Science.gov

Sample records for narrow absorption lines

  1. Narrow UV Absorption Line Outflows from Quasars

    NASA Astrophysics Data System (ADS)

    Hamann, F.; Simon, L.; Rodriguez Hidalgo, P.; Capellupo, D.

    2012-08-01

    Narrow absorption line (NAL) outflows are an important yet poorly understood part of the quasar outflow phenomenon. We discuss one particular NAL outflow that has high speeds, time variability, and moderate ionizations like typical BAL flows, at an estimated location just ˜5 pc from the quasar. It also has a total column density and line widths (internal velocity dispersions) ˜100 times smaller than BALs, with no substantial X-ray absorption. We argue that radiative shielding (in the form of an X-ray/warm absorber) is not critical for the outflow acceleration and that the moderate ionizations occur in dense substructures that have an overall small volume filling factor in the flow. We also present new estimates of the overall incidence of quasar outflow lines; e.g., ˜43% of bright quasars have a C IV NAL outflow while ˜68% have a C IV outflow line of any variety (NAL, BAL, or mini-BAL).

  2. Searching for Variability of NV Intrinsic Narrow Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Charlton, Jane C.; Ganguly, Rajib

    2017-01-01

    The majority of quasar absorption line systems with NV detected are found within the associated region (within 5000km/s of the quasar redshift) and many/most are believed to be related to the quasar accretion disk wind or outflows. The most definite evidence that these NV absorbers are "intrinsic" is partial covering of the quasar continuum source and/or broad line region. Over 50 quasars containing NV narrow absorption lines have observations obtained at different times with the Keck/HIRES and the VLT/UVES spectrographs at high resolution. The interval between these observations range from months to a decade in the quasar rest frame. While variability is common for intrinsic broad and mini-broad absorption lines, intrinsic narrow absorption lines have been found to be less likely to vary, though systematic studies with large, high quality datasets have been limited. The variability timescales are useful for deriving gas densities and thus the distances from the central engines. This is important in mapping the quasar surroundings, understanding the accretion disk wind mechanism, and assessing the effect the wind has on the galaxy surroundings. We report on the results of a systematic study of variability of NV NALs, exploiting the overlap of targets for observations in the archives of Keck and VLT, and discuss the consequences for interpretation of the origin of intrinsic narrow absorption lines.

  3. Probing Quasar Winds Using Intrinsic Narrow Absorption Lines

    NASA Astrophysics Data System (ADS)

    Culliton, Christopher S.; Charlton, Jane C.; Eracleous, Michael; Roberts, Amber; Ganguly, Rajib; Misawa, Toru; Muzahid, Sowgat

    2017-01-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole. Furthermore, outflows potentially have a role in providing feedback to the galaxy, and halting star formation and infall of gas. The geometry and density of these outflows remain unknown, especially as a function of ionization and velocity. Having searched ultraviolet spectra at both high redshift (VLT/UVES; 1.4narrow absorption lines (NALs) that are intrinsic to (physically associated with) the quasar. We identify intrinsic NALs with a wide range of properties, including ejection velocity, coverage fraction, and ionization level. We also consider the incidence of intrinsic absorbers as a function of quasar properties (optical, radio and X-ray fluxes), and find that radio properties and quasar orientation are influential in determining if a quasar is likely to host an intrinsic system. We find that there is a continuum of properties within the intrinsic NAL sample, rather than discrete families, ranging from partially covered CIV systems with black Lya and with a separate low ionization gas phase to partially covered NV systems with partially covered Lya and without detected low ionization gas. Additionally, we construct a model describing the spatial distributions, geometries, and varied ionization structures of intrinsic NALs.

  4. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  5. Is there a connection between broad absorption line quasars and narrow-line Seyfert 1 galaxies?

    SciTech Connect

    Grupe, Dirk; Nousek, John A.

    2015-02-01

    We consider whether broad absorption line quasars (BAL QSOs) and narrow-line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt and Gallagher and Boroson. For this purpose, we constructed a sample of 11 BAL QSOs from existing Chandra and Swift observations. We found that BAL QSOs and NLS1s both operate at high Eddington ratios L/L{sub Edd}, although BAL QSOs have slightly lower L/L{sub Edd}. BAL QSOs and NLS1s in general have high Fe ii/Hβ and low [O iii]/Hβ ratios following the classic “Boroson and Green” eigenvector 1 relation. We also found that the mass accretion rates M-dot of BAL QSOs and NLS1s are more similar than previously thought, although some BAL QSOs exhibit extreme mass accretion rates of more than 10 M{sub ⊙} yr{sup −1}. These extreme mass accretion rates may suggest that the black holes in BAL QSOs are relativistically spinning. Black hole masses in BAL QSOs are a factor of 100 larger than NLS1s. From their location on a M−σ plot, we find that BAL QSOs contain fully developed black holes. Applying a principal component analysis to our sample, we find eigenvector 1 to correspond to the Eddington ratio L/L{sub Edd}, and eigenvector 2 to black hole mass.

  6. The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines

    NASA Technical Reports Server (NTRS)

    Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi; Gallo, Luigi; Awaki, Hisamitsu; Griffiths, Richard E.

    2007-01-01

    We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.

  7. Narrow absorption lines with two observations from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei; Cao, Yue

    2015-07-01

    We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV λ λ 1548,1551 and Mg II λ λ 2796,2803 absorption doublets in spectral regions shortward of 7000 Å in the observed frame, which corresponds to time-scales of about 150-2643 d in the quasar rest frame. In these quasar spectra, we detect 3580 C IV absorption systems with zabs = 1.5188-3.5212 and 1809 Mg II absorption systems with zabs = 0.3948-1.7167. In term of the absorber velocity (β) distribution in the quasar rest frame, we find a substantial number of C IV absorbers with β < 0.06, which might be connected to absorption of quasar outflows. The outflow absorption peaks at υ ≈ 2000 km s^{-1} and drops rapidly below this peak value. Among 3580 C IV absorption systems, 52 systems (˜1.5 per cent) show obvious variations in equivalent widths in the absorber rest frame (Wr): 16 enhanced, 16 emerged, 12 weakened and 8 disappeared systems, respectively. We find that changes in Wrλ1548 are related neither to the time-scales of the two SDSS observations nor to absorber velocities in the quasar rest frame. Variable absorption in low-ionization species is important to constrain the physical conditions of the absorbing gas. There are two variable Mg II absorption systems measured from SDSS spectra detected by Hacker et al. However, in our Mg II absorption sample, we find that neither shows variable absorption with confident levels of >4σ for λ2796 lines and >3σ for λ2803 lines.

  8. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    SciTech Connect

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of

  9. Constraining the Variation of the Fine-structure Constant with Observations of Narrow Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10-5, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (- 0.59 ± 0.55) × 10-5 in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10-5, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (- 0.47 ± 0.53) × 10-5. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (- 0.01 ± 0.26) × 10-5. We conclude that spectroscopic measurements of quasar absorption lines are not yet capable of

  10. THE PHYSICAL CONDITIONS OF THE INTRINSIC N V NARROW ABSORPTION LINE SYSTEMS OF THREE QUASARS

    SciTech Connect

    Wu Jian; Charlton, Jane C.; Misawa, Toru; Eracleous, Michael; Ganguly, Rajib E-mail: misawatr@shinshu-u.ac.j

    2010-10-20

    We employ detailed photoionization models to infer the physical conditions of intrinsic narrow absorption line systems found in high-resolution spectra of three quasars at z = 2.6-3.0. We focus on a family of intrinsic absorbers characterized by N V lines that are strong relative to the Ly{alpha} lines. The inferred physical conditions are similar for the three intrinsic N V absorbers, with metallicities greater than 10 times the solar value (assuming a solar abundance pattern), and with high ionization parameters (log U {approx} 0). Thus, we conclude that the unusual strength of the N V lines results from a combination of partial coverage, a high ionization state, and high metallicity. We consider whether dilution of the absorption lines by flux from the broad emission line region can lead us to overestimate the metallicities and we find that this is an unlikely possibility. The high abundances that we infer are not surprising in the context of scenarios in which metal enrichment takes place very early on in massive galaxies. We estimate that the mass outflow rate in the absorbing gas (which is likely to have a filamentary structure) is less than a few M{sub sun} yr{sup -1} under the most optimistic assumptions, although it may be embedded in a much hotter, more massive outflow.

  11. Multi-Sightline Observation of Narrow Absorption Lines in Lensed Quasar SDSS J1029+2623

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Saez, Cristian; Charlton, Jane C.; Eracleous, Michael; Chartas, George; Bauer, Franz E.; Inada, Naohisa; Uchiyama, Hisakazu

    2016-07-01

    We exploit the widely separated images of the lensed quasar SDSS J1029+2623 ({z}{em} = 2.197, θ = 22.″5) to observe its outflowing wind through two different sightlines. We present an analysis of three observations, including two with the Subaru telescope in 2010 February and 2014 April, separated by four years, and one with the Very Large Telescope, separated from the second Subaru observation by ˜2 months. We detect 66 narrow absorption lines (NALs), of which 24 are classified as intrinsic NALs that are physically associated with the quasar based on partial coverage analysis. The velocities of intrinsic NALs appear to cluster around values of {v}{ej} ˜ 59,000, 43,000, and 29,000 km s-1, which is reminiscent of filamentary structures obtained by numerical simulations. There are no common intrinsic NALs at the same redshift along the two sightlines, implying that the transverse size of the NAL absorbers should be smaller than the sightline distance between two lensed images. In addition to the NALs with large ejection velocities of {v}{ej} > 1000 km s-1, we also detect broader proximity absorption lines (PALs) at {z}{abs} ˜ {z}{em}. The PALs are likely to arise in outflowing gas at a distance of r ≤ 620 pc from the central black hole with an electron density of n e ≥8.7 × 103 cm-3. These limits are based on the assumption that the variability of the lines is due to recombination. We discuss the implications of these results on the three-dimensional structure of the outflow.

  12. EMERGENCE OF A BROAD ABSORPTION LINE OUTFLOW IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007

    SciTech Connect

    Leighly, Karen M.; Casebeer, Darrin A.; Hamann, Fred; Grupe, Dirk

    2009-08-10

    We report results from a 2003 Far Ultraviolet Spectroscopic Explorer (FUSE) observation and reanalysis of a 1996 Hubble Space Telescope (HST) observation of the unusual X-ray transient Narrow-line Seyfert 1 galaxy WPVS 007. The HST Faint Object Spectrograph (FOS) spectrum revealed mini-BALs (broad absorption lines) with V {sub max} {approx} 900 km s{sup -1} and FWHM {approx}550 km s{sup -1}. The FUSE spectrum showed that an additional BAL outflow with V {sub max} {approx} 6000 km s{sup -1} and FWHM {approx}3400 km s{sup -1} had appeared. WPVS 007 is a low-luminosity object in which such a high-velocity outflow is not expected; therefore, it is an outlier on the M{sub V} /v {sub max} relationship. Template spectral fitting yielded apparent ionic columns, and a Cloudy analysis showed that the presence of P V requires a high-ionization parameter log(U) {>=} 0 and high-column density log(N {sub H}) {>=} 23 assuming solar abundances and a nominal spectral energy distribution (SED) for low-luminosity NLS1s with {alpha} {sub ox} = -1.28. A recent long Swift observation revealed the first hard X-ray detection and an intrinsic (unabsorbed) {alpha} {sub ox} {approx} -1.9. Using this SED in our analysis yielded lower column density constraints (log(N {sub H}) {>=} 22.2 for Z = 1, or log(N {sub H}) {>=} 21.6 if Z = 5). The X-ray weak continuum, combined with X-ray absorption consistent with the UV lines, provides the best explanation for the observed Swift X-ray spectrum. The large column densities and velocities implied by the UV data in any of these scenarios could be problematic for radiative acceleration. We also point out that since the observed P V absorption can be explained by lower total column densities using an intrinsically X-ray weak spectrum, we might expect to find P V absorption preferentially more often (or stronger) in quasars that are intrinsically X-ray weak.

  13. VizieR Online Data Catalog: QSOs narrow absorption line variability (Hacker+, 2013)

    NASA Astrophysics Data System (ADS)

    Hacker, T. L.; Brunner, R. J.; Lundgren, B. F.; York, D. G.

    2013-06-01

    Catalogues of 2,522 QAL systems and 33 variable NAL systems detected in SDSS DR7 quasars with repeat observations. The object identifiers, position coordinates, and plate-MJD-fibre designations are taken from the SpecObjAll table in the SDSS Catalogue Archive Server (CAS) while the quasar redshifts (zqso) are from Hewett & Wild (2010, Cat. J/MNRAS/405/2302). The absorption system redshift (zabs), system grade, and detected lines are outputs of the York et al. (2013, in. prep.) QAL detection pipeline. Some absorption lines are flagged based on alternate identifications (a), proximity of masked pixels (b), or questionable continuum fits (c). (3 data files).

  14. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    SciTech Connect

    Pascucci, I.; Simon, M. N.; Edwards, S.; Heyer, M.; Rigliaco, E.; Hillenbrand, L.; Gorti, U.; Hollenbach, D.

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.

  15. UNSHIFTED METASTABLE He I* MINI-BROAD ABSORPTION LINE SYSTEM IN THE NARROW-LINE TYPE 1 QUASAR SDSS J080248.18+551328.9

    SciTech Connect

    Ji, Tuo; Zhou, Hongyan; Jiang, Peng; Wang, Tinggui; Wang, Huiyuan; Liu, Wenjuan; Yang, Chenwei; Ge, Jian; Hamann, Fred; Komossa, S.; Yuan, Weimin; Zuther, Jens; Lu, Honglin; Zuo, Wenwen

    2015-02-10

    We report the identification of an unusual absorption-line system in the quasar SDSS J080248.18+551328.9 and present a detailed study of the system, incorporating follow-up optical and near-IR spectroscopy. A few tens of absorption lines are detected, including He I*, Fe II*, and Ni II*, which arise from metastable or excited levels, as well as resonant lines in Mg I, Mg II, Fe II, Mn II, and Ca II. All of the isolated absorption lines show the same profile of width Δv ∼ 1500 km s{sup –1} centered at a common redshift as that of the quasar emission lines, such as [O II], [S II], and hydrogen Paschen and Balmer series. With narrow Balmer lines, strong optical Fe II multiplets, and weak [O III] doublets, its emission-line spectrum is typical for that of a narrow-line Seyfert 1 galaxy (NLS1). We have derived reliable measurements of the gas-phase column densities of the absorbing ions/levels. Photoionization modeling indicates that the absorber has a density of n {sub H} ∼ (1.0-2.5) × 10{sup 5} cm{sup –3} and a column density of N {sub H} ∼ (1.0-3.2) × 10{sup 21} cm{sup –2} and is located at R ∼100-250 pc from the central supermassive black hole. The location of the absorber, the symmetric profile of the absorption lines, and the coincidence of the absorption- and emission-line centroid jointly suggest that the absorption gas originates from the host galaxy and is plausibly accelerated by stellar processes, such as stellar winds and/or supernova explosions. The implications for the detection of such a peculiar absorption-line system in an NLS1 are discussed in the context of coevolution between supermassive black hole growth and host galaxy buildup.

  16. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  17. VARIABLE REDDENING AND BROAD ABSORPTION LINES IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007: AN ORIGIN IN THE TORUS

    SciTech Connect

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk; Terndrup, Donald M.; Komossa, S.

    2015-08-10

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable.

  18. Variable Reddening and Broad Absorption Lines in the Narrow-line Seyfert 1 Galaxy WPVS 007: An Origin in the Torus

    NASA Astrophysics Data System (ADS)

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk; Terndrup, Donald M.; Komossa, S.

    2015-08-01

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11733, 13015, and 14058.

  19. A Census of Intrinsic Narrow Absorption Lines in the Spectra of Quasars at z = 2-4

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael; Ganguly, Rajib; Tytler, David; Kirkman, David; Suzuki, Nao; Lubin, Dan

    2007-07-01

    We use Keck HIRES spectra of 37 optically bright quasars at z=2-4 to study narrow absorption lines that are intrinsic to the quasars (intrinsic NALs, produced in gas that is physically associated with the quasar central engine). We identify 150 NAL systems, which contain 124 C IV, 12 N V, and 50 Si IV doublets, of which 18 are associated systems (within 5000 km s-1 of the quasar redshift). We use partial coverage analysis to separate intrinsic NALs from NALs produced in cosmologically intervening structures. We find 39 candidate intrinsic systems (28 reliable determinations and 11 that are possibly intrinsic). We estimate that 10%-17% of C IV systems at blueshifts of 5000-70,000 km s-1 relative to quasars are intrinsic. At least 32% of quasars contain one or more intrinsic C IV NALs. Considering N V and Si IV doublets showing partial coverage as well, at least 50% of quasars host intrinsic NALs. This result constrains the solid angle subtended by the absorbers to the background source(s). We identify two families of intrinsic NAL systems, those with strong N V absorption and those with negligible absorption in N V but with partial coverage in the C IV doublet. We discuss the idea that these two families represent different regions or conditions in accretion disk winds. Of the 26 intrinsic C IV NAL systems, 13 have detectable low-ionization absorption lines at similar velocities, suggesting that these are two-phase structures in the wind rather than absorbers in the host galaxy. We also compare possible models for quasar outflows, including radiatively accelerated disk-driven winds, magnetocentrifugally accelerated winds, and pressure-driven winds, and we discuss ways of distinguishing between these models observationally. The data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration

  20. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  1. Line Narrowing Parameter Measurement by Modulation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin N.

    1998-01-01

    Accurate Characterization of Oxygen A-Band Line Parameters by Wavelength Modulation Spectroscopy with tunable diode lasers is an ongoing research at Old Dominion University, under sponsorship from NASA Langley research Center. The work proposed here will be undertaken under the guidance of Dr. William Chu and Dr. Lamont Poole of the Aerosol Research Branch at NASA Langley-Research Center in Hampton, Virginia. The research was started about two years ago and utilizes wavelength modulation absorption spectroscopy with higher harmonic detection, a technique that we developed at Old Dominion University, to obtain the absorption line characteristics of the Oxygen A-band rovibronic lines. Accurate characterization of this absorption band is needed for processing of data that will be obtained in experiments such as the NASA Stratospheric Aerosol and Gas Experiment III (SAGE III) as part of the US Mission to Planet Earth. The research work for Summer Fellowship undertook a measurement of the Dicke line-narrowing parameters of the Oxygen A-Band lines by using wavelength modulation spectroscopy. Our previous theoretical results had indicated that such a measurement could be done sensitively and in a convenient fashion by using this type of spectroscopy. In particular, theoretical results had indicated that the signal magnitude would depend on pressure in a manner that was very sensitive to the narrowing parameter. One of the major tasks undertaken during the summer of 1998 was to establish experimentally that these theoretical predictions were correct. This was done successfully and the results of the work are being prepared for publication. Experimental Results were obtained in which the magnitude of the signal was measured as a function of pressure, for various harmonic detection orders (N = 1, 2, 3, 4, 5). A comparison with theoretical results was made, and it was shown that the agreement between theory and experiment was very good. More importantly, however, it was shown

  2. Exciton absorption in narrow armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Monozon, B. S.; Schmelcher, P.

    2016-11-01

    We develop an analytical approach to the exciton optical absorption for narrow gap armchair graphene nanoribbons (AGNR). We focus on the regime of dominant size quantization in combination with the attractive electron-hole interaction. An adiabatic separation of slow and fast motions leads via the two-body Dirac equation to the isolated and coupled subband approximations. Discrete and continuous exciton states are in general coupled and form quasi-Rydberg series of purely discrete and resonance type character. The corresponding oscillator strengths and widths are derived. We show that the exciton peaks are blue-shifted, become broader and increase in magnitude upon narrowing the ribbon. At the edge of a subband the singularity related to the 1D density of states is transformed into finite absorption via the presence of the exciton. Our analytical results are in good agreement with those obtained by other methods including numerical approaches. Estimates of the expected experimental values are provided for realistic AGNR.

  3. Discovery of a narrow line quasar

    NASA Technical Reports Server (NTRS)

    Stocke, J.; Liebert, J.; Maccacaro, T.; Griffiths, R. E.; Steiner, J. E.

    1982-01-01

    A stellar object is reported which, while having X-ray and optical luminosities typical of quasars, has narrow permitted and forbidden emission lines over the observed spectral range. The narrow-line spectrum is high-excitation, the Balmer lines seem to be recombinational, and a redder optical spectrum than that of most quasars is exhibited, despite detection as a weak radio source. The object does not conform to the relationships between H-beta parameters and X-ray flux previously claimed for a large sample of the active galactic nuclei. Because reddish quasars with narrow lines, such as the object identified, may not be found by the standard techniques for the discovery of quasars, the object may be a prototype of a new class of quasars analogous to high-luminosity Seyfert type 2 galaxies. It is suggested that these objects cannot comprise more than 10% of all quasars.

  4. Absorption-Line Studies of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael

    We propose to undertake a "reverberation analysis" of the variable absorption lines ill two Seyfert Galaxies (NGC 4051 and Mrk 279) to help understand the origin of intrinsic absorption lines in AGNs. Stich an analysis is a powerful tool for elucidating the radial distribution of absorbing gas in the broad-line region (BLR) and narrow-line region (NLR). Only two Seyferts have previously been studied with this technique: NGC 4151 (Bromage el al. 1985; Clavel et al. 1987) and NGC 3516 (Voit, Shull, and Begelman 1987). The absorption features have been interpreted as an outflow of ionized clouds from the nuclear region or from an accretion disk affected by UV/X-ray heating. Neither the source of the absorbing gas in these Seyferts nor the "gene" which distingishes them from other Seyferts is known. Until the 1984 onset of absorption in Mrk 279, broad self-absorbed. lines had been observed only in Seyferts of low intrinsic luminosity, such as NGC 4051. Mrk 279 is intrinsically much brighter, and therefore more quasar-like, than the other three absorptionline Seyfert I's in the CfA sample. Thus, it may show how the absorption phenomenon changes at higher luminosity and could bridge the gap between the low luminosity absorption-line Seyferts and the well-studied broad absorption-line (BAL) QSO's. In addition, Mrk 279's significant redshift will allow us to study, for the first time, the Ly-alpha line in an absorption-line Seyfert. With 3 US-1 shifts for each of these two underobserved Seyferts, we can double the number of objects in which absorption-line variability has been studied and investigate why the absorption-line strengths correlate or anti-correlate with the UV continuum.

  5. The Narrow-Line Region of Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Binette, Luc; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-08-01

    This work studies the optical emission-line properties and physical conditions of the narrow-line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1's) for which high signal-to-noise ratio spectroscopic observations were available. The resolution is 340 km s-1 (at Hα) over the wavelength interval 3700-9500 Å, enabling us to separate the broad and narrow components of the permitted emission lines. Our results show that the flux carried out by the narrow component of Hβ is, on average, 50% of the total line flux. As a result, the [O III] λ5007/Hβ ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [O III] λ5007/Hβ ratio and the weakness of low-ionization lines of NLS1's. Variation of the relative proportion of these two type of clouds nicely reproduces the dispersion of narrow-line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1's and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission-line ratios between these two groups of galaxies can be explained, to a first approximation, in terms of the shape of the input ionizing continuum. Narrow emission-line ratios of NLS1's are better reproduced by a steep power-law continuum in the EUV-soft X-ray region, with spectral index α~-2. Flatter spectral indices (α~-1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1's, which show that these objects are characterized by steeper power-law indices than those of Seyfert 1 galaxies with strong broad optical lines. Based on observations made at CASLEO. Complejo Astronómico El Leoncito

  6. The hydrogen line spectra of narrow-line radio galaxies

    NASA Astrophysics Data System (ADS)

    Ferland, G. J.; Osterbrock, D. E.

    1985-02-01

    The results of the first detection of Ly-alpha in a narrow-line radio galaxy are reported. Nearly simultaneous optical and UV observations of 3C 192 and 3C 223 allow the measurement of both Balmer and Lyman decrements. These line ratios are approximate functions of the interstellar reddening and of a parameter which is proportional to the amount of H I collisional excitation present. The reddening of 3C 192 is slightly larger than that due to the Galaxy, although 3C 223 may have a larger value. Both galaxies have intrinsic Balmer and Lyman decrements which are significantly steeper than case B, suggesting that the gas is photoionized by a fairly hard X-ray continuum. The deduced values of L-alpha/H-beta and H-alpha/H-beta compare favorably with predictions of recent models.

  7. The hydrogen line spectra of narrow-line radio galaxies

    NASA Technical Reports Server (NTRS)

    Ferland, G. J.; Osterbrock, D. E.

    1985-01-01

    The results of the first detection of Ly-alpha in a narrow-line radio galaxy are reported. Nearly simultaneous optical and UV observations of 3C 192 and 3C 223 allow the measurement of both Balmer and Lyman decrements. These line ratios are approximate functions of the interstellar reddening and of a parameter which is proportional to the amount of H I collisional excitation present. The reddening of 3C 192 is slightly larger than that due to the Galaxy, although 3C 223 may have a larger value. Both galaxies have intrinsic Balmer and Lyman decrements which are significantly steeper than case B, suggesting that the gas is photoionized by a fairly hard X-ray continuum. The deduced values of L-alpha/H-beta and H-alpha/H-beta compare favorably with predictions of recent models.

  8. Narrow-line fiber-coupled modules for DPAL pumping

    NASA Astrophysics Data System (ADS)

    Koenning, Tobias; McCormick, Dan; Irvin, David; Stapleton, Dean; Guiney, Tina; Patterson, Steve

    2015-03-01

    Recent advances in high power diode laser technologies have enabled advanced research on diode pumped alkali metal vapor lasers (DPALs). Due to their low quantum defect, DPALs offer the promise of scalability to very high average power levels while maintaining excellent beam quality. Research is being conducted on a variety of gain media species, requiring different pump wavelengths: near 852nm for cesium, 780nm for rubidium, 766nm for potassium, and 670nm for lithium atoms. The biggest challenge in pumping these materials efficiently is the narrow gain media absorption band of approximately 0.01nm. Typical high power diode lasers achieve spectral widths around 3nm (FWHM) in the near infrared spectrum. Gratings may be used internal or external to the cavity to reduce the spectral width to 0.5nm to 1nm for high power diode laser modules. Recently, experimental results have shown narrower line widths ranging from picometers (pm) at very low power levels to sub-100 picometers for water cooled stacks around 1kW of output power. The focus of this work is a further reduction in the spectral line width of high power diode laser bars emitting at 766nm, with full applicability to other wavelengths of interest. One factor limiting the reduction of the spectral line width is the optical absorption induced thermal gradient inside the volume Bragg grating (VBG). Simulated profiles and demonstrated techniques to minimize thermal gradients will be presented. To enable the next stage of DPAL research, a new series of fiber coupled modules is being introduced featuring greater than 400W from a 600μm core fiber of 0.22NA. The modules achieve a spectral width of <<0.1nm and wavelength tunability of +/- 0.15nm.

  9. Quasistellar Objects: Intervening Absorption Lines

    NASA Astrophysics Data System (ADS)

    Charlton, J.; Churchill, C.; Murdin, P.

    2000-11-01

    Every parcel of gas along the line of sight to a distant QUASAR will selectively absorb certain wavelengths of continuum light of the quasar due to the presence of the various chemical elements in the gas. Through the analysis of these quasar absorption lines we can study the spatial distributions, motions, chemical enrichment and ionization histories of gaseous structures from REDSHIFT five unti...

  10. Nuclear winds and the narrow-line emission from active galaxies

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.

    1993-01-01

    This paper discusses active galaxy narrow-line emission in the context of a supersonic wind generated by the active nucleus, a nuclear wind. Wind acceleration can naturally produce the inferred narrow-line cloud velocities as well as those of the broad-line and broad absorption line clouds with only a weak dependence on the parameters of the active nucleus. The primary obstacle to wind acceleration of emission-line clouds is the destructive effect of instabilities; however, the stability and structure of wind-confined clouds remain areas of future research. Observations, particularly of the Seyfert galaxy NGC 1068, are interpreted in the context of nuclear winds.

  11. Balmer Absorption Lines in FeLoBALs

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Iwata, I.; Ohta, K.; Tamura, N.; Ando, M.; Akiyama, M.; Kiuchi, G.; Nakanishi, K.

    2007-10-01

    We discovered non-stellar Balmer absorption lines in two many-narrow-trough FeLoBALs (mntBALs) by the near-infrared spectroscopy with Subaru/CISCO. Presence of the non-stellar Balmer absorption lines is known to date only in the Seyfert galaxy NGC 4151; thus our discovery is the first cases for quasars. Since all known active galactic nuclei with Balmer absorption lines share similar characteristics, it is suggested that there is a population of BAL quasars which have unique structures at their nuclei or unique evolutionary phase.

  12. A spectrophotometric atlas of Narrow-Line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Véron, P.; Gonçalves, A. C.

    2001-06-01

    We have compiled a list of 83 objects classified as Narrow-Line Seyfert 1 galaxies (NLS1s) or known to have a broad Balmer component narrower than 2 000 km s-1. Of these, 19 turned out to have been spectroscopically misidentified in previous studies; only 64 of the selected objects are genuine NLS1s. We have spectroscopically observed 59 of them and tried to characterize their Narrow and Broad-Line Regions (NLR and BLR) by fitting the emission-lines with Gaussian and/or Lorentzian profiles. In most cases, the broad Balmer components are well fitted by a single Lorentzian profile, confirming previous claims that Lorentzian rather than Gaussian profiles are better suited to reproduce the shape of the NLS1s broad emission lines. This has consequences concerning their FWHMs and line ratios: when the broad Balmer components are fitted with a Lorentzian, most narrow line regions have line ratios typical of Seyfert 2s while, when a Gaussian profile is used for fitting the broad Balmer components, the line ratios are widely scattered in the usual diagnostic diagrams (Veilleux & Osterbrock \\cite{vei87}); moreover, the FWHM of the best fitting Lorentzian is systematically smaller than the FWHM of the Gaussian. We find that, in general, the [O III] lines have a relatively narrow Gaussian profile ( ~ 200-500 km s-1 FWHM) with often, in addition, a second broad ( ~ 500-1 800 km s-1 FWHM), blueshifted Gaussian component. We do not confirm that the [O III] lines are weak in NLS1s. As previously suggested, there is a continuous transition of all properties between NLS1s and classical Broad-Line Seyfert 1 Galaxies (BLS1s) and the limit of 2000 km s-1 used to separate the two species is arbitrary; R4570, the ratio of the Fe II to the Hβ fluxes, could be a physically more meaningful parameter to distinguish them.

  13. Prospects for a narrow line MOT in YO

    NASA Astrophysics Data System (ADS)

    Collopy, Alejandra L.; Hummon, Matthew T.; Yeo, Mark; Yan, Bo; Ye, Jun

    2015-05-01

    In addition to being suitable for laser cooling and trapping in a magneto-optical trap (MOT) using a relatively broad (∼ 5 MHz) transition, the molecule YO possesses a narrow-line transition. This forbidden transition between the {{X}2}Σ and A{{\\prime }2}{{Δ }3/2} states has linewidth ∼ 2π × 160 kHz. After cooling in a MOT on the 614 nm {{X}2}Σ to {{A}2}{{\\Pi }1/2} (orange) transition, the narrow 690 nm (red) transition can be used to further cool the sample, requiring only minimal additions to the first stage system. We estimate that the narrow line cooling stage will bring the temperature from ∼1 mK to ∼10 μK, significantly advancing the frontier on direct cooling achievable for molecules.

  14. THE DISAPPEARANCE OF A NARROW Mg II ABSORPTION SYSTEM IN QUASAR SDSS J165501.31+260517.4

    SciTech Connect

    Chen Zhifu; Qin Yiping; Gu Minfeng E-mail: ypqin@126.com

    2013-06-10

    In this paper, we present for the first time the discovery of the disappearance of a narrow Mg II {lambda}{lambda}2796, 2803 absorption system from the spectra of the quasar SDSS J165501.31+260517.4 (z{sub e} = 1.8671). This absorber is located at z{sub abs} = 1.7877 and has a velocity offset of 8423 km s{sup -1} with respect to the quasar. According to the velocity offset and the line variability, this narrow Mg II {lambda}{lambda}2796, 2803 absorption system is likely intrinsic to the quasar. Since the corresponding UV continuum emission and the absorption lines of another narrow Mg II {lambda}{lambda}2796, 2803 absorption system at z{sub abs} = 1.8656 are very stable, we believe that the disappearance of the absorption system is unlikely to be caused by the change in ionization of absorption gas. Instead, it likely arises from the motion of the absorption gas across the line of sight.

  15. Capping Layer Effects on Electromigration in Narrow Cu Lines

    SciTech Connect

    Hu, C.-K.; Rosenberg, R.

    2004-12-08

    Electromigration in narrow (bamboo-like) Cu Damascene lines capped with either a CoWP, Ta/TaN, SiNx, or SiCxNyHz layer is reviewed. A thin CoWP or Ta/TaN cap on top of the Cu line surface significantly reduces interface diffusion and improves the electromigration lifetime when compared with lines capped with SiNx or SiCxNyHz. Activation energies for electromigration were found to be 1.9-2.4 eV, 1.4 eV, and 0.85-1.1 eV for the Cu lines capped with CoWP, Ta/TaN, and SiNx or SiCxNyHz, respectively. Relationships between line width, diffusion path, void nucleation sites and lifetime are presented. Resistance changes in the CoWP coated lines were related to the solubility and diffusivity of Co in Cu such that void growth caused by electromigration was detectable only as a significant resistance increase over that caused by the Co. The solubility and diffusivity of Co in Cu was determined from line resistance measurements of thermally annealed Cu lines with CoWP caps. The activation energy of Co diffusion in Cu lines was found to be 2.2 eV, and the solubility limit of Co in Cu was found to be 18e(-0.57eV/kT) atomic percent.

  16. An Extreme, Blueshifted Iron Line in the Narrow Line Seyfert 1 PG 1402+261

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Porquet, D.; Turner, T. J.

    2004-01-01

    We report on a short, XMM-Newton observation of the radio-quiet Narrow Line Seyfert 1 PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6 - 9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad energy at 7.3 keV appears blue-shifted with respect to the iron Kalpha emission band between 6.4 - 6.97 keV, whilst the blue-wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of greater than 60 degrees is required to model the extreme blue-wing of the line. Furthermore the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG1402+261 above 2 keV is dominated by the pure-reflection component from the disk, whilst little or none of the direct hard power-law is observed. Alternatively the spectrum above 2 keV may instead be explained by an ionized absorber, if the column density is sufficiently high (NH greater than 3 x 10(exp 23) per square centimeter) and if the matter is ionized enough to produce a deep (tau approximately equal to 1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high velocity outflow, perhaps similar to those which appear to be observed in several other high accretion rate AGN. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection or outflow scenarios.

  17. Do Atoms Really "Emit" Absorption Lines?

    ERIC Educational Resources Information Center

    Brecher, Kenneth

    1991-01-01

    Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)

  18. Black Hole-Bulge Relation for Narrow-Line Objects

    NASA Astrophysics Data System (ADS)

    Bian, Wei-Hao; Zhao, Yong-Heng

    2003-02-01

    It has been thought that narrow-line Seyfert 1 galaxies are likely to be in the early stages of the evolution of active galaxies. To test this suggestion, the ratios of the central massive black hole (MBH) mass to the bulge mass (Mbh/Mbulge) were estimated for 22 Narrow Line AGNs (NL AGNs). It is found that NL AGNs appear to have genuinely lower MBH/Bulge mass ratio (Mbh/Mbulge). The mean log (Mbh/Mbulge) for 22 NL AGNs is -3.9 ± 0.07, which is an order of magnitude lower than that for Broad Line AGNs and quiescent galaxies. We suggest a nonlinear MBH/Bulge relation and find there exists a relation between the Mbh / Mbulge and the velocity dispersion, σ, derived from the [O III ] width. A scenario of MBH growth for NL AGNs is one of our interpretations of the nonline ar MBH/Bulge relation. The MBH growth timescales for 22 NL AGNs were calculated, with a mean value (1.29 ± 0.24) × 108 yr. Another plausible interpretation is also possible: that NL AGNs occur in low-Mbulge galaxies and that in such galaxies Mbh/Mbulge is lower than that in galaxies with a higher Mbulge, if we consider that NL AGNs already have their ``final'' Mbh/Mbulge. More information of the bulge in NL AGNs is needed to clarify the black hole-bulge relation.

  19. Narrow-line magneto-optical trap for dysprosium atoms.

    PubMed

    Maier, T; Kadau, H; Schmitt, M; Griesmaier, A; Pfau, T

    2014-06-01

    We present our technique to create a magneto-optical trap (MOT) for dysprosium atoms using the narrow-line cooling transition at 626 nm to achieve suitable conditions for direct loading into an optical dipole trap. The MOT is loaded from an atomic beam via a Zeeman slower using the strongest atomic transition at 421 nm. With this combination of two cooling transitions we can trap up to 2.0·10(8) atoms at temperatures down to 6 μK. This cooling approach is simpler than present work with ultracold dysprosium and provides similar starting conditions for a transfer to an optical dipole trap.

  20. Are Narrow Line Seyfert 1 Galaxies Viewed Pole-on?

    DTIC Science & Technology

    2011-04-01

    0.2’’ respectively. Figure 1 displays the position of each slit over a Barbosa et al. (2009) GMOS IFU image of the [S III] flux (which originates...C. Winge, H. Schmitt: Gemini/ GMOS IFU gas velocity ’tomography’ of the narrow line region of nearby active galaxies, MNRAS, 396 (2009) 2. [2] D...1995) 81. 4 P o S ( N L S 1 ) 0 5 0 Are NLS1s Pole-on? Travis C. Fischer 5 Figure 1: NGC 4051 GMOS IFU image showing integrated [SIII] flux

  1. Masas de agujeros negros en Narrow Line Seyfert 1

    NASA Astrophysics Data System (ADS)

    Schmidt, E.; Ferreiro, D.; Oio, G.; Vega, L.; Donoso, L.

    We describe two of the ways to estimate black hole masses in AGN, and then we estimate the black hole masses of 13 Narrow Line Seyfert 1 galaxies with the two methods: virial masses, using the correlation found by Greene & Ho (2005, ApJ, 630, 122); and the correlation found by Tremaine et al. (2002, ApJ, 574, 740). For this work we analyzed the optical spectroscopy data we obtained from CASLEO (San Juan). We compare the results obtained through both methods. FULL TEXT IN SPANISH

  2. Active Galactic Nuclei Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru

    2007-07-01

    Quasars are the extremely bright nuclei found in about 10% of galaxies. A variety of absorption features (known collectively as quasar absorption lines) are detected in the rest-frame UV spectra of these objects. While absorption lines that have very broad widths originate in gas that is probably physocally related to the quasars, narrow absorption lines (NALs) were thought to arise in galaxies and/or in the intter-alacttic medium between the quasars and us. Using high-resolution spectra of quasars, it is found that a substantial fraction of NALs arise in gas in the immediate vicinity of the quasars. A dramatically variable, moderately-broad absorption line in the spectrum of the quasar HS 1603+3820l is also found. The variability of this line is monitored in a campaign with Subaru telescope. These observational results are compared to models for outflows from the quasars, specifically, models for accretion disk winds and evaporating obscuring tori. It is quite important to determine the mechanism of outflow because of its cosmological implications. The outflow could expel angular momentum from the accretion disk and enable quasars to accrete and shine. In addition, the outflow may also regulate star formation in the early stages of the assembly of the host galaxy and enrich the interstellar and intergalactic medium with metals.

  3. X-ray narrow emission lines from the nuclear region of NGC 1365

    NASA Astrophysics Data System (ADS)

    Whewell, M.; Branduardi-Raymont, G.; Page, M. J.

    2016-11-01

    Context. NGC 1365 is a Seyfert 2 galaxy with a starburst ring in its nuclear region. In this work we look at the XMM-Newton Reflection Grating Spectrometer (RGS) data from four 2012-13, three 2007 and two 2004 observations of NGC 1365, in order to analyse and characterise in a uniform way the soft X-ray narrow-line emitting gas in the nucleus. Aims: We characterise the narrow-line emitting gas visible by XMM-Newton RGS and make comparisons between the 2012-13 spectra and those from 2004-07, already published. Methods: This source is usually absorbed within the soft X-ray band, with a typical neutral column density of >1.5 × 1023 cm-2, and only one observation of the nine we investigate shows low enough absorption for the continuum to emerge in the soft X-rays. We stack all observations from 2004-07, and separately three of the four observations from 2012-13, analysing the less absorbed observation separately. We first model the spectra using Gaussian profiles representing the narrow line emission. We fit physically motivated models to the 2012-13 stacked spectra, with collisionally ionised components representing the starburst emission and photoionised line emission models representing the AGN line emission. The collisional and photoionised emission line models are fitted together (rather than holding either one constant), on top of a physical continuum and absorption model. Results: The X-ray narrow emission line spectrum of NGC 1365 is well represented by a combination of two collisionally ionised (kT of 220 ± 10 and 570 ± 15 eV) and three photoionised (log ξ of 1.5 ± 0.2, 2.5 ± 0.2, 1.1 ± 0.2) phases of emitting gas, all with higher than solar nitrogen abundances. This physical model was fitted to the 2012-13 stacked spectrum, and yet also fits well to the 2004-07 stacked spectrum, without changing any characteristics of the emitting gas phases. Our 2004-07 results are consistent with previous emission line work using these data, with five additional

  4. Relativistic jets in Narrow-Line Seyfert 1

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Angelakis, E.; Bonnoli, G.; Calderone, G.; Colpi, M.; D'Ammando, F.; Donato, D.; Falcone, A.; Fuhrmann, L.; Ghisellini, G.; Ghirlanda, G.; Hauser, M.; Kovalev, Y. Y.; Maraschi, L.; Nieppola, E.; Richards, J.; Stamerra, A.; Tagliaferri, G.; Tavecchio, F.; Thompson, D. J.; Tibolla, O.; Tramacere, A.; Wagner, S.

    2011-02-01

    Narrow-Line Seyfert 1 (NLS1) class of active galactic nuclei (AGNs) is generally radio-quiet, but a small percent of them are radio-loud. The recent discovery by Fermi/LAT of high-energy γ-ray emission from 4 NLS1s proved the existence of relativistic jets in these systems. It is therefore important to study this new class of γ-ray emitting AGNs. Here we report preliminary results about the observations of the July 2010 γ-ray outburst of PMN J0948+0022, when the source flux exceeded for the first time 10-6 ph cm-2 s-1 (E > 100 MeV).

  5. Narrow Absorption NIR Wavelength Organic Nanoparticles Enable Multiplexed Photoacoustic Imaging.

    PubMed

    Lu, Hoang D; Wilson, Brian K; Heinmiller, Andrew; Faenza, Bill; Hejazi, Shahram; Prud'homme, Robert K

    2016-06-15

    Photoacoustic (PA) imaging is an emerging hybrid optical-ultrasound based imaging technique that can be used to visualize optical absorbers in deep tissue. Free organic dyes can be used as PA contrast agents to concurrently provide additional physiological and molecular information during imaging, but their use in vivo is generally limited by rapid renal clearance for soluble dyes and by the difficulty of delivery for hydrophobic dyes. We here report the use of the block copolymer directed self-assembly process, Flash NanoPrecipitation (FNP), to form series of highly hydrophobic optical dyes into stable, biocompatible, and water-dispersible nanoparticles (NPs) with sizes from 38 to 88 nm and with polyethylene glycol (PEG) surface coatings suitable for in vivo use. The incorporation of dyes with absorption profiles within the infrared range, that is optimal for PA imaging, produces the PA activity of the particles. The hydrophobicity of the dyes allows their sequestration in the NP cores, so that they do not interfere with targeting, and high loadings of >75 wt % dye are achieved. The optical extinction coefficients (ε (mL mg(-1) cm(-1))) were essentially invariant to the loading of the dye in NP core. Co-encapsulation of dye with vitamin E or polystyrene demonstrates the ability to simultaneously image and deliver a second agent. The PEG chains on the NP surface were functionalized with folate to demonstrate folate-dependent targeting. The spectral separation of different dyes among different sets of particles enables multiplexed imaging, such as the simultaneous imaging of two sets of particles within the same animal. We provide the first demonstration of this capability with PA imaging, by simultaneously imaging nontargeted and folate-targeted nanoparticles within the same animal. These results highlight Flash NanoPrecipitation as a platform to develop photoacoustic tools with new diagnostic capabilities.

  6. A survey of ultraviolet interstellar absorption lines

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Jenkins, E. B.; Spitzer, L., Jr.; York, D. G.; Hill, J. K.; Savage, B. D.; Snow, T. P., Jr.

    1983-01-01

    A telescope-spectrometer on the Copernicus spacecraft made possible the measurement of many ultraviolet absorption lines produced by the interstellar gas. The present survey provides data on ultraviolet absorption lines in the spectra of 88 early-type stars. The stars observed are divided into four classes, including reddened stars, unreddened bright stars, moderately reddened bright stars, and unreddened and moderately reddened faint stars. Data are presented for equivalent width, W, radial velocity V, and rms line width, D, taking into account some 10 to 20 lines of N I, O I, Si II, P II, S II, Cl I, Cl II, Mn II, Fe II, Ni II, Cu II, and H2. The data are based on multiple scans for each line. Attention is given to details of observations, the data reduction procedure, and the computation of equivalent width, mean velocity, and velocity dispersion.

  7. Physical Conditions in the Narrow Line Region of M51

    NASA Astrophysics Data System (ADS)

    Bradley, L. D., II; Kaiser, M. E.; Baan, W. A.

    2001-12-01

    We present long-slit Space Telescope Imaging Spectrograph (STIS) and Very Large Array (VLA) observations of the near-nuclear region of M51 obtained to study the kinematic and ionization structure of multiple emission line clouds in the narrow line region (NLR). The STIS spectra were obtained at a single position angle (166o) which intersects the nucleus and several NLR clouds. Low-dispersion G430L and G750L spectra provide continuous wavelength coverage from 2900 Å to 1 micron, while G430M spectra of [OIII] (66 km s-1 resolution) were used to more precisely determine the velocity structure of the emission-line clouds. The VLA radio continuum observations obtained at 3.6 cm with a resolution of 0.24'' complement our high spatial resolution (0.1\\arcsec) HST/STIS spectra. M51 possesses a biconical ionization cone (Ford et al. 1985, Cecil 1988) typical of Seyferts and Liners. This near-nuclear emission is comprised of multiple knots spanning 3.0" (122 pc) with cloud separations ranging from 0.1" (4 pc) to 0.75" (31 pc). Our 3.6 cm radio observations exhibit elongated nuclear emission with a similar PA. In agreement with earlier lower resolution 6 cm data (Crane & van der Hulst 1992), a weak radio jet, ~2.5" in extent, connects the near-nuclear emission with a diffuse (lobe) structure which spans ~4'' (163 pc). Close to the northern edge of this diffuse structure lies a radio knot which is identified with the extra-nuclear cloud (XNC) detected in Hα + [NII] and [OIII] imaging (Ford et al. 1985; Grillmair et al. 1997) and the X-ray (Terashima & Wilson 2001). We also detect weak radio emission extending to the north of the nucleus roughly opposite the southern jet. This northern 10μ Jy radio contour encompasses the [OIII] emission structure ~1.2'' north of the nucleus. Cloud velocities, velocity dispersions, emission line flux ratios, and photoionization modelling will be presented and discussed to explore the physical conditions (reddening, temperature, density, and

  8. X-Ray Spectrum of a Narrow-Line QSO

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1998-01-01

    During the reporting period, seven papers using ASCA data, supported in whole or in part by this grant, were published or submitted to refereed journals. Their abstracts are given in this report, and the complete bibliographic references are listed in the Appendix. Titles include (1) A Broad-Band X-ray Study of the Geminga Pulsar; (2) ASCA Observations of PSR 1920+10 and PSR 0950+08; (3) X-ray and Optical Spectroscopy of IRAS 20181-2244: Not a Type 2 QSO, but a I Zw I Object; (4) Models for X-ray Emission from Isolated Pulsars; (5) Optical and X-ray Spectroscopy of 1E 0449.4-1823: Demise of the Original Type 2 QSO; (6) The ASCA Spectrum of the Broad-Line Radio Galaxy Pictor A: A Simple Power Law with No Fe Ka Line; and (7) ASCA Spectra of NGC 4388 and ESO 103-G35: Absorption, Reflection, and Variability in Intermediate Type Seyfert Galaxies.

  9. Molecular absorption in transition region spectral lines

    NASA Astrophysics Data System (ADS)

    Schmit, D. J.; Innes, D.; Ayres, T.; Peter, H.; Curdt, W.; Jaeggli, S.

    2014-09-01

    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary. The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales and introduces a new complexity into our understanding of solar thermal structure. It lends credence to previous numerical studies that found evidence for elevated pockets of cool gas in the chromosphere. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org

  10. Narrow line Seyfert 1 galaxies: where are the broad line regions?

    NASA Astrophysics Data System (ADS)

    Mao, Weiming; Hu, Chen; Wang, Jianmin; Bian, Weihao; Zhang, Shu; Zhao, Gang

    2010-12-01

    A sample consisting of 211 narrow line Seyfert 1 galaxies (NLS1s) with high quality spectra from the Sloan Digital Sky Survey (SDSS) is selected to explore where broad line regions are in these objects. We find that the H β profile can be fitted well by three (narrow, intermediate and broad) Gaussian components, and the FWHM ratios of the broad to the intermediate components hold a constant of 3.0 roughly for the entire sample. If the broad components originate from the region scaled by the well-determined H β reverberation mapping relation, we find that the intermediate components originate from the inner edge of the torus, which is scaled by dust K-band reverberation. We find that the IC and the BC are strongly linked dynamically, but the relation of their covering factors is much more relaxed, implying that both regions are clumpy.

  11. Spectrophotometry of six broad absorption line QSOs

    NASA Technical Reports Server (NTRS)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  12. Level-crossing absorption with narrow spectral width in Rb vapor with buffer gas

    SciTech Connect

    Yu, Ye Jin; Lee, Hyun Jun; Bae, In-Ho; Moon, Han Seb; Noh, Heung-Ryoul

    2010-02-15

    We present the transformation in the Hanle configuration of the transmission that results from coherent population trapping (CPT) into the level-crossing absorption (LCA) that results from the single-photon optical pumping in the {sup 87}Rb D{sub 1} line of a Rb vapor cell with a Ne buffer gas when the polarization of the laser field is changed from linear to circular. The LCA spectrum, with a narrow spectral width of 2.4 mG (1.7 kHz), was observed in the F{sub g{yields}}F{sub e{<=}}F{sub g} transition with the circularly polarized laser. This may be because the LCA is both related to the transverse magnetic field and the atom-laser interaction time resulting from diffusive atomic motion in the cell with the buffer gas. The CPT and LCA spectra were calculated numerically using the full density matrix equations for the relevant magnetic sublevels of the hyperfine levels, considering the residual magnetic fields perpendicular to laser propagation and the collision effects resulting from the buffer gas. There was good qualitative agreement between theoretical and experimental results.

  13. The extended narrow line region of NGC 4151. I - Emission line ratios and their implications

    NASA Astrophysics Data System (ADS)

    Penston, M. V.; Robinson, A.; Alloin, D.; Appenzeller, I.; Aretxaga, I.; Axon, D. J.; Baribaud, T.; Barthel, P.; Baum, S. A.; Boisson, C.; de Bruyn, A. G.; Clavel, J.; Colina, L.; Dennefeld, M.; Diaz, A.; Dietrich, M.; Durret, F.; Dyson, J. E.; Gondhalekar, P.; van Groningen, E.; Jablonka, P.; Jackson, N.; Kollatschny, W.; Laurikainen, E.; Lawrence, A.; Masegosa, J.; McHardy, I.; Meurs, E. J. A.; Miley, G.; Moles, M.; O'Brien, P.; O'Dea, C.; del Olmo, A.; Pedlar, A.; Perea, J.; Perez, E.; Perez-Fournon, I.; Perry, J.; Pilbratt, G.; Rees, M.; Robson, I.; Rodriguez-Pascual, P.; Rodriguez Espinosa, J. M.; Santos-Lleo, M.; Schilizzi, R.; Stasińska, G.; Stirpe, G. M.; Tadhunter, C.; Terlevich, E.; Terlevich, R.; Unger, S.; Vila-Vilaro, V.; Vilchez, J.; Wagner, S. J.; Ward, M. J.; Yates, G. J.

    1990-09-01

    The paper presents the first results from long-slit spectra of the Seyfert galaxy NGC 4151 which give average diagnostic ratios of weak lines in the Extended Narrow Line Region (ENLR) of the galaxy and the first direct density measurement in an ENLR. These data confirm that the ENLR is kinematically undisturbed gas in the disk of the galaxy which is illuminated by an ionizing continuum stronger by a factor of 13 than a power law interpolated between recently observed ultraviolet and X-ray fluxes. Explanations of this apparent excess include a hot thermal continuum, time variations, and an anisotropic rotation field.

  14. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    SciTech Connect

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  15. BATSE gamma-ray burst line search. 1: Search for narrow lines in spectroscopy detector data

    NASA Technical Reports Server (NTRS)

    Palmer, David M.; Teegarden, Bonnard J.; Schaefer, Bradley E.; Cline, Thomas L.; Band, David L.; Ford, Lyle A.; Matteson, James L.; Paciesas, William S.; Pendleton, Geoffrey N.; Briggs, Michael S.

    1994-01-01

    Analysis of data from the Spectroscopy Detectors (SDs) of the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO) has found no convincing line features in the spectra of gamma-ray bursts (GRBs) in almost 3 years of operation, in contrast to expectations based on results from other experiments. In this Letter we discuss the visual search for narrow lines in the SD data. The search has examined 192 bursts, of which approximately 18 were intense enough that lines similar to those seen by instruments on the Ginga satellite would have been visible between approximately 20 and approximately 100 keV. A simplified calculation shows that the BATSE and Ginga results are consistent at the 13% level.

  16. An XMM-Newton Study of the Bright Narrow-Line Seyfert 1 Galaxy Arakelian 564

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2004-01-01

    We report on two XMM-Newton observations of the bright Narrow-Line Seyfert 1 galaxy Ark 564 taken one year apart (2000 June and 2001 June). The 0.6-10 keV continuum is well described by a soft blackbody component (kT - 140-150 eV) plus a steep power law (Gamma - 2.50-2.55). No significant spectral changes are observed between the two observations, although the X-ray flux in the second observation is - 40-50 per cent lower. In both observations we detect a significant absorption edge at a rest-frame energy of - 0.73 keV, corresponding to 0 VII. The presence of the absorption feature is confirmed by a simultaneous Chandra grating observation in 2000 June, although the best-fitting edge threshold is at a slightly lower energy in the Chandra data, possibly because of a different parameterization of the underlying X-ray continuum. We find tentative evidence for a broad iron emission line in the 2000 June observation. The results from an analysis of the power spectral density (PSD) function are also presented. The present XMM-Newton data support the idea that the PSD shows two breaks, although the location of the high-frequency break requires further constraints.

  17. Quasar Absorption Line Survey - Cycle 4 High

    NASA Astrophysics Data System (ADS)

    Bahcall, John

    1994-01-01

    The Absorption Line Survey of bright quasars provides a homogeneous data base for studying fundamental questions about the origin and evolution of gaseous systems in the universe. The initial results determine at small redshifts the number densities of Ly-ALPHA systems, of metal-lines and extragalactic halos, of Lyman-limit systems, of associated absorption systems, and the shapes and intensities of quasar emission lines and spectral energy distributions. The survey reveals that much of the sky is covered by high or very high velocity metal-line clouds present in the Galactic halo. A larger sample, which includes the requested Cycle 3 observations, is required to answer many important questions. For example, what is the correlation function of Ly-ALPHA systems at small redshifts? What fraction of the metal, the Ly-ALPHA, and the Ly-limit systems are associated with galaxies and what are the characteristic sizes of the outer gaseous regions of different types of galaxies? Do absorbing systems show evidence of the large-scale structure seen with galaxies and clusters of galaxies? The observations requested in Cycle 3 will extend the region of coverage of the Key Project sample from the redshift range of z = 0.0 to 1.0 (Cycles 1& 2) to z = 0.0 to 1.6 (Cycles 1-3). THIS FILE CONTAINS THE HIGH PRIORITY OBSERVATIONS FROM CYCLES 2 and 3 WHICH WERE NOT COMPLETED IN THOSE CYCLES.

  18. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029---Ejected or Intervening?

    NASA Astrophysics Data System (ADS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-10-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of zabs = 0.695 in the spectrum of the zem = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km s-1 is detected from C IV, N V, and O VI in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM ~ 250 km s-1) at zabs = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C IV, N V, and O VI doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by ~56,000 km s-1 to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km s-1 from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  19. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029--Ejected or Intervening?

    NASA Technical Reports Server (NTRS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-01-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  20. Polarization and Broad Absorption Lines in Quasars

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    1990-12-01

    OI 287 is a unique extragalactic source. It appears to take one property from each class of object. It is either some kind of missing link, or a new type of activity. Because of the high optical polarization, OI 287 has been classified with the blazars. However, every other blazar is variable in optical flux, polarization, and polarization angle., while OI 287 is constant at V=17, P=8%, and theta=145 degrees. Also, every other blazar has a radio source dominated by an intense flat-spectrum core, while OI 287 has an upper limit of 2% of the total 20cm flux in the core. The only group of quasars which ever shows even moderate (2-5%) constant optical polarization is the broad absorption line (BAL) objects, e.g. PHL 5200 and H1413+113. Among the BAL quasars, PHL 5200 and H1413+113 have exceptionally smooth deep, attached absorption lines, and also the highest polarization. We want to know whether OI 287 is a BAL quasar. It would be the first definite radio loud example. If it is a BAL quasar then the high polarization is really related to (and perhaps the key to) the BAL phenomenon, and we can use the techniques of spectropolarimetry to help unlock the BAL geometry. The UV spectral shape would also provide help determining the cause of polarization.

  1. DISCOVERY OF THE TRANSITION OF A MINI-BROAD ABSORPTION LINE INTO A BROAD ABSORPTION LINE IN THE SDSS QUASAR J115122.14+020426.3

    SciTech Connect

    Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane; Hamann, Fred; Murphy, Michael T.; Nestor, Daniel

    2013-09-20

    We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broad absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.

  2. Monitoring the Variability of Intrinsic Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ~103-105 cm-3 and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage. Based on data collected at Subaru telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations obtained at the European Southern Observatory at La Silla, Chile in programs 65.O-0063(B), 65.O-0474(A), 67.A-0078(A), 68.A-0461(A), 69.A-0204(A), 70.B-0522(A), 072.A-0346(A), 076.A-0860(A), 079.B-0469(A), and 166.A-0106(A).

  3. A catalogue of absorption-line systems in QSO spectra

    NASA Astrophysics Data System (ADS)

    Ryabinkov, A. I.; Kaminker, A. D.; Varshalovich, D. A.

    2003-12-01

    We present a new catalog of absorption-line systems identified in the quasar spectra. It contains data on 821 QSOs and 8558 absorption systems comprising 16 139 absorption lines with measured redshifts in the QSO spectra. The catalog includes absorption-line systems consisting of lines of heavy elements, lines of neutral hydrogen, Lyman limit systems, damped Lyα absorption systems, and broad absorption-line systems. Using the data of the present catalog we also discuss redshift distributions of absorption-line systems. Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/707

  4. Apparent [O III] variability in the narrow line Seyfert I Mrk142

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Guang; Feng, Long-Long

    2016-03-01

    In this Letter, we checked spectral properties of the well-known narrow line Seyfert I Mrk142, in order to try to find effects of narrow line variability on BLR radius of Mrk142 which is an outlier in the R-L plane. Although, no improvement can be found on BLR radius, apparent narrow line variability can be confirmed in Mrk142. Using the public spectra collected from the Lick AGN Monitoring Project, the spectral scaling method based on assumption of constant [O III] line is first checked by examining broad and narrow emission line properties. We find that with the application of the spectral scaling method, there is a strong correlation between the [O III] line flux and the [O III] line width, but weaker correlations between the broad Hα flux and the broad Hβ flux, and between the broad Hα flux and the continuum emission at 5100 Å. The results indicate that the assumption of constant [O III] line is not preferred, and caution should be exercised when applying the spectral scaling calibration method. And then, we can find a strong correlation between the [O III] line flux and the continuum emission at 5100 Å, which indicates apparent short-term variability of the [O III] line in Mrk142 over about two months.

  5. H{beta} LINE WIDTHS AS AN ORIENTATION INDICATOR FOR LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Punsly, Brian; Zhang Shaohua E-mail: brian.punsly@comdev-usa.co

    2010-12-20

    There is evidence from radio-loud quasars to suggest that the distribution of the H{beta} broad emission line (BEL) gas is arranged in a predominantly planar orientation, and this result may well also apply to radio-quiet quasars. This would imply that the observed FWHM of the H{beta} BELs is dependent on the orientation of the line of sight to the gas. If this view is correct then we propose that the FWHM can be used as a surrogate, in large samples, to determine the line of sight to the H{beta} BELs in broad absorption line quasars (BALQSOs). The existence of broad UV absorption lines (BALs) means that the line of sight to BALQSOs must also pass through the BAL out-flowing gas. It is determined that there is a statistically significant excess of narrow-line profiles in the SDSS DR7 archival spectra of low-ionization broad absorption line quasars (LoBALQSOs), indicating that BAL gas flowing close to the equatorial plane does not commonly occur in these sources. We also find that the data is not well represented by random lines of sight to the BAL gas. Our best fit indicates two classes of LoBALQSOs, the majority ({approx}2/3) are polar outflows that are responsible for the enhanced frequency of narrow-line profiles, and the remainder are equatorial outflows. We further motivated the line of sight explanation of the narrow-line excess in LoBALQSOs by considering the notion that the skewed distribution of line profiles is driven by an elevated Eddington ratio in BALQSOs. We constructed a variety of control samples comprised of non-LoBALQSOs matched to a de-reddened LoBALQSO sample in redshift, luminosity, black hole mass, and Eddington ratio. It is demonstrated that the excess of narrow profiles persists within the LoBALQSO sample relative to each of the control samples with no reduction of the statistical significance. Thus, we eliminate the possibility that the excess narrow lines seen in the LoBALQSOs arise from an enhanced Eddington ratio.

  6. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    NASA Astrophysics Data System (ADS)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s‑1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s‑1 has a density in the range of 109 to 1010 cm‑3 and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s‑1 has a density of 103 cm‑3 and a distance of ∼1 kpc.

  7. The Unusual Absorption Line System of PG 2302+029 -- Ejected or Intervening?

    NASA Astrophysics Data System (ADS)

    Jannuzi, Buell

    1997-07-01

    A high-ionization broad absorption line system {C IV, N V, and O VI doublets; FWHM 3, 000 to 5, 000 km s^-1; z_rmabs=0.7} in the HST FOS UV spectrum of PG 2302+029 {z=1.052} has unprecedented properties. A distinct narrow line system {FWHM <250 km s^-1, z_abs=0.702} is also resolved within the broad system. If produced by material intrinsic to the quasar then the absorbing gas has been ejected from the quasar at more than sim56, 000 km s^-1. This extremely large ejection velocity as well as its ``detached'' nature {the reddest extent of the broad line absorption is more than 50, 000 km s^-1 from the quasar rest frame} would be unlike any known intrinsic absorber in QSOs. Alternatively, the broad and narrow systems could be produced by gas in a foreground cluster or super-cluster of galaxies. However, previous examples of such absorption have always included absorption by low-ionization species {e.g. Mg II, Si II}, which are not detected in the PG 2302+029 systems. We will undertake STIS and WFPC2 observations designed to help to identify the cause of this absorption system and allow us to determine whether the system is an extreme example of previously known classes of quasar absorption lines or represents an entirely new phenomenon.

