the orientation of the transition dipole moments. On the basis of the IR, but also Raman spectra of the pure and mixed crystals, a discussion of the influence of the potential field and the hydrogen bonds with the change in the volume of the unit cell is given.

  3. Pd/CeO2/SiC Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Lu, Weijie; Collins, W. Eugene

    2005-01-01

    The incorporation of nanostructured interfacial layers of CeO2 has been proposed to enhance the performances of Pd/SiC Schottky diodes used to sense hydrogen and hydrocarbons at high temperatures. If successful, this development could prove beneficial in numerous applications in which there are requirements to sense hydrogen and hydrocarbons at high temperatures: examples include monitoring of exhaust gases from engines and detecting fires. Sensitivity and thermal stability are major considerations affecting the development of high-temperature chemical sensors. In the case of a metal/SiC Schottky diode for a number of metals, the SiC becomes more chemically active in the presence of the thin metal film on the SiC surface at high temperature. This increase in chemical reactivity causes changes in chemical composition and structure of the metal/SiC interface. The practical effect of the changes is to alter the electronic and other properties of the device in such a manner as to degrade its performance as a chemical sensor. To delay or prevent these changes, it is necessary to limit operation to a temperature <450 C for these sensor structures. The present proposal to incorporate interfacial CeO2 films is based partly on the observation that nanostructured materials in general have potentially useful electrical properties, including an ability to enhance the transfer of electrons. In particular, nanostructured CeO2, that is CeO2 with nanosized grains, has shown promise for incorporation into hightemperature electronic devices. Nanostructured CeO2 films can be formed on SiC and have been shown to exhibit high thermal stability on SiC, characterized by the ability to withstand temperatures somewhat greater than 700 C for limited times. The exchanges of oxygen between CeO2 and SiC prevent the formation of carbon and other chemical species that are unfavorable for operation of a SiC-based Schottky diode as a chemical sensor. Consequently, it is anticipated that in a Pd

  4. The physics of epitaxial graphene on SiC(0001).

    PubMed

    Kageshima, H; Hibino, H; Tanabe, S

    2012-08-01

    Various physical properties of epitaxial graphene grown on SiC(0001) are studied. First, the electronic transport in epitaxial bilayer graphene on SiC(0001) and quasi-free-standing bilayer graphene on SiC(0001) is investigated. The dependences of the resistance and the polarity of the Hall resistance at zero gate voltage on the top-gate voltage show that the carrier types are electron and hole, respectively. The mobility evaluated at various carrier densities indicates that the quasi-free-standing bilayer graphene shows higher mobility than the epitaxial bilayer graphene when they are compared at the same carrier density. The difference in mobility is thought to come from the domain size of the graphene sheet formed. To clarify a guiding principle for controlling graphene quality, the mechanism of epitaxial graphene growth is also studied theoretically. It is found that a new graphene sheet grows from the interface between the old graphene sheets and the SiC substrate. Further studies on the energetics reveal the importance of the role of the step on the SiC surface. A first-principles calculation unequivocally shows that the C prefers to release from the step edge and to aggregate as graphene nuclei along the step edge rather than be left on the terrace. It is also shown that the edges of the existing graphene more preferentially absorb the isolated C atoms. For some annealing conditions, experiments can also provide graphene islands on SiC(0001) surfaces. The atomic structures are studied theoretically together with their growth mechanism. The proposed embedded island structures actually act as a graphene island electronically, and those with zigzag edges have a magnetoelectric effect. Finally, the thermoelectric properties of graphene are theoretically examined. The results indicate that reducing the carrier scattering suppresses the thermoelectric power and enhances the thermoelectric figure of merit. The fine control of the Fermi energy position is thought to

  5. MD-2 as the target of a novel small molecule, L6H21, in the attenuation of LPS-induced inflammatory response and sepsis

    PubMed Central

    Wang, Yi; Shan, Xiaoou; Chen, Gaozhi; Jiang, Lili; Wang, Zhe; Fang, Qilu; Liu, Xing; Wang, Jingying; Zhang, Yali; Wu, Wencan; Liang, Guang

    2015-01-01

    Background and Purpose Myeloid differentiation 2 (MD-2) recognizes LPS, which is required for TLR4 activation, and represents an attractive therapeutic target for severe inflammatory disorders. We previously found that a chalcone derivative, L6H21, could inhibit LPS-induced overexpression of TNF-α and IL-6 in macrophages. Here, we performed a series of biochemical experiments to investigate whether L6H21 specifically targets MD-2 and inhibits the interaction and signalling transduction of LPS-TLR4/MD-2. Experimental Approach The binding affinity of L6H21 to MD-2 protein was analysed using computer docking, surface plasmon resonance analysis, elisa, fluorescence measurements and flow cytometric analysis. The effects of L6H21 on MAPK and NF-κB signalling were determined using EMSA, fluorescence staining, Western blotting and immunoprecipitation. The anti-inflammatory effects of L6H21 were confirmed using elisa and RT-qPCR in vitro. The anti-inflammatory effects of L6H21 were also evaluated in septic C57BL/6 mice. Key Results Compound L6H21 inserted into the hydrophobic region of the MD-2 pocket, forming hydrogen bonds with Arg90 and Tyr102 in the MD-2 pocket. In vitro, L6H21 subsequently suppressed MAPK phosphorylation, NF-κB activation and cytokine expression in macrophages stimulated by LPS. In vivo, L6H21 pretreatment improved survival, prevented lung injury, decreased serum and hepatic cytokine levels in mice subjected to LPS. In addition, mice with MD-2 gene knockout were universally protected from the effects of LPS-induced septic shock. Conclusions and Implications Overall, this work demonstrated that the new chalcone derivative, L6H21, is a potential candidate for the treatment of sepsis. More importantly, the data confirmed that MD-2 is an important therapeutic target for inflammatory disorders. PMID:26076332

  6. Effects of SiC on Properties of Cu-SiC Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Efe, G. Celebi; Altinsoy, I.; Ipek, M.; Zeytin, S.; Bindal, C.

    2011-12-01

    This paper was focused on the effects of particle size and distribution on some properties of the SiC particle reinforced Cu composites. Copper powder produced by cementation method was reinforced with SiC particles having 1 and 30 μm particle size and sintered at 700 °C. SEM studies showed that SiC particles dispersed in copper matrix homogenously. The presence of Cu and SiC components in composites were verified by XRD analysis technique. The relative densities of Cu-SiC composites determined by Archimedes' principle are ranged from 96.2% to 90.9% for SiC with 1 μm particle size, 97.0 to 95.0 for SiC with 30 μm particle size. Measured hardness of sintered compacts varied from 130 to 155 HVN for SiC having 1 μm particle size, 188 to 229 HVN for SiC having 1 μm particle size. Maximum electrical conductivity of test materials was obtained as 80.0% IACS (International annealed copper standard) for SiC with 1 μm particle size and 83.0% IACS for SiC with 30 μm particle size.

  7. Operating procedure for SiC defect detection: Data support document

    SciTech Connect

    Adams, C.C.; Partain, K.E.

    1989-09-29

    The feasibility of the Hg Intrusion QC method for measuring SiC coating defects for the MHTGR was conducted as a potential improvement for the Burn/Leach (B/L) QC method currently used. The purpose for evaluating the Hg Intrusion QC method as an alternative method was to determine if B/L QC method underestimated SiC coating defects. Some evidence in work conducted earlier, indicated that TRISO-coated fuel particles with low SiC coating defects measured by the B/L QC method showed higher releases of metallic fission products. These data indicated that the SiC coating defect fractions were higher than the B/L measured data indicated. Sample sizes used in the current study were too small to conclusively demonstrate that the B/L QC method under estimate SiC coating defects. However, observations made during this study indicated a need for an additional QC method to the B/L QC method to measure SiC coating defects for the higher quality MHTGR fuels. The B/L QC method is the best method for measuring SiC coating defects with missing SiC layers or broken SiC coatings (gross SiC defects). However, SiC coating defects with microcracks and other SiC defects not detected by the B/L method may contribute to the release of metallic fission products in-service. For these type of SiC coating defects, the Hg Intrusion QC method investigated in this study is feasible, but particle sample size should be increased to a much larger sample size (100,000 particles per test) for the MHTGR. 7 refs., 5 figs., 9 tabs.

  8. Photoelectron spectroscopy study of AlN films grown on n-type 6H-SiC by MOCVD

    NASA Astrophysics Data System (ADS)

    Liang, F.; Chen, P.; Zhao, D. G.; Jiang, D. S.; Zhao, Z. J.; Liu, Z. S.; Zhu, J. J.; Yang, J.; Liu, W.; He, X. G.; Li, X. J.; Li, X.; Liu, S. T.; Yang, H.; Liu, J. P.; Zhang, L. Q.; Zhang, Y. T.; Du, G. T.

    2016-09-01

    Photoelectron spectroscopy has been employed to analyze the content and chemical states of the elements on the surface of AlN films with different thickness, which are synthesized by metalorganic chemical vapor deposition on the n-type SiC substrates under low pressure. It is found that, besides the carbon and gallium on the AlN surface, the atom percentage of surface oxygen increases from 4.9 to 8.4, and the electron affinity also increases from 0.36 to 0.97 eV, when the thickness of AlN films increase from 50 to 400 nm. Furthermore, accompanying with the high-resolution XPS spectra of the O 1s, it is speculated that surface oxygen may be the major influence on the electron affinity, where the surface oxygen changes the surface chemical states through replacing N to form Al-O bond and Ga-O bond, although there are also a few of Ga and C contaminations in the chemical sate of Ga-O and C-C, respectively.

  9. Treatment of uncomplicated gonococcal urethritis by double-dosing of 200 mg cefixime at a 6-h interval.

    PubMed

    Deguchi, Takashi; Yasuda, Mitsuru; Yokoi, Shigeaki; Ishida, Ken-Ichiro; Ito, Masayasu; Ishihara, Satoshi; Minamidate, Ken; Harada, Yoshimasa; Tei, Kanhin; Kojima, Kentaro; Tamaki, Masayoshi; Maeda, Shin-Ichi

    2003-03-01

    The efficacy of antimicrobial regimens for the treatment of uncomplicated gonococcal urethritis depends partially upon the period of time (therapeutic time) during which the drug concentration in the blood after the concentration peak is greater than four times the minimum inhibitory concentration for 90% of clinical isolates of Neisseria gonorrhoeae (MIC(90)). A therapeutic time of at least 10 h is suggested as an important determinant for elimination of 95% or more of the infection. In this study, therapeutic times for a single 400-mg dose of cefixime at various MIC(90)s were calculated, and pharmacokinetic profiles of double-dosing of 200 mg cefixime at various intervals were simulated. Subsequently, a dosing interval of 6 h was tested in 6 healthy Japanese men, and then 93 Japanese men with gonococcal urethritis were treated with a regimen of two 200-mg doses of cefixime given at a 6-h interval. For a single dose of 400 mg cefixime, therapeutic times were calculated to be 12.8, 9.1, 5.4, and 1.7 h for MIC(90)s of 0.06, 0.125, 0.25, and 0.5 microg/ml, respectively. In the simulation study of double-dosing of 200 mg cefixime at a 6-h interval, the therapeutic times for the MIC(90)s of < or =0.125 microg/ml were longer than 10 h. Of the 93 patients, 68 were evaluated for microbiological outcome, and N. gonorrhoeae was eradicated in 60 (88.2%). The MIC(90) of cefixime for the 61 isolates tested was 0.125 microg/ml. All strains with MICs of < or =0.06 microg/ml were eradicated, whereas 8 of 16 strains with MICs of > or =0.125 microg/ml persisted after treatment. This regimen would not be effective against infection by strains exhibiting cefixime MIC(90)s of > or =0.125 microg/ml. For such strains, a different regimen with a higher dose of cefixime would be required.

  10. Focused thermal emission from a nanostructured SiC surface

    NASA Astrophysics Data System (ADS)

    Chalabi, Hamidreza; Alù, Andrea; Brongersma, Mark L.

    2016-09-01

    Incandescent sources that produce light from electrically heated filaments or films tend to feature low efficiencies and offer poor spectral and angular control. We demonstrate that a judicious nanostructuring of a SiC surface can focus thermal emission of a preselected spectral range to a well-defined height above the surface. SiC is known to support electromagnetic surface waves that afford the required thermal emission control. Here, we provide general design rules for this type of focusing element that can be extended to other material systems, such as metals supporting surface plasmon-polariton waves. These rules are verified using full-wave calculations of the spatial variation of thermal emission. The obtained results establish a foundation for developing more complex algorithms for the design of complex thermal lenses.

  11. Molten salt corrosion of SiC: Pitting mechanism

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Smialek, J. L.

    1985-01-01

    Thin films of Na2SO4 and Na2CO3 at 1000 C lead to severe pitting of sintered alpha-SiC. These pits are important as they cause a strength reduction in this material. The growth of product layers is related to pit formation for the Na2CO3 case. The early reaction stages involve repeated oxidation and dissolution to form sodium silicate. This results in severe grain boundary attack. After this a porous silica layer forms between the sodium silicate melt and the SiC. The pores in this layer appear to act as paths for the melt to reach the SiC and create larger pits.

  12. Spin transport in epitaxial graphene on SiC (0001)

    NASA Astrophysics Data System (ADS)

    Du, Yuchen; Neal, Adam T.; Capano, Mike; Ye, Peide

    2013-03-01

    Graphene has been identified as a promising material for future spintronics devices due to its low spin orbit coupling and long spin diffusion lengths, even at room temperature. However, any device application requires the use of large-area graphene compatible with wafer-scale manufacturing methods, such as graphene grown epitaxially on SiC. We study spin transport in epitaxial graphene grown on SiC (0001) as a step toward future spintronics devices. A non-local spin valve signal of 200m Ω is observed at 77K, with a signal of 50m Ω resolved at 145K. Assuming a contact polarization of 10%, the measured signal corresponds to a spin diffusion length of 130nm at T =77K. Hanle effect spin precession measurements are ongoing.

  13. Oxidation of ZrB2-SiC

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Halbig, Michael C.

    2001-01-01

    In this paper the oxidation behavior of ZrB2-20 vol% SiC is examined. Samples were exposed in stagnant air in a zirconia furnace (Deltech, Inc.) at temperatures of 1327, 1627, and 1927 C for ten ten-minute cycles. Samples were removed from the furnace after one, five, and ten cycles. Oxidized material was characterized by mass change when possible, x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Oxidation kinetics, oxide scale development, and matrix recession were monitored as a function of time and temperature. Oxidation and recession rates of ZrB2 - 20 vol% SiC were adequately modeled by parabolic kinetics. Oxidation rates of this material are rapid, allowing only very short-term application in air or other high oxygen partial pressure environments.

  14. Excited States of the divacancy in SiC

    NASA Astrophysics Data System (ADS)

    Bockstedte, Michel; Garratt, Thomas; Ivady, Viktor; Gali, Adam

    2014-03-01

    The divacancy in SiC - a technologically mature material that fulfills the necessary requirements for hosting defect based quantum computing - is a good candidate for implementing a solid state quantum bit. Its ground state is isovalent to the NV center in diamond as demonstrated by density functional theory (DFT). Furthermore, coherent manipulation of divacancy spins in SiC has been demonstrated. The similarities to NV might indicate that the same inter system crossing (ICS) from the high to the low spin state is responsible for its spin-dependent fluorescent signal. By DFT and a DFT-based multi-reference hamiltonian we analyze the excited state spectrum of the defects. In contrast to the current picture of the spin dynamics of the NV center, we predict that a static Jahn-Teller effect in the first excited triplet states governs an ICS both with the excited and ground state of the divacancy.

  15. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalon CG (1110{degrees}C).

  16. Saturn V S-IC Stage Fuel Tank Components

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The components of the Saturn V booster (S-IC stage) fuel tank are shown in this photograph. The liquid oxygen tank bulkhead on the left and both halves of the fuel tank were in the Marshall Space Flight Center (MSFC) Manufacturing Engineering Laboratory, building 4707. These components were used at MSFC in structural testing to prove that they could withstand the forces to which they were subjected in flight. Each S-IC stage has two tanks, one for kerosene and one for liquid oxygen, made from such components as these. Thirty-three feet in diameter, they hold a total of 4,400,000 pounds of fuel. Although this tankage was assembled at MSFC, the elements were made by the Boeing Company at Wichita and the Michoud Operations at New Orleans.

  17. High frequency ultrasonic characterization of sintered SiC

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Generazio, Edward R.; Kiser, James D.

    1987-01-01

    High frequency (60 to 160 MHz) ultrasonic nondestructive evaluation was used to characterize variations in density and microstructural constituents of sintered SiC bars. Ultrasonic characterization methods included longitudinal velocity, reflection coefficient, and precise attenuation measurements. The SiC bars were tailored to provide bulk densities ranging from 90 to 98 percent of theoretical, average grain sizes ranging from 3.0 to 12.0 microns, and average pore sizes ranging from 1.5 to 4.0 microns. Velocity correlated with specimen bulk density irrespective of specimen average grain size, average pore size, and average pore orientation. Attenuation coefficient was found to be sensitive to both density and average pore size variations, but was not affected by large differences in average grain size.

  18. 1 GHz, 200 C, SiC MESFET Clapp Oscillator

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Schwartz, Zachary D.

    2005-01-01

    A SiC Clapp oscillator frabricated on an alumina substrate with chip capacitors and spiral inductors is designed for high temperature operation at 1 gigahertz. The oscillator operated from 30 to 200 C with an output power of 21.8 dBm at 1 gigahertz and 200 C. The efficiency at 200 C is 15 percent. The frequency variation over the temperature range is less than 0.5 percent.

  19. Saturn V S-IC Stage Liquid Oxygen Tank

    NASA Technical Reports Server (NTRS)

    1964-01-01

    This photograph depicts a forward skirt being placed on the liquid oxygen tank for Saturn V S-IC (first) stage in the Manufacturing Engineering Laboratory at the Marshall Space Flight Center. Thirty-three feet in diameter, the fuel tanks hold a total of 4,400,000 pounds of fuel. Although this tankage was assembled at MSFC, the elements were made by the Boeing Company at Wichita and the Michoud Operations at New Orleans.

  20. High power operation of a nitrogen doped, vanadium compensated, 6H-SiC extrinsic photoconductive switch

    SciTech Connect

    Sullivan, J. S.

    2014-04-28

    We report the high power operation of nitrogen doped, vanadium compensated, 6H-SiC, extrinsic photoconductive switches with improved vanadium and nitrogen dopant density. Photoconductive switching tests are performed on 1 mm thick, m-plane, switch substrates at switch voltage and currents up to 17 kV and 1.5 kA, respectively. Sub-ohm minimum switch on resistance is achieved for peak optical intensities ≥35 MW/cm{sup 2} at 532 nm applied to the switch facet. A reduction of greater than nine orders of magnitude is observed in switch material resistivity between dark and illuminated states.

  1. Stable Electrical Operation of 6H-SiC JFETs and ICs for Thousands of Hours at 500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu; Beheim, Glenn M.; Okojie, Robert S.; Chang, Carl W.; Meredith, Roger D.; Ferrier, Terry L.; Evans, Laura J.; Krasowski, Michael J.; Prokop, Norman F.

    2008-01-01

    The fabrication and testing of the first semiconductor transistors and small-scale integrated circuits (ICs) to achieve up to 3000 h of stable electrical operation at 500 C in air ambient is reported. These devices are based on an epitaxial 6H-SiC junction field-effect transistor process that successfully integrated high temperature ohmic contacts, dielectric passivation, and ceramic packaging. Important device and circuit parameters exhibited less than 10% of change over the course of the 500 C operational testing. These results establish a new technology foundation for realizing durable 500 C ICs for combustion-engine sensing and control, deep-well drilling, and other harsh-environment applications.

  2. Growth of fcc(111) Dy multi-height islands on 6H-SiC(0001) graphene.

    PubMed

    Hershberger, M T; Hupalo, M; Thiel, P A; Tringides, M C

    2013-06-01

    Graphene based spintronic devices require an understanding of the growth of magnetic metals. Rare earth metals have large bulk magnetic moments so they are good candidates for such applications, and it is important to identify their growth mode. Dysprosium was deposited on epitaxial graphene, prepared by thermally annealing 6H-SiC(0001). The majority of the grown islands have triangular instead of hexagonal shapes. This is observed both for single layer islands nucleating at the top of incomplete islands and for fully completed multi-height islands. We analyze the island shape distribution and stacking sequence of successively grown islands to deduce that the Dy islands have fcc(111) structure, and that the triangular shapes result from asymmetric barriers to corner crossing.

  3. AlN bulk single crystal growth on 6H-SiC substrates by sublimation method

    NASA Astrophysics Data System (ADS)

    Nagai, Ichiro; Kato, Tomohisa; Miura, Tomonori; Kamata, Hiroyuki; Naoe, Kunihiro; Sanada, Kazuo; Okumura, Hajime

    2010-09-01

    Large and thick AlN bulk single crystals up to 43 mm in diameter and 10 mm in thickness have been successfully grown on 6H-SiC (0 0 0 1) substrates by the sublimation method using a TaC crucible. Raman spectrum indicates that the polytype of the grown AlN single crystals is a Wurtzite-2H type structure, and the crystals do not include any impurity phases. The quality at the top of the crystal improves as crystal thickness increases along the <0 0 0 1> direction during growth: a low etch pit density (7×10 4 cm -2) and a small full width at half maximum for a 0002 X-ray rocking curve (58 arcsec) have been achieved at a thickness of ˜8 mm. The possible mechanism behind the improvement in the AlN crystal quality is also discussed.

  4. Deformation behaviour and 6H-LPSO structure formation at nanoindentation in lamellar high Nb containing TiAl alloy

    NASA Astrophysics Data System (ADS)

    Song, L.; Xu, X. J.; Peng, C.; Wang, Y. L.; Liang, Y. F.; Shang, S. L.; Liu, Z. K.; Lin, J. P.

    2015-02-01

    Microstructure and deformation mechanisms at a nanoindentation in the lamellar colony of high Nb containing TiAl alloy have been studied using the focused ion beam and the transmission electron microscopy. Considerable deformation twins are observed around the nanoindentation, and a strain gradient is generated. A continuous change in the bending angle of the lamellar structure can be derived, and a strain-induced grain refinement process is observed as various active deformations split the γ grains into subgrains. In addition to all possible deformation mechanisms (ordinary dislocation, super-dislocation and deformation twining) activated due to the heavy plastic deformation, a 6-layer hexagonal (6H) long-period stacking ordered structure is identified for the first time near the contact zone and is thought to be closely related to the glide of partial dislocations.

  5. Disodium hydrogen citrate sesquihydrate, Na2HC6H5O7(H2O)1.5.

    PubMed

    Rammohan, Alagappa; Sarjeant, Amy A; Kaduk, James A

    2016-07-01

    The crystal structure of disodium hydrogen citrate sesquihydrate, 2Na2 (+)·C6H6O7 (2-)·1.5H2O, has been solved and refined using laboratory X-ray single-crystal diffraction data, and optimized using density functional techniques. The asymmetric unit contains two independent hydrogen citrate anions, four sodium cations and three water molecules. The coordination polyhedra of the cations (three with a coordination number of six, one with seven) share edges to form isolated 8-rings. The un-ionized terminal carb-oxy-lic acid groups form very strong hydrogen bonds to non-coordinating O atoms, with O⋯O distances of 2.46 Å. PMID:27555936

  6. Surface coating of ZnO nanoparticles onto 6H-SiC(0001): Temperature-dependent rectifying behavior

    NASA Astrophysics Data System (ADS)

    Soylu, Murat

    2016-04-01

    This work reports on the detailed analysis of the temperature-dependent electrical parameters of the ZnO/6H-SiC barrier diodes. The effect of light on the diode current was also examined. It was found that the diode showed low sensitivity to light. No remarkable change in diode characteristics were observed at room temperature. The structure has a high rectification ratio of 1.096×104 at ±2 V with ideality factor of 2.46 at room temperature. The rectification ratio (RR) decreases with increasing temperature, as agree to other heterojunction structures. Some diode parameters such as zero-bias barrier height and ideality factor as temperature-dependent were calculated on the basis of the thermionic emission (TE) theory, by considering a Gaussian distribution (GD).

  7. Disodium hydrogen citrate sesquihydrate, Na2HC6H5O7(H2O)1.5

    PubMed Central

    Rammohan, Alagappa; Sarjeant, Amy A.; Kaduk, James A.

    2016-01-01

    The crystal structure of disodium hydrogen citrate sesquihydrate, 2Na2 +·C6H6O7 2−·1.5H2O, has been solved and refined using laboratory X-ray single-crystal diffraction data, and optimized using density functional techniques. The asymmetric unit contains two independent hydrogen citrate anions, four sodium cations and three water molecules. The coordination polyhedra of the cations (three with a coordination number of six, one with seven) share edges to form isolated 8-rings. The un-ionized terminal carb­oxy­lic acid groups form very strong hydrogen bonds to non-coordinating O atoms, with O⋯O distances of 2.46 Å. PMID:27555936

  8. Adsorption and decomposition of C 6H 5I on the Mo 2C/Mo(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Bugyi, L.; Oszkó, A.; Solymosi, F.

    2003-08-01

    The adsorption and surface reactions of phenyl iodide on Mo 2C/Mo(1 0 0) surface have been investigated by thermal desorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy in the 100-1200 K temperature range. Phenyl iodide adsorbed molecularly on the Mo 2C/Mo(1 0 0) surface at 100 K. At submonolayer coverages the molecules adsorbed in a flat-lying, and in the condensed layer in a random position. The desorption of the weakly bonded C 6H 5I occurred in a peak with Tp=200 K. Phenyl iodide bonded in the chemisorbed state underwent dissociation at 160-300 K, as evidenced by XPS data, while photolysis of the monolayer by UV light resulted in a complete dissociation even at 100 K. Iodine atoms formed in the decomposition process were released into the gas phase with Tp=980 and 1080 K. The phenyl groups formed as a result of C-I cleavage reacted in three different ways. A very limited part is coupled into biphenyl ( Tp=510 K). Other part was hydrogenated to benzene which desorbed with a Tp=290-278 K. The third part of C 6H 5(a) decomposed to hydrogen and benzyne groups. This species could be also hydrogenated into benzene, but it mostly decomposed at higher temperature, as shown by H 2 desorption peaks at 600 and 700 K. HREEL spectra suggested that the aromatic ring was preserved on the surface up to ˜430 K. Elevating the adsorption temperature to 400 K enhanced the amount of strongly bonded C 6 species by a factor of ˜3 as evidenced by the increased hydrogen desorption.

  9. Thermochemistry and reaction paths in the oxidation reaction of benzoyl radical: C6H5C•(═O).

    PubMed

    Sebbar, Nadia; Bozzelli, Joseph W; Bockhorn, Henning

    2011-10-27

    Alkyl substituted aromatics are present in fuels and in the environment because they are major intermediates in the oxidation or combustion of gasoline, jet, and other engine fuels. The major reaction pathways for oxidation of this class of molecules is through loss of a benzyl hydrogen atom on the alkyl group via abstraction reactions. One of the major intermediates in the combustion and atmospheric oxidation of the benzyl radicals is benzaldehyde, which rapidly loses the weakly bound aldehydic hydrogen to form a resonance stabilized benzoyl radical (C6H5C(•)═O). A detailed study of the thermochemistry of intermediates and the oxidation reaction paths of the benzoyl radical with dioxygen is presented in this study. Structures and enthalpies of formation for important stable species, intermediate radicals, and transition state structures resulting from the benzoyl radical +O2 association reaction are reported along with reaction paths and barriers. Enthalpies, ΔfH298(0), are calculated using ab initio (G3MP2B3) and density functional (DFT at B3LYP/6-311G(d,p)) calculations, group additivity (GA), and literature data. Bond energies on the benzoyl and benzoyl-peroxy systems are also reported and compared to hydrocarbon systems. The reaction of benzoyl with O2 has a number of low energy reaction channels that are not currently considered in either atmospheric chemistry or combustion models. The reaction paths include exothermic, chain branching reactions to a number of unsaturated oxygenated hydrocarbon intermediates along with formation of CO2. The initial reaction of the C6H5C(•)═O radical with O2 forms a chemically activated benzoyl peroxy radical with 37 kcal mol(-1) internal energy; this is significantly more energy than the 21 kcal mol(-1) involved in the benzyl or allyl + O2 systems. This deeper well results in a number of chemical activation reaction paths, leading to highly exothermic reactions to phenoxy radical + CO2 products.

  10. SYLRAMIC™ SiC fibers for CMC reinforcement

    NASA Astrophysics Data System (ADS)

    Jones, Richard E.; Petrak, Dan; Rabe, Jim; Szweda, Andy

    2000-12-01

    Dow Corning researchers developed SYLRAMIC SiC fiber specifically for use in ceramic-matrix composite (CMC) components for use in turbine engine hot sections where excellent thermal stability, high strength and high thermal conductivity are required. This is a stoichiometric SiC fiber with a high degree of crystallinity, high tensile strength, high tensile modulus and good thermal conductivity. Owing to the small diameter, this textile-grade fiber can be woven into 2-D and 3-D structures for CMC fabrication. These properties are also of high interest to the nuclear community. Some initial studies have shown that SYLRAMIC fiber shows very good dimensional stability in a neutron flux environment, which offers further encouragement. This paper will review the properties of SYLRAMIC SiC fiber and then present the properties of polymer impregnation and pyrolysis (PIP) processed CMC made with this fiber at Dow Corning. While these composites may not be directly applicable to applications of interest to this audience, we believe that the properties shown will give good evidence that the fiber should be suitable for high temperature structural applications in the nuclear arena.

  11. Fractographic Analysis of HfB2-SiC and ZrB2-SiC Composites

    NASA Technical Reports Server (NTRS)

    Mecholsky, J.J., Jr.; Ellerby, D. T.; Johnson, S. M.; Stackpoole, M. M.; Loehman, R. E.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Hafnium diboride-silicon carbide and zirconium diboride-silicon carbide composites are potential materials for high temperature leading edge applications on reusable launch vehicles. In order to establish material constants necessary for evaluation of in-situ fracture, bars fractured in four point flexure were examined using fractographic principles. The fracture toughness was determined from measurements of the critical crack sizes and the strength values, and the crack branching constants were established to use in forensic fractography of materials for future flight applications. The fracture toughnesses range from about 13 MPam (sup 1/2) at room temperature to about 6 MPam (sup 1/2) at 1400 C for ZrB2-SiC composites and from about 11 MPam (sup 1/2) at room temperature to about 4 MPam (sup 1/2) at 1400 C for HfB2-SiC composites.