  8. Narrow-line waveguide terahertz time-domain spectroscopy of aspirin and aspirin precursors.

    PubMed

    Laman, N; Harsha, S Sree; Grischkowsky, D

    2008-03-01

    Low frequency vibrational modes of pharmaceutical molecules are dependent on the molecule as a whole and can be used for identification purposes. However, conventional Fourier transform far-infrared spectroscopy (FT-IR) and terahertz time-domain spectroscopy (THz-TDS) often result in broad, overlapping features that are difficult to distinguish. The technique of waveguide THz-TDS has been recently developed, resulting in sharper spectral features. Waveguide THz-TDS consists of forming an ordered polycrystalline film on a metal plate and incorporating that plate in a parallel-plate waveguide, where the film is probed by THz radiation. The planar order of the film on the metal surface strongly reduces the inhomogeneous broadening, while cooling the waveguide to 77 K reduces the homogeneous broadening. This combination results in sharper absorption lines associated with the vibrational modes of the molecule. Here, this technique has been demonstrated with aspirin and its precursors, benzoic acid and salicylic acid, as well as the salicylic acid isomers 3- and 4-hydroxybenzoic acid. Linewidths as narrow as 20 GHz have been observed, rivaling single crystal measurements.

  9. Shocked Post-starbust Galaxy Survey: Candidate Post-Starbust Galaxies with Narrow Emission Line Ratios Arising from Shocks

    NASA Astrophysics Data System (ADS)

    Cales, Sabrina; Alatalo, Katherine A.; Appleton, Philip N.; Lisenfeld, Ute; Rich, Jeffrey; Nyland, Kristina; Lacy, Mark; Kewley, Lisa J.

    2015-01-01

    As galaxies age they move from the blue cloud (star forming) to the red sequence (`dead' galaxies) in the color-magnitude diagram of galaxies. Galaxies between the blue cloud and red sequence (i.e., the green valley) are caught in the act of transitioning and they show large Balmer jump and high order Balmer absorption lines in their optical spectra. These galaxies answer to many names (i.e., E+A, K+A, Hdelta-strong, post-starburst), all with similar but slightly different selection criteria. Many studies of transitioning galaxies invoke strong constraints on emission lines in order to guarantee a dominant post-starburst (rather that actively star bursting) stellar population, however these constraints bias the sample against narrow-line emission not arising from star formation, namely active galactic nuclei, low-ionization nuclear emission regions and shocks. Using the Oh-Sarzi-Schawinski-Yi (OSSY) emission and absorption line measurements for SDSS DR7 galaxies we study the intersection between transitioning galaxies and those with shock line ratios. We show that a significant fraction of transitioning galaxies have emission-line ratios indicative of shocks. We postulate that these shocks may be in part responsible for the shepherding of blue star forming galaxies to passive early-types.

  10. The Early Universe Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Iye, Masanori

    2000-12-01

    High-z QSOs are valuable probes of the early universe and provide us information on the era of galaxy formation. QSOs can also be used as background sources against intervening objects such as proto-galactic clouds and faint foreground galaxies. These intervening objects produce absorption lines in the spectra of background QSOs. Gas clouds producing metal absorption lines are thought to exist in the halos of intervening galaxies and are used to evaluate the metal abundances of galaxies at high redshifts. In the course of studying the evolution of metal absorption lines, it was found that the number of absorbers per unit redshift interval increases in the vicinity of QSOs, especially of radio-loud QSOs. The reason of such an excess of metal absorption lines remains still unclear. In this paper, the authors review the absorption properties and enigmas of quasar absorption lines.

  11. Cold Atomic Hydrogen, Narrow Self-Absorption, and the Age of Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2006-01-01

    This viewgraph presentation reviews the history, and current work on HI and its importance in star formation. Through many observations of HI Narrow Self Absorption (HINSA) the conclusions are drawn and presented. Local molecular clouds have HI well-mixed with molecular constituents This HI is cold, quiescent, and must be well-shielded from the UV radiation field The density and fractional abundance (wrt H2) of the cold HI are close to steady state values The time required to convert these starless clouds from purely HI initial state to observed present composition is a few to ten million years This timescale is a lower limit - if dense clouds being swept up from lower density regions by shocks, the time to accumulate material to get A(sub v) is approximately 1 and provide required shielding may be comparable or longer

  12. Searching for Narrow Emission Lines in X-ray Spectra: Computation and Methods

    NASA Astrophysics Data System (ADS)

    Park, Taeyoung; van Dyk, David A.; Siemiginowska, Aneta

    2008-12-01

    The detection and quantification of narrow emission lines in X-ray spectra is a challenging statistical task. The Poisson nature of the photon counts leads to local random fluctuations in the observed spectrum that often result in excess emission in a narrow band of energy resembling a weak narrow line. From a formal statistical perspective, this leads to a (sometimes highly) multimodal likelihood. Many standard statistical procedures are based on (asymptotic) Gaussian approximations to the likelihood and simply cannot be used in such settings. Bayesian methods offer a more direct paradigm for accounting for such complicated likelihood functions, but even here multimodal likelihoods pose significant computational challenges. The new Markov chain Monte Carlo (MCMC) methods developed in 2008 by van Dyk and Park, however, are able to fully explore the complex posterior distribution of the location of a narrow line, and thus provide valid statistical inference. Even with these computational tools, standard statistical quantities such as means and standard deviations cannot adequately summarize inference and standard testing procedures cannot be used to test for emission lines. In this paper, we use new efficient MCMC algorithms to fit the location of narrow emission lines, we develop new statistical strategies for summarizing highly multimodal distributions and quantifying valid statistical inference, and we extend the method of posterior predictive p-values proposed by Protassov and coworkers to test for the presence of narrow emission lines in X-ray spectra. We illustrate and validate our methods using simulation studies and apply them to the Chandra observations of the high-redshift quasar PG 1634+706.

  13. Tailored slice selection in solid-state MRI by DANTE under magic-echo line narrowing.

    PubMed

    Matsui, Shigeru; Masumoto, Hidefumi; Hashimoto, Takeyuki

    2007-06-01

    We propose a method of slice selection in solid-state MRI by combining DANTE selective excitation with magic-echo (ME) line narrowing. The DANTE RF pulses applied at the ME peaks practically do not interfere with the ME line narrowing in the combined ME DANTE sequence. This allows straightforward tailoring of the slice profile simply by introducing an appropriate modulation, such as a sinc modulation, into the flip angles of the applied DANTE RF pulses. The utility of the method has been demonstrated by preliminary experiments performed on a test sample of adamantane.

  14. The Radio-Loud Narrow-Line Quasar SDSS J172206.03+565451.6

    NASA Astrophysics Data System (ADS)

    Komossa, Stefanie; Voges, Wolfgang; Adorf, Hans-Martin; Xu, Dawei; Mathur, Smita; Anderson, Scott F.

    2006-03-01

    We report identification of the radio-loud narrow-line quasar SDSS J172206.03+565451.6, which we found in the course of a search for radio-loud narrow-line active galactic nuclei (AGNs). SDSS J172206.03+565451.6 is only about the fourth securely identified radio-loud narrow-line quasar and the second-most radio loud, with a radio index R1.4~100-700. Its black hole mass, MBH~=(2-3)×107 Msolar estimated from Hβ line width and 5100 Å luminosity, is unusually small given its radio loudness, and the combination of mass and radio index puts SDSS J172206.03+565451.6 in a scarcely populated region of MBH-R diagrams. SDSS J172206.03+565451.6 is a classical narrow-line Seyfert 1-type object with FWHMHβ~=1490 km s-1, an intensity ratio of [O III]/Hβ~=0.7, and Fe II emission complexes with Fe II λ4570/Hβ~=0.7. The ionization parameter of its narrow-line region, estimated from the line ratio [O II]/[O III], is similar to Seyferts, and its high ratio of [Ne V]/[Ne III] indicates a strong EUV-to-soft X-ray excess. We advertise the combined usage of [O II]/[O III] and [Ne V]/[Ne III] diagrams as a useful diagnostic tool to estimate ionization parameters and to constrain the EUV-soft X-ray continuum shape relatively independently from other parameters.

  15. Ultraviolet interstellar absorption lines from low-z galaxies

    NASA Astrophysics Data System (ADS)

    Sahu, M. S.

    1997-05-01

    The importance of studying absorption lines from z<<0.1 galaxies are discussed. The Mg II λλ2796 and 2803 Å doublet absorption is sensitive to low column density gas and has been used to search for absorption lines from low-z galaxies. Recent studies of abundances and depletion patterns toward the Small Magellanic Cloud (Welty et al. 1997) and the NGC 1705 sightline (Sahu & Blades, 1997) are reviewed.

  16. Selection of the optimal combination of water vapor absorption lines for detection of temperature in combustion zones of mixing supersonic gas flows by diode laser absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mironenko, V. R.; Kuritsyn, Yu. A.; Bolshov, M. A.; Liger, V. V.

    2016-12-01

    Determination of a gas medium temperature by diode laser absorption spectrometry (DLAS) is based on the measurement of integral intensities of the absorption lines of a test molecule (generally water vapor molecule). In case of local thermodynamic equilibrium temperature is inferred from the ratio of the integral intensities of two lines with different low energy levels. For the total gas pressure above 1 atm the absorption lines are broadened and one cannot find isolated well resolved water vapor absorption lines within relatively narrow spectral interval of fast diode laser (DL) tuning range (about 3 cm-1). For diagnostics of a gas object in the case of high temperature and pressure DLAS technique can be realized with two diode lasers working in different spectral regions with strong absorption lines. In such situation the criteria of the optimal line selection differs significantly from the case of narrow lines. These criteria are discussed in our work. The software for selection the optimal spectral regions using the HITRAN-2012 and HITEMP data bases is developed. The program selects spectral regions of DL tuning, minimizing the error of temperature determination δT/T, basing on the attainable experimental error of line intensity measurement δS. Two combinations of optimal spectral regions were selected - (1.392 & 1.343 μm) and (1.392 & 1.339 μm). Different algorithms of experimental data processing are discussed.

  17. EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY

    SciTech Connect

    Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan; Ferland, Gary

    2015-12-01

    We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsic Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.

  18. Birefringence of solid-state laser media: broadband tuning discontinuities and application to laser line narrowing

    SciTech Connect

    Krasinski, J.S.; Band, Y.B.; Chin, T.; Heller, D.F.; Morris, R.C.; Papanestor, P.

    1989-04-15

    Spectral consequences that result from using birefringent media with broadband gain inside of laser cavities containing polarizing elements are described. We show that the laser intensity is modulated as a function of the output frequency unless the cavity elements are carefully aligned so that their polarization axis coincides with a principal optical axis of the gain medium. Analysis of the tuning characteristics of a birefringent polarization-dependent gain medium is exploited to provide a simple method for line narrowing the laser output. By introduction of an intracavity birefringent compensator the narrow-band output can be continuously tuned. Experimental results for alexandrite lasers are presented.

  19. Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography

    SciTech Connect

    Roberts, Kenneth Paul

    2001-01-01

    Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonance (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.

  20. Broad Absorption Line Quasars and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Wills, B. J.

    2009-12-01

    Luminous QSOs are signposts to galaxy evolution. Local supermassive black holes are the faded relics of quasars in their heyday at redshifts ˜2. Relationships between the masses of these local supermassive black holes and their host galaxy bulges reveal an intimate link, fundamental to galaxy evolution: the newly evolving galaxy fuels the seed black hole through its accretion disk and by loss of angular momentum and energy in the form of outflowing winds. As the central engine approaches Eddington luminosities, winds drive away dusty gas, revealing a luminous QSO and halting star formation in the galaxy bulge. Relativistic winds are manifested in powerful radio jets in ˜10% of quasars, and sub-relativistic winds are revealed by broad blueshifted absorption troughs in the “broad absorption line” (BAL) quasars. Historically, BALs avoid powerful radio quasars. Here we examine the BALs to investigate this inverse connection.

  1. Visible and Near-Infrared Spectroscopy of Seyfert 1 and Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, Alberto; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-01-01

    This paper studies the continuum and emission-line properties of a sample composed of 16 normal Seyfert 1 and seven narrow-line Seyfert 1 (NLS1) galaxies using optical and near-IR CCD spectroscopy. The continuum emission of the galaxies can be described in terms of a combination of stellar population, a nonstellar continuum of power-law form, and Fe II emission. A significative difference in the optical spectral index between NLS1's and normal Seyfert 1's is observed; the latter is steeper. Most NLS1's show Fe II/Hβ ratios larger than those observed in the other Seyfert 1's. In the IRAS band, both groups of galaxies have very similar properties. We have searched for the presence of optically thin gas in the broad-line region (BLR) of the galaxies by comparing the broad O I λ8446 and Hα emission-line profiles. Our analysis show that in the NLS1's, both profiles are similar in shape and width. This result contradicts the hypothesis of thin gas emission in the high-velocity part of the BLR to explain the ``narrowness'' of broad optical permitted lines in these objects. Evidence of narrow O I λ8446 emission is found in six galaxies of our sample, implying that this line is not restricted to a pure BLR phenomenon. In the narrow-line region, we find similar luminosities in the permitted and high-ionization lines of NLS1's and normal Seyfert 1's. However, low-ionization lines such as [O I] λ6300, [O II] λ3727, and [S II] λλ6717, 6731 are intrinsically less luminous in NLS1's. Physical properties derived from density- and temperature-sensitive line ratios suggest that the [O II] and [S II] emitting zones are overlapping in normal Seyfert 1's and separated in NLS1's. Based on observations made at CASLEO. Complejo Astronómico El Leoncito (CASLEO) is operated under agreement between the Consejo Nacional de Investigaciones Científicas y técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juán.

  2. PG 1700 + 518 - a low-redshift, broad absorption line QSO

    SciTech Connect

    Pettini, M.; Boksenberg, A.

    1985-07-01

    The first high-resolution optical spectra and lower resolution UV spectra of PG 1700 + 518, the only known broad-absorption-line (BAL) QSO at low emission redshift (0.288) are presented. The optical data were obtained with the Isaac Newton Telescope on the island of La Palma and the UV data with the International Ultraviolet Explorer satellite. The outstanding feature of the optical spectrum is a strong, broad Mg II absorption trough, detached from the Mg II emission line and indicative of ejection velocities of between 7000 and 18,000 km/s. Also detected were narrow (FWHM = 350 km/s) Mg II absorption lines at absolute z = 0.2698, which are probably related to the mass ejection phenomenon. It is concluded that the emission-line spectrum is similar to that of other low-redshift QSOs although there are some obvious differences from typical BAL QSOs, most notably in the unusually low level of ionization of both emission-line and broad absorption line gas. 21 references.

  3. Metallicity In Narrow Line Regions Go High-Z Type-2 AGN

    NASA Astrophysics Data System (ADS)

    Mignoli, Marco; Feltre, A.; Bongiorno, A.; Gilli, R.; Calura, F.; Vanzella, E.; Bolzonella, M.; Comastri, A.; Vignali, C.; Brusa, M.; Cappelluti, N.

    2016-10-01

    The physics and demographics of high redshift obscured active galactic nuclei is still scarcely studied, and new samples of such objects, selected with different techniques, can provide useful insights into their physical nature. A sample of 90 narrow-line with 1.5< z < 3.0 was selected from the zCOSMOS-deep galaxy sample by detection of the high-ionization CIV 1549A emission line. The presence of this feature in a galaxy spectrum is indicative of nuclear activity, and the selection effectiveness has been also confirmed by ultraviolet emission line diagnostic diagrams. Taking advantage of the large amount of data available in the COSMOS field, the properties of the CIV-selected Type 2 AGN were analyzed, focusing on their host galaxies, X-ray emission, and UV emission line characteristics. Finally, the physical properties of the ionized gas in the Narrow Line Region have been investigated, combining the analysis of strong UV emission lines with the prediction from photoionization models.

  4. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.; Stevens, A. C.; Rosario, D. J. E-mail: shields@astro.as.utexas.edu E-mail: acs0196@mail.utexas.edu

    2012-06-10

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.

  5. Fluorescence line-narrowing spectrometry: Application to the study of benzo(a)pyrene metabolic pathways

    SciTech Connect

    Zamzow, D.S.

    1988-07-01

    The application of fluorescence line-narrowing spectrometry (FLNS) to the study of the pathways involved in the metabolic activation of the environmental contaminant and carcinogen benzo(a)pyrene is described. Fluorescence line-narrowed (FLN) spectra of benzo(a)pyrene, 6-methyl-benzo(a)pyrene, and a number of benzo(a)pyrene-nucleoside adducts are presented. The activation of benzo(a)pyrene (BP) to metabolites capable of binding to DNA in the in vitro horseradish peroxidase-catalyzed binding of BP to DNA, the DNA from mice exposed (in vivo) to BP, and the DNA from fish exposed (in vivo) to a number of polycyclic aromatic hydrocarbons, including BP, is investigated by the analysis of the FLN spectra obtained from these samples. 65 refs., 22 figs., 4 tabs.

  6. Basic properties of Narrow-Line Seyfert 1 Galaxies with relativistic jets

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Angelakis, E.; Bonnoli, G.; Braito, V.; Caccianiga, A.; Fuhrmann, L.; Gallo, L.; Ghirlanda, G.; Ghisellini, G.; Grupe, D.; Hamilton, T.; Kaufmann, S.; Komossa, S.; Kovalev\\inst{7 2}, Y. Y.; Lahteenmaki, A.; Lister, M. L.; Mannheim, K.; Maraschi, L.; Mathur, S.; Peterson, B. M.; Romano, P.; Severgnini, P.; Tagliaferri, G.; Tammi, J.; Tavecchio, F.; Tibolla, O.; Tornikoski, M.; Vercellone, S.

    We present the preliminary results of a survey performed with Swift to observe a sample of radio-loud Narrow-Line Seyfert 1 Galaxies (RLNLS1s). Optical-to-X-ray data from Swift are complemented with gamma -ray observations from Fermi/LAT and radio measurements available in the literature. The comparison with a sample of bright Fermi blazars indicates that RLNLS1s seem to be the low-power tail of the distribution.

  7. On the identification of deuterium lines in QSO absorption systems

    NASA Astrophysics Data System (ADS)

    Levshakov, S. A.; Takahara, F.

    1996-07-01

    The ambiguity of identification of deuterium lines in QSO absorption systems is considered, under the assumption that the D I and H I absorption lines are formed in turbulent media with a finite correlation length of the stochastic velocity field. The relative shift of the D I and H I lines is shown to vary over the range +/-(4-8) km s^- 1^ for a cloud model with hydrogen column density N_HI_ = 10^17^ cm^-2^, the ratio D/H = 10^-4^, and kinetic temperature T_kin_ = 10^4^ K. The variations in the relative shift of the deuterium lines are fundamental in character and result from the stochastic nature of the formation of absorption lines in turbulent media

  8. Observation of narrow isotopic optical magnetic resonances in individual emission spectral lines of neon

    SciTech Connect

    Saprykin, E G; Sorokin, V A; Shalagin, A M

    2015-07-31

    Narrow resonances are observed in the course of recording the individual emission lines of the glow discharge in the mixture of isotopes {sup 20}Ne and {sup 22}Ne, depending on the strength of the longitudinal magnetic field. The position of resonances in the magnetic scale corresponds to the compensation of the isotopic shift for certain spectral lines due to the Zeeman effect. It is found that the contrast of the resonances is higher for the transitions between the highly excited energy levels, and the resonances themselves are formed in the zone of longitudinal spatial nonuniformity of the magnetic field. (laser applications and other topics in quantum electronics)

  9. Quasar Absorption Lines and SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Shoemaker, Emileigh Suzanne; Scott, Jennifer E.; Oldak, Katarzyna

    2017-01-01

    We present the results of a study of the sightlines of 45 low redshift quasars (0.06 < z < 0.85) observed with HST/COS that lie within the footprint of the Sloan Digital Sky Survey. We use both the SDSS DR12 galaxy photometric data, including photometric redshifts, and the measured properties of the absorbers along with the known absorption characteristics of the intergalactic medium and the circumgalactic medium of galaxies to assign the most probable galaxy matches for each absorber in the sample, using estimated galaxy luminosities and virial radii as a discriminator. We show that the scheme can recover known galaxy-absorber matches found from spectroscopic data and thus provides a method for identifying likely pairs in photometric data sets as well as targets for spectroscopic follow up.

  10. PG 1411 + 442 - The nearest broad absorption line quasar

    NASA Technical Reports Server (NTRS)

    Malkan, Matthew A.; Green, Richard F.; Hutchings, John B.

    1987-01-01

    IUE observations reveal strong, moderately broad absorption troughs in the blue wings of the C IV and N V emission lines of the quasar PG 1411 + 442. No absorption from weakly ionized gas is detected. The emission-line strengths and overall shape of the ultraviolet/optical/near-infrared/far-infrared continuum of the new broad absorption line quasar are within the range normally measured in quasars. Its redshift is low enough to allow the morphology of the host galaxy to be studied in deep broad-band and intermediate-band CCD images. The galaxy appears to be a large spiral with a very long arm or tail. The inclination angle is 57 deg, which rules out the possibility that the line of sight to the nucleus intersects a large path length in a galactic disk.

  11. NGC 4051 and the Nature of Narrow-Line Seyfert I Galaxies

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; McHardy, I. M.; Wilkes, B. J.

    2004-01-01

    We report on the results of a three-year program of coordinated X-ray and optical monitoring of the narrow-line Seyfert 1 galaxy NGC 4051. The principal results of this program are: (1) The H-beta emission line time lag and Doppler width yield a virial mass estimate of about 1.1 mission solar masses, at the extreme low end of AGN masses. A plausible adjustment for inclination effects increases this mass slightly to about 1.4 mission solar masses. (2) During the third year of this campaign, both the X-ray continuum and the He II 4686 line went into extremely low states, although the optical continuum and the H-beta broad line were both still present and variable. We suggest that the inner part of the accretion disk may have gone into an advection-dominated state, yielding little radiation from the hotter inner disk. (3) The He II 4686 line is almost five times as broad as H-beta, and it is strongly blueward asymmetric, as are the high-ionization UV lines recorded in archive spectra of NGC 4051. The data are consistent with the Balmer lines arising in a low-inclination disk-like configuration, and the high-ionization lines arising in an outflowing wind, of which we observe preferentially the near side.

  12. Rapid trench initiated recrystallization and stagnation in narrow Cu interconnect lines

    SciTech Connect

    O'Brien, Brendan B.; Rizzolo, Michael; Prestowitz, Luke C.; Dunn, Kathleen A.

    2015-10-26

    Understanding and ultimately controlling the self-annealing of Cu in narrow interconnect lines has remained a top priority in order to continue down-scaling of back-end of the line interconnects. Recently, it was hypothesized that a bottom-up microstructural transformation process in narrow interconnect features competes with the surface-initiated overburden transformation. Here, a set of transmission electron microscopy images which captures the grain coarsening process in 48 nm lines in a time resolved manner is presented, supporting such a process. Grain size measurements taken from these images have demonstrated that the Cu microstructural transformation in 48 nm interconnect lines stagnates after only 1.5 h at room temperature. This stubborn metastable structure remains stagnant, even after aggressive elevated temperature anneals, suggesting that a limited internal energy source such as dislocation content is driving the transformation. As indicated by the extremely low defect density found in 48 nm trenches, a rapid recrystallization process driven by annihilation of defects in the trenches appears to give way to a metastable microstructure in the trenches.

  13. Spectroscopic Properties of Selected Narrow Emission Line Galaxies from the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Colon, Amy M.; Carroll, P.; Roberts, R.; Wong, N.; Liu, C.

    2007-12-01

    We present properties of seven blue narrow emission line galaxies (NELGs) in the redshift range 0.25 < z < 0.73, initially selected as QSO candidates in the COSMOS 2-degree survey field. These galaxies have been selected for the high signal-to-noise of their spectra, as indicated by the presence of the emission line [NeIII] 3869 Angstroms. Emission line diagnostics are used to measure metallicities and star formation rates, and to test the presence of AGN. Hubble ACS images are used to measure their surface brightness distributions and quantitative morphologies. Preliminary results indicate that these objects are forming stars at a rate of 4 to 20 solar masses per year; and their metallicity appears not to vary with the galaxy's concentration index which ranges 0.42 to 0.63.

  14. Imaging spectrophotometry of ionized gas in NGC 1068. I - Kinematics of the narrow-line region

    NASA Technical Reports Server (NTRS)

    Cecil, Gerald; Bland, Jonathan; Tully, R. Brent

    1990-01-01

    The kinematics of collisionally excited forbidden N II 6548, 6583 across the inner 1 arcmin diameter of the nearby Seyfert galaxy NGC 1068 is mapped using an imaging Fabry-Perot interferometer and low-noise CCD. The stack of monochromatic images, which spatially resolved the high-velocity gas, was analyzed for kinematic and photometric content. Profiles agree well with previous long-slit work, and their complete spatial coverage makes it possible to constrain the gas volume distribution. It is found that the narrow-line region is distributed in a thick center-darkened, line-emitting cylinder that envelopes the collimated radio jet. Three distinct kinematic subsystems, of which the cylinder is composed, are discussed in detail. Detailed behavior of the emission-line profiles, at the few points in the NE quadrant with simple kinematics, argues that the ionized gas develops a significant component of motion perpendicular to the jet axis.

  15. CONSTRAINING JET PRODUCTION SCENARIOS BY STUDIES OF NARROW-LINE RADIO GALAXIES

    SciTech Connect

    Sikora, Marek; Stasinska, Grazyna; Koziel-Wierzbowska, Dorota; Madejski, Greg M.; Asari, Natalia V.

    2013-03-01

    We study a large sample of narrow-line radio galaxies (NLRGs) with extended radio structures. Using 1.4 GHz radio luminosities L {sub 1.4}, narrow optical emission line luminosities L {sub [OIII]} and L{sub H{sub {alpha}}}, as well as black hole masses M {sub BH} derived from stellar velocity dispersions measured from the optical spectra obtained with the Sloan Digital Sky Survey, we find that (1) NLRGs cover about four decades of the Eddington ratio, {lambda} {identical_to} L {sub bol}/L {sub Edd}{proportional_to}L {sub line}/M {sub BH}; (2) L {sub 1.4}/M {sub BH} strongly correlates with {lambda}; and (3) radio loudness, R{identical_to}L{sub 1.4}/L{sub line}, strongly anti-correlates with {lambda}. A very broad range of the Eddington ratio indicates that the parent population of NLRGs includes both radio-loud quasars (RLQs) and broad-line radio galaxies (BLRGs). The correlations they obey and their high jet production efficiencies favor a jet production model which involves the so-called magnetically choked accretion scenario. In this model, production of the jet is dominated by the Blandford-Znajek mechanism, and the magnetic fields in the vicinity of the central black hole are confined by the ram pressure of the accretion flow. Since large net magnetic flux accumulated in central regions of the accretion flow required by the model can take place only via geometrically thick accretion, we speculate that the massive, 'cold' accretion events associated with luminous emission-line active galactic nucleus can be accompanied by an efficient jet production only if preceded by a hot, very sub-Eddington accretion phase.

  16. Broad Absorption Line Quasar catalogues with Supervised Neural Networks

    SciTech Connect

    Scaringi, Simone; Knigge, Christian; Cottis, Christopher E.; Goad, Michael R.

    2008-12-05

    We have applied a Learning Vector Quantization (LVQ) algorithm to SDSS DR5 quasar spectra in order to create a large catalogue of broad absorption line quasars (BALQSOs). We first discuss the problems with BALQSO catalogues constructed using the conventional balnicity and/or absorption indices (BI and AI), and then describe the supervised LVQ network we have trained to recognise BALQSOs. The resulting BALQSO catalogue should be substantially more robust and complete than BI-or AI-based ones.

  17. Narrow-line-width UV Bursts in the Transition Region above Sunspots Observed by IRIS

    NASA Astrophysics Data System (ADS)

    Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong; Li, Bo; Madjarska, Maria S.; Fu, Hui; Mou, Chaozhou; Xie, Haixia

    2016-10-01

    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si iv line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two data sets (a raster and a sit-and-stare data set). Among these, four events are short-lived with a duration of ˜10 minutes, while two last for more than 36 minutes. All NUBs have Doppler shifts of 15-18 km s-1, while the NUB found in sit-and-stare data possesses an additional component at ˜50 km s-1 found only in the C ii and Mg ii lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.

  18. γ-ray variability of radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Calderone, G.; Foschini, L.; Ghisellini, G.; Colpi, M.; Maraschi, L.; Tavecchio, F.; Decarli, R.; Tagliaferri, G.

    2011-06-01

    The recent detection of γ-ray emission from four radio-loud narrow-line Seyfert 1 galaxies suggests that the engine driving the active galactic nuclei (AGN) activity of these objects shares some similarities with that of blazars, namely the presence of a γ-ray emitting, variable jet of plasma closely aligned to the line of sight. In this work we analyse the γ-ray light curves of the four radio-loud narrow-line Seyfert 1 galaxies for which high-energy γ-ray emission has been discovered by Fermi/LAT, in order to study their variability. We find significant flux variability in all the sources. This allows us to exclude a starburst origin of the γ-ray photons and confirms the presence of a relativistic jet. Furthermore, we estimate the minimum e-folding variability time-scale (3-30 d) and infer an upper limit for the size of the emitting region (0.2-2 pc, assuming a relativistic Doppler factor δ= 10 and a jet aperture of θ= 0.1 rad).

  19. Evidence of coronal flaring in narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.

    High-energy (E>2 keV) continuum flaring is detected in two narrow-line Seyfert 1 galaxies (I Zw 1 and NAB 0205+024), consistent with occurring in a hot corona distinct from the accretion disc. The flare in I Zw 1 is accompanied by an increase in the amount of gravitationally redshifted reflected emission coming from the accretion disc. This indicates that the high-energy continuum component is compact and located close to the black hole, and could possibly be the base of an aborted jet.

  20. Gas to crystal Effect on the Spectral Line Narrowing of MEH-PPV.

    PubMed

    Familia, Aziz M; Sarangan, Andrew; Nelson, Thomas R

    2007-06-25

    We report two emission bands corresponding to the spectral line narrowing (SLN) of the conjugated polymer [2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) in films. The SLN emission coming from the polymer chains closer to the glass substrate are at a different spectral position compared to the chains that lay further away from the glass substrate. We explain this phenomenon as a direct consequence of the "gas-to-crystal" effect. In solution form, as concentration was increased, and thus the proportion of aggregates, a decrease in the SLN bandwidth and a red shift of the emission peak was observed.

  1. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    NASA Technical Reports Server (NTRS)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  2. Polarization and Structure of Broad Absorption Line Quasi-Stellar Objects

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick Michael

    This thesis is a spectropolarimetric survey of broad absorption line quasi-stellar objects (BAL QSO). We observed 36 BAL QSO at the Palomar and W. M. Keck Observatories. BAL QSO have higher polarization than other quasars, reinforcing the view that they are normal quasars viewed from an equatorial aspect. However, there is a wide distribution of polarization values, which may be due to intrinsic differences in the geometry or optical depth to scattering. No correlations are found among emission line or broad absorption line properties and continuum polarization, suggesting that these properties are regulated by internal differences unrelated to viewing angle. The continuum polarization of BAL QSO is weakly wavelength-dependent after correction for emission line dilution. In most objects, the polarisation rises to the blue, suggesting that dust scattering or absorption may be important. Broad emission line photons are polarized less than the continuum; and the position angle of the electric vector is rotated with respect to the continuum. The semi-forbidden C III) emission line is polarized differently than the C IV emission line, suggesting resonance scattering in the C III) emission line region. Resonantly scattered photons from the broad absorption line region are detected at high velocities red-ward and blue-ward of the C IV line center in the spectra of some objects. These photons are negatively polarized with respect to the continuum photons, showing that the broad absorption line region and the continuum scattering region are oriented perpendicular to each other. The polarization increases in the BAL troughs, due mainly to partial coverage of the central source by the broad absorption line region. The geometry of the intervening BAL clouds is skewed with respect to the continuum scattering region, which results in position angle rotations in the BAL. The variation of polarization with velocity in the BAL is consistent with a non-radial, accelerating outflow

  3. AFGL atmospheric absorption line parameters compilation - 1982 edition

    NASA Astrophysics Data System (ADS)

    Rothman, L. S.; Gamache, R. R.; Barbe, A.; Goldman, A.; Gillis, J. R.; Brown, L. R.; Toth, R. A.; Flaud, J.-M.; Camy-Peyret, C.

    1983-08-01

    The latest edition of the AFGL atmospheric absorption line parameters compilation for the seven most active infrared terrestrial absorbers is described. Major modifications to the atlas for this edition include updating of water-vapor parameters from 0 to 4300 per cm, improvements to line positions for carbon dioxide, substantial modifications to the ozone bands in the middle to far infrared, and improvements to the 7- and 2.3-micron bands of methane. The atlas now contains about 181,000 rotation and vibration-rotation transitions between 0 and 17,900 per cm. The sources of the absorption parameters are summarized.

  4. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    SciTech Connect

    Shapovalova, A. I.; Burenkov, A. N.; Popovic, L. C.; Kovacevic, J.; Chavushyan, V. H.; Valdes, J. R.; Torrealba, J.; Carrasco, L.; Ilic, D.; Kovacevic, A.; Kollatschny, W.; Bochkarev, N. G.; Leon-Tavares, J.; Mercado, A.; Benitez, E.; Dultzin, D.; De la Fuente, E.

    2012-09-15

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with a sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.

  5. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  6. Narrow line-width phosphors for phosphor-converted white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Khanna, Aloka

    The luminous efficacy of present day phosphor-converted white LEDs is limited by phosphors with broad spectral emission in the long wavelength visible range (600-700 nm). The light output from the cool-white LEDs that do not use a red phosphor is 30-35% higher than the warm white LEDs fabricated with a red phosphor in addition to the yellow phosphor. However, the CRI of cool-white LEDs is significantly lower (~60-70) than the CRI of the warm white LEDs (~80-95) due to lack of the red photons in the emission spectrum. Therefore, a trade-off exists between luminous efficacy and color rendering capability of light generated by phosphor-converted white LEDs. In order to solve this problem, an efficient red phosphor with considerably narrow full width of half maxima (~5-10 nm) and emission in the 600-650 nm wavelength range is required. The narrow spectral line-width can be achieved by introducing trivalent lanthanide ions like Eu3+, Pr3+ and Sm3+ (λpeak- 615 nm, 650 nm, 655 nm) in oxide host lattices although the high energy gaps of these hosts makes these phosphors unsuitable for excitation with near-UV/Blue (380-470 nm) LED sources. Therefore, the goal of this project is two-fold- to develop new material systems which can serve as potential hosts for trivalent lanthanide ions like Eu3+, Pr3+ and Sm3+ (λpeak- 615 nm, 650 nm, 655 nm) with strong excitation bands in the near-UV/blue wavelength region (380-470 nm) and improve the efficiency of the known oxide phosphors doped with trivalent lanthanide ions and the novel phosphors via crystal growth processes. Moreover, phosphors in the green-yellow wavelength region with a narrow emission line-width have the potential of improving the luminous efficacy of the phosphor-converted LEDs as the human eye sensitivity curve peaks at 555 nm. Thus, in parallel with the narrow line-width red phosphor research, new compositions doped with Tb3+ (550 nm), Dy3+ (575 nm), etc. are being explored with strong excitation bands in near

  7. Anatomy of the AGN in NGC 5548. V. A clear view of the X-ray narrow emission lines

    NASA Astrophysics Data System (ADS)

    Whewell, M.; Branduardi-Raymont, G.; Kaastra, J. S.; Mehdipour, M.; Steenbrugge, K. C.; Bianchi, S.; Behar, E.; Ebrero, J.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Kriss, G. A.; Paltani, S.; Peterson, B. M.; Petrucci, P.-O.; Pinto, C.; Ponti, G.

    2015-09-01

    Context. Our consortium performed an extensive multi-wavelength campaign of the nearby Seyfert 1 galaxy NGC 5548 in 2013-14. The source appeared unusually heavily absorbed in the soft X-rays, and signatures of outflowing absorption were also present in the UV. He-like triplets of neon, oxygen and nitrogen, and radiative recombination continuum (RRC) features were found to dominate the soft X-ray spectrum due to the low continuum flux. Aims: Here we focus on characterising these narrow emission features using data obtained from the XMM-Newton RGS (770 ks stacked spectrum). Methods: We use spex for our initial analysis of these features. Self-consistent photoionisation models from Cloudy are then compared with the data to characterise the physical conditions of the emitting region. Results: Outflow velocity discrepancies within the O VII triplet lines can be explained if the X-ray narrow-line region (NLR) in NGC 5548 is absorbed by at least one of the six warm absorber components found by previous analyses. The RRCs allow us to directly calculate a temperature of the emitting gas of a few eV (~104 K), favouring photoionised conditions. We fit the data with a Cloudy model of log ξ = 1.45 ± 0.05 erg cm s-1, log NH = 22.9 ± 0.4 cm-2 and log vturb = 2.25 ± 0.5 km s-1 for the emitting gas; this is the first time the X-ray NLR gas in this source has been modelled so comprehensively. This allows us to estimate the distance from the central source to the illuminated face of the emitting clouds as 13.9 ± 0.6 pc, consistent with previous work.

  8. Measuring the Cold Dust Content of Broad and Narrow-Line Optically Luminous QSOs

    NASA Astrophysics Data System (ADS)

    Petric, Andreea

    2015-08-01

    Coevolution of galaxies and their central black holes (BH) has been the central theme of much of recent extragalactic astronomical research. Observations of the dynamics of stars and gas in the nuclear regions of nearby galaxies suggest that the overwhelming majority of spheroidal glaxies in the local Universe contain massive BHs and that, wiht some important caveats, the masses of those central BH correlate with the velocity dispersions of the stars in the sheroid and the bulge luminosities. An impressive body of research has been dedicated to understanding the mechanisms responsible for such a fundamental perhaps causal relation.An important component pertinent to those investigations is an accurate census of the basic properties of the cold interstellar medium (ISM) in AGN hosts. The motivation for this is that the cold molecular gas is the basic fuel for star-formation and black hole growth.We present high sensitivity observations taken with the Herschel Space Observatory to measure the cold dust content in a sample of 85 nearby (z ≤ 0.5) QSOs chosen from the optically luminous broad-line PG QSOs sample and in a complementary sample of 85 narrow-line QSOs chosen to match the redshift and optical luminosity distribution of the broad-line targets.The FIR data are combined with near-infrared and mid-infrared measurements from the Two Micron All Sky Survey and the Wide-Field Infrared Survey Explorer to determine their IR spectral energy distributions which we use to assess aggregate dust properties. We estimate dust temperatures that range between ~20 and 70 K with a median temperature of 45 K respectively, and dust masses between 9 × 10 4M⊙ and 5 × 10 8M⊙ with a median mass of 3 × 10 7M⊙. We investigate the relation between star-formation rates (SFRs) estimated from the IR luminosities and SFRs determined from measurements of the 11.3 micron PAH. We also compare indicators of AGN strength such as the [OIII] 5007 Angstroms and 5100 Angstroms luminosities

  9. Two Active States of the Narrow-Line Gamma-Ray-Loud AGN GB 1310 + 487

    NASA Technical Reports Server (NTRS)

    Sokolovsky, K. V.; Schinzel, F. K.; Tanaka, Y. T.; Abolmasov, P. K.; Angelakis, E.; Bulgarelli, A.; Carrasco, L.; Cenko, S. B.; Cheung, C. C.; Clubb, K. I.; D'Ammando, F.; Escande, L.; Fegan, S. J.; Filippenko, A. V.; Finke, J. D.; Fuhrmann, L.; Fukazawa, Y.; Hays, E.; Healey, S. E.; Ikejiri, Y.; Itoh, R.; Kawabata, K. S.; Komatsu, T.; Kovalev, Yu. A.; Kovalev, Y. Y.; Krichbaum, T. P.

    2014-01-01

    Context. Previously unremarkable, the extragalactic radio source GB1310 487 showed gamma-ray flare on 2009 November 18, reaching a daily flux of approximately 10(exp -6) photons cm(exp -2) s(exp -1) at energies E greater than 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object's radio-to-GeV spectral energy distribution (SED) during and after the prominent gamma-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at gamma-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH and WISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The gamma-ray radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and gamma-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during gamma-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the gamma-ray flux and spectral index, with the hardest spectrum observed during the brightest gamma-ray state. The gamma-ray flares occurred before and during a slow rising trend in the radio, but no direct association between gamma-ray and

  10. The Fading of the Narrow-Line Region in 3C 390.3: Erratum

    NASA Astrophysics Data System (ADS)

    Clavel, J.; Wamsteker, W.

    1988-07-01

    The Letter "The Fading of the Narrow-Line Region in 3C 390.3" by J. Clavel and W. Wamsteker (Ap. J. [Letters], 320, L9 [1987]) contains an error in the last two sentences of section IIIb: The density we compute for the broad line region (BLR) gas is wrong by a factor of 10 exactly and should read 10^11^ cm^-3^ instead of 10^10^. Such a density is about 30 times larger than the canonical 10^9.5^ cm^-3^ value generally used in model calculations but similar to the density inferred for the BLR in NGC 4151 by J. Clavel et al. (Ap. J., 321, 251 [1987]). The authors are grateful to Paolo Padovani from STScI for bringing this error to their attention.

  11. Narrow Line Seyfert 1 Galaxies and the Evolution of Galaxies and Active Galaxies

    NASA Technical Reports Server (NTRS)

    Mathur, Smita

    2000-01-01

    Narrow Line Seyfert 1 galaxies (NLS1s) are intriguing due to their continuum as well as emission line properties. The observed peculiar properties of the NLS1s are believed to be due to accretion rate close to Eddington limit. As a consequence, for a given luminosity, NLS1s have smaller black hole (BH) masses compared to normal Seyfert galaxies. Here we argue that NLS1s might be Seyfert galaxies in their early stage of evolution and as such may be low redshift, low luminosity analogues of high redshift quasars. We propose that NLS1s may reside in rejuvenated, gas rich galaxies. The also argue in favor of collisional ionization for production of FeII in active galactic nuclei (AGN).

  12. Low intensity noise and narrow line-width diode laser light at 540 nm

    NASA Astrophysics Data System (ADS)

    Wang, Lirong; Tamaki, Ryo; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2015-05-01

    We present a convenient method to generate high quality single-frequency green light at a wavelength of 540 nm. It consists of a noise suppressed external cavity diode laser at a wavelength of 1080 nm by optical filtering and resonant optical feedback, and a frequency doubling of the fundamental light with an a-cut KTP crystal. Highly efficient conversion is realized by type II non-critical phase matching. A stable single-frequency operation with a maximum power of about 20 mW is performed for more than 3 h. Both the intensity noise and line-width reach the level of a monolithic nonplanar ring laser, which is well known for its extraordinarily narrow line-width and extremely low noise among available single-frequency operating lasers.

  13. The Cold Dust Content of Broad and Narrow-Line, Optically Luminous, nearby QSO

    NASA Astrophysics Data System (ADS)

    Petric, A.

    2015-09-01

    Observations of the dynamics of stars and gas in the nuclear regions of nearby galaxies suggest that the overwhelming majority of spheroidal galaxies in the local Universe contain massive BHs and that, with some important caveats, the masses of those central BH correlate with the velocity dispersions of the stars in the spheroid and the bulge luminosities. Much research has been dedicated to understanding the mechanisms responsible for such a fundamental perhaps causal relation. An accurate census of the basic properties of the cold interstellar medium (ISM) in AGN host is pertinent to those investigations because cold molecular gas is the basic fuel for star-formation and black hole growth. We present high sensitivity observations taken with the Herschel Space Observatory to measure the cold dust content in a sample of 85 nearby (z <= 0.5) QSOs chosen from the optically luminous broad-line PG QSOs sample and in a complementary sample of 85 narrow-line QSOs chosen to match the redshift and optical luminosity distribution of the broad-line targets. The FIR data are combined with near-infrared and mid-infrared measurements from the Two Micron All Sky Survey and the Wide-Field Infrared Survey Explorer to determine their IR spectral energy distributions which we use to assess aggregate dust properties. We investigate the relation between star-formation rates (SFRs) estimated from the IR luminosities and SFRs determined from measurements of the 11.3 micron PAH. The differences between the cold dust properties of narrow and broad line AGN will be discussed in the context of models that envision that quasar activity is triggered by gas-rich galaxy mergers.

  14. High-average-power narrow-line-width sum frequency generation 589 nm laser

    NASA Astrophysics Data System (ADS)

    Lu, Yanhua; Fan, Guobin; Ren, Huaijin; Zhang, Lei; Xu, Xiafei; Zhang, Wei; Wan, Min

    2015-10-01

    An 81 W average-power all-solid-state sodium beacon laser at 589 nm with a repetition rate of 250 Hz is introduced, which is based on a novel sum frequency generation idea between two high-energy, different line widths, different beam quality infrared lasers (a 1064 nm laser and a 1319 nm laser). The 1064 nm laser, which features an external modulated CW single frequency seed source and two stages of amplifiers, can provide average-power of 150 W, beam quality M2 of ~1.8 with ultra-narrow line width (< 100 kHz). The 1319 nm laser can deliver average-power of 100 W, beam quality M2 of ~3.0 with a narrow line width of ~0.3 GHz. By sum frequency mixing in a LBO slab crystal (3 mm x 12 mm x 50 mm), pulse energy of 325 mJ is achieved at 589 nm with a conversion efficiency of 32.5 %. Tuning the center wavelength of 1064 nm laser by a PZT PID controller, the target beam's central wavelength is accurately locked to 589.15910 nm with a line width of ~0.3 GHz, which is dominated mainly by the 1319 nm laser. The beam quality is measured to be M2 < 1.3. The pulse duration is measured to be 150 μs in full-width. To the best of our knowledge, this represents the highest average-power for all-solid-state sodium beacon laser ever reported.

  15. Radiation pressure confinement - IV. Application to broad absorption line outflows

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari; Stern, Jonathan

    2014-12-01

    A fraction of quasars present broad absorption lines, produced by outflowing gas with typical velocities of 3000-10 000 km s-1. If the outflowing gas fills a significant fraction of the volume where it resides, then it will be highly ionized by the quasar due to its low density, and will not produce the observed UV absorption. The suggestion that the outflow is shielded from the ionizing radiation was excluded by recent observations. The remaining solution is a dense outflow with a filling factor f < 10-3. What produces such a small f? Here, we point out that radiation pressure confinement (RPC) inevitably leads to gas compression and the formation of dense thin gas sheets/filaments, with a large gradient in density and ionization along the line of sight. The total column of ionized dustless gas is a few times 1022 cm-2, consistent with the observed X-ray absorption and detectable P V absorption. The predicted maximal columns of various ions show a small dependence on the system parameters, and can be used to test the validity of RPC as a solution for the overionization problem. The ionization structure of the outflow implies that if the outflow is radiatively driven, then broad absorption line quasars should have L/L_Eddgtrsim 0.1.

  16. Redshifted 21cm Line Absorption by Intervening Galaxies

    NASA Astrophysics Data System (ADS)

    Briggs, F. H.

    The present generation of radio telescopes, combined with powerful new spectrometers, is opening a new age of redshifted radio absorption-line studies. Out-fitting of arrays of antennas, such as the European VLBI Network and the upgraded VLA, with flexibly tuned receivers, will measure sizes and kinematics of intervening galaxies as a function of cosmic time.

  17. Investigating the Sensitivity of Emission Line Spectra to the Incident SED in Narrow Line Seyferts and LINERs

    NASA Astrophysics Data System (ADS)

    Greene, Christopher; Richardson, Chris T.

    2017-01-01

    This research investigates photoionization models of the Narrow Line Region (NLR) of Seyfert galaxies and Low-Ionization Nuclear Emitting Region (LINER) galaxies with the use of the astrophysical code CLOUDY. Groves et al. 2004 attempted to resolve the apparent uniformity of emission line ratios in the NLR through introducing dusty, radiation pressure-dominated photoionization models of AGN. This model assumed a simple power law relation for the Spectral Energy Distribution (SED). Grupe et al. 2010 found a correlation between αuv and αx, and by constraining αuv as a function of αx we developed a photoionization model for the ionizing spectrum of a typical Seyfert Narrow Line Region. The incident SED is based upon the spectral indices αuv, αx, αox , and the blackbody accretion disk temperature Tbb . We set the value of αox based on the average of data collected in Grupe et al. 2010, and fix the value of αuv to αx based on their linear correlation. To check the validity of our model, simulations were run across a range of blackbody accretion disk temperatures and αx, while fixing the hydrogen density, ionization parameter, and elemental abundance of clouds in the NLR. The emission lines produced by these simulations were plotted using standard diagnostic diagrams and compared to emission line data obtained from the Sloan Digital Sky Survey. Our model produces emission lines without significant variation between simulations with αx = 1.42, 1.17, and 2.19, with Tbb ranging from 104 K to 107 K, except with regard to [O I] λ6300/Hα, where our simulated spectra started to fall on the boundary between Seyferts and LINERs. This leads us to examine the ability of our photoionization model to create emission line spectra that are typical of LINERs, as debate still continues over the primary excitation mechanism for LINERs. To adjust our model to fit LINERs, we lower the value of the ionization parameter and discuss the preliminary results within the context of

  18. Narrow Line X-Ray Calibration Source for High Resolution Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Hokin, M.S.; McCammon, D.; Morgan, K.M.; Bandler, Simon Richard; Lee, S.J.; Moseley, S.H.; Smith, S.J.

    2013-01-01

    We are developing a narrow line calibration source for use with X-ray microcalorimeters. At energies below 300 electronvolts fluorescent lines are intrinsically broad, making calibration of high resolution detectors difficult. This source consists of a 405 nanometers (3 electronvolts) laser diode coupled to an optical fiber. The diode is pulsed to create approximately one hundred photons in a few microseconds. If the pulses are short compared to the rise time of the detector, they will be detected as single events with a total energy in the soft X-ray range. Poisson fluctuations in photon number per pulse create a comb of X-ray lines with 3 electronvolts spacing, so detectors with energy resolution better than 2 electronvolts are required to resolve the individual lines. Our currently unstabilized diode has a multimode width less than 1 nanometer, giving a 300 electronvolt event a Full width at half maximum (FWHM) less than 0.1 electronvolts. By varying the driving voltage, or pulse width, the source can produce a comb centered on a wide range of energies. The calibration events are produced at precisely known times. This allows continuous calibration of a flight mission without contaminating the observed spectrum and with minimal deadtime.

  19. THE DIFFERENCE IN NARROW Fe K{alpha} LINE EMISSION BETWEEN SEYFERT 1 AND SEYFERT 2 GALAXIES

    SciTech Connect

    Liu Teng; Wang Junxian E-mail: jxw@ustc.edu.c

    2010-12-20

    We compile a sample of 89 Seyfert galaxies with both [O IV] 25.89 {mu}m line luminosities observed by Spitzer IRS and X-ray spectra observed by XMM-Newton EPIC. Using [O IV] emission as a proxy for active galactic nucleus (AGN) intrinsic luminosity, we find that although type 2 AGNs have higher line equivalent widths, the narrow Fe K{alpha} lines in Compton-thin and Compton-thick Seyfert 2 galaxies are 2.9{sup +0.8}{sub -0.6} and 5.6{sup +1.9}{sub -1.4} times weaker in terms of luminosity than Seyfert 1 galaxies, respectively. This indicates that different correction factors need to be applied for various types of AGNs before the narrow Fe K{alpha} line luminosity could serve as an intrinsic AGN luminosity indicator. We also find that Seyfert 1 galaxies in our sample have on average marginally larger line widths and higher line centroid energies, suggesting contamination from highly ionized Fe line or broader line emission from much smaller radius, but this effect is too weak to explain the large difference in narrow Fe K{alpha} line luminosity between type 1 and type 2 AGNs. This is the first observational evidence showing that the narrow Fe K{alpha} line emission in AGNs is anisotropic. The observed difference is consistent with theoretical calculations assuming a smoothly distributed obscuring torus and could provide independent constraints on the clumpiness of the torus.

  20. Physical Properties of the Narrow-line Region of Low-mass Active Galaxies

    NASA Astrophysics Data System (ADS)

    Ludwig, Randi R.; Greene, Jenny E.; Barth, Aaron J.; Ho, Luis C.

    2012-09-01

    We present spectroscopic observations of 27 active galactic nuclei (AGNs) with some of the lowest black hole (BH) masses known. We use the high spectral resolution and small aperture of our Keck data, taken with the Echellette Spectrograph and Imager, to isolate the narrow-line regions (NLRs) of these low-mass BHs. We investigate their emission-line properties and compare them with those of AGNs with higher-mass BHs. While we are unable to determine absolute metallicities, some of our objects plausibly represent examples of the low-metallicity AGNs described by Groves et al., based on their [N II]/Hα ratios and their consistency with the Kewley & Ellison mass-metallicity relation. We find tentative evidence for steeper far-UV spectral slopes in lower-mass systems. Overall, NLR emission lines in these low-mass AGNs exhibit trends similar to those seen in AGNs with higher-mass BHs, such as increasing blueshifts and broadening with increasing ionization potential. Additionally, we see evidence of an intermediate-line region whose intensity correlates with L/L Edd, as seen in higher-mass AGNs. We highlight the interesting trend that, at least in these low-mass AGNs, the [O III] equivalent width (EW) is highest in symmetric NLR lines with no blue wing. This trend of increasing [O III] EW with line symmetry could be explained by a high covering factor of lower-ionization gas in the NLR. In general, low-mass AGNs preserve many well-known trends in the structure of the NLR, while exhibiting steeper ionizing continuum slopes and somewhat lower gas-phase metallicities.

  1. A SURVEY OF ALKALI LINE ABSORPTION IN EXOPLANETARY ATMOSPHERES

    SciTech Connect

    Jensen, Adam G.; Redfield, Seth; Endl, Michael; Cochran, William D.; Koesterke, Lars; Barman, Travis S. E-mail: sredfield@wesleyan.edu E-mail: wdc@astro.as.utexas.edu E-mail: barman@lowell.edu

    2011-12-20

    We obtained over 90 hr of spectroscopic observations of four exoplanetary systems with the Hobby-Eberly Telescope. Observations were taken in transit and out of transit, and we analyzed the differenced spectra-i.e., the transmission spectra-to inspect it for absorption at the wavelengths of the neutral sodium (Na I) doublet at {lambda}{lambda}5889, 5895 and neutral potassium (K I) at {lambda}7698. We used the transmission spectrum at Ca I {lambda}6122-which shows strong stellar absorption but is not an alkali metal resonance line that we expect to show significant absorption in these atmospheres-as a control line to examine our measurements for systematic errors. We use an empirical Monte Carlo method to quantify these systematic errors. In a reanalysis of the same data set using a reduction and analysis pipeline that was derived independently, we confirm the previously seen Na I absorption in HD 189733b at a level of (- 5.26 {+-} 1.69) Multiplication-Sign 10{sup -4} (the average value over a 12 A integration band to be consistent with previous authors). Additionally, we tentatively confirm the Na I absorption seen in HD 209458b (independently by multiple authors) at a level of (- 2.63 {+-} 0.81) Multiplication-Sign 10{sup -4}, though the interpretation is less clear. Furthermore, we find Na I absorption of (- 3.16 {+-} 2.06) Multiplication-Sign 10{sup -4} at <3{sigma} in HD 149026b; features apparent in the transmission spectrum are consistent with real absorption and indicate this may be a good target for future observations to confirm. No other results (Na I in HD 147506b and Ca I and K I in all four targets) are significant to {>=}3{sigma}, although we observe some features that we argue are primarily artifacts.

  2. Picosecond excitonic absorption recovery of 100 nm GaAs/AlGaAs narrow multiple quantum-well wires

    NASA Astrophysics Data System (ADS)

    Tackeuchi, Atsushi; Kitada, Hideki; Arimoto, Hiroshi; Sugiyama, Yoshihiro; Endoh, Akira; Nakata, Yoshiaki; Inata, Tsuguo; Muto, Shunichi

    1991-08-01

    We report the time-resolved absorption measurement of narrow multiple quantum-well (MQW) wires to investigate their fast recoveries from excitonic absorption bleaching. Wires down to 130 nm were fabricated from MQWs using focused ion beam lithography and electron cyclotron-resonance chlorine-plasma etching. In this structure, the photoexcited carriers diffuse toward the sidewalls and recombine on the surface of the sidewalls. We show that the strong optical nonlinearity of excitons is preserved, even in wires of 130 nm width, and having a fast recovery time in the picosecond region. We also briefly discuss the possibility of making quantum wires which have a faster recovery time and larger optical nonlinearity.

  3. Results of Detailed Modeling of the Narrow-Line Region of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.

    1996-01-01

    We present model line profiles of [O II] lambda3727, [Ne III] lambda3869, [O I] lambda5007, [Fe VII] lambda6087, [Fe X] lambda6374, [O I] lambda6300, H(alpha) lambda6563, and [S 2] lambda6731. The profiles presented here illustrate explicitly the pronounced effects that collisional de-excitation, and that spatial variations in both the ionization parameter and cloud column density, have on Narrow-Line Region (NLR) model profiles. The above effects were included only qualitatively in a previous analytical treatment by Moore and Cohen. By making a direct correspondence between these model profiles and the analytical model profiles of Moore and Cohen, and by comparing with the observed profiles presented in a companion paper and also with those presented elsewhere in the literature, we strengthen some of the conclusions of Moore and Cohen. Most notably, we argue for constant ionization parameter, uniformly accelerated outflow of clouds that are individually stratified in ionization, and the interpretation of emission-line width correlations with ionization potential as a column density effect. For comparison with previous observational studies, such as our own in a companion paper, we also calculate profile parameters for some of the models, and we present and discuss the resulting line width correlations with critical density (n(sub cr)) and Ionization Potential (IP). Because the models we favor are those that produce extended profile wings as observed in high spectral resolution studies, the line width correlations of our favoured models are of particular interest. Line width correlations with n(sub cr) and/or IP result only if the width parameter is more sensitive to extended profile wings than is the Full Width at Half-Maximum (FWHM). Correlations between FWHM and n(sub cr) and/or IP result only after convolving the model profiles with a broad instrumental profile that simulates the lower spectral resolution used in early observational studies. The model in

  4. Anatomy of the AGN in NGC 5548: the X-ray narrow emission lines

    NASA Astrophysics Data System (ADS)

    Whewell, M.; Branduardi-Raymont, G.; Kaastra, J.; Mehdipour, M.; Bianchi, S.; NGC 5548 Collaboration

    2014-07-01

    After a very successful multi-satellite campaign on Mrk 509 in 2009, we conducted a similar campaign on the AGN NGC 5548 in 2013. During the latter the source appeared unusually strongly absorbed in the soft X-rays, and signatures of strong outflows were also present in the UV. While a talk giving an overview of the campaign (PI: J. Kaastra) is also proposed at this conference, we will focus here on the data obtained from the XMM-RGS, resulting in a stacked spectrum of 660 ks. Narrow emission lines, including He-like triplets of Oxygen, Nitrogen and Neon, and radiative recombination (RRC) features dominate this spectrum due to the low soft X-ray continuum flux. All emission features are consistent with having constant flux over our campaign. The O VII triplet has been one focus of our analysis, especially due to unexpected differences of ˜300 km s^{-1} among the measured outflow velocities of its individual lines. The RRCs allow us to directly calculate a temperature of the emitting gas of a few eV (˜10^{4}K), favouring photoionised conditions. We have modelled the emission lines and features using the photoionisation code Cloudy, to attempt to construct a self-consistent picture of the physical environment of the AGN.

  5. Stress migration risk on electromigration reliability in advanced narrow line copper interconnects

    NASA Astrophysics Data System (ADS)

    Heryanto, A.; Pey, K. L.; Lim, Y. K.; Raghavan, N.; Liu, W.; Wei, J.; Gan, C. L.; Tan, J. B.

    2011-10-01

    The influence of stress migration (SM) on the electromigration (EM) reliability is studied here for very fine line interconnects, fabricated using the 45-nm Cu/low-κ interconnect process flow. As opposed to the current understanding that SM is not a concern for the narrow metal lines because of limited availability of vacancies for voiding, we found that SM does have serious wear-out effects. The EM lifetime distribution was severely degraded by around 38% for the samples that had been subjected to a 1000-h SM-only test, with a drastic reduction in the slope of the EM lognormal fitting distribution, from 0.548 to 0.193. The current density exponent of Black's equation for SM+EM stressed samples is ˜1, suggesting that void had already been nucleated because of the SM-only test. The high intrinsic tensile stress in the line is suspected to be responsible for this early void nucleation. In the second part, we developed a Monte Carlo simulation model to estimate the void nucleation and growth time using the EM-only and SM+EM degradation tests. We found that at low percentile failures overall failure time is mainly growth dominated, whereas at high percentile failures overall failure time is nucleation dominated. Stress migration was found to shorten the nucleation time for all the samples.

  6. THE EXTENDED NARROW-LINE REGION OF TWO TYPE-I QUASI-STELLAR OBJECTS

    SciTech Connect

    Oh, Semyeong; Woo, Jong-Hak; Bennert, Vardha N.; Jungwiert, Bruno; Leipski, Christian; Albrecht, Marcus E-mail: woo@astro.snu.ac.kr E-mail: bruno@ig.cas.cz E-mail: leipski@mpia-hd.mpg.de

    2013-04-20

    We investigate the narrow-line region (NLR) of two radio-quiet QSOs, PG1012+008 and PG1307+085, using high signal-to-noise spatially resolved long-slit spectra obtained with FORS1 at the Very Large Telescope. Although the emission is dominated by the point-spread function of the nuclear source, we are able to detect extended NLR emission out to several kiloparsec scales in both QSOs by subtracting the scaled central spectrum from outer spectra. In contrast to the nuclear spectrum, which shows a prominent blue wing and a broad line profile of the [O III] line, the extended emission reveals no clear signs of large-scale outflows. Exploiting the wide wavelength range, we determine the radial change of the gas properties in the NLR, i.e., gas temperature, density, and ionization parameter, and compare them with those of Seyfert galaxies and type-II QSOs. The QSOs have higher nuclear temperature and lower electron density than Seyferts, but show no significant difference compared to type-II QSOs, while the ionization parameter decreases with radial distance, similar to the case of Seyfert galaxies, For PG1012+008, we determine the stellar-velocity dispersion of the host galaxy. Combined with the black hole mass, we find that the luminous radio-quiet QSO follows the local M{sub BH}-{sigma}{sub *} relation of active galactic nuclei.

  7. Optical Properties of Radio-Selected Narrow Line Seyfert 1 Galaxies

    SciTech Connect

    Whalen, J; Laurent-Muehleisen, S A; Moran, E C; Becker, R H

    2006-01-05

    We present results from the analysis of the optical spectra of 47 radio-selected narrow-line Seyfert 1 galaxies (NLS1s). These objects are a subset of the First Bright Quasar Survey (FBQS) and were initially detected at 20 cm (flux density limit {approx} 1 mJy) in the VLA FIRST Survey. We run Spearman rank correlation tests on several sets of parameters and conclude that, except for their radio properties, radio-selected NLS1 galaxies do not exhibit significant differences from traditional NLS1 galaxies. Our results are also in agreement with previous studies suggesting that NLS1 galaxies have small black hole masses that are accreting very close to the Eddington rate. We have found 16 new radio-loud NLS1 galaxies, which increases the number of known radio-loud NLS1 galaxies by a factor of {approx} 5.

  8. PHL 1092: A narrow-line quasar emerging from the darkness

    NASA Astrophysics Data System (ADS)

    Gallo, Luigi

    2013-10-01

    The radio quiet, narrow line quasar, PHL1092 exhibits the extreme behaviour associated with 1H0707 and IRAS13224, but at a high redshift (z=0.396) and with high luminosity (~10^45 erg/s). From a short, bright state observation of PHL1092 we discovered a super soft excess, possible relativistically broadened FeL and K emission, high radiative efficiency, and possible high velocity outflow. Follow up observations between 2008-10 caught the quasar in a deep minimum that could be attributed to disruption of the corona. We will monitor PHL1092 with Swift to catch the quasar emerging from its current low-flux state so that we can study the bright state of the AGN with a triggered 130ks XMM observation.

  9. An Extended Look at the Narrow-Line Region of the Seyfert 2 Galaxy Mrk 573

    NASA Astrophysics Data System (ADS)

    Machuca, Camilo; Fischer, Travis C.; Crenshaw, D. Michael

    2017-01-01

    Active galactic nuclei (AGN) are supermassive black holes found in the centers of galaxies which accrete matter from their surroundings and subsequently produce AGN feedback in the form of ionized and molecular gas outflows. These outflows are largely contained within the Narrow-Line Region (NLR), a low density sector that extends froms tens to thousands of parsecs away from the nucleus. In order to clarify the relationship between the AGN and its host galaxy at these various distances, we present this study on Mrk 573, a Seyfert 2 AGN, based on long-slit spectroscopy from the Dual Imaging Spectrograph (DIS) on the ARC 3.5-meter telescope at Apache Point Observatory. We find that the dominant ionization mechanism of the gas up to a radius of 2 kpc can be attributed to the AGN and that the ionized gas kinematics are dominated by galactic rotation at distances larger than 750 pc.