  12. SiC Optically Modulated Field-Effect Transistor

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood

    2009-01-01

    An optically modulated field-effect transistor (OFET) based on a silicon carbide junction field-effect transistor (JFET) is under study as, potentially, a prototype of devices that could be useful for detecting ultraviolet light. The SiC OFET is an experimental device that is one of several devices, including commercial and experimental photodiodes, that were initially evaluated as detectors of ultraviolet light from combustion and that could be incorporated into SiC integrated circuits to be designed to function as combustion sensors. The ultraviolet-detection sensitivity of the photodiodes was found to be less than desired, such that it would be necessary to process their outputs using high-gain amplification circuitry. On the other hand, in principle, the function of the OFET could be characterized as a combination of detection and amplification. In effect, its sensitivity could be considerably greater than that of a photodiode, such that the need for amplification external to the photodetector could be reduced or eliminated. The experimental SiC OFET was made by processes similar to JFET-fabrication processes developed at Glenn Research Center. The gate of the OFET is very long, wide, and thin, relative to the gates of typical prior SiC JFETs. Unlike in prior SiC FETs, the gate is almost completely transparent to near-ultraviolet and visible light. More specifically: The OFET includes a p+ gate layer less than 1/4 m thick, through which photons can be transported efficiently to the p+/p body interface. The gate is relatively long and wide (about 0.5 by 0.5 mm), such that holes generated at the body interface form a depletion layer that modulates the conductivity of the channel between the drain and the source. The exact physical mechanism of modulation of conductivity is a subject of continuing research. It is known that injection of minority charge carriers (in this case, holes) at the interface exerts a strong effect on the channel, resulting in amplification

  13. SiC (SCS-6) Fiber Reinforced-Reaction Formed SiC Matrix Composites: Microstructure and Interfacial Properties

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.; Olmstead, Forrest A.; Eldridge, J. I.

    1997-01-01

    Microstructural and interfacial characterization of unidirectional SiC (SCS-6) fiber reinforced-reaction formed SiC (RFSC) composites has been carried out. Silicon-1.7 at.% molybdenum alloy was used as the melt infiltrant, instead of pure silicon, to reduce the activity of silicon in the melt as well as to reduce the amount of free silicon in the matrix. Electron microprobe analysis was used to evaluate the microstructure and phase distribution in these composites. The matrix is SiC with a bi-modal grain-size distribution and small amounts of MoSi2, silicon, and carbon. Fiber push-outs tests on these composites showed that a desirably low interfacial shear strength was achieved. The average debond shear stress at room temperature varied with specimen thickness from 29 to 64 MPa, with higher values observed for thinner specimens. Initial frictional sliding stresses showed little thickness dependence with values generally close to 30 MPa. Push-out test results showed very little change when the test temperature was increased to 800 C from room temperature, indicating an absence of significant residual stresses in the composite.

  14. Reactions of (Cp(CO) sub 2 Fe double bond CHAr) sup + (Ar = p-C sub 6 H sub 4 OMe) with O double bond N-Ar prime (Ar prime = C sub 6 H sub 5 , p-C sub 6 H sub 4 NMe sub 2 ) and PhN double bond NPh

    SciTech Connect

    Peng, Wei-Jun; Gamble, A.S.; Templeton, J.L.; Brookhart, M. )

    1990-02-07

    Organometallic products formed from the reaction of an electrophilic iron carbene complex with nitrosoarenes or azobenzene reflect net insertion of the ArN{double bond}X moiety into the Fe{double bond}CHAr bond. Cp(CO){sub 2}Fe-O-N(Ar{prime}){double bond}CHAr{sup +} and Cp(CO){sub 2}FeN(Ph)-N(Ph){double bond}CHAr{sup +} (Ar = p-C{sub 6}H{sub 4}OMe, Ar{prime} = p-C{sub 6}H{sub 4}NMe{sub 2}) have been isolated and spectroscopically characterized; the crystal structure of Cp(CO){sub 2}Fe-O-N(Ph){double bond}CHAr{sup +} is reported. Exposure of acetone solutions of Cp(CO){sub 2}Fe-O-N(Ar{prime}){double bond}CHAr{sup +} or Cp(CO){sub 2}FeN(Ph)-N(Ph){double bond}char{sup +} to light yields imine products Ar{prime}N{double bond}CHAr or PhN{double bond}CHAr, respectively. There is no evidence to support the formation of the simple stoichiometric iron-containing products of these reactions, the oxo and nitrene complexes Cp(CO){sub 2}Fe{double bond}O{sup +} and Cp(CO){sub 2}Fe{double bond}NPh{sup +}. Hydrolysis of the nitrone complexes Cp(CO){sub 2}Fe-O-N(Ar{prime}){double bond}CHAr{sup +} in aqueous acetone yields aldehyde products Ar{prime}CHO. 30 refs., 1 fig., 4 tabs.

  15. Review of data on irradiation creep of monolithic SiC

    SciTech Connect

    Garner, F.A.; Youngblood, G.E.; Hamilton, M.L.

    1996-04-01

    An effort is now underway to design an irradiation creep experiment involving SiC composites to SiC fibers. In order to successfully design such an experiment, it is necessary to review and assess the available data for monolithic SiC to establish the possible bounds of creep behavior for the composite. The data available show that monolithic SiC will indeed creep at a higher rate under irradiation compared to that of thermal creep, and surprisingly, it will do so in a temperature-dependant manner that is typical of metals.

  16. High quality SiC microdisk resonators fabricated from monolithic epilayer wafers

    SciTech Connect

    Magyar, Andrew P.; Bracher, David; Lee, Jonathan C.; Hu, Evelyn L.; Aharonovich, Igor

    2014-02-03

    The exquisite mechanical properties of SiC have made it an important industrial material with applications in microelectromechanical devices and high power electronics. Recently, the optical properties of SiC have garnered attention for applications in photonics, quantum information, and spintronics. This work demonstrates the fabrication of microdisks formed from a p-N SiC epilayer material. The microdisk cavities fabricated from the SiC epilayer material exhibit quality factors of as high as 9200 and the approach is easily adaptable to the fabrication of SiC-based photonic crystals and other photonic and optomechanical devices.

  17. PROPERTIES AND BALLISTIC BEHAVIOR OF PRESSURELESS SINTERED SIC/TIB2 COMPOSITES

    SciTech Connect

    T.M. Lillo; H.S. Chu; B.Merkle; D. Bailey; W.M. Harrison

    2005-01-01

    Pressureless sintering of ceramics for armor applications offers the potential of greatly reduced cost and increased production volume. Previously it was shown that pure SiC could be made by pressureless sintering while achieving a ballistic performance slightly less than commercial SiC made by pressure-assisted densification (PAD). Additions of titanium diboride were made to pin the SiC grain size during pressureless sintering to achieve a final grain size closer to that found in PAD SiC and achieve improved ballistic performance. Silicon carbide/titanium diboride composites of various compositions were blended by various means, consolidated and pressureless sintered to near theoretical density. Additions of TiB2 were <10% by volume and increased the density of the material by less than 3% over that of pure SiC. Variations in the mixing techniques yielded composites with a range of TiB2 particle sizes. TiB2 additions hindered SiC grain growth and the formation of elongated grains during high temperature pressureless sintering. The microstructure of the composites is documented and compared to commercially available SiC material. The SiC/TiB2 composites demonstrated improved ballistic properties in Depth-of-Penetration (DOP) tests over pure, pressureless-sintered SiC material and approach that of SiC made by hot pressing.

  18. Nonlinear thermal lens signal of the (Δυ = 6) C-H vibrational overtone of C6H6 in liquid solutions of n-C6H14 and CCl4

    NASA Astrophysics Data System (ADS)

    Nyaupane, Parashu R.; Diez-y-Riega, Helena; Camejo, David; Manzanares, Carlos E.

    2016-05-01

    The thermal lens technique is applied to vibrational overtone spectroscopy of solutions of benzene. The pump and probe thermal lens technique has been found to be very sensitive for detecting samples of low concentration in transparent solvents. The C-H fifth vibrational (Δ υ = 6) overtone spectrum of benzene is detected at room temperature for compositions per volume in the range (1 to 1 × 10-4) using CCl4 and n-C6H14 as solvents. By detecting the absorption band in a 100-ppm solution, the peak absorption of the signal is approximately (2.2 ± 0.3) × 10-7 cm-1. The parameters that determine the magnitude of the thermal lens signal such as the pump laser power and the thermodynamic properties of the solvent and solute are discussed. A plot of normalized integrated intensity as a function of composition of benzene in solution reveals a nonlinear behavior. The nonlinearity cannot be explained assuming solvent enhancement at low concentrations. A two-color absorption model that includes the simultaneous absorption of the pump and probe lasers explains the enhanced magnitude and the nonlinear behavior of the thermal lens signal for solutions of composition below 0.01.

  19. Dimetallaborane analogues of the octaboranes of the type Cp2M2B6H10: structural variations with changes in the skeletal electron count.

    PubMed

    Brânzanic, Adrian M V; Lupan, Alexandru; King, R Bruce

    2016-05-31

    The structures and energetics of the complete series of hydrogen-rich dimetallaboranes Cp2M2B6H10 and Cp*2M2B6H10 (Cp = η(5)-C5H5; Cp* = η(5)-Me5C5; M = Pd, Pt; Rh, Ir; Ru, Os; Re; Mo, W; Ta), including the experimentally known Cp*2Rh2B6H10 and Cp*2W2B6H10 (Cp* = η(5)-Me5C5), have been investigated by density functional theory. The lowest energy structures of the hyperelectronic Cp2M2B6H10 (M = Pd, Pt; Rh, Ir) systems have central M2B6 frameworks with a hexagonal open face similar to the B8 networks in arachno-B8H14 and nido-B8H12. The two lowest energy structures for Cp2Rh2B6H10 and Cp*2Rh2B6H10, lying within 1 kcal mol(-1) of energy, differ only in the locations of the bridging hydrogen atoms around the hexagonal hole consistent with the experimentally observed fluxionality of the hydrogen atoms in Cp*2Rh2B6H10. Most of the lowest energy Cp2M2B6H10 (M = Ru, Os) structures also have a central M2B6 framework similar to B8H12, typically with such additional features as an additional metal-metal bond or a formal metal-metal double bond. A common motif for the low-energy structures of the hypoelectronic Cp2M2B6H10 (M = Re; Mo, W; Ta) systems, including the experimentally known Cp*2W2B6H10, is a central M2B4 octahedron with its two M2B faces capped by the remaining boron atoms and with four M-B edges bridged by hydrogen atoms. Such structures can also be considered as oblatonido structures derived from the experimentally known 9-vertex oblatocloso Cp*2Re2B7H7 structure by removal of the unique degree 4 vertex atom. PMID:27186632

  20. Thermochemistry and reaction paths in the oxidation reaction of benzoyl radical: C6H5C•(═O).

    PubMed

    Sebbar, Nadia; Bozzelli, Joseph W; Bockhorn, Henning

    2011-10-27

    Alkyl substituted aromatics are present in fuels and in the environment because they are major intermediates in the oxidation or combustion of gasoline, jet, and other engine fuels. The major reaction pathways for oxidation of this class of molecules is through loss of a benzyl hydrogen atom on the alkyl group via abstraction reactions. One of the major intermediates in the combustion and atmospheric oxidation of the benzyl radicals is benzaldehyde, which rapidly loses the weakly bound aldehydic hydrogen to form a resonance stabilized benzoyl radical (C6H5C(•)═O). A detailed study of the thermochemistry of intermediates and the oxidation reaction paths of the benzoyl radical with dioxygen is presented in this study. Structures and enthalpies of formation for important stable species, intermediate radicals, and transition state structures resulting from the benzoyl radical +O2 association reaction are reported along with reaction paths and barriers. Enthalpies, ΔfH298(0), are calculated using ab initio (G3MP2B3) and density functional (DFT at B3LYP/6-311G(d,p)) calculations, group additivity (GA), and literature data. Bond energies on the benzoyl and benzoyl-peroxy systems are also reported and compared to hydrocarbon systems. The reaction of benzoyl with O2 has a number of low energy reaction channels that are not currently considered in either atmospheric chemistry or combustion models. The reaction paths include exothermic, chain branching reactions to a number of unsaturated oxygenated hydrocarbon intermediates along with formation of CO2. The initial reaction of the C6H5C(•)═O radical with O2 forms a chemically activated benzoyl peroxy radical with 37 kcal mol(-1) internal energy; this is significantly more energy than the 21 kcal mol(-1) involved in the benzyl or allyl + O2 systems. This deeper well results in a number of chemical activation reaction paths, leading to highly exothermic reactions to phenoxy radical + CO2 products. PMID:21942384

  1. Amorphization and dynamic annealing of hexagonal SiC upon heavy-ion irradiation: Effects on swelling and mechanical properties

    NASA Astrophysics Data System (ADS)

    Kerbiriou, Xavier; Costantini, Jean-Marc; Sauzay, Maxime; Sorieul, Stéphanie; Thomé, Lionel; Jagielski, Jacek; Grob, Jean-Jacques

    2009-04-01

    Structural, mechanical, and dimensional evolutions of silicon carbide (SiC) induced by heavy-ion irradiations are studied by means of Rutherford backscattering spectrometry and channeling (RBS/C), nanoindentation, and surface profilometry measurements. 4H- and 6H-SiC single crystals were irradiated with 4 MeV Au2+ and 4 MeV Xe+ ions at room temperature (RT) or 400 °C. Using a Monte Carlo program to simulate the RBS/C spectra (MCCHASY code), we find that Au ion irradiation at RT induces a total silicon sublattice disorder related to full amorphization at a dose of about 0.4 displacement per atom (dpa). A two-step damage process is found on the basis of the disordered fractions deduced from RBS/C data. Complete amorphization cannot be reached upon both Au and Xe ion irradiations at 400 °C up to about 26 dpa because of the dynamic annealing of defects. When complete amorphization is reached at RT, the Young's modulus and Berkovich hardness of irradiated 6H-SiC samples are lower by, respectively, 40% and 45% than those of the virgin crystals. The out-of-plane expansion measured by surface profilometry increases versus irradiation dose and the saturation value measured in the completely amorphous layer (normalized to the ion projected range) is close to 25%. We show that the modifications of the macroscopic properties are mainly due to the amorphization of the material. The macroscopic elasticity constants and dimensional properties are predicted for a composite material made of crystalline matrix containing dispersed amorphous inclusions using simple analytical homogenization models. Voigt's model seems to give the best approximation for disordered fractions larger than 20% in the second step of the damage process.

  2. Amorphization and dynamic annealing of hexagonal SiC upon heavy-ion irradiation: Effects on swelling and mechanical properties

    SciTech Connect

    Kerbiriou, Xavier; Costantini, Jean-Marc; Sauzay, Maxime; Sorieul, Stephanie; Thome, Lionel

    2009-04-01

    Structural, mechanical, and dimensional evolutions of silicon carbide (SiC) induced by heavy-ion irradiations are studied by means of Rutherford backscattering spectrometry and channeling (RBS/C), nanoindentation, and surface profilometry measurements. 4H- and 6H-SiC single crystals were irradiated with 4 MeV Au{sup 2+} and 4 MeV Xe{sup +} ions at room temperature (RT) or 400 deg. C. Using a Monte Carlo program to simulate the RBS/C spectra (MCCHASY code), we find that Au ion irradiation at RT induces a total silicon sublattice disorder related to full amorphization at a dose of about 0.4 displacement per atom (dpa). A two-step damage process is found on the basis of the disordered fractions deduced from RBS/C data. Complete amorphization cannot be reached upon both Au and Xe ion irradiations at 400 deg. C up to about 26 dpa because of the dynamic annealing of defects. When complete amorphization is reached at RT, the Young's modulus and Berkovich hardness of irradiated 6H-SiC samples are lower by, respectively, 40% and 45% than those of the virgin crystals. The out-of-plane expansion measured by surface profilometry increases versus irradiation dose and the saturation value measured in the completely amorphous layer (normalized to the ion projected range) is close to 25%. We show that the modifications of the macroscopic properties are mainly due to the amorphization of the material. The macroscopic elasticity constants and dimensional properties are predicted for a composite material made of crystalline matrix containing dispersed amorphous inclusions using simple analytical homogenization models. Voigt's model seems to give the best approximation for disordered fractions larger than 20% in the second step of the damage process.

  3. Targeted Ablation of the Pde6h Gene in Mice Reveals Cross-species Differences in Cone and Rod Phototransduction Protein Isoform Inventory*

    PubMed Central

    Brennenstuhl, Christina; Tanimoto, Naoyuki; Burkard, Markus; Wagner, Rebecca; Bolz, Sylvia; Trifunovic, Dragana; Kabagema-Bilan, Clement; Paquet-Durand, Francois; Beck, Susanne C.; Huber, Gesine; Seeliger, Mathias W.; Ruth, Peter; Wissinger, Bernd; Lukowski, Robert

    2015-01-01

    Phosphodiesterase-6 (PDE6) is a multisubunit enzyme that plays a key role in the visual transduction cascade in rod and cone photoreceptors. Each type of photoreceptor utilizes discrete catalytic and inhibitory PDE6 subunits to fulfill its physiological tasks, i.e. the degradation of cyclic guanosine-3′,5′-monophosphate at specifically tuned rates and kinetics. Recently, the human PDE6H gene was identified as a novel locus for autosomal recessive (incomplete) color blindness. However, the three different classes of cones were not affected to the same extent. Short wave cone function was more preserved than middle and long wave cone function indicating that some basic regulation of the PDE6 multisubunit enzyme was maintained albeit by a unknown mechanism. To study normal and disease-related functions of cone Pde6h in vivo, we generated Pde6h knock-out (Pde6h−/−) mice. Expression of PDE6H in murine eyes was restricted to both outer segments and synaptic terminals of short and long/middle cone photoreceptors, whereas Pde6h−/− retinae remained PDE6H-negative. Combined in vivo assessment of retinal morphology with histomorphological analyses revealed a normal overall integrity of the retinal organization and an unaltered distribution of the different cone photoreceptor subtypes upon Pde6h ablation. In contrast to human patients, our electroretinographic examinations of Pde6h−/− mice suggest no defects in cone/rod-driven retinal signaling and therefore preserved visual functions. To this end, we were able to demonstrate the presence of rod PDE6G in cones indicating functional substitution of PDE6. The disparities between human and murine phenotypes caused by mutant Pde6h/PDE6H suggest species-to-species differences in the vulnerability of biochemical and neurosensory pathways of the visual signal transduction system. PMID:25739440

  4. Evaluation of pharmacokinetic properties and anaesthetic effects of propofol in a new perfluorohexyloctane (F6H8) emulsion in rats--A comparative study.

    PubMed

    Tsagogiorgas, Charalambos; Theisinger, Sonja; Heesch, Elisabeth; Krebs, Jörg; Holm, René; Beck, Grietje; Yard, Benito

    2015-01-01

    Propofol (2,6-diisopropylphenol) is a safe and widely used anaesthetic, but due to low water solubility and high lipophilicity a difficult compound to formulate. The solubility of propofol in the semifluorinated alkane perfluorohexyloctane (F6H8) is very high (>300 mg/ml). In the present work we investigate if a F6H8-based emulsion could be used as a new intravenous drug delivery system for propofol from a pharmacokinetic, pharmacodynamic and safety point of view. The pharmacokinetic parameters were evaluated after an intravenous bolus injection of either Disoprivan(®) or a F6H8-based propofol emulsion in Wistar rats. The onset and end of sedation after multiple dosings (5, 10 and 15 mg/kg bw) were examined. Clinical chemistry and histology were assessed. No significant difference was found for any of the pharmacokinetic parameters. No differences in the onset nor the end of sedation in the tested dosages could be detected. Histology scores revealed no differences. A slightly increased alanine aminotransferase (ALT) was measured after multiple application of the F6H8-propofol emulsion. In conclusion, the F6H8-propofol emulsion showed no significant different pharmacokinetics and sedation properties, compared to a commercial soy-based propofol emulsion. Further, no toxic effects could be detected on the F6H8 emulsion indicating it was a safe excipient in rats.

  5. Blockage of ROS and NF-κB-mediated inflammation by a new chalcone L6H9 protects cardiomyocytes from hyperglycemia-induced injuries.

    PubMed

    Zhong, Peng; Wu, Lianpin; Qian, Yuanyuan; Fang, Qilu; Liang, Dandan; Wang, Jingying; Zeng, Chunlai; Wang, Yi; Liang, Guang

    2015-07-01

    Increased oxidative stress and cardiac inflammation have been implicated in the pathogenesis of diabetic cardiomyopathy (DCM). We previously found that a novel chalcone derivative, L6H9, was able to reduce LPS-induced inflammatory response in macrophages. This study was designed to investigate its protective effects on DCM and the underlying mechanisms. H9C2 cells were cultured with DMEM containing 33 mmol/L of glucose in the presence or absence of L6H9. Pretreatment with L6H9 significantly reduced high glucose-induced inflammatory cytokine expression, ROS level increase, mitochondrial dysfunction, cell apoptosis, fibrosis, and hypertrophy in H9c2 cells, which may be mediated by NF-κB inhibition and Nrf2 activation. In mice with STZ-induced diabetes, oral administration of L6H9 at 20 mg/kg/day for 8 weeks significantly decreased the cardiac cytokine and ROS level, accompanied by decreasing cardiac apoptosis and hypertrophy, and, finally, improved histological abnormalities and fibrosis, without affecting the hyperglycemia. L6H9 also attenuated the diabetes-induced NF-κB activation and Nrf2 decrease in diabetic hearts. These results strongly suggest that L6H9 may have great therapeutic potential in the treatment of DCM via blockage of inflammation and oxidative stress. This study also provides a deeper understanding of the regulatory role of Nrf2 and NF-κB in DCM, indicating that they may be important therapeutic targets for diabetic complications. PMID:25736300

  6. The Abundance of C6H6 and HC3N over Titan's South Pole as winter approaches

    NASA Astrophysics Data System (ADS)

    Bjoraker, Gordon; Cottini, Valeria; Achterberg, Richard; Coustenis, Athena

    2016-06-01

    Benzene and cyanoacetylene have increased dramatically near Titan's South Pole since 2011. First detected near the South Pole in limb measurements, CIRS can now see strong emission lines of these species in nadir observations. This is remarkable because at the same time stratospheric temperatures at the 1-mbar level (185 km) at 70°S have dropped more than 30K in the past 5 years. CIRS obtained measurements of emission from these molecules as a function of latitude during the T104 flyby on 2014 August 20. These data show the strongest emission at 83°S, falling off rapidly towards 70°S. Recently, during T117 on 2016 February 16, CIRS obtained limb spectra at 80°S. These observations show peak emission for C6H6 between 200 and 250 km, while HC3N peaks between 250 and 300 km (0.25 to 0.1 mbars) where the stratospheric temperature is near 160 K. These molecules are tracers of meridional transport in Titan's stratosphere and their confinement near the South Pole is reminiscent of the Antarctic ozone hole on Earth.

  7. SEMICONDUCTOR DEVICES: Simulation and optimization of a 6H-SiC metal-semiconductor-metal ultraviolet photodetector

    NASA Astrophysics Data System (ADS)

    Bin, Chen; Yintang, Yang; Yuejin, Li; Hongxia, Liu

    2010-06-01

    Based on thermionic emission theory, a model of a 6H-SiC metal-semiconductor-metal (MSM) ultraviolet photodetector is established with the simulation package ISE-TCAD. A device with 3 μm electrode width (W) and 3 μm electrode spacing (L) is simulated. The findings show that the MSM photodetector has quite a low dark current of 15 pA at 10 V bias and the photocurrent is two orders of magnitude higher than the dark current. The influences of different structures on dark and illuminated current-voltage characteristics of the MSM photodetector are investigated to optimize the device parameters. Simulation results indicate that the maximum photocurrent and the highest ratio of photocurrent to dark current at 15 V bias are 5.3 nA and 327 with device parameters of W = 6 μm, L = 3 μm and W = 3 μm, L = 6 μm, respectively.

  8. Pharmacologic Evaluation of Antidepressant Activity and Synthesis of 2-Morpholino-5-phenyl-6H-1,3,4-thiadiazine Hydrobromide.

    PubMed

    Sarapultsev, Alexey P; Chupakhin, Oleg N; Sarapultsev, Petr A; Sidorova, Larisa P; Tseitler, Tatiana A

    2016-01-01

    Substituted thiadiazines exert a reliable therapeutic effect in treating stress, and a schematic description of their ability to influence all aspects of a stress response has been depicted. This study was conducted to pharmacologically evaluate compound L-17, a substituted thiadiazine, (2-morpholino-5-phenyl-6H-1,3,4-thiadiazine, hydrobromide) for possible anti-psychotic/antidepressant activity. Compound L-17 was synthesized by cyclocondensation of α-bromoacetophenone with the original morpholine-4-carbothionic acid hydrazide. Pharmacologic evaluations were conducted using methods described by E.F. Lavretskaya (1985), and in accordance with published guidelines for studying drugs for neuroleptic activity. Compound L-17 was evaluated for various possible mechanisms of action, including its effects on cholinergic system agonists/antagonists, dopaminergic neurotransmission, the adrenergic system, and 5-HT3 serotonin receptors. One or more of these mechanisms may be responsible for the beneficial effects shown by thiadiazine compounds in experiments conducted to evaluate their activity in models of acute stress and acute myocardial infarction. PMID:27213404

  9. Crystal structure and Mössbauer spectroscopic study of FeSnF6·6H2O

    NASA Astrophysics Data System (ADS)

    Denes, Georges; Mousser, Abdelhamid; Merazig, Hocine

    1994-12-01

    Large single crystals of FeSnF6·6H2O were grown when aqueous hydrofluoric solutions of SnF2 and FeF2 were allowed to evaporate in air. Tin-119 Mössbauer spectroscopy at ambient temperature shows a single line at slightly negative isomer shift relative to CaSnO3 at room temperature (δ=-0.380(6) mm/s, Δ=0). This is characteristic of tetravalent tin octahedrally coordinated by fluorine. The X-ray crystal structure shows that tin(IV) is coordinated by 6 fluorine atoms, and Fe(II) by 6 water molecules. Both sites show a slight distortion from octahedral symmetry: the six distances are equal (Sn-Fe=1.941(3) Å and Fe-O=2.112(3) Å), whereas there are two values of angles (Fe-Sn-F=90.4(1)° and 89.6(1)°; O-Fe-O=91.1(1)° and 88.9(1)°). The material is an ionic compound [SnF6]2-[Fe(H2O)6]2+.

  10. Surface reconstruction and graphene formation on face-to-face 6H-SiC at 2000 ^oC

    NASA Astrophysics Data System (ADS)

    Elmquist, Randolph E.; Real, Mariano; Bush, Brian G.; Shen, Tian; Stiles, Mark D.; Lass, Eric A.

    2012-02-01

    Improved epitaxial graphene films have been widely reported when the sublimation rate of Si is reduced by ambient Ar gas, vapor phase silane, or confined Si vapor. We describe graphene growth on (0001) 6H-SiC samples annealed ``face-to-face'' [1]; in our modified method the separation is limited only by the flatness of the surfaces. After annealing in 100 kPa Ar gas at 2000 ^oC for 300 s, atomic force microscopy (AFM) and electrostatic force microscopy (EFM) show graphene coverage is typically between one and a few layers. Samples without prior hydrogen etching undergo surface reconstruction in the graphitization process, resulting in atomically flat terraces with step bunching. Estimates of the sequestered carbon in the form of graphene are compared to calculated levels due to sublimation and diffusion rates where the sublimated gas is dominated by Si atoms below 2100 ^oC. The 2000 ^oC samples are contrasted against samples processed between 1700 ^oC and 1900 ^oC and transport results on large-scale graphene devices are presented.[4pt] [1] X.Z Yu, C.G. Hwang, C.M. Jozwiak, A. Kohl, A.K. Schmid and A. Lanzara, New synthesis method for the growth of epitaxial graphene, Journal of Electron Spectroscopy and Related Phenomena 184 (2011) 100-106.

  11. Pharmacologic Evaluation of Antidepressant Activity and Synthesis of 2-Morpholino-5-phenyl-6H-1,3,4-thiadiazine Hydrobromide

    PubMed Central

    Sarapultsev, Alexey P.; Chupakhin, Oleg N.; Sarapultsev, Petr A.; Sidorova, Larisa P.; Tseitler, Tatiana A.

    2016-01-01

    Substituted thiadiazines exert a reliable therapeutic effect in treating stress, and a schematic description of their ability to influence all aspects of a stress response has been depicted. This study was conducted to pharmacologically evaluate compound L-17, a substituted thiadiazine, (2-morpholino-5-phenyl-6H-1,3,4-thiadiazine, hydrobromide) for possible anti-psychotic/antidepressant activity. Compound L-17 was synthesized by cyclocondensation of α-bromoacetophenone with the original morpholine-4-carbothionic acid hydrazide. Pharmacologic evaluations were conducted using methods described by E.F. Lavretskaya (1985), and in accordance with published guidelines for studying drugs for neuroleptic activity. Compound L-17 was evaluated for various possible mechanisms of action, including its effects on cholinergic system agonists/antagonists, dopaminergic neurotransmission, the adrenergic system, and 5-HT3 serotonin receptors. One or more of these mechanisms may be responsible for the beneficial effects shown by thiadiazine compounds in experiments conducted to evaluate their activity in models of acute stress and acute myocardial infarction. PMID:27213404

  12. X-Ray Photoelectron Spectroscopy Study of the Heating Effects on Pd/6H-SiC Schottky Structure

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    X-ray photoelectron spectroscopy is used to study the effects of heat treatment on the Pd/6H-SiC Schottky diode structure. After heating the structure at 425 C for 140 h, a very thin surface layer of PdO mixed with SiO(x) formed on the palladium surface of the Schottky structure. Heat treatment promoted interfacial diffusion and reaction which significantly broadened the interfacial region. In the interfacial region, the palladium concentration decreases with depth, and the interfacial products are Pd(x)Si (x = 1,2,3,4). In the high Pd concentration regions, Pd4Si is the major silicide component while gr and Pd2Si are major components in the low Pd concentration region. At the center of the interface, where the total palladium concentration equals that of silicon, the concentrations of palladium associated with various palladium silicides (Pd(x)Si, x= 1,2,3,4) are approximately equal. The surface passivation layer composed of PdO and SiO, may significantly affect the electronic and catalytic properties of the surface of the Schottky diode which plays a major role in gas detection. The electronic properties of the Schottky structure may be dominated by a (Pd+Pd(x)Si)/SiC interface. In order to stabilize the properties of the Schottky structure the surface and interface diffusion and reactions must be controlled.

  13. Study on formation of step bunching on 6H-SiC (0001) surface by kinetic Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Chen, Xuejiang; Su, Juan

    2016-05-01

    The formation and evolution of step bunching during step-flow growth of 6H-SiC (0001) surfaces were studied by three-dimensional kinetic Monte Carlo (KMC) method and compared with the analytic model based on the theory of Burton-Cabera-Frank (BCF). In the KMC model the crystal lattice was represented by a structured mesh which fixed the position of atoms and interatomic bonding. The events considered in the model were adatoms adsorption and diffusion on the terrace, and adatoms attachment, detachment and interlayer transport at the step edges. In addition, effects of Ehrlich-Schwoebel (ES) barriers at downward step edges and incorporation barriers at upwards step edges were also considered. In order to obtain more elaborate information for the behavior of atoms in the crystal surface, silicon and carbon atoms were treated as the minimal diffusing species. KMC simulation results showed that multiple-height steps were formed on the vicinal surface oriented toward [ 1 1 bar 00 ] or [ 11 2 bar 0 ] directions. And then the formation mechanism of the step bunching was analyzed. Finally, to further analyze the formation processes of step bunching, a one-dimensional BCF analytic model with ES and incorporation barriers was used, and then it was solved numerically. In the BCF model, the periodic boundary conditions (PBC) were applied, and the parameters were corresponded to those used in the KMC model. The evolution character of step bunching was consistent with the results obtained by KMC simulation.

  14. Carcass yields and meat quality characteristics of adult emus (Dromaius novaehollandiae) transported for 6h before slaughter.

    PubMed

    Menon, Deepa G; Bennett, Darin C; Uttaro, Bethany; Schaefer, Allan L; Cheng, Kimberly M

    2014-10-01

    The meat quality characteristics of adult emus transported for 6h before slaughter were determined. Forty-two emus were used in two trials, undertaken under warm and cool weather conditions, respectively. Male emus had significantly higher fat yields than females (12.43kg vs 9.5kg, P=0.002). About 38.1% of the emus had no wounds or bruises, 40.5% had bruises, while 21.4% had small wounds after transport. Meat from injured emus had significantly higher pH45. In warm weather, emus experienced significantly higher loss in body weight than that under cool weather. Drip loss in meat after 24h of storage was higher in emus which had greater live weight loss after transport (r=0.66, P<0.0001), confirming the adverse effects of transport stress on meat quality. Nutrient supplementation did not significantly affect processing yield or meat quality characteristics. This study points to the need for optimizing transport conditions of emus to maintain meat quality. PMID:24973774

  15. Characterization and physical modeling of MOS capacitors in epitaxial graphene monolayers and bilayers on 6H-SiC

    NASA Astrophysics Data System (ADS)

    Winters, M.; Sveinbjörnsson, E. Ö.; Melios, C.; Kazakova, O.; Strupiński, W.; Rorsman, N.

    2016-08-01

    Capacitance voltage (CV) measurements are performed on planar MOS capacitors with an Al2O3 dielectric fabricated in hydrogen intercalated monolayer and bilayer graphene grown on 6H-SiC as a function of frequency and temperature. Quantitative models of the CV data are presented in conjunction with the measurements in order to facilitate a physical understanding of graphene MOS systems. An interface state density of order 2 ṡ 1012 eV-1 cm-2 is found in both material systems. Surface potential fluctuations of order 80-90meV are also assessed in the context of measured data. In bilayer material, a narrow bandgap of 260meV is observed consequent to the spontaneous polarization in the substrate. Supporting measurements of material anisotropy and temperature dependent hysteresis are also presented in the context of the CV data and provide valuable insight into measured and modeled data. The methods outlined in this work should be applicable to most graphene MOS systems.

  16. Effects of 6-h exposure to low relative humidity and low air pressure on body fluid loss and blood viscosity.

    PubMed

    Hashiguchi, N; Takeda, A; Yasuyama, Y; Chishaki, A; Tochihara, Y

    2013-10-01

    The purpose of this study was to investigate the effects of 6-h exposure to low relative humidity (RH) and low air pressure in a simulated air cabin environment on body fluid loss (BFL) and blood viscosity. Fourteen young healthy male subjects were exposed to four conditions, which combined RH (10% RH or 60% RH) and air pressure (NP: sea level or LP: equivalent to an altitude of 2000 m). Subjects remained seated on a chair in the chamber for 6 h. Their diet and water intake were restricted before and during the experiment. Insensible water loss (IWL) in LP10% condition was significantly greater than in NP60% condition; thus, combined 10%RH and LP conditions promoted a greater amount of IWL. The BFL under the LP condition was significantly greater than that under the NP condition. Blood viscosity significantly increased under LP conditions. Increases in red blood cell counts (RBCs) and BFL likely contributed to the increased blood viscosity. These findings suggest that hypobaric-induced hypoxia, similar to the conditions in the air cabin environment, may cause increased blood viscosity and that the combined low humidity and hypobaric hypoxia conditions increase IWL. PMID:23464811

  17. Coupled antiferromagnetic spin- 12 chains in green dioptase Cu6[Si6O18]·6H2O

    DOE PAGESBeta

    Podlesnyak, Andrey A; Larry M. Anovitz; Kolesnikov, Alexander I; Matsuda, Masaaki; Prisk, Timothy R; Toth, Sandor; Ehlers, Georg

    2016-02-01

    Inmore » this paper, we report inelastic neutron scattering measurements of the magnetic excitations of green dioptase Cu6[Si6O18]∙6H2O. The observed spectrum contains two magnetic modes and a prominent spin gap that is consistent with the ordered ground state of Cu moments coupled antiferromagnetically in spiral chains along the c axis and ferromagnetically in ab planes on the hexagonal cell. The data are in excellent agreement with a spin- 12Hamiltonian that includes antiferromagnetic nearest-neighbor intrachain coupling Jc=10.6(1) meV, ferromagnetic interchain coupling Jab=₋1.2 (1) meV, and exchange anisotropy ΔJc=0.14(1) meV. We calculated the sublattice magnetization to be strongly reduced, ~0.39μB. This appears compatible with a reduced Néel temperature, TN=14.5K

  18. Carcass yields and meat quality characteristics of adult emus (Dromaius novaehollandiae) transported for 6h before slaughter.

    PubMed

    Menon, Deepa G; Bennett, Darin C; Uttaro, Bethany; Schaefer, Allan L; Cheng, Kimberly M

    2014-10-01

    The meat quality characteristics of adult emus transported for 6h before slaughter were determined. Forty-two emus were used in two trials, undertaken under warm and cool weather conditions, respectively. Male emus had significantly higher fat yields than females (12.43kg vs 9.5kg, P=0.002). About 38.1% of the emus had no wounds or bruises, 40.5% had bruises, while 21.4% had small wounds after transport. Meat from injured emus had significantly higher pH45. In warm weather, emus experienced significantly higher loss in body weight than that under cool weather. Drip loss in meat after 24h of storage was higher in emus which had greater live weight loss after transport (r=0.66, P<0.0001), confirming the adverse effects of transport stress on meat quality. Nutrient supplementation did not significantly affect processing yield or meat quality characteristics. This study points to the need for optimizing transport conditions of emus to maintain meat quality.

  19. Connecting modes of linking ligands containing different terminal groups (pyridyl-amine or pyridyl-pyridyl): Preparation and structures of {[Cd( L1) 2(OH 2) 2]·(ClO 4) 2·(C 6H 6)} ∞, {[Cd( L2) 2(ClO 4) 2]·(CH 3OH) 2} ∞, {[Cd( L3) 2(OH 2) 2]·(ClO 4) 2} ∞, and [Cd( L4) 2(CH 3OH) 2(ClO 4) 2] {( m-py)-CH dbnd N-(CH 3)C 6H 3-C 6H 3(CH 3)-NH 2 ( m = 3 ( L1) or 4 ( L2)); ( n-py)-CH dbnd N-(CH 3)C 6H 3-C 6H 3(CH 3)-N dbnd CH-( n-py); ( n = 3 ( L3) or 4 ( L4))}

    NASA Astrophysics Data System (ADS)

    Yun, Sung Yol; Lee, Kyung-Eun; Lee, Soon W.

    2009-10-01

    We prepared four potential linking ligands, [(3-py)-CH dbnd N-(CH 3)C 6H 3-C 6H 3(CH 3)-NH 2, L1], [(4-py)-CH dbnd N-(CH 3)C 6H 3-C 6H 3(CH 3)-NH 2, L2], [(3-py)-CH dbnd N-(CH 3)C 6H 3-C 6H 3(CH 3)-N dbnd CH-(3-py), L3], and [(4-py)-CH dbnd N-(CH 3)C 6H 3-C 6H 3(CH 3)-N dbnd CH-(4-py), L4], all of which contain an intervening biphenyl fragment. Whereas ligands L1 and L2 have two types of terminal groups (pyridyl-amine), ligands L3 and L4 have a single type of terminal groups (pyridyl-pyridyl). Ligands L1- L4 reacted with cadmium nitrate to produce {[Cd( L1) 2(OH 2) 2]·(ClO 4) 2·(C 6H 6)} ∞ ( 1), {[Cd( L2) 2(ClO 4) 2]·(CH 3OH) 2} ∞ ( 2), {[Cd( L3) 2(OH 2) 2]·(ClO 4) 2} ∞ ( 3), and [Cd( L4) 2(CH 3OH) 2(ClO 4) 2] ( 4), respectively. Whereas compounds 1- 3 are 1-dimensional coordination polymers, compound 4 is a discrete molecular species.

  20. Processing of laser formed SiC powder

    NASA Technical Reports Server (NTRS)

    Haggerty, J. S.; Bowen, H. K.

    1985-01-01

    Superior SiC characteristics can be achieved through the use of ideal constituent powders and careful post-synthesis processing steps. High purity SiC powders of approx. 1000 A uniform diameter, nonagglomerated and spherical were produced. This required major revision of the particle formation and growth model from one based on classical nucleation and growth to one based on collision and coalescence of Si particles followed by their carburization. Dispersions based on pure organic solvents as well as steric stabilization were investigated. Although stable dispersions were formed by both, subsequent part fabrication emphasized the pure solvents since fewer problems with drying and residuals of the high purity particles were anticipated. Test parts were made by the colloidal pressing technique; both liquid filtration and consolidation (rearrangement) stages were modeled. Green densities corresponding to a random close packed structure (approx. 63%) were achieved; this highly perfect structure has a high, uniform coordination number (greater than 11) approaching the quality of an ordered structure without introducing domain boundary effects. After drying, parts were densified at temperatures ranging from 1800 to 2100 C. Optimum densification temperatures will probably be in the 1900 to 2000 C range based on these preliminary results which showed that 2050 C samples had experienced substantial grain growth. Although overfired, the 2050 C samples exhibited excellent mechanical properties. Biaxial tensile strengths up to 714 MPa and Vickers hardness values of 2430 kg/sq mm 2 were both more typical of hot pressed than sintered SiC. Both result from the absence of large defects and the confinement of residual porosity (less than 2.5%) to small diameter, uniformly distributed pores.

  1. Plastic deformation of alumina reinforced with SiC whiskers

    SciTech Connect

    DeArellano-Lopez, A.R.; Dominguez-Rodriguez, A.; Goretta, K.C.; Routbort, J.L.

    1993-06-01

    Addition of small amounts of stiff reinforcement (SiC whiskers) to a polycrystalline AL{sub 2}O{sub 3} matrix partially inhibits grain boundary sliding because of an increase in threshold stress. When the concentration of whiskers is high enough, a pure diffusional mechanism takes over the control of plastic deformation of the composites. For higher whisker loadings, the materials creep properties depend on a microstructural feature different from the nominal grain size. A tentative correlation of this effective microstructural parameter with the spacing between the whiskers was established through a model.

  2. Corrosion of SiC by Molten Salt

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Smialek, James L.

    1987-01-01

    Advanced ceramic materials considered for wide range of applications as in gas turbine engines and heat exchangers. In such applications, materials may be in corrosive environments that include molten salts. Very corrosive to alloys. In order to determine extent of problem for ceramic materials, corrosion of SiC by molten salts studied in both jet fuel burners and laboratory furnaces. Surface of silicon carbide corroded by exposure to flame seeded with 4 parts per million of sodium. Strength of silicon carbide decreased by corrosion in flame and tube-furnace tests.

  3. Ultra High Temperature (UHT) SiC Fiber (Phase 2)

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Jacobson, Nathan S.; Lizcano, Maricela; Bhatt, Ramakrishna T.

    2015-01-01

    Silicon-carbide fiber-reinforced silicon-carbide ceramic matrix composites (SiCSiC CMC) are emerginglightweight re-usable structural materials not only for hot section components in gas turbine engines, but also for controlsurfaces and leading edges of reusable hypersonic vehicles as well as for nuclear propulsion and reactor components. Ithas been shown that when these CMC are employed in engine hot-section components, the higher the upper usetemperature (UUT) of the SiC fiber, the more performance benefits are accrued, such as higher operating temperatures,reduced component cooling air, reduced fuel consumption, and reduced emissions. The first generation of SiCSiC CMC with a temperature capability of 2200-2400F are on the verge of being introduced into the hot-section components ofcommercial and military gas turbine engines.Today the SiC fiber type currently recognized as the worlds best in terms ofthermo-mechanical performance is the Sylramic-iBN fiber. This fiber was previously developed by the PI at NASA GRC using patented processes to improve the high-cost commercial Sylramic fiber, which in turn was derived from anotherlow-cost low-performance commercial fiber. Although the Sylramic-iBN fiber shows state-of-the art creep and rupture resistance for use temperatures above 2550oF, NASA has shown by fundamental creep studies and model developmentthat its microstructure and creep resistance could theoretically be significantly improved to produce an Ultra HighTemperature (UHT) SiC fiber.This Phase II Seedling Fund effort has been focused on the key objective of effectively repeating the similar processes used for producing the Sylramic-iBN fiber using a design of experiments approach to first understand the cause of the less than optimum Sylramic-iBN microstructure and then attempting to develop processconditions that eliminate or minimize these key microstructural issues. In so doing, it is predicted that that theseadvanced process could result in an UHT SiC

  4. Construction Progress of S-IC Test Stand Pump House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast east was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. This photograph of the Pump House area was taken August 13, 1963. The massive round water storage tanks can be seen to the left of

  5. Atom-scale covalent electrochemical modification of single-layer graphene on SiC substrates by diaryliodonium salts

    SciTech Connect

    Gearba, Raluca I.; Mueller, Kory M.; Veneman, Peter A.; Holliday, Bradley J.; Chan, Calvin K.; Stevenson, Keith J.

    2015-05-09

    Owing to its high conductivity, graphene holds promise as an electrode for energy devices such as batteries and photovoltaics. However, to this end, the work function and doping levels in graphene need to be precisely tuned. One promising route for modifying graphene’s electronic properties is via controlled covalent electrochemical grafting of molecules. We show that by employing diaryliodonium salts instead of the commonly used diazonium salts, spontaneous functionalization is avoided. This then allows for precise tuning of the grafting density. Moreover, by employing bis(4-nitrophenyl)iodonium(III) tetrafluoroborate (DNP) salt calibration curves, the surface functionalization density (coverage) of glassy carbon was controlled using cyclic voltammetry in varying salt concentrations. These electro-grafting conditions and calibration curves translated directly over to modifying single layer epitaxial graphene substrates (grown on insulating 6H-SiC (0 0 0 1)). In addition to quantifying the functionalization densities using electrochemical methods, samples with low grafting densities were characterized by low-temperature scanning tunneling microscopy (LT-STM). We show that the use of buffer-layer free graphene substrates is required for clear observation of the nitrophenyl modifications. Furthermore, atomically-resolved STM images of single site modifications were obtained, showing no preferential grafting at defect sites or SiC step edges as supposed previously in the literature. Most of the grafts exhibit threefold symmetry, but occasional extended modifications (larger than 4 nm) were observed as well.

  6. Atom-scale covalent electrochemical modification of single-layer graphene on SiC substrates by diaryliodonium salts

    DOE PAGESBeta

    Gearba, Raluca I.; Mueller, Kory M.; Veneman, Peter A.; Holliday, Bradley J.; Chan, Calvin K.; Stevenson, Keith J.

    2015-05-09

    Owing to its high conductivity, graphene holds promise as an electrode for energy devices such as batteries and photovoltaics. However, to this end, the work function and doping levels in graphene need to be precisely tuned. One promising route for modifying graphene’s electronic properties is via controlled covalent electrochemical grafting of molecules. We show that by employing diaryliodonium salts instead of the commonly used diazonium salts, spontaneous functionalization is avoided. This then allows for precise tuning of the grafting density. Moreover, by employing bis(4-nitrophenyl)iodonium(III) tetrafluoroborate (DNP) salt calibration curves, the surface functionalization density (coverage) of glassy carbon was controlled usingmore » cyclic voltammetry in varying salt concentrations. These electro-grafting conditions and calibration curves translated directly over to modifying single layer epitaxial graphene substrates (grown on insulating 6H-SiC (0 0 0 1)). In addition to quantifying the functionalization densities using electrochemical methods, samples with low grafting densities were characterized by low-temperature scanning tunneling microscopy (LT-STM). We show that the use of buffer-layer free graphene substrates is required for clear observation of the nitrophenyl modifications. Furthermore, atomically-resolved STM images of single site modifications were obtained, showing no preferential grafting at defect sites or SiC step edges as supposed previously in the literature. Most of the grafts exhibit threefold symmetry, but occasional extended modifications (larger than 4 nm) were observed as well.« less

  7. Highly flexible, nonflammable and free-standing SiC nanowire paper.

    PubMed

    Chen, Jianjun; Liao, Xin; Wang, Mingming; Liu, Zhaoxiang; Zhang, Judong; Ding, Lijuan; Gao, Li; Li, Ye

    2015-04-14

    Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber reinforced ceramic composites. Herein, free-standing SiC nanowire paper consisting of ultralong single-crystalline SiC nanowires was prepared through a facile vacuum filtration approach. The ultralong SiC nanowires were synthesized by a sol-gel and carbothermal reduction method. The flexible paper composed of SiC nanowires is ∼100 nm in width and up to several hundreds of micrometers in length. The nanowires are intertwisted with each other to form a three-dimensional network-like structure. SiC nanowire paper exhibits high flexibility and strong mechanical stability. The refractory performance and thermal stability of SiC nanowire paper were also investigated. The paper not only exhibits excellent nonflammability in fire, but also remains well preserved without visible damage when it is heated in an electric oven at a high temperature (1000 °C) for 3 h. With its high flexibility, excellent nonflammability, and high thermal stability, the free-standing SiC nanowire paper may have the potential to improve the ablation resistance of high temperature ceramic composites. PMID:25785912

  8. The Social Interactive Coding System (SICS): An On-Line, Clinically Relevant Descriptive Tool.

    ERIC Educational Resources Information Center

    Rice, Mabel L.; And Others

    1990-01-01

    The Social Interactive Coding System (SICS) assesses the continuous verbal interactions of preschool children as a function of play areas, addressees, script codes, and play levels. This paper describes the 26 subjects and the setting involved in SICS development, coding definitions and procedures, training procedures, reliability, sample…

  9. Highly flexible, nonflammable and free-standing SiC nanowire paper.

    PubMed

    Chen, Jianjun; Liao, Xin; Wang, Mingming; Liu, Zhaoxiang; Zhang, Judong; Ding, Lijuan; Gao, Li; Li, Ye

    2015-04-14

    Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber reinforced ceramic composites. Herein, free-standing SiC nanowire paper consisting of ultralong single-crystalline SiC nanowires was prepared through a facile vacuum filtration approach. The ultralong SiC nanowires were synthesized by a sol-gel and carbothermal reduction method. The flexible paper composed of SiC nanowires is ∼100 nm in width and up to several hundreds of micrometers in length. The nanowires are intertwisted with each other to form a three-dimensional network-like structure. SiC nanowire paper exhibits high flexibility and strong mechanical stability. The refractory performance and thermal stability of SiC nanowire paper were also investigated. The paper not only exhibits excellent nonflammability in fire, but also remains well preserved without visible damage when it is heated in an electric oven at a high temperature (1000 °C) for 3 h. With its high flexibility, excellent nonflammability, and high thermal stability, the free-standing SiC nanowire paper may have the potential to improve the ablation resistance of high temperature ceramic composites.

  10. Gadolinium and Dysprosium Isotopic Compositions in Stardust SiC Grains from the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Avila, J. N.; Ireland, T. R.; Lugaro, M.; Gyngard, F.; Karakas, A.

    2016-08-01

    We report the results of Gd and Dy isotopic analyses performed in stardust SiC grains. We have compared the SiC data with new theoretical predictions of the evolution of Gd and Dy isotopic ratios in the envelopes of low-mass AGB stars.

  11. Iron and Nickel Isotope Measurements on SiC X Grains with CHILI

    NASA Astrophysics Data System (ADS)

    Kodolányi, J.; Stephan, T.; Trappitsch, R.; Hoppe, P.; Pignatari, M.; Davis, A. M.; Pellin, M. J.

    2016-08-01

    New measurements with CHILI on SiC X grains provide more detailed Fe and Ni isotope data than previous NanoSIMS analyses. The new data suggest that Fe-Ni fractionation may occur in supernova ejecta before SiC condensation.

  12. The first muon beam from a new highly-intense DC muon source, MuSIC

    NASA Astrophysics Data System (ADS)

    Tran, Nam Hoai; MuSIC Collaboration

    2012-09-01

    A new DC muon source, MuSIC, is now under construction at Research Center for Nuclear Physics (RCNP), Osaka University, Japan. The MuSIC adopts a new pion/muon collection system and a curved transport solenoid. These techniques are important in realization of future muon programs such as the muon to electron conversion experiments (COMET/Mu2e), neutrino factories, and muon colliders. The pion capture magnet and a part of the transport solenoid have been built and beam tests were carried out to assess the MuSIC's performance. Muon lifetime measurements and muonic X-ray measurements have been used for estimation of muon yield of the MuSIC. The result indicates that the MuSIC would be one of the most intense DC muon beams in the world.

  13. The Influence of SiC on the Ablation Response of Advanced Refractory Composite Materials

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey D.; Rasky, Daniel J. (Technical Monitor)

    1994-01-01

    In continuing our studies of advanced refractory composite materials we have recently completed an arc-jet test series of a diverse group of ceramics and ceramic matrix composites. The compositions range from continuous fiber reinforced ceramics to monoliths. Many of these materials contain SiC and one objective of this test series was to identify the influence of SiC oxidation mechanisms on material performance. Hence the arc heater was operated at two conditions; one in which the passive oxidation of SiC would be dominant and the other where the active oxidation of SiC would be dominant. It is shown here that the active oxidation mechanism of SiC does not dominate material performance when it is present at levels equal to or below 20 volume percent.

  14. Oxidation of SiC cladding under Loss of Coolant Accident (LOCA) conditions in LWRs

    SciTech Connect

    Lee, Y.; Yue, C.; Arnold, R. P.; McKrell, T. J.; Kazimi, M. S.

    2012-07-01

    An experimental assessment of Silicon Carbide (SiC) cladding oxidation rate in steam under conditions representative of Loss of Coolant Accidents (LOCA) in light water reactors (LWRs) was conducted. SiC oxidation tests were performed with monolithic alpha phase tubular samples in a vertical quartz tube at a steam temperature of 1140 deg. C and steam velocity range of 1 to 10 m/sec, at atmospheric pressure. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO{sub 2} volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate. Over the range of test conditions, SiC oxidation rates were shown to be about 3 orders of magnitude lower than the oxidation rates of zircaloy 4. A SiC volatilization correlation for developing laminar flow in a vertical channel is formulated. (authors)

  15. Hydrothermal corrosion of SiC in LWR coolant environments in the absence of irradiation

    NASA Astrophysics Data System (ADS)

    Terrani, K. A.; Yang, Y.; Kim, Y.-J.; Rebak, R.; Meyer, H. M.; Gerczak, T. J.

    2015-10-01

    Assessment of the thermodynamics of SiC corrosion under light water reactor coolant environments suggests that silica formation is always expected in the range of applicable pH and potential. Autoclave testing of SiC-based materials in the absence of ionizing radiation was performed. The kinetics data from these tests, when compared with kinetics of silica dissolution in water and post-exposure characterization of SiC samples, suggest that oxidation of SiC to form silica is the rate-limiting step for recession of SiC in high temperature water. Oxygen activity in water was determined to play an important role in SiC recession kinetics. A simplified model of a power loop shows the effect of silica dissolution from the hot region (resembling fuel) and deposition in the cold regions.

  16. The role of Pd in the transport of Ag in SiC

    NASA Astrophysics Data System (ADS)

    Olivier, E. J.; Neethling, J. H.

    2013-01-01

    This paper presents results in support of a newly proposed transport mechanism to account for the release of Ag from intact TRISO particles during HTR reactor operation. The study reveals that the migration of Ag in polycrystalline SiC can occur in association with Pd, a relatively high yield metallic fission product. The migration takes place primarily along grain boundary routes, seen in the form of distinct Pd, Ag and Si containing nodules. Pd is known to rapidly migrate to the SiC and iPyC interface within TRISO particles during operation. It has been shown to chemically corrode the SiC to form palladium silicides. These palladium silicides are found present along SiC grain boundaries in nodule like form. It is suggested that Ag penetrates these nodules together with the palladium silicide, to form a Pd, Ag and Si solution capable of migrating along SiC grain boundaries over time.

  17. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven C.; Weber, William J.

    2016-09-01

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, 'nano-engineered SiC') and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. It was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due to the local increase in electronic energy loss that enhanced dynamic recovery.

  18. Optimized growth of graphene on SiC: from the dynamic flip mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Liu, Lei; Chen, Wei; Chen, Xiaobo; Huang, Han; He, Jun; Feng, Yuan-Ping; Wee, A. T. S.; Shen, D. Z.

    2015-02-01

    Thermal decomposition of single-crystal SiC is one of the popular methods for growing graphene. However, the mechanism of graphene formation on the SiC surface is poorly understood, and the application of this method is also hampered by its high growth temperature. In this study, based on the ab initio calculations, we propose a vacancy assisted Si-C bond flipping model for the dynamic process of graphene growth on SiC. The fact that the critical stages during growth take place at different energy costs allows us to propose an energetic-beam controlled growth method that not only significantly lowers the growth temperature but also makes it possible to grow high-quality graphene with the desired size and patterns directly on the SiC substrate.

  19. The microstructure origin of large strain plastically deformed SiC nanowires

    NASA Astrophysics Data System (ADS)

    Fu, X.; Jiang, J.; Hu, X.; Yuan, J.; Zhang, Y.; Han, X.; Zhang, Z.

    2008-08-01

    Surprisingly large strain plasticity has been demonstrated for ceramic SiC nanowires through in-situ deformation experiments near room temperature. This article reports a detailed electron energy-loss spectroscopy (EELS) study of deformation-induced localized plastic zones in a bent SiC nanowire. Both the 'red shift' of the plasmon peak and the characteristic fine structure at Si L-edge absorption are consistent with local amorphisation of SiC. The recorded C K-edge fine structure is processed to remove the contribution from the surface amorphous carbon and the extracted C K-edge fine structure has no characteristic sp2-related pre-edge peak and hence is also consistent with amorphous SiC. These results suggest that the large strain plasticity in SiC nanowires is enabled by crystalline-to-amorphous transition.

  20. Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes.

    PubMed

    Fernie-King, B A; Seilly, D J; Willers, C; Würzner, R; Davies, A; Lachmann, P J

    2001-07-01

    Streptococcal inhibitor of complement (SIC) was first described in 1996 as a putative inhibitor of the membrane attack complex of complement (MAC). SIC is a 31 000 MW protein secreted in large quantities by the virulent Streptococcus pyogenes strains M1 and M57, and is encoded by a gene which is extremely variable. In order to study further the interactions of SIC with the MAC, we have made a recombinant form of SIC (rSIC) in Escherichia coli and purified native M1 SIC which was used to raise a polyclonal antibody. SIC prevented reactive lysis of guinea pig erythrocytes by the MAC at a stage prior to C5b67 complexes binding to cell membranes, presumably by blocking the transiently expressed membrane insertion site on C7. The ability of SIC and clusterin (another putative fluid phase complement inhibitor) to inhibit complement lysis was compared, and found to be equally efficient. In parallel, by enzyme-linked immunosorbent assay both SIC and rSIC bound strongly to C5b67 and C5b678 complexes and to a lesser extent C5b-9, but only weakly to individual complement components. The implications of these data for virulence of SIC-positive streptococci are discussed, in light of the fact that Gram-positive organisms are already protected against complement lysis by the presence of their peptidoglycan cell walls. We speculate that MAC inhibition may not be the sole function of SIC.

  1. Processing of laser formed SiC powder

    NASA Technical Reports Server (NTRS)

    Haggerty, J. S.; Bowen, H. K.

    1987-01-01

    Processing research was undertaken to demonstrate that superior SiC characteristics could be achieved through the use of ideal constituent powders and careful post-synthesis processing steps. Initial research developed the means to produce approximately 1000 A uniform diameter, nonagglomerated, spherical, high purity SiC powders. Accomplishing this goal required major revision of the particle formation and growth model from one based on classical nucleation and growth to one based on collision and coalescence of Si particles followed by their carburization. Dispersions based on pure organic solvents as well as steric stabilization were investigated. Test parts were made by the colloidal pressing technique; both liquid filtration and consolidation (rearrangement) stages were modeled. Green densities corresponding to a random close packed structure were achieved. After drying, parts were densified at temperatures ranging from 1800 to 2100 C. This research program accomplished all of its major objectives. Superior microstructures and properties were attained by using powders having ideal characteristics and special post-synthesis processing procedures.

  2. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-08-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep {open_quotes}m{close_quotes} curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261{degrees}C), Nicalon S (1256{degrees}C), annealed Hi Nicalon (1215{degrees}C), Hi Nicalon (1078{degrees}C), Nicalon CG (1003{degrees}C) and Tyranno E (932{degrees}C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests.

  3. A NEW TYPE OF SIC COMPOSITE FOR FUSION

    SciTech Connect

    Youngblood, Gerald E.; Jones, Russell H.

    2001-04-01

    A new type of SiC composite called Tyrannohex™ is potentially suitable as a fusion reactor structural material. Tyrannohex™ composite plates are made by hot-pressing layups of Tyranno™ SA precursor fibers into various 1D and 2D configurations. The fiber-bonded composite plates contain nearly 100% fiber volume, so take advantage of the outstanding high temperature strength and creep properties of the Tyranno™ SA fiber, a nearly stoichiometric SiC fiber. The hot-pressed plates are dense, strong, rigid, tough, thermally conductive and have high temperature stability. The microstructure and thermal conductivity of a SA-Tyrannohex™ material with a 2D-woven configuration was evaluated prior to irradiation testing. The microstructure contained some small, flat interlaminar pores and intrabundle needle-like pores, and the transverse thermal conductivity was 25 and 21 W/mK at ambient and 1000°C, respectively. These results suggest that careful control of the fiber-bonded interlayers and the fiber architecture are critical to achieve both high thermal conductivity and toughness in Tyrannohex™ type materials.

  4. Microstructure characterization of SiC nanowires as reinforcements in composites

    SciTech Connect

    Dong, Ronghua; Yang, Wenshu; Wu, Ping; Hussain, Murid; Xiu, Ziyang; Wu, Gaohui; Wang, Pingping

    2015-05-15

    SiC nanowires have been rarely investigated or explored along their axial direction by transmission electron microscopy (TEM). Here we report the investigation of the cross-section microstructure of SiC nanowires by embedding them into Al matrix. Morphology of SiC nanowires was cylindrical with smooth surface or bamboo shape. Cubic (3C-SiC) and hexagonal structure (2H-SiC) phases were detected by X-ray diffraction (XRD) analysis. High density stacking faults were observed in both the cylindrical and bamboo shaped nanowires which were perpendicular to their axial direction. Selected area electron diffraction (SAED) patterns of the cylindrical and bamboo shaped SiC nanowires both in the perpendicular and parallel direction to the axial direction were equivalent in the structure. After calculation and remodeling, it has been found that the SAED patterns were composed of two sets of diffraction patterns, corresponding to 2H-SiC and 3C-SiC, respectively. Therefore, it could be concluded that the SiC nanowires are composed of a large number of small fragments that are formed by hybrid 3C-SiC and 2H-SiC structures. - Graphical abstract: Display Omitted - Highlights: • Cross-section microstructure of SiC nanowires was observed in Al composite. • Cylindrical with smooth surface or bamboo shape SiC nanowires were found. • The cylindrical and bamboo shaped SiC nanowires were equivalent in structure. • Structure of SiC nanowires was remodeled. • SiC nanowires are composed of hybrid 3C-SiC and 2H-SiC structures.