  10. Generation of Narrow-Band Polarization-Entangled Photon Pairs at a Rubidium D1 Line

    NASA Astrophysics Data System (ADS)

    Tian, Long; Li, Shujing; Yuan, Haoxiang; Wang, Hai

    2016-12-01

    Using the process of cavity-enhanced spontaneous parametric down-conversion (SPDC), we generate a narrow-band polarization-entangled photon pair resonant on the rubidium (Rb) D1 line (795 nm). The degenerate single-mode photon pair is selected by multiple temperature controlled etalons. The linewidth of generated polarization-entangled photon pairs is 15 MHz which matches the typical atomic memory bandwidth. The measured Bell parameter for the polarization-entangled photons S = 2.73 ± 0.04 which violates the Bell-CHSH inequality by ˜18 standard deviations. The presented entangled photon pair source could be utilized in quantum communication and quantum computing based on quantum memories in atomic ensemble.

  11. Investigations of glass structure using fluorescence line narrowing and moleuclar dynamics simulations

    SciTech Connect

    Weber, M.J.; Brawer, S.A.

    1982-07-02

    The local structure at individual ion sites in simple and multicomponent glasses is simulated using methods of molecular dynamics. Computer simulations of fluoroberyllate glasses predict a range of ion separations and coordination numbers that increases with increasing complexity of the glass composition. This occurs at both glass forming and glass modifying cation sites. Laser-induced fluorescence line-narrowing techniques provide a unique probe of the local environments of selected subsets of ions and are used to measure site to site variations in the electronic energy levels and transition probabilities of rare earth ions. These and additional results from EXAFS, neutron and x-ray diffraction, and NMR experiments are compared with simulated glass structures.

  12. A Morphological Study of Compact Narrow Emission Line Galaxies In The COSMOS Field

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne; Feldman, D.; Greenbaum, A.; Hasan, I.; Mahalchick, S.; Liu, C.; COSMOS Team

    2010-01-01

    We present a morphological study of 139 spectroscopically selected compact narrow emission line galaxies (CNELGs) from the COSMOS HST Treasury Survey, using a comparison sample of field galaxies of similar magnitude obtained from the COSMOS field. The CNELGs range in magnitude from 18.13 < V < 21.95 and in redshift from 0 < z < 0.9. Preliminary results indicate that, whereas statistically the CNELGs are clearly morphologically distinct from our comparison sample, at HST resolution they are also clearly not all - or even predominantly - "compact." This work was supported by an NSF REU Site grant to The City University of New York and American Museum of Natural History; an NSF STEAM grant to the College of Staten Island; the NASA New York Space Grant program; Barnard College; and the CUNY Macaulay Honors College.

  13. Fluorescence line-narrowing studies of rare earths in disordered solids

    SciTech Connect

    Hall, D.W.

    1982-08-10

    This dissertation is made up of two experimental studies dealing with apparently diverse topics within the subject of rare earths (RE) in solids. The first study, described in Part II, concerns the vibrations of a disordered host material about an optically active rare-earth ion as manifested by vibrationally-assisted-electronic, or vibronic transitions. Part III of the dissertation describes an investigation of the influence of site anisotropy on the purely electronic, laser transition of Nd/sup 3 +/ in glass. These two studies are bound together by the common experimental technique of laser-induced fluorescence line narrowing (FLN). By exciting fluorescence with monochromatic light of well-characterized polarization, one may select and observe the response of a single subset of the optically active ions and obtain information that is usually masked by the inhomogeneous nature of disordered solids.

  14. Oscillator strength measurements of atomic absorption lines from stellar spectra

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-05-01

    Herein we develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(gf) values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R = 80 000) of Procyon (F5 IV-V) and Eps Eri (K2 V) observed with large signal-to-noise (S/N) ratios of 2000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic overestimation of the literature log(gf) values with central line depths below 15%. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, and Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf) values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.

  15. Locking distributed feedback laser diode frequency to gas absorption lines based on genetic programming

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Li, Guanghui; Fang, Zishan; Zhai, Yueyang; Li, Xinyi; Liu, Feng

    2017-01-01

    Distributed feedback laser is widely used as the pump beam and probe beam in atomic physical and quantum experiments. As the frequency stability is a vital characteristic to the laser diode in these experiments, a saturated absorption frequency stabilization method assisted with the function of current and frequency is proposed. The relationship between the current and frequency is acquired based on the genetic programming (GP) algorithm. To verify the feasibility of the method, the frequency stabilization system is comprised of two parts that are modeling the relation between the current and frequency by GP and processing the saturated absorption signal. The results of the frequency stabilization experiment proved that this method can not only narrow the frequency searching range near the atomic line center but also compensate for the phase delay between the saturated absorption peak and the zero crossing point of the differential error signal. The reduced phase delay increases the locking probability and makes the wavelength drift only 0.015 pm/h, which converted to frequency drift is 7 MHz/h after frequency locking on the Rb absorption line.

  16. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-01-01

    We present line profiles and profile parameters for the Narrow-Line Regions (NLRs) of six Seyfert 1 galaxies with high-ionization lines: MCG 8-11-11, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] lambda6087 and, when possible, [Fe X] lambda6374 profiles to determine if these lines are more likely formed in a physically distinct 'coronal line region' or are formed throughout the NLR along with lines of lower critical density (n(sub cr)) and/or Ionization Potential (IP). We discuss correlations of velocity shift and width with n(sub cr) and IP. In some objects, lines of high IP and/or n(sub cr) are systematically broader than those of low IP/n(sub cr). Of particular interest, however, are objects that show no correlations of line width with either IP or n(sub cr). In these objects, lines of high and low IP/n(sub cr), are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n(sub cr) are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper, we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n(sub cr) can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the Full Width at Half-Maximum (FWHM) and IP and/or n(sub cr). The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. We present models in which FWHM correlations with IP and/or n(sub cr) result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our

  17. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G2 or G3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N2-dG.

  18. Surprises from a Deep ASCA Spectrum of the Broad Absorption Line Quasar PHL 5200

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Matt, G.; Green, P. J.; Elvis, M.; Singh, K. P.

    2002-01-01

    We present a deep (approx. 85 ks) ASCA observation of the prototype broad absorption line quasar (BALQSO) PHL 5200. This is the best X-ray spectrum of a BALQSO yet. We find the following: (1) The source is not intrinsically X-ray weak. (2) The line-of-sight absorption is very strong, with N(sub H) = 5 x 10(exp 23)/sq cm. (3) The absorber does not cover the source completely; the covering fraction is approx. 90%. This is consistent with the large optical polarization observed in this source, implying multiple lines of sight. The most surprising result of this observation is that (4) the spectrum of this BALQSO is not exactly similar to other radio-quiet quasars. The hard X-ray spectrum of PHL 5200 is steep, with the power-law spectral index alpha approx. 1.5. This is similar to the steepest hard X-ray slopes observed so far. At low redshifts, such steep slopes are observed in narrow-line Seyfert 1 (NLS1) galaxies, believed to be accreting at a high Eddington rate. This observation strengthens the analogy between BALQSOs and NLS1 galaxies and supports the hypothesis that BALQSOs represent an early evolutionary state of quasars. It is well accepted that the orientation to the line of sight determines the appearance of a quasar: age seems to play a significant role as well.

  19. Pressure-broadening and narrowing coefficients and temperature dependence measurements of CO2 at 2.68 μm by laser diode absorption spectroscopy for atmospheric applications.

    PubMed

    Ghysels, M; Durry, G; Amarouche, N

    2013-04-15

    By using a tunable diode laser absorption spectrometer in conjunction with a cryogenically cooled multipath cell, we have revisited the air-induced pressure-broadening coefficients and the narrowing coefficients related to the Dicke effect, as well as the temperature dependences, for the R(18) and R(20) lines of the (10°1)I←(00°0) vibrational band at 2.68 μm of carbon dioxide. The selected transitions are used to probe in situ CO2 in the troposphere and the lower stratosphere by using balloon-borne laser sensors. The achieved measurements are thoroughly compared to existing former determinations. The impact of processing the in situ atmospheric CO2 spectra with this new set of molecular data is reported.

  20. The intervening and associated O VI absorption-line systems in the ultraviolet spectrum of H1821+643

    NASA Astrophysics Data System (ADS)

    Savage, Blair D.; Tripp, Todd M.; Lu, Limin

    1998-02-01

    GHRS and FOS ultraviolet spectra of the bright QSO H1821+643 reveal the presence of strong O VI 1031.93, 1037.62 A absorption systems at z(abs) = 0.225 and 0.297, the latter being at the redshift of the QSO itself. Ground-based galaxy redshift measurements by us and others reveal two emission-line galaxies near the redshift of the intervening system at z(abs) = 0.225, suggesting the existence of a galaxy group at this redshift. The intervening O VI absorption system is also detected in H I but is not detected in the lines of Si II, Si IV, C IV, or N V. These ionization characteristics can be explained by a low-density, extended diffuse gas distribution that is photoionized by the metagalactic UV background if the gas has a metallicity of 0.1 times solar. Such a photoionized gas may be associated with the extended halo of the luminous intervening spiral galaxy at a projected distance of 100 h kpc, or with an intragroup medium. Alternatively, the absorption may be produced in hot collisionally ionized halo gas or in a hot intragroup medium. The associated system with z(abs) = 0.297 contains narrow and broad O VI absorption. The narrow absorption, which is also detected in H I, C III, C IV, and Si IV, can be modeled as gas photoionized by H1821+643 with roughly solar abundances. This gas is probably situated close to H1821+643. The broad O VI absorption that is centered at the emission redshift of H1821+643 may represent a weak and narrow example of the broad absorption line phenomena.

  1. Terminal Velocity Infall in QSO Absorption Line Halos

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert A.

    We explore the hypothesis that clouds detected in quasar absorption line systems are falling at a terminal velocity toward the center of high redshift gaseous galactic halos. Since both the ionization level and terminal velocity of halo clouds increase with increasing distance from the central galaxy, velocity resolved profiles of highly ionized gas are predicted to have a greater width than low ionization gas. A line of sight passing through the center of gaseous halo (an idealized damped Ly alpha system), yields low ionization absorption at the velocity of the galaxy, flanked by high ionization on either side. Reasonable halo parameters yield total velocity extents for C IV of Delta v_{C IV}=100-200 km s^{-1}, in agreement with many systems observed by Lu et al (1997). The remaining systems may better described by the rotating disk model of Prochaska & Wolfe (1998). Finally, observational tests are suggested for verifying or falsifying the terminal velocity hypothesis for these systems.

  2. Mapping of the Local Interstellar Medium using Absorption Line Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penprase, Bryan Edward

    2017-01-01

    Using the Yale SMARTS 1.5-meter telescope at CTIO and the CHIRON spectrograph, we have developed a program for mapping the local interstellar medium using a sample of over 200 newly observed B stars previously unobserved using Na I absorption lines. This sample includes stars that extend out to map beyond the local bubble to 500 pc. The sample has been observed using high resolution absorption lines, and when combined with previously observed stars with Na I and Ca II data provides a more complete picture of the local ISM than previous surveys. The distances to the stars using the new GAIA database also allows for more accurate determination of distances to features in the lcoal ISM, and new maps of the structure of the ISM hav been prepared with the data.

  3. AFGL atmospheric absorption line parameters compilation - 1980 version

    NASA Astrophysics Data System (ADS)

    Rothman, L. S.

    1981-03-01

    A new version of the AFGL atmospheric absorption line parameters compilation is now available. Major modifications since the last edition of 1978 include the strongest bands of water vapor, updated line positions for carbon dioxide, improved ozone parameters in the 5- and 10 micron regions, and updated and additional data for methane in the 3.5- and 7.7 micron regions. The atlas now contains over 159,000 rotational and vibration-rotation transitions from 0.3 to 17,880 per cm.

  4. Observational Cosmology Using Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Aghaee, A.

    2016-09-01

    Distant, highly luminous quasars are important cosmological probes for a variety of astrophysical questions: the first generation of galaxies, the star formation history and metal enrichment in the early Universe, the growth of the first super massive black holes (SMBHs), the role of feedback from quasars and SMBHs in galaxy evolution, the epoch of reionization, etc. In addition, they are used as background illuminating source that reveal any object located by chance on the line of sight. I will present our group works in these issues that can be done using absorption lines in the quasar spectra.

  5. Pressure dependence of Se absorption lines in AlSb

    SciTech Connect

    Hsu, L. |; Haller, E.E.; Ramdas, A.K.

    1996-09-01

    Using far infrared absorption spectroscopy, the authors have investigated electronic transition spectra of Se donors in AlSb as a function of hydrostatic pressure. At least two distinct ground to bound excited state transition lines, which depend quadratically on the pressure, can be seen. At pressures between 30 and 50 kbar, evidence of an anti-crossing between one of the electronic transitions and a peak which they attribute to the 2 zone center LO phonon mode can be seen.

  6. Accurate modeling of fluorescence line narrowing difference spectra: Direct measurement of the single-site fluorescence spectrum

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Naibo, Virginia; Jankowiak, Ryszard

    2010-07-01

    Accurate lineshape functions for modeling fluorescence line narrowing (FLN) difference spectra (ΔFLN spectra) in the low-fluence limit are derived and examined in terms of the physical interpretation of various contributions, including photoproduct absorption and emission. While in agreement with the earlier results of Jaaniso [Proc. Est. Acad. Sci., Phys., Math. 34, 277 (1985)] and Fünfschilling et al. [J. Lumin. 36, 85 (1986)], the derived formulas differ substantially from functions used recently [e.g., M. Rätsep et al., Chem. Phys. Lett. 479, 140 (2009)] to model ΔFLN spectra. In contrast to traditional FLN spectra, it is demonstrated that for most physically reasonable parameters, the ΔFLN spectrum reduces simply to the single-site fluorescence lineshape function. These results imply that direct measurement of a bulk-averaged single-site fluorescence lineshape function can be accomplished with no complicated extraction process or knowledge of any additional parameters such as site distribution function shape and width. We argue that previous analysis of ΔFLN spectra obtained for many photosynthetic complexes led to strong artificial lowering of apparent electron-phonon coupling strength, especially on the high-energy side of the pigment site distribution function.

  7. Analytical formulas for low-fluence non-line-narrowed hole-burned spectra in an excitonically coupled dimer

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Naibo, Virginia; Jankowiak, Ryszard

    2009-12-01

    We present exact equations for the low-fluence non-line-narrowed (NLN) nonphotochemical hole-burning (NPHB) spectrum of an excitonically coupled dimer (for arbitrary coupling strength) under the assumption that postburn and preburn site energies are independent. The equations provide a transparent view into the contributions of various effects to the NPHB spectrum. It is demonstrated that the NPHB spectrum in dimers is largely dominated by the statistical reshuffling of site energies and by altered excitonic transition energies of both excitonic states (in contrast with only the lowest state). For comparison of these results with those from larger excitonically coupled systems, the low-fluence NLN NPHB spectrum obtained for the CP47 complex (a 16-pigment core antenna complex of Photosystem II) is also calculated using Monte Carlo simulations. In this larger system it is shown that the NPHB spectra for individual excitonic states are not entirely conservative (although the changes in average oscillator strength for the higher excitonic states are in most cases less than 1%), a feature which we argue is due primarily to reordering of the contributions of various pigments to the excitonic states. We anticipate that a better understanding of NPHB spectra obtained for various photosynthetic complexes and their simultaneous fits with other optical spectra (e.g., absorption, emission, and circular dichroism spectra) will provide more insight into the underlying electronic structures of various photosynthetic systems.

  8. Modeling of fluorescence line-narrowed spectra in weakly coupled dimers in the presence of excitation energy transfer

    SciTech Connect

    Lin, Chen; Reppert, Mike; Feng, Ximao; Jankowiak, Ryszard

    2014-07-21

    This work describes simple analytical formulas to describe the fluorescence line-narrowed (FLN) spectra of weakly coupled chromophores in the presence of excitation energy transfer (EET). Modeling studies for dimer systems (assuming low fluence and weak coupling) show that the FLN spectra (including absorption and emission spectra) calculated for various dimers using our model are in good agreement with spectra calculated by: (i) the simple convolution method and (ii) the more rigorous treatment using the Redfield approach [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)]. The calculated FLN spectra in the presence of EET of all three approaches are very similar. We argue that our approach provides a simplified and computationally more efficient description of FLN spectra in the presence of EET. This method also has been applied to FLN spectra obtained for the CP47 antenna complex of Photosystem II reported by Neupane et al. [J. Am. Chem. Soc. 132, 4214 (2010)], which indicated the presence of uncorrelated EET between pigments contributing to the two lowest energy (overlapping) exciton states, each mostly localized on a single chromophore. Calculated and experimental FLN spectra for CP47 complex show very good qualitative agreement.

  9. Development of 5-kHz ultra-line-narrowed F2 laser for dioptric projection system

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru; Nohdomi, Ryoichi; Ariga, Tatsuya; Hotta, Kazuaki; Nakao, Kiyoharu; Kasuya, Koichi

    2003-11-01

    The roadmap of semiconductor fabrication predicts that the semiconductor market will demand 65 nm node devices from 2004/2005. Therefore, an Ultra-Line-Narrowed F2 laser for dioptric projection systems has been developed under the ASET project of "The F2 Laser Lithography Development Project". The target of this project is to achieve a F2 laser spectral bandwidth below 0.2 pm (FWHM) and an average power of 25 W at a repetition rate of 5 kHz. The energy stability (3-sigma) target is less than 10%. Simultaneously, it is also required to establish the technology of evaluating the optical performance. An Oscillator-Amplifier arrangement at 2 kHz was developed as a first step of an Ultra-Line-Narrowed F2 laser system. With this laser system, we achieved the basic study of the synchronization technology for line narrowing operation using two system arrangements: MOPA (Master Oscillator/Power Amplifier) and Injection Locking. Based on this experience we have developed the 5 kHz system. With the 5 kHz Line-Narrowed Injection Locking system, we have achieved a spectral bandwidth of <0.2 pm with an output energy of >5 mJ and a pulse to pulse energy stability of <10%. The feasibility of a 5 kHz Ultra-Line-Narrowed F2 Laser for Dioptric Projection Systems has been demonstrated.

  10. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-06-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to -3.2 ≲ log U ≲ -3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  11. Properties of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Berton, M.; Caccianiga, A.; Ciroi, S.; Cracco, V.; Peterson, B. M.; Angelakis, E.; Braito, V.; Fuhrmann, L.; Gallo, L.; Grupe, D.; Järvelä, E.; Kaufmann, S.; Komossa, S.; Kovalev, Y. Y.; Lähteenmäki, A.; Lisakov, M. M.; Lister, M. L.; Mathur, S.; Richards, J. L.; Romano, P.; Sievers, A.; Tagliaferri, G.; Tammi, J.; Tibolla, O.; Tornikoski, M.; Vercellone, S.; La Mura, G.; Maraschi, L.; Rafanelli, P.

    2015-03-01

    We have conducted a multiwavelength survey of 42 radio loud narrow-1ine Seyfert 1 galaxies (RLNLS1s), selected by searching among all the known sources of this type and omitting those with steep radio spectra. We analyse data from radio frequencies to X-rays, and supplement these with information available from online catalogues and the literature in order to cover the full electromagnetic spectrum. This is the largest known multiwavelength survey for this type of source. We detected 90% of the sources in X-rays and found 17% at γ rays. Extreme variability at high energies was also found, down to timescales as short as hours. In some sources, dramatic spectral and flux changes suggest interplay between a relativistic jet and the accretion disk. The estimated masses of the central black holes are in the range ~106-8 M⊙, lower than those of blazars, while the accretion luminosities span a range from ~0.01 to ~0.49 times the Eddington limit, with an outlier at 0.003, similar to those of quasars. The distribution of the calculated jet power spans a range from ~1042.6 to ~1045.6 erg s-1, generally lower than quasars and BL Lac objects, but partially overlapping with the latter. Once normalised by the mass of the central black holes, the jet power of the three types of active galactic nuclei are consistent with each other, indicating that the jets are similar and the observational differences are due to scaling factors. Despite the observational differences, the central engine of RLNLS1s is apparently quite similar to that of blazars. The historical difficulties in finding radio-loud narrow-line Seyfert 1 galaxies might be due to their low power and to intermittent jetactivity. Tables 4-9 and Figs. 8-13 are available in electronic form at http://www.aanda.org

  12. The peculiar radio-loud narrow line Seyfert 1 galaxy 1H 0323+342

    SciTech Connect

    Paliya, Vaidehi S.; Stalin, C. S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Anjum, Ayesha; Pandey, S. B.

    2014-07-10

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ∼3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  13. Collisional Line-Shape and Line-Mixing Parameters for CO(2) Absorption near 3340 cm(-1): Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Buldyreva, Jeanna; Auwera, Jean Vander

    2014-06-01

    class="MsoNormal">The present work is focused on the determination of line-shape parameters for one of the 12C16O2 bands detectable by the SOIR (Solar Occultation in the InfraRed) instrument onboard the ESA Venus Express spacecraft, namely the 21102 - 00001 band located near 3340 cm-1. High-resolution Fourier transform spectra of this band have been recorded at sub-atmospheric pressures and analyzed to extract isolated-line intensities and collisional parameters as well as first-order line-mixing coefficients. Voigt, hard-collision Rautian and Sobel'man, and quadratic-speed-dependent Voigt profiles have been used. The retrieved parameters are compared with previous data available in the literature and with theoretical estimates obtained by an Energy-Corrected Sudden approach (generally, non-Markovian) employing a symmetric metric in the Liouville space. The same approach, supplied with additional hypotheses for basic transition rates for the hot bands, has also been used to model the complete band shapes. The need for accounting of line-narrowing effects at sub-atmospheric pressures has been evidenced from comparison with the recorded spectra, and some improvements have been introduced in the relaxation matrix model, leading to a good agreement of calculated and measured absorptions from nearly Doppler pressure regime to nearly atmospheric pressure.

  14. Interpreting the convergence of Lyman series absorption lines

    NASA Technical Reports Server (NTRS)

    Jenkins, Edward B.

    1990-01-01

    Spectra of quasars at high z often show absorption at the Lyman limit from intervening gas systems at intermediate z having N(H) approx. greater than 10(exp 7) cm(-2). In some circumstances, N(H) can be determined by measuring the strength of the Lyman limit absorption or the damping wings of Lyman - alpha. With a spectrum taken at low wavelength resolution, say, lambda/delta lambda approx. 10(exp 3), it is usually not possible to distinguish individual Lyman series lines near the limit, yet one can still discern how rapidly the average intensity drops off as the limit is approached from the long wavelength side. The purpose here is to point out the information which is available from measurements of this series convergence.

  15. VERY LARGE TELESCOPE SPECTROPOLARIMETRY OF BROAD ABSORPTION LINE QSOs

    SciTech Connect

    DiPompeo, M. A.; Brotherton, M. S.; De Breuck, C.

    2011-03-15

    We present spectropolarimetry of 19 confirmed and four possible bright, southern broad absorption line (BAL) quasars from the European Southern Observatory Very Large Telescope. A wide range of redshifts is covered in the sample (from 0.9 to 3.4), and both low- and high-ionization quasars are represented, as well as radio-loud and radio-quiet BALQSOs. We continue to confirm previously established spectropolarimetric properties of BALQSOs, including the generally rising continuum polarization with shorter wavelengths and comparatively large fraction with high broadband polarization (6 of 19 with polarizations >2%). Emission lines are polarized less than or similar to the continuum, except in a few unusual cases, and absorption troughs tend to have higher polarizations. A search for correlations between polarization properties has been done, identifying two significant or marginally significant correlations. These are an increase in continuum polarization with decreasing optical luminosity (increasing absolute B magnitude) and decreasing C IV emission-line polarization with increased continuum polarization.

  16. Distributed seeding for narrow-line width hard x-ray free-electron lasers

    SciTech Connect

    Nguyen, Dinh Cong; Anisimov, Petr Mikhaylovich; Buechler, Cynthia Eileen; Lewellen, IV, John W.; Marksteiner, Quinn R.

    2015-09-09

    We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, which leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10-5 .

  17. A FANAROFF-RILEY TYPE I CANDIDATE IN NARROW-LINE SEYFERT 1 GALAXY Mrk 1239

    SciTech Connect

    Doi, Akihiro; Wajima, Kiyoaki; Hagiwara, Yoshiaki; Inoue, Makoto

    2015-01-10

    We report finding kiloparsec-scale radio emissions aligned with parsec-scale jet structures in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 1239 using the Very Large Array and the Very Long Baseline Array. Thus, this radio-quiet NLS1 has a jet-producing central engine driven by essentially the same mechanism as that of other radio-loud active galactic nuclei (AGNs). Most of the radio luminosity is concentrated within 100 parsecs and overall radio morphology looks edge-darkened; the estimated jet kinetic power is comparable to Fanaroff-Riley Type I radio galaxies. The conversion from accretion to jet power appears to be highly inefficient in this highly accreting low-mass black hole system compared with that in a low-luminosity AGN with similar radio power driven by a sub-Eddington, high-mass black hole. Thus, Mrk 1239 is a crucial probe to the unexplored parameter spaces of central engines for a jet formation.

  18. Fluorescence line narrowing spectroscopy of Eu{sup 3+} in zinc-thallium-tellurite glass

    SciTech Connect

    Tuyen, V.P.; Hayakawa, T.; Nogami, M.; Duclere, J.R-.; Thomas, P.

    2010-11-15

    The environment of Eu{sup 3+} in zinc-thallium-tellurite glass of the molar composition 60TeO{sub 2}-30TlO{sub 0.5}-9.9ZnO-0.1Eu{sub 2}O{sub 3} was investigated by laser-induced fluorescence line narrowing (FLN) techniques using Eu{sup 3+} as a local site probe. From the site selective luminescence spectra of Eu{sup 3+} at 7 K, the energies of the Stark components of the {sup 7}F{sub 1} and {sup 7}F{sub 2} states were recorded and then the crystal field parameters B{sub nm} were calculated assuming a C{sub 2v} site symmetry. The ratios B{sub 22}/B{sub 20} and B{sub 44}/B{sub 40} for each excitation energy within {sup 7}F{sub 0}-{sup 5}D{sub 0} transition were obtained and compared with the values calculated for Eu{sup 3+} in other types of glasses. -- Graphical abstract: Crystal fields parameters B{sub nm} of Eu{sup 3+} ions (strength, distribution) in novel TeO{sub 2}-TlO{sub 0.5}-ZnO glass system. Display Omitted

  19. Narrow-Line Seyfert 1 Galaxies and their place in the Universe

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Colpi, M.; Gallo, L.; Grupe, D.; Komossa, S.; Leighly, K.; Mathur, S.

    In 1978, Davidson and Kinman wrote about Markarian 359: "This unusual object merits further observations...". In 1985, Osterbrock and Pogge defined a new class of active galactic nuclei (AGN), named Narrow-Line Seyfert 1 (NLS1). Twenty-five years later, NLS1s still continue to intrigue and bewilder. NLS1s manifest extreme behaviour at all wavelengths. They exhibit the most extreme X-ray variability seen in radio-quiet AGN, the most intense optical FeII emission, and high rates of star formation. In general, their characteristics are consistent of AGNs with relatively low mass black holes accreting close to the Eddington rate. The 2009 Fermi Gamma-ray Space Telescope discovery of high-energy (E>100 MeV) gamma rays in a handful of NLS1s has established the existence of relativistic jets in these systems -- a fact previously hinted at by the flat radio spectrum and high brightness temperature seen in some objects. Since NLS1 are generally hosted by spirals, this poses some intriguing questions on the galaxy evolution and on how relativistic jets are generated. It is therefore time for the broad community to come together and discuss what we have discovered in the last quarter century and lay the foundation for future work. Workshop Topics: * Central engine: BH mass, accretion disk, BLR/NLR, jet * Host galaxy: morphology, star formation, merging history * NLS1 in the Universe: comparison with other types of AGN, surveys/statistics, formation/merging, cosmological evolution

  20. An ytterbium quantum gas microscope with narrow-line laser cooling

    NASA Astrophysics Data System (ADS)

    Yamamoto, Ryuta; Kobayashi, Jun; Kuno, Takuma; Kato, Kohei; Takahashi, Yoshiro

    2016-02-01

    We demonstrate site-resolved imaging of individual bosonic {}174{Yb} atoms in a Hubbard-regime two-dimensional optical lattice with a short lattice constant of 266 nm. To suppress the heating by probe light with the 1S0-1P1 transition of the wavelength λ = 399 nm for high-resolution imaging and preserve atoms at the same lattice sites during the fluorescence imaging, we simultaneously cool atoms by additionally applying narrow-line optical molasses with the 1S0-3P1 transition of the wavelength λ = 556 nm. We achieve a low temperature of T=7.4(13) μ {{K}}, corresponding to a mean oscillation quantum number along the horizontal axes of 0.22(4) during the imaging process. We detect, on average, 200 fluorescence photons from a single atom within a 400 ms exposure time, and estimate a detection fidelity of 87(2)%. The realization of a quantum gas microscope with enough fidelity for Yb atoms in a Hubbard-regime optical lattice opens up the possibilities for studying various kinds of quantum many-body systems such as Bose and Fermi gases, and their mixtures, and also long-range-interacting systems such as Rydberg states.

  1. SBS 0846+513: a New Gamma-ray Emitting Narrow-line Seyfert 1 Galaxy

    NASA Technical Reports Server (NTRS)

    D'Ammando, F.; Orienti, M.; Finke, J.; Raiteri, C. M.; Angelakis, E.; Fuhrmann, L.; Giroletti, M.; Hovatta, T.; Max-Moerbeck, W.; Perkins, J. S.; Readhead, A. C. S.; Richards, J. L.; Stawarz, L.; Donato, D.

    2012-01-01

    We report Fermi-LAT observations of the radio-loud AGN SBS 0846+513 (z=0.5835), optically classified as a Narrow-Line Seyfert 1 galaxy, together with new and archival radio-to-X-ray data. The source was not active at ?-ray energies during the first two years of Fermi operation. A significant increase in activity was observed during 2010 October-2011 August. In particular a strong gamma-ray flare was observed in 2011 June reaching an isotropic ?-ray luminosity (0.1-300 GeV) of 1.0×10(sup 48) erg s(sup -1), comparable to that of the brightest flat spectrum radio quasars, and showing spectral evolution in gamma rays. An apparent superluminal velocity of (8.2+/-1.5)c in the jet was inferred from 2011-2012 VLBA images, suggesting the presence of a highly relativistic jet. Both the power released by this object during the flaring activity and the apparent superluminal velocity are strong indications of the presence of a relativistic jet as powerful as those of blazars. In addition, variability and spectral properties in radio and gamma-ray bands indicate blazar-like behaviour, suggesting that, except for some distinct optical characteristics, SBS 0846+513 could be considered as a young blazar at the low end of the blazar's black hole mass distribution.

  2. A Fanaroff-Riley Type I Candidate in Narrow-Line Seyfert 1 Galaxy Mrk 1239

    NASA Astrophysics Data System (ADS)

    Doi, Akihiro; Wajima, Kiyoaki; Hagiwara, Yoshiaki; Inoue, Makoto

    2015-01-01

    We report finding kiloparsec-scale radio emissions aligned with parsec-scale jet structures in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 1239 using the Very Large Array and the Very Long Baseline Array. Thus, this radio-quiet NLS1 has a jet-producing central engine driven by essentially the same mechanism as that of other radio-loud active galactic nuclei (AGNs). Most of the radio luminosity is concentrated within 100 parsecs and overall radio morphology looks edge-darkened; the estimated jet kinetic power is comparable to Fanaroff-Riley Type I radio galaxies. The conversion from accretion to jet power appears to be highly inefficient in this highly accreting low-mass black hole system compared with that in a low-luminosity AGN with similar radio power driven by a sub-Eddington, high-mass black hole. Thus, Mrk 1239 is a crucial probe to the unexplored parameter spaces of central engines for a jet formation.

  3. THE COMPACT RADIO STRUCTURE OF RADIO-LOUD NARROW LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Gu Minfeng; Chen Yongjun

    2010-06-15

    We present the compact radio structure of three radio-loud narrow line Seyfert 1 galaxies from the Very Long Baseline Array archive data at 2.3, 5, and 8.4 GHz. In RXS J16290+4007, the radio structure is mostly unresolved. The combination of compact radio structure, high brightness temperature, and inverted spectrum between simultaneous 2.3 and 8.4 GHz strongly favors jet relativistic beaming. Combined with the very long baseline interferometry data at 1.6 and 8.4 GHz from the literature, we argue that RXS J16333+4718 also may harbor a relativistic jet, with resolved core-jet structure in 5 GHz. B3 1702+457 is clearly resolved with a well-defined jet component. The overall radio steep spectrum indicates that B3 1702+457 is likely a source optically defined as NLS1 with radio definition of compact steep spectrum sources. From these three sources, we found that radio loud NLS1s can be either intrinsically radio loud (e.g., B3 1702+457) or apparently radio loud due to jet beaming effects (e.g., RXS J16290+4007 and RXS J16333+4718).

  4. KILOPARSEC-SCALE JETS IN THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Richards, Joseph L.; Lister, Matthew L.

    2015-02-10

    We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array. We find all sources show two-sided, mildly core-dominated jet structures with diffuse lobes dominated by termination hotspots. These span 20–70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a 45° bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core–luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures (≲10{sup 10} K), we conclude these jets are mildly relativistic (β≲0.3, δ∼1−1.5) and aligned at moderately small angles to the line of sight (10–15°). The derived kinematic ages of ∼10{sup 6}–10{sup 7} yr are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from 7 to 10 and suggest that such extended emission may be common, at least among the brightest of these sources.

  5. Fermi monitoring of radio-loud narrow-line Seyfert 1 galaxies

    SciTech Connect

    Paliya, Vaidehi S.; Stalin, C. S.; Ravikumar, C. D.

    2015-02-01

    We present detailed analysis of the γ-ray flux variability and spectral properties of the five radio-loud narrow line Seyfert 1 (RL-NLSy1) galaxies, detected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope, namely 1H 0323+342, SBS 0846+513, PMN J0948+0022, PKS 1502+036, and PKS 2004−447. The first three sources show significant flux variations, including the rapid variability of a few hours by 1H 0323+342. The average γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 shows deviation from a simple power-law (PL) behavior, whereas the PL model gives a better fit for the other three sources. The spectra of 1H 0323+342, SBS 0846+513, and PMN J0948+0022, which are in low, flaring, and moderately active states, respectively, show significant curvature. Such curvature in the γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 could be due to the emission region located inside the broad line region (BLR) where the primary mechanism of the γ-ray emission is inverse-Compton (IC) scattering of BLR photons occurring in the Klein–Nishina regime. The γ-ray emission of SBS 0846+513 is explained by IC scattering of dusty torus photons, which puts the emission region outside the BLR and thus under the Thomson regime. Therefore, the observed curvature of SBS 0846+513 could be intrinsic to the particle energy distribution. The presence of curvature in the γ-ray spectrum and flux variability amplitudes of some of the RL-NLSy1 galaxies suggests that these sources could be akin to low/moderate jet power flat spectrum radio quasars.

  6. Radiation mechanisms and physical properties of the γ-ray narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Jianping; Zhou, Bing

    2015-12-01

    We investigate the physical properties and radiation mechanisms of 11 states of five narrow-line Seyfert 1 (NLS1) galaxies detected by the Large Area Telescope on board Fermi through modeling the quasi-simultaneous multi-band observations. We obtain the best-fitting model parameters and their uncertainties for each state with the χ2-minimization procedure and discuss their implications on the characteristics of jet. Similar to blazars, their spectral energy distributions (SEDs) have a two-humped structure and their non-thermal emission can be modelled with the single-zone synchrotron + inverse Compton (IC) model. For all states, the GeV γ-rays may be contributed by the external Compton (EC) emission components. The observations of Fermi are mostly located at the declining stage of the EC humps. Text < 0.5 eV in all cases (Text is the characteristic temperature of external soft photons), suggesting that their radiation zones may be usually located outside of the broad line region (BLR) and the soft photons of Compton scattering mainly come from the dust torus. Compared with the bright Fermi blazars studied by Ghisellini et al. (2014, Nature, 515, 376), the Pjet (the power of the jets) of NLS1 galaxies detected by Fermi is similar to that of the flat spectrum radio quasars (FSRQs) but a little larger than that of the BL Lac objects (BL Lacs). However, a comparison of Pr (the powers of radiations) with the FSRQs and BL Lac objects shows that NLS1 galaxies' Pr has values comparable to BL Lac objects but lower than FSRQs in spite of having similar Pjet values and the same energy carrier (the cold protons) as the FSRQs. Observations indicate that γ-NLS1 galaxies might have lower η (efficiency of gravitational energy release) values than GeV blazars.

  7. High-resolution spectra of distant compact narrow emission line galaxies: Progrenitors of spheroidal galaxies

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Guzman, Rafael; Faber, S. M.; Illingworth, Garth D.; Bershady, Matthew A.; Kron, Richard G.; Takamiya, Marianne

    1995-01-01

    Emission-line velocity widths have been determined for 17 faint (B approximately 20-23) very blue, compact galaxies whose redshifts range from z = 0.095 to 0.66. The spectra have a resolution of 8 Km/s and were taken with the HIRES echelle spectrograph of the Keck 10 m telescope. The galaxies are luminous with all but two within 1 mag of M(sub B) approximately -21. Yet they exhibit narrow velocity widths between sigma = 28-157 km/s, more consistent with typical values of extreme star-forming galaxies than with those of nearby spiral galaxies of similar luminosity. In particular, objects with sigma is less than or equal to 65 km/s follow the same correlations between sigma and both blue and H beta luminosities as those of nearby H II galaxies. These results strengthen the identification of H II glaxies as thier local counterparts. The blue colors and strong emission lines suggest these compact galaxies are undergoing a recent, strong burst of star formation. Like those which characterize some H II galaxies, this burst could be a nuclear star-forming event within a much larger, older stellar population. If the burst is instead a major episode in the total star-forming history, these distant galaxies could fade enough to match the low luminosities and surface brightnesses typical of nearby spheroidals like NGC 185 or NGC 205. Together with evidence for recent star formation, exponential light profiles, and subsolar metallicities, the postfading correlations between luminosity and velocity width and bewtween luminosity and surface brightness suggest that among the low-sigma galaxies, we may be witnessing, in situ, the progenitors of today's spheroidal galaxies.

  8. The size of the narrow-line-emitting region in the Seyfert 1 galaxy NGC 5548 from emission-line variability

    SciTech Connect

    Peterson, B. M.; Denney, K. D.; De Rosa, G.; Grier, C. J.; Pogge, R. W.; Kochanek, C. S.; Bentz, M. C.; Vestergaard, M.; Kilerci-Eser, E.; Dalla Bontà, E.; Ciroi, S.

    2013-12-20

    The narrow [O III] λλ4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow-line-emitting region has a radius of only 1-3 pc and is denser (n {sub e} ∼ 10{sup 5} cm{sup –3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass. Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hβ emission-line light curves for the period 1988-2008.

  9. Quasar Absorption Lines from Radiative Shocks: Implications for Multiphase Outflows and Feedback

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, C.-A.

    2012-08-01

    Photoionization modeling of certain low-ionization broad absorption lines in quasars implies very compact (ΔR ˜0.01 pc), galaxy-scale (R˜ kpc) absorbers blueshifted by several 1000 km s-1. While these are likely signatures of quasar outflows, the lifetimes of such compact absorbers are too short for them to be direct ejecta from a nuclear wind. Instead, I argue that the absorbing clouds must be transient and created in situ. Following arguments detailed by Faucher-Giguère, Quataert, & Murray (2011), I show that a model in which the cool absorbers form in radiative shocks arising when a quasar blast wave impacts an interstellar cloud along the line of sight successfully explains the key observed properties. Using this radiative shock model, the outflow kinetic luminosities for three luminous quasars are estimated to be Ėk ≍ 2-5% LAGN (with corresponding momentum fluxes Ṗ ≍2-15 LAGN/c), consistent with feedback models of the M-σ relation. These energetics are similar to those recently inferred of molecular outflows in local ultra-luminous infrared galaxies and in post-starburt winds, suggesting that active galactic nuclei (AGN) are capable of driving such outflows. Radiative shocks probably affect the multiphase structure of outflows in a range of other systems, potentially including narrower and higher-ionization quasar absorption lines, and compact intergalactic absorbers ejected by star formation and/or AGN activity.

  10. Interstellar Absorption Lines in the Spectrum of the Starburst Galaxy NGC 1705

    NASA Astrophysics Data System (ADS)

    Sahu, M. S.

    1998-09-01

    A Goddard High Resolution Spectrograph archival study of the interstellar absorption lines in the line of sight to the H i-rich, starburst dwarf galaxy NGC 1705 in the 1170 to 1740 Å range at ~120 km s^-1 resolution is presented. The absorption features arising because of photospheric lines are distinctly different from the interstellar lines: the photospheric lines are weak, broad (equivalent widths >1 Å), asymmetric, and centered around the systemic LSR velocity of NGC 1705 (~610 km s^-1). The interstellar lines consist of three relatively narrow components at LSR velocities of -20, 260, and 540 km s^-1, and include absorption by neutral atoms (N i lambda1200 triplet and O i lambda1302), singly ionized atoms (Si ii lambdalambda1190, 1193, 1260, 1304, and 1526, S ii lambda1253, C ii lambda1334, C ii^* lambda1336, Fe ii lambda1608, and Al ii lambda1670), and atoms in higher ionization states (Si iii lambda1206, Si iv lambdalambda1393, 1402, and C iv lambdalambda1548, 1550). The Si iv and C iv absorption features have both interstellar and photospheric contributions. In an earlier study, Sahu & Blades identified the absorption system at -20 km s^-1 with Milky Way disk/halo gas, and the 260 km s^-1 system with a small, isolated high-velocity cloud HVC 487, which is probably associated with Magellanic Stream gas. The 540 km s^-1 absorption system is associated with a kiloparsec-scale expanding, ionized supershell centered on the super-star cluster NGC 1705-1. The analysis presented in this paper consists of (1) a list of all interstellar absorption features with greater than 3 sigma significance and their measured equivalent widths, (2) plots of the lines in the various atomic species together with the results of nonlinear least-squares fit profiles to the observed data, and (3) unpublished 21 cm maps from the Wakker & van Woerden survey showing the large-scale H i distribution in the region near the NGC 1705 sight line and HVC 487. Furthermore, weak N i lambda1200

  11. Cinemática y masas de agujeros negros en galaxias activas del tipo "Narrow Line Seyfert 1"

    NASA Astrophysics Data System (ADS)

    Oío, G.; Schmidt, E.; Vega Neme, L. R.

    We apply a spectral synthesis method to Narrow Line Seyfert 1 active galax- ies with public spectra available. Our goal will be to obtain the stellar ve- locity dispersions, and then the central black hole masses via the Tremaine relation. We comment several problems we found in fitting this type of objects and the possibility of obtaining masses through the emission lines. FULL TEXT IN SPANISH

  12. Polarization and Broad Absorption Lines in Quasars-Repeat

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    1990-12-01

    OI 287 is a unique extragalactic source. It appears to take one property from each class of object. It is either some kind of missing link, or a new type of activity. Because of the high optical polarization, OI 287 has been classified with the blazars. However, every other blazar is variable in optical flux, polarization, and polarization angle., while OI 287 is constant at V=17, P=8%, and theta=145 degrees. Also, every other blazar has a radio source dominated by an intense flat-spectrum core, while OI 287 has an upper limit of 2% of the total 20cm flux in the core. The only group of quasars which ever shows even moderate (2-5%) constant optical polarization is the broad absorption line (BAL) objects, e.g. PHL 5200 and H1413+113. Among the BAL quasars, PHL 5200 and H1413+113 have exceptionally smooth deep, attached absorption lines, and also the highest polarization. We want to know whether OI 287 is a BAL quasar. It would be the first definite radio loud example. If it is a BAL quasar then the high polarization is really related to (and perhaps the key to) the BAL phenomenon, and we can use the techniques of spectropolarimetry to help unlock the BAL geometry. The UV spectral shape would also provide help determining the cause of polarization.

  13. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    PubMed

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  14. THE RADIO PROPERTIES OF RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES ON PARSEC SCALES

    SciTech Connect

    Gu, Minfeng; Chen, Yongjun; Shen, Zhiqiang; Komossa, S.; Zensus, J. A.; Yuan, Weimin; Wajima, Kiyoaki; Zhou, Hongyan

    2015-11-15

    We present the detection of the compact radio structures of 14 radio-loud narrow-line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array (VLBA) observations at 5 GHz performed in 2013. While 50% of the sources of our sample show a compact core only, the remaining 50% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 10{sup 8.4} to 10{sup 11.4} K with a median value of 10{sup 10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, thus implying a low jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all of these sources are very radio-loud with R > 100, their jet properties are diverse in terms of their milliarcsecond (mas) scale (parsec scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford–Znajek mechanism.

  15. Intra-night optical variability characteristics of different classes of narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Kshama, S. K.; Paliya, Vaidehi S.; Stalin, C. S.

    2017-04-01

    In a first systematic effort to characterize the intra-night optical variability (INOV) of different classes of narrow-line Seyfert 1 (NLSy1) Galaxies, we have carried out observations on a sample of radio-loud (RL) and radio-quiet (RQ) NLSy1 galaxies. The RL-NLSy1 galaxies are further divided into γ-ray loud (GL) and γ-ray quiet (GQ) NLSy1 galaxies. Our sample consists of four sets, each set consisting of a RQ-NLSy1, a GQ-NLSy1 and a GL-NLSy1 galaxy, closely matched in redshift and optical luminosity. Our observations on both RQ- and GQ-NLSy1 galaxies consist of a total of 19 nights, whereas the data for GL-NLSy1 galaxies (18 nights) were taken from the literature published earlier by us. This enabled us to do a comparison of the duty cycle (DC) of different classes of NLSy1 galaxies. Using power-enhanced F-test, with a variability threshold of 1 per cent, we find DCs of about 55 per cent, 39 per cent and 0 per cent for GL-, GQ- and RQ-NLSy1 galaxies, respectively. The high DC and large amplitude of INOV (24.0 ± 13.7 per cent) shown by GL-NLSy1 galaxies relative to the other two classes might be due to their inner aligned relativistic jets having large bulk Lorentz factors. The null DC of RQ-NLSy1 galaxies could mean the presence of low power and/or largely misaligned jets in them. However, dividing RL-NLSy1 galaxies into low and high optical polarization sources, we find that sources with large polarization show somewhat higher DCs (69 per cent) and amplitudes (29 per cent) compared to those with low polarization. This points to a possible link between INOV and optical polarization.

  16. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    SciTech Connect

    Zhu, Yi-Nan; Wu, Hong E-mail: hwu@bao.ac.cn

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  17. A spectroscopic analysis of a sample of narrow-line Seyfert 1 galaxies selected from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Cracco, V.; Ciroi, S.; Berton, M.; Di Mille, F.; Foschini, L.; La Mura, G.; Rafanelli, P.

    2016-10-01

    We revisited the spectroscopic characteristics of narrow-line Seyfert 1 galaxies (NLS1s) by analysing a homogeneous sample of 296 NLS1s at redshift between 0.028 and 0.345, extracted from the Sloan Digital Sky Survey (SDSS-DR7) public archive. We confirm that NLS1s are mostly characterized by Balmer lines with Lorentzian profiles, lower black hole masses and higher Eddington ratios than classic broad-line Seyfert 1 (BLS1s), but they also appear to be active galactic nuclei (AGNs) contiguous with BLS1s and sharing with them common properties. Strong Fe II emission does not seem to be a distinctive property of NLS1s, as low values of Fe II/Hβ are equally observed in these AGNs. Our data indicate that Fe II and Ca II kinematics are consistent with the one of Hβ. On the contrary, O I λ8446 seems to be systematically narrower and it is likely emitted by gas of the broad-line region more distant from the ionizing source and showing different physical properties. Finally, almost all NLS1s of our sample show radial motions of the narrow-line region highly ionized gas. The mechanism responsible for this effect is not yet clear, but there are hints that very fast outflows require high continuum luminosities (>1044 erg s-1) or high Eddington ratios (log (Lbol/LEdd) > -0.1).

  18. Laser-induced line-narrowing effects in coupled Doppler-broadened transitions. II - Standing-wave features.

    NASA Technical Reports Server (NTRS)

    Feldman, B. J.; Feld, M. S.

    1972-01-01

    Previous theoretical results on the influence of a laser on the line shape of a coupled transition (laser-induced line narrowing) have been restricted to the case where the laser is detuned from the center of its atomic gain profile or is in the form of a traveling wave. The present paper extends these results to the case where the laser is an intense standing-wave field tunable to the center of its atomic gain profile (conditions for Lamb dip). A theoretical solution of the problem is developed, and a detailed discussion of line shapes and physical processes involved is included.

  19. Broad Balmer-Line Absorption in SDSS J172341.10+555340.5

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro

    2010-10-01

    We present the discovery of Balmer-line absorption from Hα to H9 in an iron low-ionizaton broad absorption line (FeLoBAL) quasar, SDSS J172341.10+555340.5, by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) attached to the Subaru Telescope. The redshift of the Balmer-line absorption troughs is 2.0530±0.0003, and it is blueshifted by 5370 km s-1 from the Balmer emission lines. It is more than 4000 km s-1 blueshifted from the previously known UV absorption lines. We detected relatively strong (EWrest = 20 Å) [OIII] emission lines that are similar to those found in other broad absorption line quasars with Balmer-line absorption. We also derived the column density of neutral hydrogen of 5.2 × 1017 cm-2 by using the curve of growth and taking account of Lyα trapping. We searched for UV absorption lines that had the same redshift with Balmer-line absorption, and found Ali III and Fe III absorption lines at z = 2.053 that correspond to previously unidentified absorption lines, and the presence of other blended troughs that were difficult to identify.

  20. Note: Efficient diode laser line narrowing using dual, feed-forward + feed-back laser frequency control

    NASA Astrophysics Data System (ADS)

    Lintz, M.; Phung, D. H.; Coulon, J.-P.; Faure, B.; Lévèque, T.

    2017-02-01

    We have achieved distributed feedback laser diode line narrowing by simultaneously acting on the diode current via a feed-back loop and on an external electrooptic phase modulator in feed-forward actuator. This configuration turns out to be very efficient in reaching large bandwidth in the phase correction: up to 15 MHz with commercial laser control units. About 98% of the laser power undergoes narrowing. The full width at half maximum of the narrowed optical spectrum is of less than 4 kHz. This configuration appears to be very convenient as the delay in the feed-forward control electronics is easily compensated for by a 20 m optical fiber roll.

  1. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.

  2. The host galaxies and narrow-line regions of four double-peaked [OIII] AGNs

    SciTech Connect

    Villforth, Carolin; Hamann, Fred

    2015-03-01

    Major gas-rich mergers of galaxies are expected to play an important role in triggering and fueling luminous active galactic nuclei (AGNs). The mechanism of AGN fueling during mergers, however, remains poorly understood. We present deep multi-band (u/r/z) imaging and long-slit spectroscopy of four double-peaked [OIII] emitting AGNs. This class of object is likely associated with either kiloparsec-separated binary AGNs or final stage major mergers, although AGNs with complex narrow-line regions (NLRs) are known contaminants. Such objects are of interest since they represent the onset of AGN activity during the merger process. Three of the four double-peaked [OIII] emitters studied have been confirmed as major mergers using near-infrared imaging and one is a confirmed X-ray binary AGN. All AGNs are luminous, radio-quiet to radio-intermediate, and have redshifts of 0.1

  3. Outflow and hot dust emission in broad absorption line quasars

    SciTech Connect

    Zhang, Shaohua; Zhou, Hongyan; Wang, Huiyuan; Wang, Tinggui; Xing, Feijun; Jiang, Peng; Zhang, Kai E-mail: whywang@mail.ustc.edu.cn

    2014-05-01

    We have investigated a sample of 2099 broad absorption line (BAL) quasars with z = 1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature and is refined by our new algorithm. Correlations of outflow velocity and strength with a hot dust indicator (β{sub NIR}) and other quasar physical parameters—such as an Eddington ratio, luminosity, and a UV continuum slope—are explored in order to figure out which parameters drive outflows. Here β{sub NIR} is the near-infrared continuum slope, which is a good indicator of the amount of hot dust emission relative to the accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depend on the Eddington ratio, UV slope, and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with β{sub NIR} in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with β{sub NIR} than the Eddington ratio, luminosity, and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as β{sub NIR} increases, while the Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that the dusty outflow scenario, i.e., that dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely.

  4. Time-Variable Complex Metal Absorption Lines in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Eracleous, Michael; Charlton, Jane C.; Tajitsu, Akito

    2005-08-01

    We present a new spectrum of the quasar HS 1603+3820 taken 1.28 yr (0.36 yr in the quasar rest frame) after a previous observation with Subaru+HDS. The new spectrum enables us to search for time variability as an identifier of intrinsic narrow absorption lines (NALs). This quasar shows a rich complex of C IV NALs within 60,000 km s-1 of the emission redshift. On the basis of covering factor analysis, Misawa et al. found that the C IV NAL system at zabs=2.42-2.45 (system A, at a shift velocity of vsh=8300-10,600 km s-1 relative to the quasar) was intrinsic to the quasar. With our new spectrum, we perform time variability analysis, as well as covering factor analysis, to separate intrinsic NALs from intervening NALs for eight C IV systems. Only system A, which was identified as an intrinsic system in the earlier paper by Misawa et al., shows a strong variation in line strength (Wobs~10.4-->19.1 Å). We speculate that a broad absorption line (BAL) could be forming in this quasar (i.e., many narrower lines will blend together to make a BAL profile). We illustrate the plausibility of this suggestion with the help of a simulation in which we vary the column densities and covering factors of the NAL complex. Under the assumption that a change of ionization state causes the variability, a lower limit can be placed on the electron density (ne>~3×104cm-3) and an upper limit on the distance from the continuum source (r<=6 kpc). On the other hand, if the motion of clumpy gas causes the variability (a more likely scenario), the crossing velocity and the distance from the continuum source are estimated to be vcross>8000 km s-1 and r<3 pc. In this case, the absorber does not intercept any flux from the broad emission line region, but only flux from the UV continuum source. If we adopt the dynamical model of Murray et al., we can obtain a much more strict constraint on the distance of the gas parcel from the continuum source, r<0.2 pc. Based on data collected at the Subaru

  5. Statistical Design of Experiments on Fabrication of Bilayer Tablet of Narrow Absorption Window Drug: Development and In vitro characterisation.

    PubMed

    Jivani, R R; Patel, C N; Jivani, N P

    2012-07-01

    The current study involves the fabrication of oral bioadhesive bilayer matrices of narrow absorption window drug baclofen and the optimisation of their in vitro drug release and characterisation. Statistical design of experiments, a computer-aided optimisation technique, was used to identify critical factors, their interactions and ideal process conditions that accomplish the targeted response(s). A central composite design was employed to systematically optimise the drug delivery containing a polymer, filler and compression force. The values of ratio of different grades of hydroxypropyl methylcellulose, microcrystalline cellulose and compression force were varied to be fitted in design. Drug release at 1 h (Q1), 4 h (Q4), 8 h (Q8), 12 h (Q12), and hardness were taken as responses. Tablets were prepared by direct compression methods. The compressed tablets were evaluated for their hardness, weight variation, friability, content uniformity and diameter. Counter plots were drawn and optimum formulation was selected by desirability function. The formulations were checked for their ex vivo mucoadhesion. The experimental value of Q1, Q4, Q8, Q12 and hardness for check-point batch was found to be 31.64, 45.82, 73.27, 98.95% and 4.4 kg/cm(2), respectively. The release profile indicates Highuchi kinetics (Fickian transport) mechanism. The results of the statistical analysis of the data demonstrated significant interactions amongst the formulation variables, and the desirability function was demonstrated to be a powerful tool to predict the optimal formulation for the bilayer tablet.

  6. Development of stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping

    SciTech Connect

    Liu, Bo; Tong, Xin; Jiang, Chenyang; Brown, Daniel R.; Robertson, Lee

    2015-06-05

    In this study, we developed a stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping. An optimized external cavity equipped with an off-the-shelf volume holographic grating narrowed the spectral line-width of a 100 W high-power diode laser and stabilized the laser spectrum. The laser spectrum showed a high side mode suppression ratio of >30 dB and good long-term stability (center wavelength drifting within ±0.002 nm during 220 h of operation). Finally, our laser is delivered by a multimode fiber with power ~70 W, center wavelength of 794.77 nm, and spectral bandwidth of ~0.12 nm.

  7. The Physical Nature of Polar Broad Absorption Line Quasars

    NASA Technical Reports Server (NTRS)

    Ghost, Kajal; Punsly, Brian

    2007-01-01

    It has been shown based on radio variability arguments that some BALQSOs (broad absorption line quasars) are viewed along the polar axis (o rthogonal to accretion disk) in the recent article of Zhou et a. Thes e arguments are based on the brightness temperature, T(sub b) exceedi ng 10(exp 12) K which leads to the well-known inverse Compton catastr ophe unless the radio jet is relativistic and is viewed along its axi s. In this letter, we expand the Zhou et al sample of polar BALQSOs u sing their techniques applied to SDSS DR5. In the process, we clarify a mistake in their calculation of brightness temperature. The expanded sample of high T(sub b) BALQSOS, has an inordinately large fraction of LoBALQSOs (low ionization BALQSOs). We consider this an important clue to understanding the nature of the polar BALQSOs. This is expec ted in the polar BALQSO analytical/numerical models of Punsly that pr edicted that LoBALQSOs occur when the line of sight is very close to the polar axis, where the outflow density is the highest.

  8. Anomalous absorption line in the magneto-optical response of graphene.

    PubMed

    Gusynin, V P; Sharapov, S G; Carbotte, J P

    2007-04-13

    The intensity as well as position in energy of the absorption lines in the infrared conductivity of graphene, both exhibit features that are directly related to the Dirac nature of its quasiparticles. We show that the evolution of the pattern of absorption lines as the chemical potential is varied encodes the information about the presence of the anomalous lowest Landau level. The first absorption line related to this level always appears with full intensity or is entirely missing, while all other lines disappear in two steps. We demonstrate that if a gap develops, the main absorption line splits into two provided that the chemical potential is greater than or equal to the gap.

  9. High-brightness narrow-line laser diode source with volume Bragg-grating feedback

    NASA Astrophysics Data System (ADS)

    Venus, George B.; Sevian, Armen; Smirnov, Vadim I.; Glebov, Leonid B.

    2005-03-01

    Results of a long-term research in spectral narrowing and transverse mode selection in semiconductor lasers by means of volume Bragg gratings recorded in a photo-thermo-refractive (PTR) glass are described. PTR glass is a multicomponent silicate optical glass which changes its refractive index after UV exposure followed by thermal development. This feature enables recording of volume holograms with efficiency exceeding 97% in visible and near IR spectral regions which tolerate high temperatures up to 400°C, high power laser radiation. Transmitting and reflecting volume Bragg gratings recorded in such manner have spectral and angular selectivity down to 0.01 nm and 0.1 mrad, respectively. These spectral and angular selectors were used as transmitting and reflecting elements of external resonators for high-power semiconductor laser diodes (LDs). Transmitting Bragg gratings provide tunability of LDs in the range up to 60 nm, spectral narrowing down to 200 pm, stabilization of wavelength within 500 pm. Reflecting Bragg gratings allow spectral narrowing down to 20 pm, stabilization of wavelength below 100 pm at temperature variations up to 75 K. A single transverse mode emission for wide stripe LDs is observed at pumping currents exceeding 10 thresholds. Narrowing and stabilization of emission spectra of LD bars is demonstrated. It is important that all these features are achieved by passive elements with efficiency exceeding 97% and unlimited lifetime while actual brightness increase exceeded two orders of magnitude.

  10. PROBING SPECTROSCOPIC VARIABILITY OF GALAXIES AND NARROW-LINE ACTIVE GALACTIC NUCLEI IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Yip, C. W.; Szalay, A. S.; Taghizadeh-Popp, M.; Budavari, T.; Wyse, R. F. G.; Connolly, A. J.; Krughoff, S.; Ivezic, Z.; Vanden Berk, D. E.; Scranton, R.; Dobos, L.; Csabai, I.; Tremonti, C.

    2009-06-15

    Under the unified model for active galactic nuclei (AGNs), narrow-line (Type 2) AGNs are, in fact, broad-line (Type 1) AGNs but each with a heavily obscured accretion disk. We would therefore expect the optical continuum emission from Type 2 AGNs to be composed mainly of stellar light and nonvariable on the timescales of months to years. In this work we probe the spectroscopic variability of galaxies and narrow-line AGNs using the multiepoch data in the Sloan Digital Sky Survey Data Release 6. The sample contains 18,435 sources for which there exist pairs of spectroscopic observations (with a maximum separation in time of {approx}700 days) covering a wavelength range of 3900-8900 A. To obtain a reliable repeatability measurement between each spectral pair, we consider a number of techniques for spectrophotometric calibration resulting in an improved spectrophotometric calibration of a factor of 2. From these data we find no obvious continuum and emission-line variability in the narrow-line AGNs on average-the spectroscopic variability of the continuum is 0.07 {+-} 0.26 mag in the g band and, for the emission-line ratios log{sub 10}([N II]/H{alpha}) and log{sub 10}([O III]/H{beta}), the variability is 0.02 {+-} 0.03 dex and 0.06 {+-} 0.08 dex, respectively. From the continuum variability measurement we set an upper limit on the ratio between the flux of the varying spectral component, presumably related to AGN activities, and that of the host galaxy to be {approx}30%. We provide the corresponding upper limits for other spectral classes, including those from the BPT diagram, eClass galaxy classification, stars, and quasars.

  11. Energy level systems and transitions of Ho:LuAG laser resonantly pumped by a narrow line-width Tm fiber laser.

    PubMed

    Chen, Hao; Zhao, Ting; Yang, Hao; Zhang, Le; Zhou, Tianyuan; Tang, Dingyuan; Wong, Chingping; Chen, Yung-Fu; Shen, Deyuan

    2016-11-28

    We presented a Ho:LuAG ceramic laser in-band pumped by a narrow emission line-width Tm fiber laser at 1907 nm. All of potential transitions between 5I7 and 5I8 manifold were discussed to form the Ho's in-band-pump energy level systems, which were not described in details earlier. For the emission band centered at ~2095 nm, both laser absorption and emission transition separately consisted of two groups were first analyzed and observed. Using output couplers (OCs) with different transmittances (T = 6, 10 and 20%), the similar ~0.5 W continuous-wave (CW) output power under an incident pump power of ~4.9 W was obtained, with twin (or triplet) emission bands respectively. The blue shift of center emission wavelengths was observed with the increase of transmittances.

  12. Goddard high-resolution spectrograph observations of narrow discrete stellar wind absorption features in the ultraviolet spectrum of the O7.5 III star Xi Persei

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Altner, Bruce; Bolton, C. T.; Cardelli, Jason A.; Ebbets, Dennis C.

    1993-01-01

    We report the observation of transient narrow absorption components (NACs) in the stellar wind of the O giant Xi Per. Two sets of GHRS observations of the Si IV ultraviolet resonance doublet have been obtained. These features are extremely weak, with column densities of approximately 10 exp 12/sq cm and optical depths of order 0.1. The features are narrow, less than 30 km/s, and seem to occur in groups. If the NACs are due to the 1393 A component, they represent previously undetected low-velocity discrete absorption components at V(rad) below -600 km/s. If they are high-velocity features on the 1402 A doublet component, they may represent the decay phase of the discrete absorption components at the terminal velocity. In either case, they are a new aspect of the NAC phenomenon that could not have been detected with previous ultraviolet spectrographs.