  5. Abnormal difference between the mobilities of left- and right-twisted conformations of C6H12N2 roto-symmetrical molecules at very low temperatures.

    PubMed

    Gabuda, S P; Kozlova, S G

    2015-06-21

    We report an abnormal difference of low-temperature mobility of left-twisted and right-twisted conformations of roto symmetric molecules C6H12N2 (dabco) located in the same positions in crystal Zn2(C8H4O4)2⋅C6H12N2. The difference between (1)H NMR (Nuclear Magnetic Resonance) spin-relaxation data for left-twisted and right-twisted molecules reaches ∼3 × 10(3) times at 8 K and tends to grow at lower temperatures. We argue that taking into account four-component relativistic Dirac wave functions in the vicinity of the nodal plane of dabco molecules and vacuum fluctuations due to virtual particle-antiparticle pairs can explain the changes which C6H12N2 conformations undergo at low temperatures. PMID:26093554

  6. New metal-organic frameworks of [M(C{sub 6}H{sub 5}O{sub 7})(C{sub 6}H{sub 6}O{sub 7})(C{sub 6}H{sub 7}O{sub 7})(H{sub 2}O)] . H{sub 2}O (M=La, Ce) and [Ce{sub 2}(C{sub 2}O{sub 4})(C{sub 6}H{sub 6}O{sub 7}){sub 2}] . 4H{sub 2}O

    SciTech Connect

    Weng Shengfeng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-04-15

    Two novel materials, [M(C{sub 6}H{sub 5}O{sub 7})(C{sub 6}H{sub 6}O{sub 7})(C{sub 6}H{sub 7}O{sub 7})(H{sub 2}O)] . H{sub 2}O (M=La(1a), Ce(1b)) and [Ce{sub 2}(C{sub 2}O{sub 4})(C{sub 6}H{sub 6}O{sub 7}){sub 2}] . 4H{sub 2}O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1-bar (No. 2); compound 2 crystallized in monoclinic space group P2{sub 1}/c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of Cu{sup II} ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d{sup 1} excited state and two levels of the 4f{sup 1} ground state ({sup 2}F{sub 5/2} and {sup 2}F{sub 7/2}). Compounds 1b and 2 containing Ce{sup III} ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers. - Graphical Abstract: [M(C{sub 6}H{sub 5}O{sub 7})(C{sub 6}H{sub 6}O{sub 7})(C{sub 6}H{sub 7}O{sub 7})(H{sub 2}O)] . H{sub 2}O (M=La(1a), Ce(1b)) and [Ce{sub 2}(C{sub 2}O{sub 4})(C{sub 6}H{sub 6}O{sub 7}){sub 2}] . 4H{sub 2}O (2)-with 1D and 2D structures were synthesized and characterized. Highlights: Black-Right-Pointing-Pointer Two MOF - [M(C{sub 6}H{sub 5}O{sub 7})(C{sub 6}H{sub 6}O{sub 7})(C{sub 6}H{sub 7}O{sub 7})(H{sub 2}O)] . H{sub 2}O (M=La(1a), Ce(1b)) and [Ce{sub 2}(C{sub 2}O{sub 4})(C{sub 6}H{sub 6}O{sub 7}){sub 2}] . 4H{sub 2}O (2) - with 1D and 2D structures. Black-Right-Pointing-Pointer The adjacent chains of the 1D framework were correlated with each other through an oxalate

  7. Abnormal difference between the mobilities of left- and right-twisted conformations of C6H12N2 roto-symmetrical molecules at very low temperatures.

    PubMed

    Gabuda, S P; Kozlova, S G

    2015-06-21

    We report an abnormal difference of low-temperature mobility of left-twisted and right-twisted conformations of roto symmetric molecules C6H12N2 (dabco) located in the same positions in crystal Zn2(C8H4O4)2⋅C6H12N2. The difference between (1)H NMR (Nuclear Magnetic Resonance) spin-relaxation data for left-twisted and right-twisted molecules reaches ∼3 × 10(3) times at 8 K and tends to grow at lower temperatures. We argue that taking into account four-component relativistic Dirac wave functions in the vicinity of the nodal plane of dabco molecules and vacuum fluctuations due to virtual particle-antiparticle pairs can explain the changes which C6H12N2 conformations undergo at low temperatures.

  8. Tungsten phosphanylarylthiolato complexes [W{PhP(2-SC6H4)2-kappa3S,S',P} 2] and [W{P(2-SC6H4)3-kappa4S,S',S",P}2]: synthesis, structures and redox chemistry.

    PubMed

    Hildebrand, Alexandra; Lönnecke, Peter; Silaghi-Dumitrescu, Luminita; Hey-Hawkins, Evamarie

    2008-09-14

    PhP(2-SHC6H4)2 (PS2H2) reacts with WCl6 with reduction of tungsten to give the air-sensitive tungsten(IV) complex [W{PhP(2-SC6H4)2-kappa(3)S,S',P}2] (1). 1 is oxidised in air to [WO{PhPO(2-SC6H4)2-kappa(3)S,S',O}{PhP(2-SC6H4)2-kappa(3)S,S',P}] (2). The attempted synthesis of 2 by reaction of 1 with iodosobenzene as oxidising agent was unsuccessful. [W{P(2-SC6H4)3-kappa(4)S,S',S",P}2] (3) was formed in the reaction of P(2-SHC6H4)3 (PS3H3) with WCl6. The W(VI) complex 3 contains two PS3(3-) ligands, each coordinated in a tetradentate fashion resulting in a tungsten coordination number of eight. The reaction of 3 with AgBF4 yields the dinuclear tungsten complex [W2{P(2-SC6H4)3-kappa(4)S,S',S",P}3]BF4 (4). Complexes 1-4 were characterised by spectral methods and X-ray structure determination.

  9. History of the ISS/SIC: Antoine Depage, one of the founders of the ISS/SIC.

    PubMed

    Van Hee, R

    2002-10-01

    Antoine Depage, born near Brussels in 1862, was one of the founders and first Secretary General of the Société Internationale de Chirurgie (ISS-SIC). After an excellent medical education at the Free Brussels University, he became professor at the same university at the age of 27. Surgically trained by Prof. Thiriar, he became one of the leading Belgian surgeons at the end of the nineteenth century, and he published more than 100 articles in national and international journals. In 1907 he founded a school for nurses in Brussels, to be directed by Edith Cavell. He also vigorously transformed the organization of the public hospitals in the Belgian capital. During World War I Queen Elisabeth appointed him surgeon-in-chief of the Océan-hospital in De Panne, where more than 50,000 soldiers with wounds, fractures, cerebral trauma, nitrous gas intoxication, and infectious diseases, among other problems were treated. The results he and his team obtained were excellent, and mortality was low. Many surgeons, including Alexis Carrel, as well as distinguished political leaders came to visit him in the hospital barracks. After the war he was honored by many political and scientific organizations, including the Société Internationale de Chirurgie. He served our Society not only as Secretary General from 1902 to 1912 but became President of the 4th Congress of the ISS-SIC in New York. Antoine Depage died after a long illness in 1925. PMID:12205562

  10. In situ toughened SiC ceramics with Al-B-C additions and oxide-coated SiC platelet/SiC composites

    SciTech Connect

    Cao, J. |

    1996-12-01

    This work aimed at fabrication and characterization of high toughness SiC ceramics through the applications of in situ toughening and SiC platelet reinforcement. The processing-microstructure-property relations of hot pressed SiC with Al, B, and C additions (designated as ABC-SiC) were investigated. Through a liquid phase sintering mechanism, dense SiC was obtained by hot pressing at a temperature as low as 1,700 C with 3 wt% Al, 0.6 wt% B, and 2 wt% C additions. These sintering aids also enhanced the {beta}-to-{alpha} (3C-to-4H) phase transformation, which promoted SiC grains to grow into plate-like shapes. Under optimal processing conditions, the microstructure exhibited high-aspect-ratio plate-shaped grains with a thin (< 1 nm) Al-containing amorphous grain boundary film. The mechanical properties of the toughened SiC and the composites were evaluated in comparison with a commercial Hexoloy SiC under identical test conditions. The C-curve behavior was examined using the strength-indentation load relationship and compared with that directly measured using precracked compact tension specimens. The in situ toughened ABC-SiC exhibited much improved flaw tolerance and a significantly rising R-curve behavior. A steady-state toughness in excess of 9 MPam{sup 1/2} was recorded for the ABC-SiC in comparison to a single valued toughness below 3 MPam{sup 1/2} for the Hexoloy. Toughening in the ABC-SiC was mainly attributed to grain bridging and subsequent pullout of the plate-shaped grains. The high toughness ABC-SiC exhibited a bend strength of 650 MPa with a Weibull modulus of 19; in comparison, the commercial SiC showed a bend strength of 400 MPa with a Weibull modulus of 6. Higher fracture toughness was also achieved by the reinforcement of SiC platelets, encapsulated with alumina, yttria, or silica, in a SiC matrix.

  11. Three p-tert-butylthiacalix[4]arene-supported cobalt compounds obtained in one pot involving in situ formation of N6H2 ligand.

    PubMed

    Bi, Yanfeng; Liao, Wuping; Xu, Guancheng; Deng, Ruiping; Wang, Meiyan; Wu, Zhijian; Gao, Song; Zhang, Hongjie

    2010-09-01

    Three p-tert-butylthiacalix[4]arene (H(4)TC4A)-supported Co(II) compounds, [Co(4)(TC4A)(N(3))(4)(N(6)H(2))(CH(3)OH)](CH(3)OH)(2) (1), [Co(8)(TC4A)(2)(N(3))(2)(N(6)H(2))(2)(CH(3)COO)(4)(CH(3)OH)(4)](OH)(2)(CH(3)OH)(4) (2), and [Co(10)(TC4A)(4)(N(3))(4)](CH(3)OH)(4) (3), have been solvothermally obtained in one pot and structurally characterized by single-crystal X-ray diffraction analyses, powder XRD, and IR spectroscopy. This work presents the first one-dimensional (1) cobalt cluster for the calixarene complexes and another two octanuclear (2) or decanuclear (3) cobalt clusters. In the structures of compounds 1 and 2, a novel N(6)H(2) ligand formed by the in situ (2 + 3) cycloaddition of two azides was observed. Density functional theory (DFT) calculations give the heat of formation (2N(3)(-) + 2H(+) --> N(6)H(2)) and decomposition energy (N(6)H(2) --> 3N(2) + H(2)) of 677.47 and 124.85 kcal/mol, respectively. Furthermore, an intergradation was determined at the B3LYP/6-311++g(d,p) level for the formation of the N(6)H(2) ligand. In addition, one TC4A ligand of a sandwich unit adopts a cone conformation, while the other adopts a pinched cone conformation in 3. The magnetic properties of these three compounds were influenced mainly by the orbital contributions of the distorted octahedral Co(II) ions.

  12. On the structure and reactivity of small iron clusters with benzene, [Fen-C6H6]0,+,-, n ⩽ 7: A theoretical study

    NASA Astrophysics Data System (ADS)

    Valencia, Israel

    2016-09-01

    The structural, energetic, electronic, vibrational, and magnetic properties of iron-benzene clusters, Fen-C6H6, n ⩽ 7, were calculated using an all-electron density functional theory, DFT, with the generalized gradient approximation and the 6-311++G(2d,2p) basis set. A proposal regarding the mechanism of the adsorption of benzene on iron clusters related to the charge transfer model is described. A direct relation between the calculated electron affinity, EA, of the Fen-C6H6 clusters and their reactivity were also determined.

  13. Reversible addition of water to the high-hydride-content cluster [Rh6(PiPr3)6H12][BArF4]2. Synthesis and Structure of [Rh6PiPr3)6H11(OH)][BArF4]2.

    PubMed

    Douglas, Thomas M; Brayshaw, Simon K; Raithby, Paul R; Weller, Andrew S

    2008-02-01

    The hydroxyhydrido salt [Rh(6)(P(i)Pr(3))(6)H(11)(OH)][BArF(4)](2) results from the addition of water to [Rh(6)(P(i)Pr(3))(6)H(12)][BArF(4)](2). This reaction is reversible, and the addition of dihydrogen to [Rh(6)(P(i)Pr(3))(6)H(11)(OH)][BArF(4)](2) results in the elimination of water and the regeneration of the hydride cluster. PMID:18181618

  14. The reactions of para-halo diaryl diselenides with halogens. A structural investigation of the CT compound (p-FC6H4)2Se2I2, and the first reported “RSeI3” compound, (p-ClC6H4)SeI·I2, which contains a covalent Se-I bond.

    PubMed

    Barnes, Nicholas A; Godfrey, Stephen M; Hughes, Jill; Khan, Rana Z; Mushtaq, Imrana; Ollerenshaw, Ruth T A; Pritchard, Robin G; Sarwar, Shamsa

    2013-02-28

    The reactions of the diaryl-diselenides (p-FC(6)H(4))(2)Se(2) and (p-ClC(6)H(4))(2)Se(2) with diiodine have been investigated. Species of stoichiometry "RSeI" are formed when the ratio employed is 1:1. The solid-state structure of "(p-FC(6)H(4))SeI" has been determined, and shown to be a charge-transfer (CT) adduct, (p-FC(6)H(4))(2)Se(2)I(2), where the Se-Se bond is retained and the diiodine molecule interacts with only one of the selenium atoms. The Se-I bond in (p-FC(6)H(4))(2)Se(2)I(2) is 2.9835(12) Å, which is typical for a (10-I-2) Se-I-I CT system. When diiodine is reacted in a 3:1 ratio with (p-XC(6)H(4))(2)Se(2) (X = F, Cl) species of stoichiometry "RSeI(3)" are formed. The structure of "(p-ClC(6)H(4))SeI(3)" reveals that this is not a selenium(IV) compound, but is better represented as a selenium(II) CT adduct, (p-ClC(6)H(4))SeI·I(2). The Se-I bond to the diiodine molecule is typical in magnitude for a CT adduct, Se-I: 2.8672(5) Å, whereas the other Se-I bond is much shorter, Se-I: 2.5590(6) Å, and is a genuine example of a rarely observed covalent Se-I bond, which appears to be stabilised by a weak Se···I interaction from a neighbouring iodine atom. The reaction of (p-ClC(6)H(4))SeI with Ph(3)P results in the formation of a CT adduct, Ph(3)PSe(p-ClC(6)H(4))I, which has a T-shaped geometry at selenium (10-Se-3). By contrast, the reaction of (p-FC(6)H(4))SeI with Ph(3)P does not form an adduct, but results in the formation of Ph(3)PI(2) and (p-FC(6)H(4))(2)Se(2).

  15. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  16. Surface charges and optical characteristic of colloidal cubic SiC nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Changxin; Li, Jiang-Tao; Yang, Yun; Lin, Zhi-Ming

    2011-07-01

    Colloidal cubic silicon carbide (SiC) nanocrystals with an average diameter of 4.4 nm have been fabricated by anisotropic wet chemical etching of microsized cubic SiC powder. Fourier transform infrared spectra show that these cubic SiC nanocrystals contain carboxylic acid, SiH, CH, and CHx groups. UV/Vis absorption and photoluminescence (PL) spectroscopy clearly indicate that water and ethanol colloidal suspensions of the as-fabricated colloidal samples exhibit strong and above band gap blue and blue-green emissions. The cubic SiC nanocrystals show different surface charges in water and ethanol solutions due to the interaction of water molecules with polar Si-terminated surfaces of cubic SiC nanocrystals. The results explain the distinctive optical characteristics of colloidal cubic SiC nanocrystals in water and ethanol, and reveal that quantum confinement and surface charges play a great role in determining the optical characteristics of colloidal cubic SiC nanocrystals.

  17. Near-surface and bulk behavior of Ag in SiC

    NASA Astrophysics Data System (ADS)

    Xiao, H. Y.; Zhang, Y.; Snead, L. L.; Shutthanandan, V.; Xue, H. Z.; Weber, W. J.

    2012-01-01

    The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85-1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor.

  18. Surface charges and optical characteristic of colloidal cubic SiC nanocrystals

    PubMed Central

    2011-01-01

    Colloidal cubic silicon carbide (SiC) nanocrystals with an average diameter of 4.4 nm have been fabricated by anisotropic wet chemical etching of microsized cubic SiC powder. Fourier transform infrared spectra show that these cubic SiC nanocrystals contain carboxylic acid, SiH, CH, and CHx groups. UV/Vis absorption and photoluminescence (PL) spectroscopy clearly indicate that water and ethanol colloidal suspensions of the as-fabricated colloidal samples exhibit strong and above band gap blue and blue-green emissions. The cubic SiC nanocrystals show different surface charges in water and ethanol solutions due to the interaction of water molecules with polar Si-terminated surfaces of cubic SiC nanocrystals. The results explain the distinctive optical characteristics of colloidal cubic SiC nanocrystals in water and ethanol, and reveal that quantum confinement and surface charges play a great role in determining the optical characteristics of colloidal cubic SiC nanocrystals. PMID:21762496

  19. Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures

    DOE PAGESBeta

    Silva, Chinthaka M.; Katoh, Yutai; Voit, Stewart L.; Snead, Lance L.

    2015-02-11

    Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO2 pellets and evaluated for their potential chemical reaction with UO2. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO2 was observed at comparatively low temperatures of 1100 and 1300 C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity, according to microstructural investigations. But, both CVD and CVC SiCs showed some reaction with UO2 at a higher temperature (1500 C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive than CVD SiC at 1500more » C. Moreover, this investigation indicated the formation of uranium carbides and uranium silicide chemical phases such as UC, USi2, and U3Si2 as a result of SiC reaction with UO2.« less

  20. Application of rapid milling technology for fabrication of SiC nanoparticles.

    PubMed

    Kim, Jong-Woong; Shim, Jae-Shik; Kwak, Min-Gi; Hong, Sung-Jei; Cho, Hyun-Min

    2013-09-01

    SiC nanoparticles were successfully fabricated by a high energy ball milling method, so that can be used in the printed electronics to make SiC thin film patterns. Here we utilized the waste of Si sludge for making the SiC nanoparticles. In order to achieve uniform thin film from the nanoparticle ink, fine sized SiC nanoparticles less than 100 nm has to be uniformly dispersed. In this study, we employed the ultra apex milling (UAM) system for particle comminution and dispersion. We investigated the effects of milling parameters, e.g., size of ZrO2 bead and milling time. The size of the SiC particles reached about 103 nm after 4 hours of UAM, when the ZrO2 beads of 50 microm were used. Then SiC ink was formulated with organic solvents and a dispersing agent. A specially designed pattern was printed by an ink-jet printer for evaluating the feasibility of the SiC nanoparticle inks.

  1. Isolation of 1,4-Li(2)-C(6)H(4) and its reaction with [(Ph(3)P)AuCl].

    PubMed

    Flower, Kevin R; McGown, A T; Miles, Philip J; Pritchard, Robin G; Warren, John E

    2010-04-14

    The difficulty in generating 1,4-Li2-C6H4 utilising the lithium halogen exchange reaction on 1,4-Br2-C6H4, 1,4-I2-C6H4 and 1-Br-4-I-C6H4 is revisited and only on treatment of 1,4-I2-C6H4 with 2 molar equivalents of n-BuLi can 1,4-Li2-C6H4 1 be isolated in excellent yield. Treatment of 1 with two equivalents of [ClAu(PPh3)] gives [1,4-(Ph3PAu)2-C6H4] 2a in excellent yield. Subsequent treatment of 2a with 2.5 molar equivalents of PPh2Me, PPhMe2 or PMe3 affords the PPh3 substituted compounds [1,4-(LAu)2-C6H4] (L = PPh2Me 2b, PPhMe2 2c, PMe3 2d) in essentially quantitative yields. On treatment of 1,4-Br2-C6H4 or 1-Br-4-I-C6H4 with 2 molar equivalents of n-BuLi only mono-lithiation takes place to give 1-Br-4-Li-C6H4 3 as shown through the isolation of essentially 1:1 molar equivalents of Ph2PC6H4-4-Br and Ph2PBu on treatment with 2 molar equivalents of ClPPh2. Treatment of 3, prepared by lithium/iodine exchange on 1-Br-4-I-C6H4, with [ClAu(PPh3)] affords [(Ph3P)Au(C6H4-4-Br)] 4 as expected and in addition [(Ph3P)Au(n-Bu)(C6H4-4-Br)2] 5, indicating the straightforward chloride/aryl exchange at gold may proceed in competition with oxidative addition of the n-BuI, generated in the initial lithium/iodine exchange reaction, to some aurate complex Li[Au(C6H4-4-Br)2] 6 formed in situ followed by reductive elimination of Br-C6H4-4-n-Bu in a manner that mimics lithium diorganocuprate chemistry. All of the gold-containing compounds have been spectroscopically characterised by 1H and 31P-{1H} NMR and in addition compounds 2a-d and 5 by single crystal X-ray diffraction studies. The solid state structures observed for 2a-d are dictated by non-conventional hydrogen bonding and the packing requirements of the phosphine ligands. For 2a and 2b there is no close Au...Au approach, however for 2c and 2d the reduction in the number of phenyl rings allows the formation of Au...Au contacts. For 2c and 2d the extended structures appear to be helical chains with Au...Au contact parameters of 3

  2. Isolation of 1,4-Li(2)-C(6)H(4) and its reaction with [(Ph(3)P)AuCl].

    PubMed

    Flower, Kevin R; McGown, A T; Miles, Philip J; Pritchard, Robin G; Warren, John E

    2010-04-14

    The difficulty in generating 1,4-Li2-C6H4 utilising the lithium halogen exchange reaction on 1,4-Br2-C6H4, 1,4-I2-C6H4 and 1-Br-4-I-C6H4 is revisited and only on treatment of 1,4-I2-C6H4 with 2 molar equivalents of n-BuLi can 1,4-Li2-C6H4 1 be isolated in excellent yield. Treatment of 1 with two equivalents of [ClAu(PPh3)] gives [1,4-(Ph3PAu)2-C6H4] 2a in excellent yield. Subsequent treatment of 2a with 2.5 molar equivalents of PPh2Me, PPhMe2 or PMe3 affords the PPh3 substituted compounds [1,4-(LAu)2-C6H4] (L = PPh2Me 2b, PPhMe2 2c, PMe3 2d) in essentially quantitative yields. On treatment of 1,4-Br2-C6H4 or 1-Br-4-I-C6H4 with 2 molar equivalents of n-BuLi only mono-lithiation takes place to give 1-Br-4-Li-C6H4 3 as shown through the isolation of essentially 1:1 molar equivalents of Ph2PC6H4-4-Br and Ph2PBu on treatment with 2 molar equivalents of ClPPh2. Treatment of 3, prepared by lithium/iodine exchange on 1-Br-4-I-C6H4, with [ClAu(PPh3)] affords [(Ph3P)Au(C6H4-4-Br)] 4 as expected and in addition [(Ph3P)Au(n-Bu)(C6H4-4-Br)2] 5, indicating the straightforward chloride/aryl exchange at gold may proceed in competition with oxidative addition of the n-BuI, generated in the initial lithium/iodine exchange reaction, to some aurate complex Li[Au(C6H4-4-Br)2] 6 formed in situ followed by reductive elimination of Br-C6H4-4-n-Bu in a manner that mimics lithium diorganocuprate chemistry. All of the gold-containing compounds have been spectroscopically characterised by 1H and 31P-{1H} NMR and in addition compounds 2a-d and 5 by single crystal X-ray diffraction studies. The solid state structures observed for 2a-d are dictated by non-conventional hydrogen bonding and the packing requirements of the phosphine ligands. For 2a and 2b there is no close Au...Au approach, however for 2c and 2d the reduction in the number of phenyl rings allows the formation of Au...Au contacts. For 2c and 2d the extended structures appear to be helical chains with Au...Au contact parameters of 3

  3. Detection and analysis of particles with failed SiC in AGR-1 fuel compacts

    DOE PAGESBeta

    Hunn, John D.; Baldwin, Charles A.; Gerczak, Tyler J.; Montgomery, Fred C.; Morris, Robert N.; Silva, Chinthaka M.; Demkowicz, Paul A.; Harp, Jason M.; Ploger, Scott A.

    2016-04-06

    As the primary barrier to release of radioactive isotopes emitted from the fuel kernel, retention performance of the SiC layer in tristructural isotropic (TRISO) coated particles is critical to the overall safety of reactors that utilize this fuel design. Most isotopes are well-retained by intact SiC coatings, so pathways through this layer due to cracking, structural defects, or chemical attack can significantly contribute to radioisotope release. In the US TRISO fuel development effort, release of 134Cs and 137Cs are used to detect SiC failure during fuel compact irradiation and safety testing because the amount of cesium released by a compactmore » containing one particle with failed SiC is typically ten or more times higher than that released by compacts without failed SiC. Compacts with particles that released cesium during irradiation testing or post-irradiation safety testing at 1600–1800 °C were identified, and individual particles with abnormally low cesium retention were sorted out with the Oak Ridge National Laboratory (ORNL) Irradiated Microsphere Gamma Analyzer (IMGA). X-ray tomography was used for three-dimensional imaging of the internal coating structure to locate low-density pathways through the SiC layer and guide subsequent materialography by optical and scanning electron microscopy. In addition, all three cesium-releasing particles recovered from as-irradiated compacts showed a region where the inner pyrocarbon (IPyC) had cracked due to radiation-induced dimensional changes in the shrinking buffer and the exposed SiC had experienced concentrated attack by palladium; SiC failures observed in particles subjected to safety testing were related to either fabrication defects or showed extensive Pd corrosion through the SiC where it had been exposed by similar IPyC cracking.« less

  4. Graphene nanoribbons anchored to SiC substrates

    NASA Astrophysics Data System (ADS)

    Le, Nam B.; Woods, Lilia M.

    2016-09-01

    Graphene nanoribbons are quasi-one-dimensional planar graphene allotropes with diverse properties dependent on their width and types of edges. Graphene nanoribbons anchored to substrates is a hybrid system, which offers novel opportunities for property modifications as well as experimental control. Here we present electronic structure calculations of zigzag graphene nanoribbons chemically attached via the edges to the Si or C terminated surfaces of a SiC substrate. The results show that the edge characteristics are rather robust and the properties are essentially determined by the individual nanoribbon. While the localized spin polarization of the graphene nanoribbon edge atoms is not significantly affected by the substrate, secondary energy gaps in the highest conduction and lowest valence region may emerge in the anchored structures. The van der Waals interaction together with the electrostatic interactions due to the polarity of the surface bonds are found to be important for the structure parameters and energy stability.

  5. Demonstration of SiC Pressure Sensors at 750 C

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2014-01-01

    We report the first demonstration of MEMS-based 4H-SiC piezoresistive pressure sensors tested at 750 C and in the process confirmed the existence of strain sensitivity recovery with increasing temperature above 400 C, eventually achieving near or up to 100% of the room temperature values at 750 C. This strain sensitivity recovery phenomenon in 4H-SiC is uncharacteristic of the well-known monotonic decrease in strain sensitivity with increasing temperature in silicon piezoresistors. For the three sensors tested, the room temperature full-scale output (FSO) at 200 psig ranged between 29 and 36 mV. Although the FSO at 400 C dropped by about 60%, full recovery was achieved at 750 C. This result will allow the operation of SiC pressure sensors at higher temperatures, thereby permitting deeper insertion into the engine combustion chamber to improve the accurate quantification of combustor dynamics.

  6. Creep of chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with neglible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.

  7. Graphene nanoribbons anchored to SiC substrates.

    PubMed

    Le, Nam B; Woods, Lilia M

    2016-09-14

    Graphene nanoribbons are quasi-one-dimensional planar graphene allotropes with diverse properties dependent on their width and types of edges. Graphene nanoribbons anchored to substrates is a hybrid system, which offers novel opportunities for property modifications as well as experimental control. Here we present electronic structure calculations of zigzag graphene nanoribbons chemically attached via the edges to the Si or C terminated surfaces of a SiC substrate. The results show that the edge characteristics are rather robust and the properties are essentially determined by the individual nanoribbon. While the localized spin polarization of the graphene nanoribbon edge atoms is not significantly affected by the substrate, secondary energy gaps in the highest conduction and lowest valence region may emerge in the anchored structures. The van der Waals interaction together with the electrostatic interactions due to the polarity of the surface bonds are found to be important for the structure parameters and energy stability. PMID:27392014

  8. Electronic structure of Si vacancy centers in SiC

    NASA Astrophysics Data System (ADS)

    Soykal, Oney; Dev, Pratibha; Economou, Sophia

    2015-03-01

    The spin state of silicon vacancies in SiC is a promising candidate for applications in solid state quantum information technologies due to its long coherence time at room temperature, its technological availability and wide range of polytypism. Until recently, the electronic structure of this vacancy was not well understood. We have developed a group theoretical model that correctly predicts the spin 3/2 structure seen in recent experiments for the 4H-SiC defect. We have included several different mechanisms involved in the mixing of its spin states, such as crystal field splitting, spin-orbit coupling, spin-spin coupling, strain and Jahn-Teller interactions. We have also carried out DFT calculations that support and complement our analytical results.

  9. Polycrystalline SiC fibers from organosilicon polymers

    NASA Technical Reports Server (NTRS)

    Lipowitz, Jonathan; Rabe, James A.; Zank, Gregg A.

    1991-01-01

    Various organosilicon polymers have been converted into small diameter, fine-grained silicon carbide fibers by melt spinning, crosslinking, and pyrolyzing to greater than 1600 C. The high pyrolysis temperature densifies the fiber and causes CO evolution which removes nearly all oxygen. An additive prevents the loss of strength normally associated with such treatments. Silicon carbide fibres with up to 2.6 GPa (380 ksi) tensile strength, greater than 420 GPa (greater than 60 Msi) elastic modulus, and 3.1-3.2 mg/cu m density have been prepared via this process. Their microstructure consists of greater than 95 wt pct B-SiC crystallites averaging 30-40 nm diameter, with varying amounts of graphitic carbon between the SiC grains. Under inert conditions, the fibers can be thermally aged at least 12 h/1800 C with minimal change in properties.

  10. Excitation and recombination photodynamics in colloidal cubic SiC nanocrystals

    NASA Astrophysics Data System (ADS)

    Fan, J. Y.; Li, H. X.; Cui, W. N.; Dai, D. J.; Chu, P. K.

    2010-11-01

    We studied the photodynamics of the different-sized colloidal cubic SiC nanocrystals in distinct polar and nonpolar solvents. The UV-visible absorption spectral study indicates that the SiC nanocrystals with an average size of 4 nm retain an indirect energy gap; whereas the smaller quantum dots about 1 nm in size exhibit discrete and sharp absorption features indicating their discrete energy levels and the result agrees well with theoretical results. The colloidal SiC nanocrystals exhibit triple-exponential photoluminescence decay with nanosecond-order lifetimes which show slight size-dependence.

  11. The intensive terahertz electroluminescence induced by Bloch oscillations in SiC natural superlattices.

    PubMed

    Sankin, Vladimir; Andrianov, Alexandr; Petrov, Alexey; Zakhar'in, Alexey; Lepneva, Ala; Shkrebiy, Pavel

    2012-10-09

    : We report on efficient terahertz (THz) emission from high-electric-field-biased SiC structures with a natural superlattice at liquid helium temperatures. The emission spectrum demonstrates a single line, the maximum of which shifts linearly with increases in bias field. We attribute this emission to steady-state Bloch oscillations of electrons in the SiC natural superlattice. The properties of the THz emission agree fairly with the parameters of the Bloch oscillator regime, which have been proven by high-field electron transport studies of SiC structures with natural superlattices.

  12. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices (Invited)

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1999-01-01

    As illustrated by the invited paper at this conference and other works, SiC wafers and epilayers contain a variety of crystallographic imperfections, including micropipes, closed-core screw dislocations, grain boundaries, basal plane dislocations, heteropolytypic inclusions, and surfaces that are often damaged and contain atomically rough features like step bunching and growth pits or hillocks. Present understanding of the operational impact of various crystal imperfections on SiC electrical devices is reviewed, with an emphasis placed on high-field SiC power devices and circuits.

  13. A New Method to Grow SiC: Solvent-Laser Heated Floating Zone

    NASA Technical Reports Server (NTRS)

    Woodworth, Andrew A.; Neudeck, Philip G.; Sayir, Ali

    2012-01-01

    The solvent-laser heated floating zone (solvent-LHFZ) growth method is being developed to grow long single crystal SiC fibers. The technique combines the single crystal fiber growth ability of laser heated floating zone with solvent based growth techniques (e.g. traveling solvent method) ability to grow SiC from the liquid phase. Initial investigations reported in this paper show that the solvent-LHFZ method readily grows single crystal SiC (retains polytype and orientation), but has a significant amount of inhomogeneous strain and solvent rich inclusions.

  14. Ab initio prediction of SiC nanotubes with negative strain energy

    SciTech Connect

    Alfieri, G.; Kimoto, T.

    2014-01-20

    Single-layer SiC nanotubes (SiCNTs) are known to be metastable structures that is why only nanotubular fibers or polygrained nanotubes have been obtained experimentally. In this study, we report on how hydrogen helps to overcome the metastability of SiCNTs. Starting from SiC graphitic sheets, we analyzed the impact of either partial or full hydrogenation on the electronic properties and structural stability of SiCNTs. It is shown that, in general, hydrogenation widens the band gap of both SiC graphitic sheets and nanotubes and, irrespective of the difference in chirality and diameter, leads to the formation of energetically stable SiCNTs.

  15. Similarities and differences in sublimation growth of SiC and AlN

    NASA Astrophysics Data System (ADS)

    Epelbaum, B. M.; Bickermann, M.; Nagata, S.; Heimann, P.; Filip, O.; Winnacker, A.

    2007-07-01

    The similarities and differences in development of crystal growth of bulk silicon carbide (SiC) and aluminum nitride (AlN) are discussed. It is concluded that AlN is going to become the second crystal grown in production scale using PVT technique. The growth technology of AlN may take advantage of learning from SiC technology as the latter is based on significant advances achieved in the course of last 20 years. The main differences between two materials are in incongruent evaporation of SiC and in poor compatibility of AlN with regular high-temperature crucible materials.

  16. The intensive terahertz electroluminescence induced by Bloch oscillations in SiC natural superlattices

    PubMed Central

    2012-01-01

    We report on efficient terahertz (THz) emission from high-electric-field-biased SiC structures with a natural superlattice at liquid helium temperatures. The emission spectrum demonstrates a single line, the maximum of which shifts linearly with increases in bias field. We attribute this emission to steady-state Bloch oscillations of electrons in the SiC natural superlattice. The properties of the THz emission agree fairly with the parameters of the Bloch oscillator regime, which have been proven by high-field electron transport studies of SiC structures with natural superlattices. PMID:23043773

  17. Exposure of epitaxial graphene on SiC(0001) to atomic hydrogen.

    PubMed

    Guisinger, Nathan P; Rutter, Gregory M; Crain, Jason N; First, Phillip N; Stroscio, Joseph A

    2009-04-01

    Graphene films on SiC exhibit coherent transport properties that suggest the potential for novel carbon-based nanoelectronics applications. Recent studies suggest that the role of the interface between single layer graphene and silicon-terminated SiC can strongly influence the electronic properties of the graphene overlayer. In this study, we have exposed the graphitized SiC to atomic hydrogen in an effort to passivate dangling bonds at the interface, while investigating the results utilizing room temperature scanning tunneling microscopy.

  18. Incorporation of oxygen in SiC implanted with hydrogen

    NASA Astrophysics Data System (ADS)

    Barcz, A.; Jakieła, R.; Kozubal, M.; Dyczewski, J.; Celler, G. K.

    2015-12-01

    Oxygen accumulation at buried implantation-damage layers was studied after post-implantation annealing of hydrogen- or deuterium-implanted 4H-SiC. In this study H+ or 2H+ implantation was carried out at energies E, from 200 keV to 1 MeV, to fluences D, ranging from 2 × 1016/cm2 to 1 × 1017/cm2. For comparison, the implantation was also done into float-zone (FZ) and Czochralski (CZ) silicon wafers. Post-implantation annealing at temperatures from 400 °C to 1150 °C was performed either in pure argon or in a water vapor. Characterization methods included SIMS, RBS and TEM. At sufficiently high doses, hydrogen implantation into semiconductors leads to the irreversible formation of a planar zone of microcavities, bubbles and other extended defects located at the maximum of deposited energy. This kind of highly perturbed layer, containing large amounts of agglomerated hydrogen is known to efficiently getter a number of impurities. Oxygen was detected in both CZ and FZ silicon subjected to Smart-Cut™ processing. We have identified, by SIMS profiling, a considerable oxygen peak situated at the interface between the SiC substrate and a layer implanted with 1 × 1017 H ions/cm2 and heated to 1150 °C in either H2O vapor or in a nominally pure Ar. In view of a lack of convincing evidence that a hexagonal SiC might contain substantial amounts of oxygen, the objective of the present study was to identify the source and possible transport mechanism of oxygen species to the cavity band. Through the analysis of several implants annealed at various conditions, we conclude that, besides diffusion from the bulk or from surface oxides, an alternative path for oxygen agglomeration is migration of gaseous O2 or H2O from the edge of the sample through the porous layer.

  19. New Laboratory Measurements of Rhomboidal SiC_3

    NASA Astrophysics Data System (ADS)

    Gottlieb, Carl A.; Thaddeus, Patrick

    2009-06-01

    Rhomboidal SiC_3, the highly polar planar ring with C_{2v} symmetry and a transannular C-C bond, was detected in our laboratory about 10 years ago, and soon afterwards was identified with a radio telescope in the expanding envelope of IRC+10216. Recently a sensitive spectral line survey of IRC+10216 was made with the Submillimeter Array (SMA) in the 300 - 355 GHz range with a 3^'' × 2^'' synthesized beam. Many new lines were detected in this survey. Most are from high rotational transitions of molecules that are known in IRC+10216, but some of the lines are quite narrow and more than 10 of these are unassigned. In support of the SMA observations we have extended the earlier laboratory measurements by Apponi et al. from 286 GHz and K_a ≤ 6, to 450 GHz and K_a ≤ 20 from rotational levels as high as 825 K above ground. As a result uncertainties in the predicted spectrum for lines with high K_a have been reduced by as much as two orders of magnitude, which should aid the assignment of SiC_3 in the SMA survey and in future observations with ALMA. A. J. Apponi, M. C. McCarthy, C. A. Gottlieb, and P. Thaddeus, Journ. Chem. Phys. 111, 3911 (1999). A. J. Apponi, M. C. McCarthy, C. A. Gottlieb, and P. Thaddeus, Astrophys. Journ. Lett. 516, L103 (1999). N. A. Patel, K. H. Young, S. Brünken, R. W. Wilson, P. Thaddeus, K. M. Menten, M. Reid, M. C. McCarthy, Dinh-V Trung, C. A. Gottlieb, and A. Hedden, Astrophys. Journ., in press (2009).

  20. Formation of [Ni(III)(κ(1)-S2CH)(P(o-C6H3-3-SiMe3-2-S)3)]- via CS2 insertion into nickel(III) hydride containing [Ni(III)(H)(P(o-C6H3-3-SiMe3-2-S)3)]-.

    PubMed

    Lai, Kuan-Ting; Ho, Wei-Chieh; Chiou, Tzung-Wen; Liaw, Wen-Feng

    2013-04-15

    Insertion of CS2 into the thermally unstable nickel(III) hydride [PPN][Ni(H)(P(o-C6H3-3-SiMe3-2-S)3)] (1), freshly prepared from the reaction of [PPN][Ni(OC6H5)P(C6H3-3-SiMe3-2-S)3] and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (HBpin; pin = OCMe2CMe2O) in tetrahydrofuran at -80 °C via a metathesis reaction, readily affords [PPN][Ni(III)(κ(1)-S2CH)(P(o-C6H3-3-SiMe3-2-S)3)] (2) featuring a κ(1)-S2CH moiety. PMID:23541028

  1. Segregation of Incomplete Achromatopsia and Alopecia Due to PDE6H and LPAR6 Variants in a Consanguineous Family from Pakistan.

    PubMed

    Pedurupillay, Christeen Ramane J; Landsend, Erlend Christoffer Sommer; Vigeland, Magnus Dehli; Ansar, Muhammad; Frengen, Eirik; Misceo, Doriana; Strømme, Petter

    2016-01-01

    We report on two brothers with visual impairment, and non-syndromic alopecia in the elder proband. The parents were first-degree Pakistani cousins. Whole exome sequencing of the elder brother and parents, followed by Sanger sequencing of all four family members, led to the identification of the variants responsible for the two phenotypes. One variant was a homozygous nonsense variant in the inhibitory subunit of the cone-specific cGMP phosphodiesterase gene, PDE6H:c.35C>G (p.Ser12*). PDE6H is expressed in the cones of the retina, which are involved in perception of color vision. This is the second report of a homozygous PDE6H:c.35C>G variant causing incomplete achromatopsia (OMIM 610024), thus strongly supporting the hypothesis that loss-of-function variants in PDE6H cause this visual deficiency phenotype. The second variant was a homozygous missense substitution in the lysophosphatidic acid receptor 6, LPAR6:c.188A>T (p.Asp63Val). LPAR6 acts as a G-protein-coupled receptor involved in hair growth. Biallelic loss-of-function variants in LPAR6 cause hypotrichosis type 8 (OMIM 278150), with or without woolly hair, a form of non-syndromic alopecia. Biallelic LPAR6:c.188A>T was previously described in five families from Pakistan. PMID:27472364

  2. Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose.

    PubMed

    Yang, Yu; Hu, Chang-Wei; Abu-Omar, Mahdi M

    2012-02-13

    Furfural was prepared in high yields (75 %) from the reaction of xylose in a water-tetrahydrofuran biphasic medium containing AlCl(3)·6H2O and NaCl under microwave heating at 140 °C. The reaction profile revealed the formation of xylulose as an intermediate en route to the dehydration product (furfural). The reaction under these conditions reached completion in 45 min. The aqueous phase containing AlCl(3)·6H(2)O and NaCl could be recycled multiple times (>5) without any loss of activity or selectivity for furfural. Extension of this biphasic reaction system to include xylan as the starting material afforded furfural in 64 % yield. The use of corn stover, pinewood, switchgrass, and poplar gave furfural in 55, 38, 56, and 64 % yield, respectively, at 160 °C. Even though AlCl(3)·6H(2)O did not affect the conversion of crystalline cellulose, moderate yields of the by-product 5-hydroxymethylfurfural (HMF) were noted. The highest HMF yield of 42 % was obtained from pinewood. The coproduction of HMF and furfural from biomass was attributed to the weakening of the cellulose network in the biomass, as a result of hemicellulose hydrolysis. The multifunctional capacity of AlCl(3)·6H(2)O (hemicellulose hydrolysis, xylose isomerization, and xylulose dehydration) in combination with its ease of recyclability make it an attractive candidate/catalyst for the selective synthesis of furfural from various biomass feedstocks.

  3. Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3-6 h.

    PubMed

    Ferraresi, Cleber; Kaippert, Beatriz; Avci, Pinar; Huang, Ying-Ying; de Sousa, Marcelo V P; Bagnato, Vanderlei S; Parizotto, Nivaldo A; Hamblin, Michael R

    2015-01-01

    Low-level laser (light) therapy has been used before exercise to increase muscle performance in both experimental animals and in humans. However, uncertainty exists concerning the optimum time to apply the light before exercise. The mechanism of action is thought to be stimulation of mitochondrial respiration in muscles, and to increase adenosine triphosphate (ATP) needed to perform exercise. The goal of this study was to investigate the time course of the increases in mitochondrial membrane potential (MMP) and ATP in myotubes formed from C2C12 mouse muscle cells and exposed to light-emitting diode therapy (LEDT). LEDT employed a cluster of LEDs with 20 red (630 ± 10 nm, 25 mW) and 20 near-infrared (850 ± 10 nm, 50 mW) delivering 28 mW cm(2) for 90 s (2.5 J cm(2)) with analysis at 5 min, 3 h, 6 h and 24 h post-LEDT. LEDT-6 h had the highest MMP, followed by LEDT-3 h, LEDT-24 h, LEDT-5 min and Control with significant differences. The same order (6 h > 3 h > 24 h > 5 min > Control) was found for ATP with significant differences. A good correlation was found (r = 0.89) between MMP and ATP. These data suggest an optimum time window of 3-6 h for LEDT stimulate muscle cells.

  4. Chromium-induced tropane alkaloid production and H6H gene expression in Atropa belladonna L. (Solanaceae) in vitro-propagated plantlets.

    PubMed

    Vakili, Bahareh; Karimi, Farah; Sharifi, Mozafar; Behmanesh, Mehrdad

    2012-03-01

    Hyoscyamine and scopolamine tropane alkaloids found in several solanaceous plants are anticholinergic drugs. Hyoscyamine 6β-hydroxylase (H6H) catalyzes two consecutive oxidation reactions. The first reaction is the hydroxylation of hyoscyamine to 6β-hydroxyhyoscyamine and the second is epoxidation of 6β-hydroxyhyoscyamine yielding scopolamine that is the final metabolite in the tropane alkaloid biosynthetic pathway. The effects of trivalent chromium as KCr (SO4)(2) on the production of tropane alkaloids and the expression of hyoscyamine 6β-hydroxylase gene (h6h) were studied in micro-propagated Atropa belladonna L. plantlets. The results showed that chromium treatment decreased the growth parameters (weights and lengths of the plantlets) and chlorophyll contents and increased proline contents. Moreover, semiquantitave RT-PCR analysis showed that the transcript level of H6H increased under chromium treatment. This treatment also increased hyoscyamine and scopolamine contents as shown by HPLC analysis. Changes of scopolamine contents correlate with the expression levels of h6h gene under different concentrations of chromium. PMID:22305072

  5. Ring-opening polymerization of epoxidized soybean oil catalyzed by the superacid, Fluroantimonic acid hexahydrate (HSbF6-6H2O)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by the super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), in ethyl acetate was conducted. The resulting polymers, SA-RPESO, were characterized using infrared spectroscopy, differential scanning calorimetry, thermogravimetri...

  6. Hexagonal phase-pure wide band gap ɛ-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xia, Xiaochuan; Chen, Yuanpeng; Feng, Qiuju; Liang, Hongwei; Tao, Pengcheng; Xu, Mengxiang; Du, Guotong

    2016-05-01

    In this paper, hexagonal structure phase-pure wide-band gap ɛ-Ga2O3 films were grown by metal organic chemical vapor deposition on 6H-SiC substrates. The ɛ-Ga2O3 films with good crystal quality were verified by high-resolution X-ray diffraction. The out-of-plane epitaxial relationship between ɛ-Ga2O3 films and 6H-SiC substrates is confirmed to be ɛ-Ga2O3 (0001)//6H-SiC (0001), and the in-plane epitaxial relationship is also confirmed to be ɛ-Ga2O3 ⟨ 11 2 ¯ 0 ⟩//6H-SiC ⟨ 11 2 ¯ 0 ⟩. The SEM and AFM images show that the ɛ-Ga2O3 films are uniform and flat. The ɛ-Ga2O3 films are thermally stable up to approximately 800 °C and begin to transform into β-phase Ga2O3 at 850 °C. Then, they are completely converted to β-Ga2O3 films under 900 °C. The high-quality ɛ-Ga2O3 films with hexagonal structure have potential application in the optoelectronic field.

  7. Segregation of Incomplete Achromatopsia and Alopecia Due to PDE6H and LPAR6 Variants in a Consanguineous Family from Pakistan

    PubMed Central

    Pedurupillay, Christeen Ramane J.; Landsend, Erlend Christoffer Sommer; Vigeland, Magnus Dehli; Ansar, Muhammad; Frengen, Eirik; Misceo, Doriana; Strømme, Petter

    2016-01-01

    We report on two brothers with visual impairment, and non-syndromic alopecia in the elder proband. The parents were first-degree Pakistani cousins. Whole exome sequencing of the elder brother and parents, followed by Sanger sequencing of all four family members, led to the identification of the variants responsible for the two phenotypes. One variant was a homozygous nonsense variant in the inhibitory subunit of the cone-specific cGMP phosphodiesterase gene, PDE6H:c.35C>G (p.Ser12*). PDE6H is expressed in the cones of the retina, which are involved in perception of color vision. This is the second report of a homozygous PDE6H:c.35C>G variant causing incomplete achromatopsia (OMIM 610024), thus strongly supporting the hypothesis that loss-of-function variants in PDE6H cause this visual deficiency phenotype. The second variant was a homozygous missense substitution in the lysophosphatidic acid receptor 6, LPAR6:c.188A>T (p.Asp63Val). LPAR6 acts as a G-protein-coupled receptor involved in hair growth. Biallelic loss-of-function variants in LPAR6 cause hypotrichosis type 8 (OMIM 278150), with or without woolly hair, a form of non-syndromic alopecia. Biallelic LPAR6:c.188A>T was previously described in five families from Pakistan. PMID:27472364

  8. Cryptolepine derivative-6h inhibits liver fibrosis in TGF-β1-induced HSC-T6 cells by targeting the Shh pathway.

    PubMed

    He, Ying-Hua; Li, Zeng; Ni, Ming-Ming; Zhang, Xing-Yan; Li, Ming-Fang; Meng, Xiao-Ming; Huang, Cheng; Li, Jun

    2016-09-01

    Liver fibrosis is a worldwide problem with a significant morbidity and mortality. Cryptolepis sanguinolenta (family Periplocaceae) is widely used in West African countries for the treatment of malaria, as well as for some other diseases. However, the role of C. sanguinolenta in hepatic fibrosis is still unknown. It has been reported that Methyl-CpG binding protein 2 (MeCP2) had a high expression in liver fibrosis and played a central role in its pathobiology. Interestingly, we found that a cryptolepine derivative (HZ-6h) could inhibit liver fibrosis by reducing MeCP2 expression, as evidenced by the dramatic downregulation of α-smooth muscle actin (α-SMA) and type I collagen alpha-1 (Col1α1) in protein levels in vitro. Meanwhile, we also found that HZ-6h could reduce the cell viability and promote apoptosis of hepatic stellate cells (HSCs) treated with transforming growth factor beta 1(TGF-β1). Then, we investigated the potential molecular mechanisms and found that HZ-6h blocked Shh signaling in HSC-T6 cells, resulting in the decreased protein expression of Patched-1 (PTCH-1), Sonic hedgehog (Shh), and glioma-associated oncogene homolog 1 (GLI1). In short, these results indicate that HZ-6h inhibits liver fibrosis by downregulating MeCP2 through the Shh pathway in TGF-β1-induced HSC-T6 cells. PMID:27295431

  9. Structures and Spectroscopic Properties Calculated for C_6H_7^+ and its Complexes with Ne, Ar, N_2, or CO_2

    NASA Astrophysics Data System (ADS)

    Botschwina, P.; Oswald, R.

    2012-06-01

    Explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level in conjunction with the double-hybrid density functional B2PLYP-D has been employed in a study of the benzenium ion (C_6H_7^+) and its complexes with simple ligands (L = Ne, Ar, N_2, or CO_2). The ground-state rotational constants of C_6H_7^+ are predicted to be A_0 = 5445 MHz, B_0 = 5313 MHz, and C_0 = 2731 MHz. For the complexes with L = Ne, Ar or N_2, the energetically most favourable structure is of π-bonded type, but for the most strongly bound complex C_6H_7^+ ... CO_2 a conformer with the CO_2 ligand lying in the ring-plane of the C_6H_7^+ moiety is slightly lower in energy. T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007) G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 130, 054104 (2009). T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007). P. Botschwina and R. Oswald, J. Phys. Chem. A 115, 13664 (2011) P. Botschwina and R. Oswald, J. Chem. Phys. submitted.

  10. Structure activity optimization of 6H-pyrrolo[2,3-e][1,2,4]triazolo[4,3-a]pyrazines as Jak1 kinase inhibitors.

    PubMed

    Friedman, Michael; Frank, Kristine E; Aguirre, Ana; Argiriadi, Maria A; Davis, Heather; Edmunds, Jeremy J; George, Dawn M; George, Jonathan S; Goedken, Eric; Fiamengo, Bryan; Hyland, Deborah; Li, Bin; Murtaza, Anwar; Morytko, Michael; Somal, Gagandeep; Stewart, Kent; Tarcsa, Edit; Van Epps, Stacy; Voss, Jeffrey; Wang, Lu; Woller, Kevin; Wishart, Neil

    2015-10-15

    Previous work investigating tricyclic pyrrolopyrazines as kinase cores led to the discovery that 1-cyclohexyl-6H-pyrrolo[2,3-e][1,2,4]triazolo[4,3-a]pyrazine (12) had Jak inhibitory activity. Herein we describe our initial efforts to develop orally bioavailable analogs of 12 with improved selectivity of Jak1 over Jak2. PMID:26372653

  11. Fluoroantimonic acid hexahydrate (HSbF6-6H2O) catalysis: The ring-opening polymerization of epoxidized soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by a super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), in ethyl acetate was conducted in an effort to develop useful biodegradable polymers. The resulting polymerized ESO (SA-RPESO) were characterized by using infrared (IR...

  12. D-region ion-neutral coupled chemistry (Sodankylä Ion Chemistry, SIC) within the Whole Atmosphere Community Climate Model (WACCM 4) - WACCM-SIC and WACCM-rSIC

    NASA Astrophysics Data System (ADS)

    Kovács, Tamás; Plane, John M. C.; Feng, Wuhu; Nagy, Tibor; Chipperfield, Martyn P.; Verronen, Pekka T.; Andersson, Monika E.; Newnham, David A.; Clilverd, Mark A.; Marsh, Daniel R.

    2016-09-01

    This study presents a new ion-neutral chemical model coupled into the Whole Atmosphere Community Climate Model (WACCM). The ionospheric D-region (altitudes ˜ 50-90 km) chemistry is based on the Sodankylä Ion Chemistry (SIC) model, a one-dimensional model containing 307 ion-neutral and ion recombination, 16 photodissociation and 7 photoionization reactions of neutral species, positive and negative ions, and electrons. The SIC mechanism was reduced using the simulation error minimization connectivity method (SEM-CM) to produce a reaction scheme of 181 ion-molecule reactions of 181 ion-molecule reactions of 27 positive and 18 negative ions. This scheme describes the concentration profiles at altitudes between 20 km and 120 km of a set of major neutral species (HNO3, O3, H2O2, NO, NO2, HO2, OH, N2O5) and ions (O2+, O4+, NO+, NO+(H2O), O2+(H2O), H+(H2O), H+(H2O)2, H+(H2O)3, H+(H2O)4, O3-, NO2-, O-, O2, OH-, O2-(H2O), O2-(H2O)2, O4-, CO3-, CO3-(H2O), CO4-, HCO3-, NO2-, NO3-, NO3-(H2O), NO3-(H2O)2, NO3-(HNO3), NO3-(HNO3)2, Cl-, ClO-), which agree with the full SIC mechanism within a 5 % tolerance. Four 3-D model simulations were then performed, using the impact of the January 2005 solar proton event (SPE) on D-region HOx and NOx chemistry as a test case of four different model versions: the standard WACCM (no negative ions and a very limited set of positive ions); WACCM-SIC (standard WACCM with the full SIC chemistry of positive and negative ions); WACCM-D (standard WACCM with a heuristic reduction of the SIC chemistry, recently used to examine HNO3 formation following an SPE); and WACCM-rSIC (standard WACCM with a reduction of SIC chemistry using the SEM-CM method). The standard WACCM misses the HNO3 enhancement during the SPE, while the full and reduced model versions predict significant NOx, HOx and HNO3 enhancements in the mesosphere during solar proton events. The SEM-CM reduction also identifies the important ion-molecule reactions that affect the partitioning of

  13. What can we learn about baryon-baryon interaction from hypernuclei {sub {lambda}}{sup 6}H and {sub {lambda}}{sup 8}H?

    SciTech Connect

    Majling, L. Gmuca, S.

    2007-09-15

    At the LHE JINR, an original approach to hypernuclear experiments was elaborated to produce relativistic hypernuclei. The production cross sections and lifetimes, {tau}, of {sub {lambda}}{sup 3}H and {sub {lambda}}{sup 4}H were measured successfully. The results of recent experiments on {sup 5}H and {sup 7}H nuclei suggest that the hypernucleus {sub {lambda}}{sup 6}H might be stable and that this may be the case even for {sub {lambda}}{sup 8}H. The unique quality of the spectrometer SPHERE may be used to identify unambiguously the isotopes of hyperhydrogen-through their pionic decay {sub {lambda}}{sup A}H {sup {yields}} {pi}{sup -} + {sup A}He-including the new hypernuclei {sub {lambda}}{sup 6}H and {sub {lambda}}{sup 8}H with extreme values of N/Z of 4 and 6, respectively. The confirmation of the very existence of these neutron-rich hypernuclei would be a strong motivation to search for their spectra in strangeness and double-charge-exchange reactions (K{sub stop}{sup -}, {pi}{sup +}) at FINUDA or ({pi}{sup -}, K{sup +}) at J-PARC. It is very probable that, similarly as in {sub {lambda}}{sup 4}H, there is a low-lying state 1{sup +} also in {sub {lambda}}{sup 6}H and {sub {lambda}}{sup 8}H. If their electromagnetic width (M1) is small enough, we could see two different values of {tau} for {sub {lambda}}{sup 6}H and/or {sub {lambda}}{sup 8}H. We investigate the spacings of the 1{sup +} and 0{sup +} states of {sub {lambda}}{sup 4}H, {sub {lambda}}{sup 6}H, and {sub {lambda}}{sup 8}H. The understanding of the structure of isospin asymmetric systems plays a key role in the description of systems as diverse as neutron-rich nuclei and neutron matter.

  14. Structural and photophysical properties of HPPCO (4-hydroxy-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-6-one) derivatives

    NASA Astrophysics Data System (ADS)

    Jeong, Yong-Kwang; Kim, Min-Ah; Lee, Hyo-Sung; Kim, Jong-Moon; Lee, Sung Woo; Kang, Jun-Gill

    2015-01-01

    Proton-substitution effects of 4-hydroxy-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-6-one (HPPCO) on structural and photophysical properties were presented. HPPCO crystallized in the orthorhombic space group Pbca with an intermolecular hydrogen bonding between OH and oxygen atom of the carbonyl. The proton-substituted derivatives, 6-oxo-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-4-yl acetate (OPPCA) and 6-oxo-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-4-yl benzoate (OPPCB), crystallized in the monoclinic P21/c space group. For OPPCA and OPPCB, a weak interaction between carbonyl oxygen atom in the substituted group and carbon atom in the fused ring was responsible for three-dimensional arrangements. In addition, 6-oxo-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-4-yl furan-2-carboxylate (OPPCF), and 6-oxo-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-4-yl naphthoate (OPPCN) were also synthesized. HPPCO and the four derivatives excited by ultraviolet (UV) light produced blue emission. Proton substitution of the OH group significantly increased the radiative transitions and moderately decreased the non-radiative transitions. Consequently the luminescence quantum yields of the derivatives enhanced more than 4.6-fold, no matter what the groups were substituted. Structural and optical properties were further determined using density functional theory (DFT) and ZINDO calculations. The planar structure of the pyridocarbazole-fused ring resulted in π → π* electronic transitions within the main frame, with an additional transition from the n(O) of carbonyl to the π* of the main frame. The three excited states that arose from these transitions were responsible for the blue luminescence.

  15. Electronic Spectroscopy of [FePAH](+) Complexes in the Region of the Diffuse Interstellar Bands: Multireference Wave Function Studies on [FeC6H6](+).

    PubMed

    Lanza, Mathieu; Simon, Aude; Ben Amor, Nadia

    2015-06-11

    The low-energy states and electronic spectrum in the near-infrared-visible region of [FeC6H6](+) are studied by theoretical approaches. An exhaustive exploration of the potential energy surface of [FeC6H6](+) is performed using the density functional theory method. The ground state is found to be a (4)A1 state. The structures of the lowest energy states ((4)A2 and (4)A1) are used to perform multireference wave function calculations by means of the multistate complete active space with perturbation at the second order method. Contrary to the density functional theory results ((4)A1 ground state), multireference perturbative calculations show that the (4)A2 state is the ground state. The vertical electronic spectrum is computed and compared with the astronomical diffuse interstellar bands, a set of near-infrared-visible bands detected on the extinction curve in our and other galaxies. Many transitions are found in this domain, corresponding to d → d, d → 4s, or d → π* excitations, but few are allowed and, if they are, their oscillation strengths are small. Even though some band positions could match some of the observed bands, the relative intensities do not fit, making the contribution of the [Fe-C6H6](+) complexes to the diffuse interstellar bands questionable. This work, however, lays the foundation for the studies of polycyclic aromatic hydrocarbons (PAHs) complexed to Fe cations that are more likely to possess d → π* and π → π* transitions in the diffuse interstellar bands domain. PAH ligands indeed possess a larger number of π and π* orbitals, respectively, higher and lower in energy than those of C6H6, which are expected to lead to lower energy d → π* and π → π* transitions in [FePAH](+) than in [FeC6H6](+) complexes.

  16. Electronic Spectroscopy of [FePAH](+) Complexes in the Region of the Diffuse Interstellar Bands: Multireference Wave Function Studies on [FeC6H6](+).

    PubMed

    Lanza, Mathieu; Simon, Aude; Ben Amor, Nadia

    2015-06-11

    The low-energy states and electronic spectrum in the near-infrared-visible region of [FeC6H6](+) are studied by theoretical approaches. An exhaustive exploration of the potential energy surface of [FeC6H6](+) is performed using the density functional theory method. The ground state is found to be a (4)A1 state. The structures of the lowest energy states ((4)A2 and (4)A1) are used to perform multireference wave function calculations by means of the multistate complete active space with perturbation at the second order method. Contrary to the density functional theory results ((4)A1 ground state), multireference perturbative calculations show that the (4)A2 state is the ground state. The vertical electronic spectrum is computed and compared with the astronomical diffuse interstellar bands, a set of near-infrared-visible bands detected on the extinction curve in our and other galaxies. Many transitions are found in this domain, corresponding to d → d, d → 4s, or d → π* excitations, but few are allowed and, if they are, their oscillation strengths are small. Even though some band positions could match some of the observed bands, the relative intensities do not fit, making the contribution of the [Fe-C6H6](+) complexes to the diffuse interstellar bands questionable. This work, however, lays the foundation for the studies of polycyclic aromatic hydrocarbons (PAHs) complexed to Fe cations that are more likely to possess d → π* and π → π* transitions in the diffuse interstellar bands domain. PAH ligands indeed possess a larger number of π and π* orbitals, respectively, higher and lower in energy than those of C6H6, which are expected to lead to lower energy d → π* and π → π* transitions in [FePAH](+) than in [FeC6H6](+) complexes. PMID:25850680

  17. A comparative study of pi-arene-bridged lanthanum arylamide and aryloxide dimers. Solution behavior, exchange mechanisms, and X-ray crystal structures of La2(NH-2,6-iPr2C6H3)6, La(NH-2,6-iPr2C6H3)3(THF)3, and La(NH-2,6-iPr2C6H3)3(py)2.