  13. The mass and spin of the extreme Narrow Line Seyfert 1 Galaxy 1H 0707-495 and its implications for the trigger for relativistic jets

    NASA Astrophysics Data System (ADS)

    Done, Chris; Jin, Chichuan

    2016-08-01

    Relativistic reflection models of the X-ray spectrum of the `complex' Narrow Line Seyfert 1 (NLS1) 1H 0707-495 require a high-spin, moderate-inclination, low-mass black hole. With these parameters fixed, the observed optical/UV emission directly determines the mass accretion rate through the outer disc and hence predicts the bolometric luminosity. This is 140-260 times the Eddington limit. Such a disc should power a strong wind, and winds are generically expected to be clumpy. Changing inclination angle with respect to a clumpy wind structure gives a possible explanation for the otherwise puzzling difference between `complex' NLS1 such as 1H 0707-495 and `simple' ones like PG 1244+026. Lines of sight which intercept the wind show deep absorption features at iron from the hot phase of the wind, together with stochastic dips and complex absorption when the clumps occult the X-ray source (complex NLS1), whereas both these features are absent for more face-on inclination (simple NLS1). This geometry is quite different from the clean view of a flat disc which is assumed for the spin measurements in relativistic reflection models, so it is possible that even 1H 0707-495 has low spin. If so, this re-opens the simplest and hence very attractive possibility that high black hole spin is a necessary and sufficient condition to trigger highly relativistic (bulk Lorentz factor ˜10-15) jets.

  14. A Kennicutt-Schmidt Law for Intervening Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Chelouche, Doron; Bowen, David V.

    2010-10-01

    We argue that most strong intervening metal absorption line systems, where the rest equivalent width of the Mg II λ2796 line is >0.5 Å, are interstellar material in, and outflowing from, star-forming disks. We show that a version of the Kennicutt-Schmidt law is readily obtained if the Mg II equivalent widths are interpreted as kinematic broadening from absorbing gas in outflowing winds originating from star-forming galaxies. Taking a phenomenological approach and using a set of observational constraints available for star-forming galaxies, we are able to account for the density distribution of strong Mg II absorbers over cosmic time. The association of intervening material with star-forming disks naturally explains the metallicity and dust content of strong Mg II systems, as well as their high H I column densities, and does not require the advection of metals from compact star-forming regions into the galaxy halos to account for the observations. We find that galaxies with a broad range of luminosities can give rise to absorption of a given rest equivalent width and discuss possible observational strategies to better quantify true galaxy-absorber associations and further test our model. We show that the redshift evolution in the density of absorbers closely tracks the star formation history of the universe and that strong intervening systems can be used to directly probe the physics of both bright and faint galaxies over a broad redshift range. In particular, in its simplest form, our model suggests that many of the statistical properties of star-forming galaxies and their associated outflows have not evolved significantly since z ~ 2. By identifying strong intervening systems with galaxy disks and quantifying a version of the Kennicutt-Schmidt law that applies to them, a new probe of the interstellar medium is found which provides complementary information to that obtained through emission studies of galaxies. Implications of our results for galaxy feedback and

  15. Coherent terahertz sound amplification and spectral line narrowing in a stark ladder superlattice.

    PubMed

    Beardsley, R P; Akimov, A V; Henini, M; Kent, A J

    2010-02-26

    The bias voltage applied to a weakly coupled n-doped GaAs/AlAs superlattice increases the amplitude of the coherent hypersound oscillations generated by a femtosecond optical pulse. This bias-induced amplitude increase and experimentally observed spectral narrowing of the superlattice phonon mode with a frequency 441 GHz provides the evidence for hypersound amplification by stimulated emission of phonons in a system where the inversion of the electron populations for phonon-assisted transitions exists.

  16. Discovery of Hα Absorption in the Unusual Broad Absorption Line Quasar SDSS J083942.11+380526.3

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Iwata, Ikuru; Ohta, Kouji; Ando, Masataka; Akiyama, Masayuki; Tamura, Naoyuki

    2006-11-01

    We discovered Hα absorption in the broad Hα emission line of an unusual broad absorption line quasar, SDSS J083942.11+380526.3, at z=2.318, through near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru telescope. The presence of nonstellar Hα absorption is known only in the Seyfert galaxy NGC 4151 to date; thus, our discovery is the first case for quasars. The Hα absorption line is blueshifted by 520 km s-1 relative to the Hα emission line, and its redshift almost coincides with those of UV low-ionization metal absorption lines. The width of the Hα absorption (~340 km s-1) is similar to those of the UV low-ionization absorption lines. These facts suggest that the Hα and low-ionization metal absorption lines are produced by the same low-ionization gas, which has a substantial amount of neutral gas. The column density of the neutral hydrogen is estimated to be ~1018 cm-2 by assuming a gas temperature of 10,000 K from the analysis of the curve of growth. The continuum spectrum is reproduced by a reddened [E(B-V)~0.15 mag for the SMC-like reddening law] composite quasar spectrum. Furthermore, the UV spectrum of SDSS J083942.11+380526.3 shows a remarkable similarity to that of NGC 4151 in its low state, suggesting that the physical condition of the absorber in SDSS J083942.11+380526.3 is similar to that of NGC 4151 in the low state. As proposed for NGC 4151, SDSS J083942.11+380526.3 may also be seen through the edge of the obscuring torus. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  17. Interstellar absorption lines in the spectrum of Gamma Velorum

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Bhavsar, S. P.

    1979-01-01

    Copernicus scans of selected interstellar absorption lines in the UV spectrum of Gamma Vel are analyzed, together with ground-based data, to obtain column densities for various ion states of C, N, O, Na, Mg, Al, Si, P, S, Cl, Ar, Ca, Mn, Fe, and CO. N I and O I are fitted to a single empirical curve of growth with a velocity parameter (b) of 8 km/s; Mg II, Si II, P II, S II, Mn II, and Fe II are fitted to another curve with b between 3 and 9 km/s. Abundance determinations relative to H I show that: (1) C, N, P, S, and Ar are probably close to their solar values; (2) O may be depleted by about a factor of 2; (3) Mg, Al, Si, Cl, Mn, and Fe are depleted by a factor of 4 or more: (4) Al is depleted by at least a factor of 10 in the H II region; and (5) both N V and O VI are present, but not C IV. The N V/O VI ratio implies that the electron temperature in the H II region is about 275,000 K.

  18. Microscopic nature of inhomogeneous line broadening: Analysis of the excitation-line-narrowing spectra of Cf4+ in CeF4

    NASA Astrophysics Data System (ADS)

    Liu, G. K.; Huang, Jin; Beitz, James V.

    1993-11-01

    Optical transitions between 5f states of tetravalent californium ion doped (1 metal-atom %) into CeF4 exhibit unusually large inhomogeneous broadening. The nature of the inhomogeneous broadening in this system has been studied by using fluorescence line narrowing and excitation line narrowing (ELN). It is shown that the energy distributions of different electronic states of Cf4+ in this system are correlated. In the ELN experiments, reduced excitation linewidth was obtained when selectively monitoring fluorescence emission. A linear relation was observed between the excitation energies of crystal-field states of the G54' manifold and the fluorescence wavelength monitored across the inhomogeneous profile of a G56'-F76' transition. Analysis of these results by means of a microscopic theory proposed by Laird and Skinner [J. Chem. Phys. 90, 3880 (1989)] has provided insights into the structural properties of this disordered system.

  19. A new sample of X-ray selected narrow emission-line galaxies. II. Looking for True Seyfert 2

    NASA Astrophysics Data System (ADS)

    Pons, E.; Watson, M. G.

    2016-10-01

    A sample of X-ray and optically selected narrow emission-line galaxies (769 sources) from the 3XMM catalogue cross-correlated with SDSS (DR9) catalogue has been studied. Narrow-emission line active galactic nuclei (AGN; type-2) have been selected on the basis of their emission line ratios and/or X-ray luminosity. We have looked for X-ray unobscured type-2 AGN. As X-ray spectra were not available for our whole sample, we have checked the reliability of using the X-ray hardness ratio (HR) as a probe of the level of obscuration and we found a very good agreement with full spectral fitting results, with only 2% of the sources with apparently unobscured HR turning out to have an obscured spectrum. Despite the fact that type-2 AGN are supposed to be absorbed based on the Unified Model, about 60% of them show no sign or very low level of X-ray obscuration. After subtraction of contaminants to the sample, that is Narrow-Line Seyfert 1 and Compton-thick AGN, the fraction of unobscured Sy2 drops to 47%. For these sources, we were able to rule out dust reddening and variability for most of them as an explanation of the absence of optical broad emission-lines. The main explanations remaining are the dilution of weak/very broad emission-lines by the host galaxy and the intrinsic absence of the broad-line region (BLR) due to low accretion rates (i.e. True Sy2). However, the number of True Sy2 strongly depends on the method used to verify the intrinsic lack of broad lines. Indeed using the optical continuum luminosity to predict the BLR properties gives a much larger fraction of True Sy2 (about 90% of the unobscured Sy2 sample) than the use of the X-ray 2 keV luminosity (about 20%). Nevertheless the number of AGN we securely detected as True Sy2 is at least three times larger that the previously confirmed number of True Sy2.

  20. VizieR Online Data Catalog: Narrow line Seyfert 1 galaxies from SDSS-DR3 (Zhou+, 2006)

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Wang, T.; Yuan, W.; Lu, H.; Dong, X.; Wang, J.; Lu, Y.

    2017-01-01

    We carried out a systematic search for narrow line Seyfert 1 galaxies (NLS1s) from objects assigned as "QSOs" or "galaxies" in the spectroscopic sample of the Sloan Digital Sky Survey Data Release 3 (SDSS DR3) by a careful modeling of their emission lines and continua. The result is a uniform sample comprising ~2000 NLS1s. This sample dramatically increases the number of known NLS1s by a factor of ~10 over previous compilations. This paper presents the parameters of the prominent emission lines and continua, which were measured accurately with typical uncertainties <10%. Taking advantage of such an unprecedented large and uniform sample with accurately measured spectral parameters, we carried out various statistical analyses, some of which were only possible for the first time. (1 data file).

  1. Tracing quasar narrow-line regions across redshift: a library of high-S/N optical spectra

    NASA Astrophysics Data System (ADS)

    Tammour, A.; Gallagher, S. C.; Richards, Gordon

    2015-04-01

    In a single optical spectrum, the quasar narrow-line region (NLR) reveals low-density, photoionized gas in the host galaxy interstellar medium (ISM), while the immediate vicinity of the central engine generates the accretion disc continuum and broad emission lines. To isolate these two components, we construct a library of high-S/N optical composite spectra created from the Sloan Digital Sky Survey Data Release 7. We divide the sample into bins of continuum luminosity and Hβ full width at half-maximum that are used to construct median composites at different redshift steps up to 0.75. We measure the luminosities of the narrow-emission lines [Ne V] λ3427, [Ne III] λ3870, [O III] λ5007, and [O II] λ3728 with ionization potentials (IPs) of 97, 40, 35, and 13.6 eV, respectively. The high IP lines' luminosities show no evidence of increase with redshift consistent with no evolution in the AGN spectral energy distribution or the host galaxy ISM illuminated by the continuum. In contrast, we find that the [O II] line becomes stronger at higher redshifts, and we interpret this as a consequence of enhanced star formation contributing to the [O II] emission in host galaxies at higher redshifts. The SFRs estimated from the [O II] luminosities show a flatter increase with z than non-AGN galaxies given our assumed AGN contribution to the [O II] luminosity. Finally, we confirm an inverse correlation between the strength of the Fe II λ4570 complex and both the [O III] equivalent width (though not the luminosity) and the width of the Hβ line as known from the eigenvector 1 correlations.

  2. Type 2 Active Galactic Nuclei with Double-Peaked [O III] Lines: Narrow-Line Region Kinematics or Merging Supermassive Black Hole Pairs?

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Shen, Yue; Strauss, Michael A.; Greene, Jenny E.

    2010-01-01

    We present a sample of 167 type 2 active galactic nuclei (AGNs) with double-peaked [O III] λλ4959,5007 narrow emission lines, selected from the Seventh Data Release of the Sloan Digital Sky Survey. The double-peaked profiles can be well modeled by two velocity components, blueshifted and redshifted from the systemic velocity. Half of these objects have a more prominent redshifted component. In cases where the Hβ emission line is strong, it also shows two velocity components whose line-of-sight (LOS) velocity offsets are consistent with those of [O III]. The relative LOS velocity offset between the two components is typically a few hundred km s-1, larger by a factor of ~1.5 than the line full width at half maximum of each component. The offset correlates with the host stellar velocity dispersion σ*. The host galaxies of this sample show systematically larger σ*, stellar masses, and concentrations, and older luminosity-weighted mean stellar ages than a regular type 2 AGN sample matched in redshift, [O III] λ5007 equivalent width, and luminosity; they show no significant difference in radio properties. These double-peaked features could be due to narrow-line region kinematics, or binary black holes. The statistical properties do not show strong preference for or against either scenario, and spatially resolved optical imaging, spectroscopy, radio or X-ray follow-up are needed to draw firm conclusions.

  3. A luminescence line-narrowing spectroscopic study of the uranium(VI) interaction with cementitious materials and titanium dioxide.

    PubMed

    Tits, Jan; Walther, Clemens; Stumpf, Thorsten; Macé, Nathalie; Wieland, Erich

    2015-01-21

    Non-selective luminescence spectroscopy and luminescence line-narrowing spectroscopy were used to study the retention of UO2(2+) on titanium dioxide (TiO2), synthetic calcium silicate hydrate (C-S-H) phases and hardened cement paste (HCP). Non-selective luminescence spectra showed strong inhomogeneous line broadening resulting from a strongly disordered UO2(2+) bonding environment. This problem was largely overcome by using luminescence line-narrowing spectroscopy. This technique allowed unambiguous identification of three different types of UO2(2+) sorbed species on C-S-H phases and HCP. Comparison with spectra of UO2(2+) sorbed onto TiO2 further allowed these species to be assigned to a surface complex, an incorporated species and an uranate-like surface precipitate. This information provides the basis for mechanistic models describing the UO2(2+) sorption onto C-S-H phases and HCP and the assessment of the mobility of this radionuclide in a deep geological repository for low and intermediate level radioactive waste (L/ILW) as this kind of waste is often solidified with cement prior to storage.

  4. Broad-range self-sweeping of a narrow-line self-pulsing Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Lobach, Ivan A.; Kablukov, Sergey I.; Podivilov, Evgeniy V.; Babin, Sergey A.

    2011-08-01

    The effect of broad-range (16 nm) self-sweeping of a narrow-line (less than 1 pm) Yb-doped fiber laser has been demonstrated experimentally. It is found that the effect arises from the self-sustained relaxation oscillations. As a result, the sweeping rate increases as square root of the laser power and decreases with increasing cavity length. Based on these results we propose a model describing dynamics of the laser frequency. The model takes into account the effects of gain saturation at the laser transition and spatial hole burning in the self-pulsing regime.

  5. Broad-range self-sweeping of a narrow-line self-pulsing Yb-doped fiber laser.

    PubMed

    Lobach, Ivan A; Kablukov, Sergey I; Podivilov, Evgeniy V; Babin, Sergey A

    2011-08-29

    The effect of broad-range (16 nm) self-sweeping of a narrow-line (less than 1 pm) Yb-doped fiber laser has been demonstrated experimentally. It is found that the effect arises from the self-sustained relaxation oscillations. As a result, the sweeping rate increases as square root of the laser power and decreases with increasing cavity length. Based on these results we propose a model describing dynamics of the laser frequency. The model takes into account the effects of gain saturation at the laser transition and spatial hole burning in the self-pulsing regime.

  6. Manipulation of electrical flicker-noise and line narrowing in free-running quantum cascade-lasers

    NASA Astrophysics Data System (ADS)

    Yamanishi, Masamichi; Hirohata, Toru

    2015-01-01

    Intrinsic linewidths of quantum-cascade lasers are found to be extremely narrow, ~100 Hz. However, the free running linewidths (usually ~1 MHz) of existing quantum-cascade lasers are governed by flicker frequency-noise that is identified to originate from electrical flicker-noise in the devices. Obviously, substantial suppression of the electrical flicker noise is required for substantial narrowing of free-running LWs. In this presentation, we show systematic experimental results of flicker voltage-noise power-spectral density obtained with mid-infrared quantum-cascade lasers of designed positioning of impurities in injectors. The measured noise-levels depending strongly on impurity position as well as device-temperature are evaluated with an ad hoc model based on fluctuating charge-dipoles induced by trapping and de-trapping at impurity states in their injectors. It is shown that quasi-delta doping of impurities leads to strong suppression of electrical flicker noise by minimization of the dipole-length at a certain temperature, for instance ~300 K and, in turn, is expected to narrow astonishingly the free-running line-width down below 10 kHz without assistances of any types of feedback schemes.

  7. EXTENDED NARROW-LINE EMISSION IN THE BRIGHT SEYFERT 1.5 GALAXY HE 2211-3903

    SciTech Connect

    Scharwaechter, J.; Dopita, M. A.; Zuther, J.; Fischer, S.; Eckart, A.; Komossa, S.

    2011-08-15

    Extended narrow-line regions (ENLRs) and extended emission-line regions have been the focus of integral field spectroscopy aiming at the inner kiloparsecs of nearby Seyfert galaxies as well as the larger environment of high-redshift QSOs. Based on observations with the Wide Field Spectrograph at the 2.3 m telescope of the Australian National University, we present spatially resolved emission-line diagnostics of the bright Seyfert 1.5 galaxy HE 2211-3903 which is drawn from a sample of the brightest Seyfert galaxies at z < 0.06 with luminosities around the classical Seyfert/QSO demarcation. In addition to the previously known spiral arms of HE 2211-3903, the emission-line maps reveal a large-scale ring with a radius of about 6 kpc which is connected to the active galactic nucleus (AGN) through a bar-like structure. The overall gas kinematics indicates a disk rotation pattern. The emission-line ratios show Seyfert-type, H II region-type, and composite classifications, while there is no strong evidence of LINER-type ratios. Shock ionization is likely to be negligible throughout the galaxy. The composite line ratios are explained via a mixing line between AGN and H II region photoionization. Composite line ratios are predominantly found in between the H II regions in the circum-nuclear region, the bar-like structure to the east of the nucleus, and the eastern half of the ring, suggesting AGN photoionization of the low-density interstellar medium in an ENLR on galaxy scales. The line ratios in the nucleus indicate N enrichment, which is discussed in terms of chemical enrichment by Wolf-Rayet and asymptotic giant branch stars during past and ongoing nuclear starburst activity.

  8. An XMM-Newton Study of the Bright Ultrasoft Narrow-Line Quasar NAB 0205+024

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2004-01-01

    The broad-band X-ray continuum of NAB 0205424 is well constrained due to the excellent photon statistics obtained (about 97,700 counts), and its impressive soft X-ray excess is clearly apparent. The hard X-ray power law has become notably steeper than when NAB 0205424 was observed with ASCA, attesting to the presence of significant X-ray spectral variability. A strong and broad emission feature is detected from about 5 to 6.4 keV, and we have modeled this as a relativistic line emitted close to the black hole from a narrow annulus of the accretion disk. Furthermore, a strong X-ray flare is detected with a hard X-ray spectrum; this flare may be responsible for illuminating the inner line-emitting part of the accretion disk. The combined observational results can be broadly interpreted in terms of the "thundercloud model proposed by Merloni & Fabian (2001).

  9. Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948 0022 in March-July 2009

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R. Berenji, B.; Bloom, E.D.; Bonamente, E. Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; Caliandro, G.A.; /more authors..

    2012-03-29

    Following the recent discovery of {gamma} rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to {gamma} rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to {gamma}-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the {gamma}-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.

  10. CONNECTION BETWEEN MID-INFRARED EMISSION PROPERTIES AND NARROW-LINE REGION OUTFLOWS IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Zhang Kai; Wang Tinggui; Dong Xiaobo; Yan Lin

    2013-05-01

    The location of warm dust producing the mid-infrared (MIR) emission in type 1 active galactic nuclei (AGNs) is complex and not yet fully known. We explore this problem by studying how the MIR covering factor (CF{sub MIR} = L{sub MIR}/L{sub bol}) correlates with the fundamental parameters of AGN accretion process (such as L{sub bol}, black hole mass M{sub BH}, and Eddington ratio L/L{sub Edd}) and the properties of narrow emission lines (as represented by [O III] {lambda}5007), using large data sets derived from the Sloan Digital Sky Spectroscopic Survey (SDSS) and the Wide Infrared Sky Survey (WISE). First, we find that the luminosity of the [O III] wing component (L{sub wing}) correlates more tightly with the continuum luminosity ({lambda}L{sub {lambda}}(5100)) than the luminosity of the line core component (L{sub core}) does, which is in line with our previous conclusion that the wing component, generally blueshifted, originates from the polar outflows in the inner narrow-line region (NLR). We then find that the MIR CF shows the strongest correlation with L{sub wing}/L{sub bol} rather than with L{sub core}/L{sub bol} or the above fundamental AGN parameters, and the correlation becomes stronger as the infrared wavelength increases. We also confirm the anti-correlations of CF{sub MIR} with L{sub bol} and M{sub BH}, and the lack of dependence of CF{sub MIR} on the Eddington ratio. These results suggest that a large fraction of the warm dust producing MIR emission in AGNs is likely embedded in polar outflows in the NLR instead of in the torus.

  11. What Drives the Outflows in Broad Absorption Line QSOs?

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1997-01-01

    We have made progress in the areas related to the propulsion and confinement of gas responsible for broad absorption troughts in QSOs: Radiative Acceleration in BALQSOs; The "Ghost" of Lyman (alpha); and Magnetic Confinement of Absorbing Gas.

  12. Developing a narrow-line laser spectrometer based on a tunable continuous-wave dye laser

    SciTech Connect

    Wang, Chun; Lv, Shasha; Bi, Jin; Liu, Fang; Li, Liufeng; Chen, Lisheng

    2014-08-15

    We present the development of a dye-laser-based spectrometer operating at 550–600 nm. The spectrometer will be used to detect an ultra-narrow clock transition ({sup 1}S{sub 0}-{sup 3}P{sub 0}) in an Ytterbium optical lattice clock and perform high-resolution spectroscopy of iodine molecules trapped in the sub-nanometer channels of zeolite crystal (AlPO{sub 4}-11). Two-stage Pound-Drever-Hall frequency stabilization is implemented on the tunable continuous-wave dye laser to obtain a reliable operation and provide stable laser radiations with two different spectral linewidths. In the first-stage frequency locking, a compact home-built intracavity electro-optic modulator is adopted for suppressing fast frequency noise. With an acquisition time of 0.1 s the 670-kHz linewidth of the free-running dye laser is reduced to 2 kHz when locked to a pre-stabilization optical cavity with a finesse of 1170. When the pre-stabilized laser is locked to a high-finesse optical cavity, a linewidth of 1.4 Hz (2 s) is observed and the frequency stability is 3.7 × 10{sup −15} (3 s). We also measure and analyze the individual noise contributions such as those from residual amplitude modulation and electronic noise. The ongoing upgrades include improving long-term frequency stability at time scales from 10 to 100 s and implementing continuous frequency scan across 10 GHz with radio-frequency precision.

  13. [A line-by-line trace gas absorption model and its application in NDIR gas detection technology].

    PubMed

    Fang, Jing; Liu, Wen-qing; Zhang, Tian-shu

    2008-06-01

    An accurate line-by-line integral trace gas absorption model is presented in the present article. It is for mid-infrared band and can be used in the study on and application to detecting trace gas (or pollution gas). First of all, two algorithms of trace gas radioactive properties, line-by-line integral method and band model method, were introduced. The merits and demerits of each were compared. Several recent developed line-by-line integral calculation models were also introduced. Secondly, the basic principle of line-by-line integral trace gas absorption calculation model was described in detail. The absorption coefficient is a function of temperature, frequency (wave number), pressure, gas volume mixing ratio and constants associated with all contributing line transitions. The average monochromatic absorption coefficient at a given frequency of a given gas species can be written as the product of the number density of the molecular species to which the spectral line belongs, the line intensity and a line shape factor. Efficient calculation of the line shape factor may be required for different atmospheric conditions. In the lower atmosphere, the shape of spectral lines is dominated by pressure broadening and can be represented most simply by the Lorentz line shape factor. At high altitudes, the shape of spectral lines is governed by Doppler broadening At intermediate altitudes, they can be modeled using the Voigt line shape factor, a convolution of the Lorentz and Doppler line shape factors. Finally, in the section of experiment, the results calculated by model were compared with that measured by Fourier transform infrared spectrometer. As an instance, the model was applied to the detectors design of NDIR (non-dispersive infrared) technology and the relationship between signal intensity of detectors and concentration of CO2/CO was simulated by model. Available concentration range of detector was given by calculating the results of the model. It is based on

  14. Radio-loud Narrow Line Seyfert 1 under a different perspective: a revised black hole mass estimate from optical spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Baldi, Ranieri D.; Capetti, Alessandro; Robinson, Andrew; Laor, Ari; Behar, Ehud

    2016-05-01

    Several studies indicate that radio-loud (RL) active galactic nuclei (AGNs) are produced only by the most massive black holes (BH), MBH ˜ 108-1010 M⊙. This idea has been challenged by the discovery of RL Narrow Line Seyfert 1 (RL NLSy1), having estimated masses of MBH ˜ 106-107 M⊙. However, these low MBH estimates might be due to projection effects. Spectropolarimetry allows us to test this possibility by looking at RL NLSy1s under a different perspective, i.e. from the viewing angle of the scattering material. We here report the results of a pilot study of Very Large Telescope spectropolarimetric observations of the RL NLSy1 PKS 2004-447. Its polarization properties are remarkably well reproduced by models in which the scattering occurs in an equatorial structure surrounding its broad-line region, seen close to face-on. In particular, we detect a polarized Hα line with a width of ˜9000 km s-1, ˜6 times broader than the width seen in direct light. This corresponds to a revised estimate of MBH ˜ 6 × 108 M⊙, well within the typical range of RL AGN. The double-peaked polarized broad Hα profile of the target suggests that the rare combination of the orientation effects and a broad line region dominated by the rotation might account for this class of objects, casting doubts on the virial estimates of BH mass for type-I AGN.

  15. A REVERBERATION LAG FOR THE HIGH-IONIZATION COMPONENT OF THE BROAD-LINE REGION IN THE NARROW-LINE SEYFERT 1 Mrk 335

    SciTech Connect

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Denney, K. D.; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Bord, D. J.; Che, X.; Chen, C.; Cohen, S. A.; and others

    2012-01-15

    We present the first results from a detailed analysis of photometric and spectrophotometric data on the narrow-line Seyfert 1 (NLS1) galaxy Mrk 335, collected over a 120 day span in the fall of 2010. From these data we measure the lag in the He II {lambda}4686 broad emission line relative to the optical continuum to be 2.7 {+-} 0.6 days and the lag in the H{beta}{lambda}4861 broad emission line to be 13.9 {+-} 0.9 days. Combined with the line width, the He II lag yields a black hole mass M{sub BH} = (2.6 {+-} 0.8) Multiplication-Sign 10{sup 7} M{sub Sun }. This measurement is consistent with measurements made using the H{beta}{lambda}4861 line, suggesting that the He II emission originates in the same structure as H{beta}, but at a much smaller radius. This constitutes the first robust lag measurement for a high-ionization line in an NLS1 galaxy and supports a scenario in which the He II emission originates from gas in virial motion rather than outflow.

  16. Hyperfine Interactions of Narrow-line Trityl Radical with Solvent Molecules

    PubMed Central

    Trukhan, S.N.; Yudanov, V.F.; Tormyshev, V.M.; Rogozhnikova, O.Yu.; Trukhin, D.V.; Bowman, M.K.; Krzyaniak, M.D.; Chen, H.; Martyanov, O.N.

    2013-01-01

    The electron nuclear dipolar interactions responsible for some dynamic nuclear polarization (DNP) mechanisms also are responsible for the presence formally in CW EPR spectra of forbidden satellite lines in which both the electron spin and a nuclear spin flip. Such lines arising from 1H nuclei are easily resolved in CW EPR measurements of trityl radicals, a popular family of DNP reagents. The satellite lines overlap some of the hyperfine features from 13C in natural abundance in the trityl radical, but their intensity can be easily determined by simple simulations of the EPR spectra using the hyperfine parameters of the trityl radical. Isotopic substitution of 2H for 1H among the hydrogens of the trityl radical and/or the solvent allows the dipolar interactions from the 1H on the trityl radical and from the solvent to be determined. The intensity of the dipolar interactions, integrated over all the 1H in the system, is characterized by the traditional parameter called reff. For the so-called Finland trityl in methanol, the reff values indicate that collectively the 1H in the unlabeled solvent have a stronger integrated dipolar interaction with the unpaired electron spin of the Finland trityl than do the 1H in the radical and consequently will be a more important DNP route. Although reff has the dimensions of distance, it does not correspond to any simple physical dimension in the trityl radical because the details of the unpaired electron spin distribution and the hydrogen distribution are important in the case of trityls. PMID:23722184

  17. First Detection of the [O(sub III)] 88 Micrometers Line at High Redshifts: Characterizing the Starburst and Narrow-Line Regions in Extreme Luminosity Systems

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Parshley, S. C.; Stacey, G. J.; Benford, D. J.; Staguhn, J. G.

    2010-01-01

    We have made the first detections of the 88 micrometers [O(sub III)] line from galaxies in the early universe, detecting the line from the lensed active galactic nucleus (AGN)/starburst composite systems APM 08279+5255 at z 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities approx.10(exp 11) Solar Luminosity, For APM 08279, the [O(sub III)] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, T(sub eff) > 36,000 K, similar to the starburst found in M82. The model implies approx.35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 881,tm line can also be generated in the narrow-line region of the AGN if gas densities are around a few 1000 cu cm. For SMM J02399, the [O(sub III)] line likely arises from HII regions formed by hot (T(sub eff) > 40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present work demonstrates the utility of the [O(sub III)] line for characterizing starbursts and AGN within galaxies in the early universe. These are the first detections of this astrophysically important line from galaxies beyond a redshift of 0.05.s

  18. A Revised Broad-line Region Radius and Black Hole Mass for the Narrow-line Seyfert 1 NGC 4051

    NASA Astrophysics Data System (ADS)

    Denney, K. D.; Watson, L. C.; Peterson, B. M.; Pogge, R. W.; Atlee, D. W.; Bentz, M. C.; Bird, J. C.; Brokofsky, D. J.; Comins, M. L.; Dietrich, M.; Doroshenko, V. T.; Eastman, J. D.; Efimov, Y. S.; Gaskell, C. M.; Hedrick, C. H.; Klimanov, S. A.; Klimek, E. S.; Kruse, A. K.; Lamb, J. B.; Leighly, K.; Minezaki, T.; Nazarov, S. V.; Petersen, E. A.; Peterson, P.; Poindexter, S.; Schlesinger, Y.; Sakata, K. J.; Sergeev, S. G.; Tobin, J. J.; Unterborn, C.; Vestergaard, M.; Watkins, A. E.; Yoshii, Y.

    2009-09-01

    We present the first results from a high sampling rate, multimonth reverberation mapping campaign undertaken primarily at MDM Observatory with supporting observations from telescopes around the world. The primary goal of this campaign was to obtain either new or improved Hβ reverberation lag measurements for several relatively low luminosity active galactic nuclei (AGNs). We feature results for NGC 4051 here because, until now, this object has been a significant outlier from AGN scaling relationships, e.g., it was previously a ~2-3σ outlier on the relationship between the broad-line region (BLR) radius and the optical continuum luminosity—the R BLR-L relationship. Our new measurements of the lag time between variations in the continuum and Hβ emission line made from spectroscopic monitoring of NGC 4051 lead to a measured BLR radius of R BLR = 1.87+0.54 -0.50 light days and black hole mass of M BH = (1.73+0.55 -0.52) × 106 M sun. This radius is consistent with that expected from the R BLR-L relationship, based on the present luminosity of NGC 4051 and the most current calibration of the relation by Bentz et al.. We also present a preliminary look at velocity-resolved Hβ light curves and time delay measurements, although we are unable to reconstruct an unambiguous velocity-resolved reverberation signal.

  19. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    NASA Technical Reports Server (NTRS)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  20. Gamma-ray emitting narrow-line Seyfert 1 galaxies and their place in the AGN zoo

    NASA Astrophysics Data System (ADS)

    D'Ammando, Filippo; Orienti, Monica; Finke, Justin; Giroletti, Marcello; Larsson, Josefin

    2016-08-01

    Relativistic jets are usually produced by radio-loud AGN hosted in giant elliptical galaxies such as blazars and radio galaxies. The discovery by Fermi-LAT of variable gamma-ray emission from narrow-line Seyfert 1 (NLSy1) galaxies revealed the presence of a new class of AGN with relativistic jets. Considering that NLSy1 are usually hosted in spiral galaxies, this finding poses intriguing questions about the nature of these objects and the formation of relativistic jets. In this talk I discuss the radio-to-gamma-ray properties of the gamma-ray NLSy1 detected during the first 7 years of Fermi operation, the observations of their host galaxies, and the estimation of their black hole masses.

  1. 140 W high power all-fiber laser at 1940 nm with narrow spectral line-width by MOPA configuration

    NASA Astrophysics Data System (ADS)

    Yang, C.; Ju, Y. L.; Yao, B. Q.; Dai, T. Y.; Duan, X. M.; Zhang, Z. G.; Liu, W.

    2016-08-01

    We report a diode-pumped Tm3+-doped double-clad all-fiber laser operating at 1940 nm with a master oscillator power amplifier configuration; 50 W of seed was generated in master oscillator with 144 W pump power, corresponding to a slope efficiency of 40.1 %. With 212 W pump power, the seed was amplified to 140.9 W in power amplifier, corresponding to a slope efficiency of 47.1 %. The peak wavelength was 1939.57 nm with a narrow spectral line-width of 0.09 nm. The beam quality factor of M 2 was 1.29. Neither amplified spontaneous emission nor parasitic lasing was observed during the amplification process. The output power was only limited by the pump power.

  2. Investigation of Line Width Narrowing and Spectral Jumps of Single Stable Defect Centers in ZnO at Cryogenic Temperature.

    PubMed

    Neitzke, Oliver; Morfa, Anthony; Wolters, Janik; Schell, Andreas W; Kewes, Günter; Benson, Oliver

    2015-05-13

    Finding new solid state defect centers in novel host materials is crucial for realizing integrated hybrid quantum photonic devices. We present a preparation method for defect centers with photostable bright single photon emission in zinc oxide, a material with promising properties in terms of processability, availability, and applications. A detailed optical study reveals a complex dynamic of intensity fluctuations at room temperature. Measurements at cryogenic temperatures show very sharp (<60 GHz) zero phonon lines (ZPLs) at 580 nm to  620 nm (≈ 2.0 eV) with frozen out fast fluctuations. Remaining discrete jumps of the ZPL, which depend on the excitation power, are observed. The low temperature results will narrow down speculations on the origin of visible-near-infrared (NIR) wavelength defect emission in zinc oxide and provide a basis for improved theoretical models.

  3. ADAPTIVE OPTICS IMAGING OF QUASI-STELLAR OBJECTS WITH DOUBLE-PEAKED NARROW LINES: ARE THEY DUAL ACTIVE GALACTIC NUCLEI?

    SciTech Connect

    Rosario, D. J.; McGurk, R. C.; Max, C. E.; Shields, G. A.; Smith, K. L.; Ammons, S. M. E-mail: mcgurk@ucsc.edu E-mail: shieldsga@mail.utexas.edu E-mail: ammons@as.arizona.edu

    2011-09-20

    Active galaxies hosting two accreting and merging supermassive black holes (SMBHs)-dual active galactic nuclei (AGNs)-are predicted by many current and popular models of black-hole-galaxy co-evolution. We present here the results of a program that has identified a set of probable dual AGN candidates based on near-infrared laser guide star adaptive optics imaging with the Keck II telescope. These candidates are selected from a complete sample of radio-quiet quasi-stellar objects (QSOs) drawn from the Sloan Digital Sky Survey (SDSS), which show double-peaked narrow AGN emission lines. Of the 12 AGNs imaged, we find 6 with double galaxy structure, of which four are in galaxy mergers. We measure the ionization of the two velocity components in the narrow AGN lines to test the hypothesis that both velocity components come from an active nucleus. The combination of a well-defined parent sample and high-quality imaging allows us to place constraints on the fraction of SDSS QSOs that host dual accreting black holes separated on kiloparsec scales: {approx}0.3%-0.65%. We derive from this fraction the time spent in a QSO phase during a typical merger and find a value that is much lower than estimates that arise from QSO space densities and galaxy merger statistics. We discuss possible reasons for this difference. Finally, we compare the SMBH mass distributions of single and dual AGNs and find little difference between the two within the limited statistics of our program, hinting that most SMBH growth happens in the later stages of a merger process.

  4. The mid-infrared emission of narrow-line active galactic nuclei: Star formation, nuclear activity, and two populations revealed by WISE

    SciTech Connect

    Rosario, David J.; Burtscher, Leonard; Davies, Richard; Genzel, Reinhard; Lutz, Dieter; Tacconi, Linda J.

    2013-12-01

    We explore the nature of the long-wavelength mid-infrared (MIR) emission of a sample of 13,000 local Type II (narrow-line) active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) using 12 μm and 22 μm photometry from the WISE all-sky survey. In combination with FIRST 1.4 GHz photometry, we show that AGNs divide into two relatively distinct populations or 'branches' in the plane of MIR and radio luminosity. Seyfert galaxies lie almost exclusively on an MIR-bright branch (Branch A), while low-ionization nuclear emission line galaxies (LINERs) are split evenly into Branch A and the MIR-faint Branch B. We devise various tests to constrain the processes that define the branches, including a comparison to the properties of pure star-forming inactive galaxies on the MIR-radio plane. We demonstrate that the total MIR emission of objects on Branch A, including most Seyfert galaxies, is governed primarily by host star formation, with ≈15% of the 22 μm luminosity coming from AGN-heated dust. This implies that ongoing dusty star formation is a general property of Seyfert host galaxies. We show that the 12 μm broadband luminosity of AGNs on Branch A is suppressed with respect to star-forming galaxies, possibly due to the destruction of PAHs or deeper 10 μm Si absorption in AGNs. We uncover a correlation between the MIR luminosity and [O III] λ5007 luminosity in AGNs. This suggests a relationship between the star formation rate and nuclear luminosity in the AGN population, but we caution on the importance of selection effects inherent to such AGN-dominated emission-line galaxies in driving such a correlation. We highlight the MIR-radio plane as a useful tool in comparative studies of star formation and nuclear activity in AGNs.

  5. Study of Water Absorption Lines in the Near Infrared

    DTIC Science & Technology

    1975-02-17

    the absorption coefficient is better approximated by the sum of Matcha -N«. oec short range contribution and W-BB dispersion contribution. The...and W. Byers Brown, Molecular Physics 2S, 1105 (1973). 5. R. L. Matcha and R. K. Nesbet, Phys. Rev. 1_6_0, 72 (1967). I H. B. Levine, Phys. Rev...reasurcrents of Ouren, ^eltqen Gaide, Helbing and Pauly. The dipole moment function is taken from ab initio 9 calculations of Matcha and Nesbet. With

  6. Investigation of Impact Load Absorption through Suspension Line Elongation

    DTIC Science & Technology

    1952-12-01

    16 1. Charts . . ’ . . . .. . . 16 2. glong~tion Ratin of Li; Goups . . . 163. Graphs . .. .. .. .. .. .. .. ... . 16 SECTION IV - DISCUSSION OF...Tester . ...................... z14 Figure 16 . Frazier Air Porosity Tester in Use ....... 215 Figure 17. 30 ft., Extended Skirt CsnoW’ in Deployment Bag...line than on canopies strung with high elongation line. WMADR 5&~5T 1 CONCLUSIONS; 15. Nylon is superior to fortisan in shock absorbing capacity. 16

  7. Effects of velocity averaging on the shapes of absorption lines

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.

    1980-01-01

    The velocity averaging of collision cross sections produces non-Lorentz line shapes, even at densities where Doppler broadening is not apparent. The magnitude of the effects will be described using a model in which the collision broadening depends on a simple velocity power law. The effect of the modified profile on experimental measures of linewidth, shift and amplitude will be examined and an improved approximate line shape will be derived.

  8. Investigation of band gap narrowing in nitrogen-doped La2Ti2O7 with transient absorption spectroscopy.

    PubMed

    Yost, Brandon T; Cushing, Scott K; Meng, Fanke; Bright, Joeseph; Bas, Derek A; Wu, Nianqiang; Bristow, Alan D

    2015-12-14

    Doping a semiconductor can extend the light absorption range, however, it usually introduces mid-gap states, reducing the charge carrier lifetime. This report shows that doping lanthanum dititinate (La2Ti2O7) with nitrogen extends the valence band edge by creating a continuum of dopant states, increasing the light absorption edge from 380 nm to 550 nm without adding mid-gap states. The dopant states are experimentally resolved in the excited state by correlating transient absorption spectroscopy with a supercontinuum probe and DFT prediction. The lack of mid-gap states is further confirmed by measuring the excited state lifetimes, which reveal the shifted band edge only increased carrier thermalization rates to the band edge and not interband charge recombination under both ultraviolet and visible excitation. Terahertz (time-domain) spectroscopy also reveals that the conduction mechanism remains unchanged after doping, suggesting the states are delocalized.

  9. Spectroscopy of Mars form 2.04 to 2.44 micron during the 1993 opposition: Absolute calibration and atmospheric vs mineralogic origin of narrow absorption features

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Pollack, James B.; Geballe, Thomas R.; Cruikshank, Dale P.; Freedman, Richard

    1994-01-01

    We present moderate-resolution (lambda/delta lambda = 300 to 370) reflectance spectral of Mars from 2.04 to 2.44 microns that were obtained at United Kingdom Infrared Telescope (UKIRT) during the 1993 opposition. Seven narrow absorption features were detected and found to have a Mars origin. By comparison with solar and Mars atmospheric spectra, five of these features were attributed all or in part to Mars atmospheric CO2 or CO (2.052 +/- 0.003, 2.114 +/- 0.002, 2.150 +/- 0.003, 2.331 +/- 0.001, and 2.357 +/- 0.002 microns). Two of the bands (2.331 +/- 0.001 and 2.357 +/- 0.002 micron) appear to have widths and depths that are consistent with additional, nonatmospheric absorptions, although a solar contribution cannot be entirely ruled out. Two other weak bands centered at 2.278 +/- 0.002 and 2.296 +/- 0.002 microns may be at least partially mineralogic in origin. The data provide no conclusive identification of the mineralogy responsible for these absorption features. However, examination of terrestrial spectral libraries and previous mineralogy responsible for these absorption features. However, examination of terrestrial spectral libraires and previous moderate spectral resolution mineral studies indicates that the most likely origin of these features is either (bi)carbonate or (bi)sulfate anions in framework silicates of (Fe, Mg)-OH bonds in sheet silicates. If the bands are caused by phyllosilicate minerals, then an explanation must be found for the extremely narrow widths of the cation-OH features in the Mars spectra as compared to terrestrial minerals.

  10. Spectroscopy of Mars form 2.04 to 2.44 micron during the 1993 opposition: Absolute calibration and atmospheric VS mineralogic origin of narrow absorption features

    NASA Astrophysics Data System (ADS)

    Bell, James F., III; Pollack, James B.; Geballe, Thomas R.; Cruikshank, Dale P.; Freedman, Richard

    1994-09-01

    We present moderate-resolution (lambda/delta lambda = 300 to 370) reflectance spectral of Mars from 2.04 to 2.44 microns that were obtained at United Kingdom Infrared Telescope (UKIRT) during the 1993 opposition. Seven narrow absorption features were detected and found to have a Mars origin. By comparison with solar and Mars atmospheric spectra, five of these features were attributed all or in part to Mars atmospheric CO2 or CO (2.052 +/- 0.003, 2.114 +/- 0.002, 2.150 +/- 0.003, 2.331 +/- 0.001, and 2.357 +/- 0.002 microns). Two of the bands (2.331 +/- 0.001 and 2.357 +/- 0.002 micron) appear to have widths and depths that are consistent with additional, nonatmospheric absorptions, although a solar contribution cannot be entirely ruled out. Two other weak bands centered at 2.278 +/- 0.002 and 2.296 +/- 0.002 microns may be at least partially mineralogic in origin. The data provide no conclusive identification of the mineralogy responsible for these absorption features. However, examination of terrestrial spectral libraries and previous mineralogy responsible for these absorption features. However, examination of terrestrial spectral libraires and previous moderate spectral resolution mineral studies indicates that the most likely origin of these features is either (bi)carbonate or (bi)sulfate anions in framework silicates of (Fe, Mg)-OH bonds in sheet silicates. If the bands are caused by phyllosilicate minerals, then an explanation must be found for the extremely narrow widths of the cation-OH features in the Mars spectra as compared to terrestrial minerals.

  11. On the reality of broad iron L lines from the narrow line Seyfert 1 galaxies 1H0707-495 and IRAS 13224-3809

    NASA Astrophysics Data System (ADS)

    Karbhari Pawar, Pramod; Dewangan, Gulab Chand; Khushalrao Patil, Madhav; Misra, Ranjeev; Keshav Jogadand, Sharada

    2016-11-01

    We performed time resolved spectroscopy of 1H0707-495 and IRAS 13224-3809 using long XMM-Newton observations. These are strongly variable narrow line Seyfert 1 galaxies and show broad features around 1 keV that have been interpreted as relativistically broad Fe Lα lines. Such features are not clearly observed in other active galactic nuclei despite sometimes having high iron abundance required by the best fitted blurred reflection models. Given the importance of these lines, we explore whether the rapid variability of spectral parameters may introduce broad bumps/dips artificially in the time averaged spectrum, which may then be mistaken as broadened lines. We tested this hypothesis by performing time resolved spectroscopy using long (>100 ks) XMM-Newton observations and by dividing them into segments with typical exposures of a few ks. We extracted spectra from each such segment and modeled them using a two component phenomenological model consisting of a power law to represent the hard component and a black body to represent the soft emission. As expected, both the sources showed variations in the spectral parameters. Using these variation trends, we simulated model spectra for each segment and then co-added to get a combined simulated spectrum. In the simulated spectra, we found no broad features below 1 keV and in particular no deviation near 0.9 keV as seen in the real averaged spectra. This implies that the broad Fe Lα line that is seen in the spectra of these sources is not an artifact of the variation of spectral components and, hence, provides evidence that the line is indeed genuine.

  12. Probing low-redshift galaxies using quasar absorption lines with an emphasis on Ca II absorption

    NASA Astrophysics Data System (ADS)

    Sardane, Gendith M.

    2016-05-01

    We searched for intervening CaII absorption in nearly 95,000 quasar spectra with i≤20 from the Sloan Digital Sky Survey(SDSS) data releases DR7+DR9. Our identification of >400 CaII systems is the largest compilation of CaII absorbers in a blind search. (Abstract shortened by ProQuest.).

  13. BAT AGN Spectroscopic Survey - III. An observed link between AGN Eddington ratio and narrow-emission-line ratios

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D. Michael; Gehrels, Neil; Harrison, Fiona; Masetti, Nicola; Soto, Kurt T.; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro

    2017-01-01

    We investigate the observed relationship between black hole mass (MBH), bolometric luminosity (Lbol) and Eddington ratio (λEdd) with optical emission-line ratios ([N II] λ6583/Hα, [S II] λλ6716, 6731/Hα, [O I] λ6300/Hα, [O III] λ5007/Hβ, [Ne III] λ3869/Hβ and He II λ4686/Hβ) of hard X-ray-selected active galactic nuclei (AGN) from the BAT AGN Spectroscopic Survey. We show that the [N II] λ6583/Hα ratio exhibits a significant correlation with λEdd (RPear = -0.44, p-value = 3 × 10-13, σ = 0.28 dex), and the correlation is not solely driven by MBH or Lbol. The observed correlation between [N II] λ6583/Hα ratio and MBH is stronger than the correlation with Lbol, but both are weaker than the λEdd correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that [N II] λ6583/Hα is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure λEdd and thus MBH from the measured Lbol, even for high-redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.

  14. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  15. Displaced narrow absorption components in the spectra of mass-losing OB stars - Indications of corotating interaction regions?

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1986-01-01

    The discovery of displaced narrow components (DNCs) in an increasingly large number of stars of various spectral types suggests that an explanation of these features may contribute significantly to understanding of winds from stars of all types. The reported properties of DNCs are summarized here with a view to evaluating one particular scenario for DNC formation which involves corotating interaction regions (CIRs) in the stellar wind. The relevant features of the CIR scenario are summarized, and the extent to which DNC properties support the CIR scenario is discussed.

  16. Ultraviolet absorption lines associated with the Vela supernova remnant

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Wallerstein, G.; Silk, J.

    1976-01-01

    Two stars behind the Vela supernova remnant and two stars offset from the remnant have been observed with the UV spectrometer aboard the Copernicus satellite. Over 200 interstellar atomic and molecular absorption features between 1000 and 1400 A have been identified and measured for radial velocity and equivalent width. In many cases, additional information was obtained by studying the detailed shapes of the recorded profiles. Most of the stars show several absorption components, with clouds of the highest radial velocity appearing in the spectra of stars behind the remnant. For each component, column densities were derived using velocity dispersion parameters which yielded the most self-consistent results. Qualitatively, the gas toward the remnant exhibits a number of unusual properties, when compared with normal interstellar material. First, abnormally high radial velocities were evident. Second, the degree of ionization of some elements suggested the existence of ionizing processes significantly more potent than those found in general regions of space. Finally, an investigation of electron densities shows that much of the gas, especially that at high velocity, must exist in the form of relatively thin sheets or filaments. If cosmic abundances prevail, the column densities of high-velocity excited material suggest that H-alpha emission measures could be as large as 100 sq cm/cu pc.

  17. A Variable Energy, Redshifted, Iron Absorption Line in a recoiling Black Hole

    NASA Astrophysics Data System (ADS)

    Civano, Francesca

    The aim of this proposal is to maximize the scientific return of a medium deep (123 ksec) XMM-Newton observation, awarded during the AO10 call for proposal, to obtain a high quality X-ray spectrum of CID-42, a very peculiar source discovered in the COSMOS survey. CID-42 is exceptional in many respects showing a redshifted, variable energy absorption line plus an emission line at ~ 6 keV forming an inverted P-Cygni profile. These features were never observed before in the X-rays. The peculiar nature of CID-42 extends well beyond the X-ray spectrum. First, two optical sources in a common envelope are clearly seen in the HST data. They are separated by about 2.45 kpc. Thanks to the unrivaled Chandra HRC resolution it was possible to unambiguously associate the X-ray emission to only one of the two optical sources. Second, a high velocity (1100 km/s) offset, between the broad and narrow component of the H-beta line is measured in the VLT/Magellan/Keck optical spectra. The velocity offset observed is unlikely to be due to a ongoing merger because too high. Third, the above mentioned inverted P-Cygni profile in the hard X-ray spectrum would be naturally explained by an high velocity (v~0.02-0.14c) gas infall in the innermost region of the accreting Black Hole. All together the observed properties support the interpretation of a Black Hole kicked from the center of the galaxy by asymmetric emission of gravitational waves produced during a major merger. The Black Hole is caught while still active, at ~10^6 yrs after the kick and at a substantial distance from the center of the galaxy. The theoretical expectations suggest that they are extremely rare and just 1 or 2 gravitational wave recoiling Black Holes are expected in a survey like COSMOS. CID- 42 thus represents a ``Rosetta stone'' for the study of SMBH mergers that are believed to occur during galaxy-galaxy mergers, and their fate after the merging. The detailed study of the hard X-ray XMM-Newton spectrum, in the

  18. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  19. Dramatically Variable C IV Mini-Broad Absorption Line System in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, T.; Eracleous, M.; Charlton, J. C.; Chartas, G.; Kashikawa, N.

    2008-10-01

    We observed the quasar HS 1603+3820 (z_{em} = 2.542, first discovered by Dobrzycki et al. 1996) six times over an interval of 4.2 yrs (1.2 yrs in the quasar rest frame) using the High Dispersion Spectrograph on Subaru telescope. The purpose was to study the mini-broad absorption line (mini-BAL; FWHM ˜ 1,000 km s^{-1}) that is blue-shifted from the quasar by ˜ 9,500 km s^{-1}. We found significant time variability, which supported the physical association of the mini-BAL gas with an outflow from the quasar. We have narrowed down the cause of the variability to two possible scenarios. We also used archival Chandra x-ray data to study the x-ray properties of this quasar. The results constrain the location of the absorbing gas relative to the overall outflow.

  20. Synthetic absorption lines for a clumpy medium: a spectral signature for cloud acceleration in AGN?

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Proga, Daniel; Dannen, Randall; Kallman, Timothy R.

    2017-01-01

    There is increasing evidence that the highly ionised multiphase components of AGN disc winds may be due to thermal instability. The ions responsible for forming the observed X-ray absorption lines may only exist in relatively cool clumps that can be identified with the so-called `warm absorbers'. Here we calculate synthetic absorption lines for such warm absorbers from first principles by combining 2D hydrodynamic solutions of a two-phase medium with a dense grid of photoionization models to determine the detailed ionization structure of the gas. Our calculations reveal that cloud disruption, which leads to a highly complicated velocity field (i.e. a clumpy flow), will only mildly affect line shapes and strengths when the warm gas becomes highly mixed but not depleted. Prior to complete disruption, clouds which are optically thin to the driving UV resonance lines will cause absorption at an increasingly blueshifted line of sight velocity as they are accelerated. This behavior will imprint an identifiable signature on the line profile if warm absorbers are enshrouded in an even broader absorption line produced by a high column of intercloud gas. Interestingly, we show that it is possible to develop a spectral diagnostic for cloud acceleration by differencing the absorption components of a doublet line, a result which can be qualitatively understood using a simple partial covering model. Our calculations also permit us to comment on the spectral differences between cloud disruption and ionization changes driven by flux variability. Notably, cloud disruption offers another possibility for explaining absorption line variability.

  1. Improved And Quality Assessed Emission And Absorption Line Measurements In Sloan Digital Sky Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, M.; Schawinski, K.; Yi, S. K.

    2011-01-01

    We have established a new database of absorption and emission line measurements from the Sloan Digital Sky Survey 7th data release for the galaxies within a redshift of 0.2. This work used publicly available codes, pPXF(penalized pixel-fitting) and GANDALF(gas and absorption line fitting), to achieve robust spectral fits and reliable measurements. The absorption line strengths measured by SDSS pipeline are seriously contaminated by emission fill-in. We effectively separate emission lines from absorption lines. For instance, this work successfully extract [NI] doublet from Mgb and it leads to more realistic result of alpha enhancement on late-type galaxies compared to the previous database. Besides accurately measuring line strengths, the database will be provided with new parameters that are indicative of line strength measurement quality. Users can build a subset of database optimal for their studies using specific cuts in the fitting quality parameters as well as empirical signal-to-noise. Applying these parameters, we found galaxies with dramatically broad line regions among the galaxies with poor fitting quality parameters. We applied a new continuum finding prescriptions to newly identified BLRs and they turned out to be Seyfert I nuclei.

  2. Line shape of 57Co sources exhibiting self absorption

    NASA Astrophysics Data System (ADS)

    Spiering, H.; Ksenofontov, V.; Leupold, O.; Kusz, J.; Deák, L.; Németh, Z.; Bogdán, C.; Bottyán, L.; Nagy, D. L.

    2016-12-01

    The effect of selfabsorption in Mössbauer sources is studied in detail. Spectra were measured using an old 57 C o/ R h source of 74 M B q activity with an original activity of ca. 3.7 G B q and a 0.15 G B q 57 C o/ α - F e source magnetized by an in-plane magnetic field of 0.2 T. The 57 C o/ α - F e source of a thickness of 25 μ was used both from the active and the inactive side giving cause to very different selfabsorption effects. The absorber was a single crystal of ferrous ammonium sulphate hexahydrate (FAS). Its absorption properties were taken over from a detailed study (Bull et al., Hyperfine Interact. 94(1-3), 1; Spiering et al. 2). FAS (space group P21/c) crystallizes as flat plates containing the (overline {2}01) plane. The γ-direction was orthogonal to the crystal plate. The 57 C o atoms of the 57 C o/ R h source were assumed to be homogeneously distributed over a 6 μ thick Rh foil and to follow a one dimensional diffusion profile in the 25 μ Fe-foil. The diffusion length was fitted to 10 μ. The theory follows the Blume-Kistner equations for forward scattering (Blume and Kistner, Phys. Rev. 171, 417, 3) by integrating over the source sampled up to 128 layers.

  3. A method for measuring magnetic fields in sunspots using Zeeman-broadened absorption lines

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2017-04-01

    We present measurements of magnetic fields in several sunspots using high-resolution spectra obtained with the ESPARTACO spectrograph at the Universidad de los Andes, with the aim to explore experimental possibilities for students. Because the Zeeman line splitting is smaller than the line width, our work only observes broadened absorption lines. This broadening, however, can be measured and suitably modeled, giving realistic quantitative results.

  4. Discovery of Broad Soft X-ray Absorption Lines from the Quasar Wind in PDS 456

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Nardini, E.; Behar, E.; O'Brien, P. T.; Tombesi, F.; Turner, T. J.; Costa, M. T.

    2016-06-01

    High-resolution soft X-ray spectroscopy of the prototype accretion disk wind quasar, PDS 456, is presented. Here, the XMM-Newton reflection grating spectrometer spectra are analyzed from the large 2013-2014 XMM-Newton campaign, consisting of five observations of approximately 100 ks in length. During the last observation (OBS. E), the quasar is at a minimum flux level, and broad absorption line (BAL) profiles are revealed in the soft X-ray band, with typical velocity widths of {σ }{{v}}˜ {{10,000}} km s-1. During a period of higher flux in the third and fourth observations (OBS. C and D, respectively), a very broad absorption trough is also present above 1 keV. From fitting the absorption lines with models of photoionized absorption spectra, the inferred outflow velocities lie in the range ˜ 0.1{--}0.2c. The absorption lines likely originate from He and H-like neon and L-shell iron at these energies. A comparison with earlier archival data of PDS 456 also reveals a similar absorption structure near 1 keV in a 40 ks observation in 2001, and generally the absorption lines appear most apparent when the spectrum is more absorbed overall. The presence of the soft X-ray BALs is also independently confirmed by an analysis of the XMM-Newton EPIC spectra below 2 keV. We suggest that the soft X-ray absorption profiles could be associated with a lower ionization and possibly clumpy phase of the accretion disk wind, where the latter is known to be present in this quasar from its well-studied iron K absorption profile and where the wind velocity reaches a typical value of 0.3c.

  5. Narrow line-width single-longitudinal-mode fiber laser using silicon-on-insulator based micro-ring-resonator

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Hsu, Yung; Hsu, Chin-Wei; Yang, Ling-Gang; Chow, Chi-Wai; Yeh, Chien-Hung; Lai, Yin-Chieh; Tsang, Hon-Ki

    2016-02-01

    In this work, we propose and demonstrate a stable single-longitudinal-mode (SLM) fiber laser with narrow line-width by using an integrated silicon-on-insulator micro-ring resonator (SOI MRR) and two subsidiary fiber rings for the first time, to the best of our knowledge. The laser is tunable over the wavelength range from 1546 to 1570 nm, with only step tuning of 2 nm steps. A maximum 49 dB side mode suppression ratio (SMSR) can be achieved. The compact SOI MRR provides a large free-spectral-range (FSR), while the subsidiary rings provide Vernier effect producing a single lasing mode. The FSR of the SOI MRR can be very large and controllable (since it is easy to fabricate small SOI MRR when compared with making small fiber-rings) using the complementary-metal-oxide-semiconductor (CMOS) compactable SOI fabrication processes. In our proposed laser, the measured single sideband (SSB) spectrum shows that the densely spaced longitudinal modes can be significantly suppressed to achieve SLM. The laser linewidth is only 3.5 kHz measured by using the self-heterodyne method. 30 min stability evaluation in terms of lasing wavelength and optical power is performed; showing the optical wavelength and power are both very stable, with fluctuations of only 0.02 nm and 0.8 dB, respectively.

  6. FEEDBACK FROM MASS OUTFLOWS IN NEARBY ACTIVE GALACTIC NUCLEI. II. OUTFLOWS IN THE NARROW-LINE REGION OF NGC 4151

    SciTech Connect

    Crenshaw, D. Michael; Fischer, Travis C.; Kraemer, Steven B.; Schmitt, Henrique R. E-mail: fischer@astro.gsu.edu E-mail: schmitt.henrique@gmail.com

    2015-01-20

    We present a detailed study of active galactic nucleus feedback in the narrow-line region (NLR) of the Seyfert 1 galaxy NGC 4151. We illustrate the data and techniques needed to determine the mass outflow rate ( M-dot {sub out}) and kinetic luminosity (L {sub KE}) of the outflowing ionized gas as a function of position in the NLR. We find that M-dot {sub out} peaks at a value of 3.0 M {sub ☉} yr{sup –1} at a distance of 70 pc from the central supermassive black hole (SMBH), which is about 10 times the outflow rate coming from inside 13 pc, and 230 times the mass accretion rate inferred from the bolometric luminosity of NGC 4151. Thus, most of the outflow must arise from in situ acceleration of ambient gas throughout the NLR. L {sub KE} peaks at 90 pc and drops rapidly thereafter, indicating that most of the kinetic energy is deposited within about 100 pc from the SMBH. Both values exceed the M-dot {sub out} and L {sub KE} determined for the UV/X-ray absorber outflows in NGC 4151, indicating the importance of NLR outflows in providing feedback on scales where circumnuclear star formation and bulge growth occur.

  7. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    SciTech Connect

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard; Marshall, Kevin; Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver

    2014-10-10

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  8. The Parsec-scale Structure and Kinematics of Radio-Loud Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Richards, Joseph L; Lister, Matthew L.; Foschini, Luigi; Savolainen, Tuomas; Homan, Daniel C.; Kadler, Matthias; Readhead, Anthony C. S.; Arshakian, Tigran; Chavushyan, Vahram

    2014-08-01

    We have begun a campaign to monitor a sample of 15 radio-loud narrow-line Seyfert 1 galaxies (NLS1s) with the Very Long Baseline Array (VLBA). Here, we present early results from this program, which includes total intensity and polarimetric observations at 1, 2, 4, and 6cm wavelengths. NLS1s are a class of active galactic nuclei that share many observational properties with the much more powerful blazar classes. Despite their low black hole masses and near- or super-Eddington accretion rates, a small minority are radio loud. A growing number of these have been detected in GeV gamma rays, indicating that a relativistic jet has formed in at least some of these sources. This presents a challenge to jet models, but may provide a link between jets found at the small scales of galactic binaries and the large scales of giant quasars. In addition to our VLBA program, we are carrying out complementary fast-cadence single dish 2cm radio monitoring with the Owens Valley Radio Observatory 40m telescope and an optical spectroscopic monitoring campaign using the Guillermo Haro Astrophysics Observatory 2m-class telescope in Cananea, Mexico. Using data from this program, we will expand the currently limited knowledge of the parsec-scale properties and kinematics of this class of sources. Among our first epoch results, we find significant parsec-scale extension in about about two thirds of our sample, many of which are excellent candidates for jet kinematics analysis.

  9. The parsec-scale structure, kinematics, and polarization of radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Richards, J. L.; Lister, M. L.; Savolainen, T.; Homan, D. C.; Kadler, M.; Hovatta, T.; Readhead, A. C. S.; Arshakian, T. G.; Chavushyan, V.

    2015-03-01

    Several narrow-line Seyfert 1 galaxies (NLS1s) have now been detected in gamma rays, providing firm evidence that at least some of this class of active galactic nuclei (AGN) produce relativistic jets. The presence of jets in NLS1s is surprising, as these sources are typified by comparatively small black hole masses and near- or super-Eddington accretion rates. This challenges the current understanding of the conditions necessary for jet production. Comparing the properties of the jets in NLS1s with those in more familiar jetted systems is thus essential to improve jet production models. We present early results from our campaign to monitor the kinematics and polarization of the parsec-scale jets in a sample of 15 NLS1s through multifrequency observations with the Very Long Baseline Array. These observations are complemented by fast-cadence 15 GHz monitoring with the Owens Valley Radio Observatory 40 m telescope and optical spectroscopic monitoring with with the 2 m class telescope at the Guillermo Haro Astrophysics Observatory in Cananea, Mexico.