    PubMed

    Giesbrecht, Garth R; Gordon, John C; Clark, David L; Hay, P Jeffrey; Scott, Brian L; Tait, C Drew

    2004-05-26

    Reaction of 3 equiv of 2,6-diisopropylaniline with La[N(SiMe(3))(2)](3) produces the dimeric species La(2)(NHAr)(6) (1). X-ray crystallography reveals a centrosymmetric structure, where the dimeric unit is bridged by intermolecular eta(6)-arene interactions of a unique arylamide ligand attached to an adjacent metal center. Exposure of 1 to THF results in formation of the monomeric tris-THF adduct La(NHAr)(3)(THF)(3) (2), which was shown by X-ray crystallography to maintain a fac-octahedral structure in the solid state. (1)H NMR spectroscopy illustrates that the binding of THF to 1 to form 2 is reversible and removal of THF under vacuum regenerates dimeric 1. Addition of pyridine to 1 yields the monomeric bis-pyridine adduct La(NHAr)(3)(py)(2) (3), which exhibits a distorted trigonal-bipyramidal La metal center. Solution (1)H NMR, IR, and Raman spectroscopy indicate that the pi-arene-bridged dimeric structure of 1 is maintained in solution. Variable-temperature (1)H NMR spectroscopic investigations of 1 are consistent with a monomer-dimer equilibrium at elevated temperature. In contrast, variable-temperature (1)H NMR spectroscopic investigations of the aryloxide analogue La(2)(OAr)(6) (4) show that the bridging and terminal aryloxide groups exchange by a mechanism in which the dimeric nature of the compound is retained. Density functional theory (DFT) calculations were carried out on model compounds La(2)(OC(6)H(5))(6), La(2)(NHC(6)H(5))(6), and (C(6)H(5)R)La(XC(6)H(5))(3), where X = O or NH and R = H, OH, or NH(2). The formation of eta(6)-arene interactions is energetically favored over monomeric LaX(3) (X = OPh or NHPh) with the aryloxide pi-arene interaction being stronger than the arylamide pi-arene interaction. Calculation of vibrational frequencies reveals the origin of the observed IR spectral behavior of both La(2)(OC(6)H(5))(6) and La(2)(NHC(6)H(5))(6), with the higher energy nu(C=C) stretch due to terminal ligands and the lower energy stretch associated

  18. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    NASA Astrophysics Data System (ADS)

    Ebrahimpour, Omid

    In this work, mullite-bonded porous silicon carbide (SiC) ceramics were prepared via a reaction bonding technique with the assistance of a sol-gel technique or in-situ polymerization as well as a combination of these techniques. In a typical procedure, SiC particles were first coated by alumina using calcined powder and alumina sol via a sol-gel technique followed by drying and passing through a screen. Subsequently, they were coated with the desired amount of polyethylene via an in-situ polymerization technique in a slurry phase reactor using a Ziegler-Natta catalyst. Afterward, the coated powders were dried again and passed through a screen before being pressed into a rectangular mold to make a green body. During the heating process, the polyethylene was burnt out to form pores at a temperature of about 500°C. Increasing the temperature above 800°C led to the partial oxidation of SiC particles to silica. At higher temperatures (above 1400°C) derived silica reacted with alumina to form mullite, which bonds SiC particles together. The porous SiC specimens were characterized with various techniques. The first part of the project was devoted to investigating the oxidation of SiC particles using a Thermogravimetric analysis (TGA) apparatus. The effects of particle size (micro and nano) and oxidation temperature (910°C--1010°C) as well as the initial mass of SiC particles in TGA on the oxidation behaviour of SiC powders were evaluated. To illustrate the oxidation rate of SiC in the packed bed state, a new kinetic model, which takes into account all of the diffusion steps (bulk, inter and intra particle diffusion) and surface oxidation rate, was proposed. Furthermore, the oxidation of SiC particles was analyzed by the X-ray Diffraction (XRD) technique. The effect of different alumina sources (calcined Al2O 3, alumina sol or a combination of the two) on the mechanical, physical, and crystalline structure of mullite-bonded porous SiC ceramics was studied in the

  19. Formation of micropipes in SiC under kinetic aspects

    NASA Astrophysics Data System (ADS)

    Heindl, J.; Dorsch, W.; Eckstein, R.; Hofmann, D.; Marek, T.; Müller, St. G.; Strunk, H. P.; Winnacker, A.

    1997-08-01

    We measure the radii of micropipes at the {0001} surface of modified Lely grown 6H-SiC and the total step height of the accompanying growth spirals by using atomic force microscopy. The micropipes lie in the center of spirals; the total step height ranges between one and 19 unit-cells (1.5-28.5 nm). We fit Frank's theory of hollow core dislocations as modified with regard to kinetic effects by Cabrera and Levine to these experimental results and obtain values for surface energy and supersaturation near the emergence point of the micropipe.

  20. COMPATIBILITY OF INTERFACES AND FIBERS FOR SIC-COMPOSITES IN FUSION ENVIRONMENTS

    SciTech Connect

    Henager, Charles H.; Kurtz, Richard J.

    2008-02-14

    The use of SiC composites in fusion environments is predicated on stability under neutron irradiation, on outstanding high-temperature mechanical properties, and on chemical inertness and corrosion resistance. However, SiC is susceptible to many forms of corrosion in water and in water vapor where silica formation is required as a protective layer because silica forms stable hydroxides that are volatile, even at low temperatures. SiC composites have an additional concern that fine-grained fibers and weak interfaces provide the required fracture toughness, but these components may also exhibit susceptibility to corrosion that can compromise material properties. In this work we examine and review the compatibility of fibers and interfaces, as well as the SiC matrix, in proposed fusion environments including first wall, tritium breeding, and blanket modules and module coolants.

  1. Synthesis of One-Dimensional SiC Nanostructures from a Glassy Buckypaper

    SciTech Connect

    Ding, Mengning; Star, Alexander

    2013-02-21

    A simple and scalable synthetic strategy was developed for the fabrication of one-dimensional SiC nanostructures - nanorods and nanowires. Thin sheets of single-walled carbon nanotubes (SWNTs) were prepared by vacuum filtration and were washed repeatedly with sodium silicate (Na₂SiO₃) solution. The resulting “glassy buckypaper” was heated at 1300 - 1500 °C under Ar/H₂ to allow a solid state reaction between C and Si precursors to form a variety of SiC nanostructures. The morphology and crystal structures of SiC nanorods and nanowires were characterized using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy dispersive xray spectroscopy (EDX), electron diffraction (ED) and x-ray diffraction (XRD) techniques. Furthermore, electrical conductance measurements were performed on SiC nanorods, demonstrating their potential applications in high-temperature sensors and control systems.

  2. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE PAGESBeta

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven C.; Weber, William J.

    2016-06-19

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  3. Precursor Selection for Property Optimization in Biomorphic SiC Ceramics

    NASA Technical Reports Server (NTRS)

    Varela-Feria, F. M.; Lopez-Robledo, M. J.; Martinez-Fernandez, J.; deArellano-Lopez, A. R.; Singh, M.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Biomorphic SiC ceramics have been fabricated using different wood precursors. The evolution of volume, density and microstructure of the woods, carbon performs, and final SiC products are systematically studied in order to establish experimental guidelines that allow materials selection. The wood density is a critical characteristic, which results in a particular final SiC density, and the level of anisotropy in mechanical properties in directions parallel (axial) and perpendicular (radial) to the growth of the wood. The purpose of this work is to explore experimental laws that can help choose a type of wood as precursor for a final SiC product, with a given microstructure, density and level of anisotropy. Preliminary studies of physical properties suggest that not only mechanical properties are strongly anisotropic, but also electrical conductivity and gas permeability, which have great technological importance.

  4. 40 CFR 372.23 - SIC and NAICS codes to which this Part applies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sale of household furniture and that manufacture custom made upholstered household furniture (previously classified under SIC 5712, Furniture Stores (upholstered, custom made furniture)); Except 337122... limited to facilities primarily engaged in the retail sale of household furniture and that...

  5. 40 CFR 372.23 - SIC and NAICS codes to which this Part applies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sale of household furniture and that manufacture custom made upholstered household furniture (previously classified under SIC 5712, Furniture Stores (upholstered, custom made furniture)); Except 337122... limited to facilities primarily engaged in the retail sale of household furniture and that...

  6. Effects of Ni doping and structural defects on magnetic properties of annealed SiC films

    NASA Astrophysics Data System (ADS)

    Fu, Yuting; Jin, Xin; Sun, Ning; Li, Chunjing; An, Yukai; Liu, Jiwen

    2016-08-01

    Ni-doped SiC films deposited on Si (100) substrates prepared by RF-magnetron sputtering were discussed in this paper. The results show that with reference to the as-deposited as well as annealing at 800 °C. C atoms were substituted by Ni atoms in the 3Csbnd SiC lattice and Ni-related secondary phase cannot be detected. After annealing at 1200 °C, the crystal quality improved obviously while the majority of Ni atoms form the Ni2Si secondary phase. Temperature dependent on resistivity reveals that the conduction mechanism is dominated by Mott variable range hopping behavior for the Ni-doped SiC films, confirming that the carriers are localized. All the films are ferromagnetic at 300 K and annealing can evidently improve the room-temperature (RT) ferromagnetism. The bound magnetic polarons should be responsible for the RT ferromagnetism of the Ni-doped SiC films.

  7. SiC Nanowires with Tunable Hydrophobicity/Hydrophilicity and Their Application as Nanofluids.

    PubMed

    Chen, Junhong; Zhai, Famin; Liu, Meng; Hou, Xinmei; Chou, Kuo-Chih

    2016-06-14

    In this paper, several methods including HF, NaOH, TEOS, and PVP treatment were adopted to modify the wettability of silicon carbide (SiC) nanowires switching from hydrophobic to hydrophilic. The phase and microstructure investigated by XRD, FT-IR, XPS, TGA, SEM, and TEM demonstrated SiC nanowires switching from hydrophobic to hydrophilic due to the surface-tethered hydrophilic layer as well as increasing interspace between nanowires. Besides this, SiC nanowires with hydrophilicity may effectively improve the thermal conductivity of a fluid. The thermal conductivity of aqueous SiC nanowires after TEOS treatment with just 0.3 vol % was remarkably improved up to ca. 13.0%. PMID:27223246

  8. Numerical design of SiC bulk crystal growth for electronic applications

    SciTech Connect

    Wejrzanowski, T.; Grybczuk, M.; Kurzydlowski, K. J.; Tymicki, E.

    2014-10-06

    Presented study concerns numerical simulation of Physical Vapor Transport (PVT) growth of bulk Silicon Carbide (SiC) crystals. Silicon Carbide is a wide band gap semiconductor, with numerous applications due to its unique properties. Wider application of SiC is limited by high price and insufficient quality of the product. Those problems can be overcame by optimizing SiC production methods. Experimental optimization of SiC production is expensive because it is time consuming and requires large amounts of energy. Numerical modeling allows to learn more about conditions inside the reactor and helps to optimize the process at much lower cost. In this study several simulations of processes with different reactor geometries were presented along with discussion of reactor geometry influence on obtained monocrystal shape and size.

  9. SiC Nanowire Film Photodetectors: A Promising Candidate Toward High Temperature Photodetectors.

    PubMed

    Chong, Haining; Yang, Huijun; Yang, Weiyou; Zheng, Jinju; Shang, Minghui; Yang, Zuobao; Wei, Guodong; Gao, Fengmei

    2016-04-01

    In this study, UV photodetectors (PDs) based on SiC nanowire films have been successfully prepared by a simple and low-cost drip-coating method followed by sintering at 500 °C. The corresponding electrical characterizations clearly demonstrate that the SiC nanowire based PD devices can be regarded as a promising candidate for UV PDs. The PDs can exhibit the excellent performances of fast, high sensitivity, linearity, and stable response, which can thus achieve on-line monitoring of weak UV light. Furthermore, the SiC nanowire-based PDs enable us to fabricate detectors working under high temperature as high as 150 °C. The high photosensitivity and rapid photoresponse for the PDs can be attributed to the superior single crystalline quality of SiC nanowires and the ohmic contact between the electrodes and nanowires. PMID:27451712

  10. Highly flexible, nonflammable and free-standing SiC nanowire paper

    NASA Astrophysics Data System (ADS)

    Chen, Jianjun; Liao, Xin; Wang, Mingming; Liu, Zhaoxiang; Zhang, Judong; Ding, Lijuan; Gao, Li; Li, Ye

    2015-03-01

    Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber reinforced ceramic composites. Herein, free-standing SiC nanowire paper consisting of ultralong single-crystalline SiC nanowires was prepared through a facile vacuum filtration approach. The ultralong SiC nanowires were synthesized by a sol-gel and carbothermal reduction method. The flexible paper composed of SiC nanowires is ~100 nm in width and up to several hundreds of micrometers in length. The nanowires are intertwisted with each other to form a three-dimensional network-like structure. SiC nanowire paper exhibits high flexibility and strong mechanical stability. The refractory performance and thermal stability of SiC nanowire paper were also investigated. The paper not only exhibits excellent nonflammability in fire, but also remains well preserved without visible damage when it is heated in an electric oven at a high temperature (1000 °C) for 3 h. With its high flexibility, excellent nonflammability, and high thermal stability, the free-standing SiC nanowire paper may have the potential to improve the ablation resistance of high temperature ceramic composites.Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber

  11. Breakthrough in Power Electronics from SiC: May 25, 2004 - May 31, 2005

    SciTech Connect

    Marckx, D. A.

    2006-03-01

    This report explores the premise that silicon carbide (SiC) devices would reduce substantially the cost of energy of large wind turbines that need power electronics for variable speed generation systems.

  12. Dr. Wernher Von Braun leads a tour of the S-IC checkout area.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Eberhard Rees, Charles Schultze, James Webb, Elmer Staats, Comptroller General of the United States, and Dr. Wernher Von Braun tour the S-IC checkout area in the Marshall Space Flight Center quality lab.

  13. High-Temperature SiC Power Module with Integrated SiC Gate Drivers for Future High-Density Power Electronics Applications

    SciTech Connect

    Whitaker, Mr. Bret; Cole, Mr. Zach; Passmore, Mr. Brandon; Mcnutt, Tyler; Lostetter, Dr. Alex; Ericson, Milton Nance; Frank, Steven; Britton Jr, Charles L; Marlino, Laura D; Mantooth, Alan; Francis, Matt; Lamichhane, Ranjan; Shepherd, Paul; Glover, Michael

    2014-01-01

    This paper presents a high-temperature capable intelligent power module that contains SiC power devices and SiC gate driver integrated circuits (ICs). The high-temperature capability of the SiC gate driver ICs allows for them to be packaged into the power module and be located physically close to the power devices. This provides a distinct advantage by reducing the gate driver loop inductance, which promotes high frequency operation, while also reducing the overall volume of the system through higher levels of integration. The power module was tested in a bridgeless-boost converter (Fig. 1) to determine the performance of the module in a system level application. The converter was operated with a switching frequency of 200 kHz with a peak output power of approximately 5 kW. The peak efficiency was found to be 97.5% at 2.9 kW.

  14. Si Isotopic Ratios in Mainstream Presolar SIC Grains Revisited

    NASA Astrophysics Data System (ADS)

    Lugaro, Maria; Zinner, Ernst; Gallino, Roberto; Amari, Sachiko

    1999-12-01

    Although mainstream SiC grains, the major group of presolar SiC grains found in meteorites, are believed to have originated in the expanding envelope of asymptotic giant branch (AGB) stars during their late carbon-rich phases, their Si isotopic ratios show a distribution that cannot be explained by nucleosynthesis in this kind of star. Previously, this distribution has been interpreted to be the result of contributions from many AGB stars of different ages whose initial Si isotopic ratios vary owing to the Galactic chemical evolution of the Si isotopes. This paper presents a new interpretation based on local heterogeneities of the Si isotopes in the interstellar medium at the time the parent stars of the mainstream grains were born. Recently, several authors have presented inhomogeneous chemical evolution models of the Galactic disk in order to account for the well-known evidence that F and G dwarfs of similar age show an intrinsic scatter in their elemental abundances. First we report new calculations of the s-process nucleosynthesis of the Si and Ti isotopes in four AGB models (1.5, 3, and 5 Msolar with Z=0.02; 3 Msolar with Z=0.006). These calculations are based on the release of neutrons in the He intershell by the 13C source during the interpulse periods followed by a second small burst of neutrons released in the convective thermal pulse by the marginal activation of the 22Ne source. In the 1.5 and 3 Msolar models with solar metallicity the predicted shifts of the Si isotopic ratios in the stars' envelope are much smaller (<30‰ for the 29Si/28Si ratio and <40‰ for the 30Si/28Si ratio; the two ratios are normalized to solar) than the range observed in the mainstream grains (up to 180‰). Isotopic shifts are of the same order as in the SiC grains for the 5 Msolar and Z=0.006 models, but the slope of the 29Si/28Si versus 30Si/28Si correlation line is much smaller than that of the grains. We also show that none of the models can reproduce the correlations

  15. Ultra-Low-Cost Room Temperature SiC Thin Films

    NASA Technical Reports Server (NTRS)

    Faur, Maria

    1997-01-01

    The research group at CSU has conducted theoretical and experimental research on 'Ultra-Low-Cost Room Temperature SiC Thin Films. The effectiveness of a ultra-low-cost room temperature thin film SiC growth technique on Silicon and Germanium substrates and structures with applications to space solar sells, ThermoPhotoVoltaic (TPV) cells and microelectronic and optoelectronic devices was investigated and the main result of this effort are summarized.

  16. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    SciTech Connect

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V.

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  17. Fuel Tank Assembly of the Saturn V S-IC Stage

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The fuel tank assembly of the Saturn V S-IC (first) stage is readied to be mated to the liquid oxygen tank at the Marshall Space Flight Center. The fuel tank carried kerosene as its fuel. The S-IC stage utilized five F-1 engines that used kerosene and liquid oxygen as propellant. Each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  18. SiC growth by Solvent-Laser Heated Floating Zone

    NASA Technical Reports Server (NTRS)

    Woodworth, Andrew A.; Neudeck, Philip G.; Sayir, Ali; Spry, David J.; Trunek, Andrew J.; Powell, J. Anthony

    2011-01-01

    In an effort to grow single crystal SiC fibers for seed crystals the following two growth methods have been coupled in this work: traveling solvent and laser heated floating zone to create the solvent-laser heated floating zone (Solvent-LHFZ) crystal growth method. This paper discusses the results of these initial experiments, which includes: source material, laser heating, and analysis of the first ever Solvent-LHFZ SiC crystals (synchrotron white beam x-ray topography confirmed).

  19. Phosphorus doping of 4H SiC by liquid immersion excimer laser irradiation

    SciTech Connect

    Ikeda, Akihiro; Nishi, Koji; Ikenoue, Hiroshi; Asano, Tanemasa

    2013-02-04

    Phosphorus doping of 4H SiC is performed by KrF excimer laser irradiation of 4H SiC immersed in phosphoric acid. Phosphorus is incorporated to a depth of a few tens of nanometers at a concentration of over 10{sup 20}/cm{sup 3} without generating significant crystal defects. Formation of a pn junction diode with an ideality factor of 1.06 is demonstrated.

  20. Modeling the Elastic Modulus of 2D Woven CVI SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2006-01-01

    The use of fiber, interphase, CVI SiC minicomposites as structural elements for 2D-woven SiC fiber reinforced chemically vapor infiltrated (CVI) SiC matrix composites is demonstrated to be a viable approach to model the elastic modulus of these composite systems when tensile loaded in an orthogonal direction. The 0deg (loading direction) and 90deg (perpendicular to loading direction) oriented minicomposites as well as the open porosity and excess SiC associated with CVI SiC composites were all modeled as parallel elements using simple Rule of Mixtures techniques. Excellent agreement for a variety of 2D woven Hi-Nicalon(TradeMark) fiber-reinforced and Sylramic-iBN reinforced CVI SiC matrix composites that differed in numbers of plies, constituent content, thickness, density, and number of woven tows in either direction (i.e, balanced weaves versus unbalanced weaves) was achieved. It was found that elastic modulus was not only dependent on constituent content, but also the degree to which 90deg minicomposites carried load. This depended on the degree of interaction between 90deg and 0deg minicomposites which was quantified to some extent by composite density. The relationships developed here for elastic modulus only necessitated the knowledge of the fractional contents of fiber, interphase and CVI SiC as well as the tow size and shape. It was concluded that such relationships are fairly robust for orthogonally loaded 2D woven CVI SiC composite system and can be implemented by ceramic matrix composite component modelers and designers for modeling the local stiffness in simple or complex parts fabricated with variable constituent contents.

  1. A SiC MOSFET Based Inverter for Wireless Power Transfer Applications

    SciTech Connect

    Onar, Omer C; Chinthavali, Madhu Sudhan; Campbell, Steven L; Ning, Puqi; White, Cliff P; Miller , John M.

    2014-01-01

    In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at three center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.

  2. U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development

    SciTech Connect

    George W. Griffith

    2011-10-01

    A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing. Ceramic matrix composites are an established non-nuclear technology that utilizes ceramic fibers embedded in a ceramic matrix. A thin interfacial layer between the fibers and the matrix allows for ductile behavior. The SiC CMC has relatively high strength at high reactor accident temperatures when compared to metallic cladding. SiC also has a very low chemical reactivity and doesn't react exothermically with the reactor cooling water. The radiation behavior of SiC has also been studied extensively as structural fusion system components. The SiC CMC technology is in the early stages of development and will need to mature before confidence in the developed designs can created. The advanced SiC CMC materials do offer the potential for greatly improved safety because of their high temperature strength, chemical stability and reduced hydrogen generation.

  3. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-07-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.

  4. Packaging Technologies for 500C SiC Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  5. Amorphous carbon for structured step bunching during graphene growth on SiC

    NASA Astrophysics Data System (ADS)

    Palmer, James; Kunc, Jan; Hu, Yike; Hankinson, John; Guo, Zelei; Berger, Claire; de Heer, Walt

    2014-03-01

    Structured growth of high quality graphene is necessary for technological development of carbon based materials. Specifically, control of the bunching and placement of surface steps under epitaxial graphene on SiC is an important consideration for graphene device production. We demonstrate lithographically patterned evaporated amorphous carbon as a method to pin SiC surface steps. Evaporated amorphous carbon is an ideal step-flow barrier on SiC due to its chemical compatibility with graphene growth and its structural stability at high temperatures, as well as its patternability. The amorphous carbon is deposited in vacuum on SiC prior to graphene growth. In the graphene furnace at temperatures above 1200°C, mobile SiC steps accumulate at these amorphous carbon barriers, forming an aligned step free region for graphene growth at temperatures above 1330°C. AFM imaging and Raman spectroscopy support the formation of quality step-free graphene sheets grown on SiC with the step morphology aligned to the carbon grid.

  6. A Φ 3.5m diameter Sic telescope for Herschel mission

    NASA Astrophysics Data System (ADS)

    Sein, Emmanuel; Toulemont, Yves; Safa, Frederic; Duran, Michel; Deny, Pierre; de Chambure, Daniel; Passvogel, Thomas; Pilbratt, Goeran L.

    2003-03-01

    Since ten years ASTRIUM has developed sintered Silicon Carbide (SiC) technology for space applications. Its unique thermo-mechanical properties, associated with its polishing capability, make SiC an ideal material for building ultra-stable lightweight space based telescopes or mirrors. SiC is a cost effective alternative to Beryllium and the ultra-lighweighted ULE. In Complememt to the material manufacturing process, ASTRIUM has developed several assembly techniques (bolting, brazing, bonding) for manufacturing large and complex SiC assemblies. This technology is now perfectly mature and mastered. SiC is baselined for most of the telescopes that are developed by ASTRIUM. SiC has been identified as the most suitable material for manufacturing very large crygenic telescopes. In this paper we present the development of Φ 3.5 m telescope for Herschel Mission. Herschel main goal is to study how the first stars and galaxies were formed and evolved. The Herschel Space telescope, using silicon carbide technology will be the largest space imagery telescope ever launched. The Herschel telescope will weight 300 kg rather than the 1.5 tons required with standard technology. The Herschel telescope is to be delivered in 2005 for a launch planned for 2007.

  7. The Development of SiC MOSFET-based Switching Power Amplifiers for Fusion Science

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Picard, Julian

    2015-11-01

    Eagle Harbor Technologies (EHT), Inc. is developing a switching power amplifier (SPA) based on silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET). SiC MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. EHT has conducted single device testing that directly compares the capabilities of SiC MOSFETs and IGBTs to demonstrate the utility of SiC MOSFETs for fusion science applications. These devices have been built into a SPA that can drive resistive loads and resonant tank loads at 800 V, 4.25 kA at pulse repetition frequencies up to 1 MHz. During the Phase II program, EHT will finalize the design of the SPA. In Year 2, EHT will replace the SPAs used in the HIT-SI lab at the University of Washington to allow for operation over 100 kHz. SPA prototype results will be presented. This work is supported under DOE Grant # DE-SC0011907.

  8. The role of carbon surface diffusion on the growth of epitaxial graphene on SiC.

    SciTech Connect

    Thurmer, Konrad; Ohta, Taisuke; Nie, Shu; Bartelt, Norman Charles; Kellogg, Gary Lee

    2010-03-01

    Growth of high quality graphene films on SiC is regarded as one of the more viable pathways toward graphene-based electronics. Graphitic films form on SiC at elevated temperature because of preferential sublimation of Si. Little is known, however, about the atomistic processes of interrelated SiC decomposition and graphene growth. We have observed the formation of graphene on SiC by Si sublimation in an Ar atmosphere using low energy electron microscopy, scanning tunneling microcopy and atomic force microscopy. This work reveals that the growth mechanism depends strongly on the initial surface morphology, and that carbon diffusion governs the spatial relationship between SiC decomposition and graphene growth. Isolated bilayer SiC steps generate narrow ribbons of graphene, whereas triple bilayer steps allow large graphene sheets to grow by step flow. We demonstrate how graphene quality can be improved by controlling the initial surface morphology specifically by avoiding the instabilities inherent in diffusion-limited growth.

  9. Modeling and testing miniature torsion specimens for SiC joining development studies for fusion

    DOE PAGESBeta

    Henager, Jr., C. H.; Nguyen, Ba N.; Kurtz, Richard J.; Roosendaal, T. J.; Borlaug, B. A.; Ferraris, Monica; Ventrella, A.; Katoh, Yutai

    2015-08-05

    The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. For this research, miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti3SiC2 + SiC joints with SiC and tested in torsion-shear prior to and after neutron irradiation. However, many miniature torsion specimens fail out-of-plane within the SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated strengths to determine irradiation effects. Finite elementmore » elastic damage and elastic–plastic damage models of miniature torsion joints are developed that indicate shear fracture is more likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated test data for a variety of joint materials. The unirradiated data includes Ti3SiC2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. Finally, the implications for joint data based on this sample design are discussed.« less

  10. Si/C hybrid nanostructures for Li-ion anodes: An overview

    NASA Astrophysics Data System (ADS)

    Terranova, Maria Letizia; Orlanducci, Silvia; Tamburri, Emanuela; Guglielmotti, Valeria; Rossi, Marco

    2014-01-01

    This review article summarizes recent and increasing efforts in the development of novel Li ion cell anode nanomaterials based on the coupling of C with Si. The rationale behind such efforts is based on the fact that the Si-C coupling realizes a favourable combination of the two materials properties, such as the high lithiation capacity of Si and the mechanical and conductive properties of C, making Si/C hybrid nanomaterials the ideal candidates for innovative and improved Li-ion anodes. Together with an overview of the methodologies proposed in the last decade for material preparation, a discussion on relationship between organization at the nanoscale of the hybrid Si/C systems and battery performances is given. An emerging indication is that the enhancement of the batteries efficiency in terms of mass capacity, energy density and cycling stability, resides in the ability to arrange Si/C bi-component nanostructures in pre-defined architectures. Starting from the results obtained so far, this paper aims to indicate some emerging directions and to inspire promising routes to optimize fabrication of Si/C nanomaterials and engineering of Li-ion anodes structures. The use of Si/C hybrid nanostructures could represents a viable and effective solution to the foreseen limits of present lithium ion technology.

  11. Sizing SiC Storage Inverters for Fast Grid Frequency Support

    SciTech Connect

    Hoke, Anderson; Bennion, Kevin; Gevorgian, Vahan; Chakraborty, Sudipta; Muljadi, Eduard

    2015-11-02

    As wind and solar displace synchronous generators whose inertia stabilizes the AC grid frequency on fast time scales, it has been proposed to use energy storage systems (ESSs) to mitigate frequency transient events. Such events require a rapid surge of power from the ESS, but they occur only rarely. The high temperature tolerance of SiC MOSFETs and diodes presents an opportunity for innovative ESS inverter designs. Herein we investigate a SiC ESS inverter design such that the SiC device ratings are obeyed during mild frequency events but are exceeded during rare, major events, for a potentially more economical inverter design. In support of this proposal we present: 1. An analysis of four years of grid frequency events in the U.S. Western Interconnection. 2. A switch-level ESS inverter simulation using SiC devices with detailed loss estimates. 3. Thermal analysis of the SiC power modules during a worst-case frequency event, showing that the modules can likely withstand the brief overcurrent. This analysis supports the conclusion that it may be advantageous for economical designs (acknowledging the increased risks) to undersize the SiC switches when designing inverters to perform active power control for grid frequency support. Such a strategy may result in SiC-based designs being more competitive with less costly silicon IGBT-based designs.

  12. Nanostructured core-shell Ni deposition on SiC particles by alkaline electroless coating

    NASA Astrophysics Data System (ADS)

    Uysal, M.; Karslioğlu, R.; Alp, A.; Akbulut, H.

    2011-10-01

    In this study, core-shell nanostructured nickel formation on silicon carbide (SiC) ceramic powders was achieved through the electroless deposition method using alkaline solutions. To produce a nano core-shell Ni deposition on the SiC surfaces, process parameters such as pH values, the type of reducer material, deposition temperature, stirring rate and activation procedure among others were determined. Full coverage of core-shell nickel structures on SiC surfaces was achieved with a grain size of between 100 and 300 nm, which was approximately the same deposition thickness on the SiC surfaces. The surface morphology of the coated SiC particles showed a homogenous distribution of nanostructured nickel grains characterized by scanning electron microscopy and X-ray diffraction techniques. The nanostructures of the crystalline Ni coatings were observed to be attractive for achieving both good bonding and dense structure. The thin core shell-structure of Ni on the SiC surfaces was assessed as a beneficial reinforcement for possible metal matrix composite manufacturing.

  13. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-10-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.

  14. Modeling and testing miniature torsion specimens for SiC joining development studies for fusion

    NASA Astrophysics Data System (ADS)

    Henager, C. H.; Nguyen, B. N.; Kurtz, R. J.; Roosendaal, T. J.; Borlaug, B. A.; Ferraris, M.; Ventrella, A.; Katoh, Y.

    2015-11-01

    The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. Miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti3SiC2 + SiC joints with SiC and tested in torsion-shear prior to and after neutron irradiation. However, many miniature torsion specimens fail out-of-plane within the SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated strengths to determine irradiation effects. Finite element elastic damage and elastic-plastic damage models of miniature torsion joints are developed that indicate shear fracture is more likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated test data for a variety of joint materials. The unirradiated data includes Ti3SiC2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. The implications for joint data based on this sample design are discussed.

  15. Nanoscale SiC production by ballistic ion beam mixing of C/Si multilayer structures

    NASA Astrophysics Data System (ADS)

    Battistig, G.; Zolnai, Z.; Németh, A.; Panjan, P.; Menyhárd, M.

    2016-05-01

    The ion beam-induced mixing process using Ar+, Ga+, and Xe+ ion irradiation has been used to form SiC rich layers on the nanometer scale at the interfaces of C/Si/C/Si/C multilayer structures. The SiC depth distributions were determined by Auger electron spectroscopy (AES) depth profiling and were compared to the results of analytical models developed for ballistic ion mixing and local thermal spike induced mixing. In addition, the measured SiC depth distributions were correlated to the Si and C mixing profiles simulated by the TRIDYN code which can follow the ballistic ion mixing process as a function of ion fluence. Good agreement has been found between the distributions provided by AES depth profiling and TRIDYN on the assumption that the majority of the Si (C) atoms transported to the neighboring C (Si) layer form the SiC compound. The ion beam mixing process can be successfully described by ballistic atomic transport processes. The results show that SiC production as a function of depth can be predicted, and tailored compound formation on the nanoscale becomes feasible, thus leading to controlled synthesis of protective SiC coatings at room temperature.

  16. SiC detector damage and characterization for high intensity laser-plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cannavò, A.

    2016-05-01

    Silicon-Carbide (SiC) detectors are always more extensively employed as diagnostics in laser-generated plasma due to their remarkable properties such as their high band gap, high carrier velocity, high detection efficiency, high radiation resistance and low leakage current at room temperature. SiC detectors, in comparison with Si detectors, have the advantage of being insensitive to visible light, having low reverse current at high temperature and high radiation hardness. A similar energy resolution characterizes the two types of detectors, being 0.8% in Si and 1.0% in SiC, as measured detecting 5.8 MeV alpha particles. Generally, SiC detectors are employed as laser-plasma diagnostics in time-of-flight configuration, permitting the simultaneous detection of photons, electrons and ions based on discrimination of velocity. SiC detectors can be employed in the proportionality regime, because their response is proportional to the radiation energy deposited in the active layer. Using thin absorbers in front of the detectors makes it possible to have further information on the radiation nature, intensity and energy. Surface characterization of SiC before and after prolonged exposure to hot plasma laser generated shows the formation of bulk defects and thin film deposition on the detector surface limiting the device functionality.

  17. Synthesis, crystal structure and NLO property of a nonmetal pentaborate [C 6H 13N 2][B 5O 6(OH) 4

    NASA Astrophysics Data System (ADS)

    Liu, Huan-Xin; Liang, Yun-Xiao; Jiang, Xiao

    2008-12-01

    A nonmetal pentaborate [C 6H 13N 2][B 5O 6(OH) 4] ( 1) has been synthesized by 1,4-diazabicyclo[2.2.2] octane (DABCO) and boric acid, and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in the monoclinic system with space group Cc (no. 9), a=10.205(2) Å, b=14.143(3) Å, c=11.003(2) Å, β=113.97(3)°, V=1451.1(5) Å 3, Z=4. The anionic units, [B 5O 6(OH) 4] -, are interlinked via hydrogen bonding to form a three-dimensional (3D) supramolecular network containing large channels, in which the protonated [C 6H 13N 2] + cations are located. Second-harmonic generation (SHG) measurements on the powder samples reveal that 1 exhibits SHG efficiency approximately 0.9 times that of potassium dihydrogen phosphate (KDP).

  18. Nonplanar structure of C6H5SCF3 facilitates πσ∗-mediated photodissociation reaction on the S1 state

    NASA Astrophysics Data System (ADS)

    Kim, So-Yeon; Lee, Jeongmook; Kim, Sang Kyu; Choi, Young S.

    2016-08-01

    Vibrational structure of trifluoromethylthiobenzene (C6H5SCF3) on the S1 state has been investigated by resonance-enhanced two-photon ionization spectroscopy and nature of predissociation dynamics is inferred from homogeneously broadened spectral features. As C6H5SCF3 adopts a nonplanar structure in both the S0 and S1 states, the effective adiabatic barrier generated by avoided crossing of optically-bright bound S1 (ππ∗) and dark-repulsive S2 (πσ∗) surfaces along the reaction coordinate is significantly lowered, giving the S1 lifetime of ∼300 fs. This experiment demonstrates that the molecular structure spanned by the reactive flux near the curve-crossing region dictates reaction rate as well as nonadiabatic transition probability.

  19. Characterization of 6H-SiC JFET Integrated Circuits Over A Broad Temperature Range from -150 C to +500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Krasowski, Michael J.; Chen, Liang-Yu; Prokop, Norman F.

    2009-01-01

    The NASA Glenn Research Center has previously reported prolonged stable operation of simple prototype 6H-SiC JFET integrated circuits (logic gates and amplifier stages) for thousands of hours at +500 C. This paper experimentally investigates the ability of these 6H-SiC JFET devices and integrated circuits to also function at cold temperatures expected to arise in some envisioned applications. Prototype logic gate ICs experimentally demonstrated good functionality down to -125 C without changing circuit input voltages. Cascaded operation of gates at cold temperatures was verified by externally wiring gates together to form a 3-stage ring oscillator. While logic gate output voltages exhibited little change across the broad temperature range from -125 C to +500 C, the change in operating frequency and power consumption of these non-optimized logic gates as a function of temperature was much larger and tracked JFET channel conduction properties.

  20. Vapor-Liquid Equilibrium in the Mixture Trichloromethane CHCl3 + C6H10O Cyclohexanone (EVLM1111, LB5654_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture Trichloromethane CHCl3 + C6H10O Cyclohexanone (EVLM1111, LB5654_E)' providing data from direct measurement of pressure at variable mole fraction in liquid phase and constant temperature.

  1. Draft Genome Sequence of Pseudomonas azotifigens Strain DSM 17556T (6H33bT), a Nitrogen Fixer Strain Isolated from a Compost Pile

    PubMed Central

    Busquets, Antonio; Peña, Arantxa; Gomila, Margarita; Mulet, Magdalena; Mayol, Joan; García-Valdés, Elena; Bennasar, Antonio; Huntemann, Marcel; Han, James; Chen, I-Min; Mavromatis, Konstantinos; Markowitz, Victor; Palaniappan, Krishnaveni; Ivanova, Natalia; Schaumberg, Andrew; Pati, Amrita; Reddy, T. B. K.; Nordberg, Henrik; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos

    2013-01-01

    Pseudomonas azotifigens strain 6H33bT is a nitrogen fixer isolated from a hyperthermal compost pile in 2005 by Hatayama and collaborators. Here we report the draft genome, which has an estimated size of 5.0 Mb, exhibits an average G+C content of 66.73%, and is predicted to encode 4,536 protein-coding genes and 100 RNA genes. PMID:24179119

  2. Distinct lymphocyte antigens 6 (Ly6) family members Ly6D, Ly6E, Ly6K and Ly6H drive tumorigenesis and clinical outcome

    PubMed Central

    Luo, Linlin; McGarvey, Peter; Madhavan, Subha; Kumar, Rakesh; Gusev, Yuriy; Upadhyay, Geeta

    2016-01-01

    Stem cell antigen-1 (Sca-1) is used to isolate and characterize tumor initiating cell populations from tumors of various murine models [1]. Sca-1 induced disruption of TGF-β signaling is required in vivo tumorigenesis in breast cancer models [2, 3-5]. The role of human Ly6 gene family is only beginning to be appreciated in recent literature [6-9]. To study the significance of Ly6 gene family members, we have visualized one hundred thirty gene expression omnibus (GEO) dataset using Oncomine (Invitrogen) and Georgetown Database of Cancer (G-DOC). This analysis showed that four different members Ly6D, Ly6E, Ly6H or Ly6K have increased gene expressed in bladder, brain and CNS, breast, colorectal, cervical, ovarian, lung, head and neck, pancreatic and prostate cancer than their normal counter part tissues. Increased expression of Ly6D, Ly6E, Ly6H or Ly6K was observed in sub-set of cancer type. The increased expression of Ly6D, Ly6E, Ly6H and Ly6K was found to be associated with poor outcome in ovarian, colorectal, gastric, breast, lung, bladder or brain and CNS as observed by KM plotter and PROGgeneV2 platform. The remarkable findings of increased expression of Ly6 family members and its positive correlation with poor outcome on patient survival in multiple cancer type indicate that Ly6 family members Ly6D, Ly6E, Ly6K and Ly6H will be an important targets in clinical practice as marker of poor prognosis and for developing novel therapeutics in multiple cancer type. PMID:26862846

  3. Expression of the Ly-6 family proteins Lynx1 and Ly6H in the rat brain is compartmentalized, cell-type specific, and developmentally regulated.

    PubMed

    Thomsen, Morten Skøtt; Cinar, Betül; Jensen, Majbrit Myrup; Lyukmanova, Ekaterina N; Shulepko, Mikhail A; Tsetlin, Victor; Klein, Anders Bue; Mikkelsen, Jens D

    2014-11-01

    The Ly-6 superfamily of proteins, which affects diverse processes in the immune system, has attracted renewed attention due to the ability of some Ly-6 proteins to bind to and modulate the function of neuronal nicotinic acetylcholine receptors (nAChRs). However, there is a scarcity of knowledge regarding the distribution and developmental regulation of these proteins in the brain. We use protein cross-linking and synaptosomal fractions to demonstrate that the Ly-6 proteins Lynx1 and Ly6H are membrane-bound proteins in the brain, which are present on the cell surface and localize to synaptic compartments. We further estimate the amount of Lynx1 in the rat cortex using known amounts of a heterologously expressed soluble Lynx1 variant (ws-Lynx1) to be approximately 8.6 ng/μg total protein, which is in line with the concentrations of ws-Lynx1 required to affect nAChR function. In addition, we demonstrate that Lynx1 and Ly6H are expressed in cultured neurons, but not cultured micro- or astroglial cultures. In addition, Lynx1, but not Ly6H was detected in the CSF. Finally, we show that the Ly-6 proteins Lynx1, Lynx2, Ly6H, and PSCA, display distinct expression patterns during postnatal development in the rat frontal cortex and hippocampus at the mRNA and protein level, and that this is paralleled to some degree by the expression of the nAChR subunits α2, α4, α7 and β2. Our results demonstrate a developmental pattern, localization, and concentration of Ly-6 proteins in the brain, which support a role for these proteins in the modulation of signaling at synaptic membranes.

  4. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    NASA Astrophysics Data System (ADS)

    Ebrahimpour, Omid

    In this work, mullite-bonded porous silicon carbide (SiC) ceramics were prepared via a reaction bonding technique with the assistance of a sol-gel technique or in-situ polymerization as well as a combination of these techniques. In a typical procedure, SiC particles were first coated by alumina using calcined powder and alumina sol via a sol-gel technique followed by drying and passing through a screen. Subsequently, they were coated with the desired amount of polyethylene via an in-situ polymerization technique in a slurry phase reactor using a Ziegler-Natta catalyst. Afterward, the coated powders were dried again and passed through a screen before being pressed into a rectangular mold to make a green body. During the heating process, the polyethylene was burnt out to form pores at a temperature of about 500°C. Increasing the temperature above 800°C led to the partial oxidation of SiC particles to silica. At higher temperatures (above 1400°C) derived silica reacted with alumina to form mullite, which bonds SiC particles together. The porous SiC specimens were characterized with various techniques. The first part of the project was devoted to investigating the oxidation of SiC particles using a Thermogravimetric analysis (TGA) apparatus. The effects of particle size (micro and nano) and oxidation temperature (910°C--1010°C) as well as the initial mass of SiC particles in TGA on the oxidation behaviour of SiC powders were evaluated. To illustrate the oxidation rate of SiC in the packed bed state, a new kinetic model, which takes into account all of the diffusion steps (bulk, inter and intra particle diffusion) and surface oxidation rate, was proposed. Furthermore, the oxidation of SiC particles was analyzed by the X-ray Diffraction (XRD) technique. The effect of different alumina sources (calcined Al2O 3, alumina sol or a combination of the two) on the mechanical, physical, and crystalline structure of mullite-bonded porous SiC ceramics was studied in the

  5. Face-capping μ3-BO in B6(BO)7-: boron oxide analogue of B6H7- with rhombic 4c-2e bonds.

    PubMed

    Guo, Jin-Chang; Lu, Hai-Gang; Zhai, Hua-Jin; Li, Si-Dian

    2013-11-14

    Using the first-principle approaches, we predict a B6(BO)7(-) cluster with a face-capping μ(3)-BO, which is the boron oxide analogue of closo-B6H7(-) with a face-capping μ(3)-H. Detailed topological analysis of electron density clearly reveals the existence of three rhombic 4c-2e bonds around the B/H apex in both C3v B6(BO)7(-) and C3v B6H7(-), which possesses similar electron densities at their bond and ring critical points. The adaptive natural density partitioning (AdNDP) analysis provides a direct and visual picture of the B-B-B-B/H 4c-2e bonds for the first time. Adiabatic and vertical electron detachment energies of the concerned monoanions are calculated to facilitate their future photoelectron spectroscopy measurements and characterizations. The presence of the B6(BO)7(-) and B6H7(-) clusters extends the BO/H isolobal analogy to the whole μ(n)-BO/H series (n = 1, 2, and 3) and enriches the chemistry of boronyl. PMID:24147988

  6. Structural change induced by thermal annealing of red-light-emitting ZnSnF6 • 6H2O:Mn4+ hexahydrate phosphor

    NASA Astrophysics Data System (ADS)

    Hoshino, Ryosuke; Nakamura, Toshihiro; Adachi, Sadao

    2016-05-01

    Effects of thermal annealing on the red-emitting ZnSnF6 • 6H2O:Mn4+ hexahydrate phosphor properties were investigated using X-ray diffraction measurement (XRD), photoluminescence (PL) analysis, and Raman scattering spectroscopy. Thermal annealing was performed at T a = 50 to 400 °C in air for 1 h. Mn4+-related red emission wavelengths were redshifted about 5 nm after annealing at T a ≥ 200 °C with greatly decreased emission intensities. This change in PL spectral feature was attributed to the dehydration of the hexahydrate phosphor, supported by the XRD and Raman scattering results. The XRD and PL intensity analyses determined thermal decomposition energies of ˜0.3 eV from the ZnSnF6 • 6H2O hexahydrate to anhydrate and of ˜0.9 eV from the ZnSnF6 anhydrate to metallic fluorid/oxide (ZnF2/SnO2). A comparative discussion was given on the PL properties of two different Mn4+-activated phosphors, Ba-IV-F6:Mn4+ anhydrate and Zn-IV-F6 • 6H2O:Mn4+ hexahydrate phosphors with IV = Si, Ge, and Sn.

  7. Solvation-induced σ-complex structure formation in the gas phase: a revisit to the infrared spectroscopy of [C6H6-(CH3OH)2]+.

    PubMed

    Mizuse, Kenta; Suzuki, Yuta; Mikami, Naohiko; Fujii, Asuka

    2011-10-20

    Structures of the [C(6)H(6)-(CH(3)OH)(2)](+) cluster cation are investigated with infrared (IR) spectroscopy. While the noncovalent type structure has been confirmed for the n = 1 cluster of [C(6)H(6)-(CH(3)OH)(n)](+), only contradictory interpretations have been given for the spectra of n = 2, in which significant changes have been observed with the Ar tagging. In the present study, we revisit IR spectroscopy of the n = 2 cluster from the viewpoint of the σ-complex structure, which includes a covalent bond formation between the benzene and methanol moieties. The observed spectral range is extended to the lower-frequency region, and the spectrum is measured with and without Ar and N(2) tagging. A strongly hydrogen-bonded OH stretch band, which is characteristic to the σ-complex structure, is newly found with the tagging. The remarkable spectral changes with the tagging are interpreted by the competition between the σ-complex and noncovalent complex structures in the [C(6)H(6)-(CH(3)OH)(2)](+) system. This result shows that the microsolvation only with one methanol molecule can induce the σ-complex structure formation.

  8. Carbon p-electron induced magnetic ordering in Zn-implanted 6H-SiC: experimental observation and theoretical calculation

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Xu, Juping; Liu, Jiandang; Ye, Bangjiao

    2016-05-01

    We observed clear ferromagnetic ordering in 6H-SiC crystal bombarded with zinc ions, and presented a detailed investigation of magnetic properties in this sample. The magnetization of Zn-implanted 6H-SiC fell and rose with annealing temperature from 500 °C to 1100 °C. Meanwhile, amount of oxygen penetrated lattices and combined with Si-bonds after 1100 °C annealing. Using ab initio calculations based on density functional theory, we confirm that Zn ions play a role in the origin of ferromagnetism, while the localized moment is mainly comes from C2p electrons surrounding the foreign particle (which is Zn in this work). Silicon vacancies can provide localized moment about 2.0 μB/VSi and form stable ferromagnetic interaction at room temperature. Oxygen may facilitate this coupling and no need of VC-mediation any more. The calculations are consistent with experimental results. We concluded that the dangling C2p bonds are fundamental cause of magnetic ordering in whatever microstructures in 6H-SiC crystal. The type of foreign impurities is not crucial factor for the magnetic origin in such carbon-based materials.

  9. Microwave Absorption Properties of Ni-Foped SiC Powders in the 2-18 GHz Frequency Range

    NASA Astrophysics Data System (ADS)

    Jin, Hai-Bo; Li, Dan; Cao, Mao-Sheng; Dou, Yan-Kun; Chen, Tao; Wen, Bo; Simeon, Agathopoulos

    2011-03-01

    Ni-doped SiC powder with improved dielectric and microwave absorption properties was prepared by self-propagating high-temperature synthesis (SHS). The XRD analysis of the as-synthesized powders suggests that Ni is accommodated in the sites of Si in the lattice of SiC, which shrinks in the presence of Ni. The experimental results show an improvement in the dielectric properties of the Ni-doped SiC powder in the frequency range of 2-18 GHz. The bandwidth of the reflection loss below -10 dB is broadened from 3.04 (for pure SiC) to 4.56 GHz (for Ni-doped SiC), as well as the maximum reflection loss of produced powders from 13.34 to 22.57 dB, indicating that Ni-doped SiC could be used as an effective microwave absorption material.

  10. SiC Die Attach for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Drevin-Bazin, A.; Lacroix, F.; Barbot, J.-F.

    2013-11-01

    Eutectic solders AuIn19 and AuGe12 and nanosilver paste were investigated for SiC die attach in high-temperature (300°C) applications. The soldering or sintering conditions were optimized through die shear tests performed at room temperature. In particular, application of static pressure (3.5 MPa) during sintering resulted in greatly improved mechanical behavior of the nanosilver-based joint. Microstructural study of the eutectic solders showed formation of Au-rich grains in AuGe die attach and significant diffusion of Au and In through the Ni layer in AuIn19 die attach, which could lead to formation of intermetallic compounds. Die shear tests versus temperature showed that the behaviors of the studied die attaches are different; nevertheless they present suitable shear strengths required for high-temperature applications. The mechanical behavior of joints under various levels of thermal and mechanical stress was also studied. Creep experiments were carried out on the eutectic solders to describe the thermomechanical behavior of the complete module; only one creep mechanism was observed in the working range.

  11. Exciton-polariton state in nanocrystalline SiC films

    NASA Astrophysics Data System (ADS)

    Semenov, A. V.; Lopin, A. V.

    2016-05-01

    We studied the features of optical absorption in the films of nanocrystalline SiC (nc-SiC) obtained on the sapphire substrates by the method of direct ion deposition. The optical absorption spectra of the films with a thickness less than ~500 nm contain a maximum which position and intensity depend on the structure and thickness of the nc-SiC films. The most intense peak at 2.36 eV is observed in the nc-SiC film with predominant 3C-SiC polytype structure and a thickness of 392 nm. Proposed is a resonance absorption model based on excitation of exciton polaritons in a microcavity. In the latter, under the conditions of resonance, there occurs strong interaction between photon modes of light with λph=521 nm and exciton of the 3С polytype with an excitation energy of 2.36 eV that results in the formation of polariton. A mismatch of the frequencies of photon modes of the cavity and exciton explains the dependence of the maximum of the optical absorption on the film thickness.

  12. Development of Cu Reinforced SiC Particulate Composites

    NASA Astrophysics Data System (ADS)

    Singh, Harshpreet; Kumar, Lailesh; Nasimul Alam, Syed

    2015-02-01

    This paper presents the results of Cu-SiCp composites developed by powder metallurgy route and an attempt has been made to make a comparison between the composites developed by using unmilled Cu powder and milled Cu powder. SiC particles as reinforcement was blended with unmilled and as-milled Cu powderwith reinforcement contents of 10, 20, 30, 40 vol. % by powder metallurgy route. The mechanical properties of pure Cu and the composites developed were studied after sintering at 900°C for 1 h. Density of the sintered composites were found out based on the Archimedes' principle. X-ray diffraction of all the composites was done in order to determine the various phases in the composites. Scanning electron microscopy (SEM) and EDS (electron diffraction x-ray spectroscopy) was carried out for the microstructural analysis of the composites. Vickers microhardness tester was used to find out the hardness of the samples. Wear properties of the developed composites were also studied.

  13. Hydrogen-bond-directed assemblies of [La(18-crown-6)(H2O)4](BiCl6)·3H2O and [Nd(18-crown-6)(H2O)4](BiCl6)·3.5H2O regulated by different symmetries

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Yong; Li, Jian; Zeng, Ying; Wen, He-Rui; Du, Zi-Yi

    2016-12-01

    The reactions of La2O3 or Nd2O3 with BiCl3 and 18-crown-6 in the presence of excessive hydrochloric acid afforded two ion-pair compounds, namely [La(18-crown-6)(H2O)4](BiCl6)·3H2O (1) and [Nd(18-crown-6)(H2O)4](BiCl6)·3.5H2O (2). Although these two compounds contain similar building blocks, they exhibit two distinct hydrogen-bonded networks, which are mainly induced by the slightly different geometries of their large-sized cationic [Ln(18-crown-6)(H2O)4]3+ components.

  14. Matrix-grain-bridging contributions to the toughness of SiC composites with alumina-coated SiC platelets

    SciTech Connect

    Cao, J.J.; He, Y.; MoberlyChan, W.J.; De Jonghe, L.C. |

    1996-05-01

    Silicon carbide composites were fabricated through the incorporation of alumina-coated SiC platelets into a SiC matrix. Mechanical properties were evaluated in direct comparison with a commercial Hexoloy SiC. The fracture toughness of the composite, with a fine grained {beta}-SiC matrix, was twice that of the commercial material. The alumina-coating on the platelets provided a weak interface to promote crack deflection and platelet bridging, as well as easing densification of the composites. On the other hand, a three-fold increase in fracture toughness (9.1 MPa {radical}m) of an in situ toughened monolithic SiC was achieved by processing at higher temperatures, promoting the {beta}-to-{alpha} phase transformation and forming a microstructure containing high-aspect-ration plate-shaped grains. Efforts were made to combine the effects of coated-platelets reinforcement and in situ toughening in the matrix. Moderate high toughness (8 MPa {radical}m) was achieved by coupled toughening. The contribution of matrix-grain-bridging, however, was limited by the processing temperature at which the oxide coating was stable.

  15. Experimental Investigation of Mechanical and Thermal properties of sisal fibre reinforced composite and effect of sic filler material

    NASA Astrophysics Data System (ADS)

    Surya Teja, Malla; Ramana, M. V.; Sriramulu, D.; Rao, C. J.

    2016-09-01

    With a view of exploring the potential use of natural recourses, we made an attempt to fabricate sisal fibre polymer composites by hand lay-up method. Natural fiber composites are renewable, cheap and biodegradable. Their easy availability, lower density, higher specific properties, lower cost, satisfactory mechanical and thermal properties, non-corrosive nature, makes them an attractive ecological alternative to glass, carbon or other man-made synthetic fibers. In this work, the effect of SiC on mechanical and thermal properties of natural sisal fiber composites are investigated. The composite has been made with and without SiC incorporating natural sisal fiber with polyester as bonding material. The experimental outcomes exhibited that the tensile strength of composite with 10%SiC 2.53 times greater than that of composite without SiC. The impact strength of composite with 10% SiC is 1.73 times greater than that of composite without SiC plain polyester. Thermal properties studied include thermal conductivity, specific heat capacity, thermal diffusivity, thermal degradation and stability. Three different samples with 0%, 5%, 10% SiC powder are considered. With the addition of SiC filler powder, thermal conductivity increases, specific heat capacity gradually increases then decreases, thermal diffusivity increases and thermal stability improves with Sic powder.

  16. The streptococcal inhibitor of complement (SIC) protects Streptococcus pyogenes from bacteriocin-like inhibitory substance (BLIS) from Streptococcus salivarius.

    PubMed

    Minami, Masaaki; Ohmori, Daisuke; Tatsuno, Ichiro; Isaka, Masanori; Kawamura, Yoshiaki; Ohta, Michio; Hasegawa, Tadao

    2009-09-01

    Streptococcus salivarius inhibits the growth of Streptococcus pyogenes in vitro. Streptococcus pyogenes has various virulence factors, including the streptococcus inhibitor of complement (SIC). Although SIC inhibits the activity of the peptides LL-37 and NAP1, the relationship between SIC and the bacteriocin-like inhibitory substance (BLIS) has not been elucidated. Here, we evaluated whether S. salivarius BLIS affects S. pyogenes SIC. We created three deltasic mutant strains from three S. pyogenes strains and performed deferred antagonism assays. The test strains were BLIS-positive S. salivarius JCM5707 and BLIS-negative S. salivarius NCU12. Deferred antagonism assays with JCM5707 showed that the inhibitory zones in the three deltasic mutant strains were wider than those in the three wild-type strains. Streptococcus pyogenes was cultured in BLIS-containing broth and the change in SIC in the supernatant was assessed by two-dimensional gel electrophoresis (2-DE). The 2-DE analysis of S. pyogenes exoproteins with the JCM5707 supernatant showed reduced SIC compared with those without the JCM5707 supernatant. Changes in sic mRNA levels affected by S. salivarius BLIS were evaluated by a reverse transcriptase-PCR. The sic mRNA level was affected more by the BLIS-positive S. salivarius than by the BLIS-negative strain. Our result indicates that SIC plays a role in the inhibition of S. salivarius BLIS. PMID:19594623

  17. SiC JFET Transistor Circuit Model for Extreme Temperature Range

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2008-01-01

    A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.

  18. Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2

    SciTech Connect

    Jiang, Weilin; Henager, Charles H.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R.; Zhang, Chonghong; Gou, Jie

    2015-05-16

    MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti3SiC2/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including x-ray diffraction, electron backscatter diffraction, energy dispersive x-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti3SiC2 within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti3SiC2 was also observed. Cs out-diffusion and release from Ti3SiC2 occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures.

  19. Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2

    NASA Astrophysics Data System (ADS)

    Jiang, Weilin; Henager, Charles H.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R.; Zhang, Chonghong; Gou, Jie

    2015-07-01

    MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti3SiC2/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including X-ray diffraction, electron backscatter diffraction, energy dispersive X-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti3SiC2 within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti3SiC2 was also observed. Cs out-diffusion and release from Ti3SiC2 occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures.

  20. Effect of SiC particles on microarc oxidation process of magnesium matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Y. Q.; Wang, X. J.; Gong, W. X.; Wu, K.; Wang, F. H.

    2013-10-01

    SiC particles are an important reinforced phase in metal matrix composites. Their effect on the microarc oxidation (MAO, also named plasma electrolytic oxidation-PEO) process of SiCp/AZ91 Mg matrix composites (MMCs) was studied and the mechanism was revealed. The corrosion resistance of MAO coating was also investigated. Voltage-time curves during MAO were recorded to study the barrier film status on the composites. Scanning electron microscopy was used to characterize the existing state of SiC particles in MAO. Energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the coating. Corrosion resistance of the bare and coated composites was evaluated by potentiodynamic polarization curves in 3.5% NaCl solution. Results showed that the integrality and electrical insulation properties of the barrier film on the composites were destroyed by the SiC particles. Consequently, the sparking discharge at the early stage of MAO was inhibited, and the growth efficiency of the MAO coating decreased with the increase in the volume fraction of SiC particles. SiC particles did not exist stably during MAO; they were oxidized or partially oxidized into SiO2 before the overall sparking discharge. The transformation from semi-conductive SiC to insulating SiO2 by oxidation restrained the current leakage at the original SiC positions and then promoted sparking discharge and coating growth. The corrosion current density of SiCp/AZ91 MMCs was reduced by two orders of magnitude after MAO treatment. However, the corrosion resistances of the coated composites were lower than that of the coated alloy.

  1. Wear Behaviour of Al-6061/SiC Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok Kumar; Srivastava, Rajesh Kumar

    2016-06-01

    Aluminium Al-6061 base composites, reinforced with SiC particles having mesh size of 150 and 600, which is fabricated by stir casting method and their wear resistance and coefficient of friction has been investigated in the present study as a function of applied load and weight fraction of SiC varying from 5, 10, 15, 20, 25, 30, 35 and 40 %. The dry sliding wear properties of composites were investigated by using Pin-on-disk testing machine at sliding velocity of 2 m/s and sliding distance of 2000 m over a various loads of 10, 20 and 30 N. The result shows that the reinforcement of the metal matrix with SiC particulates up to weight percentage of 35 % reduces the wear rate. The result also show that the wear of the test specimens increases with the increasing load and sliding distance. The coefficient of friction slightly decreases with increasing weight percentage of reinforcements. The wear surfaces are examined by optical microscopy which shows that the large grooved regions and cavities with ceramic particles are found on the worn surface of the composite alloy. This indicates an abrasive wear mechanism, which is essentially a result of hard ceramic particles exposed on the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight fraction of SiC and average coefficient of friction decreases linearly with increasing applied load, weight fraction of SiC and mesh size of SiC. The best result has been obtained at 35 % weight fraction and 600 mesh size of SiC.

  2. [Cp(Ar)Ni{Ga(nacnac)}]: An Open-Shell Nickel(I) Complex Supported by a Gallium(I) Carbenoid (Cp(Ar) = C5(C6H4-4-Et)5, nacnac = HC[C(Me)N-(C6H3)-2,6-iPr2]2).