  10. Zooming in on the peculiar radio-loud narrow-line Seyfert 1 galaxy, J1100+4421

    NASA Astrophysics Data System (ADS)

    Gabányu, K. É.; Frey, S.; Paragi, Z.; Tar, I.; An, T.; Tanaka, M.; Morokuma, T.

    2016-08-01

    Narrow-line Seyfert 1 galaxies (NLS1) are interesting subsamples of active galactic nuclei, which are typically thought to contain a relatively smaller supermassive black holes (10^6-10^8 solar masses) and show quite high accretion rate. Only 7% of them are detected in radio. The radio structure of the objects in the extremely radio-loud NLS1 subsample indicates the presence of relativistically beamed jets. Some radio-loud NLS1s were detected even at high energies with the Fermi Large Array Telescope. Therefore these sources are often suggested to be the low-luminosity and younger counterparts of blazars. SDSS J110006.07+442144.3 was identified as an NLS1 at z=0.84 after its dramatic optical brightening discovered by Tanaka et al. (2014) Our dual-frequency (1.6 and 5 GHz) European VLBI Network observations taken one year after this event show a compact structre with brightness temperature of 6 x 10^9 K and a flat spectral index indicating the presence of a compact synchrotron self-absorbed core. Compared with low resolution VLA-FIRST data, the large-scale structure seen there is resolved out in the EVN observation. However the recovered flux density in our L-band EVN observation is significantly higher than the FIRST flux density, which is indicative of brightening in the radio regime. All these results fit into the picture where radio-loud NLS1s are described as faint blazars.

  11. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    SciTech Connect

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C.; Holhjem, K.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [O III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  12. Reverberation Mapping of the Gamma-Ray Loud Narrow-line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Du, Pu; Hu, Chen; Bai, Jin-Ming; Wang, Chuan-Jun; Yi, Wei-Min; Wang, Jian-Guo; Zhang, Ju-Jia; Xin, Yu-Xin; Lun, Bao-Li; Chang, Liang; Fan, Yu-Feng

    2016-06-01

    Recently, 1H 0323+342 has attracted a lot of attention as one of several narrow-line Seyfert 1 galaxies detected in the γ-ray band. To understand their central energy engines and jet phenomena, the black hole mass is important. We made use of the Lijiang 2.4 m Telescope to monitor 1H 0323+342 for more than two months. This galaxy is one of the candidates for a monitoring project of super-Eddington accreting massive black holes. The reverberation mapping shows that Hβ emission has a delayed response of {14.8}-2.7+3.9 days with respect to the SDSS g‧ light curve in the rest frame. The optical Fe ii variations were detected after subtracting host contaminations, and a reverberation with a delay of {15.2}-4.1+7.4 days was found in the rest frame. By assuming the viral factor f BLR = 6.17 for the broad-line region (BLR) velocity characterized by FWHM because of the face-on orientation, we find that the black hole mass derived from Hβ is {M}\\bullet ={3.4}-0.6+0.9× {10}7{M}⊙ , and the accretion rate is \\dot{{M}}={1.11}-0.47+0.69, where \\dot{{M}}={\\dot{M}}\\bullet {c}2/{L}{{Edd}}, {\\dot{M}}\\bullet is the mass accretion rate, L Edd is the Eddington luminosity, and c is the speed of light. This black hole is one order less massive than that given by the Magorrian relation from the bulge mass. We test the relation between accretion rates and radio-loudnesses in all mapped radio-loud active galactic nuclei, and find that 1H 0323+342 falls within this group.

  13. Near-infrared Spectroscopy of Nearby Seyfert Galaxies: Is There Evidence for Shock Excitation in Narrow-line Regions?

    NASA Astrophysics Data System (ADS)

    Terao, K.; Nagao, T.; Hashimoto, T.; Yanagisawa, K.; Matsuoka, K.; Toba, Y.; Ikeda, H.; Taniguchi, Y.

    2016-12-01

    One of the important unsettled problems regarding active galactic nuclei (AGNs) is the major ionization mechanism of gas clouds in AGN narrow-line regions (NLRs). In order to investigate this issue, we present our J-band spectroscopic observations of a sample of 26 nearby Seyfert galaxies. In our study, we use the flux ratio of the following two forbidden emission lines, [Fe ii]1.257 μm and [P ii]1.188 μm, because it is known that this ratio is sensitive to the ionization mechanism. We obtain the [Fe ii]/[P ii] flux ratio or its lower limit for 19 objects. In addition to our data, we compile this flux ratio (or its lower limit) for 23 nearby Seyfert galaxies from the literature. Based on the collected data, we find that three Seyfert galaxies show very large lower limits of the [Fe ii]/[P ii] flux ratios (≳10): NGC 2782, NGC 5005, and Mrk 463. It is thus suggested that the contribution of the fast shock in the gas excitation is significantly large for them. However, more than half of the Seyfert galaxies in our sample show moderate [Fe ii]/[P ii] flux ratios (∼2), which is consistent with pure photoionization by power-law ionizing continuum emission. We also find that the [Fe ii]/[P ii] flux ratio shows no clear correlation with the radio loudness, suggesting that the radio jet is not the primary origin of shocks in NLRs of Seyfert galaxies.

  14. Sizes and Kinematics of Extended Narrow-line Regions in Luminous Obscured AGN Selected by Broadband Images

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei; Greene, Jenny E.; Zakamska, Nadia L.

    2017-02-01

    To study the impact of active galactic nuclei (AGN) feedback on their galactic ISM, we present Magellan long-slit spectroscopy of 12 luminous nearby obscured AGN ({L}{bol}∼ {10}45.0-46.5 {erg} {{{s}}}-1, z ∼ 0.1). These objects are selected from a parent sample of spectroscopically identified AGN to have high [O iii]λ5007 and Wide-field Infrared Survey Explorer mid-IR luminosities and extended emission in the Sloan Digital Sky Survey r-band images, suggesting the presence of extended [O iii]λ5007 emission. We find spatially resolved [O iii] emission (2–35 kpc) in 8 out of 12 of these objects. Combined with samples of higher luminosity obscured AGN, we confirm that the size of the narrow-line region (RNLR) scales with the mid-IR luminosity until the relation flattens at RNLR ∼ 10 kpc. Nine out of 12 objects in our sample have regions with broad [O iii] line widths (w80 > 600 km s‑1), indicating outflows. We define these regions as the kinematically disturbed region (KDR). The size of the KDR ({R}{KDR}) is typically smaller than RNLR by few kiloparsecs but also correlates strongly with the AGN mid-IR luminosity. Given the uncertain outflow mass, we derive a loose constraint on the outflow energy efficiency {η }{med}=\\dot{E}/{L}{bol}∼ 0.007 % {--}7 % . We find no evidence for an AGN luminosity threshold below which outflows are not launched. To explain the sizes, velocity profiles, and high occurrence rates of the outflows in the most luminous AGN, we propose a scenario in which energy-conserving outflows are driven by AGN episodes with ∼108 year durations. Within each episode, the AGN is unlikely to be constantly luminous but could flicker on shorter timescales (≲107 yr) with a moderate duty cycle (∼10%).

  15. A Comprehensive Study of Broad Absorption Line Quasars. I. Prevalence of HeI* Absorption Line Multiplets in Low-ionization Objects

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hongyan; Ji, Tuo; Yuan, Weimin; Wang, Ting-Gui; Jian, Ge; Shi, Xiheng; Zhang, Shaohua; Jiang, Peng; Shu, Xinwen; Wang, Huiyuan; Wang, Shu-Fen; Sun, Luming; Yang, Chenwei; Liu, Bo; Zhao, Wen

    2015-03-01

    Neutral helium multiplets, He i* λ λ 3189,3889,10830, are very useful diagnostics for the geometry and physical conditions of the absorbing gas in quasars. So far only a handful of He i* detections have been reported. Using a newly developed method, we detected the He i*λ 3889 absorption line in 101 sources of a well-defined sample of 285 Mg ii broad absorption line (BAL) quasars selected from SDSS DR5. This has increased the number of He i* BAL quasars by more than one order of magnitude. We further detected He i*λ 3189 in 50% (52/101) of the quasars in the sample. The detection fraction of He i* BALs in Mg ii BAL quasars is ∼35% as a whole, and it increases dramatically with increasing spectral signal-to-noise ratio (S/N), from ∼18% at S/N ≤slant 10 to ∼93% at S/N ≥slant 35. This suggests that He i* BALs could be detected in most Mg ii LoBAL quasars, provided the spectra S/N is high enough. Such a surprisingly high He i* BAL fraction is actually predicted from photoionization calculations based on a simple BAL model. The result indicates that He i* absorption lines can be used to search for BAL quasars at low z, which cannot be identified by ground-based optical spectroscopic surveys with commonly seen UV absorption lines. Using He i* λ3889, we discovered 19 BAL quasars at z\\lt 0.3 from the available SDSS spectral database. The fraction of He i* BAL quasars is similar to that of LoBAL objects.

  16. An X-ray-absorbed radio-quiet QSO with an intervening strong metal absorption-line system

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Mittaz, J. P. D.; Carrera, F. J.

    2000-02-01

    We find evidence for significant X-ray absorption in the QSO RXJ005734.78-272827.4, along with strong absorption lines in its optical spectrum. We propose that the absorption lines are due to an intervening metal-line system at a redshift of z=0.628, and show that this intervening system is also the probable cause of the X-ray absorption. The intervening absorber is inferred to have an X-ray column of ~1022cm-2. This is the first time that an absorption-line system has been identified with an X-ray absorber in a radio-quiet object.

  17. DISENTANGLING THE CIRCUMNUCLEAR ENVIRONS OF CENTAURUS A. II. ON THE NATURE OF THE BROAD ABSORPTION LINE

    SciTech Connect

    Espada, D.; Matsushita, S.; Sakamoto, K.; Peck, A. B.; Henkel, C.; Iono, D.; Israel, F. P.; Muller, S.; Petitpas, G.; Pihlstroem, Y.; Taylor, G. B.; Trung, D. V.

    2010-09-01

    We report on atomic gas (H I) and molecular gas (as traced by CO(2-1)) redshifted absorption features toward the nuclear regions of the closest powerful radio galaxy, Centaurus A (NGC 5128). Our H I observations using the Very Long Baseline Array allow us to discern with unprecedented sub-parsec resolution H I absorption profiles toward different positions along the 21 cm continuum jet in the inner 0.''3 (or 5.4 pc). In addition, our CO(2-1) data obtained with the Submillimeter Array probe the bulk of the absorbing molecular gas with little contamination by emission, which was not possible with previous CO single-dish observations. We shed light on the physical properties of the gas in the line of sight with these data, emphasizing the still open debate about the nature of the gas that produces the broad absorption line ({approx}55 km s{sup -1}). First, the broad H I line is more prominent toward the central and brightest 21 cm continuum component than toward a region along the jet at a distance {approx}20 mas (or 0.4 pc) further from the nucleus. This indicates that the broad absorption line arises from gas located close to the nucleus, rather than from diffuse and more distant gas. Second, the different velocity components detected in the CO(2-1) absorption spectrum match well with other molecular lines, such as those of HCO{sup +}(1-0), except the broad absorption line that is detected in HCO{sup +}(1-0) (and most likely related to that of the H I). Dissociation of molecular hydrogen due to the active galactic nucleus seems to be efficient at distances r {approx}< 10 pc, which might contribute to the depth of the broad H I and molecular lines.

  18. Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1992-01-01

    Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.

  19. EMPIRICAL LINE LISTS AND ABSORPTION CROSS SECTIONS FOR METHANE AT HIGH TEMPERATURES

    SciTech Connect

    Hargreaves, R. J.; Bernath, P. F.; Dulick, M.; Bailey, J.

    2015-11-01

    Hot methane is found in many “cool” sub-stellar astronomical sources including brown dwarfs and exoplanets, as well as in combustion environments on Earth. We report on the first high-resolution laboratory absorption spectra of hot methane at temperatures up to 1200 K. Our observations are compared to the latest theoretical spectral predictions and recent brown dwarf spectra. The expectation that millions of weak absorption lines combine to form a continuum, not seen at room temperature, is confirmed. Our high-resolution transmittance spectra account for both the emission and absorption of methane at elevated temperatures. From these spectra, we obtain an empirical line list and continuum that is able to account for the absorption of methane in high temperature environments at both high and low resolution. Great advances have recently been made in the theoretical prediction of hot methane, and our experimental measurements highlight the progress made and the problems that still remain.

  20. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Yaqoob, T.; Braito, V.; Dadina, M.

    2010-10-01

    Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 × 10-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability <10-7. We identify the lines as Fe XXV and Fe XXVI K-shell resonant absorption. They are systematically blue-shifted, with a velocity distribution ranging from zero up to ~0.3c, with a peak and mean value at ~0.1c. We detect variability of the lines on both EWs and blue-shifted velocities among different XMM-Newton observations

  1. Microlensing Constraints on Broad Absorption and Emission Line Flows in the Quasar H1413+117

    NASA Astrophysics Data System (ADS)

    O'Dowd, Matthew J.; Bate, Nicholas F.; Webster, Rachel L.; Labrie, Kathleen; Rogers, Joshua

    2015-11-01

    We present new integral field spectroscopy of the gravitationally lensed broad absorption line (BAL) quasar H1413+117, covering the ultraviolet restframe spectral range. We observe strong microlensing signatures in lensed image D, and we use this microlensing to simultaneously constrain both the broad emission and broad absorption line gas. The wavelength independence of image D magnifications across the broad emission lines (BELs) indicates a lower limit on the broad emission line region (BELR) size equal to the Einstein radius (ER) of the system: ≳11 {(< M> /{M}⊙ )}0.5 lt-day for a lens redshift of 1.4 and ≳15 {(< M> /{M}⊙ )}0.5 lt-day for zL = 0.94. Lensing simulations verify that the observed wavelength independence is very unlikely for BELRs with significant velocity stratification at size scales below an ER. We perform spectral decomposition to derive the intrinsic BEL and continuum spectrum, subject to BAL absorption. We reconstruct the intrinsic BAL absorption profile, whose features allow us to constrain outflow kinematics in the context of a disk-wind model. We find a very sharp, blueshifted onset of absorption of 1500 km s-1 in both C iv and N v, which may correspond to an inner edge of a disk-wind’s radial outflow. The lower ionization Si iv and Al iii have higher-velocity absorption onsets, consistent with a decreasing ionization parameter with radius in an accelerating outflow. There is evidence of strong absorption in the BEL component, which indicates a high covering factor for absorption over two orders of magnitude in outflow radius.

  2. THE ORIGIN OF DOUBLE-PEAKED NARROW LINES IN ACTIVE GALACTIC NUCLEI. I. VERY LARGE ARRAY DETECTIONS OF DUAL AGNs AND AGN OUTFLOWS

    SciTech Connect

    Müller-Sánchez, F.; Comerford, J. M.; Nevin, R.; Barrows, R. S.; Cooper, M. C.; Greene, J. E.

    2015-11-10

    We have examined a subset of 18 active galactic nuclei (AGNs) drawn from a sample of 81 galaxies that possess double-peaked narrow optical emission line spectra in the Sloan Digital Sky Survey, have 2 optical AGN emission components separated by >0.″2, and are detected in the Faint Images of the Radio Sky at Twenty-centimeters survey. Without follow-up observations, the sources of the double-peaked narrow emission lines are uncertain, and may be produced by kiloparsec-scale separation dual active supermassive black holes, AGN outflows, or disk rotation. In this work, we propose a new methodology to characterize double-peaked narrow emission line galaxies based on optical long-slit spectroscopy and high-resolution multi-band Very Large Array observations. The nature of the radio emission in the sample galaxies is varied. Of the 18 galaxies, we detect 2 compact flat-spectrum radio cores with projected spatial separations on the sky between 0.6 and 1.6 kpc in 3 galaxies: J1023+3243, J1158+3231, and J1623+0808. The two radio sources are spatially coincident with the two optical components of ionized gas with AGN-like line ratios, which confirms the presence of dual AGNs in these three galaxies. Dual AGNs account for only ∼15% (3/18) of the double-peaked AGNs in our sample. Gas kinematics produce ∼75% (13/18) of the double-peaked narrow emission lines, distributed in the following way: seven AGN wind-driven outflows, five radio-jet driven outflows, and one rotating narrow-line region. The remaining 10% (2/18) are ambiguous cases. Our method demonstrates the power of spatially resolved spectroscopy and high-resolution radio observations for the identification of AGN outflows and AGN pairs with angular separations as small as 0.″18.

  3. Metal-line absorption at Zabs approximately Zem from associated galaxies

    NASA Astrophysics Data System (ADS)

    Ellingson, E.; Yee, H. K. C.; Bechtold, Jill; Dobrzycki, Adam

    1994-04-01

    For a preliminary study of whether C IV absorption at Zabs approximately Zem is related to associated galaxy companions, we have collected data from a sample of 10 quasars with 0.15 less than z less than 0.65 for which high-resolution optical and UV spectroscopy is available from the literature, and for which we have deep optical images and limited spectroscopy. We also present new optical spectra for two of our samples. Four of these quasars have associated C IV absorption systems. In thes four fields, there are eight galaxies with Mr less than -19.0 mag within 35 kpc of the quasar (projected distance, assuming they are at the quasar redshift), which may be candidates for the associated C IV absorption. This observed density of galaxies near quasars with associated C IV absorption is significantly greater than that for a control sample of quasars chosen from the literature. This result suggests that galaxies near the quasar line of sight may be linked with associated C IV absorption. None of these quasars show associated Mg II absorption, despite the presence of galaxies very near the line of sight, suggesting a Mg II 'proximity effect,' where ionizing flux from the quasar destroys the Mg(+) from at least the outer parts of the galaxies. Three quasars are located in rich galaxy clusters, but none of these quasars are found to have associated C IV absorption. This suggests that galaxies in rich clusters associated with quasars are less likely to be metal-line absorbers. It is plausible that the extended galaxy halos which may be responsible for the absorptions are stripped from galaxies in these dense environments. While it seems that at Z approximately 0.6 rich clusters do not cause them, associated C IV absorption systems at higher redshift may be explained by associated clusters if there has been evolution in the properties of galaxy halos in dense environments.

  4. A ghostly damped Ly α system revealed by metal absorption lines

    NASA Astrophysics Data System (ADS)

    Fathivavsari, H.; Petitjean, P.; Zou, S.; Noterdaeme, P.; Ledoux, C.; Krühler, T.; Srianand, R.

    2017-03-01

    We report the discovery of the first 'ghostly' damped Ly α absorption system (DLA), which is identified by the presence of absorption from strong low-ion species at zabs = 1.704 65 along the line of sight to the quasar SDSS J113341.29-005740.0 with zem = 1.704 41. No Ly α absorption trough is seen associated with these absorptions because the DLA trough is filled with the leaked emission from the broad emission-line region of the quasar. By modelling the quasar spectrum and analysing the metal lines, we derive log N(H I)(cm-2) ∼21.0 ± 0.3. The DLA cloud is small (≤0.32 pc), thus not covering entirely the broad-line region and is located at ≥39 pc from the central active galactic nucleus (AGN). Although the DLA is slightly redshifted relative to the quasar, its metallicity ([S/H] = -0.41 ± 0.30) is intermediate between what is expected from infalling and outflowing gas. It could be possible that the DLA is part of some infalling material accreting on to the quasar host galaxy through filaments, and that its metallicity is raised by mixing with the enriched outflowing gas emanating from the central AGN. Current DLA surveys miss these 'ghostly' DLAs, and it would be important to quantify the statistics of this population by searching the Sloan Digital Sky Survey (SDSS) data base using metal absorption templates.

  5. Resolution Effects on Quasar Absorption Line Studies of ΛCDM Simulations

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn; Ceverino, D.; Churchill, C. W.; Murphy, M. T.; Evans, J. L.

    2009-01-01

    The technique of using background quasars to study absorption lines produced by gaseous halos of foreground galaxies provides a uniquely powerful tool to probe the gas-galaxy and IGM interface. With absorption lines, we are capable of studying the kinematic, chemical, and ionization conditions of galactic halos over all redshifts out to projected galactocentric radii of several 100 kpc. However, interpreting these data can be difficult. We have recently begun to produce similar absorption line observations of galaxies and their gaseous halos in LCDM cosmological simulations in order to constrain the dynamic interaction of the galaxy/halo/cosmic web environment and the distribution of gas within halos. The simulations are performed using the Eulerian Gasdynamics plus N-body Adaptive Refinement Tree (ART) code, were the highest resolution gas cells are 20-100 pc. However, absorption lines are primarily produced/observed in the halos of galaxies where the resolution is lower. Here, we quantify how varying the resolution affects the measured absorption velocity spreads, number of clouds, and covering fractions of halo gas within the simulated galaxies. This is an important step toward understanding the interplay between halo gas kinematics and small scale structure. It is crucial that we understand these effects in order to correctly interpret our observations.

  6. PROBING THE PHYSICS OF NARROW LINE REGIONS IN ACTIVE GALAXIES. II. THE SIDING SPRING SOUTHERN SEYFERT SPECTROSCOPIC SNAPSHOT SURVEY (S7)

    SciTech Connect

    Dopita, Michael A.; Davies, Rebecca; Kewley, Lisa; Hampton, Elise; Sutherland, Ralph; Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S.; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; Juneau, Stéphanie; Srivastava, Shweta

    2015-03-15

    Here we describe the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph mounted on the ANU 2.3 m telescope located at the Siding Spring Observatory to deliver an integral field of 38 × 25 arcsec at a spectral resolution of R = 7000 in the red (530–710 nm), and R = 3000 in the blue (340–560 nm). From these data cubes we have extracted the narrow-line region spectra from a 4 arcsec aperture centered on the nucleus. We also determine the Hβ and [O iii] λ5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ and [O iii] λ5007 luminosities determined from spectra for which the stellar continuum has been removed. We present a set of images of the galaxies in [O iii] λ5007, [N ii] λ6584, and Hα, which serve to delineate the spatial extent of the extended narrow-line region and also to reveal the structure and morphology of the surrounding H ii regions. Finally, we provide a preliminary discussion of those Seyfert 1 and Seyfert 2 galaxies that display coronal emission lines in order to explore the origin of these lines.

  7. Probing the Physics of Narrow Line Regions in Active Galaxies. II. The Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7)

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Shastri, Prajval; Davies, Rebecca; Kewley, Lisa; Hampton, Elise; Scharwächter, Julia; Sutherland, Ralph; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S.; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; Juneau, Stéphanie; James, Bethan; Srivastava, Shweta

    2015-03-01

    Here we describe the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph mounted on the ANU 2.3 m telescope located at the Siding Spring Observatory to deliver an integral field of 38 × 25 arcsec at a spectral resolution of R = 7000 in the red (530-710 nm), and R = 3000 in the blue (340-560 nm). From these data cubes we have extracted the narrow-line region spectra from a 4 arcsec aperture centered on the nucleus. We also determine the Hβ and [O iii] λ5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ and [O iii] λ5007 luminosities determined from spectra for which the stellar continuum has been removed. We present a set of images of the galaxies in [O iii] λ5007, [N ii] λ6584, and Hα, which serve to delineate the spatial extent of the extended narrow-line region and also to reveal the structure and morphology of the surrounding H ii regions. Finally, we provide a preliminary discussion of those Seyfert 1 and Seyfert 2 galaxies that display coronal emission lines in order to explore the origin of these lines.

  8. Accretion disc-corona and jet emission from the radio-loud narrow-line Seyfert 1 galaxy RX J1633.3+4719

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, G. C.; Gandhi, P.; Misra, R.; Kembhavi, A. K.

    2016-08-01

    We perform X-ray/ultraviolet (UV) spectral and X-ray variability studies of the radio-loud narrow-line Seyfert 1 (NLS1) galaxy RX J1633.3+4719 using XMM-Newton and Suzaku observations from 2011 and 2012. The 0.3-10 keV spectra consist of an ultrasoft component described by an accretion disc blackbody (kT_in = 39.6^{+11.2}_{-5.5} eV) and a power law due to the thermal Comptonization (Γ = 1.96^{+0.24}_{-0.31}) of the disc emission. The disc temperature inferred from the soft excess is at least a factor of 2 lower than that found for the canonical soft excess emission from radio-quiet NLS1s. The UV spectrum is described by a power law with photon index 3.05^{+0.56}_{-0.33}. The observed UV emission is too strong to arise from the accretion disc or the host galaxy, but can be attributed to a jet. The X-ray emission from RX J1633.3+4719 is variable with fractional variability amplitude Fvar = 13.5 ± 1.0 per cent. In contrast to radio-quiet active galactic nuclei (AGN), X-ray emission from the source becomes harder with increasing flux. The fractional rms variability increases with energy and the rms spectrum is well described by a constant disc component and a variable power-law continuum with the normalization and photon index being anticorrelated. Such spectral variability cannot be caused by variations in the absorption and must be intrinsic to the hot corona. Our finding of possible evidence for emission from the inner accretion disc, jet and hot corona from RX J1633.3+4719 in the optical to X-ray bands makes this object an ideal target to probe the disc-jet connection in AGN.

  9. Absorption Spectra of Broadened Sodium Resonance Lines in Presence of Rare Gases

    SciTech Connect

    Chung, H-K; Shurgalin, M; Babb, J F

    2002-09-11

    The pressure broadening of alkali-metal lines is a fundamental problem with numerous applications. For example, the sodium resonance lines broadened by xenon are important in the production of broad spectra emitted in the HPS (High-Pressure Sodium) lamp and they potentially can be used for gas condition diagnostics. Broadened absorption lines of alkali-metal atoms are prominent in the optical spectra of brown dwarfs and understanding the broadening mechanism will help elucidate the chemical composition and atmospheric properties of those stars. The far-line wing spectra of sodium resonance lines broadened by rare gases are found to exhibit molecular characteristics such as satellites and hence the total absorption coefficients for vapors of Na atoms and perturbing rare gas atoms can be modeled as Na-RG (rare gas) molecular absorption spectra. In this work, using carefully chosen interatomic potentials for Na-RG molecules we carry out quantum-mechanical calculations for reduced absorption coefficients for vapors composed of Na-He, Na-Ar, and Na-Xe. Calculated spectra are compared to available experimental results and the agreement is good in the measured satellite positions and shapes.

  10. A physical model for the X-ray time lags of narrow-line Seyfert type 1 active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Gardner, Emma; Done, Chris

    2014-08-01

    We study the origin of the soft X-ray excess seen in the `simple' narrow-line Seyfert 1 galaxy PG1244+026 using all available spectral-timing information. This object shows the now ubiquitous switch between soft leading the hard band on long time-scales, to the opposite behaviour on short time-scales. This is interpreted as a combination of intrinsic fluctuations propagating down through the accretion flow giving the soft lead, together with reflection of the hard X-rays giving the soft lag. We build a full model of the spectral and time variability including both propagation and reflection, and compare our model with the observed power spectra, coherence, covariance, lag-frequency and lag-energy spectra. We compare models based on a separate soft excess component with those based on reflection-dominated soft emission. Reflection-dominated spectra have difficulty reproducing the soft lead at low frequency since reflection will always lag. They also suffer from high coherence and nearly identical hard- and soft-band power spectra in disagreement with the observations. This is a direct result of the power-law and reflection components both contributing to the hard and soft energy bands, and the small radii over which the relativistically smeared reflection is produced allowing too much high-frequency power to be transmitted into the soft band. Conversely, we find the separate soft excess models (where the inner disc radius is >6Rg) have difficulty reproducing the soft lag at high frequency, as reflected flux does not contribute enough signal to overwhelm the soft lead. However, reflection should also be accompanied by reprocessing and this should add to the soft excess at low energies. This model can quantitatively reproduce the switch from soft lead to soft lag seen in the data and reproduces well the observed power spectra and other timing features which reflection-dominated models cannot.

  11. SDSSJ143244.91+301435.3 at VLBI: a compact radio galaxy in a narrow-line Seyfert 1

    NASA Astrophysics Data System (ADS)

    Caccianiga, A.; Dallacasa, D.; Antón, S.; Ballo, L.; Berton, M.; Mack, K.-H.; Paulino-Afonso, A.

    2017-01-01

    We present very long baseline interferometry (VLBI) observations, carried out with the European Very Long Baseline Interferometry Network (EVN), of SDSSJ143244.91+301435.3, a radio-loud narrow-line Seyfert 1 (RL NLS1) characterized by a steep radio spectrum. The source, compact at Very Large Array resolution, is resolved on the milliarcsec scale, showing a central region plus two extended structures. The relatively high brightness temperature of all components (5 × 106-1.3 × 108 K) supports the hypothesis that the radio emission is non-thermal and likely produced by a relativistic jet and/or small radio lobes. The observed radio morphology, the lack of a significant core, and the presence of a low frequency (230 MHz) spectral turnover are reminiscent of the Compact Steep-Spectrum (CSS) sources. However, the linear size of the source (˜0.5 kpc) measured from the EVN map is lower than the value predicted using the turnover/size relation valid for CSS sources (˜6 kpc). This discrepancy can be explained by an additional component not detected in our observations, accounting for about a quarter of the total source flux density, combined to projection effects. The low core dominance of the source (CD < 0.29) confirms that SDSSJ143244.91+301435.3 is not a blazar, i.e. the relativistic jet is not pointing towards the observer. This supports the idea that SDSSJ143244.91+301435.3 may belong to the `parent population' of flat-spectrum RL NLS1 and favours the hypothesis of a direct link between RL NLS1 and compact, possibly young, radio galaxies.

  12. The awakening of the γ-ray narrow-line Seyfert 1 galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.; Finke, J.; Hovatta, T.; Giroletti, M.; Max-Moerbeck, W.; Pearson, T. J.; Readhead, A. C. S.; Reeves, R. A.; Richards, J. L.

    2016-12-01

    After a long low-activity period, a γ-ray flare from the narrow-line Seyfert 1 PKS 1502+036 (z = 0.4089) was detected by the Large Area Telescope (LAT) on board Fermi in 2015. On 2015 December 20, the source reached a daily peak flux, in the 0.1-300 GeV band, of (93 ± 19) × 10-8 ph cm-2 s-1, attaining a flux of (237 ± 71) × 10-8 ph cm-2 s-1 on 3-h time-scales, which corresponds to an isotropic luminosity of (7.3 ± 2.1) × 1047 erg s-1. The γ-ray flare was not accompanied by significant spectral changes. We report on multiwavelength radio-to-γ-ray observations of PKS 1502+036 during 2008 August-2016 March by Fermi-LAT, Swift, XMM-Newton, Catalina Real-Time Transient Survey and the Owens Valley Radio Observatory (OVRO). An increase in activity was observed on 2015 December 22 by Swift in optical, UV and X-rays. The OVRO 15 GHz light curve reached the highest flux density observed from this source on 2016 January 12, indicating a delay of about three weeks between the γ-ray and 15 GHz emission peaks. This suggests that the γ-ray-emitting region is located beyond the broad-line region. We compared the spectral energy distribution (SED) of an average activity state with that of the flaring state. The two SED, with the high-energy bump modelled as an external Compton component with seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. The fit of the disc emission during the average state constrains the black hole mass to values lower than 108 M⊙. The SED, high-energy emission mechanisms and γ-ray properties of the source resemble those of a flat spectrum radio quasar.

  13. New aspects of absorption line formation in intervening turbulent clouds - I. General principles

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Kegel, Wilhelm H.

    1997-07-01

    We study the formation of absorption lines in intervening clouds with stochastic velocity fields, accounting for the fact that actually only one line of sight is observed. Our results show that the introduction of the finite velocity correlation length leads to a new type of absorption line profiles which are asymmetric in general, may have different shifts of the centres of gravity, and look like barely resolved blends, i.e. could be interpreted in a standard Voigt fitting analysis as being caused by several independent clouds with different physical parameters. Numerical results are presented for the HI Lyalpha line with N_Hi=10^12,10^14,10^15 and 10^16cm^-2, T_kin=10^4 K, and different sets of turbulent parameters. The intensity fluctuations within the line profile caused by `turbulent noise' are investigated and the confidence belts for the absorption lines are calculated. We conclude that an exact measurement of the column densities of the absorbing atoms N_a from the observed values of the optical depths tau lambda is actually impossible for the case of the correlated velocity field. One can only determine a range of values within which N_a is to be found with a certain probability.

  14. X-ray Weak Broad-line Qquasars: Absorption or Intrinsic X-ray Weakness

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Risaliti, Guida

    2005-01-01

    XMM observations of X-ray weak quasars have been performed during 2003 and 2004. The data for all the observations have become available in 2004 (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed all the data, and obtained interesting scientific results. Out of the eight sources, 4 are confirmed to be extremely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confined to be highly variable both in flux (by factor 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects we are completing a publication: 1) For the X-ray weak sources, a paper is submitted with a complete analysis of the X-ray spectra both from Chandra and XMM-Newton, and a comparison with optical and near-IR photometry obtained from all-sky surveys. Possible models for the unusual spectral energy distribution of these sources are also presented. 2) For the variable sources, a paper is being finalized where the X-ray spectra obtained with XMM-Newton are compared with previous X-ray observations and with observations at other wavelengths. It is shown that these sources are high luminosity and extreme cases of the highly variable class of narrow-line Seyfert Is. In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations have been performed in early 2004. They will complement the XMM data and will lead to understanding of whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circum-nuclear material. The infrared spectra of the variable sources have been already

  15. Variability of the broad absorption lines in the QSO UM 232

    NASA Technical Reports Server (NTRS)

    Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. Margaret

    1989-01-01

    Low-resolution spectra of UM 232 taken in 1978, 1979, and 1988 at Lick Observatory are presented. Large changes in the Si IV lambda 1397, CIV lambda 1549, and Al III lambda 1857 broad absorption lines are apparent. The decrease in column density in all three ions and an observed brightening of the QSO suggests that these changes are due to an increase in the ionization level driven by an increase in the central source luminosity. This mechanism has been proposed by Smith and Penston to explain small changes in the absorption spectrum of the QSO 1246-057. The spectra of UM 232 show that the fractional decrease in optical depth is smaller at higher outflow velocies. The structure of the broad absorption-line region (BALR) is investigted by estimating an ionization parameter for each ion species as a function of velocity.

  16. Cross section calculations of astrophysical interest. [for theories of absorption and emission lines

    NASA Technical Reports Server (NTRS)

    Gerjuoy, E.

    1974-01-01

    Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.

  17. Archival research on absorption lines in violently star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, J. S.

    1989-01-01

    A computerized analysis of a starburst model is discussed. The model proposes that the absorption line equivalent width should scale with the level of star forming activity. Archival International Ultraviolet Explorer (IUE) data on IUE spectra of luminous blue galaxies were compared with previous IUE observations of extragalactic HII regions and low luminosity galaxies. The comparisons are summarized and causes for offsets are discussed.

  18. A summary of transition probabilities for atomic absorption lines formed in low-density clouds

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Smith, W. H.

    1973-01-01

    A table of wavelengths, statistical weights, and excitation energies is given for 944 atomic spectral lines in 221 multiplets whose lower energy levels lie below 0.275 eV. Oscillator strengths were adopted for 635 lines in 155 multiplets from the available experimental and theoretical determinations. Radiation damping constants also were derived for most of these lines. This table contains the lines most likely to be observed in absorption in interstellar clouds, circumstellar shells, and the clouds in the direction of quasars where neither the particle density nor the radiation density is high enough to populate the higher levels. All ions of all elements from hydrogen to zinc are included which have resonance lines longward of 912 A, although a number of weaker lines of neutrals and first ions have been omitted.

  19. Candidate Hα emission and absorption line sources in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Wevers, T.; Jonker, P. G.; Nelemans, G.; Torres, M. A. P.; Groot, P. J.; Steeghs, D.; Maccarone, T. J.; Hynes, R. I.; Heinke, C.; Britt, C.

    2017-04-01

    We present a catalogue of candidate Hα emission and absorption line sources and blue objects in the Galactic Bulge Survey (GBS) region. We use a point source catalogue of the GBS fields (two strips of (l × b) = (6° × 1°) centred at b = 1.5° above and below the Galactic Centre), covering the magnitude range 16 ≤ r΄ ≤ 22.5. We utilize (r΄ - i΄, r΄ - Hα) colour-colour diagrams to select Hα emission and absorption line candidates, and also identify blue objects (compared to field stars) using the r΄ - i΄ colour index. We identify 1337 Hα emission line candidates and 336 Hα absorption line candidates. These catalogues likely contain a plethora of sources, ranging from active (binary) stars, early-type emission line objects, cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs) to background active galactic nuclei (AGN). The 389 blue objects we identify are likely systems containing a compact object, such as CVs, planetary nebulae and LMXBs. Hot subluminous dwarfs (sdO/B stars) are also expected to be found as blue outliers. Cross-matching our outliers with the GBS X-ray catalogue yields 16 sources, including 7 (magnetic) CVs and 1 qLMXB candidate among the emission line candidates and 1 background AGN for the absorption line candidates. One of the blue outliers is a high-state AM CVn system. Spectroscopic observations combined with the multiwavelength coverage of this area, including X-ray, ultraviolet and (time-resolved) optical and infrared observations, can be used to further constrain the nature of individual sources.

  20. Comparing Narrow- and Broad-line AGNs in a New Diagnostic Diagram for Emission-line Galaxies Based on WISE Data

    NASA Astrophysics Data System (ADS)

    Coziol, R.; Torres-Papaqui, J. P.; Andernach, H.

    2015-06-01

    Using a new color-color diagnostic diagram in the mid-infrared (MIR) built from WISE data, the MIRDD, we compare narrow-emission-line galaxies (NELGs) that exhibit different activity types (star-forming galaxies (SFGs) and active galactic nuclei (AGNs), i.e., LINERs, Seyfert 2 galaxies (Sy2s), and Transition-type Objects (TOs)), as determined using one standard diagnostic diagram in the optical (BPT-VO), with broad-line AGNs (QSOs and Sy1s) and BL Lac objects at low redshift (z≤slant 0.25). We show that the BL Lac objects occupy the same region as the LINERs in the MIRDD, whereas the QSOs and Sy1s occupy an intermediate region between the LINERs and the Sy2s. In the MIRDD these galaxies trace a sequence that can be reproduced by a power law, {{F}ν }={{ν }α }, where the spectral index, α, varies from 0 to -2, which is similar to what is observed in the optical/ultraviolet part of the spectra of AGNs with different luminosities. For the NELGs with different activity types, we perform a stellar-population synthesis analysis, confirming that their specific positions in the MIRD depend on their star formation histories (SFH) and demonstrating that the W2-W3 color is tightly correlated with the level of star formation in their host galaxies. In good agreement with the SFH analysis, a comparison of their MIR colors with the colors yielded by spectral energy distributions (SEDs) of galaxies with different activity types shows that the SED of the LINERs is similar to the SEDs of the QSOs and Sy1s, consistent with AGN galaxies with mild star formation, whereas the SEDs of the Sy2s and TOs are consistent with AGN galaxies with strong star formation components. For the BL Lac objects, we show that their blue MIR colors can only be fitted with an SED that has no star formation component, consistent with AGNs in elliptical-type galaxies. From their similarities in MIR colors and SEDs, we infer that, in the nearby universe, the level of star formation activity most probably

  1. Atlas of absorption lines from 0 to 17 900 cm(-1)

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Rothman, L. S.; Rinsland, C. P.; Smith, M. A. H.; Richardson, D. J.; Larsen, J. C.

    1981-01-01

    Plots of absorption line strength versus line position for wavenumbers from 0 to 17,900 cm(-1) are shown for 20 atmospheric gases (H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, ClO, OCS, H2CO). Also shown are similar plots of lower-state energy values for adsorption lines for the strongly adsorbing atmospheric gases (H2O, CO2, O3, and CH4) for wavenumbers from 0 to 5000 cm(-1).

  2. SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.

    2017-01-01

    Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.

  3. The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2<~z<~3

    NASA Astrophysics Data System (ADS)

    Adelberger, Kurt L.; Shapley, Alice E.; Steidel, Charles C.; Pettini, Max; Erb, Dawn K.; Reddy, Naveen A.

    2005-08-01

    Absorption-line spectroscopy of 23 background QSOs and numerous background galaxies has let us measure the spatial distribution of metals and neutral hydrogen around 1044 UV-selected galaxies at redshifts 1.8<~z<~3.3. The typical galaxy is surrounded to radii r~40 proper kpc by gas that has a large velocity spread (Δv>260 km s-1) and produces very strong absorption lines (NCIV>>1014 cm-2) in the spectra of background objects. These absorption lines are almost as strong as those produced by a typical galaxy's own interstellar gas. Absorption with an average column density of NCIV~=1014 cm-2 extends out to ~80 kpc, a radius large enough to imply that most strong intergalactic C IV absorption is associated with star-forming galaxies like those in our sample. Our measurement of the galaxy-C IV spatial correlation function shows that even the weakest detectable C IV systems are found in the same regions as galaxies; we find that the cross-correlation length increases with C IV column density and is similar to the galaxy autocorrelation length (r0~4 h-1 Mpc) for NCIV>~1012.5 cm-2. Distortions in the redshift-space galaxy-C IV correlation function on small scales may imply that some of the C IV systems have large peculiar velocities. Four of the five detected O VI absorption systems in our sample lie within 400 proper kpc of a known galaxy. Strong Lyα absorption is produced by the intergalactic gas within 1 h-1 comoving Mpc of most galaxies, but for a significant minority (~1/3) the absorption is weak or absent. This is not observed in smooth-particle hydrodynamic simulations that omit the effects of ``feedback'' from galaxy formation. We were unable to identify any statistically significant differences in age, dust reddening, environment, or kinematics between galaxies with weak nearby H I absorption and the rest, although galaxies with weak absorption may have higher star formation rates. Galaxies near intergalactic C IV systems appear to reside in relatively dense

  4. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  5. First laboratory detection of an absorption line of the first overtone electric quadrupolar band of N2 by CRDS near 2.2 μm

    NASA Astrophysics Data System (ADS)

    Čermák, P.; Vasilchenko, S.; Mondelain, D.; Kassi, S.; Campargue, A.

    2017-01-01

    The extremely weak 2-0 O(14) electric quadrupole transition of N2 has been detected by very high sensitivity Cavity Ring Down spectroscopy near 4518 cm-1. It is the first N2 absorption line in the first overtone band reported so far from laboratory experiments. By combining a feedback narrowed Distributed Feedback laser diode with a passive cell tracking technique, a limit of detection of αmin ∼ 1.2 × 10-11 cm-1 was achieved after one day of spectra averaging. The N2 2-0 O(14) line position and line intensity (about 1.5 × 10-30 cm/molecule) agree with calculated values provided in the HITRAN2012 database.

  6. A Sample of Seyfert-2 Galaxies with Ultraluminous Galaxy-wide Narrow-line Regions: Quasar Light Echoes?

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Diaz, R.; Holhjem, K.; Levenson, N. A.; Winge, C.

    2013-01-01

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc-3 at z ~ 0.3, these "green beans" (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 × 44 kpc and is surrounded by an extended NLR. With a total [O III] λ5008 luminosity of (5.7 ± 0.9) × 1043 erg s-1, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 μm luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. Based on observations

  7. Multiple Velocity Components in the CIV Absorption Line of NGC5548

    NASA Astrophysics Data System (ADS)

    Mathur, S.; Elvis, M.; Wilkes, B. J.

    1998-12-01

    The bright, variable, Seyfert 1 galaxy NGC 5548 has been extensively studied at many wavelengths. It has been a target of reverberation mapping experiments in the optical and UV (Peterson et al. 1992, Clavel et al. 1991, Korista et al. 1995). These have led to the accurate determination of the physical size of the BELR. The UV spectrum also shows absorption lines (Shull & Sachs 1993, Mathur, Elvis & Wilkes 1995 (MEW95)). Recently, based on ASCA and HST FOS data, MEW95 showed that the ionizaed X-ray and UV absorption in NGC5548 is likely to originate in the same material. We have now obtained high resolution GHRS spectrum around the CIV line. We find that the absorption line splits into multiple velocity components. The X-ray absorber would be associated with one of these components. We also have a tentative evidence for inflow based on the redshifted absorption component. This is in accord with the radial infall in NGC 5548 found by Done & Krolik (1996) based on the kinematic model of the BELR.

  8. The Herbig AE star AB AUR - absorption along the line of sight and chromospheric emission

    NASA Astrophysics Data System (ADS)

    Felenbok, P.; Praderie, F.; Talavera, A.

    1983-11-01

    The H-alpha, He I 5876 A, Na I 5890 A, Ca II IR triplet, and P14-P16 Paschen lines of AB Aur are all brighter than the nearby continuum. The emission lines are examined with regard to their origin as either recombination or chromospheric emission. While He I and H-alpha could be formed simultaneously by recombination under certain circumstances, a deep chromosphere would account for He I 5876, for the Paschen lines in emission, and perhaps even for the Ca II IR triplet in emission. A deep chromosphere would also explain why higher Balmer lines are in absorption and why the Ca II resonance lines have only an autoreversed emission core, despite not being fully in emission.

  9. A self-injection locked, Q-switched, line-narrowed Ti:Al/sub 2/O/sub 3/ laser

    SciTech Connect

    Barnes, N.P.; Williams, J.A.; Barnes, J.C.; Lockard, G.E.

    1988-06-01

    Line-narrowing, Q-switched, and self-injection locking are studied independently and as a system. Line narrowing is shown both theoretically and experimentally to depend on the inverse square root of the pulse evolution time interval. Q switching of the Ti:Al/sub 2/O/sub 3/ laser is demonstrated and the laser output energy as a function of the Q-switch delay is investigated. Self-injection is demonstrated and the operation of the laser is explored as a function of loss and the Q-switch delay. Finally, self-injection locking is demonstrated and the performance as a function of the Q-switch delay is determined.

  10. New narrow infrared absorption features in the spectrum of Io between 3600 and 3100 cm (2.8-3.2 micrometers)

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Geballe, Thomas R.; Salama, Farid; Goorvitch, David

    1994-01-01

    We report the discovery of a series of infrared absorption bands between 3600 and 3100/cm (2.8-3.2 micrometers) in the spectrum of Io. Individual narrow bands are detected at 3553, 3514.5, 3438, 3423, 3411.5, and 3401/cm (2.815, 2.845, 2.909, 2.921, 2.931, and 2.940 micrometers, respectively). The positions and relative strengths of these bands, and the difference of their absolute strengths between the leading and trailing faces of Io, indicate that they are due to SO2. The band at 3438/cm (2.909 micrometers) could potentially have a contribution from an additional molecular species. The existence of these bands in the spectrum of Io indicates that a substantial fraction of the SO2 on Io must reside in transparent ices having relatively large crystal sizes. The decrease in the continuum observed at the high frequency ends of the spectra is probably due to the low frequency side of the recently detected, strong 3590/cm (2.79 micrometer) feature. This band is likely due to the combination of a moderately strong SO2 band and an additional absorption from another molecular species, perhaps H2O isolated in SO2 at low concentrations. A broad (FWHM approximately = 40-60/cm), weak band is seen near 3160/cm (3.16 micrometers) and is consistent with the presence of small quantities of H2O isolated in SO2-rich ices. There is no evidence in the spectra for the presence of H2O vapor on Io. Thus, the spectra presented here neither provide unequivocal evidence for the presence of H2O on Io nor preclude it at the low concentrations suggested by past studies.

  11. [Laser induced breakdown spectra of coal sample and self-absorption of the spectral line].

    PubMed

    Zhang, Gui-yin; Ji, Hui; Jin, Yi-dong

    2014-12-01

    The LIBS of one kind of household fuel coal was obtained with the first harmonic output 532 nm of an Nd·YAG laser as radiation source. With the assignment of the spectral lines, it was found that besides the elements C, Si, Mg, Fe, Al, Ca, Ti, Na and K, which are reported to be contained in coal, the presented sample also contains trace elements, such as Cd, Co, Hf, Ir, Li, Mn, Ni, Rb, Sr, V, W, Zn, Zr etc, but the spectral lines corresponding to O and H elements did not appear in the spectra. This is owing to the facts that the transition probability of H and O atoms is small and the energy of the upper level for transition is higher. The results of measurement also show that the intensity of spectral line increases with the laser pulse energy and self-absorption of the spectral lines K766.493 nm and K769.921 nm will appear to some extent. Increasing laser energy further will make self-absorption more obvious. The presence of self-absorption can be attributed to two factors. One is the higher transition rate of K atoms, and the other is that the increase in laser intensity induces the enhancement of the particle number density in the plasma.

  12. Dust depletion of Ca and Ti in QSO absorption-line systems

    NASA Astrophysics Data System (ADS)

    Guber, C. R.; Richter, P.

    2016-06-01

    Aims: To explore the role of titanium- and calcium-dust depletion in gas in and around galaxies, we systematically study Ti/Ca abundance ratios in intervening absorption-line systems at low and high redshift. Methods: We investigate high-resolution optical spectra obtained by the UVES instrument at the Very Large Telescope (VLT) and spectroscopically analyze 34 absorption-line systems at z ≤ 0.5 to measure column densities (or limits) for Ca ii and Ti ii. We complement our UVES data set with previously published absorption-line data on Ti/Ca for redshifts up to z ~ 3.8. Our absorber sample contains 110 absorbers including damped Lyman α systems (DLAs), sub-DLAs, and Lyman-Limit systems (LLS). We compare our Ti/Ca findings with results from the Milky Way and the Magellanic Clouds and discuss the properties of Ti/Ca absorbers in the general context of quasar absorption-line systems. Results: Our analysis indicates that there are two distinct populations of absorbers with either high or low Ti/Ca ratios with a separation at [Ti/Ca] ≈ 1. While the calcium-dust depletion in most of the absorbers appears to be severe, the titanium depletions are mild in systems with high Ti/Ca ratios. The derived trend indicates that absorbers with high Ti/Ca ratios have dust-to-gas ratios that are substantially lower than in the Milky Way. We characterize the overall nature of the absorbers by correlating Ti/Ca with other observables (e.g., metallicity, velocity-component structure) and by modeling the ionization properties of singly-ionized Ca and Ti in different environments. Conclusions: We conclude that Ca ii and Ti ii bearing absorption-line systems trace predominantly neutral gas in the disks and inner halo regions of galaxies, where the abundance of Ca and Ti reflects the local metal and dust content of the gas. Our study suggests that the Ti/Ca ratio represents a useful measure for the gas-to-dust ratio and overall metallicity in intervening absorption-line systems.

  13. The Origin of Double-peaked Narrow Lines in Active Galactic Nuclei. I. Very Large Array Detections of Dual AGNs and AGN Outflows

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Comerford, J. M.; Nevin, R.; Barrows, R. S.; Cooper, M. C.; Greene, J. E.

    2015-11-01

    We have examined a subset of 18 active galactic nuclei (AGNs) drawn from a sample of 81 galaxies that possess double-peaked narrow optical emission line spectra in the Sloan Digital Sky Survey, have 2 optical AGN emission components separated by >0.″2, and are detected in the Faint Images of the Radio Sky at Twenty-centimeters survey. Without follow-up observations, the sources of the double-peaked narrow emission lines are uncertain, and may be produced by kiloparsec-scale separation dual active supermassive black holes, AGN outflows, or disk rotation. In this work, we propose a new methodology to characterize double-peaked narrow emission line galaxies based on optical long-slit spectroscopy and high-resolution multi-band Very Large Array observations. The nature of the radio emission in the sample galaxies is varied. Of the 18 galaxies, we detect 2 compact flat-spectrum radio cores with projected spatial separations on the sky between 0.6 and 1.6 kpc in 3 galaxies: J1023+3243, J1158+3231, and J1623+0808. The two radio sources are spatially coincident with the two optical components of ionized gas with AGN-like line ratios, which confirms the presence of dual AGNs in these three galaxies. Dual AGNs account for only ∼15% (3/18) of the double-peaked AGNs in our sample. Gas kinematics produce ∼75% (13/18) of the double-peaked narrow emission lines, distributed in the following way: seven AGN wind-driven outflows, five radio-jet driven outflows, and one rotating narrow-line region. The remaining 10% (2/18) are ambiguous cases. Our method demonstrates the power of spatially resolved spectroscopy and high-resolution radio observations for the identification of AGN outflows and AGN pairs with angular separations as small as 0.″18. Based on observations at the NRAO Karl G. Jansky VLA (program 12A-103).

  14. Comparison of line-by-line and band models of near-IR methane absorption applied to outer planet atmospheres

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Fry, P. M.; Boudon, V.; Campargue, A.; Nikitin, A.

    2012-03-01

    Recent improvements in high spectral resolution measurements of methane absorption at wavenumbers between 4800 cm-1 and 7919 cm-1 have greatly increased the number of lines with known lower state energies, the number of weak lines, and the number of lines observed at low temperatures (Campargue, A., Wang, L., Kassi, S., Mašát, M., Votava, O. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 1141-1151; Campargue, A., Wang, L., Liu, A.W., Hu, S.M., Kassi, S. [2010]. Chem. Phys. 373, 203-210; Mondelain, D., Kassi, S., Wang, L.C. [2011]. Phys. Chem. Chem. Phys. 13, 7985-7996; Nikitin, A.V. et al. [2011a]. J. Mol. Spectrosc. 268, 93-106; Nikitin, A.V. et al. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 2211-2224; Wang, L., Kassi, S., Campargue, A. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 1130-1140; Wang, L., Kassi, S., Liu, A.W., Hu, S.M., Campargue, A. [2011]. J. Quant. Spectrosc. Radiat. Trans. 112, 937-951), making it possible to fit near-IR spectra of Titan using line-by-line calculations instead of band models (Bailey, J., Ahlsved, L., Meadows, V.S. [2011]. Icarus 213, 218-232; de Bergh, C. et al. [2011]. Planet. Space Sci. doi:10.1016/j.pss.2011.05.003). Using these new results, we compiled an improved line list relative that used by Bailey et al. by updating several spectral regions with either calculated or more recently measured line parameters, revising lower state energy estimates for lines lacking them, and adding room temperature lines to make the list applicable over a wider range of temperatures. We compared current band models with line-by-line calculations using this new line list, both to assess the behavior of band models, and to identify remaining issues with line-by-line calculations when applied to outer planet atmospheres and over a wider range of wavelengths. Comparisons were made for a selection of uniform paths representing outer planet conditions and for representative non-uniform paths within the atmospheres of Uranus, Saturn

  15. The Hubble Space Telescope quasar absorption line key project. III - First observational results on Milky Way gas

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Lu, Limin; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Lockman, Felix J.; Sargent, W. L. W.

    1993-01-01

    Absorption lines found near zero redshift due to Milky Way disk and halo gas in the spectra of 15 quasars observed with the Faint Object Spectrograph (FOS) of the HST at a resolution of about 230 km/s are reported. Results show that Milky Way absorption lines comprise about 44 percent of all absorption lines seen in the first group of Key Project FOS spectra. Milky Way lines were observed for 3C 273 and H1821 + 643. Limits to the Mg-to-H abundance ratio obtained for very high velocity Mg II absorption detections imply gas-phase Mg abundances for the very high velocity gas ranging from more than 0.059 to more than 0.32 times the solar abundance. In all cases where high-velocity H I emission is seen, corresponding high-velocity metal-line absorption is observed.

  16. Time resolved metal line profile by near-ultraviolet tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vitelaru, C.; de Poucques, L.; Minea, T. M.; Popa, G.

    2011-03-01

    Pulsed systems are extensively used to produce active species such as atoms, radicals, excited states, etc. The tunable diode laser absorption spectroscopy (TD-LAS) is successfully used to quantify the density of absorbing species, but especially for stationary or slow changing systems. The time resolved-direct absorption profile (TR-DAP) measurement method by TD-LAS, with time resolution of μs is proposed here as an extension of the regular use of diode laser absorption spectroscopy. The spectral narrowness of laser diodes, especially in the blue range (˜0.01 pm), combined with the nanosecond fast trigger of the magnetron pulsed plasma and long trace recording on the oscilloscope (period of second scale) permit the detection of the sputtered titanium metal evolution in the afterglow (˜ms). TR-DAP method can follow the time-dependence of the temperature (Doppler profile) and the density (deduced from the absorbance) of any medium and heavy species in a pulsed system.

  17. DISAPPEARANCE OF A NARROW Mg II ABSORPTION SYSTEM WITH A MEASURED VELOCITY UP TO 166, 000 km s{sup –1}

    SciTech Connect

    Chen, Zhi-Fu; Qin, Yi-Ping

    2013-11-01

    Quasar J152645.61+193006.7 (z{sub e} = 2.5771) was observed by the Sloan Digital Sky Survey (SDSS) on 2006 May 31 and again on 2011 April 9. The time interval of the SDSS two observations is 497.4 days at the quasar rest frame. From the spectra of this quasar, we detect a phenomenon of the disappearance of a narrow Mg II λλ2796, 2803 absorption system with a velocity of up to 166, 129 km s{sup –1} with respect to the quasar. This disappearance event can be caused by changes in the ionization state of absorbing gas or by the bulk motion of the absorbing gas across the quasar sightline. The coverage fraction analysis shows that this absorber partially covers the background emission sources with an effective coverage fraction of C{sub f} = 0.40 ± 0.06. The time variation analysis and the coverage fraction analysis imply that this absorber might be intrinsic to the quasar. However, the scenario of a cosmologically separated foreground object located at z = 0.9170 accounting for the phenomenon cannot be ruled out, according to current available data.

  18. The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447. I. The X-ray View

    NASA Astrophysics Data System (ADS)

    Kreikenbohm, A.; Schulz, R.; Kadler, M.; Wilms, J.; Markowitz, A.; Chang, C. S.; Carpenter, B.; Elsässer, D.; Gehrels, N.; Mannheim, K.; Müller, C.; Ojha, R.; Ros, E.; Trüstedt, J.

    2016-01-01

    As part of the TANAMI multiwavelength progam, we discuss new X-ray observations of the γ-ray and radio-loud narrow line Seyfert 1 galaxy (γ-NLS1) PKS 2004-447. The active galaxy is a member of a small sample of radio-loud NLS1s detected in γ-rays by the Fermi Large Area Telescope. It stands out for being the radio-loudest and the only southern-hemisphere source in this sample. We present results from our X-ray monitoring program comprised of Swift snapshot observations from 2012 through 2014 and two new X-ray observations with XMM-Newton in 2012. Supplemented by archival data from 2004 and 2011, our data set allows for a careful analysis of the X-ray spectrum and variability of this peculiar source. The (0.5-10) keV spectrum is described well by a power law (Γ ~ 1.6), which can be interpreted as non-thermal emission from a relativistic jet. The source exhibits moderate flux variability on timescales of both months and years. Correlated brightness variations in the (0.5-2) keV and (2-10) keV bands are explained by a single variable spectral component, such as the one from the jet. A possible soft excess seen in the data from 2004 cannot be confirmed by the new XMM-Newton observations taken during low-flux states. Any contribution to the total flux in 2004 is less than 20% of the power-law component. The (0.5-10) keV luminosities of PKS 2004-447 are in the range of (0.5-2.7) × 1044 erg s-1. A comparison of the X-ray properties among the known γ-NLS1 galaxies shows that in four out of five cases the X-ray spectrum is dominated by a flat power law without intrinsic absorption. These objects are moderately variable in their brightness, while spectral variability is observed in at least two sources. The major difference across the X-ray spectra of γ-NLS1s is the luminosity, which spans a range of almost two orders of magnitude from 1044 erg s-1 to 1046 erg s-1 in the (0.5-10) keV band.

  19. High-resolution optical and ultraviolet absorption-line studies of interstellar gas

    NASA Technical Reports Server (NTRS)

    Cowie, Lennox L.; Songaila, Antoinette

    1986-01-01

    Recent progress in the characterization of the interstellar medium (ISM) by means of optical and UV spectral data is summarized. The gas is studied by focusing on background stars whose spectra can be accurately modeled to provide the light source for the absorption-line scans. The capabilities of earth- and space-based instruments which have been and are used for the surveys are delineated. The distributions of diffuse gas densities and characteristics of the cold, warm and hot gas in the Galaxy are described in terms of the elemental abundances, kinetics and distributions of the gas. Particular note is taken of gas in the solar neighborhood and around SNR, and of absorption-line data of cosmological significance.

  20. Discovery of an X-ray Violently Variable Broad Absorption Line Quasar

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Gutierrez, Carlos M.; Punsly, Brian; Chevallier, Loic; Goncalves, Anabela C.

    2006-01-01

    In this letter, we report on a quasar that is violently variable in the X-rays, XVV. It is also a broad absorption line quasar (BALQSO) that exhibits both high ionization and low ionization UV absorption lines (LoBALQSO). It is very luminous in the X-rays (approximately 10(exp 46) ergs s(sup -l) over the entire X-ray band). Surprisingly, this does not over ionize the LoBAL outflow. The X-rays vary by a factor of two within minutes in the quasar rest frame, which is shorter than 1/30 of the light travel time across a scale length equal to the black hole radius. We concluded that the X-rays are produced in a relativistic jet beamed toward earth in which variations in the Doppler enhancement produce the XVV behavior.

  1. The VLBI structure of radio-loud Broad Absorption Line quasars

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Jiang, D. R.; Gu, M.

    2016-02-01

    The nature and origin of Broad Absorption Line (BAL) quasars and their relationship to non-BAL quasars are an open question. The BAL quasars are probably normal quasars seen along a particular line of sight. Alternatively, they are young or recently refueled. The high resolution radio morphology of BAL quasars is very important to understand the radio properties of BAL quasars. We present VLBA observations at L and C bands for a sample of BAL quasars. The observations will help us to explore the VLBI radio properties, and distinguish the present models of explaining BAL phenomena.

  2. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Technical Reports Server (NTRS)

    Welty, Daniel E.

    1990-01-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  3. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Astrophysics Data System (ADS)

    Welty, Daniel E.

    1990-07-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  4. Wavelength Locking to CO2 Absorption Line-Center for 2-Micron Pulsed IPDA Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-01-01

    An airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-micron CW (Continuous Wave) laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nanometers, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  5. VizieR Online Data Catalog: HeI* in broad absorption line QSOs (Liu+, 2015)

    NASA Astrophysics Data System (ADS)

    Liu, W.-J.; Zhou, H.; Ji, T.; Yuan, W.; Wang, T.-G.; Jian, G.; Shi, X.; Zhang, S.; Jiang, P.; Shu, X.; Wang, H.; Wang, S.-F.; Sun, L.; Yang, C.; Liu, B.; Zhao, W.

    2015-04-01

    Neutral helium multiplets, HeI*λλ3189, 3889, 10830, are very useful diagnostics for the geometry and physical conditions of the absorbing gas in quasars. So far only a handful of HeI* detections have been reported. Using a newly developed method, we detected the HeI*λ3889 absorption line in 101 sources of a well-defined sample of 285 MgII broad absorption line (BAL) quasars selected from SDSS DR5. This has increased the number of HeI* BAL quasars by more than one order of magnitude. We further detected HeI*λ3189 in 50% (52/101) of the quasars in the sample. The detection fraction of HeI* BALs in MgII BAL quasars is ~35% as a whole, and it increases dramatically with increasing spectral signal-to-noise ratio (S/N), from ~18% at S/N<=10 to ~93% at S/N>=35. This suggests that HeI* BALs could be detected in most MgII LoBAL quasars, provided the spectra S/N is high enough. Such a surprisingly high HeI* BAL fraction is actually predicted from photoionization calculations based on a simple BAL model. The result indicates that HeI* absorption lines can be used to search for BAL quasars at low z, which cannot be identified by ground-based optical spectroscopic surveys with commonly seen UV absorption lines. Using HeI*λ3889, we discovered 19 BAL quasars at z<0.3 from the available SDSS spectral database. The fraction of HeI* BAL quasars is similar to that of LoBAL objects. (7 data files).

  6. THE DUST SUBLIMATION RADIUS AS AN OUTER ENVELOPE TO THE BULK OF THE NARROW Fe Kα LINE EMISSION IN TYPE 1 AGNs

    SciTech Connect

    Gandhi, Poshak; Hönig, Sebastian F.; Kishimoto, Makoto

    2015-10-20

    The Fe Kα emission line is the most ubiquitous feature in the X-ray spectra of active galactic nuclei (AGNs), but the origin of its narrow core remains uncertain. Here, we investigate the connection between the sizes of the Fe Kα core emission regions and the measured sizes of the dusty tori in 13 local Type 1 AGNs. The observed Fe Kα emission radii (R{sub Fe}) are determined from spectrally resolved line widths in X-ray grating spectra, and the dust sublimation radii (R{sub dust}) are measured either from optical/near-infrared (NIR) reverberation time lags or from resolved NIR interferometric data. This direct comparison shows, on an object-by-object basis, that the dust sublimation radius forms an outer envelope to the bulk of the Fe Kα emission. R{sub Fe} matches R{sub dust} well in the AGNs, with the best constrained line widths currently. In a significant fraction of objects without a clear narrow line core, R{sub Fe} is similar to, or smaller than, the radius of the optical broad line region. These facts place important constraints on the torus geometries for our sample. Extended tori in which the solid angle of fluorescing gas peaks at well beyond the dust sublimation radius can be ruled out. We also test for luminosity scalings of R{sub Fe}, finding that the Eddington ratio is not a prime driver in determining the line location in our sample. We also discuss in detail potential caveats of data analysis and instrumental limitations, simplistic line modeling, uncertain black hole masses, and sample selection, showing that none of these is likely to bias our core result. The calorimeter on board Astro-H will soon vastly increase the parameter space over which line measurements can be made, overcoming many of these limitations.

  7. Simulation studies of multi-line line-of-sight tunable-diode-laser absorption spectroscopy performance in measuring temperature probability distribution function

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Le; Liu, Jian-Guo; Kan, Rui-Feng; Xu, Zhen-Yu

    2014-12-01

    Line-of-sight tunable-diode-laser absorption spectroscopy (LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss—Seidel iteration method is used to measure temperature probability distribution function (PDF) along the line-of-sight (LOS). Through 100 simulated measurements, the variation of measurement accuracy is investigated with the number of absorption lines, the number of temperature bins and the magnitude of temperature non-uniformity. A field model with 2-T temperature distribution and 15 well-selected absorption lines are used for the simulation study. The Gauss—Seidel iteration method is discussed for its reliability. The investigation result about the variation of measurement accuracy with the number of temperature bins is different from the previous research results.

  8. [The development of acetylene on-line monitoring technology based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-jun; Kan, Rui-feng; Xia, Hui; Wang, Min; Cui, Xiao-juan; Chen, Jiu-ying; Chen, Dong; Liu, Wen-qing; Liu, Jian-guo

    2008-10-01

    As one of the materials in organic chemical industry, acetylene has been used in many aspects of chemical industry. But acetylene is a very dangerous inflammable and explosive gas, so it needs in-situ monitoring during industrial storage and production. Tunable diode laser absorption spectroscopy (TDLAS) technology has been widely used in atmospheric trace gases detection, because it has a lot of advantageous characteristics, such as high sensitivity, good selectivity, and rapid time response. The distribution characteristics of absorption lines of acetylene in near infrared band were studied, and then the system designing scheme of acetylene on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail. Moreover, the system of experiment measurement was set up and the method of signal detection and the algorithm of concentration inversion were studied. In addition, the sample cell with a path length of 10 cm, and the acetylene of different known concentrations were measured. As a result, the detection limit obtained reached 1.46 cm3 x m(-3). Finally the dynamic detection experiment was carried out, and the measurement result is stable and reliable, so the design of the system is practicable through experiment analysis. On-line acetylene leakage monitoring system was developed based on the experiment, and it is suitable for giving a leakage alarm of acetylene during its storage, transportation and use.

  9. VizieR Online Data Catalog: Narrow MgII absorption lines from SDSS-DR9Q (Chen+, 2015)

    NASA Astrophysics Data System (ADS)

    Chen, Z.-F.; Gu, Q.-S.; Chen, Y.-M.

    2016-01-01

    The Baryonic Oscillation Spectroscopic Survey (BOSS) project (Dawson et al. 2013AJ....145...10D) of SDSS-III (Eisenstein et al. 2011AJ....142...72E) uses upgraded versions of the SDSS spectrographs mounted on the Sloan 2.5m telescope at Apache Point, New Mexico. The spectra are taken through 2" diameter fibers and cover a wavelength range from 3600 to 10400Å with a resolution of R~2000 and a dispersion of 69km/s/pixel. (1 data file).

  10. VizieR Online Data Catalog: Narrow absorption lines of lensed QSO J1029+2623 (Misawa+, 2016)

    NASA Astrophysics Data System (ADS)

    Misawa, T.; Saez, C.; Charlton, J. C.; Eracleous, M.; Chartas, G.; Bauer, F. E.; Inada, N.; Uchiyama, H.

    2016-08-01

    We acquired high-resolution spectra of the brightest two of the three lensed images of the quasar SDSS J1029+2623, A and B with V=18.72 and 18.67mags, with the VLT using the Ultraviolet and Visual Echelle Spectrograph (UVES) in queue mode (ESO program 092.B-0512(A)). The observations were performed from 2014 January 28 to February 26, which is ~4yrs after the first observation on 2010 February 10 (Misawa+ 2013AJ....145...48M), and ~2 months before the third observation on 2014 April 4 (Misawa+ 2014ApJ...794L..20M) with Subaru using the High Dispersion Spectrograph (HDS). The wavelength coverage is 3300-6600Å with R~33000. Log of observations: -------------------------------------------------------------- Target Obs. date Instrument R Ref -------------------------------------------------------------- SDSS J1029+2623 A 2010 Feb 10 Subaru/HDS 30000 1 SDSS J1029+2623 A 2014 Jan 28-Feb 3 VLT/UVES 33000 2 SDSS J1029+2623 A 2014 Apr 4 Subaru/HDS 36000 3 SDSS J1029+2623 B 2010 Feb 10 Subaru/HDS 30000 1 SDSS J1029+2623 B 2014 Feb 4-26 VLT/UVES 33000 2 SDSS J1029+2623 B 2014 Apr 4 Subaru/HDS 36000 3 -------------------------------------------------------------- Ref: 1 = Misawa et al. 2013AJ....145...48M, 2 = This paper, 3 = Misawa et al. 2014ApJ...794L..20M -------------------------------------------------------------- (1 data file).

  11. WAVELENGTH MEASUREMENTS OF K TRANSITIONS OF OXYGEN, NEON, AND MAGNESIUM WITH X-RAY ABSORPTION LINES

    SciTech Connect

    Liao Jinyuan; Zhang Shuangnan; Yao Yangsen

    2013-09-10

    Accurate atomic transition data are important in many astronomical research areas, especially for studies of line spectroscopy. Whereas transition data of He-like and H-like ions (i.e., ions in high-charge states) have been accurately calculated, the corresponding data of K transitions of neutral or low-ionized metal elements are still very uncertain. Spectroscopy of absorption lines produced in the interstellar medium (ISM) has been proven to be an effective way to measure the central wavelengths of these atomic transitions. In this work, we analyze 36 Chandra High Energy Transmission Grating observations to search for and measure the ISM absorption lines along sight lines to 11 low-mass X-ray binaries. We correct the Galactic rotation velocity to the rest frame for every observation and then use two different methods to merge all the corrected spectra to a co-added spectrum. However, the co-added spectra obtained by this method exhibit biases, toward to either observations with high counts or lines with high signal-to-noise ratios. We do a Bayesian analysis of several significantly detected lines to obtain the systematic uncertainty and the bias correction for other lines. Compared to previous studies, our results improve the wavelength accuracy by a factor of two to five and significantly reduce the systematic uncertainties and biases. Several weak transitions (e.g., 1s-2p of Mg IV and Mg V; 1s-3p of Mg III and Mg V) are also detected for the first time, albeit with low significance; future observations with improved accuracy are required to confirm these detections.

  12. Absorption Line Analysis to Interprete and Constrain Cosmological Simulations of Galaxy Evolution with Feedback

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher

    2011-10-01

    The mammoth challenge for contemporary studies of galaxy formation and evolution are to establish detailed models in the cosmological context in which both the few parsec scale physics within galaxies are self-consistently unified and made consistent with the observed universe of galaxies. They key diagnostics reside with the gas physics, which dictate virtually every aspect of galaxy formation and evolution. The small scale physics includes stellar feedback, gas cooling, heating, and advection and the multiphase interstellar medium; the large scale physics includes intergalactic accretion, local merging, effects of supernovae driven winds, and the development of extended metal-enriched gas halos.Absorption line data have historically proven to be {and shall in the future} virtually the most powerful tool for understanding gas physics on all spatial scales over the majority of the age of the universe- the key to success. Simply stated, absorption lines are one of astronomy's most powerful observational windows on the universe {galaxy formation, galaxy winds, IGM metal enrichment, etc.}. The high quality and vast numbers of absorption line data {obtained with HST and FUSE} probe a broad range of gas structures {ISM, HVCs, halos, IGM} over the full cosmic span when galaxies are actively evolving.We propose to use LCDM hydrodynamic cosmological simulations employing a Eulerian Gasdynamics plus N-body Adaptive Refinement Tree {ART} code to develop and refine our understanding of stellar feedback physics and its role in governing the gas physics that regulates the evolution of galaxies and the IGM. We aim to substantially progress our understanding of all possible gas phases embedded within and extending far from galaxies. Our methodology is to apply a series of quantitative observational constraints from absorption line systems to better understand extended galaxy halos and the influence of the cosmological environment of the simulated galaxies: {1} galaxy halos

  13. Line-Parameter Measurements and Stringent Tests of Line-Shape Models Based on Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bielska, Katarzyna; Fleisher, Adam J.; Hodges, Joseph T.; Lin, Hong; Long, David A.; Reed, Zachary D.; Sironneau, Vincent; Truong, Gar-Wing; Wójtewicz, Szymon

    2014-06-01

    Laser methods that are based on cavity-enhanced absorption spectroscopy (CEAS) are well-suited for measuring molecular line parameters under conditions of low optical density, and as such they are complementary to broadband Fourier-transform spectroscopy (FTS) techniques. Attributes of CEAS include relatively low detection limits, accurate and precise detuning axes and high fidelity measurements of line shape. In many cases these performance criteria are superior to those obtained using direct laser absorption spectroscopy and FTS-based systems. In this presentation we will survey several examples of frequency-stabilized cavity ring-down spectroscopy (FS-CRDS)1 measurements obtained with laser spectrometers developed at the National Institute of Standards and Technology (NIST) in Gaithersburg Maryland. These experiments, which are motivated by atmospheric monitoring and remote-sensing applications that require high-precision and accuracy, involve nearinfrared transitions of carbon dioxide, water, oxygen and methane. We discuss spectra with signal-to-noise ratios exceeding 106, frequency axes with absolute uncertainties in the 10 kHz to 100 kHz range and linked to a Cs clock, line parameters with relative uncertainties at the 0.2 % level and isotopic ratios measured with a precision of 0.03 %. We also present FS-CRDS measurements of CO2 line intensities which are measured at atmospheric concentration levels and linked to gravimetric standards for CO2 in air, and we quantify pressure-dependent deviations between various theoretical line profiles and measured line shapes. Finally we also present recent efforts to increase data throughput and spectral coverage in CEAS experiments. We describe three new high-bandwidth CEAS techniques including frequency-agile, rapid scanning spectroscopy (FARS)2, which enables continuous-wave measurements of cavity mode linewidth and acquisition of ringdown decays with no dead time during laser frequency tuning, heterodyne

  14. Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.

    PubMed

    Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H

    2009-12-07

    We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, <8.5-GHz (10-pm) linewidth (at 4.2-W diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.

  15. Made-to-measure galaxy modelling utilising absorption line strength data

    NASA Astrophysics Data System (ADS)

    Long, R. J.

    2016-12-01

    We enhance the Syer & Tremaine made-to-measure (M2M) particle method of stellar dynamical modelling to model simultaneously both kinematic data and absorption line strength data, thus creating a ‘chemo-M2M’ modelling scheme. We apply the enhanced method to four galaxies (NGC 1248, NGC 3838, NGC 4452, NGC 4551) observed using the SAURON integral-field spectrograph as part of the ATLAS3D programme. We are able to reproduce successfully the 2D line strength data achieving mean χ2 per bin values of ≈ 1 with > 95% of particles having converged weights. Because M2M uses a 3D particle system, we are also able to examine the underlying 3D line strength distributions. The extent to which these distributions are plausible representations of real galaxies requires further consideration. Overall, we consider the modelling exercise to be a promising first step in developing a ‘chemo-M2M’ modelling system and in understanding some of the issues to be addressed. While the made-to-measure techniques developed have been applied to absorption line strength data, they are in fact general and may be of value in modelling other aspects of galaxies.

  16. Composite Spectra of Broad Absorption Line Quasars in SDSS-III BOSS

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Hamann, Fred; Paris, Isabelle; Capellupo, Daniel M.

    2017-01-01

    We present preliminary results from a study of broad absorption line (BAL) quasars in the SDSS-III BOSS survey. We’re particularly interested in BALs because they arise from quasar outflows, which may be a source of feedback to the host galaxy. We analyze median composite spectra for BOSS QSOs in the redshift range 2.1 to 3.4 sorted by the strength of the BAL absorption troughs, parameterized by the Balnicity Index (BI), to study trends in the emission and absorption properties of BAL quasars. The wavelength coverage and high number of quasars observed in the BOSS survey allow us to examine BALs in the Lyman forest. Our main preliminary results when sorting the quasars by BI are 1) doublet absorption lines such as P V 1128A show a 1:1 ratio across all BI, indicating large column densities at all BI. This suggests that weaker BAL troughs result from smaller covering fractions rather than lower column densities. 2) The He II emission line, which is a measure of the far-UV/near-UV hardness of the ionizing continuum, is weaker in the larger BI composite spectra, indicating a far-UV spectral softening correlated with BI. This is consistent with the radiatively-driven BAL outflows being helped by intrinsically weaker ionizing continuum shapes (e.g., Baskin, Laor, and Hamann 2013). We also find a trend for slightly redder continuum slopes in the larger BI composite spectra, suggesting that the slope differences in the near-UV are also intrinsic.

  17. Electronic structure of an [FeFe] hydrogenase model complex in solution revealed by X-ray absorption spectroscopy using narrow-band emission detection.

    PubMed

    Leidel, Nils; Chernev, Petko; Havelius, Kajsa G V; Schwartz, Lennart; Ott, Sascha; Haumann, Michael

    2012-08-29

    High-resolution X-ray absorption spectroscopy with narrow-band X-ray emission detection, supported by density functional theory calculations (XAES-DFT), was used to study a model complex, ([Fe(2)(μ-adt)(CO)(4)(PMe(3))(2)] (1, adt = S-CH(2)-(NCH(2)Ph)-CH(2)-S), of the [FeFe] hydrogenase active site. For 1 in powder material (1(powder)), in MeCN solution (1'), and in its three protonated states (1H, 1Hy, 1HHy; H denotes protonation at the adt-N and Hy protonation of the Fe-Fe bond to form a bridging metal hydride), relations between the molecular structures and the electronic configurations were determined. EXAFS analysis and DFT geometry optimization suggested prevailing rotational isomers in MeCN, which were similar to the crystal structure or exhibited rotation of the (CO) ligands at Fe1 (1(CO), 1Hy(CO)) and in addition of the phenyl ring (1H(CO,Ph), 1HHy(CO,Ph)), leading to an elongated solvent-exposed Fe-Fe bond. Isomer formation, adt-N protonation, and hydride binding caused spectral changes of core-to-valence (pre-edge of the Fe K-shell absorption) and of valence-to-core (Kß(2,5) emission) electronic transitions, and of Kα RIXS data, which were quantitatively reproduced by DFT. The study reveals (1) the composition of molecular orbitals, for example, with dominant Fe-d character, showing variations in symmetry and apparent oxidation state at the two Fe ions and a drop in MO energies by ~1 eV upon each protonation step, (2) the HOMO-LUMO energy gaps, of ~2.3 eV for 1(powder) and ~2.0 eV for 1', and (3) the splitting between iron d(z(2)) and d(x(2)-y(2)) levels of ~0.5 eV for the nonhydride and ~0.9 eV for the hydride states. Good correlations of reduction potentials to LUMO energies and oxidation potentials to HOMO energies were obtained. Two routes of facilitated bridging hydride binding thereby are suggested, involving ligand rotation at Fe1 for 1Hy(CO) or adt-N protonation for 1HHy(CO,Ph). XAES-DFT thus enables verification of the effects of ligand

  18. X-ray-selected broad absorption line quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Carrera, F. J.; Ceballos, M.; Corral, A.; Ebrero, J.; Esquej, P.; Krumpe, M.; Mateos, S.; Rosen, S.; Schwope, A.; Streblyanska, A.; Symeonidis, M.; Tedds, J. A.; Watson, M. G.

    2017-02-01

    We study a sample of six X-ray-selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray-selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index α = 0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, αOX, of the X-ray-selected BALQSOs, have a mean value of <αOX> = 1.69 ± 0.05, which is similar to that found for X-ray-selected and optically selected non-BAL QSOs of a similar ultraviolet luminosity. In contrast, optically selected BALQSOs typically have much larger αOX and so are characterized as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray spectra are absorbed by a similar degree to that seen in optically selected BALQSO samples; X-ray absorption appears to be ubiquitous in BALQSOs, but X-ray weakness is not. We argue that BALQSOs sit at one end of a spectrum of X-ray absorption properties in QSOs related to the degree of ultraviolet absorption in C IV 1550 Å.

  19. Evidence for active galactic nucleus feedback in the broad absorption lines and reddening of MRK 231 {sup ,}

    SciTech Connect

    Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.; Terndrup, Donald M.; Dietrich, Matthias; Gallagher, Sarah C.

    2014-06-20

    We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly full coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.

  20. Observation of narrow states in nuclei beyond the proton drip line: {sup 15}F and {sup 16}Ne

    SciTech Connect

    Mukha, I.; Timofeyuk, N. K.; Suemmerer, K.; Chatillon, A.; Geissel, H.; Hofmann, J.; Kurz, N.; Nociforo, C.; Ott, W.; Roeckl, E.; Weick, H.; Acosta, L.; Garcia-Ramos, J. E.; Martel, I.; Alvarez, M. A. G.; Espino, J. M.; Gomez-Camacho, J.; Casarejos, E.; Cortina-Gil, D.; Rodriguez-Tajes, C.

    2009-06-15

    Two high-lying states in {sup 15}F and {sup 16}Ne, unbound with respect to one-proton (1p) and two-proton (2p) emissions, have been observed in the fragmentation of {sup 17}Ne at intermediate energies. They undergo mainly sequential emissions of protons via intermediate states in {sup 14}O and {sup 15}F and have decay energies of 7.8(2) and 7.6(2) MeV, respectively. The widths of the newly observed states in {sup 15}F and {sup 16}Ne are much smaller than the Wigner limits for single-particle configurations, of 0.4(4) and 0.8({sub +8}{sup -4}) MeV, respectively. In addition, narrow widths of 0.2(2) MeV are derived for two other high-lying states in {sup 15}F with Q{sub p} of 4.9 and 6.4 MeV, which match features of the recently predicted narrow odd-parity {sup 15}F states with two valence protons in the sd shell. All energies and widths have been obtained by analyzing angular correlations of the decay products, p-p-{sup 14}O and p-p-{sup 13}N, whose trajectories have been measured by a tracking technique with silicon microstrip detectors.

  1. Conduction noise absorption by ITO thin films attached to microstrip line utilizing Ohmic loss

    SciTech Connect

    Kim, Sun-Hong; Kim, Sung-Soo

    2010-07-15

    For the aim of wide-band noise absorbers with a special design for low frequency performance, this study proposes conductive indium-tin oxide (ITO) thin films as the absorbent materials in microstrip line. ITO thin films were deposited on the polyimide film substrates by rf magnetron cosputtering of In{sub 2}O{sub 3} and Sn targets. The deposited ITO films show a typical value of electrical resistivity ({approx}10{sup -4} {Omega} m) and sheet resistance can be controlled in the range of 20-230 {Omega} by variation in film thickness. Microstrip line with characteristic impedance of 50 {Omega} was used for determining their noise absorbing properties. It is found that there is an optimum sheet resistance of ITO films for the maximum power absorption. Reflection parameter (S{sub 11}) is increased with decrease in sheet resistance due to impedance mismatch. On the while, transmission parameter (S{sub 21}) is decreased with decrease in sheet resistance due to larger Ohmic loss of the ITO films. Experimental results and computational prediction show that the optimum sheet resistance is about 100 {Omega}. For this film, greater power absorption is predicted in the lower frequency region than ferrite thin films of high magnetic loss, which indicates that Ohmic loss is the predominant loss parameter for power absorption in the low frequency range.

  2. Atlas of Absorption Lines from 0 to 17900 Cm (sup)-1

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Rothman, L. S.; Rinsland, C. P.; Pickett, H. M.; Richardson, D. J.; Namkung, J. S.

    1987-01-01

    Plots of logarithm (base 10) of absorption line strength versus wavenumber from 0 to 17900/cm(sup)-1 are shown for the 28 atmospheric gases (H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, ClO, OCS, H2CO, HOCl, N2, HCN, CH3Cl, H2O2, C2H2, C2H6, PH3), which appear in the 1986 Air Force Geophysics Laboratory high-resolution transmission molecular absorption data base (HITRAN) compilation, and for O(P-3), O-18 isotopic ozone, and HO2 from the 1984 JPL compilation in the 0- to 200/cm(sup)-1 region, and infrared solar CO lines at 4500 K. Also shown are plots of logarithm (base 10) of approximate infrared absorption cross sections of 11 heavy molecules versus wavenumber. The cross-section data cover 700 to 1800/cm(sup)-1 and are included as a separate data file in the 1986 HITRAN database.

  3. Radiation Pressure-Driven Magnetic Disk Winds in Broad Absorption Line Quasi-Stellar Objects

    NASA Technical Reports Server (NTRS)

    DeKool, Martin; Begelman, Mitchell C.

    1995-01-01

    We explore a model in which QSO broad absorption lines (BALS) are formed in a radiation pressure-driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.

  4. Radiation Pressure--driven Magnetic Disk Winds in Broad Absorption Line Quasi-stellar Objects

    NASA Astrophysics Data System (ADS)

    de Kool, Martijn; Begelman, Mitchell C.

    1995-12-01

    We explore a model in which QSO broad absorption lines (BALs) are formed in a radiation pressure- driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.

  5. The Origin of Double-peaked Narrow Lines in Active Galactic Nuclei. II. Kinematic Classifications for the Population at z < 0.1

    NASA Astrophysics Data System (ADS)

    Nevin, R.; Comerford, J.; Müller-Sánchez, F.; Barrows, R.; Cooper, M.

    2016-11-01

    We present optical long-slit observations of the complete sample of 71 Type 2 active galactic nuclei (AGNs) with double-peaked narrow emission lines at z < 0.1 in the Sloan Digital Sky Survey. Double-peaked emission lines are produced by a variety of mechanisms including disk rotation, kiloparsec-scale dual AGNs, and narrow-line region (NLR) kinematics (outflows or inflows). We develop a novel kinematic classification technique to determine the nature of these objects using long-slit spectroscopy alone. We determine that 86% of the double-peaked profiles are produced by moderate-luminosity AGN outflows, 6% are produced by rotation, and 8% are ambiguous. While we are unable to directly identify dual AGNs with long-slit data alone, we explore their potential kinematic classifications with this method. We also find a positive correlation between the NLR size and luminosity of the AGN NLRs (R {}{NLR}\\propto {L}[{{O} {{III}}]}0.21+/- 0.05), indicating a clumpy two-zone ionization model for the NLR.

  6. Kiloparsec-scale Spatial Offsets in Double-peaked Narrow-line Active Galactic Nuclei. I. Markers for Selection of Compelling Dual Active Galactic Nucleus Candidates

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.; Gerke, Brian F.; Stern, Daniel; Cooper, Michael C.; Weiner, Benjamin J.; Newman, Jeffrey A.; Madsen, Kristin; Barrows, R. Scott

    2012-07-01

    Merger-remnant galaxies with kiloparsec (kpc) scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey (SDSS) are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up long-slit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 <= z <= 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with ~kpc projected spatial separations on the sky (0.2 h -1 70 kpc <Δx < 5.5 h -1 70 kpc median Δx = 1.1 h -1 70 kpc), which suggests that they are produced by kiloparsec-scale dual AGNs or kiloparsec-scale outflows, jets, or rotating gaseous disks. Further, the objects split into two subpopulations based on the spatial extent of the double emission components and the correlation between projected spatial separations and line-of-sight velocity separations. These results suggest that the subsample (58+5 - 6%) of the objects with spatially compact emission components may be preferentially produced by dual AGNs, while the subsample (42+6 - 5%) with spatially extended emission components may be preferentially produced by AGN outflows. We also find that for 32+8 - 6% of the sample the two AGN emission components are preferentially aligned with the host galaxy major axis, as expected for dual AGNs orbiting in the host galaxy potential. Our results both narrow the list of possible physical mechanisms producing the double AGN components, and suggest several observational criteria for selecting the most promising dual AGN candidates from the full sample of

  7. KILOPARSEC-SCALE SPATIAL OFFSETS IN DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. I. MARKERS FOR SELECTION OF COMPELLING DUAL ACTIVE GALACTIC NUCLEUS CANDIDATES

    SciTech Connect

    Comerford, Julia M.; Gerke, Brian F.; Cooper, Michael C.; Weiner, Benjamin J.; Newman, Jeffrey A.; Madsen, Kristin; Barrows, R. Scott

    2012-07-01

    Merger-remnant galaxies with kiloparsec (kpc) scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey (SDSS) are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up long-slit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 {<=} z {<=} 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with {approx}kpc projected spatial separations on the sky (0.2 h{sup -1}{sub 70} kpc <{Delta}x < 5.5 h{sup -1}{sub 70} kpc; median {Delta}x = 1.1 h{sup -1}{sub 70} kpc), which suggests that they are produced by kiloparsec-scale dual AGNs or kiloparsec-scale outflows, jets, or rotating gaseous disks. Further, the objects split into two subpopulations based on the spatial extent of the double emission components and the correlation between projected spatial separations and line-of-sight velocity separations. These results suggest that the subsample (58{sup +5}{sub -6}%) of the objects with spatially compact emission components may be preferentially produced by dual AGNs, while the subsample (42{sup +6}{sub -5}%) with spatially extended emission components may be preferentially produced by AGN outflows. We also find that for 32{sup +8}{sub -6}% of the sample the two AGN emission components are preferentially aligned with the host galaxy major axis, as expected for dual AGNs orbiting in the host galaxy potential. Our results both narrow the list of possible physical mechanisms producing the double AGN components, and suggest several observational

  8. Fermi LAT Detection of a GeV Flare from the Radio-Loud Narrow-Line Sy1 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Carpenter, Bryce; Ojha, Roopesh

    2013-08-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed increasing gamma-ray flux from a source positionally consistent with 1H 0323+342 (RA=03h24m41.1613s, Dec=+34d10m45.856s, J2000; Beasley et al. 2002, ApJS, 141, 13) at z= 0.061 (Marcha et al. 1996, MNRAS, 281, 425). This is the second nearest radio-loud Narrow-Line Seyfert 1 galaxy, a small and important class of gamma-ray loud AGN (Abdo et al.

  9. Low redshift Lyman alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1993-01-01

    Recent observations using the Hubble Space Telescope of the z = 0.156 QSO 3C 273 have discovered a surprisingly large number of Ly-alpha absorption lines. In particular, Morris et al. found 9 certain and 7 possible Ly-alpha lines with equivalent widths above 25 mA. This is much larger (by a factor of 5-10) than the number expected from extrapolation of the high-redshift behavior of the Ly-alpha forest. Within the context of pressure-confined models for the Ly-alpha clouds, this behavior can be understood if the ionizing background declines sharply between z is approximately 2 and z is approximately 0. However, this requires that the ionizing photon flux drop as rapidly as the QSO volume emissivity; moreover, the absorbers must have a space density n(sub O) is approximately 2.6(N/10)h/((D/100 kpc)(sup 2)) Mpc(sup -3) where D is the present-day diameter of the absorbers. It is somewhat surprising that such necessarily fragile objects could have survived in such numbers to the present day. It is shown that it is plausible that the atomic hydrogen extents of spiral and irregular galaxies are large enough to produce the observed number of Ly-alpha absorption lines toward 3C 273, and that the neutral column densities and doppler b-values expected under these conditions fall in the range found by Morris et al. (1991).

  10. When galaxies collide: understanding the broad absorption-line radio galaxy 4C +72.26

    NASA Astrophysics Data System (ADS)

    Smith, D. J. B.; Simpson, C.; Swinbank, A. M.; Rawlings, S.; Jarvis, M. J.

    2010-05-01

    We present a range of new observations of the `broad absorption-line radio galaxy' 4C +72.26 (z ~ 3.5), including sensitive rest-frame ultraviolet integral field spectroscopy using the Gemini/GMOS-N instrument and Subaru/CISCO K-band imaging and spectroscopy. We show that 4C +72.26 is a system of two vigorously star-forming galaxies superimposed along the line of sight separated by ~1300 +/- 200 km s-1 in velocity, with each demonstrating spectroscopically resolved absorption lines. The most active star-forming galaxy also hosts the accreting supermassive black hole which powers the extended radio source. We conclude that the star formation is unlikely to have been induced by a shock caused by the passage of the radio jet, and instead propose that a collision is a more probable trigger for the star formation. Despite the massive starburst, the ultraviolet-mid-infrared spectral energy distribution suggests that the pre-existing stellar population comprises ~1012Msolar of stellar mass, with the current burst only contributing a further ~2 per cent, suggesting that 4C +72.26 has already assembled most of its final stellar mass.

  11. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Astrophysics Data System (ADS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-08-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  12. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  13. Instabilities in line-driven stellar winds. III - Wave propagation in the case of pure line absorption

    NASA Technical Reports Server (NTRS)

    Owocki, S. P.; Rybicki, G. B.

    1986-01-01

    The spatial and temporal evolution of small-amplitude velocity perturbations is examined in the idealized case of a stellar wind that is driven by pure line absorption of the star's continuum radiation. It is established that the instability in the supersonic region is of the advective type relative to the star, but of the absolute type relative to the wind itself. It is also shown that the inward propagation of information in such a wind is limited to the sound speed, in contrast to the theory of Abbott, which predicts inward propagation faster than sound. This apparent contradiction is resolved through an extensive discussion of the analytically soluble case of zero sound speed.

  14. Quasar Absorption Lines: The Evolution of Galactic Gas Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Charlton, J.

    1996-12-01

    A view of the formation and evolution of galaxies and structure over the whole history of the Universe requires observations both of stars and of gas. From the stars in galaxies, now observed in deep images back in time to less than a billion years past the Big Bang, we can study the evolution of galaxy morphology and of star formation rates. Direct observation of gas in the Universe at all epochs is also possible, using absorption spectra of quasars as a probe of intervening material. This absorption arises not only from the gas in developed galaxies and in their environments, but also from the clumps of gas that will eventually combine to form galaxies, and from the gas spread through the Universe that is gradually flowing into the galaxies. This study of gas through quasar absorption lines has opened the possibility of observing directly the formation of galaxies through the assembly of their gas over time. Furthermore, with high resolution spectroscopy, the substructures observed in absorption profiles provide information about the internal workings of galaxies. This talk will present an overview of progress toward a comprehensive picture of the formation and evolution of galaxies through quasar absorption line studies. The absorption profiles that are observed due to the passage of the quasar light through a given structure are a convolution of several properties of the gas, including its spatial and kinematic distribution, its chemical composition, and its state of ionization. Illustrative models will be utilized to show how these various factors affect the appearance of synthetic spectra. Beginning with the philosophy ``what you see is what you get'', the kinematic spectral signatures of higher redshift absorbers will be modeled by familiar components of nearby galaxies: a rotating disk, an isothermal halo, and gas in radial inflow. A combination of these basic models goes a long way toward producing a variety of complex absorption profiles which are in fact

  15. Improved and Quality-assessed Emission and Absorption Line Measurements in Sloan Digital Sky Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, Marc; Schawinski, Kevin; Yi, Sukyoung K.

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the Hα and [N II] λ6584 lines, approximately 1% of the SDSS spectra classified as "galaxies" by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active nucleus, as

  16. IMPROVED AND QUALITY-ASSESSED EMISSION AND ABSORPTION LINE MEASUREMENTS IN SLOAN DIGITAL SKY SURVEY GALAXIES

    SciTech Connect

    Oh, Kyuseok; Yi, Sukyoung K.; Sarzi, Marc; Schawinski, Kevin

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the H{alpha} and [N II] {lambda}6584 lines, approximately 1% of the SDSS spectra classified as 'galaxies' by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active

  17. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: RAPID C iv BROAD ABSORPTION LINE VARIABILITY

    SciTech Connect

    Grier, C. J.; Brandt, W. N.; Trump, J. R.; Schneider, D. P.; Hall, P. B.; Shen, Yue; Vivek, M.; Dawson, K. S.; Ak, N. Filiz; Chen, Yuguang; Denney, K. D.; Kochanek, C. S.; Peterson, B. M.; Green, Paul J.; Jiang, Linhua; McGreer, Ian D.; Pâris, I.; Tao, Charling; Bizyaev, Dmitry; and others

    2015-06-10

    We report the discovery of rapid variations of a high-velocity C iv broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4σ) variability in the equivalent width (EW) of the broad (∼4000 km s{sup −1} wide) C iv trough on rest-frame timescales as short as 1.20 days (∼29 hr), the shortest broad absorption line variability timescale yet reported. The EW varied by ∼10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n{sub e} ≳ 3.9 × 10{sup 5} cm{sup −3}. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.

  18. A Survey for Intervening CIV Absorption-Line Systems Using SDSS Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Monier, Eric M.; Nestor, D. B.; Daino, M. M.; Quider, A. M.; Rao, S. M.; Turnshek, D. A.

    2006-06-01

    Intervening CIV absorption-line systems are readily found in Sloan Digital Sky Survey (SDSS) quasar spectra at redshifts z > 1.5. Given the large number of absorbers, high statistical accuracy is possible in comparison to what was possible in the past. Here we present preliminary results on the incidence and evolution of the CIV systems as a function of CIV rest equivalent width. The absorber incidence is proportional to the product of gas cross-section and co-moving number density of absorbers, while the rest equivalent width is related to their kinematic spread. We discuss the interpretation of our results.

  19. Investigating the Gas Kinematics of High-Redshift Active Galactic Nuclei with Double-Peaked Narrow Emission Lines

    NASA Astrophysics Data System (ADS)

    Barrows, Robert S.; Stern, D.; Lacy, C. H. S.; Kennefick, J.; Kennefick, D.; Seigar, M.

    2012-05-01

    Pairs of supermassive black holes (SMBHs) are a natural consequence of galaxy mergers, and these systems are observable when both SMBHs are accreting as active galactic nuclei (AGN). Observational evidence for these AGN pairs (dual AGN) has dramatically increased recently through a combination of spectroscopic selection of candidates from double-peaked optical emission lines and follow-up morphological data. The primary motivation for compiling a sample of dual AGN is for their use in tracing galaxy mergers and in constraining the link between galaxy mergers and AGN enhancement. Therefore, this phenomenon should be investigated at higher redshifts when galaxy mergers were more frequent. Motivated by our detailed analysis of a candidate dual AGN at a relatively high redshift (z=1.175), we have compiled a sample of analogous sources at z>0.80 identified from double-peaked UV emission lines in the Sloan Digital Sky Survey (SDSS). The double-peaked profile can be mimicked by gas-kinematics around a single AGN, including large-scale outflows, which are known to affect the velocity profiles of high-ionization UV emission lines. Through emission line diagnostics, we have taken advantage of access to rest-frame UV emission lines in SDSS quasar spectra, allowing us to investigate the kinematics of the ionized gas. In particular, for each of these sources we have put constraints on the likelihood of a correlation between peak velocity-offset and ionization potential. Such tests will aid in determining which double-peaked emission line sources are most likely the result of an outflow and which are strong dual AGN candidates. This study will both increase the sample size of candidate dual AGN for follow-up observations and extend the sample to higher redshifts.

  20. Spectral variability of the 3C 390.3 nucleus for more than 20 yr - I. Variability of the broad and narrow emission line fluxes

    NASA Astrophysics Data System (ADS)

    Sergeev, S. G.; Nazarov, S. V.; Borman, G. A.

    2017-02-01

    We summarize results of the analysis of the optical variability of the continuum and emission-line fluxes in the 3C 390.3 nucleus during 1992-2014. The [O III] λ5007 flux increases monotonically by ≈30 per cent in 2003-2014. The narrow Balmer lines show similar monotonic increase, while the variability patterns of the [O I] λ6300 narrow line are completely different from that of [O III]. The reverberation lags are found to be 88.6 ± 8.4, 161 ± 15, and 113 ± 14 d for the Hβ, Hα, and Hγ broad emission lines, respectively. The reverberation mass of the central black hole equals to (1.87 ± 0.26) × 109 M⊙ and (2.81 ± 0.38) × 109 M⊙, for the Hβ and Hα lines and assuming a scaling factor which converts the virial product to a mass to be f = 5.5. A difference between both masses can point to a difference between kinematics of the Hα and Hβ emission regions. We show that the reverberation mapping can only be applied to the entire period of observations of the 3C 390.3 nucleus after removing a long-term trend. This trend has been expressed by a slowly varying scalefactor c(t) in the power-law relationship between the line and continuum fluxes: F_{line}∝ c(t) F_{cont}^a. We find that the power-law index a equals to 0.77 and 0.54 for the Hβ and Hα lines, respectively. The observed relationship between the Balmer decrement and the optical continuum flux is as follows: F(Hα)/F(H β ) ∝ F_{cont}^{-0.20} and F(Hβ)/F(H γ ) ∝ F_{cont}^{-0.18}. The 3C 390.3 nucleus is an 'outsider' in the relationship between optical luminosity and black hole mass. Its Eddington ratio is Ebol/EEdd = 0.0037.

  1. Results of Monitoring the Dramatically Variable C IV Mini-Broad Absorption Line System in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Eracleous, Michael; Charlton, Jane C.; Kashikawa, Nobunari

    2007-05-01

    We present six new and two previously published high-resolution spectra of the quasar HS 1603+3820 (zem=2.542) taken over an interval of 4.2 yr (1.2 yr in the quasar rest frame). The observations were made with the High Dispersion Spectrograph on the Subaru telescope and the Medium Resolution Spectrograph on the Hobby-Eberly Telescope. The purpose was to study the narrow absorption lines (NALs). We use time variability and coverage fraction analysis to separate intrinsic absorption lines, which are physically related to the quasar, from intervening absorption lines. By fitting models to the line profiles, we derive the parameters of the respective absorbers as a function of time. Only the mini-BAL system at zabs~2.43 (vshift~9500 km s-1) shows both partial coverage and time variability, although two NAL systems possibly show evidence of partial coverage. We find that all the troughs of the mini-BAL system vary in concert and its total equivalent width variations resemble those of the coverage fraction. However, no other correlations are seen between the variations of different model parameters. Thus, the observed variations cannot be reproduced by a simple change of ionization state or by motion of a homogeneous parcel of gas across the cylinder of sight. We propose that the observed variations are a result of rapid continuum fluctuations, coupled with coverage fraction fluctuations caused by a clumpy screen of variable optical depth located between the continuum source and the mini-BAL gas. An alternative explanation is that the observed partial coverage signature is the result of scattering of continuum photons around the absorber, thus the equivalent width of the mini-BAL can vary as the intensity of the scattered continuum changes. Based on data collected at the Subaru telescope, which is operated by the National Astronomical Observatory of Japan.

  2. Discovery of Dramatic Optical Variability in SDSS J1100+4421: A Peculiar Radio-loud Narrow-line Seyfert 1 Galaxy?

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Morokuma, Tomoki; Itoh, Ryosuke; Akitaya, Hiroshi; Tominaga, Nozomu; Saito, Yoshihiko; Stawarz, Łukasz; Tanaka, Yasuyuki T.; Gandhi, Poshak; Ali, Gamal; Aoki, Tsutomu; Contreras, Carlos; Doi, Mamoru; Essam, Ahmad; Hamed, Gamal; Hsiao, Eric Y.; Iwata, Ikuru; Kawabata, Koji S.; Kawai, Nobuyuki; Kikuchi, Yuki; Kobayashi, Naoto; Kuroda, Daisuke; Maehara, Hiroyuki; Matsumoto, Emiko; Mazzali, Paolo A.; Minezaki, Takeo; Mito, Hiroyuki; Miyata, Takashi; Miyazaki, Satoshi; Mori, Kensho; Moritani, Yuki; Morokuma-Matsui, Kana; Morrell, Nidia; Nagao, Tohru; Nakada, Yoshikazu; Nakata, Fumiaki; Noma, Chinami; Ohsuga, Ken; Okada, Norio; Phillips, Mark M.; Pian, Elena; Richmond, Michael W.; Sahu, Devendra; Sako, Shigeyuki; Sarugaku, Yuki; Shibata, Takumi; Soyano, Takao; Stritzinger, Maximilian D.; Tachibana, Yutaro; Taddia, Francesco; Takaki, Katsutoshi; Takey, Ali; Tarusawa, Ken'ichi; Ui, Takahiro; Ukita, Nobuharu; Urata, Yuji; Walker, Emma S.; Yoshii, Taketoshi

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ~107 M ⊙ implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~= 4 × 102-3 × 103, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  3. DISCOVERY OF DRAMATIC OPTICAL VARIABILITY IN SDSS J1100+4421: A PECULIAR RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXY?

    SciTech Connect

    Tanaka, Masaomi; Morokuma, Tomoki; Doi, Mamoru; Kikuchi, Yuki; Itoh, Ryosuke; Akitaya, Hiroshi; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Tominaga, Nozomu; Saito, Yoshihiko; Kawai, Nobuyuki; Stawarz, Łukasz; Gandhi, Poshak; Ali, Gamal; Essam, Ahmad; Hamed, Gamal; Aoki, Tsutomu; Contreras, Carlos; Hsiao, Eric Y.; Iwata, Ikuru; and others

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ∼10{sup 7} M {sub ☉} implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ≅ 4 × 10{sup 2}-3 × 10{sup 3}, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  4. Optical and ultraviolet observations of the narrow-lined type Ia SN 2012fr in NGC 1365

    SciTech Connect

    Zhang, Ju-Jia; Bai, Jin-Ming; Wang, Bo; Liu, Zheng-Wei; Wang, Xiao-Feng; Zhao, Xu-Lin; Chen, Jun-Cheng; Zhang, Tian-Meng E-mail: baijinming@ynao.ac.cn

    2014-07-01

    Extensive optical and ultraviolet (UV) observations of the type Ia supernova (SN Ia) 2012fr are presented in this paper. It has a relatively high luminosity, with an absolute B-band peak magnitude of about –19.5 mag and a smaller post-maximum decline rate than normal SNe Ia (e.g., Δm {sub 15}(B) =0.85 ± 0.05 mag). Based on the UV and optical light curves, we derived that a {sup 56}Ni mass of about 0.88 M {sub ☉} was synthesized in the explosion. The earlier spectra are characterized by noticeable high-velocity features of Si II λ6355 and Ca II with velocities in the range of ∼22, 000-25, 000 km s{sup –1}. At around the maximum light, these spectral features are dominated by the photospheric components which are noticeably narrower than normal SNe Ia. The post-maximum velocity of the photosphere remains almost constant at ∼12,000 km s{sup –1} for about one month, reminiscent of the behavior of some luminous SNe Ia like SN 1991T. We propose that SN 2012fr may represent a subset of the SN 1991T-like SNe Ia viewed in a direction with a clumpy or shell-like structure of ejecta, in terms of a significant level of polarization reported in Maund et al. in 2013.

  5. New aspects of absorption line formation in intervening turbulent clouds - II. Monte Carlo simulation of interstellar H+D Lyalpha absorption profiles

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Kegel, Wilhelm H.; Mazets, Igor E.

    1997-07-01

    Stochastic velocity fields with finite correlation lengths affect the formation of interstellar (intergalactic) absorption lines in a way not accounted for in the standard analysis procedure in which Voigt profiles are fitted to the observed line profiles. We investigate these effects, accounting in particular for the fact that interstellar absorption spectra reflect only one realization of the velocity field, since (i) actually only one line of sight is observed and (ii) the velocity structure of the cloud has to be considered to be `frozen' over the exposure time. This paper presents results of Monte Carlo calculations. In this technique an ensemble of line profiles is computed, each one of which corresponds to one realization of the random velocity field. The most important results are the following. (1) The individual line profiles may deviate substantially from each other and from the ensemble average. (2) Correlated velocity fields may cause complex multicomponent absorption features which in a traditional analysis would be attributed to several clouds, i.e. to density and/or kinetic temperature inhomogeneities. (3) Each line of sight has its own curve-of-growth. (4) Applying the standard analysis to such line profiles may produce misleading results concerning the physical parameters of the cloud. (5) In particular, the apparent scatter of the D/H ratio revealed in the ISM on the basis of the Copernicus, IUE, and HST observations may be caused by an inadequate analysis. Finally, we discuss under which conditions cloud characteristics may be derived from absorption lines without relying on a particular physical model.

  6. Absorption-line spectrum of GC 1556 + 335 - ejected or intervening material

    SciTech Connect

    Morris, S.L.; Weymann, R.J.; Foltz, C.B.; Turnshek, D.A.; Shectman, S.

    1986-11-01

    Two rich C IV absorption complexes in the radio-loud QSO GC 1556 + 335 are described. Column densities for seven of the redshift systems in these complexes are measured, and limits on the distances between the QSO and absorbing clouds are derived using ionization parameters estimated from matching photoionization models to the observations and a density estimated from an upper limit to the C II(asterisk) column density in the z = 1.65367 redshift system. These limits show that GC 1556 + 335 is not a typical member of the BALQSO class. Two alternative models are discussed in which the absorption complexes are caused by material either entrained into a radio jet from the QSO or contained in two clusters of galaxies along the line of sight. It is suggested that the emission associated with the complexes may be detectable, and that a study of the velocity field and geometry of such emission might be decisive in determining the mechanism responsible for the absorption. 40 references.

  7. XMM-Newton Spectroscopy of the X-ray Detected Broad Absorption Line QSO CSO 755

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2005-01-01

    We present the results from XMM-Newton observations of the highly optically polarized broad absorption line quasar (BALQSO) CSO 755. By analyzing its X-ray spectrum with a total of approximately 3000 photons we find that this source has an X-ray continuum of "typical" radio-quiet quasars, with a photon index of Gamma=1.83, and a rather flat (X-ray bright) intrinsic optical-to-X-ray spectral slope of alpha_ox=- 1.51. The source shows evidence for intrinsic absorption, and fitting the spectrum with a neutral-absorption model gives a column density of N_H approximately 1.2x10^22 cm^{-2}; this is among the lowest X-ray columns measured for BALQSOs. We do not detect, with high significance, any other absorption features in the X-ray spectrum. Upper limits we place on the rest-frame equivalent width of a neutral (ionized) Fe K-alpha line, less than =180 eV (less than =120 eV), and on the Compton-reflection component parameter, R less than =0.2, suggest that most of the X-rays from the source are directly observed rather than being scattered or reflected; this is also supported by the relatively flat intrinsic alpha ox we measure. The possibility that most of the X-ray flux is scattered due to the high level of UV-optical polarization is ruled out. Considering data for 46 BALQSOs from the literature, including CSO 755, we have found that the UV-optical continuum polarization level of BALQSOs is not correlated with any of their X-ray properties. A lack of significant short-term and long-term X-ray flux variations in the source may be attributed to a large black-hole mass in CSO 755. We note that another luminous BALQSO, PG 2112+059, has both similar shallow C IV BALs and moderate X-ray absorption.

  8. THE JHU-SDSS METAL ABSORPTION LINE CATALOG: REDSHIFT EVOLUTION AND PROPERTIES OF Mg II ABSORBERS

    SciTech Connect

    Zhu Guangtun; Menard, Brice

    2013-06-20

    We present a generic and fully automatic method aimed at detecting absorption lines in the spectra of astronomical objects. The algorithm estimates the source continuum flux using a dimensionality reduction technique and nonnegative matrix factorization, and then detects and identifies metal absorption lines. We apply it to a sample of {approx}10{sup 5} quasar spectra from the Sloan Digital Sky Survey and compile a sample of {approx}40,000 Mg II- and Fe II-absorber systems, spanning the redshift range 0.4 < z < 2.3. The corresponding catalog is publicly available. We study the statistical properties of these absorber systems and find that the rest equivalent width distribution of strong Mg II absorbers follows an exponential distribution at all redshifts, confirming previous studies. Combining our results with recent near-infrared observations of Mg II absorbers, we introduce a new parameterization that fully describes the incidence rate of these systems up to z {approx} 5. We find the redshift evolution of strong Mg II absorbers to be remarkably similar to the cosmic star formation history over 0.4 < z < 5.5 (the entire redshift range covered by observations), suggesting a physical link between these two quantities.

  9. Line formation in Be star circumstellar disks Shear broadening, shell absorption, stellar obscuration and rotational parameter

    NASA Astrophysics Data System (ADS)

    Hummel, W.; Vrancken, M.

    2000-07-01

    We improve the theory of Horne & Marsh on shear broadening in accretion disks of CVs and adapt it to Be star circumstellar disks. Stellar obscuration and shell absorption are taken into account in detail. It is shown that shell absorption is already present in those emission lines where the central depression does not drop below the stellar continuum. The model profiles are fitted to observed symmetric Hα net emission lines with low equivalent width. The derived disk radii range from Rd = 5.3 R_* to Rd = 18 R_* and the surface emissivity varies as ~ R-m with 1.6 < m < 3.5. The comparison between model profiles of rotational parameter j>(1)/(2) with the optically thick Hα profile of HR 5440 rules out the range of j>(1)/(2). This can be understood by the lack of velocity shear in the outer disk regions. We conclude that Keplerian rotation (j=(1)/(2)) is a valid approximation. Based on observations collected at the German-Spanish Astronomical Center (DSAZ), Calar Alto, operated by the Max-Plank-Institut für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy. Based on observations collected at the Observatoire de Haute-Provence (OHP), CNRS, France.

  10. High-resolution absorption spectroscopy of the OH 2Π3/2 ground state line

    NASA Astrophysics Data System (ADS)

    Wiesemeyer, H.; Güsten, R.; Heyminck, S.; Jacobs, K.; Menten, K. M.; Neufeld, D. A.; Requena-Torres, M. A.; Stutzki, J.

    2012-06-01

    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Π3/2, J = 5/2 ← 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 1014 cm-2, which corresponds to a fractional abundance of 10-7 to 10-8, which is comparable to that of H2O. The absorption spectra of both species have similar velocity components, and the ratio of the derived H2O to OH column densities ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of 18OH.

  11. On the origin of the Z-shaped narrow-line region in the Seyfert galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain; Tully, R. B.; Bland-Hawthorn, Jonathan

    1993-01-01

    A kinematic study has been carried out of the line-emitting gas in the Seyfert galaxy NGC 3516. The existence of two curved filaments in the central 2.5 kpc of this galaxy, which give Z-shaped appearance to its NLR. A precessing twin-jet model in which the line-emitting material is entrained by a precessing radio jet and kept ionized by the nuclear ionization field can explain the kinematic data of the brightest emission rather well. If this model is valid, this would make NGC 3516 the least luminous known active galaxy with a precessing jet. An alternative scenario assumes that the curved inner filaments represent gas entrained by a radio jet which is deflected by ram pressure from the rotation interstellar medium of the galaxy.

  12. VizieR Online Data Catalog: Double-peaked narrow lines in AGN. II. z<0.1 (Nevin+, 2016)

    NASA Astrophysics Data System (ADS)

    Nevin, R.; Comerford, J.; Muller-Sanchez, F.; Barrows, R.; Cooper, M.

    2017-02-01

    To determine the nature of 71 Type 2 AGNs with double-peaked [OIII] emission lines in SDSS that are at z<0.1 and further characterize their properties, we observe them using two complementary follow-up methods: optical long-slit spectroscopy and Jansky Very Large Array (VLA) radio observations. We use various spectrographs with similar pixel scales (Lick Kast Spectrograph; Palomar Double Spectrograph; MMT Blue Channel Spectrograph; APO Dual Imaging Spectrograph and Keck DEep Imaging Multi-Object Spectrograph. We use a 1200 lines/mm grating for all spectrographs; see table 1. In future work, we will combine our long-slit observations with the VLA data for the full sample of 71 galaxies (O. Muller-Sanchez+ 2016, in preparation). (4 data files).

  13. Absorption-Line Probes of Gas and Dust in Galactic Superwinds

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy M.; Lehnert, Matthew D.; Strickland, David K.; Armus, Lee

    2000-08-01

    We have obtained moderate resolution (R=few thousand) spectra of the Na I λλ5890, 5896 (Na D) absorption line in a sample of 32 far-IR-bright starburst galaxies. In 18 cases, the Na D line in the nucleus is produced primarily by interstellar gas, while cool stars contribute significantly in the others. In 12 of the 18 ``interstellar-dominated'' cases the Na D line is blueshifted by over 100 km s-1 relative to the galaxy systemic velocity (the ``outflow sources''), while no case shows a net redshift of more than 100 km s-1. The absorption-line profiles in these outflow sources span the range from near the galaxy systemic velocity to a maximum blueshift of ~400-600 km s-1. The outflow sources are galaxies systematically viewed more nearly face-on than the others. We therefore argue that the absorbing material consists of ambient interstellar material that has been entrained and accelerated along the minor axis of the galaxy by a hot starburst-driven superwind. The Na D lines are optically thick, but indirect arguments imply total hydrogen column densities of NH~few×1021 cm-2. This implies that the superwind is expelling matter at a rate comparable to the star formation rate. This outflowing material is evidently very dusty: we find a strong correlation between the depth of the Na D profile and the line-of-sight reddening. Typical implied values are E(B-V)=0.3-1 over regions several-to-10 kpc in size. We briefly consider some of the potential implications of these observations. The estimated terminal velocities of superwinds inferred from the present data and extant X-ray data are typically 400-800 km-1, are independent of the galaxy rotation speed, and are comparable to (substantially exceed) the escape velocities for L* (dwarf) galaxies. The resulting selective loss of metals from shallower potential wells can establish the mass-metallicity relation in spheroids, produce the observed metallicity in the intracluster medium, and enrich a general IGM to of order 10

  14. Probing the interstellar medium in Puppis-Vela through optical absorption line spectroscopy

    NASA Astrophysics Data System (ADS)

    Cha, Alexandra Nicole Stuehler

    2000-06-01

    The interstellar medium (ISM) toward Puppis-Vela (l = 245° to 275°, b = -15° to +5°) has been studied using high resolution, R ~ 75,000-90,000, high signal-to-noise, S/N ~ 100, optical Na I and Ca II absorption spectra along several hundred lines of sight. The distance of the Vela supernova remnant was found to be at d ~ 250 pc, a factor of two less than the canonical value. Lines of sight passing through the Vela supernova remnant were seen to have optical spectra that varied over epochs of a few years, including those toward HD 72089, HD 72127, HD 72997, HD 73658, HD 74455, HD 75309, and HD 75821. The variability of the first three lines of sight had been previously documented, but variability in the spectra toward the latter four stars had not been observed. An analysis of the Local ISM (d < 200 pc) toward Puppis-Vela is presented, and using both Na I absorption features and accurate distances to the stars, courtesy of Hipparcos trigonometric parallax data, spatially compact, homogeneous velocity components were mapped. In the Local ISM, the Puppis-Vela region abuts the apparent extension of the Local Bubble (or Cavity) known as the β CMa tunnel, and the compiled Na I lines of sight suggest that within 200 pc, the extent of the tunnel is confined to a region smaller than was previously thought. The technique of identifying and mapping individual velocity components in three dimensions was extended to the Puppis-Vela ISM out to d ~ 1 kpc, and a total of 7 velocity components were identified. Gas with velocities higher than that expected in the ambient ISM combined with higher than normal reddening was detected toward two regions, (l ~ 254°, b ~ -1°) and (l ~ 251°, b ~ -7°), suggesting the presence of previously unidentified structures. Nearby, gas associated with the IRAS Vela Shell was detected in Na I at distances >~ 300 pc. The Na I velocity components from IRAS Vela Shell sight lines were fit with a model of a spherically expanding filled sphere with

  15. SDSS J163459.82+204936.0: A Ringed Infrared-luminous Quasar with Outflows in Both Absorption and Emission Lines

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming

    2016-05-01

    SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}⊙ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}⊙ yr-1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He i λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He i λ10830 and the bulk blueshifting of [O iii]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na i D and He i λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm-3, ionization parameter 10-1.3 ≲ U ≲ 10-0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm-2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ˜48-65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044-1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ˜30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking galaxy merger (or

  16. The complex, dusty narrow-line region of NGC 4388: gas-jet interactions, outflows and extinction revealed by near-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Mason, R. E.; Martins, L.; Ramos Almeida, C.; Riffel, R. A.; Riffel, R.; Lira, P.; González Martín, O.; Dametto, N. Z.; Flohic, H.; Ho, L. C.; Ruschel-Dutra, D.; Thanjavur, K.; Colina, L.; McDermid, R. M.; Perlman, E.; Winge, C.

    2017-02-01

    We present Gemini/GNIRS (Gemini Near-Infrared Spectrograph) spectroscopy of the Seyfert 2 galaxy NGC 4388, with simultaneous coverage from 0.85 to 2.5 μm. Several spatially extended emission lines are detected for the first time, both in the obscured and unobscured portion of the optical narrow-line region (NLR), allowing us to assess the combined effects of the central continuum source, outflowing gas and shocks generated by the radio jet on the central 280 pc gas. The H I and [Fe II] lines allow us to map the extinction affecting the NLR. We found that the nuclear region is heavily obscured, with E(B - V) ˜ 1.9 mag. To the NE of the nucleus and up to ˜150 pc, the extinction remains large, ˜1 mag or larger, consistent with the system of dust lanes seen in optical imaging. We derived position-velocity diagrams for the most prominent lines as well as for the stellar component. Only the molecular gas and the stellar component display a well-organized pattern consistent with disc rotation. Other emission lines are kinematically perturbed or show little evidence of rotation. Extended high-ionization emission of sulphur, silicon and calcium is observed to distances of at least 200 pc both NE and SW of the nucleus. We compared flux ratios between these lines with photoionization models and conclude that radiation from the central source alone cannot explain the observed high-ionization spectrum. Shocks between the radio jet and the ambient gas are very likely an additional source of excitation. We conclude that NGC 4388 is a prime laboratory to study the interplay between all these mechanisms.

  17. Cavity ring-down spectroscopy of Doppler-broadened absorption line with sub-MHz absolute frequency accuracy.

    PubMed

    Cheng, C-F; Sun, Y R; Pan, H; Lu, Y; Li, X-F; Wang, J; Liu, A-W; Hu, S-M

    2012-04-23

    A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 - 0.6 MHz absolute frequency accuracy has been achieved in the 775-800 nm region. A water absorption line at 12579 cm(-1) is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10(-9)).

  18. Inter-Stellar Medium Absorption Lines As Outflow Tracers - A Comparison Between AGNs And SFGs

    NASA Astrophysics Data System (ADS)

    Talia, Margherita; Cimatti, A.; Brusa, M.

    2016-10-01

    To reproduce the properties of galaxies in the local Universe, as well as the scaling relations between host galaxies and black holes properties, many galaxy formation models invoke the presence of fast and energetic winds extending over galaxy scales. These massive gas outflows can be powered either by star-formation (SF) or AGN activity, though the relative dominance and efficiency of the different mechanisms is not yet fully understoodIn the last decade much effort has been put in the search for observational evidence of such phenomena, especially at the peak of both SF and AGN activity through cosmic time (1absorption lines in the UV regime, as well as broad, blue-shifted profiles in optical emission lines have been observed in galaxies at all redshifts and are usually interpreted as evidence of fast material moving towards our line of sight. More recently, especially thanks to new facilities like ALMA, outflows are being observed also in neutral and molecular gasIn order to study the differences and possible synergy between the two main driving outflow mechanisms (AGN or SF activity) and to understand the role that outflows might play in SF quenching and galaxy evolution, we collected a large sample of AGNs and SFGs at z>1.7 from large optical spectroscopic surveys (zCOSMOS, VUDS, ESO public surveys), complemented with HST imaging, X-ray (Chandra) and IR data. The richness of available data for our sample allowed us to map a large portion of the physical parameters space. We concentrated our analysis on the ISM absorption lines in the rest-frame UV wavelength range. Through stacking tecniques we studied the relation between such lines and AGN and SFG properties. I will present our results (Talia et al

  19. The velocity distribution of interstellar gas observed in strong UV absorption lines

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; York, D. G.

    1978-01-01

    Observations of three strong interstellar UV absorption lines of N I (1199 A), N II (1083 A), and Si III (1206 A) in 47 stars of widely varying distance and a variety of spectral types are analyzed to obtain a velocity distribution function for the interstellar gas. A technique based on the maximum and minimum velocities observed along a line of sight is adopted because of heavy line blending, and results are discussed for both power-law and exponential distribution functions. The expected distribution of radiative-phase supernova remnants (SNRs) in the interstellar medium is calculated as a function of SNR birthrate and of the interstellar density in which they evolve. The results are combined with observed distance estimates, and it is shown that an interstellar density in excess of 0.1 per cu cm would be required to keep the SNRs sufficiently confined so that their cross sections are consistent with the observed number of components. The alternative possibility is considered that SNRs do not enter the radiative phase before escaping from the Galaxy or colliding with neighboring remnants.

  20. Narrow band noise rejection technique for laser frequency and length standards: application to frequency stabilization to I2 lines near dissociation limit at 501.7 nm

    NASA Astrophysics Data System (ADS)

    du Burck, F.; Tetchewo, G.; Goncharov, A. N.; Lopez, O.

    2009-10-01

    An opto-electronic device for the stabilization of laser beam intensity in a narrow frequency band based on a numeric corrector driving the radio-frequency signal of an acousto-optic modulator is applied to improve the signal-to-noise ratio of the detected signal in saturation spectroscopy of iodine in a cell at 501.7 nm, both in the FM spectroscopy technique and in the transfer modulation technique. In the latter case, a 30 dB rejection of the amplitude noise of the probe beam is achieved and, when the laser frequency is locked to the saturation signal, the enhancement of the sensitivity of the frequency jitter detection is demonstrated in a frequency band extending up to 1 kHz. For the long term stabilization the laser is locked to a narrow line detected in a low pressure cell. A relative Allan deviation of about 10-13 is found for 1 s integration time and a deviation of 10-14 is reached for 500 s. Linewidths smaller than 40 kHz (FWHM) are also demonstrated at low saturating power for hyperfine components of the transition R(26)62-0 at 501.7 nm.

  1. Probing the Physics of Narrow-line Regions in Active Galaxies. III. Accretion and Cocoon Shocks in the LINER NGC 1052

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Ho, I.-Ting; Dressel, Linda L.; Sutherland, Ralph; Kewley, Lisa; Davies, Rebecca; Hampton, Elise; Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S.; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2015-03-01

    We present Wide Field Spectrograph integral field spectroscopy and Hubble Space Telescope Faint Object Spectrograph spectroscopy for the low-ionization nuclear emission line region (LINER) galaxy NGC 1052. We infer the presence of a turbulent accretion flow forming a small-scale accretion disk. We find a large-scale outflow and ionization cone along the minor axis of the galaxy. Part of this outflow region is photoionized by the active galactic nucleus and shares properties with the extended narrow-line region of Seyfert galaxies, but the inner (R≲ 1.0″) accretion disk and the region around the radio jet appear shock excited. The emission-line properties can be modeled by a “double-shock” model in which the accretion flow first passes through an accretion shock in the presence of a hard X-ray radiation, and the accretion disk is then processed through a cocoon shock driven by the overpressure of the radio jets. This model explains the observation of two distinct densities (˜104 and ˜106 cm-3) and provides a good fit to the observed emission-line spectrum. We derive estimates for the velocities of the two shock components and their mixing fractions, the black hole mass, and the accretion rate needed to sustain the LINER emission and derive an estimate for the jet power. Our emission-line model is remarkably robust against variation of input parameters and hence offers a generic explanation for the excitation of LINER galaxies, including those of spiral type such as NGC 3031 (M81).