    PubMed

    Chakraborty, Uttam; Mühldorf, Bernd; van Velzen, Niels J C; de Bruin, Bas; Harder, Sjoerd; Wolf, Robert

    2016-03-21

    The 17 valence electron (VE) open-shell nickel gallanediyl complex [Cp(Ar)Ni{Ga(nacnac)}] (3, Ar = C5(C6H4-4-Et)5, nacnac = HC[C(Me)N(C6H3-2,6-iPr2)]2), having an unsupported Ni-Ga bond, was synthesized from [Cp(Ar)Ni(μ-Br)]2 (1) by reducing the adduct [Cp(Ar)Ni(μ-Br){Ga(nacnac)}] (2) or, alternatively, trapping the "Cp(Ar)Ni(I)" synthon with Ga(nacnac); spectroscopic and DFT studies showed that the single unpaired electron in 3 resides mainly at the Ni center.

  3. Oxidation of SiC Fiber-Reinforced SiC Matrix Composites with a BN Interphase

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth; Boyd, Meredith K.

    2010-01-01

    SiC-fiber reinforced SiC matrix composites with a BN interphase were oxidized in reduced oxygen partial pressures of oxygen to simulate the environment for hypersonic vehicle leading edge applications. The constituent fibers as well as composite coupons were oxidized in oxygen partial pressures ranging from 1000 ppm O2 to 5% O2 balance argon. Exposure temperatures ranged from 816 C to 1353 C (1500 F to 2450 F). The oxidation kinetics of the coated fibers were monitored by thermogravimetric analysis (TGA). An initial rapid transient weight gain was observed followed by parabolic kinetics. Possible mechanisms for the transient oxidation are discussed. One edge of the composite coupon seal coat was ground off to simulate damage to the composite which allowed oxygen ingress to the interior of the composite. Oxidation kinetics of the coupons were characterized by scanning electron microscopy since the weight changes were minimal. It was found that sealing of the coupon edge by silica formation occurred. Differences in the amount and morphology of the sealing silica as a function of time, temperature and oxygen partial pressure are discussed. Implications for use of these materials for hypersonic vehicle leading edge materials are summarized.

  4. High-Temperature SiC Power Module with Integrated SiC Gate Drivers for Future High-Density Power Electronics Applications

    SciTech Connect

    Whitaker, Mr. Bret; Cole, Mr. Zach; Passmore, Mr. Brandon; Martin, Daniel; Mcnutt, Tyler; Lostetter, Dr. Alex; Ericson, Milton Nance; Frank, Steven Shane; Britton Jr, Charles L; Marlino, Laura D; Mantooth, Alan; Francis, Dr. Matt; Lamichhane, Ranjan; Shepherd, Dr. Paul; Glover, Dr. Michael

    2014-01-01

    This paper presents the testing results of an all-silicon carbide (SiC) intelligent power module (IPM) for use in future high-density power electronics applications. The IPM has high-temperature capability and contains both SiC power devices and SiC gate driver integrated circuits (ICs). The high-temperature capability of the SiC gate driver ICs allows for them to be packaged into the power module and be located physically close to the power devices. This provides a distinct advantage by reducing the gate driver loop inductance, which promotes high frequency operation, while also reducing the overall volume of the system through higher levels of integration. The power module was tested in a bridgeless-boost converter to showcase the performance of the module in a system level application. The converter was initially operated with a switching frequency of 200 kHz with a peak output power of approximately 5 kW. The efficiency of the converter was then evaluated experimentally and optimized by increasing the overdrive voltage on the SiC gate driver ICs. Overall a peak efficiency of 97.7% was measured at 3.0 kW output. The converter s switching frequency was then increased to 500 kHz to prove the high frequency capability of the power module was then pushed to its limits and operated at a switching frequency of 500 kHz. With no further optimization of components, the converter was able to operate under these conditions and showed a peak efficiency of 95.0% at an output power of 2.1 kW.

  5. Comparison of the reactivity of 2-Li-C6H4CH2NMe2 with MCl4 (M=Th, U): isolation of a thorium aryl complex or a uranium benzyne complex.

    PubMed

    Seaman, Lani A; Pedrick, Elizabeth A; Tsuchiya, Takashi; Wu, Guang; Jakubikova, Elena; Hayton, Trevor W

    2013-09-27

    Why do U react like that? Reaction of 2-Li-C6H4CH2NMe2 with [MCl4(DME)n] (M=Th, n=2; M=U, n=0) results in the formation of a thorium aryl complex, [Th(2-C6H4CH2NMe2)4] or a uranium benzyne complex, [Li][U(2,3-C6H3CH2NMe2)(2-C6H4CH2NMe2)3]. A DFT analysis suggests that the formation of a benzyne complex with U but not with Th is a kinetic and not thermodynamic effect.

  6. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film

    NASA Astrophysics Data System (ADS)

    Li, M.; Cheng, Y.; Zheng, Y. F.; Zhang, X.; Xi, T. F.; Wei, S. C.

    2012-01-01

    Amorphous SiC film has been successfully fabricated on the surface of WE43 magnesium alloy by plasma enhanced chemical vapour deposition (PECVD) technique. The microstructure and elemental composition were analyzed by transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD) and X-ray photoelectron spectroscopy (XPS), respectively. The immersion test indicated that SiC film could efficiently slow down the degradation rate of WE43 alloy in simulated body fluid (SBF) at 37 ± 1 °C. The indirect toxicity experiment was conducted using L929 cell line and the results showed that the extraction medium of SiC coated WE43 alloys exhibited no inhibitory effect on L929 cell growth. The in vitro hemocompatibility of the samples was investigated by hemolysis test and blood platelets adhesion test, and it was found that the hemolysis rate of the coated WE43 alloy decreased greatly, and the platelets attached on the SiC film were slightly activated with a round shape. It could be concluded that SiC film prepared by PECVD made WE43 alloy more appropriate to biomedical application.

  7. Creep deformation of grain boundary in a highly crystalline SiC fibre.

    PubMed

    Shibayama, Tamaki; Yoshida, Yutaka; Yano, Yasuhide; Takahashi, Heishichiro

    2003-01-01

    Silicon carbide (SiC) matrix composites reinforced by SiC fibres (SiC/SiC composites) are currently being considered as alternative materials in high Ni alloys for high-temperature applications, such as aerospace components, gas-turbine energy-conversion systems and nuclear fusion reactors, because of their high specific strength and fracture toughness at elevated temperatures compared with monolithic SiC ceramics. It is important to evaluate the creep properties of SiC fibres under tensile loading in order to determine their usefulness as structural components. However, it would be hard to evaluate creep properties by monoaxial tensile properties when we have little knowledge on the microstructure of crept specimens, especially at the grain boundary. Recently, a simple fibre bend stress relaxation (BSR) test was introduced by Morscher and DiCarlo to address this problem. Interpretation of the fracture mechanism at the grain boundary is also essential to allow improvement of the mechanical properties. In this paper, effects of stress applied by BSR test on microstructural evolution in advanced SiC fibres, such as Tyranno-SA including small amounts of Al, are described and discussed along with the results of microstructure analysis on an atomic scale by using advanced microscopy.

  8. Fabrication and properties of ultraviolet photo-detectors based on SiC nanowires

    NASA Astrophysics Data System (ADS)

    Peng, Gang; Zhou, YingQiu; He, YanLan; Yu, XiaoYan; Li, GongYi

    2012-07-01

    A new type of ultraviolet photo-detectors (UVPDs) based on a bundle of highly aligned SiC nanowires was fabricated and the photo-electric properties of the UVPDs including I-V characteristics and time response were studied in this work. SiC nanowires were prepared by pyrolysis of a polymer precursor with ferrocene as the catalyst by a CVD route. The diameters of SiC nanowires varied from 100 to 200 nm while they were some centimeters long and the SiC nanowires were with zinc blended cubic form ( β-SiC) tested by X-ray diffraction. A bundle of nanowires was fixed onto two legs' base by conductive silver paste to form the UVPDs. The electrical measurement of the device showed a significant increase of current when the device was exposed to 254 nm UV light, and the rising time of the device is very short, but the falling time is relatively long. Our results show that the UVPDs based on SiC nanowires have excellent electrical and optical properties which can be potentially applied.

  9. Grain boundary diffusion of Ag through polycrystalline SiC in TRISO fuel particles

    NASA Astrophysics Data System (ADS)

    Deng, Jie; Ko, Hyunseok; Demkowicz, Paul; Morgan, Dane; Szlufarska, Izabela

    2015-12-01

    The effective diffusivity and release fraction of Ag in polycrystalline SiC are evaluated using a kinetic Monte Carlo model. The effects of various grain boundary network properties on the transport of Ag across the SiC layer have been examined, including fraction of grain boundary type, spread in grain boundary diffusivities and distribution of grain boundary types. It is shown that the effective diffusivity and release fraction of Ag can exhibit a large variability due to changes in the GB structure of SiC, and this variability is almost independent of temperature fluctuation. The present results suggest that the variation in properties of grain boundary networks in SiC may contribute to the spread in the Ag diffusivity and release fraction measured in TRISO particles. It is also found that the grain boundary diffusion alone may be insufficient to account for the Ag diffusivities and release fractions measured in integral release experiments. Additional factors such as irradiation and temperature distribution may also play an important role in Ag transport across the SiC layer.

  10. Silicon Carbide (SiC) MOSFET-based Full-Bridge for Fusion Science Applications

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Picard, Julian; Hashim, Akel

    2014-10-01

    Switching power amplifiers (SPAs) have a wide variety of applications within the fusion science community, including feedback and control systems for dynamic plasma stabilization in tokamaks, inductive and arc plasma sources, Radio Frequency (RF) helicity and flux injection, RF plasma heating and current drive schemes, ion beam generation, and RF pre-ionizer systems. SiC MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. Eagle Harbor Technologies (EHT) is designing, constructing, and testing a SiC MOSFET-based full-bridge SPA. EHT will leverage the proprietary gate drive technology previously developed with the support of a DOE SBIR, which will enable fast, efficient switching in a small form factor. The primary goal is to develop a SiC MOSFET-based SPA for fusion science applications. Work supported in part by the DOE under Contract Number DE-SC0011907.

  11. Anisotropic mechanical properties of hexagonal SiC sheet: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yu, Ming; Liu, Emily; Zhang, Congyan

    2015-03-01

    The anisotropic mechanical properties of hexagonal SiC sheet have been studied using an efficient quantum mechanics molecular dynamics scheme based on a robust semi-empirical Hamiltonian (refereed as SCED-LCAO) [PRB 74, 15540; PHYSE 42, 1]. It was found that the SiC sheet could sustain the heavy load up to about 20 %. In particular, it was found that the SiC sheet also shows large difference in the strain direction. It will quickly crack after 20 % of strain in armchair the direction, but it will be slowly destroyed after 30% in the zigzag direction, indicating the anisotropic nature of the mechanical properties of the SiC sheet. The nominal and 2D membrane stresses will be analyzed, from where we will obtain the 2D Young's modulus at infinitesimal strain and the third-order (effective nonlinear) elastic modulus for the SiC sheet. The detail results and discussions will be reported in the presentation.

  12. CVD of SiC and AlN using cyclic organometallic precursors

    NASA Technical Reports Server (NTRS)

    Interrante, L. V.; Larkin, D. J.; Amato, C.

    1992-01-01

    The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.

  13. High-fluence Si-implanted diamond: Optimum implantation temperature for SiC formation

    SciTech Connect

    Weishart, H.; Eichhorn, F.; Heera, V.; Pecz, B.; Barna, A.; Skorupa, W.

    2005-08-15

    In this paper the authors investigate the effect of implantation temperature on the structural properties of diamond implanted with high fluences of Si between 5.3x10{sup 17} Si cm{sup -2} and 1x10{sup 18} Si cm{sup -2}. In order to reduce radiation-induced damage and to enhance SiC formation the implantations were performed at elevated temperatures in the range from 900 to 1200 deg. C. Subsequently, all samples were annealed for 10 min at 1500 deg. C in a rf-heated furnace. X-ray diffraction revealed the formation of cubic SiC nanocrystallites in a buried layer inside the implanted diamond. The implantation-induced damage was assessed by analyzing graphitization of the surface-near layer using Raman spectroscopy. With increasing Si fluence the implantation-induced damage rises and the nearly perfect alignment of the formed SiC crystallites within the host diamond lattice deteriorates. However, raising the implantation temperature from 900 to 1000 deg. C reduces the damage in the diamond and increases the amount, size, and epitaxial alignment of the crystalline SiC precipitates. Further increase of the implantation temperature gives no improvement in the quality of the SiC-rich layer. Instead, the damaged diamond converts into graphite and the formation of SiC crystallites is obstructed.

  14. Microstructures of diffusion bonded SiC ceramics using Ti and Mo interlayers

    NASA Astrophysics Data System (ADS)

    Jung, Yang-Il; Kim, Sun-Han; Kim, Hyun-Gil; Park, Jeong-Yong; Kim, Weon-Ju

    2013-10-01

    SiC plates were diffusion bonded using metallic interlayers of Ti and Mo foils. For the joining, a uniaxial pressure of ∼7 MPa was applied at 1400 °C for 1 h in a vacuum. The interfacial microstructures along with their atomic compositions of the SiC/SiC joints were analyzed. For the Ti interlayer, Ti was converted into a Ti3SiC2 phase owing to the diffusion of silicon and carbon from the SiC part. A crystallographic orientation relationship was found between the SiC and Ti3SiC2 grains. At the middle of the Ti interlayer, a TiSi2 phase also existed, forming a dual-phase region. For the Mo interlayer, the diffusion of silicon into Mo induced the formation of the Mo5Si3C phase at the SiC/Mo interface. An unreacted metallic phase was still observed in the middle of the Mo insert. The shear strengths of the joints were 67 MPa and 76 MPa for the Ti and Mo interlayers, respectively.

  15. A new approach for fabrications of SiC based photodetectors.

    PubMed

    Aldalbahi, Ali; Li, Eric; Rivera, Manuel; Velazquez, Rafael; Altalhi, Tariq; Peng, Xiaoyan; Feng, Peter X

    2016-01-01

    We report on a new approach to quickly synthesize high-quality single crystalline wide band gap silicon carbide (SiC) films for development of high-performance deep ultraviolet (UV) photodetectors. The fabricated SiC based UV photodetectors exhibited high response while maintaining cost-effectiveness and size miniaturization. Focus of the experiments was on studies of electrical and electronic properties, as well as responsivity, response and recovery times, and repeatability of the deep UV photodetectors. Raman scattering spectroscopy and scanning electron microscope (SEM) were used to characterize the SiC materials. Analyses of the SEM data indicated that highly flat SiC thin films have been obtained. Based on the synthesized SiC, deep UV detectors are designed, fabricated, and tested with various UV wavelength lights at different radiation intensities. Temperature effect and bias effect on the photocurrent strength and signal-to-noise ratio, humidity effect on the response time and recovery time of the fabricated detectors have been carefully characterized and discussed. The detectors appear to have a very stable baseline and repeatability. The obtained responsivity is more than 40% higher compared to commercial detectors. The good performance of the photodetectors at operating temperature up to 300 °C remains nearly unchanged. PMID:26988399

  16. A new approach for fabrications of SiC based photodetectors

    PubMed Central

    Aldalbahi, Ali; Li, Eric; Rivera, Manuel; Velazquez, Rafael; Altalhi, Tariq; Peng, Xiaoyan; Feng, Peter X.

    2016-01-01

    We report on a new approach to quickly synthesize high-quality single crystalline wide band gap silicon carbide (SiC) films for development of high-performance deep ultraviolet (UV) photodetectors. The fabricated SiC based UV photodetectors exhibited high response while maintaining cost-effectiveness and size miniaturization. Focus of the experiments was on studies of electrical and electronic properties, as well as responsivity, response and recovery times, and repeatability of the deep UV photodetectors. Raman scattering spectroscopy and scanning electron microscope (SEM) were used to characterize the SiC materials. Analyses of the SEM data indicated that highly flat SiC thin films have been obtained. Based on the synthesized SiC, deep UV detectors are designed, fabricated, and tested with various UV wavelength lights at different radiation intensities. Temperature effect and bias effect on the photocurrent strength and signal-to-noise ratio, humidity effect on the response time and recovery time of the fabricated detectors have been carefully characterized and discussed. The detectors appear to have a very stable baseline and repeatability. The obtained responsivity is more than 40% higher compared to commercial detectors. The good performance of the photodetectors at operating temperature up to 300 °C remains nearly unchanged. PMID:26988399

  17. Design Study of Small Lead-Cooled Fast Reactors Using SiC Cladding and Structure

    SciTech Connect

    Abu Khalid Rivai; Minoru Takahashi

    2006-07-01

    Effects of SiC cladding and structure on neutronics of reactor core for small lead-cooled fast reactors have been investigated analytically. The fuel of this reactor was uranium nitride with {sup 235}U enrichment of 11% in inner core and 13% in outer core. The reactors were designed by optimizing the use of natural uranium blanket and nitride fuel to prolong the fuel cycle. The fuels can be used without re-shuffling for 15 years. The coolant of this reactor was lead. A calculation was also conducted for steel cladding and structure type as comparison with SiC cladding and structure type. The results of calculation indicated that the neutron energy spectrum of the core using SiC was slightly softer than that using steel. The SiC type reactor was designed to have criticality at the beginning of cycle (BOC), although the steel type reactor could not have critical condition with the same size and geometry. In other words, the SiC type core can be designed smaller than the steel type core. The result of the design analysis showed that neutron flux distributions and power distribution was made flatter because the outer core enrichment was higher than inner core. The peak power densities could remain constant over the reactor operation. The consumption capability of uranium was quite high, i.e. 13% for 125 MWt reactor and 25% for 375 MWt reactor at EOC. (authors)

  18. Development of multi-functional NITE-porous SiC for ceramic insulators

    NASA Astrophysics Data System (ADS)

    Park, Yi-Hyun; Hinoki, Tatsuya; Kohyama, Akira

    2009-04-01

    Porous silicon carbide (SiC) ceramics are being considered as functional materials for advanced energy systems due to their low thermal and electrical conductivity, low thermal-expansion coefficient, good thermal-shock resistance, and excellent mechanical and chemical stability at elevated temperature. However, conventional processing routes for SiC are complicated and conventional porous SiC shows poor mechanical and chemical stability at high temperature. Therefore, it is desirable to develop a simple fabrication method. In this study, porous SiC ceramic have been fabricated based on the NITE process, a recently developed processing technique for high performance SiC f/SiC composites. Ceramic porosity was calculated from relative and theoretical density, which was obtained by the rule of mixture. The port shape and size distribution were examined by optical microscopy and scanning electron microscopy. Mechanic properties were evaluated using three-point bend and tensile testing. Thermal conductivity was measured by the laser flash method from room temperature to 900 °C.

  19. Effect of a metal electrode on the radiation tolerance of a SiC neutron detector

    NASA Astrophysics Data System (ADS)

    Park, Junesic; Shin, Hee-Sung; Kim, Ho-Dong; Kim, Han Soo; Park, Se Hwan; Lee, Cheol Ho; Kim, Yong Kyun

    2012-08-01

    The Korea Atomic Energy Research Institute (KAERI) has developed a silicon carbide (SiC) diode as a neutron detector that can be used in harsh environments such as nuclear reactor cores and spent fuel. The radiation tolerance of the SiC detector was studied in the present work. Especially, the effect of a metal electrode on the radiation tolerance of the SiC detector was studied. Four different types of SiC detectors were fabricated, and the operation properties of the detectors were measured and compared before and after neutron irradiations of 2.16 × 1015 n/cm2 and 5.40 × 1017 n/cm2. From the comparison, the detector with a Ti/Au electrode structure showed the highest radiation tolerance among detectors. A detector assembly was fabricated using two types of SiC p-i-n diode detectors: one containing 6LiF and the other without it. Signals from the detectors were measured in the current mode to minimize the noise of the detector. Signal currents from detectors were measured for neutron fluxes ranging from 5.54 × 106 n/cm2 s to 2.86 × 108 n/cm2 s and gamma doses up to 100 Gy/h.

  20. Pre-Finishing of SiC for Optical Applications

    NASA Technical Reports Server (NTRS)

    Rozzi, Jay; Clavier, Odile; Gagne, John

    2011-01-01

    13 Manufacturing & Prototyping A method is based on two unique processing steps that are both based on deterministic machining processes using a single-point diamond turning (SPDT) machine. In the first step, a high-MRR (material removal rate) process is used to machine the part within several microns of the final geometry. In the second step, a low-MRR process is used to machine the part to near optical quality using a novel ductile regime machining (DRM) process. DRM is a deterministic machining process associated with conditions under high hydrostatic pressures and very small depths of cut. Under such conditions, using high negative-rake angle cutting tools, the high-pressure region near the tool corresponds to a plastic zone, where even a brittle material will behave in a ductile manner. In the high-MRR processing step, the objective is to remove material with a sufficiently high rate such that the process is economical, without inducing large-scale subsurface damage. A laser-assisted machining approach was evaluated whereby a CO2 laser was focused in advance of the cutting tool. While CVD (chemical vapor deposition) SiC was successfully machined with this approach, the cutting forces were substantially higher than cuts at room temperature under the same machining conditions. During the experiments, the expansion of the part and the tool due to the heating was carefully accounted for. The higher cutting forces are most likely due to a small reduction in the shear strength of the material compared with a larger increase in friction forces due to the thermal softening effect. The key advantage is that the hybrid machine approach has the potential to achieve optical quality without the need for a separate optical finishing step. Also, this method is scalable, so one can easily progress from machining 50-mm-diameter samples to the 250-mm-diameter mirror that NASA desires.

  1. C/sic Life Prediction for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Verrilli, Michael J.; Opila, Elizabeth J.; Halbig, Michael C.; Calomino, Anthony M.; Thomas, David J.

    2002-01-01

    Accurate life prediction is critical to successful use of ceramic matrix composites (CMC). The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many reusable and single mission launch vehicle propulsion and airframe applications. This paper describes an approach and process made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation of C/SiC. Issues such as oxidation, steam and hydrogen effects on material behavior are discussed. Preliminary tests indicate that steam will aggressively remove SiC seal coat and matrix in line with past experience. The kinetics of water vapor reaction with carbon fibers is negligible at 600 C, but comparable to air attack at 1200 C. The mitigating effect of steam observed in fiber oxidation studies has also been observed in stress rupture tests. Detailed microscopy of oxidized specimens is being carried out to develop the oxidation model. Carbon oxidation kinetics are reaction controlled at intermediate temperatures and diffusion controlled at high temperatures (approximately 1000 C). Activation energies for T-300 and interface pyrolytic carbon were determined as key inputs to the oxidation model. Crack opening as a function of temperature and stress was calculated. Mechanical property tests to develop and verify the probabilistic life model are very encouraging except for residual strength prediction. Gage width is a key variable governing edge oxidation of seal coated specimens. Future efforts will include architectural effects, enhanced coatings, biaxial tests, and LCF. Modeling will need to account for combined effects.

  2. C/SIC Life Prediction for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Verrilli, Michael J.; Opula, Elizabeth J.; Halbig, Michael C.; Calomino, Anthony M.; Thomas, David J.

    2002-01-01

    Accurate life prediction is critical to successful use of ceramic matrix composites (CMC). The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many reusable and single mission launch vehicle propulsion and airframe applications. This paper describes an approach and progress made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation of C/SiC. Issues such as oxidation, steam and hydrogen effects on material behavior are discussed. Preliminary tests indicate that stream will aggressively remove SiC seal coat and matrix in line with past experience. The kinetics of water vapor reaction with carbon fibers is negligible at 600 C, but comparable to air attack at 1200 C. The mitigating effect of steam observed in fiber oxidation studies has also been observed in stress rupture tests. Detailed microscopy of oxidized specimens is being carried out to develop the oxidation model. Carbon oxidation kinetics are reaction controlled at intermediate temperatures and diffusion controlled at high temperatures (approx. 1000 C). Activation energies for T-300 and interface pyrolytic carbon were determined as key inputs to the oxidation model. Crack opening as a function of temperature and stress was calculated. Mechanical property tests to develop and verify the probabilistic life model are very encouraging except for residual strength prediction. Gage width is a key variable governing edge oxidation of seal coated specimens. Future efforts will include architectural effects, enhanced coatings, biaxial tests, and LCF. Modeling will need to account for combined effects.

  3. Monitoring rFVIIa 90 μg kg⁻¹ dosing in haemophiliacs: comparing laboratory response using various whole blood assays over 6 h.

    PubMed

    Brophy, D F; Martin, E J; Christian Barrett, J; Nolte, M E; Kuhn, J G; Gerk, P M; Carr, M E; Pelzer, H; Agersø, H; Ezban, M; Hedner, U

    2011-09-01

    Recombinant FVIIa is a haemostatic agent administered to patients with severe FVIII or FIX deficiency with inhibitors. Although rFVIIa is effective at stopping bleeding, a reliable assay to monitor its effect is lacking. To characterize the pharmacokinetics and global coagulation effects of rFVIIa for 6 h following a IV dose of 90 μg kg⁻¹. Ten non-bleeding subjects with severe FVIII or FIX deficiency were infused with a single-dose of rFVIIa 90 μg k⁻¹ body weight and blood was collected before and at 0.5, 1, 2, 4 and 6 h postdose. Global haemostasis was characterized throughout the study utilizing whole blood analyses (Hemodyne HAS, TEG, ROTEM). The clearance and half-life of factor FVII:C was estimated as 39.0 ± 8.8 mL h⁻¹ kg⁻¹ and 2.1 ± 0.2 h respectively. There was good inter-assay agreement with respect to clot initiation parameters (R, CT and FOT) and these parameters all fell to a mean of approximately 9 min following rFVIIa dosing. The platelet contractile force (PCF) and clot elastic modulus (CEM) were positively correlated to FVII:C (P < 0.0001), and these parameters were dynamic throughout the 6-h period. The MA and MCF did not correlate to FVII:C nor did they significantly change during the study. Prothrombin F1 + 2 significantly increased following rFVIIa dosing (P < 0.001), but remained steady throughout the study. There was no change in D-dimer concentrations over time. The FOT, R and CT characterized clot initiation following rFVIIa dosing. The PCF and CEM were correlated to FVII:C and characterized the dynamics of platelet function and clot strength over the rFVIIa dosing interval. The clinical significance of these findings needs additional study.

  4. Surface and electronic structure of 6H-SiC(0001)-(3 × 3) surfaces and ultrathin Ag films on Si(111) and Si(001)

    NASA Astrophysics Data System (ADS)

    Gasparov, V. A.

    2011-10-01

    Surface topographic (LEED, STM) and spectroscopic (ARUPS, XPS, STS) studies have been performed on Si-terminated 6H-SiC(0001)-(3 × 3) surfaces and Ag superstructures and ultrathin films on Si(001) and Si(111) surfaces, using a scanning tunneling microscope (STM) in ultrahigh vacuum. Our results confirm that 2D epitaxial metal growth is favored on Si(001) at low temperatures and a solid, two-domain Ag(111) film has been achieved at coverages as low as 10 ML. The films reveal a morphology with 3-dimensional features and with a well defined honeycomb structure in between. An atomically flat Si(111)/Ag -(√3 ×√3 )R30∘ surface has been modified by use of a scanning tunneling microscope (STM) in ultrahigh vacuum (UHV). High quality 6H-SiC(0001)-(3 × 3) and Si(111)/-Ag(√3 ×√3 )R30∘ upper structures have been prepared and studied by means of ARUPS, XPS and LEED. The local density of states proportional to the spectrum of normalized differential conductivity (dI/dV)/(I/V) vs V reveals distinct bands of empty (-0.6 eV) and filled (0.65 eV) sites separated by 1.2 eV, for both areas. The results support the use of a Mott-Hubbard-type model for calculating the density of states of 6H-SiC(0001)-(3 × 3) surfaces with a Hubbard gap of 1 eV.

  5. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1111, LB4823_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1111, LB4823_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  6. Vapor-Liquid Equilibrium in the Mixture 1-Chlorobutane C4H9Cl + C6H10O Cyclohexanone (EVLM1111, LB5637_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-Liquid Equilibrium in the Mixture 1-Chlorobutane C4H9Cl + C6H10O Cyclohexanone (EVLM1111, LB5637_E)' providing data from direct measurement of pressure at variable mole fraction in liquid phase and constant temperature.

  7. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H14 Methylcyclohexane (VMSD1112, LB3138_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H14 Methylcyclohexane (VMSD1112, LB3138_V)' providing data by calculation of mass density in the single-phase region(s) from low-pressure dilatometric measurements of the molar excess volume at variable mole fraction and constant temperature.

  8. Volumetric Properties of the Mixture Oxolane C4H8O + C6H10O Cyclohexanone (VMSD1111, LB3912_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Oxolane C4H8O + C6H10O Cyclohexanone (VMSD1111, LB3912_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  9. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1111, LB4822_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1111, LB4822_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  10. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1212, LB4827_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1212, LB4827_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  11. Heat of Mixing and Solution of 1,1,2-Trichloroethane C2H3Cl3 + C6H10O Cyclohexanone (HMSD1111, LB3665_H)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'heat of Mixing and Solution of 1,1,2-Trichloroethane C2H3Cl3 + C6H10O Cyclohexanone (HMSD1111, LB3665_H)' providing data from direct low-pressure calorimetric measurement of molar excess enthalpy at variable mole fraction and constant temperature.

  12. Vapor-Liquid Equilibrium in the Mixture 1,2-Dichloroethane C2H4Cl2 + C6H10O Cyclohexanone (EVLM1111, LB5653_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-Liquid Equilibrium in the Mixture 1,2-Dichloroethane C2H4Cl2 + C6H10O Cyclohexanone (EVLM1111, LB5653_E)' providing data from direct measurement of pressure at variable mole fraction in liquid phase and constant temperature.

  13. Volumetric Properties of the Mixture Ethane-1,2-diol C2H6O2 + C6H10O Cyclohexanone (VMSD1212, LB4988_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Ethane-1,2-diol C2H6O2 + C6H10O Cyclohexanone (VMSD1212, LB4988_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  14. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1511, LB4832_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1511, LB4832_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  15. Volumetric Properties of the Mixture Oxolane C4H8O + C6H10O Cyclohexanone (VMSD1212, LB3919_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Oxolane C4H8O + C6H10O Cyclohexanone (VMSD1212, LB3919_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  16. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8 Toluene (VMSD1511, LB4831_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8 Toluene (VMSD1511, LB4831_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  17. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1511, LB4833_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1511, LB4833_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  18. Heat of Mixing and Solution of 1,2-Dichloroethane C2H4Cl2 + C6H10O Cyclohexanone (HMSD1111, LB3663_H)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'heat of Mixing and Solution of 1,2-Dichloroethane C2H4Cl2 + C6H10O Cyclohexanone (HMSD1111, LB3663_H)' providing data from direct low-pressure calorimetric measurement of molar excess enthalpy at variable mole fraction and constant temperature.

  19. Heat of Mixing and Solution of Pentachloroethane C2HCl5 + C6H10O Cyclohexanone (HMSD1111, LB3667_H)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'heat of Mixing and Solution of Pentachloroethane C2HCl5 + C6H10O Cyclohexanone (HMSD1111, LB3667_H)' providing data from direct low-pressure calorimetric measurement of molar excess enthalpy at variable mole fraction and constant temperature.

  20. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8 Toluene (VMSD1111, LB4820_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8 Toluene (VMSD1111, LB4820_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).