  2. Gamma-Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Els, Paul

    2016-04-01

    The expected level of γγ absorption in the Broad Line Region (BLR) radiation field of γ-ray loud Flat Spectrum Radio Quasars (FSRQs) is evaluated as a function of the location of the γ-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the γγ opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to γγ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the γ-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the central engine and drops below unity for locations within the BLR. For locations outside the BLR, the BLR radiation energy density required for the production of GeV γ-rays rapidly increases beyond observational constraints, thus making the EC-BLR mechanism implausible. Therefore, in order to avoid significant γγ absorption by the BLR radiation field, the γ-ray emission region must therefore be located near the outer boundary of the BLR.

  3. Spectropolarimetry of PKS 0040-005 and the orientation of broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Brotherton, M. S.; De Breuck, C.; Schaefer, J. J.

    2006-10-01

    We have used the Very Large Telescope (VLT) to obtain spectropolarimetry of the radio-loud, double-lobed broad absorption line (BAL) quasar PKS 0040-005. We find that the optical continuum of PKS 0040-005 is intrinsically polarized at 0.7 per cent with an electric vector position angle nearly parallel to that of the large-scale radio axis. This result is naturally explained in terms of an equatorial scattering region seen at a small inclination, building a strong case that the BAL outflow is not equatorial. In conjunction with other recent results concerning BAL quasars, the era of simply characterizing these sources as `edge-on' is over. Based on observations collected at the European Southern Observatory, Paranal, project 71.B-0121(A). E-mail: mbrother@uwyo.edu (MSB); cdbreuc@eso.org (CDB); schaefjj@ufl.edu (JJS) ‡ ESO Visitor.

  4. Determination of molecular line parameters for acrolein (C(3)H(4)O) using infrared tunable diode laser absorption spectroscopy.

    PubMed

    Harward, Charles N; Thweatt, W David; Baren, Randall E; Parrish, Milton E

    2006-04-01

    Acrolein (C(3)H(4)O) molecular line parameters, including infrared (IR) absorption positions, strengths, and nitrogen broadened half-widths, must be determined since they are not included in the high resolution transmission (HITRAN) molecular absorption database of spectral lines. These parameters are required for developing a quantitative analytical method for measuring acrolein in a single puff of cigarette smoke using tunable diode laser absorption spectroscopy (TDLAS). The task is complex since acrolein has many highly overlapping infrared absorption lines in the room temperature spectrum and the cigarette smoke matrix contains thousands of compounds. This work describes the procedure for estimating the molecular line parameters for these overlapping absorption lines in the wavenumber range (958.7-958.9 cm(-1)) using quantitative reference spectra taken with the infrared lead-salt TDLAS instrument at different pressures and concentrations. The nitrogen broadened half-width for acrolein is 0.0937 cm(-1)atm(-1) and to our knowledge, is the first time it has been reported in the literature.

  5. FR-II Broad Absorption Line Quasars and the Life Cycle of Quasars

    SciTech Connect

    Gregg, M D; Becker, R H; de Vries, W

    2006-01-05

    By combining the Sloan Digitized Sky Survey Third Data Release quasar list with the VLA FIRST survey, we have identified five objects having both broad absorption lines in their optical spectra and FR-II radio morphologies. We identify an additional example of this class from the FIRST Bright Quasar Survey, J1408+3054. Including the original FR-II-BAL object, J1016+5209, brings the number of such objects to eight. These quasars are relatively rare; finding this small handful has required the 45,000-large quasar sample of SDSS. The FR-II-BAL quasars exhibit a significant anti-correlation between radio-loudness and the strength of the BAL features. This is easily accounted for by the evolutionary picture in which quasars emerge from cocoons of BAL-producing material which stifle the development of radio jets and lobes. There is no such simple explanation for the observed properties of FR-II-BALs in the unification-by-orientation model of quasars. The rarity of the FR-II-BAL class implies that the two phases do not coexist for very long in a single quasar, perhaps less than 10{sup 5} years, with the combined FR-II, high ionization broad absorption phase being even shorter by another factor of 10 or more.

  6. BROAD ABSORPTION LINE VARIABILITY ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Lundgren, B. F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2013-11-10

    We present a detailed investigation of the variability of 428 C IV and 235 Si IV broad absorption line (BAL) troughs identified in multi-epoch observations of 291 quasars by the Sloan Digital Sky Survey-I/II/III. These observations primarily sample rest-frame timescales of 1-3.7 yr over which significant rearrangement of the BAL wind is expected. We derive a number of observational results on, e.g., the frequency of BAL variability, the velocity range over which BAL variability occurs, the primary observed form of BAL-trough variability, the dependence of BAL variability upon timescale, the frequency of BAL strengthening versus weakening, correlations between BAL variability and BAL-trough profiles, relations between C IV and Si IV BAL variability, coordinated multi-trough variability, and BAL variations as a function of quasar properties. We assess implications of these observational results for quasar winds. Our results support models where most BAL absorption is formed within an order-of-magnitude of the wind-launching radius, although a significant minority of BAL troughs may arise on larger scales. We estimate an average lifetime for a BAL trough along our line-of-sight of a few thousand years. BAL disappearance and emergence events appear to be extremes of general BAL variability, rather than being qualitatively distinct phenomena. We derive the parameters of a random-walk model for BAL EW variability, finding that this model can acceptably describe some key aspects of EW variability. The coordinated trough variability of BAL quasars with multiple troughs suggests that changes in 'shielding gas' may play a significant role in driving general BAL variability.

  7. THE INTRINSIC FRACTIONS AND RADIO PROPERTIES OF LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Dai Xinyu; Shankar, Francesco; Sivakoff, Gregory R.

    2012-10-01

    Low-ionization (Mg II, Fe II, and Fe III) broad absorption line quasars (LoBALs) probe a relatively obscured quasar population and could be at an early evolutionary stage for quasars. We study the intrinsic fractions of LoBALs using the Sloan Digital Sky Survey (SDSS), Two Micron All Sky Survey, and Faint Images of the Radio Sky at Twenty cm survey. We find that the LoBAL fractions of the near-infrared (NIR) and radio samples are approximately 5-7 times higher than those measured in the optical sample. This suggests that the fractions measured in the NIR and radio bands are closer to the intrinsic fractions of the populations, and that the optical fractions are significantly biased due to obscuration effects, similar to high-ionization broad absorption line quasars (HiBALs). Considering a population of obscured quasars that do not enter the SDSS, which could have a much higher LoBAL fraction, we expect that the intrinsic fraction of LoBALs could be even higher. We also find that the LoBAL fractions decrease with increasing radio luminosities, again, similarly to HiBALs. In addition, we find evidence for increasing fractions of LoBALs toward higher NIR luminosities, especially for FeLoBALs with a fraction of {approx}18% at M{sub K{sub s}}< -31 mag. This population of NIR-luminous LoBALs may be at an early evolutionary stage of quasar evolution. To interpret the data, we use a luminosity-dependent model for LoBALs that yields significantly better fits than those from a pure geometric model.

  8. A variable P v broad absorption line and quasar outflow energetics

    NASA Astrophysics Data System (ADS)

    Capellupo, D. M.; Hamann, F.; Barlow, T. A.

    2014-10-01

    Broad absorption lines (BALs) in quasar spectra identify high-velocity outflows that might exist in all quasars and could play a major role in feedback to galaxy evolution. The viability of BAL outflows as a feedback mechanism depends on their kinetic energies, as derived from the outflow velocities, column densities, and distances from the central quasar. We estimate these quantities for the quasar, Q1413+1143 (redshift ze = 2.56), aided by the first detection of P V λλ1118, 1128 BAL variability in a quasar. In particular, P V absorption at velocities where the C IV trough does not reach zero intensity implies that the C IV BAL is saturated and the absorber only partially covers the background continuum source (with characteristic size <0.01 pc). With the assumption of solar abundances, we estimate that the total column density in the BAL outflow is log NH ≳ 22.3 cm-2. Variability in the P V and saturated C IV BALs strongly disfavours changes in the ionization as the cause of the BAL variability, but supports models with high column density BAL clouds moving across our lines of sight. The observed variability time of 1.6 yr in the quasar rest frame indicates crossing speeds >750 km s-1 and a radial distance from the central black hole of ≲ 3.5 pc, if the crossing speeds are Keplerian. The total outflow mass is ˜4100 M⊙, the kinetic energy ˜4 × 1054 erg, and the ratio of the outflow kinetic energy luminosity to the quasar bolometric luminosity is ˜0.02 (at the minimum column density and maximum distance), which might be sufficient for important feedback to the quasar's host galaxy.

  9. Investigating the radio-loud phase of broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Bruni, G.; González-Serrano, J. I.; Pedani, M.; Benn, C. R.; Mack, K.-H.; Holt, J.; Montenegro-Montes, F. M.; Jiménez-Luján, F.

    2014-09-01

    Context. Broad absorption lines (BALs) are present in the spectra of ~20% of quasars (QSOs); this indicates fast outflows (up to 0.2c) that intercept the observer's line of sight. These QSOs can be distinguished again into radio-loud (RL) BAL QSOs and radio-quiet (RQ) BAL QSOs. The first are very rare, even four times less common than RQ BAL QSOs. The reason for this is still unclear and leaves open questions about the nature of the BAL-producing outflows and their connection with the radio jet. Aims: We explored the spectroscopic characteristics of RL and RQ BAL QSOs with the aim to find a possible explanation for the rarity of RL BAL QSOs. Methods: We identified two samples of genuine BAL QSOs from SDSS optical spectra, one RL and one RQ, in a suitable redshift interval (2.5 < z < 3.5) that allowed us to observe the Mg ii and Hβ emission lines in the adjacent near-infrared (NIR) band. We collected NIR spectra of the two samples using the Telescopio Nazionale Galileo (TNG, Canary Islands). By using relations known in the literature, we estimated the black-hole mass, the broad-line region radius, and the Eddington ratio of our objects and compared the two samples. Results: We found no statistically significant differences from comparing the distributions of the cited physical quantities. This indicates that they have similar geometries, accretion rates, and central black-hole masses, regardless of whether the radio-emitting jet is present or not. Conclusions: These results show that the central engine of BAL QSOs has the same physical properties with and without a radio jet. The reasons for the rarity of RL BAL QSOs must reside in different environmental or evolutionary variables. Figure 3 is available in electronic form at http://www.aanda.org

  10. A new perspective on the interstellar cloud surrounding the Sun from UV absorption line results

    NASA Astrophysics Data System (ADS)

    Gry, Cecile; Jenkins, Edward B.

    2015-01-01

    We offer a new, more inclusive, picture of the local interstellar medium, where it is composed of a single, monolithic cloud that surrounds the Sun in all directions. Our study of velocities based on Mg II and Fe II ultraviolet absorption lines indicates that the cloud has an average motion consistent with the velocity vector of gas impacting the heliosphere and does not behave like a rigid body: gas within the cloud is being differentially decelerated in the direction of motion, and the cloud is expanding in directions perpendicular to this flow, much like the squashing of a balloon. The outer boundary of the cloud is in average 10 pc away from us but is highly irregular, being only a few parsecs away in some directions, with possibly a few extensions up to 20 pc. Average H I volume densities vary between 0.03 and 0.1 cm3 over different sight lines. Metals appear to be significantly depleted onto grains, and there is a steady increase in this effect from the rear of the cloud to the apex of motion. There is no evidence that changes in the ionizing radiation influence the apparent abundances. Additional, secondary velocity components are detected in 60% of the sight lines. Almost all of them appear to be interior to the volume holding the gas that we identify with the main cloud. Half of the sight lines exhibit a secondary component moving at about - 7.2 km/s with respect to the main component, which may be the signature of an implosive shock propagating toward the cloud's interior.

  11. Time-dependent excitation and ionization modelling of absorption-line variability due to GRB 080310

    NASA Astrophysics Data System (ADS)

    Vreeswijk, P. M.; Ledoux, C.; Raassen, A. J. J.; Smette, A.; De Cia, A.; Woźniak, P. R.; Fox, A. J.; Vestrand, W. T.; Jakobsson, P.

    2013-01-01

    We model the time-variable absorption of Fe II, Fe III, Si II, C II and Cr II detected in Ultraviolet and Visual Echelle Spectrograph (UVES) spectra of gamma-ray burst (GRB) 080310, with the afterglow radiation exciting and ionizing the interstellar medium in the host galaxy at a redshift of z = 2.42743. To estimate the rest-frame afterglow brightness as a function of time, we use a combination of the optical VRI photometry obtained by the RAPTOR-T telescope array, which is presented in this paper, and Swift's X-Ray Telescope (XRT) observations. Excitation alone, which has been successfully applied for a handful of other GRBs, fails to describe the observed column density evolution in the case of GRB 080310. Inclusion of ionization is required to explain the column density decrease of all observed Fe II levels (including the ground state 6D9/2) and increase of the Fe III 7S3 level. The large population of ions in this latter level (up to 10% of all Fe III) can only be explained through ionization of Fe II, as a large fraction of the ionized Fe II ions (we calculate 31% using the Flexible Atomic and Cowan codes) initially populate the 7S3 level of Fe III rather than the ground state. This channel for producing a significant Fe III 7S3 level population may be relevant for other objects in which absorption lines from this level, the UV34 triplet, are observed, such as broad absorption line (BAL) quasars and η Carinae. This provides conclusive evidence for time-variable ionization in the circumburst medium, which to date has not been convincingly detected. However, the best-fit distance of the neutral absorbing cloud to the GRB is 200-400 pc, i.e. similar to GRB-absorber distance estimates for GRBs without any evidence for ionization. We find that the presence of time-varying ionization in GRB 080310 is likely due to a combination of the super-solar iron abundance ([Fe/H] = +0.2) and the low H I column density (log N(H i) = 18.7) in the host of GRB 080310. Finally

  12. Diurnal and Interannual Variation in Absorption Lines of Isotopic Carbon Dioxide in Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Hewagama, Tilak; Kolasinski, John R.; Henning, Wade G.

    2015-11-01

    Groundbased observations of Mars in 2003, 2007, 2012, and 2014 have detected transitions of carbon dioxide containing the stable minor isotopes of oxygen and carbon as well as the primary isotopes, using the ultrahigh resolution spectrometer HIPWAC at the NASA Infrared Telescope Facility. The most well characterized minor isotope is O-18, due to strong lines and observational opportunities. The average estimated O-18/O-16 isotope ratio is roughly consistent with other in situ and remote spectroscopic measurements but demonstrates an additional feature in that the retrieved ratio appears to increase with greater ground surface temperature. These conclusions primarily come from analyzing a subset of the 2007 data. Additional observations have been acquired over a broad range of local time and meridional position to evaluate variability with respect to ground surface temperature. These additional observations include one run of measurements with C-13. These observations can be compared to local in situ measurements by the Curiosity rover to narrow the uncertainty in absolute isotope ratio and extend isotopic measurements to other regions and seasons on Mars. The relative abundance of carbon dioxide heavy isotopes on Mars is central to estimating the primordial atmospheric inventory on Mars. Preferential freeze-distillation of heavy isotopes means that any measurement of the isotope ratio can be only a lower limit on heavy isotope enrichment due to past and current loss to space.

  13. Metal-line absorption at Z(sub abs) approximately Z(sub em) from associated galaxies

    NASA Technical Reports Server (NTRS)

    Ellingson, E.; Yee, H. K. C.; Bechtold, Jill; Dobrzycki, Adam

    1994-01-01

    For a preliminary study of whether C IV absorption at Z(sub abs) approximately Z(sub em) is related to associated galaxy companions, we have collected data from a sample of 10 quasars with 0.15 less than z less than 0.65 for which high-resolution optical and UV spectroscopy is available from the literature, and for which we have deep optical images and limited spectroscopy. We also present new optical spectra for two of our samples. Four of these quasars have associated C IV absorption systems. In thes four fields, there are eight galaxies with M(sub r) less than -19.0 mag within 35 kpc of the quasar (projected distance, assuming they are at the quasar redshift), which may be candidates for the associated C IV absorption. This observed density of galaxies near quasars with associated C IV absorption is significantly greater than that for a control sample of quasars chosen from the literature. This result suggests that galaxies near the quasar line of sight may be linked with associated C IV absorption. None of these quasars show associated Mg II absorption, despite the presence of galaxies very near the line of sight, suggesting a Mg II 'proximity effect,' where ionizing flux from the quasar destroys the Mg(+) from at least the outer parts of the galaxies. Three quasars are located in rich galaxy clusters, but none of these quasars are found to have associated C IV absorption. This suggests that galaxies in rich clusters associated with quasars are less likely to be metal-line absorbers. It is plausible that the extended galaxy halos which may be responsible for the absorptions are stripped from galaxies in these dense environments. While it seems that at Z approximately 0.6 rich clusters do not cause them, associated C IV absorption systems at higher redshift may be explained by associated clusters if there has been evolution in the properties of galaxy halos in dense environments.

  14. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line

    NASA Astrophysics Data System (ADS)

    Dong, Lei; Yin, Wangbao; Ma, Weiguang; Jia, Suotang

    2007-05-01

    A novel control system has been developed for avoiding manual operation during traditional frequency locking. The control system uses a computer with a commercial data acquisition card. This accomplishes the whole operation of frequency locking, including generating ramp, searching locking point, engaging a proportional-integral-differential (PID) regulator at the proper time and outputting PID compensation signal. Moreover, a new method has also been employed to make the novel control system accurately identify the locking points of all absorption lines within the scanning range, so that the laser frequency can be automatically firmly brought onto any selected absorption line centre without any adjusting time. The operation of the system, the ability to identify absorption lines and the performance of the frequency locking were discussed in detail. Successful tests were made with two different lasers: external cavity diode lasers and distributed feedback diode lasers.

  15. High-resolution IUE observations of interstellar absorption lines in the Vela supernova remnant

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Wallerstein, G.; Silk, J.

    1984-01-01

    Ultraviolet spectra of 45 stars in the vicinity of the Vela supernova remnant were recorded by the short-wavelength echelle spectrograph aboard the International Ultraviolet Explorer (IUE). Over one-third of the stars show interstellar absorption lines at large radial velocities (greater than 60 km/s). The mapping of these high-velocity components in the sky suggests the motions are chaotic, rather than from a coherent expansion of the remnant material. In accord with earlier conclusions from Copernicus data, the gas at high velocity exhibits higher than normal ionization and shows substantially less depletion of nonvolatile elements than normal interstellar material at low velocities. Relatively strong lines from neutral carbon in the two excited fine-structure states indicate that the neutral clouds within the remnant have had their pressures enhanced by the passage of the blast wave from the supernova. Also, the remnant seems to show a significant enhancement in the abundances of low-velocity Si IV, C IV, and N V over those found in the general interstellar medium.

  16. Magnetic Turbulence and Line Broadening in Simulations of Lyman-Alpha Absorption

    NASA Astrophysics Data System (ADS)

    Gurvich, Alex; Burkhart, Blakesley K.; Bird, Simeon

    2016-01-01

    We use the Illustris cosmological AREPO simulations to study the effects of gas turbulence and magnetic fields on measurements from the Lyman-Alpha forest. We generate simulated Lyman-Alpha spectra and plot the distributions of Column Density (CDD) and Doppler Width (b) both by adhering to the canonical method of fitting Voigt profiles to absorption lines and by directly measuring the column density and equivalent widths from snapshot data .We investigate the effects of additional unresolved gas turbulence in Illustris by adding an additional broadening term to the line profiles to mimic turbulent broadening. When we do this, we find a measurable effect in the CDD and an offset in the mean of the b distribution corresponding to the additional turbulence. We also compare different MHD runs in AREPO we find that the CDD can measurably differentiate between magnetic seed field at redshifts as low as z=0.1, but we do not find that the b distribution is affected at a detectable level. Our work suggests that the effects of turbulence and magnetic fields from z=2-0.1 can potentially be measured with these diagnostics. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  17. C IV Broad Absorption Line Acceleration in Sloan Digital Sky Survey Quasars

    NASA Astrophysics Data System (ADS)

    Grier, C. J.; Brandt, W. N.; Hall, P. B.; Trump, J. R.; Filiz Ak, N.; Anderson, S. F.; Green, Paul J.; Schneider, D. P.; Sun, M.; Vivek, M.; Beatty, T. G.; Brownstein, Joel R.; Roman-Lopes, Alexandre

    2016-06-01

    We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5-5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows a velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.

  18. The radio core and jet in the broad absorption-line quasar PG 1700+518

    NASA Astrophysics Data System (ADS)

    Yang, J.; Wu, F.; Paragi, Z.; An, T.

    2012-01-01

    The blueshifted broad absorption lines (BAL) or troughs are observed in active galactic nuclei (AGNs) when our line of sight is intercepted by a high-speed outflow (wind), likely originating in the accretion disc. The outflow or wind can shed light on the internal structure obscured by the AGN torus. Recently, it has been shown that this outflow is rotating in the BAL quasar PG 1700+518, further supporting the accretion disc origin of the wind. With the purpose of giving independent constraints on the wind geometry, we performed high-resolution European very long baseline interferometry (VLBI) Network (EVN) observations at 1.6 GHz in 2010. Combining the results with the Very Large Array (VLA) archival data at 8.4 GHz, we present its jet structure on scales of parsec (pc) to kiloparsec (kpc) for the first time. The source shows two distinct jet features in east-west direction with a separation of around 4 kpc. The eastern feature, which has so far been assumed to hide the core, is a kpc-scale hotspot, which is completely resolved out in the EVN image. In the western jet feature, we find a compact jet component, which pinpoints the position of the central black hole in the galaxy. Jet components on both sides of the core are additionally detected in the north-west-south-east direction, and they show a symmetric morphology on scale of <1 kpc. This two-sided jet feature is not common in the known BAL quasars and indicates that the jet axis is far away from the line of sight. Furthermore, it is nearly parallel to the scattering plane revealed earlier by optical polarimetry. By analogy to polar-scattered Seyfert 1 galaxies, we conclude that the jet likely has a viewing angle around 45°. The analogy is further supported by the recent report of significant cold absorption in the soft X-rays, a nearly unique feature to polar-scattered Seyfert galaxies. Finally, our observations have confirmed the earlier finding that the majority of radio emission in this galaxy arises

  19. A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1992-01-01

    The far wing line shape theory developed previously and applied to the calculation of the continuum absorption of pure water vapor is extended to foreign-broadened continua. Explicit results are presented for H2O-N2 and H2O-CO2 in the frequency range from 0 to 10,000/cm. For H2O-N2 the positive and negative resonant frequency average line shape functions and absorption coefficients are computed for a number of temperatures between 296 and 430 K for comparison with available laboratory data. In general the agreement is very good.

  20. Modelling the narrow-line regions of active galaxies in the Sloan Digital Sky Survey - I. Sample selection and physical conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Liang, Y. C.; Hammer, F.

    2013-04-01

    Using spectroscopy from the Sloan Digital Sky Survey Data Release Seven, we systematically determine the electron density ne and electron temperature Te of active galaxies and star-forming galaxies, while mainly focusing on the narrow-line regions (NLRs). Herein, active galaxies refer to composites, low-ionization narrow emission-line regions (LINERs) and Seyfert galaxies, following the Baldwin-Phillips-Terlevich diagram classifications afforded by the SDSS data. The plasma diagnostics of ne and Te are determined through the I[S II] λ6716/λ6731 and I[O III] λ5007/λ4363 ratios, respectively. By simultaneously determining ne from [S II] and Te from [O III] in our [O III] λ4363 emission sample of 15 019 galaxies, we find two clear sequences: TLINER ≳ Tcomposite > TSeyfert > Tstar-forming and nLINER ≳ nSeyfert > ncomposite > nstar-forming. The typical range of ne in the NLRs of active galactic nuclei (AGNs) is 102 - 3 cm-3. The temperatures in the NLRs range from 1.0 to 2.0 × 104 K for Seyferts, and the ranges are even higher and wider for LINERs and composites. The transitions of ne and Te from the NLRs to the discs are revealed. We also present a comparative study, including stellar mass (M⋆), specific star formation rate (SFR/M⋆) and plasma diagnostic results. We propose that YL ≳ YSY > YC > YSF, where Y is the characteristic present-day star-formation time-scale. One remarkable feature of the Seyferts shown on an M⋆-SFR/M⋆ diagram, which we call the evolutionary pattern of AGNs with high ionization potential, is that the strong [O III] λ4363 Seyferts distribute uniformly with the weak Seyferts, definitely a reverse of the situation for star-forming galaxies. It is a natural and well-known consensus that strong [O III] λ4363 emissions in star-forming galaxies imply young stellar populations and thus low stellar masses. However, in the AGN case, several strong lines of evidence suggest that some supplementary energy source(s) should be

  1. On the black hole mass of the γ-ray emitting narrow-line Seyfert 1 galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Landt, H.; Ward, M. J.; Baloković, M.; Kynoch, D.; Storchi-Bergmann, T.; Boisson, C.; Done, C.; Schimoia, J.; Stern, D.

    2017-01-01

    Narrow-line Seyfert 1 galaxies have been identified by the Fermi Gamma-Ray Space Telescope as a rare class of γ-ray emitting active galactic nuclei. The lowest redshift candidate among them is the source 1H 0323+342. Here we present quasi-simultaneous Gemini near-infrared and Keck optical spectroscopy for it, from which we derive a black hole mass based on both the broad Balmer and Paschen emission lines. We supplement these observations with a Nuclear Spectroscopic Telescope Array X-ray spectrum taken about two years earlier, from which we constrain the black hole mass based on the short time-scale spectral variability. Our multiwavelength observations suggest a black hole mass of ˜2 × 107 M⊙, which agrees well with previous estimates. We build the spectral energy distribution and show that it is dominated by the thermal and reprocessed emission from the accretion disc rather than the non-thermal jet component. A detailed spectral fitting with the energy-conserving accretion disc model of Done et al. constrains the Eddington ratio to L/LEdd ˜ 0.5 for a (non-rotating) Schwarzschild black hole and to L/LEdd ˜ 1 for a Kerr black hole with dimensionless spin of a⋆ = 0.8. Higher spin values and so higher Eddington ratios are excluded, since they would strongly overpredict the observed soft X-ray flux.

  2. No Evidence for Variability of Intervening Absorption Lines toward GRB 060206: Implications for the MgII Incidence Problem

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Totani, Tomonori; Hattori, Takashi; Ohta, Kouji; Kawabata, Koji S.; Kobayashi, Naoto; Iye, Masanori; Nomoto, Ken'ichi; Kawai, Nobuyuki

    2009-02-01

    We examined the variability of absorption line strength of intervening systems along the line of sight to GRB 060206 at z = 4.05, utilizing low-resolution optical spectra obtained by the Subaru telescope from six to ten hours after the burst. Strong variabilities of FeII and MgII lines at z = 1.48 during t = 5--8hr have been reported for this GRB, and those have been used to support the idea of clumpy MgII cloudlets, which was originally proposed to explain the anomalously high incidence of MgII absorbers in the GRB spectra compared to quasars. However, our spectra with a higher signal-to-noise ratio do not show any evidence for variability in t = 6--10hr. There is a clear discrepancy between our data and those of Hao et al. (2007, ApJ, 659, L99) in the overlapping time interval. Furthermore, the line strengths in our data are in agreement with those observed at t ˜ 2hr by Thöne et al. (2008, A&A, 489, 37). We also detected FeII and MgII absorption lines for a system at z = 2.26; these lines do not show evidence for variability either. Therefore, we conclude that there is no strong evidence for the variability in the intervening absorption lines toward GRB 060206, offering poor support for the MgII cloudlet hypothesis by the GRB 060206 data.

  3. Absorption and emission line shapes in the O2 atmospheric bands - Theoretical model and limb viewing simulations

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Bucholtz, A.; Hays, P. B.; Ortland, D.; Skinner, W. R.

    1989-01-01

    A multiple scattering radiative transfer model has been developed to carry out a line-by-line calculation of the absorption and emission limb measurements that will be made by the High Resolution Doppler Imager to be flown on the Upper Atmosphere Research Satellite. The multiple scattering model uses the doubling and adding methods to solve the radiative transfer equation, modified to take into account a spherical inhomogeneous atmosphere. Representative absorption and emission line shapes in the O2 1Sigma(+)g - 3Sigma(-)g atmospheric bands (A,B, and gamma) and their variation with altitude are presented. The effects of solar zenith angle, aerosol loading, surface albedo, and cloud height on the line shapes are also discussed.

  4. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  5. Probing the Circumgalactic Medium of Submillimeter Galaxies with QSO Absorption Line Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Hennawi, Joseph F.; Prochaska, Jason X.; Stockton, Alan N.; Mutel, Robert Lucien; Casey, Caitlin; Cooray, Asantha R.; Keres, Dusan

    2017-01-01

    We present first results from an ongoing survey to characterize the circumgalactic medium (CGM) of the massive high-redshift galaxieds detected as submillimeter galaxies (SMGs). By cross-matching far-infrared-selected galaxies from Herschel with spectroscopically confirmed quasars, we constructed a sample of 163 SMG-QSO pairs with separations less than 36". We observed 62 SMG-QSO pairs with the Very Large Array (VLA) and the Atacama Large Millimeter Array (ALMA). These observations obtained sub-arcsecond positions of 31 SMGs and identified seven previously-thought SMG-QSO pairs as submillimeter-luminous QSOs. We are currently conducting a redshift survey of the VLA/ALMA-confirmed SMGs and acquiring high S/N UV-optical specrtoscopy of the background QSOs. For the small sample of three VLA-confirmed SMG-QSO pairs that we have the complete data set, absorption line spectra of the background QSOs allow us to analyze the CGM of SMGs for the first time, providing insight into the fuel-supply ultimately powering their tremendous starbursts. Our observations reveal strong HI Ly-alpha absorption (rest-frame equivalent widths about 2-3 A) around all three SMGs; however, none exhibit compelling evidence for strong neutral absorbers (NHI > 1017.2 cm-2) or metal absorption, allowing us to place an 1-sigma upper limit on the covering factor of optically thick HI gas around SMGs of fC < 36.9%. This is significantly lower than the covering factor around the co-eval population of luminous QSOs. Theoretical models predict that the structure of the CGM is entirely determined by dark matter halo mass. Given that that SMGs are believed to inhabit massive dark matter halos comparable to those hosting quasars, this difference in covering factor is unexpected. Therefore, our results tentatively indicate that SMGs may not have substantial cool gas reservoirs in their halos and that they may inhabit much less massive halos than previously thought.

  6. Dependence of the Broad Absorption Line Quasar Fraction on Radio Luminosity

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Dai, Xinyu; Sivakoff, Gregory R.

    2008-11-01

    We find that the fraction of classical broad absorption line quasars (BALQSOs) among the FIRST radio sources in the Sloan Data Release 3, is 20.5+ 7.3-5.9% at the faintest radio powers detected (L1.4 GHz ~ 1032 erg s-1), and rapidly drops to lesssim8% at L1.4 GHz ~ 3 × 1033 erg s-1. Similarly, adopting the broader absorption index (AI) definition of Trump et al., we find the fraction of radio BALQSOs to be 44+ 8.1-7.8%, reducing to 23.1+ 7.3-6.1% at high luminosities. While the high fraction at low radio power is consistent with the recent near-IR estimates by Dai et al., the lower fraction at high radio powers is intriguing and confirms previous claims based on smaller samples. The trend is independent of the redshift range, the optical and radio flux selection limits, or the exact definition of a radio match. We also find that at fixed optical magnitude, the highest bins of radio luminosity are preferentially populated by non-BALQSOs, consistent with the overall trend. We do find, however, that those quasars identified as AI-BALQSOs but not under the classical definition do not show a significant drop in their fraction as a function of radio power, further supporting independent claims that these sources, characterized by lower equivalent width, may represent an independent class from the classical BALQSOs. We find the balnicity index, a measure of the absorption trough in BALQSOs, and the mean maximum wind velocity to be roughly constant at all radio powers. We discuss several plausible physical models which may explain the observed fast drop in the fraction of the classical BALQSOs with increasing radio power, although none is entirely satisfactory. A strictly evolutionary model for the BALQSO and radio emission phases requires a strong fine-tuning to work, while a simple geometric model, although still not capable of explaining polar BALQSOs and the paucity of FRII BALQSOs, is statistically successful in matching the data if part of the apparent radio

  7. A Direct Linkage between AGN Outflows in the Narrow-line Regions and the X-Ray Emission from the Accretion Disks

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xu, D. W.; Wei, J. Y.

    2016-03-01

    The origin of outflow in the narrow-line region (NLR) of the active galactic nucleus (AGN) is studied in this paper by focusing on the relationship between the [O iii]λ5007 line profile and the hard-X-ray (in a bandpass of 2-10 keV) emission from the central super-massive black hole (SMBH) in type-I AGNs. A sample of 47 local X-ray selected type-I AGNs at z\\lt 0.2 is extracted from the 2XMMi/SDSS-DR7 catalog, which was originally cross-matched by Pineau et al. The X-ray luminosities in an energy band from 2 to 10 keV of these luminous AGNs range from 1042 to {10}44 {erg} {{{s}}}-1. A joint spectral analysis is performed on their optical and X-ray spectra, in which the [O iii] line profile is modeled by a sum of several Gaussian functions to quantify its deviation from a pure Gaussian function. The statistics allow us to identify a moderate correlation with a significance level of 2.78σ: luminous AGNs with stronger [O iii] blue asymmetry tend to have steeper hard-X-ray spectra. By identifying the role of L/{L}{Edd} on the correlation at a 2-3σ significance level in both direct and indirect ways, we argue that the photon index versus the asymmetry correlation provides evidence that the AGN’s outflow commonly observed in its NLR is related to the accretion process occurring around the central SMBH, which favors the wind/radiation model as the origin of the outflow in luminous AGNs.

  8. Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Hutsemékers, D.; Anguita, T.; Braibant, L.; Riaud, P.

    2015-10-01

    Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques that can test this model, yielding to the measurement of the size and of temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions: a microlensed region, corresponding the compact accretion disc; and a non-microlensed region, more extended and contributing to at least 30% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated with the host galaxy, but rather with light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of the compact continuum over the rest-frame wavelength range 1000-7000 Å. Following a Bayesian scheme, we confront our measurements to microlensing simulations of an accretion disc with a temperature varying as T ∝ R-1/ν. We find a most likely source half-light radius of R1/2 = 0.61 × 1016cm (i.e., 0.002 pc) at 0.18 μm, and a most-likely index of ν = 0.4. The standard disc (ν = 4/3) model is not ruled out by our data, and is found within the 95% confidence interval associated with our measurements. We demonstrate that, for H1413+117, the existence of an extended continuum in addition to the disc emission only has a small impact on the inferred disc parameters, and is unlikely to solve the tension between the microlensing source size and standard disc sizes, as previously reported in the literature. Based on observations made with ESO Telescopes at the Paranal Observatory (Chile). ESO program ID: 386.B-0337.Appendices A and B are available in electronic form

  9. Broad absorption line variability on multi-year timescales in a large quasar sample

    NASA Astrophysics Data System (ADS)

    Filiz Ak, Nurten

    Outflows launched near the central supermassive black holes (SMBHs) are a common and important component of active galactic nuclei (AGNs). Outflows in luminous AGNs (i.e., quasars) play a key role in mass accretion onto SMBH as well as in the feedback into host galaxies. The most prominent signature of such outflows appears as broad absorption lines (BALs) that are blueshifted from the emission line with a few thousands km s--1 velocities. In this dissertation, I place further constrains upon the size scale, internal structure, dynamics, and evolution of the outflows investigating profiles, properties, and variation characteristics of BAL troughs. I present observational results on BAL troughs in a large quasar sample utilizing spectroscopic observations from the Sloan Digital Sky Survey spanning on multi-year timescales. The results presented here, for the first time, provide a large and well-defined variability data base capable of discriminating between time-dependent hydrodynamic wind calculations in a statistically powerful manner. In a study of 582 quasars, I present 21 examples of BAL trough disappearance. Approximately 3.3% of BAL quasars show disappearing C IV trough on rest-frame timescales of 1.1--3.9 yr. BAL disappearance appears to occur mainly for shallow and weak or moderate-strength absorption troughs but not the strongest ones. When one BAL trough in a quasar spectrum disappears, the other present troughs usually weaken. Possible causes of such coordinated variations could be disk-wind rotation or variations of shielding gas that lead to variations of ionizing-continuum radiation. I present a detailed study on the variability of 428 C IV and 235 Si IV BAL troughs using a systematically observed sample of 291 BAL quasars. BAL variation distributions indicate that BAL disappearance is an extreme type of general BAL variability, rather than a qualitatively distinct phenomenon. The high observed frequency of BAL variability on multi-year timescales is

  10. Massive stars exploding in a He-rich circumstellar medium - VII. The metamorphosis of ASASSN-15ed from a narrow line Type Ibn to a normal Type Ib Supernova

    NASA Astrophysics Data System (ADS)

    Pastorello, A.; Prieto, J. L.; Elias-Rosa, N.; Bersier, D.; Hosseinzadeh, G.; Morales-Garoffolo, A.; Noebauer, U. M.; Taubenberger, S.; Tomasella, L.; Kochanek, C. S.; Falco, E.; Basu, U.; Beacom, J. F.; Benetti, S.; Brimacombe, J.; Cappellaro, E.; Danilet, A. B.; Dong, Subo; Fernandez, J. M.; Goss, N.; Granata, V.; Harutyunyan, A.; Holoien, T. W.-S.; Ishida, E. E. O.; Kiyota, S.; Krannich, G.; Nicholls, B.; Ochner, P.; Pojmański, G.; Shappee, B. J.; Simonian, G. V.; Stanek, K. Z.; Starrfield, S.; Szczygieł, D.; Tartaglia, L.; Terreran, G.; Thompson, T. A.; Turatto, M.; Wagner, R. M.; Wiethoff, W. S.; Wilber, A.; Woźniak, P. R.

    2015-11-01

    We present the results of the spectroscopic and photometric monitoring campaign of ASASSN-15ed. The transient was discovered quite young by the All Sky Automated Survey for SuperNovae (ASAS-SN) survey. Amateur astronomers allowed us to sample the photometric SN evolution around maximum light, which we estimate to have occurred on JD = 2457087.4 ± 0.6 in the r band. Its apparent r-band magnitude at maximum was r = 16.91 ± 0.10, providing an absolute magnitude Mr ≈ -20.04 ± 0.20, which is slightly more luminous than the typical magnitudes estimated for Type Ibn SNe. The post-peak evolution was well monitored, and the decline rate (being in most bands around 0.1 mag d-1 during the first 25 d after maximum) is marginally slower than the average decline rates of SNe Ibn during the same time interval. The object was initially classified as a Type Ibn SN because early-time spectra were characterized by a blue continuum with superimposed narrow P-Cygni lines of He I, suggesting the presence of a slowly moving (1200-1500 km s-1), He-rich circumstellar medium. Later on, broad P-Cygni He I lines became prominent. The inferred velocities, as measured from the minimum of the broad absorption components, were between 6000 and 7000 km s-1. As we attribute these broad features to the SN ejecta, this is the first time we have observed the transition of a Type Ibn SN to a Type Ib SN.

  11. Isotopic ratios at z = 0.68 from molecular absorption lines toward B 0218+357

    NASA Astrophysics Data System (ADS)

    Wallström, S. H. J.; Muller, S.; Guélin, M.

    2016-11-01

    Isotopic ratios of heavy elements are a key signature of the nucleosynthesis processes in stellar interiors. The contribution of successive generations of stars to the metal enrichment of the Universe is imprinted on the evolution of isotopic ratios over time. We investigate the isotopic ratios of carbon, nitrogen, oxygen, and sulfur through millimeter molecular absorption lines arising in the z = 0.68 absorber toward the blazar B 0218+357. We find that these ratios differ from those observed in the Galactic interstellar medium, but are remarkably close to those in the only other source at intermediate redshift for which isotopic ratios have been measured to date, the z = 0.89 absorber in front of PKS 1830-211. The isotopic ratios in these two absorbers should reflect enrichment mostly from massive stars, and they are indeed close to the values observed toward local starburst galaxies. Our measurements set constraints on nucleosynthesis and chemical evolution models. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A96

  12. Fast outflows in broad absorption line quasars and their connection with CSS/GPS sources

    NASA Astrophysics Data System (ADS)

    Bruni , G.; Mack, K.-H.; Montenegro-Montes, F. M.; Brienza, M.; González-Serrano, J. I.

    2016-02-01

    Broad absorption line quasars are among the objects presenting the fastest outflows. The launching mechanism itself is not completely understood. Models in which they could be launched from the accretion disk, and then curved and accelerated by the effect of the radiation pressure, have been presented. We conducted an extensive observational campaign, from radio to optical band, to collect information about their nature and test the models present in the literature, the main dichotomy being between a young scenario and an orientation one. We found a variety of possible orientations, morphologies, and radio ages, not converging to a particular explanation for the BAL phenomenon. From our latest observations in the m- and mm-band, we obtained an indication of a lower dust abundance with respect to normal quasars, thus suggesting a possible feedback process on the host galaxy. Also, in the low-frequency regime we confirmed the presence of CSS components, sometime in conjunction with a GPS one already detected at higher frequencies. Following this, about 70 % of our sample turns out to be in a GPS or CSS+GPS phase. We conclude that fast outflows, responsible for the BAL features, can be more easily present among objects going through a restarting or just-started radio phase, where radiation pressure can substantially contribute to their acceleration.

  13. MOSFIRE ABSORPTION LINE SPECTROSCOPY OF z > 2 QUIESCENT GALAXIES: PROBING A PERIOD OF RAPID SIZE GROWTH

    SciTech Connect

    Belli, Sirio; Ellis, Richard S.; Konidaris, Nick P.; Newman, Andrew B.

    2014-06-20

    Using the MOSFIRE near-infrared multi-slit spectrograph on the Keck 1 Telescope, we have secured high signal-to-noise ratio absorption line spectra for six massive galaxies with redshift 2 < z < 2.5. Five of these galaxies lie on the red sequence and show signatures of passive stellar populations in their rest-frame optical spectra. By fitting broadened spectral templates we have determined stellar velocity dispersions and, with broad-band Hubble Space Telescope and Spitzer photometry and imaging, stellar masses and effective radii. Using this enlarged sample of galaxies, we confirm earlier suggestions that quiescent galaxies at z > 2 have small sizes and large velocity dispersions compared to local galaxies of similar stellar mass. The dynamical masses are in very good agreement with stellar masses (log M {sub *}/M {sub dyn} = –0.02 ± 0.03), although the average stellar-to-dynamical mass ratio is larger than that found at lower redshift (–0.23 ± 0.05). By assuming evolution at fixed velocity dispersion, not only do we confirm a surprisingly rapid rate of size growth but we also consider the necessary evolutionary track on the mass-size plane and find a slope α = dlog R{sub e} /dlog M {sub *} ≳ 2 inconsistent with most numerical simulations of minor mergers. Both results suggest an additional mechanism may be required to explain the size growth of early galaxies.

  14. Inner jet kinematics and the viewing angle towards the γ-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Lars; Karamanavis, Vassilis; Komossa, Stefanie; Angelakis, Emmanouil; Krichbaum, Thomas P.; Schulz, Robert; Kreikenbohm, Annika; Kadler, Matthias; Myserlis, Ioannis; Ros, Eduardo; Nestoras, Ioannis; Zensus, J. Anton

    2016-11-01

    Near-Eddington accretion rates onto low-mass black holes are thought to be a prime driver of the multi-wavelength properties of the narrow-line Seyfert 1 (NLS1) population of active galactic nuclei (AGNs). Orientation effects have repeatedly been considered as another important factor involved, but detailed studies have been hampered by the lack of measured viewing angles towards this type of AGN. Here we present multi-epoch, 15 GHz VLBA images (MOJAVE program) of the radio-loud and Fermi/LAT-detected NLS1 galaxy 1H 0323+342. These are combined with single-dish, multi-frequency radio monitoring of the source's variability, obtained with the Effelsberg 100-m and IRAM 30-m telescopes, in the course of the F-GAMMA program. The VLBA images reveal six components with apparent speeds of ˜ 1-7 c, and one quasi-stationary feature. Combining the obtained apparent jet speed (β app) and variability Doppler factor (D var) estimates together with other methods, we constrain the viewing angle θ towards 1H 0323+342 to θ ≤ 4°-13°. Using literature values of βapp and D var, we also deduce a viewing angle of ≤ 8°-9° towards another radio- and γ-ray-loud NLS1, namely SBS 0846+513.

  15. Jet Properties of GeV-Selected Radio-Loud Narrow-line Seyfert 1 Galaxies and Possible Connection to Their Disk and Corona

    NASA Astrophysics Data System (ADS)

    Zhang, Jin

    2015-08-01

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlated with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (Lcorona) to the accretion disk luminosity (Ld) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with Lcorona. However, it is still unclear whether a system with a high Lcorona/Ld ratio prefers to power a jet.

  16. Jet Properties of GeV-selected Radio-loud Narrow-line Seyfert 1 Galaxies and Possible Connection to Their Disk and Corona

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Na; Zhang, Jin; Lin, Da-Bin; Xue, Zi-Wei; Liang, En-Wei; Zhang, Shuang-Nan

    2015-01-01

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlated with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L corona) to the accretion disk luminosity (L d) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L corona. However, it is still unclear whether a system with a high L corona/L d ratio prefers to power a jet.

  17. Keck LGS AO Imaging of QSOs with Double-Peaked or Offset Narrow Lines: Are They Signs of Potential Black Hole Mergers?

    NASA Astrophysics Data System (ADS)

    McGurk, Rosalie C.; Rosario, D. J.; Max, C. E.; Shields, G. A.; Smith, K. L.

    2011-01-01

    Hierarchical merging of smaller structures into larger ones is fundamental to galaxy evolution in ΛCDM cosmologies. The Mbh sigma relation suggests that when galaxies merge, their central supermassive black holes merge and grow as well. Using spectroscopic surveys such as SDSS and DEEP, candidates for galaxies containing two active black holes or an offset black hole have been identified by double-peaked or offset narrow emission lines. However it is not yet known whether these galaxies correspond to systems in which there are actually double supermassive black holes. With the Keck 2 Laser Guide Star Adaptive Optics system and the NIRC2 camera, we have obtained high spatial resolution near-infrared images of spectroscopically identified candidate galaxies that may contain two supermassive black holes. In our sample of 24 galaxies to date, approximately half are in close mergers, have close companion galaxies, and/or show clearly disturbed morphologies. We discuss the implications of our observations for the fueling of merging supermassive black holes as well as for the relationship between QSO activity and major mergers. Most of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

  18. JET PROPERTIES OF GeV-SELECTED RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES AND POSSIBLE CONNECTION TO THEIR DISK AND CORONA

    SciTech Connect

    Sun, Xiao-Na; Lin, Da-Bin; Liang, En-Wei; Zhang, Jin; Xue, Zi-Wei; Zhang, Shuang-Nan

    2015-01-01

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlated with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.

  19. MINUTE-SCALE RAPID VARIABILITY OF THE OPTICAL POLARIZATION IN THE NARROW-LINE SEYFERT 1 GALAXY PMN J0948+0022

    SciTech Connect

    Itoh, Ryosuke; Tanaka, Yasuyuki T.; Fukazawa, Yasushi; Kawaguchi, Kenji; Takaki, Katsutoshi; Ueno, Issei; Kawabata, Koji S.; Moritani, Yuki; Uemura, Makoto; Akitaya, Hiroshi; Yoshida, Michitoshi; Ohsugi, Takashi; Hanayama, Hidekazu; Miyaji, Takeshi; Kawai, Nobuyuki

    2013-09-20

    We report on optical photopolarimetric results of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy PMN J0948+0022 on 2012 December to 2013 February triggered by flux enhancements in the near infrared and γ-ray bands. With the one-shot polarimetry of the Hiroshima One-shot Wide field Polarimeter installed on the Kanata Telescope, we detected very rapid variability in the polarized-flux (PF) light curve on MJD 56281 (2012 December 20). The rise and decay times were about 140 s and 180 s, respectively. The polarization degree (PD) reached 36% ± 3% at the peak of the short-duration pulse, while the polarization angle remained almost constant. In addition, temporal profiles of the total flux and PD showed highly variable but well correlated behavior and discrete correlation function analysis revealed that no significant time lag of more than 10 minutes was present. The high PD and minute-scale variability in PF provides clear evidence of synchrotron radiation from a very compact emission region of ∼10{sup 14} cm size with a highly ordered magnetic field. Such micro-variability of polarization is also observed in several blazar jets, but its complex relation between total flux and PD are explained by a multi-zone model in several blazars. The implied single emission region in PMN J0948+0022 might reflect a difference of jets between RL-NLSy1s and blazars.

  20. Minute-scale Rapid Variability of the Optical Polarization in the Narrow-line Seyfert 1 Galaxy PMN J0948+0022

    NASA Astrophysics Data System (ADS)

    Itoh, Ryosuke; Tanaka, Yasuyuki T.; Fukazawa, Yasushi; Kawabata, Koji S.; Kawaguchi, Kenji; Moritani, Yuki; Takaki, Katsutoshi; Ueno, Issei; Uemura, Makoto; Akitaya, Hiroshi; Yoshida, Michitoshi; Ohsugi, Takashi; Hanayama, Hidekazu; Miyaji, Takeshi; Kawai, Nobuyuki

    2013-09-01

    We report on optical photopolarimetric results of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy PMN J0948+0022 on 2012 December to 2013 February triggered by flux enhancements in the near infrared and γ-ray bands. With the one-shot polarimetry of the Hiroshima One-shot Wide field Polarimeter installed on the Kanata Telescope, we detected very rapid variability in the polarized-flux (PF) light curve on MJD 56281 (2012 December 20). The rise and decay times were about 140 s and 180 s, respectively. The polarization degree (PD) reached 36% ± 3% at the peak of the short-duration pulse, while the polarization angle remained almost constant. In addition, temporal profiles of the total flux and PD showed highly variable but well correlated behavior and discrete correlation function analysis revealed that no significant time lag of more than 10 minutes was present. The high PD and minute-scale variability in PF provides clear evidence of synchrotron radiation from a very compact emission region of ~1014 cm size with a highly ordered magnetic field. Such micro-variability of polarization is also observed in several blazar jets, but its complex relation between total flux and PD are explained by a multi-zone model in several blazars. The implied single emission region in PMN J0948+0022 might reflect a difference of jets between RL-NLSy1s and blazars.

  1. Probing the physicochemical interactions of 3-hydroxy-benzo[a]pyrene with different monoclonal and recombinant antibodies by use of fluorescence line-narrowing spectroscopy.

    PubMed

    Eisold, Ursula; Kupstat, Annette; Klier, Dennis; Primus, Philipp-A; Pschenitza, Michael; Niessner, Reinhard; Knopp, Dietmar; Kumke, Michael U

    2014-05-01

    Characterization of interactions between antigens and antibodies is of utmost importance both for fundamental understanding of the binding and for development of advanced clinical diagnostics. Here, fluorescence line-narrowing (FLN) spectroscopy was used to study physicochemical interactions between 3-hydroxybenzo[a]pyrene (3OH-BaP, as antigen) and a variety of solvent matrices (as model systems) or anti-polycyclic aromatic hydrocarbon antibodies (anti-PAH). We focused the studies on the specific physicochemical interactions between 3OH-BaP and different, previously obtained, monoclonal and recombinant anti-PAH antibodies. Control experiments performed with non-binding monoclonal antibodies and bovine serum albumin (BSA) indicated that nonspecific interactions did not affect the FLN spectrum of 3OH-BaP. The spectral positions and relative intensities of the bands in the FLN spectra are highly dependent on the molecular environment of the 3OH-BaP. The FLN bands correlate with different vibrational modes of 3OH-BaP which are affected by interactions with the molecular environment (π-π interactions, H-bonding, or van-der-Waals forces). Although the analyte (3OH-BaP) was the same for all the antibodies investigated, different binding interactions could be identified from the FLN spectra on the basis of structural flexibility and conformational multiplicity of the antibodies' paratopes.

  2. Similarity of jet radiation between flat spectrum radio quasars and GeV narrow-line Seyfert 1 galaxies: a universal δ-L c correlation

    NASA Astrophysics Data System (ADS)

    Zhu, Yong-Kai; Zhang, Jin; Zhang, Hai-Ming; Liang, En-Wei; Yan, Da-Hai; Cui, Wei; Zhang, Shuang-Nan

    2016-11-01

    By modeling the broadband spectral energy distributions (SEDs) of a typical flat spectrum radio quasar (FSRQ, 3C 279) and two GeV narrow-line Seyfert 1 galaxies (NLS1s, PMN J0948+0022 and 1H 0323+342) in different flux stages with one-zone leptonic models, we find a universal correlation between their Doppler factors (δ) and peak luminosities (L c) of external Compton scattering bumps. Compiling a combined sample of FSRQs and GeV NLS1s, it is found that both FSRQs and GeV NLS1s in different stages and in different sources follow the same δ-L c correlation well. This indicates that the variations of observed luminosities may be essentially due to the Doppler boosting effect. The universal δ-L c relation between FSRQs and GeV NLS1s in different stages may be further evidence that the particle acceleration and radiation mechanisms for the two kinds of sources are similar. In addition, by replacing L c with the observed luminosity in the Fermi/LAT band (L LAT), this correlation holds and it may serve as an empirical indicator of δ. We estimate the δ values with L LAT for 484 FSRQs in the Fermi/LAT Catalog and they range from 3 to 41, with a median of 16, which are statistically consistent with the values derived by other methods.

  3. Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2015-02-09

    We examine the impact of broadened laser line-shape on retrievals of atmospheric species from lidar-sounding absorption spectra. The laser is assumed to be deterministically modulated into a stable, nearly top-hat frequency comb to suppress the stimulated Brillouin scattering, allowing over 10-fold pulse energy increase without adding measurement noise. Our model remains accurate by incorporating the laser line-shape factor into the effective optical depth. Retrieval errors arising from measurement noise and model bias are analyzed parametrically and numerically to provide deeper insight. The stable laser line-shape broadening minimally degrades the column-averaged retrieval, but can significantly degrade the multiple-layer retrievals.

  4. Compact steep-spectrum sources as the parent population of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Berton, M.; Caccianiga, A.; Foschini, L.; Peterson, B. M.; Mathur, S.; Terreran, G.; Ciroi, S.; Congiu, E.; Cracco, V.; Frezzato, M.; La Mura, G.; Rafanelli, P.

    2016-06-01

    Narrow-line Seyfert 1 galaxies (NLS1s) are an interesting subclass of active galactic nuclei (AGN), which tipically does not exhibit any strong radio emission. Seven percent of them, though, are radio-loud and often show a flat radio-spectrum (F-NLS1s). This, along to the detection of γ-ray emission coming from them, is usually interpreted as a sign of a relativistic beamed jet oriented along the line of sight. An important aspect of these AGN that must be understood is the nature of their parent population, in other words how do they appear when observed under different angles. In the recent literature it has been proposed that a specific class of radio-galaxies, compact-steep sources (CSS) classified as high excitation radio galaxies (HERG), can represent the parent population of F-NLS1s. To test this hypothesis in a quantitative way,in this paper we analyzed the only two statistically complete samples of CSS/HERGs and F-NLS1s available in the literature. We derived the black hole mass and Eddington ratio distributions, and we built for the first time the radio luminosity function of F-NLS1s. Finally, we applied a relativistic beaming model to the luminosity function of CSS/HERGs, and compared the result with the observed function of F-NLS1s. We found that compact steep-spectrum sources are valid parent candidates and that F-NLS1s, when observed with a different inclination, might actually appear as CSS/HERGs.

  5. Highly Ionized Iron Absorption Lines from Outflowing Gases in the X-ray Spectrum of NGC 1365

    NASA Technical Reports Server (NTRS)

    Risaliti, G.; Bianchi, S.; Matt, G.; Baldi, A.; Elvis, M.; Fabbiano, G.; Zezas, A.

    2006-01-01

    We present the discovery of four absorption lines in the X-ray spectrum of the Seyfert galaxy NGC 1365, at energies between 6.7 and 8.3 keV. The lines are detected with high statistical confidence (from >20 sigma for the strongest to -4 sigma for the weakest) in two XMM-Newton observations 60 ks long. We also detect the same lines, with a lower signal-to-noise ratio (but still >2 sigma for each line), in two previous shorter (-10 ks) XMM-Newton observations. The spectral analysis identifies these features as Fe XXV and Fe XXVI Kalpha and Kbeta lines, outflowing with velocities varying between -1000 and -5000 km/s among the observations. These are the highest quality detections of such lines so far. The high equivalent widths [EW (Kalpha) approximately 100 eV] and the Kalpha/Kbeta ratios imply that the lines are due to absorption of the AGN continuum by a highly ionized gas with column density NH-5?1023 cm(exp -2) at a distance of -(50-100)RS from the continuum source.

  6. Soliton absorption spectroscopy

    PubMed Central

    Kalashnikov, V. L.; Sorokin, E.

    2010-01-01

    We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width using the novel perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively modelocked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurement in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improving of the sensitivity and spectroscopic accuracy making the soliton absorption spectroscopy a promising novel measurement technique. PMID:21151755

  7. The Nature of Low-ionization Broad Absorption Line Quasi-stellar Objects

    NASA Astrophysics Data System (ADS)

    Lazarova, Mariana Spasova

    The tight correlations between properties of galaxy bulges and their central supermassive black holes have been reproduced successfully in simulations of galaxy collisions if feedback processes are invoked. Mergers of gas-rich galaxies of comparable size have been shown to trigger starbursts, fuel the central black holes, and transform disks into ellipticals. Feedback from the black hole accretion in the form of extreme outflows has need suggested as the mechanism by which the black hole stop its own growth and quenches the star formation in the galaxy by expelling the gas supply. Such winds have been detected in Broad Absorption Line (BAL) QSOs. However, observational evidence that BAL QSOs may be an evolutionary link between mergers and QSO is missing. In this thesis, we provide the first detailed study of the spectral energy distributions and host galaxy morphologies of a statistically significant volume-limited sample of 22 optically-selected low-ionization Broad Absorption Line QSOs (LoBALs) at 0.5 < z < 0.6. By comparing their mid-IR spectral properties and far-IR SEDs with those of a control sample of 35 non-LoBALs (non-LoBALs) matched in Mi, we investigate the differences between the two populations in terms of their infrared emission and star formation activity. We model the SEDs and decouple the AGN and starburst contributions to the far-infrared luminosity in LoBALs and in non-LoBALs. We estimate star formation rates (SFRs) corrected for the AGN contribution to the FIR flux and find that LoBALs have comparable levels of star formation activity to non-LoBALs when considering the entire samples. Overall, our results show that there is no strong evidence from the mid- and far-IR properties that LoBALs are drawn from a different parent population than non-LoBALs. We conducted the first high-resolution morphological analysis of LoBALs using observations obtained with the Hubble Space Telescope Wide Field Camera 3 in two channels. Signs of recent or ongoing

  8. Molecular gas in absorption and emission along the line of sight to W31C G10.62-0.38

    NASA Astrophysics Data System (ADS)

    Liszt, H. S.; Gerin, M.

    2016-01-01

    Context. The sightline to W31C G10.62-0.38 was extensively observed in absorption under the PRISMAS program on Herschel. Aims: We relate absorbing material to the older view of Galactic molecules gained from CO emission. Methods: We used the Arizona Radio Observatory Kitt Peak 12m antenna to observe emission from the J = 1-0 lines of carbon monoxide, HCO+, and HNC, and the J = 2-1 line of CS toward and around the continuum peak used for absorption studies and we compare them with CH, HNC, C+, and other absorption spectra from PRISMAS. We develop a kinematic analysis that allows a continuous description of the spectral properties and relates them to viewing geometry in the Galaxy. Results: As it is for CH, HF, C+, HCO+, and other species observed in absorption, mm-wave emission in CO, HCO+, HNC, and CS is continuous over the full velocity range expected for material between the Sun and W31 4.95 kpc away. CO emission is much stronger than average in the Galactic molecular ring and the mean H2 density derived from CH, 4 cm-3 ≲ 2⟨ n(H2) ⟩ ≲ 10 cm-3 at 4 ≲ R ≲ 6.4 kpc, is similarly elevated. The CO-H2 conversion factor falls in a narrow range XCO= 1-2 × 1020 H2 cm-2 (K-km s-1)-1 if the emitting gas is mostly on the near side of the subcentral point, as we suggest. The brightnesses of HCO+, HNC, and CS are comparable (0.83%, 0.51%, and 1.1%, respectively, relative to CO) and have no variation in galactocentric radius with respect to CO. Comparison of the profile-averaged HCO+ emission brightness and optical depth implies local densities n(H) ≈ 135 ± 25 cm-3 with most of the excitation of HCO+ from electrons. At this level of density, a consistent picture of the H2-bearing gas, which also accounts for the CO emission, has a volume filling factor of 3% and a 5 pc clump or cloud size.

  9. Variation of Ionizing Continuum: The Main Driver of Broad Absorption Line Variability

    NASA Astrophysics Data System (ADS)

    He, Zhicheng; Wang, Tinggui; Zhou, Hongyan; Bian, Weihao; Liu, Guilin; Yang, Chenwei; Dou, Liming; Sun, Luming

    2017-04-01

    We present a statistical analysis of the variability of broad absorption lines (BALs) in quasars using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12). We divide the sample into two groups according to the pattern of the variation of C iv BAL with respect to that of a continuum: the equivalent widths (EW) of the BAL decreases (increases) when the continuum brightens (dims) as group T1; and the variation of the EW and the continuum in the opposite relation of group T2. We find that T2 has significantly ({P}{{T}}< {10}-6, Students T Test) higher EW ratios (R) of Si iv to C iv BAL than T1. Our result agrees with the prediction of photoionization models that {C}+3 column density increases (decreases) if there is a (or no) {C}+3 ionization front, while R decreases with the incident continuum. We show that BAL variabilities in at least 80% of quasars are driven by the variation of an ionizing continuum, while other models that predict uncorrelated BAL and continuum variability contribute less than 20%. Considering large uncertainty in the continuum flux calibration, the latter fraction may be much smaller. When the sample is binned into different time intervals between the two observations, we find significant difference in the distribution of R between T1 and T2 in all time-bins down to {{Δ }}T< 6 days, suggesting that the BAL outflow in a fraction of quasars has a recombination timescale of only a few days.

  10. Formation of a Giant Galactic Gaseous Halo: Metal-Absorption Lines and High-Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Li, Fan

    1992-04-01

    A Galactic gaseous halo formed through the interstellar disk-halo connection is simulated by means of a two-dimensional axisymmetric hydrodynamic code based upon the chimney model of the interstellar medium, a new version of the galactic fountain. Galactic rotation, heating processes by diffuse UV flux, and radiative cooling processes are taken into account. The resulting gaseous halo can be divided into three categories, i.e., wind-type halo, bound-type halo, and cooled-type halo. In this way, we try to reproduce the column densities of C IV, N V, O VI, and Si IV in the observed absorption lines of halo stars. Assuming that the radiatively cooled halo gas condenses into clouds due to thermal instabilities, we can calculate their distribution and ballistic motions in the Galactic gravitational field. These correspond to the high- and intermediate-velocity clouds observed at high Galactic latitudes. We find that a cooled-type halo with a gas temperature between 5 X 10^5 and 10^6 K and a density between 10^-3 and 10^-2 cm^-3 at the disk-halo interface can reproduce the observational facts about our Galaxy. Supposing that the metal-absorption-line systems of QSOs arise from the halos of intervening galaxies formed by similar processes, we calculate features of the Ca II, Mg II, C IV, and Si IV absorption lines in various stages of galactic evolution. We conclude that C IV systems which are greater than 50 kpc in size correspond to the wind-type halo. On the other hand, Mg II and Ca II systems can only be detected in a very restricted region ( Metaxa, SMALL FAINT CLUSTERS IN THE LMC This is a short review of the main results of my Ph.D. thesis concerning some important problems on the dynamical properties of the LMC star clusters. The topic of this thesis was to find and study the dynamical paramters (tidal radius r_t core radius r_c concentration parameters log (r_t/r_c), and total mass M) for a large sample of small LMC clusters and to define their location in the

  11. Short-term radio variability and parsec-scale structure in A gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    SciTech Connect

    Wajima, Kiyoaki; Fujisawa, Kenta; Hayashida, Masaaki; Isobe, Naoki; Ishida, Takafumi; Yonekura, Yoshinori

    2014-02-01

    We made simultaneous single-dish and very long baseline interferometer (VLBI) observations of a narrow-line Seyfert 1 galaxy 1H 323+342, showing gamma-ray activity revealed by Fermi/Large Area Telescope observations. We found significant variation of the total flux density at 8 GHz on the timescale of one month by the single-dish monitoring. The total flux density varied by 5.5% in 32 days, which is comparable to the gamma-ray variability timescale, corresponding to the variability brightness temperature of 7.0 × 10{sup 11} K. The source consists of central and southeastern components on the parsec (pc) scale. Only the flux of the central component decreased in the same way as the total flux density, indicating that the short-term radio variability, and probably the gamma-ray-emitting region, is associated with this component. From the VLBI observations, we obtained brightness temperatures of greater than (5.2 ± 0.3) × 10{sup 10} K and derived an equipartition Doppler factor of greater than 1.7, a variability Doppler factor of 2.2, and an 8 GHz radio power of 10{sup 24.6} W Hz{sup –1}. Combining them, we conclude that acceleration of radio jets and creation of high-energy particles are ongoing in the central engine and that the apparent very radio-loud feature of the source is due to the Doppler boosting effect, resulting in the intrinsic radio loudness being an order of magnitude smaller than the observed values. We also conclude that the pc-scale jet represents recurrent activity from the spectral fitting and the estimated kinematic age of pc- and kpc-scale extended components with different position angles.

  12. Short-term Radio Variability and Parsec-scale Structure in a Gamma-Ray Narrow-line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Wajima, Kiyoaki; Fujisawa, Kenta; Hayashida, Masaaki; Isobe, Naoki; Ishida, Takafumi; Yonekura, Yoshinori

    2014-02-01

    We made simultaneous single-dish and very long baseline interferometer (VLBI) observations of a narrow-line Seyfert 1 galaxy 1H 323+342, showing gamma-ray activity revealed by Fermi/Large Area Telescope observations. We found significant variation of the total flux density at 8 GHz on the timescale of one month by the single-dish monitoring. The total flux density varied by 5.5% in 32 days, which is comparable to the gamma-ray variability timescale, corresponding to the variability brightness temperature of 7.0 × 1011 K. The source consists of central and southeastern components on the parsec (pc) scale. Only the flux of the central component decreased in the same way as the total flux density, indicating that the short-term radio variability, and probably the gamma-ray-emitting region, is associated with this component. From the VLBI observations, we obtained brightness temperatures of greater than (5.2 ± 0.3) × 1010 K and derived an equipartition Doppler factor of greater than 1.7, a variability Doppler factor of 2.2, and an 8 GHz radio power of 1024.6 W Hz-1. Combining them, we conclude that acceleration of radio jets and creation of high-energy particles are ongoing in the central engine and that the apparent very radio-loud feature of the source is due to the Doppler boosting effect, resulting in the intrinsic radio loudness being an order of magnitude smaller than the observed values. We also conclude that the pc-scale jet represents recurrent activity from the spectral fitting and the estimated kinematic age of pc- and kpc-scale extended components with different position angles.

  13. Radio-to-Gamma-Ray Monitoring of the Narrow-line Seyfert 1 Galaxy PMN J0948+0022 from 2008 to 2011

    NASA Technical Reports Server (NTRS)

    Foschini, L.; Angelakis, E.; Fuhrmann, L.; Ghisellini, G.; Hovatta, T.; Lahteenmaki, A.; Lister, M. L.; Braito, V.; Gallo, L.; Hamilton, T. S.; Kino, M.; Komossa S.; Pushkarev, A. B.; Thompson, D. J.; Tibolla, O.; Tramacere, A.; Carrasco, L.; Carraminana, A.; Falcone, A.; Giroletti, M.; Grupe, D.; Kovalev, Y. Y.; Krichbaum, T. P.; Max-Moerbeck, W.; Nestoras, I.; Pearson, T.J.; Porras, A.; Readhead, A.C.S.; Recillas, E.; Richards, J.L.; Riquelme, D.; Sievers, A.; Tammi, J.; Ungerechts, H.

    2012-01-01

    We present more than three years of observations at different frequencies, from radio to high-energy ?-rays, of the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948+0022 (z = 0.585). This source is the first NLS1 detected at energies above 100 MeV and therefore can be considered the prototype of this emerging new class of ?-ray emitting active galactic nuclei (AGN). The observations performed from 2008 August 1 to 2011 December 31 confirmed that PMN J0948+0022 generates a powerful relativistic jet, which is able to develop an isotropic luminosity at gamma-rays of the order of 1048 erg per second, at the level of powerful quasars. The evolution of the radiation emission of this source in 2009 and 2010 followed the canonical expectations of relativistic jets with correlated multiwavelength variability (gamma-rays followed by radio emission after a few months), but it was difficult to retrieve a similar pattern in the light curves of 2011. The comparison of gamma-ray spectra before and including 2011 data suggested that there was a softening of the highenergy spectral slope. We selected five specific epochs to be studied by modelling the broad-band spectrum, which are characterised by an outburst at gamma-rays or very low/high flux at other wavelengths. The observed variability can largely be explained by changes in the injected power, the bulk Lorentz factor of the jet, or the electron spectrum. The characteristic time scale of doubling/halving flux ranges from a few days to a few months, depending on the frequency and the sampling rate. The shortest doubling time scale at gamma-rays is 2.3 +/- 0.5 days. These small values underline the need of highly sampled multiwavelength campaigns to better understand the physics of these sources.

  14. SALT Long-slit Spectroscopy of Luminous Obscured Quasars: An Upper Limit on the Size of the Narrow-line Region?

    NASA Astrophysics Data System (ADS)

    Hainline, Kevin N.; Hickox, Ryan; Greene, Jenny E.; Myers, Adam D.; Zakamska, Nadia L.

    2013-09-01

    We present spatially resolved long-slit spectroscopy from the Southern African Large Telescope to examine the spatial extent of the narrow-line regions (NLRs) of a sample of eight luminous obscured quasars at 0.10 < z < 0.43. Our results are consistent with an observed shallow slope in the relationship between NLR size and L [O III], which has been interpreted to indicate that NLR size is limited by the density and ionization state of the NLR gas rather than the availability of ionizing photons. We also explore how the NLR size scales with a more direct measure of instantaneous active galactic nucleus power using mid-IR photometry from the Wide Field Infrared Explorer, which probes warm to hot dust near the central black hole and so, unlike [O III], does not depend on the properties of the NLR. Using our results as well as samples from the literature, we obtain a power-law relationship between NLR size and L 8 μm that is significantly steeper than that observed for NLR size and L [O III]. We find that the size of the NLR goes approximately as L^{1/2}_{8\\,\\mu {m}}, as expected from the simple scenario of constant-density clouds illuminated by a central ionizing source. We further see tentative evidence for a flattening of the relationship between NLR size and L 8 μm at the high-luminosity end, and propose that we are seeing a limiting NLR size of 10-20 kpc, beyond which the availability of gas to ionize becomes too low. We find that L_{[{O\\,{\\scriptsize {III}}}]} \\sim L_{8 \\,\\mu {m}}^{1.4}, consistent with a picture in which the L [O III] is dependent on the volume of the NLR. These results indicate that high-luminosity quasars have a strong effect in ionizing the available gas in a galaxy.

  15. SDSS J143244.91+301435.3: a link between radio-loud narrow-line Seyfert 1 galaxies and compact steep-spectrum radio sources?

    NASA Astrophysics Data System (ADS)

    Caccianiga, A.; Antón, S.; Ballo, L.; Dallacasa, D.; Della Ceca, R.; Fanali, R.; Foschini, L.; Hamilton, T.; Kraus, A.; Maccacaro, T.; Mack, K.-H.; Marchã, M. J.; Paulino-Afonso, A.; Sani, E.; Severgnini, P.

    2014-06-01

    We present SDSS J143244.91+301435.3, a new case of a radio-loud narrow-line Seyfert 1 (RL NLS1) with a relatively high radio power (P1.4 GHz = 2.1 × 1025 W Hz-1) and large radio-loudness parameter (R1.4 = 600 ± 100). The radio source is compact with a linear size below ˜1.4 kpc but, in contrast to most of the RL NLS1 discovered so far with such a high R1.4, its radio spectrum is very steep (α = 0.93, Sν ∝ ν-α) and does not support a `blazar-like' nature. Both the small mass of the central supermassive black hole and the high accretion rate relative to the Eddington limit estimated for this object (3.2 × 107 M⊙ and 0.27, respectively, with a formal error of ˜0.4 dex for both quantities) are typical of the NLS1 class. Through modelling the spectral energy distribution of the source, we have found that the galaxy hosting SDSS J143244.91+301435.3 is undergoing quite intense star formation (SFR = 50 M⊙ yr-1), which, however, is expected to contribute only marginally (˜1 per cent) to the observed radio emission. The radio properties of SDSS J143244.91+301435.3 are remarkably similar to those of compact steep-spectrum (CSS) radio sources, a class of active galactic nuclei (AGN) mostly composed of young radio galaxies. This may suggest a direct link between these two classes of AGN, with CSS sources possibly representing the misaligned version (the so-called `parent population') of RL NLS1 showing blazar characteristics.

  16. Gemini long-slit observations of luminous obscured quasars: Further evidence for an upper limit on the size of the narrow-line region

    SciTech Connect

    Hainline, Kevin N.; Hickox, Ryan C.; Greene, Jenny E.; Myers, Adam D.; Zakamska, Nadia L.; Liu, Guilin; Liu, Xin

    2014-05-20

    We examine the spatial extent of the narrow-line regions (NLRs) of a sample of 30 luminous obscured quasars at 0.4 < z < 0.7 observed with spatially resolved Gemini-N GMOS long-slit spectroscopy. Using the [O III] λ5007 emission feature, we estimate the size of the NLR using a cosmology-independent measurement: the radius where the surface brightness falls to 10{sup –15} erg s{sup –1} cm{sup –2} arcsec{sup –2}. We then explore the effects of atmospheric seeing on NLR size measurements and conclude that direct measurements of the NLR size from observed profiles are too large by 0.1-0.2 dex on average, as compared to measurements made to best-fit Sérsic or Voigt profiles convolved with the seeing. These data, which span a full order of magnitude in IR luminosity (log (L {sub 8} {sub μm}/erg s{sup –1}) = 44.4-45.4), also provide strong evidence that there is a flattening of the relationship between NLR size and active galactic nucleus luminosity at a seeing-corrected size of ∼7 kpc. The objects in this sample have high luminosities which place them in a previously under-explored portion of the size-luminosity relationship. These results support the existence of a maximal size of the NLR around luminous quasars; beyond this size, there is either not enough gas or the gas is over-ionized and does not produce enough [O III] λ5007 emission.

  17. Evidence of bar-driven secular evolution in the gamma-ray narrow-line Seyfert 1 galaxy FBQS J164442.5+261913

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; Kotilainen, J. K.; León Tavares, J.; Chavushyan, V.; Añorve, C.

    2017-01-01

    We present near-infrared (NIR) imaging of FBQS J164442.5+261913, one of the few γ-ray emitting Narrow Line Seyfert 1 (NLSy1) galaxies detected at high significance level by Fermi-LAT. This study is the first morphological analysis performed of this source and the third performed of this class of objects. Conducting a detailed two-dimensional modeling of its surface brightness distribution and analysing its J - Ks colour gradients, we find that FBQS J164442.5+261913 is statistically most likely hosted by a barred lenticular galaxy (SB0). We find evidence that the bulge in the host galaxy of FBQS J164442.5+261913 is not classical but pseudo, against the paradigm of powerful relativistic jets exclusively launched by giant ellipticals. Our analysis, also reveal the presence of a ring with diameter equalling the bar length (rbar = 8.13 kpc ± 0.25), whose origin might be a combination of bar-driven gas rearrangement and minor mergers, as revealed by the apparent merger remnant in the J-band image. In general, our results suggest that the prominent bar in the host galaxy of FBQS J164442.5+261913 has mostly contributed to its overall morphology driving a strong secular evolution, which plays a crucial role in the onset of the nuclear activity and the growth of the massive bulge. Minor mergers, in conjunction, are likely to provide the necessary fresh supply of gas to the central regions of the host galaxy.

  18. The Near Infrared Absorption Spectrum of Water by CRDS Between 1.26-1.70 µm:Complete Empirical Line List and Continuum Absorption

    NASA Astrophysics Data System (ADS)

    Mondelain, Didier; Campargue, Alain; Kassi, Samir; Mikhailenko, Semen

    2014-06-01

    Due to the increasing performances of Airborne- and ground-based spectrometers, a more and more accurate characterization of the water vapor absorption is required. This is especially true in the transparency windows, corresponding to low absorption spectral regions widely used for probing the Earth's atmosphere. State-of-the-art experimental developments are required to fulfill the needs in terms of accuracy of the spectroscopic data. For that purpose, we are using high-sensitivity Continuous Wave Cavity Ring Down Spectroscopy (CW-CRDS) allowing reproducing in laboratory conditions comparable to the atmospheric ones in terms of absorption path length (tens of kilometers), temperature and pressure. From extensive analysis of our CRDS spectra, we have constructed an empirical line list for "natural" water vapor at 296 K in the 5850 7920 cm-1 region including 38 318 transitions of four major water isotopologues (H2 16O, H218O, H217O and HD16O) with an intensity cut-off of 1·10-29 cm/molecule. The list is made mostly complete over the whole spectral region by including a large number of unobserved weak lines with positions calculated using experimentally determined energy levels and intensities obtained from variational calculations. In addition, we provide HD18O and HD 17O lists in the same region for transitions with intensities larger than 1·10-29 cm/molecule. The HD18O and HD17O lists (1 972 lines in total) were obtained using empirical energy levels available in the literature and variational intensities. The global list (40 290 transitions) including the contribution of the six major isotopologues has been adopted for the new edition of the GEISA database in the region. The advantages and drawbacks of our list will be discussed in comparison with the list provided for the same region in the 2012 edition of the HITRAN database. Separate experiments were dedicated to the measurement of the water vapor self-continuum crosssections in the 1.6 µm window by CW

  19. INVISIBLE ACTIVE GALACTIC NUCLEI. II. RADIO MORPHOLOGIES AND FIVE NEW H i 21 cm ABSORPTION LINE DETECTORS

    SciTech Connect

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2016-03-15

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  20. The First GeV Outburst of the Radio-loud Narrow-line Seyfert 1 Galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Stalin, C. S.

    2016-03-01

    The γ-ray-loud narrow-line Seyfert 1 (γ-NLSy1) galaxy PKS 1502+036 (z = 0.409) exhibited its first γ-ray outburst on 2015 December 20. In the energy range of 0.1-300 GeV, the highest flux measured by the Fermi-Large Area Telescope is (3.90 ± 1.52) × 10-6 {ph} {{cm}}-2 {{{s}}}-1, which is the highest γ-ray flux ever detected from this object. The associated spectral shape is soft (Γ0.1-300 GeV = 2.57 ± 0.17) and this corresponds to an isotropic γ-ray luminosity of (1.2 ± 0.6) × 1048 erg s-1. We generate the broadband spectral energy distribution (SED) during the GeV flare and reproduce it using a one-zone leptonic emission model. The optical-UV spectrum can be explained by a combination of synchrotron and accretion disk emission, whereas the X-ray-to-γ-ray SED can be satisfactorily reproduced by inverse-Compton scattering of thermal photons that originated from the torus. The derived SED parameters hint that the increase in the bulk Lorentz factor is a major cause of the flare and the location of the emission region is estimated as being outside the broad-line region but still inside the torus. A comparison of the GeV-flaring SED of PKS 1502+036 with that of two other γ-NLSy1 galaxies, namely, 1H 0323+342 (z = 0.061) and PMN J0948+0022 (z = 0.585), and also with flat spectrum radio quasar (FSRQ) 3C 279 (z = 0.536), has led to the conclusion that the GeV-flaring SEDs of γ-NLSy1 galaxies resemble FSRQs and a major fraction of their bolometric luminosities are emitted at γ-ray energies.

  1. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  2. Higher-order mode absorption measurement of X-band choke-mode cavities in a radial line structure

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Shi, Jiaru; Wu, Xiaowei; Chen, Huaibi

    2016-04-01

    An experiment is presented to study the higher-order mode (HOM) suppression of X-band choke-mode structures with a vector network analyzer (VNA). Specific radial line disks were built to test the reflection from the corresponding damping load and different choke geometries. The mismatch between the radial lines and the VNA was calibrated through a special multi-short-load calibration method. The measured reflections of different choke geometries showed good agreement with the theoretical calculations and verified the HOM absorption feature of each geometric design.

  3. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    PubMed

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  4. No Evidence for Variability of Intervening Absorption Lines toward GRB 060206: Implications for the Mg II Incidence Problem

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Totani, T.; Hattori, T.; Ohta, K.; Kawabata, K. S.; Kobayashi, N.; Iye, M.; Nomoto, K.; Kawai, N.

    2009-05-01

    We examine variability of absorption line strength of intervening systems along the line of sight to GRB 060206 at z = 4.05, by the low-resolution optical spectra obtained by the Subaru telescope from six to ten hours after the burst. Strong variabilities of Fe II and Mg II lines at z = 1.48 during t = 5-8 hours have been reported for this GRB [8], and this has been used to support the idea of clumpy Mg II cloudlets that was originally proposed to explain the anomalously high incidence of Mg II absorbers in GRB spectra compared with quasars. However, our spectra with higher signal-to-noise ratio do not show any evidence for variability in t = 6-10 hours. There is a clear discrepancy between our data and Hao et al. data in the overlapping time interval. Furthermore, the line strengths in our data are in good agreement with those observed at t~2 hours by Thone et al. [22]. Therefore we conclude that there is no strong evidence for variability of intervening absorption lines toward GRB 060206, significantly weakening the support to the Mg II cloudlet hypothesis by the GRB 060206 data.

  5. Wavelength locking to CO2 absorption line-center for 2-μm pulsed IPDA lidar application

    NASA Astrophysics Data System (ADS)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-05-01

    An airborne 2-m triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-μm CW laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nm, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  6. Recovery of acetylene absorption line profile basing on tunable diode laser spectroscopy with intensity modulation and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li; Thursby, Graham; Stewart, George; Arsad, Norhana; Uttamchandani, Deepak; Culshaw, Brian; Wang, Yiding

    2010-04-01

    A novel and direct absorption line recovery technique based on tunable diode laser spectroscopy with intensity modulation is presented. Photoacoustic spectroscopy is applied for high sensitivity, zero background and efficient acoustic enhancement at a low modulation frequency. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used for generating laser intensity modulation (without wavelength modulation) through the external reflection. The MEMS mirror with 10μm thick structure material layer and 100nm thick gold coating is formed as a circular mirror of 2mm diameter attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. Low modulation frequency is adopted (since the resonant frequencies of the photoacoustic gas cell and the electrothermal actuator are different) and intrinsic high signal amplitude characteristics in low frequency region achieved from measured frequency responses for the MEMS mirror and the gas cell. Based on the property of photoacoustic spectroscopy and Beer's law that detectable sensitivity is a function of input laser intensity in the case of constant gas concentration and laser path length, a Keopsys erbium doped fibre amplifier (EDFA) with opto-communication C band and high output power up to 1W is chosen to increase the laser power. High modulation depth is achieved through adjusting the MEMS mirror's reflection position and driving voltage. In order to scan through the target gas absorption line, the temperature swept method is adopted for the tunable distributed feed-back (DFB) diode laser working at 1535nm that accesses the near-infrared vibration-rotation spectrum of acetylene. The profile of acetylene P17 absorption line at 1535.39nm is recovered ideally for ~100 parts-per-million (ppm) acetylene balanced by nitrogen. The experimental signal to noise ratio (SNR) of absorption line recovery for 500mW laser power was ~80 and hence the

  7. Broad Balmer Absorption Line Variability: Evidence of Gas Transverse Motion in the QSO SDSS J125942.80+121312.6

    NASA Astrophysics Data System (ADS)

    Shi, Xiheng; Zhou, Hongyan; Shu, Xinwen; Zhang, Shaohua; Ji, Tuo; Pan, Xiang; Sun, Luming; Zhao, Wen; Hao, Lei

    2016-03-01

    We report on the discovery of broad Balmer absorption lines variability in the QSO SDSS J125942.80+121312.6, based on the optical and near-infrared spectra taken from the SDSS-I, SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and TripleSpec observations over a timescale of 5.8 years in the QSO's rest-frame. The blueshifted absorption profile of Hβ shows a variation of more than 5σ at a high velocity portion (\\gt 3000 {km} {{{s}}}-1) of the trough. We perform a detailed analysis for the physical conditions of the absorber using Balmer lines as well as metastable He i and optical Fe ii absorptions (λ4233 from b4P5/2 level and λ5169 from a6S5/2) at the same velocity. These Fe ii lines are identified in the QSO spectra for the first time. According to the photoionization simulations, we estimate a gas density of n({{H}})≈ {10}9.1 {{cm}}-3 and a column density of {N}{col}({{H}})≈ {10}23 {{cm}}-2 for the BOSS data, but the model fails to predict the variations of ionic column densities between the SDSS and BOSS observations if changes in ionizing flux are assumed. We thus propose transverse motion of the absorbing gas being the cause of the observed broad Balmer absorption line variability. In fact, we find that the changes in covering factors of the absorber can well-reproduce all of the observed variations. The absorber is estimated ∼0.94 pc away from the central engine, which is where the outflow likely experiences deceleration due to the collision with the surrounding medium. This scheme is consistent with the argument that LoBAL QSOs may represent the transition from obscured star-forming galaxies to classic QSOs.

  8. Absorption lines from magnetically driven winds in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Chakravorty, S.; Petrucci, P.-O.; Ferreira, J.; Henri, G.; Belmont, R.; Clavel, M.; Corbel, S.; Rodriguez, J.; Coriat, M.; Drappeau, S.; Malzac, J.

    2016-05-01

    Context. High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines suggesting the presence of outflowing winds. Furthermore, observations show that the disk winds are equatorial and they occur in the Softer (disk dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. Aims: We want to test whether the self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter. This mass loading is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Thus, the physical properties of the outflow depend on and are controlled by the global structure of the disk. Methods: We studied different MHD solutions characterized by different values of the disk aspect ratio (ɛ) and the ejection efficiency (p). We also generate two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be either from dissipation of energy due to MHD turbulence in the disk or from illumination of the disk surface. Warm solutions can have large (>0.1) values of p, which would imply larger wind mass loading at the base of the outflow. We use each of these MHD solutions to predict the physical parameters (distance, density, velocity, magnetic field, etc.) of an outflow. Motivated by observational results, we have put limits on the ionization parameter (ξ), column density, and timescales. Further constraints were derived for the allowed values of ξ from thermodynamic instability considerations, particularly for the Hard SED. These physical constraints were imposed on each of these outflows to select regions within it, which are consistent with the observed winds. Results: The cold MHD solutions are found to be

  9. The hydration dependence of CaCO3 absorption lines in the Far IR

    NASA Astrophysics Data System (ADS)

    Powell, Johnny; Emery, Logan P

    2014-06-01

    The far infrared (FIR) absorption lines of CaCO3 have been measured at a range of relative humidities (RH) between 33 and 92% RH using a Bruker 66v/S spectrometer. Hydration measurements on CaCO3 have been made in the mid-infrared (MIR) by [Al-Hosney, H.A. and Grassian, V.H., 2005, Phys. Chem. Chem. Phys., 7, 1266], and astrophysically-motivated temperature-dependent FIR measurements of CaCO3 in vacuum have also been reported [Posch, T., et al., 2007, Ap. J., 668, 993]. The custom sample cell constructed for these hydrated-FIR spectra is required because the 66v/S bench is under vacuum (3 mbar) during typical measurements. Briefly, the sample cell consists of two Thalium Bromoiodide (KRS-5) windows, four O-rings, a plastic ring for separating the windows and providing a volume for the saturated atmosphere. CaCO3 was deposited on KRS-5 windows using doubly-distilled water as an intermediary. The KRS-5 window with sample and assembled sample cell were placed in a desiccator with the appropriated saturated salt solution [Washburn, E.W. (Ed.), International Critical Tables of Numerical Data, Physics Chemistry and Technology, Vol. 1, (McGraw-Hill, New York, 1926), p. 67-68] and allowed to hydrate for 23 hours. For spectroscopy the desiccator was quickly opened and the second KRS-5 window placed in the cell to seal the chamber. A spectrum was then taken of the sample at the appropriate RH. The spectra taken characterize the adsorption of water vapor and CaCO3 that might occur in circumstellar environments [Melnick, G.J., et al. 2001, Nature, 412, 160].The MIR and FIR reflectance spectra of calcite (CaCO3) have been thoroughly studied by [Hellwege, K.H., et al., 1970, Z. Physik, 232, 61]. Five Lorentzian curves were fit to our data in the range from 378-222 cm-1/SUP> and each was able to be assigned to a known mode of CaCO3. The data does not support the conclusion of a hydration effect on these modes of CaCO3, but it does suggest a possible broadening of three modes

  10. NEW PERSPECTIVE ON GALAXY OUTFLOWS FROM THE FIRST DETECTION OF BOTH INTRINSIC AND TRAVERSE METAL-LINE ABSORPTION

    SciTech Connect

    Kacprzak, Glenn G.; Cooke, Jeff; Martin, Crystal L.; Ho, Stephanie H.; Bouché, Nicolas; LeReun, Audrey; Schroetter, Ilane; Churchill, Christopher W.; Klimek, Elizabeth

    2014-09-01

    We present the first observation of a galaxy (z = 0.2) that exhibits metal-line absorption back-illuminated by the galaxy (down-the-barrel) and transversely by a background quasar at a projected distance of 58 kpc. Both absorption systems, traced by Mg II, are blueshifted relative to the galaxy systemic velocity. The quasar sight line, which resides almost directly along the projected minor axis of the galaxy, probes Mg I and Mg II absorption obtained from the Keck/Low Resolution Imaging Spectrometer as well as Lyα, Si II, and Si III absorption obtained from the Hubble Space Telescope/Cosmic Origins Spectrograph. For the first time, we combine two independent models used to quantify the outflow properties for down-the-barrel and transverse absorption. We find that the modeled down-the-barrel deprojected outflow velocities range between V {sub dtb} = 45-255 km s{sup –1}. The transverse bi-conical outflow model, assuming constant-velocity flows perpendicular to the disk, requires wind velocities V {sub outflow} = 40-80 km s{sup –1} to reproduce the transverse Mg II absorption kinematics, which is consistent with the range of V {sub dtb}. The galaxy has a metallicity, derived from Hα and N II, of [O/H] = –0.21 ± 0.08, whereas the transverse absorption has [X/H] = –1.12 ± 0.02. The galaxy star formation rate is constrained between 4.6-15 M {sub ☉} yr{sup –1} while the estimated outflow rate ranges between 1.6-4.2 M {sub ☉} yr{sup –1} and yields a wind loading factor ranging between 0.1-0.9. The galaxy and gas metallicities, the galaxy-quasar sight-line geometry, and the down-the-barrel and transverse modeled outflow velocities collectively suggest that the transverse gas originates from ongoing outflowing material from the galaxy. The ∼1 dex decrease in metallicity from the base of the outflow to the outer halo suggests metal dilution of the gas by the time it reached 58 kpc.

  11. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  12. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  13. X-ray absorption lines suggest matter infalling onto the central black-hole of Mrk 509

    NASA Astrophysics Data System (ADS)

    Dadina, M.; Cappi, M.; Malaguti, G.; Ponti, G.; de Rosa, A.

    2005-11-01

    Evidence for both red- and blue-shifted absorption lines due to ionized Fe in the X-ray spectrum of the Seyfert 1 galaxy Mrk 509 is reported. These features appear to be transient on time-scales as short as ~20 ks, and have been observed with two different satellites, BeppoSAX and XMM-Newton. The red- and blue-shifted lines are found at E˜5.5 keV and ~8.1-8.3 keV (rest-frame), respectively. The first is seen in one out of six BeppoSAX observations, the latter is seen by both satellites. Under the assumption that the absorption is due to either H- or He-like Iron, the implied velocities for the absorbing matter are v˜0.15-0.2 c, in both outward and inward directions. An alternative explanation in terms of gravitational red-shift for the ~5.5 keV line cannot be ruled out with the current data. We argue, however, that the temporal patterns and sporadic nature of the lines are more easily reconciled with models that predict important radial motions close to the central black hole, such as the "aborted jet" model, the "thundercloud" model, or magneto-hydrodynamical models of jets and accretion-disks.

  14. The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447. II. The radio view

    NASA Astrophysics Data System (ADS)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsässer, D.; Gehrels, N.; Großberger, C.; Hase, H.; Horiuchi, S.; Lovell, J. E. J.; Mannheim, K.; Markowitz, A.; Müller, C.; Phillips, C.; Plötz, C.; Quick, J.; Trüstedt, J.; Tzioumis, A. K.; Wilms, J.

    2016-04-01

    Context. Γ-ray-detected radio-loud narrow-line Seyfert 1 (γ-NLS1) galaxies constitute a small but interesting sample of the γ-ray-loud AGN. The radio-loudest γ-NLS1 known, PKS 2004-447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims: We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS 2004-447, which are essential for understanding the diversity of the radio properties of γ-NLS1s. Methods: The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results: The TANAMI VLBI image at 8.4 GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other γ-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size < 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions: PKS 2004-447 appears to be a unique member of the γ-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all γ-NLS1s and extremely rare among γ-ray-loud AGN. The VLBI images shown in Figs. 3 and 4 (as FITS files) and the ATCA

  15. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines.

    PubMed

    Ma, Q; Tipping, R H; Leforestier, C

    2008-03-28

    It is well known that the water-vapor continuum plays an important role in the radiative balance in the Earth's atmosphere. This was first discovered by Elsasser almost 70 years ago, and since that time there has been a large body of work, both experimental and theoretical, on this topic. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H(2)O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: Far wings of allowed transitions, water dimers, and collision-induced absorption. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the absorption. The first mechanism proposed was the accumulation of the far-wing absorption of the strong allowed transitions. Later, absorption by water dimers was proposed and this mechanism provides a qualitative explanation for the strong, negative T dependence. Recently, some atmospheric modelers have proposed that collision-induced absorption is one of the major contributors. However, based on improvements in the theoretical calculation of accurate far-wing line shapes, ab initio dimer calculations, and theoretical collision-induced absorptions, it is now generally accepted that the dominant mechanism for the absorption in the infrared (IR) windows is that due to the far wings. Whether this is true for other spectral regions is not presently established. Although all these three mechanisms have a negative T dependence, their T dependences will be characterized by individual features. To analyze the characteristics of the latter will enable one to assess their roles with more certainty. In this paper, we present a detailed study of the T dependence of the far-wing absorption mechanism. We will then compare our theoretical calculations with the most recent and accurate

  16. Time-averaging approximation in the interaction picture: absorption line shapes for coupled chromophores with application to liquid water.

    PubMed

    Yang, Mino; Skinner, J L

    2011-10-21

    The time-averaging approximation (TAA), originally developed to calculate vibrational line shapes for coupled chromophores using mixed quantum/classical methods, is reformulated. In the original version of the theory, time averaging was performed for the full one-exciton Hamiltonian, while herein the time averaging is performed on the coupling (off-diagonal) Hamiltonian in the interaction picture. As a result, the influence of the dynamic fluctuations of the transition energies is more accurately described. We compare numerical results of the two versions of the TAA with numerically exact results for the vibrational absorption line shape of the OH stretching modes in neat water. It is shown that the TAA in the interaction picture yields theoretical line shapes that are in better agreement with exact results.

  17. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  18. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  19. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  20. Ratio of Dust to Metal Abundance in Quasar Absorption Line Systems from 1.9 < z < 3.3

    NASA Astrophysics Data System (ADS)

    Stawinski, Stephanie; Malhotra, Sangeeta

    2017-01-01

    Measuring the ratio of dust to metal abundance in quasar absorption line systems will provide insight to the chemical evolution of galaxies, dust formation, and dust properties in the early universe. Quasar absorption systems allow us to study the abundance of dust from many different redshifts, in this project up to z ~ 3.3 for absorber redshift. The absorption bump at 2175 Å is a broad, but strong, dust feature within the UV-optical wavelength range. This feature, if detected, can be directly related to the optical depth of the dust in the absorbing systems. However, the 2175 Å bump is very broad, having a full-width half-maximum approximately 350 * (1 + z) Å, and therefore hard to distinguish from a single spectrum. To find this bump, it is important to co-add many quasar spectra. In this project, we look at how the abundance of dust compares to that of metals for 105 quasar spectra with strong damped Lyman alpha systems with absorber redshifts ranging from 1.9 < z < 3.3. From these spectra, we created a composite spectrum to analyze the 2175 Å bump and the absorption of heavy elements. We will present the results including the strength of the 2175 Å feature found in our composite spectrum.

  1. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with

  2. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W. E.; Sun, X.

    2009-12-01

    We have developed a lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA’s planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the CO2 line and an O2 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, laser pulse energy is 25 uJ and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric CO2 column measurements using the 1571.4, 1572.02 and 1572.33 nm CO2 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The

  3. Origins of optical absorption and emission lines in AlN

    SciTech Connect

    Yan, Qimin; Janotti, Anderson; Van de Walle, Chris G.; Scheffler, Matthias

    2014-09-15

    To aid the development of AlN-based optoelectronics, it is essential to identify the defects that cause unwanted light absorption and to minimize their impact. Using hybrid functional calculations, we investigate the role of native defects and their complexes with oxygen, a common impurity in AlN. We find that Al vacancies are the source of the absorption peak at 3.4 eV observed in irradiated samples and of the luminescence signals at 2.78 eV. The absorption peak at ∼4.0 eV and higher, and luminescence signals around 3.2 and 3.6 eV observed in AlN samples with high oxygen concentrations are attributed to complexes of Al vacancies and oxygen impurities. We also propose a transition involving Al and N vacancies and oxygen impurities that may be a cause of the absorption band peaked at 2.9 eV.

  4. VizieR Online Data Catalog: QSO B0218+357 molecular absorption lines (Wallstroem+, 2016)

    NASA Astrophysics Data System (ADS)

    Wallstroem, S. H. J.; Muller, S.; Guelin, M.

    2016-08-01

    ASCII files of the absorption spectra presented in Figure 2. The files are named after the molecule or isotopologue. Column 1 is velocity, column 2 is intensity (normalized to 1), Velocities are in a heliocentric frame, with zabs=0.68466 (11 data files).

  5. Detection of High Velocity Absorption Components in the He I Lines of Eta Carinae near the Time of Periastron

    NASA Technical Reports Server (NTRS)

    Richardson, Noel D.; St-Jean, Lucas; Gull, Theodore R.; Madura, Thomas; Hillier, D. John; Teodoro, Mairan; Moffat, Anthony; Corcoran, Michael; Damineli, Augusto

    2014-01-01

    We have obtained a total of 58 high spectral resolution (R90,000) spectra of the massive binary star eta Carinae since 2012 in an effort to continue our orbital and long-term echelle monitoring of this extreme binary (Richardson et al. 2010, AJ, 139, 1534) with the CHIRON spectrograph on the CTIO 1.5 m telescope (Tokovinin et al. 2013, PASP, 125, 1336) in the 45507500A region. We have increased our monitoring efforts and observation frequency as the periastron event of 2014 has approached. We note that there were multiple epochs this year where we observe unusual absorption components in the P Cygni troughs of the He I triplet lines. In particular, we note high velocity absorption components related to the following epochs for the following lines: He I 4713: HJD 2456754- 2456795 (velocity -450 to -560 kms) He I 5876: HJD 2456791- 2456819 (velocity -690 to -800 kms) He I 7065: HJD 2456791- 2456810 (velocity -665 to -730 kms) Figures: Note that red indicates a high-velocity component noted above. He I 4713: http:www.astro.umontreal.carichardson4713.png He I 5876: http:www.astro.umontreal.carichardson5876.png He I 7065: http:www.astro.umontreal.carichardson7065.png These absorptions are likely related to the wind-wind collision region and bow shock, as suggested by the high-velocity absorption observed by Groh et al. (2010, AA, 519, 9) in the He I 10830 Atransition. In these cases, we suspect that we look along an arm of the shock cone and that we will see a fast absorption change from the other collision region shortly after periastron. We suspect that this is related to the multiple-components of the He II 4686 line that was noted by Walter (ATel6334), and is confirmed in our data. Further, high spectral resolution data are highly encouraged,especially for resolving powers greater than 50,000.These observations were obtained with the CTIO 1.5 m telescope, operated by the SMARTS Consortium, and were obtained through both SMARTS and NOAO programs 2012A-0216,2012B-0194

  6. THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM

    SciTech Connect

    Werk, Jessica K.; Prochaska, J. Xavier; Tripp, Todd M.; O'Meara, John M.; Peeples, Molly S.

    2013-02-15

    We present the equivalent width and column density measurements for low and intermediate ionization states of the circumgalactic medium (CGM) surrounding 44 low-z, L Almost-Equal-To L* galaxies drawn from the COS-Halos survey. These measurements are derived from far-UV transitions observed in HST/COS and Keck/HIRES spectra of background quasars within an impact parameter R < 160 kpc to the targeted galaxies. The data show significant metal-line absorption for 33 of the 44 galaxies, including quiescent systems, revealing the common occurrence of a cool (T Almost-Equal-To 10{sup 4}-10{sup 5} K), metal-enriched CGM. The detection rates and column densities derived for these metal lines decrease with increasing impact parameter, a trend we interpret as a declining metal surface density profile for the CGM. A comparison of the relative column densities of adjacent ionization states indicates that the gas is predominantly ionized. The large surface density in metals demands a large reservoir of metals and gas in the cool CGM (very conservatively, M {sup cool} {sub CGM} > 10{sup 9} M {sub Sun }), which likely traces a distinct density and/or temperature regime from the highly ionized CGM traced by O{sup +5} absorption. The large dispersion in absorption strengths (including non-detections) suggests that the cool CGM traces a wide range of densities or a mix of local ionizing conditions. Lastly, the kinematics inferred from the metal-line profiles are consistent with the cool CGM being bound to the dark matter halos hosting the galaxies; this gas may serve as fuel for future star formation. Future work will leverage this data set to provide estimates on the mass, metallicity, dynamics, and origin of the cool CGM in low-z, L* galaxies.

  7. Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy.

    PubMed

    Xu, Lijun; Liu, Chang; Zheng, Deyan; Cao, Zhang; Cai, Weiwei

    2014-12-01

    To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm(-1) and 7185.6 cm(-1) by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance.

  8. The magnetic field of an isolated neutron star from X-ray cyclotron absorption lines.

    PubMed

    Bignami, G F; Caraveo, P A; De Luca, A; Mereghetti, S

    2003-06-12

    Isolated neutron stars are highly magnetized, fast-rotating objects that form as an end point of stellar evolution. They are directly observable in X-ray emission, because of their high surface temperatures. Features in their X-ray spectra could in principle reveal the presence of atmospheres, or be used to estimate the strength of their magnetic fields through the cyclotron process, as is done for X-ray binaries. Almost all isolated neutron star spectra observed so far appear as featureless thermal continua. The only exception is 1E1207.4-5209 (refs 7-9), where two deep absorption features have been detected, but with insufficient definition to permit unambiguous interpretation. Here we report a long X-ray observation of the same object in which the star's spectrum shows three distinct features, regularly spaced at 0.7, 1.4 and 2.1 keV, plus a fourth feature of lower significance, at 2.8 keV. These features vary in phase with the star's rotation. The logical interpretation is that they are features from resonant cyclotron absorption, which allows us to calculate a magnetic field strength of 8 x 10(10) G, assuming the absorption arises from electrons.

  9. Simultaneous NuSTAR and XMM-Newton 0.5-80 KeV Spectroscopy of the Narrow-Line Seyfert 1 Galaxy SWIFT J2127.4+5654

    NASA Technical Reports Server (NTRS)

    Marinucci, A.; Matt, G.; Kara, E.; Miniutti, G.; Elvis, M.; Arevalo, P.; Ballantyne, D. R.; Balokovic, M.; Bauer, F.; Brenneman, L.; Boggs, S. E.; Cappi, M.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Risaliti, G.; Reynolds, C. S.; Stern, D. K.; Walton, D. J.; Zhang, W.

    2014-01-01

    We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 kiloseconds performed during three XMM-Newton orbits. We detect a relativistic broadened iron K-alpha line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of a = 0.58 (sup +0.11) (sub -0.17). The intrinsic spectrum is steep (gamma = 2.08 plus or minus 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy (E (sub c) = 108 (sup +11) (sub -10) kiloelectronvolts) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10-20 radius of gyration. These timing results independently support an intermediate black hole spin and a compact corona.

  10. Simultaneous NuSTAR and XMM-Newton 0.5-80 keV spectroscopy of the narrow-line Seyfert 1 galaxy SWIFT J2127.4+5654

    NASA Astrophysics Data System (ADS)

    Marinucci, A.; Matt, G.; Kara, E.; Miniutti, G.; Elvis, M.; Arevalo, P.; Ballantyne, D. R.; Baloković, M.; Bauer, F.; Brenneman, L.; Boggs, S. E.; Cappi, M.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Risaliti, G.; Reynolds, C. S.; Stern, D. K.; Walton, D. J.; Zhang, W.

    2014-05-01

    We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 ks performed during three XMM-Newton orbits. We detect a relativistic broadened iron Kα line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of a = 0.58^{+0.11}_{-0.17}. The intrinsic spectrum is steep (Γ = 2.08 ± 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy (E_c=108^{+11}_{-10} keV) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10-20 rg. These timing results independently support an intermediate black hole spin and a compact corona.

  11. The Features of the Frequency-Modulation Method When Studying the Shapes of the Spectral Lines of Nonlinear Absorption

    NASA Astrophysics Data System (ADS)

    Golubiatnikov, G. Yu.; Belov, S. P.; Lapinov, A. V.

    2017-01-01

    We briefly consider the method of the frequency (phase) modulation and signal detection at the second harmonic of the modulation frequency for recording and analyzing the spectral-line shapes. The precision sub-Doppler spectrometer in the millimeter- and submillimeter-wave ranges, which operated in the regime of nonlinear saturation of the spectral transitions in a standing wave (the Lamb-dip method), was used during the measurements. The influence of the saturation degree on the value and shape of the recorded frequency-modulated signals in the quadrature channels during the synchronous detection is demonstrated. Variation in the relationships among the signals determined by dispersion and absorption was observed. The necessity of allowance for the influence of the group-velocity dispersion and coherent effects on the shape of the recorded spectral lines is experimentally shown.

  12. FUSE and STIS Observations of Intervening O VI Absorption Line Systems in the Spectrum of PG 0953+415

    NASA Astrophysics Data System (ADS)

    Savage, B. D.; Sembach, K. R.; Tripp, T. M.; Richter, P.; Jenkins, E. B.

    2000-12-01

    We analyze Far Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph (STIS) observations of the intergalactic O VI absorption line systems in the direction of the bright QSO PG 0953+415 (z = 0.239). The FUSE observations cover the wavelength range from 905 to 1187 Å with a velocity resolution of 20 km/s. The STIS observations obtained with the E140M echelle spectrograph extend from 1150 to 1730 Å with a resolution of 8 km/s. These are supplemented with STIS G140M and G230M observations from 1145-1201 Å and from 1724-1814 A with a resolution of 30 km/s. We detect a strong O VI system at z = 0.06807 in the lines of H I Ly alpha, beta, and gamma, O VI 1031.93, 1037.62, N V 1238.80, 1242.80, C IV 1548.20, 1550.77, and C III 977.02 Å. We confirm the detection of the z = 0.14232 O VI system studied previously by Tripp and Savage (2000). The new FUSE observations of this system record Ly beta , O VI 1031.93, 1037.62, and C III 977.02 Å. We derive column densities for the absorption lines detected in both O VI systems using curve of growth and profile fitting techniques. We study the physical conditions in each system and attempt to determine the origin(s) of the ionization. Both detected O VI systems occur at redshifts where there are peaks in the number density of intervening galaxies along the line of sight based on a WIYN redshift survey of galaxies in the one degree field centered on PG 0953+415. We discuss the implications of these observations for the baryonic content of O VI absorption line systems. Financial support has been provided by NASA contract NAS-532985 and STSCI Grants GO 06499.02 and GO 08165.02.

  13. An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption within 0.1 cm-1 bins and pre-computed line tails

    NASA Astrophysics Data System (ADS)

    Berk, Alexander; Conforti, Patrick; Hawes, Fred

    2015-05-01

    A Line-By-Line (LBL) option is being developed for MODTRAN6. The motivation for this development is two-fold. Firstly, when MODTRAN is validated against an independent LBL model, it is difficult to isolate the source of discrepancies. One must verify consistency between pressure, temperature and density profiles, between column density calculations, between continuum and particulate data, between spectral convolution methods, and more. Introducing a LBL option directly within MODTRAN will insure common elements for all calculations other than those used to compute molecular transmittances. The second motivation for the LBL upgrade is that it will enable users to compute high spectral resolution transmittances and radiances for the full range of current MODTRAN applications. In particular, introducing the LBL feature into MODTRAN will enable first-principle calculations of scattered radiances, an option that is often not readily available with LBL models. MODTRAN will compute LBL transmittances within one 0.1 cm-1 spectral bin at a time, marching through the full requested band pass. The LBL algorithm will use the highly accurate, pressure- and temperature-dependent MODTRAN Padé approximant fits of the contribution from line tails to define the absorption from all molecular transitions centered more than 0.05 cm-1 from each 0.1 cm-1 spectral bin. The beauty of this approach is that the on-the-fly computations for each 0.1 cm-1 bin will only require explicit LBL summing of transitions centered within a 0.2 cm-1 spectral region. That is, the contribution from the more distant lines will be pre-computed via the Padé approximants. The status of the LBL effort will be presented. This will include initial thermal and solar radiance calculations, validation calculations, and self-validations of the MODTRAN band model against its own LBL calculations.

  14. The ultraviolet spectrum of the gravitational lens candidate UM 425 = QSO 1120+019: Evidence for broad absorption line (BAL) structure

    NASA Technical Reports Server (NTRS)

    Michelitsianos, A. G.; Oliversen, R. J.

    1995-01-01

    The UV line profile structure of high-ionization resonance lines found with the International Ultraviolet Explorer (IUE) in the brightest of four multiply imaged sources (images-A) in the candidate gravitational lens UM 425 = QSO 1120+019 indicates broad absorption line (BAL) structure. The deep-broad trough associated with the O IV line extends to velocities approiximately -12,000 km/s, and contains disrete features that suggest multicomponent velocity structure. This structure may include contributions from C IV absorption from the early-type galaxy that is believed to lens UM 425. A strong absorption feature in the blue wing of the Lyman-alpha lambda 1216 emission line may be a Lyman alpha absorption system at a Z(sub Ly alpha) = 1.437 +/- 0.003, or it may be formed by the superposition of the broad N V lambda lambda 1238, 1242 absorption trough on the extended blue emission wing of the QSO Lyman-alpha line. We obtained a redshift of Z(sub QSO) = 1.471 +/- 0.003 from Lyman-alpha lambda 1215, consistent with the redshift found by Meylan and Djorgovski in the optical. The Lyman-alpha line appears unusally weak due to the presence of N V lambda 1240 BAL absorption. A Lyman-limit absorption system at lambda 912 was not observed in the QSO rest frame. The detection of BAL structure in the other weaker ground-state resonance lines of N II (l) and S IV (l) was not found, suggesting these lines are formed in a region that is distinct from the BAL component. Detection of BAL structure in the other fainter images in this system with Hubble Space Telescope (HST) instrumentation, similar to structure observed here in image A, could provide evidence that UM 425 is a gravitational lens.

  15. HIGHLY IONIZED Fe-K ABSORPTION LINE FROM CYGNUS X-1 IN THE HIGH/SOFT STATE OBSERVED WITH SUZAKU

    SciTech Connect

    Yamada, S.; Yoshikawa, A.; Makishima, K.; Torii, S.; Noda, H.; Mineshige, S.; Ueda, Y.; Kubota, A.; Gandhi, P.; Done, C.

    2013-04-20

    We present observations of a transient He-like Fe K{alpha} absorption line in Suzaku observations of the black hole binary Cygnus X-1 on 2011 October 5 near superior conjunction during the high/soft state, which enable us to map the full evolution from the start to the end of the episodic accretion phenomena or dips for the first time. We model the X-ray spectra during the event and trace their evolution. The absorption line is rather weak in the first half of the observation, but instantly deepens for {approx}10 ks, and weakens thereafter. The overall change in equivalent width is a factor of {approx}3, peaking at an orbital phase of {approx}0.08. This is evidence that the companion stellar wind feeding the black hole is clumpy. By analyzing the line with a Voigt profile, it is found to be consistent with a slightly redshifted Fe XXV transition, or possibly a mixture of several species less ionized than Fe XXV. The data may be explained by a clump located at a distance of {approx}10{sup 10-12} cm with a density of {approx}10{sup (-13)-(-11)} g cm{sup -3}, which accretes onto and/or transits the line of sight to the black hole, causing an instant decrease in the observed degree of ionization and/or an increase in density of the accreting matter. Continued monitoring for individual events with future X-ray calorimeter missions such as ASTRO-H and AXSIO will allow us to map out the accretion environment in detail and how it changes between the various accretion states.

  16. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; Fabian, A. C.; Farrah, D.; Fiore, F.; Fuerst, F.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R.; Madsen, K. K.; Matt, G.; Ogle, P.; Risaliti, G.; Saez, C.; Teng, S. H.; Walton, D. J.; Zhang, W. W.

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  17. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    SciTech Connect

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Hickox, R.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fabian, A. C.; Farrah, D.; Fiore, F.; Hailey, C. J.; Matt, G.; Ogle, P.; and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  18. Interstellar H I and H2 in the Magellanic Clouds: An Expanded Sample Based on Ultraviolet Absorption-line Data

    NASA Astrophysics Data System (ADS)

    Welty, Daniel E.; Xue, Rui; Wong, Tony

    2012-02-01

    We have determined column densities of H I and/or H2 for sight lines in the Magellanic Clouds from archival Hubble Space Telescope and Far-Ultraviolet Spectroscopic Explorer spectra of H I Lyα and H2 Lyman-band absorption. Together with some similar data from the literature, we now have absorption-based N(H I) and/or N(H2) for 285 Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) sight lines (114 with a detection or limit for both species)—enabling more extensive, direct, and accurate determinations of molecular fractions, gas-to-dust ratios, and elemental depletions in these two nearby, low-metallicity galaxies. For sight lines where the N(H I) estimated from 21 cm emission is significantly higher than the value derived from Lyα absorption (presumably due to emission from gas beyond the target stars), integration of the 21 cm profile only over the velocity range seen in Na I or H2 absorption generally yields much better agreement. Conversely, N(21 cm) can be lower than N(Lyα) by factors of 2-3 in some LMC sight lines—suggestive of small-scale structure within the 21 cm beam(s) and/or some saturation in the emission. The mean gas-to-dust ratios obtained from N(Htot)/E(B - V) are larger than in our Galaxy, by factors of 2.8-2.9 in the LMC and 4.1-5.2 in the SMC—i.e., factors similar to the differences in metallicity. The N(H2)/E(B - V) ratios are more similar in the three galaxies, but with considerable scatter within each galaxy. These data may be used to test models of the atomic-to-molecular transition at low metallicities and predictions of N(H2) based on comparisons of 21 cm emission and the IR emission from dust. ), the MAST archive at STScI (FUSE data), and the University of Bonn (LAB and GASS 21 cm surveys).

  19. Ultraviolet interstellar absorption lines in the LMC: Searching for hidden SNRs

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Wakker, Bart; Low, Mordecai-Mark Mac; Garcia-Segura, Guillermo

    1994-01-01

    Strong x-ray emission detected in Large Magellanic Cloud (LMC) superbubbles has been explained as the result of interior supernova remnants (SNRs) hitting the dense superbubble shell. Such SNRs cannot be found using conventional criteria. We thus investigate the possibility of using the interstellar absorption properties in the ultraviolet (UV) as a diagnostic of hidden SNR shocks. The International Ultraviolet Explorer (IUE) archives provide the database for this pilot study. They contain high-dispersion spectra of several stars in x-ray bright superbubbles. To distinguish the effects of SNR shocks from those of local stellar winds and a global hot halo around the LMC, we included control objects in different environments. We find that almost all interstellar absorption properties can be explained by the interstellar environment associated with the objects. Summarizing the two most important results of this study: (1) a large velocity shift between the high-ionization species (C IV and Si IV) and the low-ionization species (S II, Si II, and C II*) is a diagnostic of hidden SNR shocks; however, the absence of a velocity shift does not preclude the existence of SNR shocks; (2) there is no evidence that the LMC is uniformly surrounded by hot gas; hot gas is preferentially found associated with large interstellar structures like superbubbles and supergiant shells, which may extend to large distances from the plane.

  20. Development of a new green non-dispersive ionic liquid microextraction method in a narrow glass column for determination of cadmium prior to couple with graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa; Shah, Faheem; Afridi, Hassan Imran; Citak, Demirhan

    2014-02-17

    Easy and innovative non-dispersive ionic liquid based microextraction (NDILME) has been developed for preconcentration of trace level of cadmium (Cd) in aqueous real surface water samples prior to couple with graphite furnace atomic absorption spectrometry (GFAAS). A 200 cm long narrow glass column containing aqueous solution of standard/sample was used to increase phase transfer ratio by providing more contact area between two medium (aqueous and extractive), which drastically improve the recoveries of labile hydrophobic chelate of Cd ammonium pyrrolidinedithiocarbamate (APDC), into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6]. Different aspect of the desire method have been investigated and optimized. Under the optimized key experimental variables, limit of detection (LOD) and enhancement factor (EF) were achieved to be 0.5 ng L(-1) and 150, respectively. Reliability of the model method was checked by relative standard deviation (%RSD), which was found to be <5%. Validity and accuracy of the developed method was checked by analysis of certified reference water samples (SLRS-4 Riverine water) using standard addition method. Application of the model method was productively performed by analysis of Cd in real surface water samples (tap and sea).

  1. The SLUGGS survey: globular cluster stellar population trends from weak absorption lines in stacked spectra

    NASA Astrophysics Data System (ADS)

    Usher, Christopher; Forbes, Duncan A.; Brodie, Jean P.; Romanowsky, Aaron J.; Strader, Jay; Conroy, Charlie; Foster, Caroline; Pastorello, Nicola; Pota, Vincenzo; Arnold, Jacob A.

    2015-01-01

    As part of the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey, we stack 1137 Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) spectra of globular clusters from 10 galaxies to study their stellar populations in detail. The stacked spectra have median signal-to-noise ratios of ˜90 Å-1. Besides the calcium triplet, we study weaker sodium, magnesium, titanium and iron lines as well as the Hα and higher order Paschen hydrogen lines. In general, the stacked spectra are consistent with old ages and a Milky Way-like initial mass function. However, we see different metal line index strengths at fixed colour and magnitude, and differences in the calcium triplet-colour relation from galaxy to galaxy. We interpret this as strong evidence for variations in the globular cluster colour-metallicity relation between galaxies. Two possible explanations for the colour-metallicity relation variations are that the average ages of globular clusters vary from galaxy to galaxy or that the average abundances of light elements (i.e. He, C, N and O) differ between galaxies. Stacking spectra by magnitude, we see that the colours become redder and metal line indices stronger with brighter magnitudes. These trends are consistent with the previously reported `blue tilts' being mass-metallicity relations.

  2. A Two-Line Absorption Instrument for Scramjet Temperature and Water Vapor Concentration Measurement in HYPULSE

    NASA Technical Reports Server (NTRS)

    Tsai, C. Y.

    1998-01-01

    A three beam water vapor sensor system has been modified to provide for near simultaneous temperature measurement. The system employs a tunable diode laser to scan spectral line of water vapor. The application to measurements in a scramjet combustor environment of a shock tunnel facility is discussed. This report presents and discusses die initial calibration of the measurement system.

  3. Measurement of the ozone absorption cross-section at the 253. 7 nm Mercury line

    SciTech Connect

    Mauersberger, K.; Barnes, J.; Hanson, D.; Morton, J.

    1986-07-01

    The absorption cross-section of ozone at 253.7 nm is frequently used as a standard for the entire UV wavelength range. The presently accepted value is 1.147 x 10/sup -17/ cm/sup 2/, known with an uncertainty of about 2%. The cross-section has been recently measured by simultaneously monitoring the ozone pressure, the impurities in the ozone gas, the gas temperature and the UV beam intensity. The cross-section at room temperature was found to be 1.137 x 10/sup -17/ cm/sup 2/, having an uncertainty of +- .7%. The improved accuracy will aid a number of ozone experiments including the i-italicn-italic s-italici-italict-italicu-italic photometers and Solar Backscatter Ultraviolet instruments.

  4. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere.

    PubMed

    Konopacky, Quinn M; Barman, Travis S; Macintosh, Bruce A; Marois, Christian

    2013-03-22

    Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation.

  5. Asymptotic expansions of the kernel functions for line formation with continuous absorption

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.

    1991-01-01

    Asymptotic expressions are obtained for the kernel functions M2(tau, alpha, beta) and K2(tau, alpha, beta) appearing in the theory of line formation with complete redistribution over a Voigt profile with damping parameter a, in the presence of a source of continuous opacity parameterized by beta. For a greater than 0, each coefficient in the asymptotic series is expressed as the product of analytic functions of a and eta. For Doppler broadening, only the leading term can be evaluated analytically.

  6. Widely tunable, narrow line width and low optical noise continuous-wave all fiber Er:Yb co-doped double-clad ring laser

    NASA Astrophysics Data System (ADS)

    Guesmi, Khmaies; Bahloul, Faouzi; Semaan, Georges; Meng, Yichang; Salhi, Mohamed; Sanchez, François

    2017-01-01

    In this paper, we report a widely tunable, narrow linewidth, low noise continuous-wave double-clad Er:Yb doped fiber ring laser. Tunability is demonstrated in wide range spanning from 1520 to almost 1620 nm covering the C and L spectral bands. The cavity design is optimized in order to achieve the largest tuning range with very high optical signal-to-noise ratio (SNR). The output coupling ratio greatly influences the tuning range of the laser while the position of the spectral filter determines the SNR. The obtained laser exhibits a tuning range over 98 nm with a nearly constant SNR of about 58.5 dB.

  7. The Hubble Space Telescope quasar absorption line key project. 6: Properties of the metal-rich systems

    NASA Technical Reports Server (NTRS)

    Bergeron, Jacqueline; Petitjean, Patrick; Sargent, W. L. W.; Bahcall, John N.; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Savage, Blair D.; Schneider, Donald P.

    1994-01-01

    We present an analysis of the properties of a sample of 18 metal-rich, low-redshift z(sub abs) much less than z(sub em) absorbers seen in low- and medium-resolution spectra obtained for the Quasar Absorption Line Key Project with the Hubble Space Telescope Faint Object Spectrograph (HST/FOS). For most of the C IV and Lyman-limit systems, observations in the optical wavelength range of the expected associated Mg II absorption are available. As at high redshift (z approximately 2), there are two subclasses of absorbers which are characterized by the presence or absence of MG II absorption. However, some low-redshift Mg II and Fe absorptions originate from regions optically thin to UV ionizing photons and thus, at low redshift, the low-ionization systems do not always trace high opacities, as is the case at high redshift. This implies that the mean ionization state of metal-rich, optically thin absorbing clouds falls with decreasing redshift, which is consistent with the hypothesis that the gas is photoionized by the metagalactic UV background radiation field. Two main constraints are derived from the analysis of the Lyman-limit sample, assuming photoionization models are valid. First, a low opacity to ionizing photons (tau(sub LL) approximately less than 1), as observed for several Mg II-Fe II systems at z approximately 0.5, sets limits on the ionization level of hydrogen, thus on the total hydrogen column density and the heavy element abundances, (Z/H) approximately -0.5 to -0.3. Second, the dimensions of individual Mg II clouds are smaller than at high redshift by a factor 3-10. At z approximately greater than 0.6, the O VI absorption doublet is detected in four of the five z(sub abs) much less than z(sub em) systems for which the O VI wavelength range has been observed, whereas the associated N V doublet is detected in only two cases. This suggests that the presence of a high-ionization O VI phase is a general property of z approximately 0.6-1 absorption systems

  8. Study of the Many Fluorescent Lines and the Absorption Variability in GX 301-2 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Fuerst, F.; Suchy, S.; Kreykenbohm, I.; Barragan, L.; Wilms, J.; Pottschmidt, K.; Caballero, I.; Kretschmar, P.; Ferrigno, C.; Rothschild, R. E.

    2011-01-01

    We present an in-depth study of the High Mass X-ray Binary (HMXB) GX 301-2 during its pre-periastron flare using data from the XMM-Newton satellite. The energy spectrum shows a power law continuum absorbed by a large equivalent hydrogen column on the order of 10(exp 24)/ sq cm and a prominent Fe K-alpha fluorescent emission line. Besides the Fe K-alpha line, evidence for Fe K-Beta, Ni K-alpha, Ni K-Beta, S K-alpha, Ar K-alpha, Ca K-alpha, and Cr K-alpha fluorescent lines is found. The observed line strengths are consistent with fluorescence in a cold absorber. This is the first time that Cr K-alpha is seen in emission in the X-ray spectrum of a HMXB. In addition to the modulation by the strong pulse period of approx 685 sec the source is highly variable and shows different states of activity. We perform time-resolved as well as pulse-to-pulse resolved spectroscopy to investigate differences between these states of activity. We find that fluorescent line fluxes are strongly variable and generally follow the overall flux. The N-H value is variable by a factor of 2, but not correlated to continuum normalization. We find an interval of low flux in the light curve in which the pulsations cease almost completely, without any indication of an increasing absorption column. We investigate this dip in detail and argue that it is most likely that during the dip the accretion ceased and the afterglow of the fluorescent iron accounted for the main portion of the X-ray flux. A similar dip was found earlier in RXTE data, and we compare our findings to these results.

  9. Intersstellar absorption lines between 2000 and 3000 A in nearby stars observed with BUSS. [Balloon Borne Ultraviolet Spectrophotometer

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Lenhart, H.; Van Der Hucht, K. A.; Kamperman, T. M.; Kondo, Y.

    1986-01-01

    Spectra obtained between 2000 and 3000 A with the Balloon Borne Ultraviolet Spectrophotometer (BUSS) payload were examined for interstellar absorption lines. In bright stars, with spectral types between O9V and F5V, such lines were measured of Mg I, Mg II, Cr II, Mn II, Fe II and Zn II, with Cr II and Zn II data of especially high quality. Column densities were derived and interstellar abundances were determined for the above species. It was found that metal depletion increases with increasing E(B-V); Fe was most affected and Zn showed a small depletion for E(B-V) greater than 0.3 towards Sco-Oph. The metal column densities, derived for Alpha-And, Kappa-Dra, Alpha-Com, Alpha-Aql, and 29 Cyg were used to infer N(H I). It was shown that the ratio of Mg I to Na I is instrumental in determining the ionization structure along each line of sight. The spectra of Aql stars confirms the presence of large gas densities near Alpha-Oph. Moreover, data indicated that the Rho-Oph N(H I) value needs to be altered to 35 x 10 to the 20th/sq cm, based on observed ion ratios and analysis of the Copernicus L-alpha profile.

  10. Atmospheric Profiling Combining the Features of GPS ro & Mls: Satellite to Satellite Occultations Near Water & Ozone Absorption Lines

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Reed, H.; Erickson, D.

    2015-12-01

    Assessing climate models & their predictions requires observations that determine the state of the real climate system precisely and unambiguously, independently from models. For this purpose, we have been developing a new orbiting remote sensing system called the Active Temperature, Ozone & Moisture Microwave Spectrometer (ATOMMS) which is a cross between GPS RO and the Microwave Limb Sounder. ATOMMS actively probes water vapor, ozone & other absorption lines at cm & mm wavelengths in a satellite to satellite occultation geometry to simultaneously profile temperature, pressure, water vapor and ozone as well as other important constituents. Individual profiles of water vapor, temperature & pressure heights will extend from near the surface into the mesosphere with ~1%, 0.4K and 10 m precision respectively and still better accuracy, with 100 m vertical resolution. Ozone profiles will extend upward from the upper troposphere. Line of sight wind profiles will extend upwards from the mid-stratosphere. ATOMMS is a doubly differential absorption system which eliminates drift and both sees clouds and sees thru them, to deliver performance in clouds within a factor of 2